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ABSTRACT

The aggregation of data from connected smart thermostats installed in a huge number of resi-

dential buildings has expedited the remote detection and diagnosis of faults in Heating, Ventilation

and Air-Conditioning (HVAC) systems. Upon identification of faults in air-conditioning systems,

manufacturers and occupants are interested to know how severe the impact of the faults is on the

energy consumption and the thermal comfort of the occupants. Several studies in literature have

previously attempted to quantify an energy impact metric and a thermal comfort impact metric

of faults in an HVAC system, but the metrics developed lack the ability to be used objectively to

compare several systems at once. Furthermore, no study has yet tried to examine the coupled rela-

tionship between the energy consumption of the system and the thermal comfort of the occupants

to estimate an aggregate fault severity index of a system.

The current study attempts to provide a paradigm shift in the calculation of the energy impact

metric. The thesis, firstly, proposes a methodology to model the energy consumption of the average

system in a dataset comprising of similarly sized system operating in the same climate region.

The performance of each air-conditioning system is compared to the performance of the average

system to estimate the amount of impact faults have on their energy consumption. Additionally,

the current study also estimates the level of thermal discomfort felt by occupants of the house using

the Predicted Mean Vote (PMV) of the indoor environment. The average level of discomfort felt

by the occupants living in the house is then compared with a baseline to estimate impact on the

thermal comfort of occupants.

The two impact metrics are then combined together into one index that represents the fault

severity index of the system which can then be used to rank systems to prioritize them for repair.

The severity index of the system is a representation of the relative energy consumption level of the

system if it were to produce no thermal discomfort. Another metric that comes as a by-product

of this derivation is the amount of change in energy consumed by the system in order to make the

indoor environment comfortable. The coupled nature of the four metrics will be delineated so as to
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gain an insight into the characteristics of air-conditioning systems. Causes for faulty behavior of

systems are examined and systems with mechanical faults are segregated from systems operating

under ineffective operating conditions.
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1. INTRODUCTION

According to the Residential Energy Consumption Survey [3] conducted by the Energy Infor-

mation Administration in 2015, nearly 85% of residents in the US use a thermostat to control their

heating equipment and 64% to control their cooling equipment. Since nearly half of the total en-

ergy consumed by the residential sector is used for space conditioning [3] residential thermostats

are estimated to control close to 10% of the nation’s total energy use [4]. With growing number of

people working from home there is growing incentive in building thermostats that can improve the

energy efficiency of the house while also providing adequate thermal comfort.

The use of thermostats began with deployment of manual thermostats which allowed the user

to set a target temperature and controlled the Heating, Ventilation and Air-Conditioning (HVAC)

system of the hosue so that the indoor space reaches the target value. With the progress of tech-

nology, residential buildings have slowly adopted the use of programmable thermostats which in

addition to the above also allow the occupant to setup schedule-based setbacks that help save en-

ergy at night and during times when the home is unoccupied. Although 60% of the homes in US are

estimated to have installed programmable thermostats [3] field studies have shown that only half

of them have been programmed [5]. The amount of savings expected from using programmable

thermostats was found to have been exaggerated. As indicated in [4] several studies have found

no significant savings upon installation of programmable thermostats, primarily because the occu-

pants of the homes did not use the energy saving programming features [6]. Hence, there has been

a greater push in the industry to make the adoption of energy saving measures more pervasive by

building programmable thermostats that can leverage modern control techniques.

In order to provide good communication of data and automatic control of home environments,

thermostat manufacturers have developed an advanced version of the programmable thermostat

called the smart or connected thermostat. Not only do smart thermostat use intelligent algorithms

to learn more about occupants’ behavior, but also provide occupants feedback on their thermostat

settings and energy usage. Based on the manufacturer, smart thermostats can come with a range of
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extra features in addition to the ones found in programmable thermostats of which the notable ones

include: learning algorithms, occupancy sensors, geofencing and software for remote control [7].

However, a common defining feature of smart thermostat is their ability to upload thermostat usage

data unto to a cloud over the course of several months, to be available to analysts and engineers to

build algorithms for better control and analysis of indoor environments.

Analysis of connected smart thermostat data is increasingly becoming a popular area of study

because of the wealth of information they provide. Few of the primary motivations for studying

smart thermostat data include: studying occupants’ behavior [8], studying potential energy saving

opportunities [7, 9, 10, 11], studying thermal comfort levels of homes [12, 13, 14], building models

to predict building energy characteristics [15, 16], building smarter control algorithms to improve

energy efficiency [17] and thermal comfort [18], building effective demand response programs for

demand peak reduction [19] and finally for building algorithms to perform fault detection and diag-

nostics including weeding out systems with inadequate capacity or gradual capacity degradation.

While fault detection and diagnostic algorithms help in identifying potentially faulty systems,

manufacturers and occupants are often interested in determining how severe the fault actually is.

The fault severity index of an air-conditioning system is a good indicator of which system to

prioritize for repair. Additionally, the occupant will benefit in knowing how much of an effect a

change in their usage of the air-conditioning system will have. The severity of a faulty residential

HVAC system is proportional to the amount of impact it has on the energy consumption of the

house and on the thermal comfort of its occupants. Therefore, in order to quantify the severity of

a faulty system, firstly, the impact of a fault on the occupant in the two aforementioned areas must

be quantified.

Studies on using the data from connected thermostats to simultaneously analyze the system’s

energy consumption and occupants’ thermal comfort have primarily been in the area of developing

smarter control strategies. Merabet et al. [17] provides a comprehensive review of literature on

history of studies of control algorithms for smart thermostats. However, the objective of construct-
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ing an impact metric is not to build a better control strategy but to provide a means to interpret the

data with a different perspective.

The following thesis first provides context by giving background on the work done by previ-

ous researchers of Dr. Ramussen’s group who have worked on this project. Chapter 2 therefore,

introduces the nature of the data, pre-processing procedures that were used to prepare the data and

how the data could be used to develop statistics based fault detection and diagnosis procedures.

Subsequently, existing literature is reviewed in chapter 3 to identify the inadequacies of existing

energy and thermal comfort impact metrics and proposes few general guidelines to fill the gaps.

Chapter 4 describes a construction of an energy model of a given system by examining its smart

thermostat data and compares it to a baseline to understand its relative energy performance. Sim-

ilarly, chapter 5 compares the Predicted Mean Vote (PMV) of thermal comfort level of the indoor

environment at various instants in time to what the PMV would have been in the absence of an

air-conditioning system to construct a thermal comfort impact metric. Subsequently, chapter 6

proposes a method for combining the two mutually dependent metrics previously developed to

estimate a fault severity index for an air-conditioning system. This will be done by examining the

difficulty in reducing the thermal discomfort to zero and its subsequent effect on system’s relative

energy performance. Chapter 7 delineates the relationship between the four metrics established

in the three former chapters and examines how the metrics can be correlated with the behavior of

the air -conditioning system. Finally, chapter 8 explores a few examples from each of the cases

developed in chapter 7 and provides a quantitative understanding of the metrics. Chapter 9 is a

summary of the methods discussed in the thesis and also explores possible avenues for future work

on this topic.
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2. OVERVIEW OF LARGE SCALE DATA ANALYTICS FOR RESIDENTIAL HVAC

SYSTEMS

This project titled, "Large Scale Analytics for Residential HVAC Systems", was sponsored by

Trane Technologies Inc., from April 2018 to December 2021. The following chapter is summary

of the contributions made by two previous students, Fangzhou Guo [2] & Austin Rogers [1], who

have worked on this project previously. The thesis that follows in the rest of the chapters is built

on the fundamental ideas established by them. All materials reproduced in this chapter have been

done so with permission from the original authors.

The proposed study was conducted on data acquired form smart thermostats installed in res-

idential buildings provided by Trane Technologies Inc. The dataset contains event-based time

series data from nearly 400,000 HVAC systems installed in residential buildings across the United

States. The key objective of the project was to use the data to build fault detection and diagnosis

(FDD) methods for predictive and preventive procedures. Traditionally, FDD of residential split

systems warrants the installation of additional sensors on the equipment making it cost-ineffective

to be implemented on a large scale especially for mass produced residential systems. This project

provides an alternative FDD approach wherein a large number of systems will be analyzed using

only the limited amount of sensor information available from smart thermostats from each system.

Analyzing smart thermostat data has a number of benefits for not just the home occupants but the

manufacturers as shown in fig. 2.1.

Although smart thermostat data does not contain a lot of diversity in terms of parameters, be-

cause of its large scale statistics-based or artificial intelligence based algorithms can be developed

for fault detection and diagnosis. Interesting features extracted from data from large amount of

systems are used to build the algorithms and faulty systems found thereby are ranked based on the

severity of faults detected. A general overview of the FDD process developed as part of the project

is given in fig. 2.2.
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Figure 2.1: Benefits of using FDD for residential HVAC systems. Used with permission from [1].

2.1 An introduction to the data

The data queried from the cloud consists of two sets of parameters for each system which in-

clude configuration parameters and operation parameters. Configuration parameters provide infor-

mation regarding the kind of HVAC system installed in the house while the operation parameters

describe the state of the indoor environment and the system in time-series form with each data

point being added as and when the state of the system changes. The table 2.1 illustrates a few of

the key parameters of each type.

Table 2.1: Few key parameters in the smart thermostat database provided by Trane Technologies.

Configuration Parameters Operation Parameters
Indoor/Outdoor unit type Indoor/Outdoor temperature

Indoor/Outdoor unit stages Indoor/Outdoor Humidity
Indoor/Outdoor capacity Cooling/Heating Setpoint

System Location Indoor/Outdoor unit operating conditions
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Figure 2.2: General overview of the FDD process. Used with permission from [2].

2.2 Data Selection and Cleansing

Since, data from thousands of system all across the United States is available for analysis an

appropriate set of systems should be selected so the analysis is objective. Systems lying in the

same climate zone must be grouped together because the local climate determines the size of the

system. Comparing two systems that lie in different climate regions will lead to ambiguous results.

For example, the cooling units lying in climate region 6A which comprises of states primarily in

the north eastern part of the US will be of smaller size than systems lying in climate region 2A

which belongs in the state of Florida because the systems in Florida will experience much severe

summers in comparison.

Another factor to keep in mind while selecting data is the type of air-conditioning system.

Since, the operational behavior changes drastically between single-stage systems, dual-stage sys-
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tems and variable-speed systems, comparing systems of one type only will keep the comparison

objective. Finally, an appropriate time scale should also be selected. Selecting a short time-scale

will have significant drawbacks because the full range of ambient conditions will not be captured.

Additionally, the data may be affected by irregular occupant behavior (leaving the window open for

long periods of time, for example) or other irrelevant covariates. However, a large time-scale will

lead to inaccurate results as well because the operating condition of the system may have changed

by the end espcially due to degradation or repairs.

The data from all the systems is queried from the cloud and cleansed before analysis. Cleansing

operations involved removing data points that raise sensor integrity issues and those that convey

network communication errors. A rule-based filter was used to remove faulty datapoints, the crite-

ria for few of which is given below (courtesy of [2]):

1. The indoor or outdoor temperature climbs above 130◦F or goes below 0◦F (occasionally the

thermostat will list the temperature as 215 = 32, 768◦F when the thermostat goes offline).

2. The temperature increases or decreases by more than 20◦F between two consecutive updates.

This is often caused by sensor integrity issues.

3. The indoor or outdoor temperature has not updated for more than four hours. If the sensor

fails to update for a period of time and then suddenly resumes, then removing these commu-

nication failure periods is necessary.

4. The system maintains a constant temperature with little variance (tightly), but the setpoint

error is large. In this case the reported setpoint is likely incorrect.

5. The system runs for more than 24 hours. In most cases this is caused when the system “off”

signal is not received.

2.3 Mode Labelling

After querying and cleansing the data, the data from each system was divided into its modes

of operation. These modes were constructed based on the states of the system: steady-state mode
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observed when the system is cycling on/off maintaining a constant indoor temperature (called the

regulating mode), transient mode observed when the system is actively cooling to reach a new

setpoint (called the tracking mode) and the free response mode which is when neither setpoint is

active and the system is switched off. Figure 2.3 shows the data from the system partitioned into

various modes as well as the time series variation of the state of the system.

Figure 2.3: Time series data from a single-speed air-conditioning system in Florida along with
modes of operation.

The modes labelling algorithm which divides data from each system into modes uses several

rule-based filters and was developed by two former Ph.D. candidates who have worked on this

project previously, Austin Rogers and Fangzhou Guo, and it can be found here [20].
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2.4 Feature Extraction

Since data from each system has been partitioned into modes, features describing the properties

of the systems can now be extracted. Fault detection is done on the basis of features that are

extracted from each of the modes. The list of features is ever expanding because there is always

a chance to discover feature that can better characterize the system. Few of the features that are

extracted from each mode are given in tables 2.3, 2.2. A detailed list of features and definitions

can be found in [2]. Two tables explaining the features are attached here below.

Table 2.2: Features extracted from behavioral modes. Used with permission from [2].

Symbol Feature name
Behavioral modes

Tracking Free Response Regulating All

∆Toi Temperature difference X X X X

∆ωoi Humidity difference X

∆Tii Indoor temperature rise X X

∆t Cycle duration X

D Duty factor X

L Load factor X X

Ec, Eh Cooling/Heating effort X X

F Cycle frequency X

Tspe Setpoint error X X

DH Degree hour X

Ti,max Max indoor temperature X
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Table 2.3: Definition of Features. Used with permission from [2].

Symbol Unit Definition
∆Toi [◦F] Temperature difference between home (indoor) and ambient

(outdoor); defined as ∆Toi = To − Ti.

∆ωoi [kg H2O/
kg dry air]

Humidity difference between home and ambient; defined as
∆ωoi = ωo − ωi.

∆Tii [◦F] Indoor temperature rise (or drop) in a given time period:
∆Tii = Ti(t2)− Ti(t1) in a time period from t1 to t2.

∆t [hr] Cycle duration. The amount of time that a system remains on.
D [%] The portion of time that the system is running, and this is typically

defined for a given time period. For example, a duty factor of 40%
in a 1-hour period denotes that the system ran for 24 minutes in
that hour. However, a variable speed system may have a duty
factor close to 100%.

L [%] The portion of full capacity at which the system runs. When
defined over a given time period, this is the average portion of full
capacity that the system runs at when the system is on. A
single-stage system essentially always has a load factor of 100%.

Ec, Eh [%] Defined by the product of D and L, which denotes the overall
portion of capacity for the given time period. Variable speed
systems will typically have a high duty cycle and a low load factor,
while single stage systems will have high load factor and low duty
factor.

F [cycle/hr] The number of start/stop cycles per hour.
Tspe [◦F] The error between indoor temperature and setpoint; defined as

Tspe = Ti − Tspc for cooling and Tspe = Tsph − Ti for heating.

DH [◦F·hr] The integral of setpoint error, during a time period from t1 to t2;
defined as: DH =

∫ t2
t1

max (0, Tspe)dt.

Ti,max [◦F] Ti,max is defined as the maximum indoor temperature during a
cooling tracking period, and correspondingly Ti,min is defined as
the minimum indoor temperature during a heating tracking period.

2.5 Statistics Based Fault Detection Methods

Data queried from the cloud is processed and partitioned into modes of operation after which

features are extracted from each of the modes. Faulty systems were then identified by examining

the statistical distributions of the features in each of the modes. Five detectors were developed as a
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part of this project by Dr. Fangzhou Guo [2] and Dr. Austin Rogers [1]. The detectors were firstly

developed for cooling systems by the original authors upon which they were expanded to heating

systems by the author of this thesis. A summary of their functionalities as explained by the original

authors is given below:

2.5.1 Setpoint Tracking Failure Detector

This detector analyzes the transient behavior of the system. Feature of the system from the

cooling tracking mode of the system are analyzed and a detailed description can be found in [21].

A single cooling tracking mode is continuous period of time wherein the system is actively cooling.

Systems with normal transient behavior are ones where the cooling system switches on after a drop

in setpoint and actively cools until the indoor temperature reaches the new setpoint. Periods of poor

transient behavior include when the indoor temperature increases by over 10◦F even though the

system is cooling continuously for 24 hours. The plot in fig. 2.4 compares a normal tracking period

and a poor tracking period. Features used to identify these poor tracking periods are the average

degree hour over setpoint and average maximum indoor temperature. Average degree hour above

setpoint is the average area between the indoor temperature and the setpoint temperature in all

poor tracking periods of the system. Average maximum indoor temperature is an average of the

ten highest maximum indoor temperatures recorded in poor tracking periods after removal of 5

most extreme instances. Normal system have a average degree hour above setpoint equal to 0

and average maximum indoor temperature lower than 80◦F . Systems that show abnormally high

values for both of these features are identified as systems that could possibly be faulty.

2.5.2 Inadequate Capacity Detector

As the name suggests this detector identifies systems with inadequate capacity, specifically by

examining the cooling regulating mode. During the cooling regulating period the system is cycling

on and off maintaining a constant indoor temperature. Since the system is in pseudo steady state

the amount of cooling provided by the cooling system is equal to the total heat load that the house

experiences. The heat load comprises of the internal load generated by the occupant, the solar
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Figure 2.4: Illustration of (a) normal transient behavior (b) poor transient behavior in cooling
tracking mode (in red). Used with permission from [2].

load and the heat load due to conduction of heat from outside. Under normal circumstances the

systems that see a larger solar and internal load are assumed to have been fit with a system of larger

capacity. However the heat load will change with changing outside temperature and so does the

amount of cooling provided by the system. The amount of cooling provided by the system in a

regulating period is proportional to the cooling effort of the system in that period. Cooling effort

(Ec) is the product of duty factor and load factor as defined in table 2.3. In case of single speed

systems that have a load of either 1 or 0, the cooling effort is essentially equal to the the duty factor.

The cooling effort which is extracted from all the regulating periods of the system is the feature

used to build a statistical distribution for comparing systems.

The detector uses the joint probability distribution of cooling effort and temperature difference

as built using data aggregated from all the systems to construct what is called as a characteristic

curve. The characteristic curve represents the average performance of all the systems or the ex-

pected cooling effort of the average system at every level of temperature difference. Subsequently,

weighted average of distance of cooling effort values of a single system to the characteristic curve

is calculated using the probability density function of temperature difference values as weight.

Systems that have very high value of weighted average difference of cooling effort have cooling

effort values that lie far away in comparison to how systems in the dataset perform on average.
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Hence, they’re cause of concern and possible cases of system with inadequate capacity to keep

with the demands of the house. Detailed description of this detector can be found here [2].

Figure 2.5: Kernel Density Estimation (KDE) was used to build the probability density function in
(a). Weighted average distance is calculated from (c) and then examined to identify systems with
inadequate capacity. Used with permission from [2].

2.5.3 Abrupt Change Detector

Once a system is detected with inadequate capacity, tracking back the historical data to inves-

tigate its past behavior becomes necessary. The inadequacy of capacity could be either caused by

incorrect equipment model selection or improper commissioning, which exists before the actual

usage of the system, or caused by equipment aging, refrigerant loss, air duct blockage, and even

occupant faults, which are accumulated problems after actual usage. A system with only the for-

mer category of faults should show very little behavioral change throughout its operational data,
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while a system with either the latter category of faults or both should show significant behavioral

change.

The Abrupt Change Detector is able to find sudden changes of behavior, followed by the Degra-

dation Trend Detector will be introduced to find gradual changes of behavior. The Abrupt Change

Detector could detect changes of a time series in its mean value and is applicable to both thermostat

data features (e.g., the Cooling/Heating Effort) and diagnostic module features (e.g., the airflow

rate). The method is based on the t-statistic which is commonly used to determine whether two

samples are chosen from the same population. First of all, the t-statistics are calculated at every

possible bisection of a given time series. The bisection that yields the maximum t-statistic (MTS)

will be associated with the instant in time at which a change is most likely. Because the MTS will

not follow the traditional Student’s t distribution, secondly, Monte Carlo simulation is used with

kernel density estimation to identify its probability density and appropriate thresholds for the MTS

are then chosen using the probability density. Finally, a significant change is detected if the MTS

of the time series is higher than the threshold.

The detector could be applied either retrospectively or recursively. In the retrospective imple-

mentation, a past period of data is analyzed in order to determine if a change point exists within

that past period. In comparison, the recursive implementation is more suited to be applied to the

most recent data after new data becomes available, and therefore can detect a new change as soon

as possible.

14



Figure 2.6: Application of the abrupt change detector to the time series of airflow rate. Both
retrospective implementation and recursive implementation are shown. Used with permission from
[1].

Moreover, the detector is capable of detecting multiple change points in a time series. After one

change has been detected, the primary window will be selected from the location of the detected

change point. To improve the localization of the change point, a secondary window that includes

the change point is maintained until the left and right sample sizes are balanced or until another

change is detected. Detailed information can be found here [22].

Figure 2.7: Handling of multiple change points. Used with permission from [1].
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2.5.4 Degradation Trend Detector

The former fault detection method, the Abrupt Change Detector, is designed to find sudden

changes in a time series of operational data. In contrast, the Degradation Trend Detector is designed

to find gradual changes in a time series, especially the gradual degradation trend of system capacity.

According to the domain expertise, as the capacity of a system gradually degrades, the Cool-

ing/Heating Effort and the Daily Cooling/Heating Hours at the same ambient conditions are sup-

posed to have an increasing trend. Based on this, the Degradation Trend Detector applies the

Mann-Kendall test, a robust non-parametric trend detection method, to find increasing trends of

these features. In reality, the ambient conditions cannot be stable: the outdoor temperature is not

constant, internal heat gain varies, and setpoint is often changed by occupants. Therefore, the

Mann-Kendall tests are modified to account for those conditional variables that can affect the test

features.

When the Cooling/Heating Effort is used in the test, the data is subdivided into several subsets

according to the range of temperature difference, and tests are performed at the subset level. On top

of that, modified versions of the Mann-Kendall test are applied to account for the serial correlation

of each dataset. When the Daily Cooling/Heating Hours is used in the test, the Partial Mann-

Kendall test is applied to eliminate the influence of the outdoor condition and setpoint variations

and the serial correlation of features. In-depth discussion of this detector can be found here [23].

2.5.5 Control Problems Detector

Features from cooling regulating mode can also be used to identify systems control problems.

Feature of the regulating period namely the cooling effort, cycle frequency, and cooling setpoint

error data of a group of systems are extracted. The features are then subdivided into subsets as

per the values of temperature difference and indoor humidity observed in each of the regulating

periods. A two-part fault detection method was built to compare the features among systems to

find outliers. In the first part, each feature is compared individually by estimating its total sample

distribution using kernel density estimation, and the outliers are data points in the abnormally low
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Figure 2.8: Daily operating condition of a flagged system. The Daily Cooling Hours is used as a
feature. Used with permission from [2].

density region; and in the second part, features are combined together as a multivariate, and the

Mahalanobis’s distance is applied to isolate the outliers. Finally, the outliers with high cooling

effort, high cycle frequency, and high cooling setpoint error are ranked, and given an adjustable

quantile (i.e., top 0.5%), the top ranked systems within these outliers will be flagged as anomalies.

Because the flagged systems have abnormally high compressor cycling frequency and regulating

setpoint error, the problem could be related to the control system not working or thermostat mis-

placement. Plus, the cooling effort added into the detector helps a comprehensive analysis by also

taking the capacity check into consideration. In depth explanation of the this detector can be found

her [24].
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Figure 2.9: Features of an air-conditioning system flagged by the control problems detector. Used
with permission from [2].

Figure 2.10: Summary of each of the steps involved in the FDD process. Used with permission
from [2].
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Since a fault detection methodology has now been established the next step in the process is

examining what effect the faults have on the occupants. The rest of the thesis explores this ques-

tion by estimating the impact of faults on energy consumption and thermal comfort of occupants.

Finally, a method to combine the impact metrics and determine a severity index for the system will

also be presented. In the process the cost and effect of improving the thermal comfort level of the

system will also be examined.
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3. BACKGROUND & OBJECTIVES

Implementing energy efficiency measures in buildings helps reduce energy costs while main-

taining or improving occupant comfort [25]. In addition to identifying the right measures to be

taken, an important step in the process is providing feedback to occupants on their usage of the

system. This process also referred to as eco-feedback [26] has been expedited considerably by the

increased establishment of smart thermostats and home energy management systems.

The process of eco-feedback has typically been employed to inform the occupant of their im-

pact on energy consumption [26]. The process of designing such an eco-feedback systems relies

on the appropriate benchmarking of energy consumption of buildings. Building owners as well as

policy makers use benchmarking to help identify buildings that need retrofits or buildings that have

potential for improvement [27]. However, benchmarking energy more often than not ignores the

comfort level of homes which is equally important because of its influence on occupants’ health

and productivity [27].

The process of benchmarking involves comparing the existing performance of an air-conditioning

system, as indicated by both the energy consumption and thermal comfort, with that of a baseline

to evaluate its behavior. The baseline that’s used for comparison falls into one of two categories:

1. How would the given air-conditioning system perform at baseline conditions?

2. How would a baseline air-conditioning system perform at the given conditions?

The former case could involve comparing the performance of the given system to its own

behavior in the past or comparing the performance of the given system at the current set point level

to a hypothetical scenario with fixed set points. In case of the latter, a baseline air-conditioning

system will be chosen based the observed data and the system performance will be compared to

this baseline. Choosing such a baseline can be tricky. One approach is to compare the performance

of the air-conditioning system with that of a fixed system that represents the national average [28].

This method while being easier still has to ensure that the baselines are updated especially when
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considering energy consumption with changing energy demands, fuels prices and other factors

[28]. The second method is comparing the performance of two existing air-conditioning systems

with each other but this does not help provide an objective worth of the system’s performance.

A good middle ground between the two is modeling the performance of an archetypal building

at the location of the given house and using that as the baseline [28]. This research proposes a

baseline based on this concept but goes further to try and attribute the impact to building factors or

occupant factors. The following sections in this chapter will discuss how a baseline will be built

in each case and how the baseline can used to benchmark the impact of energy consumption and

thermal comfort.

3.1 Energy Impact metric

Benchmarking of buildings for energy consumption is typically done by constructing Energy

Performance Certificates (EPCs) which give the buyer or the tenant accurate information on the

energy performance of the building [28]. Energy Performance Certificates are constructed with

the help of indices that quantify relative energy performance called as Energy Performance Indices

(EPIs) [29]. One such index that is commonly used in practice is the Energy Usage Intensity

(EUI), which is the annual energy consumed by the building per unit gross floor area [27]. EUI

attempts to make the comparison of buildings of different sizes fairer by normalizing them by their

area. Normalization of buildings is necessary because directly comparing the energy consumption

of the two buildings can paint a false picture because non-uniform sizes and usage patterns. In

order to avoid any potential pitfalls, benchmarking and comparison are only done for buildings

of similar characteristics, of similar size and situated in similar climate regions [29]. In addition

to gross floor area, normalization of buildings can also be done by person or person-day [27].

However, irrespective of the parameter(s), normalization is always accompanied by some loss of

perspective. For example, by completing the basement, a particular home may have lesser EUI than

a home of the same size without a basement, but the comparison in that case is misleading because

basements typically consume very less energy in comparison to the rest of the house [30]. Ueno
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[30] describes in detail further problems that could arise with using EUI as an energy performance

metric and other normalization methods that could be used.

Building energy benchmarking tools that exist today such as the Energy Star Portfolio Man-

ager [31] or the Building Performance Database [32] are typically constructed using regression

models on databases comprising of a variety of buildings in the US. The Energy Star Score [33]

which is a popularly used benchmakring tool uses a regression model to give each building a score

between 1 and 100 based on comparing the given source EUI and the EUI predicted by the model.

As stated previously studies have identified the problems with the existing EUI-based metrics [30]

and Guillen et. al. [27] go further to demonstrate the variation in benchmarking results due to

different metrics. Various statistical methods have been used to improve the regression-based ap-

proaches few of which are: using a more diverse set of variables, building complex probabilistic

models, clustering the data to find common sets of buildings and then building a regression model

in each set [26]. The regression model built for the house is by the means of data collected typ-

ically through one of two processes: calculation-based approaches which use the thermophysical

characteristics of the buildings, climate and occupant behavior to estimate the energy consumed

or measurement-based approaches that are based purely on metered energy data without regards

to the building characteristics or occupant behavior [28]. Calculation-based approaches involve

a bottom-up approach wherein energy performance of components is modeled individually with

the help of a few approximations without regards to the actual energy use which may vary con-

siderably. On the other hand, measurement-based approaches while accurate, do not collect any

auxiliary data making the separation of building performance from other factors such as building

characteristics and weather very difficult. Since both of the approaches aren’t fully accurate and

are susceptible to errors the incorporation of smart technology in the form of smart meters or smart

thermostats during the recent times has helped bridge the gap as shown by studies done especially

in the European Union (EU) [28].

Smart meters measure accurate electricity/gas consumption data with a high temporal resolu-

tion. They are step better than using irregular manual meter readings in that no further adjustment
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or modelling is required before using for analysis [28]. The high temporal resolution nature of the

data allows for it be examined against the external weather data or solar irradiance data observed at

the location to understand building characteristics. In case of heating systems researchers in the EU

have defined two metrics that use smart meters to characterize and compare houses: heating power

loss coefficient [34] and heat transfer coefficient [35]. Heating power loss coefficient (HPLC) is

the amount of fuel required to maintain a given temperature difference between inside and out-

side of a building and heat transfer coefficient (HTC) is the amount of heat required to maintain

a given temperature difference. Depending on what metric is measured by the smart meter (fuel

consumed/heat energy consumed) either of the metrics can be used as a way to characterize the

thermal losses due to poor house properties (in case of HTC) or thermal losses due to properties of

the house and heating system (in case of HPLC).

Determining either of these metrics empirically can be done by building a mathematical model

of the smart meter data. A linear regression model between the daily average fuel power and exter-

nal temperature of the house represents the simplest model that was built first used in the PRInceton

Scorekeeping Method (PRISM) [36] and subsequently improved in the Inverse Modelling Toolkit

[37]. However, the linear model is susceptible to inaccuracies due to its exclusion of solar load

and internal loads of the house. Accounting for solar load especially, is a challenging task because

though solar irradiance value at a location can be estimated, the solar load the house experiences

is also a function of the orientation of the house regarding which sufficient data is not available.

Under the assumption that heat provided by the heating system is very high in comparison to the

heat addition due to solar load and internal load, the linear model can be used to estimate HPLC

(as done by [34]) or the HTC (as done by [38]).

Although smart meters are a good source they lack diversity, restricting themselves to only

energy consumption data. Estimating building characteristics from just smart meter and weather

data so as to compare systems against each other could be inaccurate because they come from

different sources and need to be matched. Smart thermostat data on the other hand goes one

step further by reporting indoor temperature and relative humidity data as well as the state of the
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cooling/heating system thereby allowing for a much more precise estimation of energy savings.

With the growing installation and employment of smart thermostat in residential buildings across

the US, a wealthy trove of data has become available that can be used to characterize and compare

buildings.

Existing literature points to various studies that have used smart thermostat data to build an

energy impact metric with the most notable and widely used one being the Energy Star metric

developed as part of the EPA Energy Star © Connected Thermostat Program [10] 1. The Energy

Star metric estimates the amount of energy savings possible to compare houses. The basis of such

a metric as discussed in the introduction to this chapter involves the comparison of the performance

of the given system with a baseline. In case of the Energy Star metric the baseline used was put

forward by Urban and Roth [11] and it compares the performance of the system with the how the

system would have performed at a constant baseline temperature specific to the system. In the

case of heating they suggest the baseline temperature as the 90th percentile of indoor temperature

and in the case of cooling they suggest the baseline temperature as the 10th percentile of indoor

temperature. This was proved to be better than directly assuming the maximum and minimum

temperature as the baseline temperatures respectively because it takes care of random spikes in

temperature and will likely represent a comfortable temperature with the home being occupied.

An improvement to this baseline was suggested by Huchuk et. al. [13] used data collected from

people enrolled in EcoBee’s Donate Your Data program and segregated users into two groups:

users that overrode their setpoints frequently and users that didn’t. Since, most users override their

setpoints to a more energy intensive value, in the case of the latter group, Huchuk et. al. propose a

new baseline performance for each system which is what their setpoint schedules would have been

had there been no override. This method will not work for users who frequently override their

setpoints because determining what the original setpoint would have been is very difficult. So, for

those users they propose using the same baseline as the one used by the EnergyStar metric.

1Please note that this Energy Star score is specifically for smart thermostats and is different from the one built for
benchmarking in the Energy Star Portfolio Manager [31].
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A key issue, however, in using a baseline specific to each system is that it is not objective. In

order to compare the energy savings from two systems, a common baseline is desired and assuming

a baseline that’s specific to that system makes objective comparison difficult. Furthermore, such a

baseline does not make use of the wealth of information that the smart thermostat data provides. A

dataset of systems can have systems that are all from the same region having similar specifications

(single speed, variable speed etc.), installed in houses of similar size; so, there is an incentive to

build a baseline that leverages the data from all these similar kinds of system that can be used

objectively to compare systems within that dataset.

Analogous to smart meter data, comparing systems on the basis of smart thermostat data re-

quires the construction of a mathematical model as well. The model can be used to estimate

system performance at baseline conditions which can then be compared against its performance at

the given conditions. In order to calculate the energy consumption of a house under the two scenar-

ios, a widely employed technique is to run building energy simulations of an archetypal model of

a house with a similarly sized HVAC system using softwares such as EnergyPlus [39] and BEopt

[40]. The results are then extrapolated to simulate the performance of all the houses in the dataset.

A good example of such a study was done by Booten et al [41] who calculated the energy impact

of thousands of web-connected Trane smart thermostats by taking a typical model of the house in

each climate region and conducting simulations in BEopt. A detailed review of all studies that used

the above software tools and the baselines used to estimate the energy savings is given in Pang et

al [7].

Unfortunately, conducting simulations using the above software tools for all the systems in the

dataset has the underlying drawback of being computationally intensive and possibly inaccurate.

Smart thermostats often only provide the thermostat usage data and not necessarily any metadata

regarding each house. Since, no information regarding the orientation, model and layout of the

houses is known, conducting accurate building energy simulation studies is difficult. To simplify

the process of constructing a mathematical model the Energy Star metric for connected thermostats

builds a linear regression model between daily average heating/cooling runtime (amount of time
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the system is switched ON) and the daily average temperature difference between indoors and out-

doors. This model is similar to those built for smart meter data but have the advantage of being

more accurate because of the inclusion of indoor temperature which was previously unavailable.

The slope of the linear relationship represents the ability of the house to let heat pass through the

walls (i.e., insulation level) and the intercepts refers to all the heat gained in the house due to occu-

pant’s body heat, heat from the appliances and the solar load. Since the amount of cooling/heating

energy given to a house is directly proportional to the amount of time the system runs, the coeffi-

cients of this linear model are found by minimizing the square of the difference between the actual

running time and the running time predicted by the model across all the days of interest [10]. Using

this relationship and the baseline proposed by Urban and Roth [11] the energy savings metric is

calculated as the difference between predicted baseline running time and the actual running time.

This method of simulating the performance of a system however, reduces the variation of tem-

perature and runtime in a day to one number which smooths out a lot of the effects of intermittent

changes and the model built is likely to be incomplete. Furthermore, the range of temperature

difference values considered will be low because over the course of usage of a cooling system over

3 months in the summer, the variation in temperature difference values on daily basis will not be

high. The same variation across the day can however be broader. So, methods that can utilize this

variation can be expected to be more accurate.

In order to categorize the severity of faults in a system, both its impact on energy consumption

and its impact on thermal comfort need to be examined. The EnergyStar metric represents the

accepted state of the art for quantifying the impact of systems on the energy consumption of the

house. The next section discusses metrics that have constructed to examine occupants’ thermal

comfort level.

3.2 Thermal Comfort Impact metric

In comparison to energy benchmarking, comfort benchmarking is not as commonly conducted,

though thermal comfort is known to play a crucial role on occupants’ health and productivity [42].

Thermal comfort is one of the parameters upon which the satisfaction of an occupant is depen-
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dent on which is typically characterized by Indoor Environment Quality (IEQ). IEQ also includes

parameters that account for visual comfort, indoor air quality (IAQ), and aural comfort (relating

to noise level) [43]. The consequence of IEQ being dependent on so many different parameters

makes expressing it in a single metric a difficult task. Typically, an IEQ index is estimated by

weighting different individual IEQ factors depending on their influence on occupant’s satisfaction

[27]. These weights can be estimated by recording occupant responses on how each parameter af-

fects their satisfaction with the environment. Occupant responses give higher weightage to thermal

and aural comfort contribute meaning they contribute the most to satisfaction whereas indoor air

quality got the least [43]. Although the indoor air quality is the least perceivable among all the

IEQ factors, a high concentration of contaminants in air is detrimental to the health of the occu-

pant. ASHRAE recommends guidelines for buildings to follow to maintain acceptable levels of

concentration of contaminants [44].

Currently, the most commonly accepted metric to measure thermal comfort level of an envi-

ronment was developed by OP Fanger and is called the Predicted Mean Vote (PMV) [45]. PMV is

defined as “the mean value of the thermal sensation votes of a large group of people on a sensation

scale expressed from -3 to +3” [46]. It was developed from a heat balance model built by consid-

ering various factors including the metabolic rate of the occupant, the clothing level as well as the

environmental conditions that the occupant is in. It is a good representation of the thermal comfort

level that an occupant would feel in any environment and is quantified using a 7-point scale from

-3 to 3 with -3 being cold, -2 as cool, -1 as slightly cool, 0 as neutral, +1 as slightly warm, +2 as

warm and +3 as hot.

Another index that is closely related to the PMV is the Predicted Percentage of Dissatisfied

people or PPD. It is formally defined as a “quantitative prediction of the percentage of thermally

dissatisfied people determined from PMV”. The relationship between PMV and PPD is shown in

fig. 3.2. Acceptable levels of thermal environment for general comfort as defined by ASHRAE is

when PPD < 10% or PMV is in the range of (-0.5,0.5) which means to say that an environment is

considered to be thermally comfortable if less than 10% of the people are dissatisfied.
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Figure 3.1: Scale showing the possible values of Predicted Mean Vote (PMV).

Figure 3.2: Relationship between Predicted Mean Vote (PMV) and Predicted Percentage of Dis-
satisfied (PPD).

Majority of the existing studies that include thermal comfort as a factor while studying smart

thermostat data involve building efficient control algorithms to optimize the thermal comfort of

the occupants, characterized as the PMV, by simultaneously increasing energy efficiency of the

HVAC system. Only few studies in the literature analyze thermal comfort as a means to measure

the severity of the faults in houses. This is because calculation of PMV requires the input of
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not just the temperature and relative humidity, which is typically the data available from smart

thermostats, but also some data regarding occupants such as their level of clothing, level of activity

and data regarding the house itself such as the mean temperature of surfaces in the house and the

air velocity inside the house. Since, a major chunk of the data required for calculating PMV is

not available, researchers have had to either make assumptions about the unavailable data or make

comfort predictions using other metrics. An example for the former case is the study conducted

by Stopps and Touchie [14] in 59 units of a Multi-unit Residential building in Toronto. The study

compared the results obtained from taking surveys of thermal sensation from occupants with PMV

values calculated by making some knowledgeable assumptions about the occupants and their units.

While their study was more focused on examining the inconsistencies in thermal sensation reported

by the occupants and those expected by the building physics, the thermal comfort model they used

is a good precedent for how assumptions can be used to calculate the value of PMV.

The severity of thermal discomfort can also be calculated using the graphical method proposed

in the ASHRAE standards [46]. The graphical method identifies the states of an environment on

the psychrometric chart for which the PMV lies in the comfortable region thereby dividing the

chart into regions of comfort and discomfort. The boundaries of the comfort region are when

PMV equals 0.5 or -0.5. Since, the PMV is dependent on numerous factors, in order to reduce

them to only temperature and relative humidity so that the states can be identified on the chart, the

graphical method also uses assumptions regarding clothing level and activity level of occupant as

well as general air speed relative to the occupant with the mean radiant temperature equal to the

indoor temperature. Since, an environment can be placed in either the comfortable or uncomfort-

able regions the total level of thermal discomfort of an environment during a time-frame can be

measured by the "unmet hours" which is the amount of time or percentage of time the environment

is labelled as uncomfortable [47]. This method however does not provide a method to account of

severity of discomfort i.e., how close or far is the environment from the boundary of the comfort

region [27]. Additionally, total thermal discomfort level can also be measured by total degree hour

of the environment away from the comfort region which is difference in temperature at the given
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state and the "comfortable temperature" multiplied by the duration of time of each uncomfortable

period summed across all the uncomfortable periods across the time-frame [47]. However, this

does not take into account the effect of other factors that influence the occupant’s thermal comfort

[48]. In order to account for this severity, studies have tried weighting the total unmet hours and

the total degree-hours with the PMV value of the environment [47]. This weighted metric does

measure the severity of thermal discomfort, but, it does not account for the amount of time spent

in the comfort region. Ideally in order to measure the mean thermal discomfort level of a house,

credit should be given to the system that spends more time in the comfortable region, which will

be done so in the current thesis.

Another model that’s used to judge thermal comfort is the adaptive model of thermal comfort

put forth by Dear & Brager [49] that has since been adopted into the ASHRAE-55 [46] standards

of thermal comfort. The adaptive model relates the indoor operative temperature as a linear func-

tion of the outside temperature and suggests acceptable limits of indoor temperature for optimum

comfort. While this model requires less diverse data, it is also known to be more effective in

naturally ventilated spaces rather than air-conditioned ones [46]. Huchuk et. al. [50] applied the

adaptive model of thermal comfort on smart thermostat data from 10000 EcoBee smart thermostats

enrolled in the Donate Your Data program. They found that temperature bounds as described by

the adaptive model are consistent from the smart thermostat data in case of cooling seasons but

not in so case of heating seasons. Furthermore, they argue that since they applied the model to

setpoint temperature, it was under the assumption that setpoint temperature is a good indication

of thermal comfort of occupants which may not be true because it does not capture the effects of

metabolic rate, air flow and radiant temperatures. Hence, the authors of the current study deem

that while the adaptive model might be a good starting place, Fanger’s PMV index is a much better

criteria to put a number on thermal comfort value of homes as not only does it account the factors

aforementioned but also is considered more reliable in air-conditioned homes than the adaptive

model.
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Another example of a study that does not use the heat balance model with assumptions is the

study of manual changes in setpoint done by Kane and Sharma [12] on data obtained from the

Ecobee program. They use statistical relationships between the time it to make a setpoint change

and the magnitude of change to make inferences about the thermal comfort of the occupants. The

methodology they have chosen utilizes occupancy data which is not available in all datasets and

also assumes that the setpoint temperature is a good indication of thermal comfort. Furthermore,

with the wealth of information provided by the smart thermostat, there is an incentive to diversify

the data used for analysis from just the time series of the setpoint temperature and occupancy data.

There exist very few studies in literature that combine the impact of energy consumption and

thermal comfort into one single metric that can then be used to judge the performance of systems.

Guillen et. al. [27] use the adaptive thermal comfort model to define comfort metric to identify

instances of overcooling and overheating. The metric estimates the mean difference between the

indoor temperature and the adaptive comfort thresholds thereby identifying systems with potential

energy wastage. However, they too conclude that while energy and comfort are coupled factors

identifying a clear correlation between them is challenging.

The coupling between energy and thermal comfort has not yet been fully delineated. In order

to “rank” or benchmark buildings based on researchers have tried putting the two impact metrics

together creating a program that allows the user to choose the weights of a combined index. Energy

impact metrics such as EUI and comfort metrics such as PPD and concentration of CO2 were

combined together into a metric and the values of this metric for given system was compared with

that of a baseline of the user’s choice [51]. In similar vein Kong et. al. [52] established the two

metrics individually and instead of combining them into a single metric chose to examine them

together in the form of a matrix. This matrix essentially showcases, the rank of thermal comfort

impact of an air-conditioning system vs the rank of its energy impact in a given dataset of systems.

This helps identifying systems that have low or high impact in both aspects and systems that have

low impact in one aspect but high in the other.
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There exists a gap in literature regarding how energy and thermal comfort impact metrics are

coupled. The latter study is a good example of how both of them can be examined together to

identify systems with interesting behavior. An objective metric that combine both of the impacts

which can be used to rank and compare systems will be useful to manufacturers and building

owners. In the process of creating such an index we also wish to understand gain more insight into

system behavior.

3.3 Objectives of the current study

A review of literature provides us with a necessary background to understand how fulfill the

objectives of this research. The following section is an overview of the objectives that this research

wishes to fulfill. The current thesis firstly proposes to use smart thermostat data to construct an

energy impact metric for residential HVAC systems. Through the means of the metric the study

proposes to compare the energy performance of systems at the given operating conditions. The

creation of the energy impact metric requires the establishment of an appropriate baseline for com-

parison. Existing baselines built for smart thermostat data are specific to the performance of the

given system making them ineffective for objective comparison. Additionally, they do not use the

enormous scale of the data available from all the systems contributing to the dataset. Hence, an

objective of this research is to build a baseline performance value that leverages the huge amounts

of data and leads to a metric that can easily be used to compare to air-conditioning systems ob-

jectively. The baseline that the current research has chosen to build uses data from all available

air-conditioning system to model an archetypal system of the dataset and then compares each sys-

tem’s performance with how the baseline system would have performed at the given conditions.

The creation of the energy impact metric, therefore, requires a methodology to model the per-

formance of each given air-conditioning system as well as the archetypal system. After considering

the limitations of using simulation software tools to build a model for the house, building a lin-

ear model was deemed easily scalable and fairly accurate (based on existing literature). However,

the linear model methodologies in current literature build a model for the daily average runtime.

This leads to smoothing of effects of changes in runtime during the day. In places like Texas the
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temperature outside can vary from 3◦C in the morning to nearly 21◦C in the day and back to sub

5◦C at night. This broad range of temperatures outside can cause a broad range of runtimes during

the day and taking a daily average will reduce this variation to one number. Therefore, another

objective of this research is to propose a better methodology to build a model for the performance

of the system that can incorporate this broad range.

Next, the creation of a thermal comfort impact metric is taken up. Since, total amount of unmet

hours is an inadequate metric to compute the degree of discomfort, the current study provides way

to calculate this degree using the Predicted Mean Vote of the indoor environment of the house.

The estimation of PMV has to be done based on a few assumptions. An additional objective of

this study, therefore, is to provide a way to calculate the impact of thermal comfort in a way that’s

not affected by the assumptions made. So, if in the future appropriate sensors are installed and

metadata about the occupant is more accurately available, no change is needed in the calculation

of the impact.

Finally, both of the above impacts need to be put together to gain an idea of their combined

affect on the system. This will be done by thermal discomfort of the house to zero and estimating

the effect on the value of the energy impact metric. Reduction of the thermal discomfort to zero can

be done by making the house comfortable at all points in time, which will give rise to another metric

which is the amount of extra cooling hours required to make a house completely comfortable.

This along with the change in the value of energy impact metric can then be used to characterize

the behavior of various air-conditioning systems and examine the coupled nature of energy and

comfort.

3.4 Data used for the current analysis

Based on data selection factors outlined in 2.2 the following study uses data collected between

May and September of 2019 from 7352 HVAC systems in the state of Florida (IECC Climate zone

1A) that have a single-speed outdoor cooling unit. In the analysis done during the current study,

the event-based data from regulating periods of each system was gathered and re-sampled into

periods of 2-hours. This means that a 2-hour weighted average of each of the operation parameters
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was calculated and then the new time-series so formed analyzed. Since, system is in regulating

mode or pseudo steady-state mode, the indoor temperature of the house is assumed to remain a

constant during the duration of the 2 hours and equal in magnitude to the weighted average of

the indoor temperature. Similarly, the rest of the operation parameters are also re-sampled and

assumed to be constant during each 2-hour period before beginning the analysis.
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4. CONSTRUCTION OF AN ENERGY IMPACT METRIC

As outlined in the objectives section of chapter 3, the creation of a metric to estimate the impact

of a fault on the energy consumption of an air-conditioning system requires the construction of a

baseline for comparison and methodology to model the energy consumption of any given system.

In order to do so the following chapter uses data from 7000 single-speed cooling systems from the

same climate region collected during the summer months of the year 2019.

The large-scale nature of the data available provides an opportunity to study several systems at

the same time. This results in estimating the energy consumption level of the average system in the

dataset. The average air-conditioning system in the dataset represents how much energy on average

is consumed by air-conditioning systems in the dataset. Since it will be built using data from all

the systems, it is good objective baseline that can be used to compare the energy consumption of

any given system. The value of the energy impact metric of an air-conditioning system, therefore,

describes how much extra or less energy is consumed by the system to run in the house it’s installed

in, in comparison to the amount of energy consumed by systems in the dataset on average.

4.1 Rationale behind using the average system as the baseline

Ideally, each AC’s energy consumption should be compared to check if it’s greater or less than

acceptable levels i.e., the energy consumed by a properly sized, fault-free air-conditioning system.

However, defining what is acceptable performance level is difficult. As noted in the background

section, researchers estimate the acceptable level of consumption by running simulations on tools

like Energy Plus or BEopt. However, these simulations are computationally expensive and inappli-

cable for the systems used in the current study. This is because the smart thermostat data does not

contain any metadata regarding the layout, orientation or size of the house. In the absence of such

metadata conducting simulation to gauge the acceptable performance level will be inaccurate. In-

stead, the following study chooses to estimate the performance of the average system to use as the

baseline for comparison. Estimating the performance of the average system is data-driven, based
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on the data from each available system. It is not as expensive to compute as an energy simulation

model and essentially represents how much energy the average system in the climate region would

require, to create the exact same environment being produced by the given system. Alternatively,

it could also be thought of as the amount of energy that the given system would take to produce the

same environment in a house with the mean characteristics as those of houses found in the dataset.

The performance of the average system, however, need not be a good representation of accept-

able system performance levels. More often than not the average system performs below accept-

able levels, so when comparing systems care should be taken. A system that performs better than

the average system may not necessarily be good because it may still run at lower than acceptable

levels. However, a given air-conditioning system that performs worse than the average system will

surely perform at lower than acceptable levels.

When the average air-conditioning system performs lower than acceptable levels i.e., consumes

more energy than the what is considered acceptable, it generally implies that a majority of the

air-conditioning systems in the dataset perform a lower than acceptable levels. Equal number of

systems will consume more and less energy than the average system, but given that the average

system itself consumes more energy than a properly sized and perfectly operating system, majority

of the systems will also work equally worse. The current study notes that the baseline used maybe

inaccurate to judge the relative performance of a given air-conditioning system, however, in the

absence of true/acceptable energy consumption levels, it still works as a good proxy in identifying

systems that are definitely running at lower than acceptable levels.

In order to design a way to find energy consumed by air-conditioning systems in the dataset

on average, first, a method must be constructed to find the model the energy consumption of a

single system. In order to build a model for a single system, a typical method used is to regress the

average amount of cooling energy consumed by the system in a day against the average value of

the difference in indoor and outdoor temperature. However, in an effort to capture the fluctuations

in runtime throughout the day, a different design for building an energy consumption model of the

system is proposed.

36



When the air-conditioning system is maintaining a given setpoint then the system is considered

to be operating in a pseudo steady state mode. In this mode, the amount of heat added to the house

is equal to the amount of heat removed from the house by the cooling system (Q̇cool), because the

temperature of the house remains a constant. The significant sources of heat addition to the house

are: heat conducting through the walls of the house from outside (Q̇cond), heat addition due to solar

irradiance (Q̇solar) and internal load of the house due to occupants’ activity (Q̇int). Therefore, the

equation of the house operating at a steady indoor temperature will look as follows,

Q̇cool = Q̇cond + Q̇solar + Q̇int (4.1)

Heat is also added to the house because of infiltration of outside air and heat is removed from

the house to dehumidify the house but these are much smaller than the sources considered in the

above equation and hence are ignored. The amount of cooling provided by the air-conditioning

system is dependent on the capacity of the system (Csys), the duty factor of the system, which

is the percentage of time the system is switched ON, and the load factor which is percentage of

load level at which the system is operating. The product of duty factor and load factor is here on

referred to as the cooling effort (Ec) of the air-conditioning system. The load factor of single-speed

systems like the ones used in the study is always 1 or 0. Hence, the cooling effort of a single speed

air-conditioning system is just the duty factor of system. The conduction load is dependent on the

overall heat transfer coefficient of the home (U), the overall area of heat transfer across the walls

and the roof (A), and the difference between outdoor and indoor temperature (∆Toi). The heat

balance equation in eqn. 4.1 is now transformed into:

CsysEc = UA∆Toi + Q̇solar + Q̇int (4.2)

The cooling effort of the air-conditioning system is therefore affected by the capacity of the sys-

tem installed, the size of the house, the difference in indoor and outdoor temperature, the amount

of solar load the house gains and the total amount of activity done by the occupants of the house.
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However, a reasonable assumption is that a larger house with large windows that allow for easy

penetration of solar load or a house with higher number of occupants will be fitted with an air-

conditioning system of higher capacity. Similarly, across the dataset the systems are assumed to

have been sized such that the ratio of heat conductivity of wall to system capacity is nearly the

same. The increase in internal load due to the residents having a party, or because of opening of a

window on a particular day are assumed to not have a large affect because the analysis is done on

the scale of months. Therefore, among the variables in the above equation, only the temperature

difference affects the cooling effort significantly as they appear to be highly correlated.

The following section presents a methodology to describe this relationship by building a linear

regression model between the cooling effort and the values of temperature difference. The energy

impact metric of a system can be computed by comparing the cooling effort of the given air-

conditioning system with the cooling effort of the average system at the values of temperature

difference at which the system operates.

4.2 Computing the relationship between cooling effort (Ec) and temperature difference

(∆Toi)

Firstly, the event-based data from the thermostat is resampled into periods of 0.5 hour after

which a rolling two-hour average is taken. Only periods when the air-conditioning system main-

tains a constant temperature i.e., the system operates in a pseudo-steady state mode are considered.

In each of the periods the mean cooling effort (Ec) is the percentage of time the AC is switched on

in the 2-hour period and the mean difference in indoor and outdoor temperature (∆Toi) calculated

as shown in eqn. 4.3,

∆Toi = To − Ti (4.3)

As discussed in eqn. 4.2 the cooling effort of the system is directly proportional to the temperature

difference of that 2-hour period.

Ec ∝ ∆Toi (4.4)
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In order to visualize the method that will be described, first a probability density function of

the joint distribution of cooling effort and temperature difference from each of the 2-hour periods

from all the air-conditioning systems belonging to the dataset was constructed. This probability

density function was constructed using a non-parametric method (free of assumptions regarding

distribution of original data) called as Kernel Density Estimation (KDE). The KDE first chose

20 random data points from each system and built a 2D gaussian kernel of cooling effort and

temperature difference at each data point, upon summing of which results in the joint probability

density function. This process was repeated multiple times and the densities at each point were

averaged across all the samples. KDE used here did not use all the points from all the systems at

once because that might lead to overfitting due to excess of data. Instead repeated random samples

are taken and densities obtained were averaged. The KDE built is shown in fig. 4.1 where the

darker regions of the plot indicate a higher probability of finding datapoint and hence indicate

regions of higher concentration of datapoints than the lighter regions. The above distribution can

Figure 4.1: Joint probability density function of cooling effort and temperature difference made
by using data from all the systems in the dataset containing approximately 7,000 air-conditioning
systems in Florida.
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be used to visualize the method to estimate the relationship between cooling effort and temperature

difference for all systems in the dataset on average which represents the performance of an average

system in the dataset. Based on the physics of heat flow into and out of the house, in the equation

4.2 the cooling effort of a house is a linear function of temperature difference between outdoors

and indoors of the house. A simple linear regression model can therefore be built to describe

this relationship with cooling effort as the dependent variable and temperature difference as the

independent variable. Such a model when built using data from all the systems in the dataset

will describe how the cooling effort of air-conditioning systems in the dataset is influenced by

temperature difference on average. Since the data used to construct such a model will come from

2-hour periods of operation of the system, the model so constructed will describe the cooling effort

of the average system in a given 2-hour period against the value of temperature difference in that

period. Let the slope of this linear model be denoted by βM
1 and the intercept by βM

0 , the cooling

effort of the average system in 2-hour period is given by EM is,

EM = βM
0 + βM

1 ∆Toi (4.5)

While constructing such a model from the given data care was taken to avoid over-fitting.

This was done by first taking a random sample of 10 periods from each system; using which the

coefficients of the model in 4.5 were calculated using the Ordinary Least Squares (OLS) regression

method. This process was then repeated multiple times and an average of the coefficients estimated

in each case was calculated. The model is shown against the contours of the probability density

function in 4.2 Instead of using data from all air-conditioning systems, coefficients of the model

for each system can be estimated by using the OLS regression method. The distribution of cooling

effort and temperature difference values for a single system was plotted in fig. 4.3. The linear

model for the system was built by regressing the cooling effort against the ∆Toi values, like how it

was done for data from all the systems in the dataset.
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Figure 4.2: Linear model of the energy consumed by the average air-conditioning system in the
dataset shown on the contour plot of the joint probability density function built using data from all
the systems.

Figure 4.3: Linear model built for the energy consumed by a given air-conditioning system. The
subplots are (a) scatter plot of 2-hour data from the system (b) contour plot of the joint probability
density function of the same data.
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Let βS
0 and βS

1 represent the intercept and slope of the linear model of the system in the house

its installed in, then the cooling effort (ES) of the system is given by,

ES = βS
0 + βS

1 ∆Toi (4.6)

4.3 The reliability of the above method

In order to test the reliability of the method described above, examining how good of a fit is the

model to the data is necessary. In order to examine the goodness-of-fit of the models in equations

4.5 & 4.6, the R2 value of the model was calculated. The R2 value of a linear model describes

what percentage of the total variability in the data can be explained by the model. The higher the

R2 the better is the fit of the model to the data. The R2 value can take a maximum value of 1 when

the model fit passes through each and every single point in the data i.e., the model fully explains

all the variability in the model.

The model of the average system as calculated using the method explained in the preceding

section, for the data used in the current study, was, EM = 0.2892 + 0.0277∆Toi. Like the co-

efficients, an R2 value for each estimation of the model using a random sample of the data was

calculated and a mean of the R2 values was estimated to be equal to 0.262. This implies that the

the model of the average system explains 26.2% of the total variability in the data. Similarly, an R2

value was also calculated for the energy consumption models built for each system in the dataset

and a histogram plot of these values is given in fig. 4.4

The "low" R2 value of the model of the average system and the general variation of R2 values

over a range raises the question of the reliability of the models built. If the models are not able

to adequately explain the variability in the data, there is a strong evidence to indicate that perhaps

the cooling effort is not fully explained by the temperature difference values itself and there are

other variables that need to be included in its model. Based on the heat balance model in equation

4.2, on top of the temperature difference between inside and outside, the cooling effort of the

air-conditioning system is also dependent on other loads such as the internal load produced by
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Figure 4.4: Histogram plot of R2 values obtained for the energy consumption models built for each
air-conditioning system of the dataset.

the occupants and the solar load on the house. However, using smart thermostat data, delineating

the effect each of these loads have on the cooling effort is not possible because of the lack of

requisite data and the uncertainty involved. For example, calculation of solar load will depend on

the orientation and layout of the house, the size of the windows and the roof as well as the heat

energy received from the sun at that location. While the latter value can be calculated using the zip

code of the house, the former require metadata which is unavailable. Furthermore, the amount of

internal load too is dependent on the number of occupants in the house and their behavior, regarding

which data is not available. Therefore, the model built above was only built with the purpose of

using the available data to only capture the effect of temperature difference on the cooling effort

of the system. Since cooling effort is also dependent on other factors on top of cooling effort,

the constructed model can only explain a part of its total variability. In order to conduct further

regression diagnostics, the distribution of residuals of the models were examined. The histogram

plot of the distribution of one system is given in fig. 4.5 and shows that the residuals are normally

distributed with the Shapiro-Wilk’s test for normality having a p-value less than 5% implying that

there is significant evidence for the same.
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Figure 4.5: Histogram plot of residuals of the model of cooling effort of a system of the dataset.

Predicting occupant behavior in residential buildings is a difficult task. Often high cooling

effort in a given 2-hour period could be due to a number of reasons including: occupant left the

window open, occupant is having a party, obstruction in the air vents, leakage of refrigerant etc.

Since diagnosing the exact cause without further data is not possible, the current study asserts that

the model built will be inadequate. However, it can still be used to examine how a unit change

in temperature difference affects the cooling effort assuming that the all other parameters are at

their "mean" operation level. So care should be taken to note that the R2 value of the model is

misleading, because though the model may be incomplete, for the purposes of this study, it is still

valid.

4.4 Interpreting the models

The model for the average system was built by directly regressing the cooling effort values in

each 2-hour period against the values of temperature difference. This however, is not the only way

to find a model for the average system. Other methods include taking the median/mean or taking

the midpoint of the density field at each ∆Toi value. The latter method is explored in greater detail

in Guo and Rasmussen [2]. The advantage of the model used here is that, the variables affecting
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the cooling effort of the air-conditioning system can be split into easily interpretable groups. Since,

this is a linear model of the form Ec = β0 + β1∆Toi, by comparing it to the heat balance equation

in eqn. 4.2, the following analogy can be drawn:

β0 ∼

(
Q̇int + Q̇solar

Csys

)
(4.7)

β1 ∼
(
UA

Csys

)
(4.8)

The intercept of energy consumption model of the system could be a representation of the mean

value of the total of internal and solar loads on the house per unit capacity of the system. Similarly,

the slope could be an indication of the mean insulation level and/or infiltration level of the house

normalized by the capacity of the system. Based on this analogy, the following comparisons can

be drawn:

1. If the slope of the model of the given air-conditioning system is greater than that of the

average system i.e., βS
1 > βM

1 then there exists a strong likelihood that the insulation level

of the house is worse than the mean insulation level found in houses in the dataset, because

for the same amount of change in ∆Toi, the given house sees a larger change in cooling

effort than the system with mean insulation and vice-versa. The reader must not that with

the available data proving the above statement is not possible as it would require metadata

regarding the size and layout of the house.

2. Similarly, if the intercept of the model of the given system is greater than that of the average

system i.e., βS
0 > βM

0 then there is a strong likelihood that the (internal+solar) load on the

house is more than the (internal+solar) load found on houses of the dataset on average.
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Figure 4.6: Illustration of the energy consumption model of an individual air-conditioning system
against that of the average air-conditioning system of the dataset. Based on the analogies estab-
lished, there is a strong likelihood that the house has poorer insulation but lower internal load than
what is found on average for houses in the dataset.

4.5 Calculating an Energy Impact metric

Since a baseline as well as a procedure to model the energy consumption of a given air-

conditioning system has been established, the value of the energy impact metric can be estimated.

The energy impact metric is defined as the percentage of time, less, the average system would

run that the given system in order to produce an environment at the current level of comfort. The

energy impact is an estimation of how much impact a fault in the house is causing to change the en-

ergy consumed by a given air-conditioning system. This value represented as ΓE can be calculated

as,

ΓE =

∑N
i=1 (E

i
S − Ei

M)∑N
i=1E

i
S

(4.9)

The ′i′ in the above equation represents each individual 2-hour period for the system and summa-

tion is done over the entire operating time frame of the system consisting of N periods. In each
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of the periods, the temperature difference value (∆T i
oi) is used to estimate the cooling effort of

the given air-conditioning system which is then compared with the cooling effort of the average

system.

ΓE =

∑N
i=1

((
βS
0 + βS

1 ∆T i
oi

)
−
(
βM
0 + βM

1 ∆T i
oi

))∑N
i=1 (β

S
0 + βS

1 ∆T i
oi)

(4.10)

Figure 4.7: Illustration of the method used to calculate the energy impact of a system

Figure 4.7 shows a visual representation of the calculation of energy impact at each value of

∆Toi. The energy consumed by the given and the average system were both calculated from their

respective models. Therefore, the value of the energy impact of a system is dependent on the

difference between the slope and intercept of the energy consumption model of the given system

and the energy consumption model of the average system as well as the range of operation of ∆Toi

values.
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Calculation procedure for the Energy Impact Metric (ΓE)

1. Modelling the energy consumption of the given system

Ei
S = βS

0 + βS
1 ∆T i

oi (4.11)

2. Modelling the average energy consumption of the systems in the dataset

Ei
M = βM

0 + βM
1 ∆T i

oi (4.12)

3. ΓE - Estimating the relative difference in total energy consumption of the given system

and the average system

ΓE =

∑N
i=1 (E

i
S − Ei

M)∑N
i=1 E

i
S

(4.13)
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5. CONSTRUCTION OF A THERMAL COMFORT IMPACT METRIC

Along with the energy consumed, faults in air-conditioning system also have a detrimental

affect on the thermal comfort of occupants. However, using smart thermostat data to judge the

comfort level of homes is a challenging task because of the lack of data. Thermal comfort of

occupants is dependent on a myriad of parameters that are often difficult to estimate especially for

analyses done on such a large scale. As described in the chapter 3 the thermal comfort level of

air-conditioned environments is typically estimated using a metric called as the Predicted Mean

Vote (PMV) [46].

PMV of an indoor environment is dependent on six factors: air temperature (T ), relative hu-

midity (ϕ), activity level of the occupant (met), the clothing level of the occupant (Icl), average

air speed (Va) around the occupant and finally the mean radiant temperature (T̄r) [46]. Among

these temperature and relative humidity are standard parameters, however, the rest are not some-

thing that is typically measured in environments. The activity level of the occupant translates to

the metabolic rate of the occupant which is the rate at which chemical energy is converted into heat

and mechanical work by metabolic activities of an individual per unit area of skin. The amount of

clothing that the occupant wears represents the amount of resistance to sensible heat transfer that

the occupant carries. The air speed is the relative air speed around the occupant. The mean radi-

ant temperature is the temperature of a uniform, black enclosure that exchanges the same amount

of heat by radiation with the occupant as the actual surroundings. This temperature is typically

measured using a Globe Thermometer.

PMV = f
(
T, ϕ,met, Icl, Va, T̄r

)
(5.1)
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5.1 Assumptions required to estimate the PMV

Since obtaining parameters not collected by the smart thermostat data i.e., metabolic rate, ac-

tivity level, average air speed and mean radiant temperature is not a viable task that could be done

here, a few realistic assumptions will be made. The most influential variables during the estimation

of PMV are the metabolic rate, air temperature and relative humidity [53]. While air temperature

and humidity are available from smart thermostat data, metabolic rate of the occupants has to be

assumed. Along with the metabolic rate, the clothing level of the occupants, the air velocity inside

the home and the mean radiant temperature of the house have to be assumed as well. As pointed

out in chapter 3 there are studies in existing literature showing examples of researchers using rea-

sonable assumptions to estimate the PMV. Lou et al [18] has listed a short review of examples of

four studies using assumptions to estimate PMV. Based on existing literature the current study uses

the following assumptions to estimate PMV:

1. The metabolic rate of the occupants is measured in units of met wherein 1 met equals

58.2 W/m2. 1met represents the amount of energy generated per unit area of skin by an

occupant just sitting at rest [46]. Assuming that the average residential home has 4 oc-

cupants and they are performing the following duties each: typing, cooking, sleeping and

walking about. The average of the metabolic rate of these activities is 1.325met which was

what was assumed as the metabolic rate of the occupants of the houses.

2. The clothing level is expressed in units of clo which represents insulation provided by the

clothing worn by the occupants. 1 clo represents an insulation of 0.155 m2C/W which

typically amounts to wearing a trouser, a t-shirt and a long sleeve sweater [46]. The current

study assumes a clothing level of 0.5 clo, the mean level for summer months, as suggested

by Lou et. al. [18].

3. The relative air velocity inside the residential buildings was assumed to be 0.1 m/s as

ASHRAE standards limit the application of this method to indoor air velocity less than

0.2m/s.
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4. The mean radiant temperature in the current study was assumed to be equal to air tempera-

ture. Lou et. al. argues that this assumption is cause for inaccuracies in estimation of PMV

and is also known to not be effective in homes with poor insulation or in homes with sig-

nificant exposure to the sun [54]. They outline a methodology that could be used to better

estimate the MRT but it requires the knowledge of the insulation level of the homes (the

resistance value of the walls) and the area of the walls. Since, the current dataset accumu-

lates data from a large number of diverse residential buildings and lacks metadata regarding

building type, application of this method is not viable here.

The indoor temperature and relative humidity were available from the smart thermostat data.

The assumptions in the study here may not be fully accurate, but the authors of the study assert

that the method proposed to calculate an impact metric is still applicable. With more ubiquitous

use of smart thermostats and enabling of instant occupant survey and feedback, getting accurate

values of PMV is possible but the metric outlined below will still be applicable. Furthermore the

above method in essence is similar to the graphical method of assessing thermal comfort proposed

by ASHRAE in [46] where in assumptions are chosen for the same four parameters and a comfort

region is constructed on the psychrometric chart. The method used in this thesis also does the

same by constructing a comfort region of temperature and relative humidity values but instead of

time spent outside the comfort region, the predicted mean of thermal sensation votes is used as the

metric that is also able to measure the severity of discomfort.

Tartarini and Schiavon [55] have developed a python package called pythermalcomfort that was

used in the following study to calculate the PMV value at different instants of time. The pmv_ppd

function in the package does not take arrays as inputs only accepting scalars instead and so it was

modified accordingly in order to reduce computational time. Using the modified version of the

package along with the assumptions a metric to gauge the impact faults have on the occupant’s

thermal comfort was constructed.
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5.2 Construction of a Thermal Comfort Impact metric

In order to build a metric first a baseline for comparison must be chosen. In the current study

the thermal environment of the house will be compared to the worst possible conditions that the

occupant could live in to show the influence of air-conditioning system. In order to construct an

easily interpretable metric instead of choosing an extreme case, such as the arctic, as the baseline,

the baseline for comparison was chosen to be the outdoor environment that the house is located

in. The idea employed is to check, on average how uncomfortable the surroundings in the house

are as compared to how uncomfortable the occupant would be if he were living in fully naturally

ventilated conditions at the same location as that of the house. Living in fully naturally ventilated

conditions would be the same as camping at the same location the house is in. Since the air-

conditioning system is installed to mitigate the discomfort caused due to the natural conditions,

comparing its impact on the occupants with respect to the outdoor conditions would be a good

reference point to compare various systems.

Figure 5.1: Comparing the mean level of discomfort felt by the occupant living in the air-
conditioned environment to the mean level of discomfort the occupant would have felt if they
were living in the same outdoor environment as the house is located in.
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In order to use PMV to estimate discomfort level of an environment, first, the event-based

data is resampled into periods of two hours like in the case of calculation of energy impact. The

resampling of data ensures that the occupants have enough time to acclimatize themselves to the

surroundings of the indoor environment ensuring that it is steady.

An environment is considered to be comfortable when the PMV is between -0.5 and 0.5 [46].

So, for each of the resampled periods of the system after calculating the PMV, the measure of dis-

comfort that the occupants will be experiencing because of the PMV being outside the comfortable

range, can be calculated. This measure of discomfort or degree of discomfort is difference between

the PMV value of that period to the boundary of the comfort region. That is if the PMV were more

than 0.5 than the degree of discomfort can be calculated by subtracting 0.5 from the PMV. If the

PMV were less than -0.5 then the degree of discomfort can be calculated by adding 0.5 to the value

PMV. However, if the PMV were in between (-0.5,0.5) then the degree of discomfort would be 0.
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Figure 5.2: Illustration of the procedure used to calculate the degree of discomfort in each of the
possible cases of the indoor environment. (a) Indoor is comfortable (b) Both indoor and outdoor
are uncomfortable (c) Outdoor is comfortable but indoor is uncomfortable (d) Discomfort is each
region.

In fig. 5.2, PMVid represents the predicted comfort level of the home as calculated using

the indoor temperature and indoor relative humidity along with the assumption for the rest of

the predictors. PMVod represents the predicted comfort level of the home as calculated using

the outdoor temperature and outdoor relative humidity along with the same assumptions as those

used to calculate PMVid. Indoor discomfort (Di
id) and outdoor discomfort (Di

od) are the values of
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degree of discomfort as calculated for each 2-hour period of the system, ′i′, indoors and outdoors

respectively.

The degree of discomfort in each region is measured as the distance of the period’s PMV to the

boundary of the comfort region. So, in case of 5.2(a) the indoor environment is comfortable and so

the indoor discomfort (Di
id) for the periods lying in this region is 0. The outdoor discomfort for the

region in green is magnitude of the distance between the outdoor comfort level (PMVod) and the

boundary of the comfort region given by PMVod = −0.5 for all periods where outdoor comfort

level is less than -0.5 and PMVod = 0.5 for all periods where outdoor comfort level is greater than

0.5.

In the case of points lying in orange region as shown in 5.2(b), both indoor and outdoor en-

vironments are uncomfortable. That implies that both of them experience a positive degree of

discomfort. Points with indoor and outdoor PMV values greater than 0.5 have PMVid = 0.5 &

PMVod = 0.5 as the boundary of the comfort region. Similarly, with indoor and outdoor PMV

values less than -0.5 have PMVid = −0.5 & PMVod = −0.5 as the boundary of the comfort re-

gion. The degrees of discomfort in each case is just the magnitude of the distance to the boundary

of the comfort region.

Finally, in case of points lying the region in blue as shown in 5.2(c), the outdoor environment

is comfortable but the indoor environment is uncomfortable. Therefore, the outdoor discomfort

(Di
od) is equal to 0 whereas the indoor discomfort is the magnitude of difference between the PMV

value and boundary of the comfort region. In case of indoor PMV (PMVid) values being greater

than 0.5, the comfort boundary is PMVid = 0.5 and for indoor PMV values being less than -0.5,

the comfort boundary is PMVid = −0.5. Thus, based on the region where each the comfort levels

of each 2-hour period lies, the degree of discomfort for each 2-hour period can be calculated.

Upon plotting the indoor discomfort of each two hour period against the outdoor discomfort

the plot in fig. 5.3 is obtained,
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Figure 5.3: Visual representation of the thermal comfort impact. The points are in the same color
notation as the one used to define the regions in fig. 5.2

Here the mean indoor discomfort (D̄id) and the mean outdoor discomfort (D̄od) are calculated

as,

D̄id =
1

N

N∑
i=1

(
λiDi

id

)
(5.2)

D̄od =
1

N

N∑
i=1

(
λiDi

od

)
(5.3)

where the summation is done over all the N 2-hour periods of the system. λi in the above

equation is an indicator variable to signify the occupancy of the house. If the house is occupied

then the value of λi is equal to 1 and if the house is unoccupied then the value of λi is 0. This

ensures that the mean discomfort is only calculated for periods wherein the house is occupied,

because the thermal comfort only has an impact on the occupant when the house is occupied. The
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thermal comfort impact metric (ΓI) is defined as:

ΓI =
D̄id

D̄od

(5.4)

While calculating mean indoor discomfort (D̄id), and mean outdoor discomfort (D̄od), some of

the periods may have the indoor PMV (PMVid) or outdoor PMV (PMVod) in between (-0.5, 0.5) in

which case indoor discomfort (Di
id) or outdoor discomfort (Di

od) in that period is equal to 0. These

periods are not removed from the calculation of mean discomfort because merit should be given to

those systems that have a lot of zeros i.e., systems with a lot of comfortable periods. This means

that the systems with many comfortable periods will have lower mean indoor discomfort (D̄id),

implying that on average they are more comfortable systems. Mean outdoor discomfort (D̄od) will

generally not be equal to 0 because it only means that the outdoor is extremely comfortable and

the AC system isn’t required. Among the systems analyzed not a single system with mean outdoor

discomfort (D̄od) equal to 0 was found.

5.3 Solving occupancy issues

One of the main problems with using smart thermostat data to calculate the impact of the

HVAC system on the occupant’s thermal comfort is that we are unsure whether the occupant is in

the house or not during a period of operation. If the occupant is not there in the house then the

indoor conditions do not impact the occupant and so those periods should be left out of calculation.

Often the indoor conditions might indicate extreme discomfort but the occupant has set them to

be so in order to save energy whenever they are not in the house. So, the λi in equations 5.2,5.3

has a very important purpose as it filters out all the periods of inoccupancy that can skew the

calculation of the impact score. Since smart thermostat data that includes occupancy sensor data

is yet to be made available for now a statistical threshold has been developed to classify periods

of inoccupancy. Once the occupancy sensor data is added to the smart thermostat data, λi value

will be more precise, but conceptually the metric will not be affected and will still be valid. The

thresholds used to decide if the period is occupied or not are:
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1. PMVid is greater than 1 but the cooling effort of the system in that period is 0. This means

that the PMV is predicting that the indoor conditions were too hot for occupants to live

comfortably but no action was taken for 2 hours to correct such a state. Hence, it is likely

that these were periods of inoccupancy.

2. The cooling setpoint cannot be greater than 85◦F . Since, the study analyzes cooling systems,

any time the setpoint is more than 85◦F , the period is either unoccupied or too extreme to

study.

λi = 0 when


Ec = 0 and PMVid > 1

CoolingSetpoint > 85◦F.

(5.5)

Based on the regions labelled in fig.5.3 the points in green indicate all the periods of the system

wherein the indoor environment is comfortable. A high number of green points indicates a more

comfortable system because the value mean indoor discomfort (D̄id) will be lower. The points

in orange describe all the periods where both the indoor and outdoor are uncomfortable. So, the

values of discomfort indoors and outdoors will contribute to the value of the thermal comfort

impact metric (ΓI). Among these points the periods where the indoor discomfort is less than the

outdoor discomfort are favorable because they lead to a lower value of the thermal comfort impact

metric (ΓI). These can be easily identified by drawing a line passing through origin inclined at 45◦

to the horizontal in fig. 5.3. All the orange points to the right are points where the indoor discomfort

is lower and vice versa. Finally, the points in blue are periods when the indoor is uncomfortable but

the outdoor is comfortable. These are worst kind of periods because they indicate that the HVAC

system is causing the home to be uncomfortable. They bring down the value of outdoor discomfort

but contribute more to the value of indoor discomfort. Hence, they adversely affect value of the

thermal comfort impact metric (ΓI).

Therefore, an air-conditioning system will have a low thermal comfort impact metric if it has

most of its periods in the green region, a higher concentration of orange periods to the right of the

line passing through the origin inclined at 45◦ to the X-axis and as few blue periods as possible.
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The least value that the impact score can take is 0. This is possible when the indoor PMV

(PMVid) of the system is between -0.5 and 0.5 for every period of the system, which would make

the degree of discomfort in every period equal to 0 and thereby the system would have a thermal

comfort impact metric of 0. A thermal comfort impact metric of 100% means that on average the

occupant would be as uncomfortable living in the house as they would be if they were camping in

the outdoor environment. If the thermal comfort impact metric were more than 100% that would

mean that the on average indoor environment is more uncomfortable than the outdoor environment.

Calculation Procedure for the Thermal Comfort Impact Metric (ΓI)

1. Calculate the Predicted Mean Vote of thermal comfort under indoor (Tid, ϕid) and

outdoor environments (Tod, ϕod)

PMVid = f
(
Tid, ϕid,met, Icl, Va, T̄ id

r

)
PMVod = f

(
Tod, ϕod,met, Icl, Va, T̄ od

r

)
(5.6)

2. Calculate the degree of discomfort under indoor (Di
id) and outdoor environments

(Di
od).

D̄id =
1

N

N∑
i=1

(
λiDi

id

)
(5.7)

D̄od =
1

N

N∑
i=1

(
λiDi

od

)
(5.8)

3. Thermal Comfort Impact Metric (ΓI) - Ratio of mean discomfort indoors (D̄id) and

mean discomfort outdoors (D̄od).

ΓI =
D̄id

D̄od

(5.9)
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6. COMBINING THE ENERGY AND THERMAL COMFORT IMPACT METRICS TO

CONSTRUCT A FAULT SEVERITY INDEX

The previous chapters have outlined a method to calculate the impact a fault has on the energy

consumption of an HVAC system and the thermal comfort it provides to the occupant. The more

impact a fault in the system has on its occupant, the worse it is and more urgent is the need for

repair. However, since the impact in each of the two avenues are equally important, in order to

find the more severely affected system, both of them need to be combined into one. This will be

done by reducing the thermal discomfort of 2-hour period of the AC to zero, and subsequently

examining the change in energy impact. This means that the PMVid for each observed 2-hour

period of the system would have to be between -0.5 and 0.5. The time periods that previously

had their PMVid between (-0.5, 0.5) will continue to have the same but time periods that were

outside will be brought towards to the edges of the comfortable boundary. So for periods with

PMVid greater than 0.5, a change is required so the indoor PMV becomes equal 0.5 and similarly

for periods with PMVid less than -0.5 a change is required so the indoor PMV becomes equal to

-0.5.

Changes in the environment required for a change in PMVid can include: changing layers of

clothing, changing the temperature or relative humidity, reducing activity levels, or by reducing

penetration of solar heat. However, four of the six inputs to calculate PMVid are based on as-

sumptions; and since sensitivity of the occupants to these assumptions is not calculable using the

available data, they are left unchanged. Changes in indoor temperature and indoor relative humid-

ity values, however, can be monitored using the data available from smart thermostats. Since, the

linear model developed in equation 4.6 directly models the relationship between the cooling effort

of the air-conditioning system and the temperature difference between the outdoors and indoors of

the house, changing the indoor temperature of the house to cause a change in PMV can be com-

plemented by using the model to calculate the change in cooling effort required to cause a specific

change in indoor temperature (assuming outdoor temperature does not change).
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As evidenced by the graphical method of identifying comfort level of a house based on the

ASHRAE standards [46], for a constant value of PMV, the indoor temperature will be linearly

related to the indoor relative humidity given that assumptions are unchanging. So, to maintain

the PMV value of an environment at 0.5 or -0.5, the indoor temperature and relative humidity

should lie on a specified line. In order to reduce the PMV of an environment, the current study

proposes to change the indoor temperature such that the 2-hour period lies on the edge of the

comfort region boundary, keeping the relative humidity a constant. This can be done by building

a linear model with PMV as the dependent variable and temperature and relative humidity as the

independent variable as shown in equation 6.1 where PMVid represents the indoor PMV, Tid the

indoor temperature and ϕid the indoor relative humidity,

PMVid = α0 + α1Tid + α2ϕid (6.1)

In equation 6.1, the coefficient of indoor temperature α1 gives the change in PMVid for 1◦C

change in indoor temperature provided the rest of the assumptions and the indoor relative humidity

remain constant. Since the study aims to bring the PMVid of each period down to the comfortable

level by changing the indoor temperature (Tid), the change in Tid required to bring the required

change in PMVid can be calculated using the above coefficient α1. If the new indoor temperature

at which the indoor discomfort is 0 is given by Tid,c and the change in temperature is given by

∆Tic = Tid − Tid,c, then,

∆Tic = Tid − Tid,c =


PMVid + 0.5α1, if PMVid < −0.5

0, if − 0.5 ≤ PMVid ≤ 0.5

PMVid − 0.5α1, if PMVid > 0.5

(6.2)

Using equation 6.15, the new indoor temperature required to make the environment completely

comfortable can be calculated. Equation 6.15 indicates that if a 2-hour period of a house is uncom-

fortable because of it being too hot, then the ∆Tic will be positive, so a reduction in temperature is
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required to make the house comfortable. However, if the 2-hour period is uncomfortable because

of it being too cold then the ∆Tic is negative and so an increase in temperature is required to make

the house comfortable.

This change in indoor temperature causes a change in temperature difference between indoor

and outdoor environments. A change in temperature difference causes a change in cooling effort.

If the new temperature difference were to be represented by ∆Toi,c, then the system is required to

run at a new cooling effort say ES,c (%). At this value of ∆Toi,c, the average system of the dataset

will have a cooling effort of EM,c (%). The outdoor temperature given by Tod remains the same as

the original value. The following equations can be used to calculate each of them:

∆Toi,c = Tod − Tid,c (6.3)

ES,c = βS
0 + βS

1 ∆Toi,c (6.4)

EM,c = βM
0 + βM

1 ∆Toi,c (6.5)

The difference in energy consumption between any given air-conditioning system and the air-

conditioning system with average performance level can again be compared and the energy impact

metric for the given system when all periods are made comfortable (Γc
E) can be calculated:

Γc
E =

∑
(ES,c − EM,c)∑

ES,c

(6.6)

This value of Γc
E is the value of energy impact metric that takes into consideration the air-

conditioner’s effect on occupants’ thermal comfort. The value of the thermal comfort impact metric

(Γc
I) calculated using this new indoor temperature value (Tid,c) will be close to 0. Therefore, air-

conditioning systems can now be objectively compared against each other using a single metric

which is the energy impact metric at comfortable operating conditions because at this hypothetical

state the fault produces no impact on thermal comfort and only affects the energy consumption.
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Hence, this energy impact metric estimated at the new "comfortable" indoor temperature is a direct

judge of how severe the affect of the fault is and so it’s defined as the fault severity index.

Figure 6.1: Fault severity index of a system is defined as the amount of impact a fault in the system
has on its energy consumption given provided it produces no thermal discomfort to the occupants.

6.1 A mathematical exploration of the fault severity index (Γc
E)

The impact of a fault in an air-conditioning system can broadly be categorized to fall in one

of two areas: the thermal discomfort the occupant feels and the relative extra energy the system

consumes. However, these two are not mutually exclusive avenues. For an AC installed in a
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poorly insulated house its cooling effort is higher than what it would have been in house with the

mean insulation level. Simultaneously, this system and its fault (poor insulation) by the virtue

of the environment it creates also has an impact on the thermal comfort level of occupant. If

the system creates a thermal environment that’s on average colder than the comfortable, then the

occupant is using extra energy (thereby increasing the value of the energy impact metric) to create

an environment that’s uncomfortable (thereby increasing the value of the thermal comfort impact

metric). Therefore, adjusting the thermal comfort level of the house to the comfortable level will

mean that the system will use lesser energy than before which may in turn reduce its energy impact.

This adjusted energy impact is a good measure of the severity of impact of a fault in the system on

its occupant.

This following section will explore the derivation of the fault severity index of an air-conditioning

system (Γc
E) mathematically. Please note that the summation in the following derivation is done

over all 2-hour periods of operation of each AC but for the sake of brevity the representation of

each two hour period by the superscript "i" is abandoned. Substituting the models for Ec
S and Ec

M ,

from equations 6.17, 6.18 into equation 6.19 we get,

Γc
E =

∑((
βS
0 + βS

1 ∆Toi,c

)
−
(
βM
0 + βM

1 ∆Toi,c

))∑
(βS

0 + βS
1 ∆Toi,c)

(6.7)

The above equation can further be expanded by using the definition of ∆T c
oi and Tid,c

∆Toi,c = Tod − Tid,c (6.8)

Tid,c = Tid −∆Tic (6.9)

∆Toi,c = Tod − Tid +∆Tic (6.10)

∆Toi,c = ∆Toi +∆Tic (6.11)
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The fault severity index (Γc
E) therefore, can be written as:

Γc
E =

∑((
βS
0 − βM

0

)
+∆Toi

(
βS
1 − βM

1

)
+∆Tic

(
βS
1 − βM

1

))∑
(βS

0 + βS
1 ∆Toi + βS

1 ∆Tic)
(6.12)

Γc
E =

∑(
(ES − EM) + ∆Tic

(
βS
1 − βM

1

))∑
(ES + βS

1 ∆Tic)
(6.13)

Now that the equation for the fault severity index (Γc
E) has been expanded, it can be compared

with the equation for a fault’s energy impact (ΓE) from equation 4.9,

ΓE =

∑
(ES − EM)∑

ES

(6.14)

Based on the comparison, the severity index of a fault can be observed to take into account the

effects of its energy impact at the original level of comfort and the cost of improvement of comfort.

The energy impact metric at the original level of comfort is proportional to the difference between

the performance of the given and the average system. The cost of improvement of comfort on the

other hand is proportional to the temperature change required which in turn directly affects the

cooling effort via. the means of β1, the coefficient of ∆Toi. Therefore, the fault severity index

proves to be a holistic combination of each of the individual impact metrics and a good judge of

severity of the fault’s cumulative impact on the occupant.
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Calculation procedure for the Fault Severity Index (Γc
E)

1. Estimate the reduction in indoor temperature required to make each of the 2-hour

periods of a system comfortable

∆Tic = Tid − Tid,c =


PMVid + 0.5α1, if PMVid < −0.5

0, if − 0.5 ≤ PMVid ≤ 0.5

PMVid − 0.5α1, if PMVid > 0.5

(6.15)

2. Estimate the cooling effort of the given air-conditioning system and the cooling effort

of the system with average performance level under the new "comfortable" indoor

conditions.

∆Toi,c = Tod − Tid,c (6.16)

ES,c = βS
0 + βS

1 ∆Toi,c (6.17)

EM,c = βM
0 + βM

1 ∆Toi,c (6.18)

3. Fault severity index (Γc
E) – Value of the energy impact metric of the given system

provided the value of the thermal comfort impact metric is close to 0.

Γc
E =

∑
(ES,c − EM,c)∑

ES,c

(6.19)

6.2 Calculating the percentage change in cooling hours required

Since the calculation of the fault severity index involves estimating the cooling effort of the air-

conditioning system when all the observed operating periods of the house are comfortable, another

metric that can be estimated along with the severity index is change in cooling hours required to

make the house comfortable. Supposing this value is represented by ∆Ec, then it can be calculated

using the following equation,
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∆Ec =

∑
Ei

S,c −
∑

Ei
S∑

Ei
S

(6.20)

The cooling effort of a given system in a 2-hour period is the proportion of time the system is

running during the 2-hour period. So total time the system is running in that 2-hour period is twice

the cooling effort in that period. The summation of total cooling hours for the given system is

twice the summation of cooling effort of the system in each period. Hence, the total cooling hours

of the given system at the original level of comfort is 2
∑

(Ei
S) and the total cooling hours of the

system after making the house comfortable is given by 2
∑

(Ei
S,c). The difference between the two

is change in cooling hours when the house is made comfortable. Upon expanding equation 6.20

using the definitions of Ei
S,c and Ei

S , the percentage of extra cooling hours is transformed into:

∆Ec =

∑
(β0 + β1∆Toi,c)−

∑
(β0 + β1∆Toi)∑

(β0 + β1∆Toi)
(6.21)

∆Toi,c −∆Toi = (Tod − Tid,c)− (Tod − Tid) (6.22)

∆Toi,c −∆Toi = ∆Tic (6.23)

∆Ec =

∑
β1∆Tic∑

(β0 + β1∆Toi)
(6.24)

Therefore, the percentage change in cooling hours required to make an indoor environment

comfortable is dependent on the change in indoor temperature required to make the environment

comfortable. So, if the indoor environment is on average "hotter" than comfortable (PMVid >

0.5), then a reduction in temperature is required to make the home comfortable and so the value of

∆Ec > 0 and if the indoor environment is "colder" than comfortable (PMVid < −0.5) then the

indoor temperature must be increased to make the home comfortable and so the value of ∆Ec < 0.

Conversely, the sign of ∆Ec can be used an indicator to know on average whether the home is

hotter than comfortable or colder than comfortable. This metric along with the fault severity index
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and energy impact metric of the system will now be used to characterize its performance in the

following chapters.
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7. RELATIONSHIP BETWEEN THE BEHAVIOR OF AN HVAC SYSTEM AND ITS

METRICS

Four metrics in total have been defined to represent the performance of an HVAC system and

the effect of its faults on the occupants. The following chapter is an explanation of how they could

be used individually and together to describe the behavior of the system. Firstly, the four metrics

that have been defined are summarized below along with few equations to aid the reader understand

this chapter:

1. Energy Impact Metric (ΓE): The energy impact metric of an air-conditioning system is the

relative difference in total cooling effort of the given system and the system that represents

the average performance level of systems in the dataset. The energy models of a single

system and the average system for the ith 2-hour period as defined in equations 4.6, 4.5 are

given below,

Ei
S = βS

0 + βS
1 ∆T i

oi (7.1)

Ei
M = βM

0 + βM
1 ∆T i

oi (7.2)

The mathematical definition of the energy impact metric as constructed in equation 4.9 is,

ΓE =

∑N
i=1(E

i
S − Ei

M)∑N
i=1E

i
S

=

∑N
i=1[(β

S
0 + βS

1 ∆T i
oi)− (βM

0 + βM
1 ∆T i

oi)]∑N
i=1(β

S
0 + βS

1 ∆T i
oi)

(7.3)

2. Thermal Comfort Impact Metric (ΓI): The thermal comfort impact is the ratio of the average

amount of discomfort felt by the occupant living in inside the house to the average amount

of discomfort felt by occupant if he were living in the outdoor environment of the house.

3. Fault Severity Index (Γc
E): Fault severity index of an air-conditioning system is defined as

the amount of impact a fault in the system has on its energy consumption given provided

it produces no thermal discomfort to the occupants. The energy models of a given single
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system and the average system for the ith 2-hour period given that that they produce a com-

pletely comfortable environment as defined in equations 6.17, 6.18 are given below,

Ei
S,c = βS

0 + βS
1 ∆T i

oi,c (7.4)

Ei
M,c = βM

0 + βM
1 ∆T i

oi,c (7.5)

The definition of ∆T i
oi,c and is, ∆T i

oi,c = T i
od −T i

id,c. This when combined with the tempera-

ture difference between current indoor temperature (T i
id) and comfortable indoor temperature

(T i
id,c), ∆T i

ic leads to equation 6.11 which is ∆T i
oi,c = ∆T i

oi +∆T i
ic. When substituted back

into the above equations,

Ei
S,c = βS

0 + βS
1 ∆T i

oi,c = (βS
0 + βS

1 ∆T i
oi) + βS

1 ∆T i
ic = Ei

S + βS
1 ∆T i

ic (7.6)

Ei
M,c = βM

0 + βM
1 ∆T i

oi,c = (βM
0 + βM

1 ∆T i
oi) + βM

1 ∆T i
ic = Ei

M + βM
1 ∆T i

ic (7.7)

The definition of the fault severity index of a system given in equation 6.19 can be re-written

as,

Γc
E =

∑
(Ei

S,c − Ei
M,c)∑

Ei
S,c

=

∑
[(Ei

S − Ei
M) + ∆T i

ic(β
S
1 − βM

1 )]∑
(Ei

S + βS
1 ∆T i

ic)
(7.8)

4. Percentage change in cooling hours (∆Ec): ∆Ec is the percentage change in cooling hours

required to make the system completely comfortable at all points in time. As defined in

equation 6.20 the equation for ∆Ec can now be transformed based on the definition of Ei
S,c

and Ei
S and using 6.11 which is ∆T i

oi,c = ∆T i
oi +∆T i

ic into,

∆Ec =

∑
(Ei

S,c − Ei
S)∑

Ei
S

=

∑
(βS

1 ∆T i
oi,c − βS

1 ∆T i
oi)∑

(βS
0 + βS

1 ∆T i
oi)

(7.9)

=⇒ ∆Ec =

∑
βS
1 ∆T i

ic∑
(βS

0 + βS
1 ∆T i

oi)
(7.10)

The energy impact metric of a given air-conditioning system is a measurement of how many

hours fewer does a system with the average performance level take than the given system to pro-

70



duce the same environment. Since, this value is calculated using the data obtained directly from

the regulating periods of the system it also includes the effect of the thermal discomfort on the

energy consumption of the system. The value of the thermal comfort impact metric and the energy

impact metric of the system are coupled to each other because they estimate the effect a fault in the

AC has on on the occupant in two mutually dependent avenues. This coupled nature of both of the

impact metrics makes it harder to compare two systems based on only one metric. Furthermore,

the method of coupling is also difficult to decipher. In some cases, the thermal discomfort may

cause the system to consume more energy and hence have a higher energy impact. In such cases,

adjusting the setpoint to a make the thermal discomfort zero is to the advantage of the occupant

because it leads to a decrease in energy impact. However, this can come at the cost of increased

energy consumption which may not be acceptable for the occupant; or a decrease in energy con-

sumption in which case there is an extra incentive for the occupant to adjust his setpoint because

it leads to better comparative performance (as indicated by a decrease in the value of the energy

impact metric) as well as lesser energy consumption (as indicated by decrease in cooling hours).

On the other hand, thermal discomfort can cause the energy impact to decrease in which case the

true severity of the fault will be hidden behind a low value of the energy impact metric. This also

leads to several cases that again need to be considered. Therefore, delineating the relationship be-

tween each of the 4 metrics for each system is a complex task but provides immense opportunities

to understand system behavior in greater detail.

7.1 Systems with extremely high fault severity index value

The fault severity index of an air-conditioning system (Γc
E) is the value of energy impact after

the performance of the system has been adjusted to produce no thermal discomfort. Therefore, it

can now be used to compare two systems objectively. Comparing the fault severity index implies,

comparing the impact of the fault on the energy consumption of the systems provided both systems

are producing no discomfort in each of their own individual homes. It is a more objective way

to assess how much better or worse one system performs than another, particularly because the

discomfort level is a parameter that is local to the system and its effect has thus been removed.
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Air-conditioning systems that have a very high fault severity index are therefore most likely to

be faulty, irrespective of any other factor. They can be identified by segregating the systems whose

severity indices lie within an upper threshold in the distribution of severity indices from all systems.

These systems essentially, consume an abnormally high amount of energy than the mean system

would have in the same environment to produce a completely comfortable environment. The most

probable reason for this is that they might have a mechanical fault causing an inadequate capacity to

keep with the heat demands of the house. Mechanical faults can include: less refrigerant flowing in

the system, obstruction in air-vents, system is undersized for the house it is installed in, extremely

poor insulation, etc. These systems should therefore be screened out and studied separately from

the rest of the systems in the dataset. The plot in fig. 7.1 shows the histogram plot of the fault

severity index of 7000 systems in Florida (2A climate region) with the systems that lie in the upper

5% threshold highlighted,

Figure 7.1: Histogram plot of fault severity index of 7000 single-speed cooling systems in Florida
with the upper 5% highlighted.
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7.2 Air-conditioning systems with a low to moderate fault severity index

In case of systems with a fault severity index below the threshold to be qualified as a system

with a mechanical fault, the four metrics can now be further examined to describe system behavior.

First, to make the analysis convenient the systems will be divided into two broad groups: Systems

with a positive value of fault severity index and systems with a negative value of fault severity

index. Air-conditioners with a positive fault severity index (Γc
E > 0) are having to consume

more energy than the average system because of the fault and air-conditioners with a negative

fault severity index (Γc
E < 0) consume less energy than the average system, provided the thermal

discomfort produced by the systems is zero.

7.2.1 Air-conditioning systems with a positive fault severity index (Γc
E > 0) – denoted by (+)

The fault severity index of systems that belong in this category is greater than 0 which means

that they consume more energy than the average system to produce the same completely comfort-

able environment. However, this does not indicate anything about the energy impact metric value

of the system at original level of comfort. Correction of thermal discomfort level of the home can

lead to an increase in the value of the energy impact metric to higher value or decrease to a lower

value. Simultaneously, it can come at the cost of extra energy consumed or at the benefit of sav-

ings in energy consumption. Therefore, the category of systems with positive fault severity index

(Γc
E) can further be divided into sub-categories based on their values of percentage change in cool-

ing hours (∆Ec) and the energy impact metric at original level of comfort (ΓE). But before that

upon mathematically expanding the terms of the equation representing the fault severity index and

considering the fact that cooling effort of the system is always positive (Ei
S,c > 0) the following

condition is obtained,

Γc
E =

∑(
Ei

S,c − Ei
M,c

)
ΣEi

S,c

> 0 (7.11)

=⇒
∑

(Ei
S,c − Ei

M,c) > 0 (7.12)
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Upon using the expansions derived in equations 7.6 (Ei
S,c = Ei

S + βS
1 ∆T i

ic) and 7.7 (Ei
M,c =

Ei
M + βM

1 ∆T i
ic) we get,

∑
(Ei

S,c − Ei
M,c) > 0 (7.13)

=⇒
∑

[(Ei
S − Ei

M) + ∆T i
ic(β

S
1 − βM

1 )] > 0 (7.14)

=⇒ ΓE

∑
Ei

S +
∑

∆T i
ic(β

S
1 − βM

1 )] > 0 (7.15)

Therefore this condition, therefore, forms the basis of all the systems that belong to this category.

It will be used later on this section.

7.2.1.1 Air-conditioning systems that consume more energy when they are made comfortable

(∆Ec > 0) – denoted by (++)

Air-conditioning systems in this category undergo an increase in total cooling hours upon the

reduction of the thermal discomfort. An increase in total number of cooling hours can only happen

with an increase in the values of temperature difference, because the coefficients of the energy

consumption model of systems are always positive. An increase in temperature difference values

happens with a decrease in indoor temperature values, given that the outdoor temperature remains

the same. This happens whenever the occupants are keeping their indoor environment at a tem-

perature that is hotter than what would be comfortable and a reduction in temperature is necessary

to improve comfort. This is mathematically proved using equation 7.10 and given that Ei
S > 0

(cooling effort of a 2-hour period cannot be negative) and βS
1 > 0 (coefficient of ∆Toi cannot be

negative because a system’s cooling effort cannot decrease with increasing temperature difference),

∆Ec =
ΣEi

S,c − ΣEi
S

ΣEi
S

=
Σβ1∆T i

ic

Σ (β0 + β1∆T i
oi)

> 0 (7.16)

=⇒ βS
1 Σ∆T i

ic > 0 (7.17)

=⇒ Σ∆T i
ic > 0 (7.18)

=⇒ Σ(T i
id − T i

id,c) > 0 =⇒ ΣT i
id,c < ΣT i

id (7.19)
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Owing to the monetary cost that accompanies the increase in total cooling hours the occupant often

has to decide whether or not to reduce the discomfort level of his house and by how much. If the

occupant wants to make all the time they in the home thermally comfortable then they will have

to increase the cooling hours of their system by a minimum of ∆Ec%. Subsequently this case

now further be divided into two sub cases that each represent the change in the value of the energy

impact metric of the system upon adjusting its performance to obtain a negligible value of the

thermal comfort impact metric.

1. Correction of discomfort level of the indoor environment is worsening the air-conditioning

system’s relative performance (Γc
E > ΓE) – denoted by (+++)

This case represents air-conditioning systems where the value of the relative energy con-

sumption of the system increases whenever it is driven to run at a setpoint that produces a

comfortable indoor temperature. The energy consumption of a system and the thermal com-

fort level of the house are coupled with each other. The metrics can help decouple them and

aid in improving our understanding as shown in the derivation below. Please note that for

the sake of brevity the i’s that represent each 2-hour period of operation on top of each of

the variables are dropped. Using the definitions of Γc
E and ΓE from equations 7.8 and 7.3 we

get,

Γc
E > ΓE (7.20)

=⇒
∑(

(ES − EM) + ∆Tic

(
βS
1 − βM

1

))∑
(ES + βS

1 ∆Tic)
>

∑
(ES − EM)∑

ES

(7.21)

Upon cross-multiplying and cancelling the common terms we get,

=⇒ (βS
1 − βM

1 )(
∑

∆Tic)(
∑

ES) > (
∑

(ES − EM))(
∑

∆Tic)β
S
1 (7.22)

=⇒
∑

(ES − EM)∑
ES

<
βS
1 − βM

1

βS
1

(7.23)

=⇒ ΓE <
βS
1 − βM

1

βS
1

(7.24)
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This means that systems in this category have an upper bound on the value of the energy

impact metric. However, from equations 7.15 and 7.18 and we have the following,

ΓE

∑
Ei

S + (βS
1 − βM

1 )
∑

∆T i
ic > 0 (7.25)

where
∑

Ei
S > 0 and

∑
∆Tic > 0. Since the sign of ΓE is unknown, both cases of it being

positive and negative need to be considered separately. If ΓE > 0, according to equation

7.15, (βS
1 − βM

1 ) can be positive or negative, however from equation 7.24,

0 < ΓE <
βS
1 − βM

1

βS
1

(7.26)

=⇒ βS
1 − βM

1

βS
1

> 0 (7.27)

=⇒ βS
1 > βM

1 (7.28)

If ΓE < 0, from equation 7.24, (βS
1 − βM

1 ) can again be positive or negative, however from

equation 7.15,

(
∑

∆Tic)(β
S
1 − βM

1 )] > ΓE

∑
Ei

S > 0 (7.29)

βS
1 > βM

1 (7.30)

Therefore, irrespective of the sign of ΓE , the mathematical condition that holds true in this

case is that βS
1 > βM

1 . This signifies that all the air-conditioning systems that belong to

(+++) will have their coefficient of temperature difference in their model for energy con-

sumption greater than that of the average system. Since we have previously noted that the

coefficient of temperature difference could correspond to the (insulation + infiltration) level

per unit capacity, we could infer that for the cases where in the fault severity index is posi-

tive, the system requires more energy to become comfortable which causes an increase in the

system’s relative energy metric the insulation level per unit capacity must be lower (and/or
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the infiltration level per unit capacity) must be higher than that of the average system. The

reader should note that the inverse of the statement is however untrue. The energy consump-

tion models of systems belonging to the case (+++) will have lower slopes than that of the

average system but all systems with lower slopes need not belong to this particular case.

Further corroboration for this can be derived by plotting the histogram of slopes and inter-

cept of all the models of systems belonging to this case against the slope and intercept of the

energy consumption model of the average system as shown in fig. 7.2. Systems lying in this

region, therefore, are most likely to posses a mechanical fault, because the thermal comfort

and energy impact metrics are getting coupled together in a detrimental way. These faults

need to be observed carefully to make sure that the fault severity index value of the system

stays under a threshold. The only definitive conclusion that can be made is that in case of

systems possessing such kind of high likelihood for the existence of mechanical fault, will

have a lower energy model whose slope is greater than slope of the model of the system with

the average performance level. This could correspond to a poorer insulation and infiltration

level on average.

2. Correction of discomfort level of the indoor environment is improving the air-conditioning

system’s relative performance (Γc
E < ΓE) – denoted by (++-)

Improving the comfort level of the air-conditioning systems falling in this category is causing

an increase in energy consumption but a reduction in the overall value of the energy impact

metric. After increasing the number of cooling hours by ∆Ec% the resulting performance

level of the system is still worse than the performance level of the average system but better

than what it used to be before. So systems in this case will benefit from reduction of thermal

discomfort of the occupants with regards to relative energy consumption. However, this

reduction will come at the cost of more energy being consumed by the system. So, the

decision on whether or not to improve their thermal comfort and by what magnitude should

be left to the occupant. In order to mathematically explore this case, a procedure similar to

the one done for the previous case can be followed keeping in mind that
∑

∆Tic > 0 and

77



Figure 7.2: Histogram plot of intercept and slopes of models of all air-conditioning systems
wherein a fault is causing a severe impact on the thermal comfort of the occupants which when
corrected is causing an increase in its energy consumption relative to that of the average system.
Systems likely possess mechanical faults like of lack of refrigerant or undersizing issues etc.

using the equations 7.3 and 7.8,

Γc
E < ΓE (7.31)

=⇒
∑[

(ES − EM) + ∆Tic

(
βS
1 − βM

1

)]∑
(ES + βS

1 ∆Tic)
<

∑
(ES − EM)∑

ES

(7.32)

Upon cross-multiplying and cancelling the common terms we get,

=⇒ (βS
1 − βM

1 )(
∑

∆Tic)(
∑

ES) < (
∑

(ES − EM))(
∑

∆Tic)β
S
1 (7.33)

=⇒
∑

(ES − EM)∑
ES

>
βS
1 − βM

1

βS
1

(7.34)

=⇒ ΓE >
βS
1 − βM

1

βS
1

(7.35)

This implies that air-conditioning systems in this case have a lower bound for the value of

the energy impact metric. However upon expanding this further using the expansion of ΓE
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given in equation 7.3 the following is obtained,

ΓE >
βS
1 − βM

1

βS
1

(7.36)

Σ[(βS
0 − βM

0 ) + ∆Toi(β
S
1 − βM

1 )]

Σ(βS
0 + βS

1 ∆Toi)
>

βS
1 − βM

1

βS
1

(7.37)

(βS
0 − βM

0 )βS
1 > (βS

1 − βM
1 )βS

0 (7.38)

βS
0

βS
1

>
βM
0

βM
1

(7.39)

Therefore, upon mathematically examining the case we arrive another condition for the sys-

tems belonging to this case. In order to understand what it means the histogram plot of the

slopes and intercepts is plotted below,

Figure 7.3: Histogram plot of intercept and slopes of models of all air-conditioning systems
wherein a fault is causing a severe impact on the thermal comfort of the occupants making them
feel hot; which when corrected is causing an decrease in its energy consumption relative to that of
the average system.
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As a consequence of the slope and intercept of the energy consumption model of the average

system being as indicated in fig. 7.3, the condition in equation 7.39, leads to βS
0 > 9.3βS

1 .

This condition as expressed in fig. 7.3 forces the intercept of the models of systems falling

in this category to be more than that of the average system of the dataset. Going by our

analogy, this case in essence captures all houses that on average experience a high internal

load and/or a high solar load. Since, the houses already have a high internal load and are

being maintained at hotter than comfortable temperatures, reduction in indoor temperature

brings the energy consumption level of the system closer to that of the mean system. The

higher the reduction in indoor temperature, the lesser will be the influence of the house’s

high internal load. This implies that the "fault" for systems belonging to this case is that the

house they are installed in experience high internal and solar loads on average. By reducing

the internal load of the house the difference between the cooling efforts of the given system

and the average system will decrease causing a reduction in energy consumption.

7.2.1.2 Air-conditioning systems that consume less energy upon becoming comfortable (∆Ec <

0) – denoted by (+-)

Air-conditioning systems falling in this category experience a reduction in total cooling hours

i.e., total energy consumed, when the thermal discomfort of the house is reduced. These are houses

wherein the indoor environments are "colder" than comfortable (according to the PMV index) and

hence will benefit from an increase in setpoint. An increase in setpoint implies lesser amount of

total cooling and therefore fewer cooling hours in total. Therefore, expressed mathematically using

the fact that ES > 0 we get,

∆Ec =
ΣES,c − ΣES

ΣES

=
Σβ1∆Tic

Σ (β0 + β1∆Toi)
< 0 (7.40)

=⇒ βS
1 Σ∆Tic < 0 (7.41)

=⇒ Σ∆Tic < 0 (7.42)

=⇒ Σ(Tid − Tid,c) < 0 =⇒ ΣTid,c > ΣTid (7.43)
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Owing to the savings in money that accompanies the improvement of thermal comfort level of the

house, occupants of these houses will be typically be keen to adjust their setpoint accordingly. The

∆Ec represents the minimum amount of savings in energy possible when the setpoint of the air-

conditioner is altered such that the house is completely comfortable at all points in time. However,

as in the case above, the reduction of thermal discomfort can come with an increase in the value of

the energy impact metric or a decrease, which leads to the following cases.

1. Correction of discomfort level of the indoor environment is worsening the air-conditioning

system’s relative performance (Γc
E > ΓE) – denoted by (+-+)

As in the case (+++), air-conditioning systems falling in this category experience a further

deviation from the average system whenever the thermal comfort level of the house is im-

proved. Since, the thermal discomfort is in fact causing an increase in the value of the energy

impact metric, there is a need to monitor the performance of this system closely because of

the possibility of existence of mechanical faults. As previously done, a mathematical explo-

ration of this case is given below keeping in mind that condition in equation 7.42 and using

equations 7.3 and 7.8,

Γc
E > ΓE (7.44)

=⇒
∑[

(ES − EM) + ∆Tic

(
βS
1 − βM

1

)]∑
(ES + βS

1 ∆Tic)
>

∑
(ES − EM)∑

ES

(7.45)

Upon cross-multiplying and cancelling the common terms we get,

=⇒ (βS
1 − βM

1 )(
∑

∆Tic)(
∑

ES) > (
∑

(ES − EM))(
∑

∆Tic)β
S
1 (7.46)

=⇒
∑

(ES − EM)∑
ES

>
βS
1 − βM

1

βS
1

(7.47)

=⇒ ΓE >
βS
1 − βM

1

βS
1

(7.48)

As observed in the case (++-) we again have reached a minimum value for the value of the

energy impact metric of an air-conditioning system belong to this category. Therefore, upon
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expanding the above equation as done previously, we reach the same final condition as in

equation 7.39
βS
0

βS
1

>
βM
0

βM
1

(7.49)

Figure 7.4 confirms that since the mathematical condition in 7.49 is identical to the one

Figure 7.4: Histogram plot of intercept and slopes of models of all the system wherein the house
is over-cooled the correction of which causes an increase in relative energy consumption.

observed in case of (++-): the histogram plots also show similar trends. This case too cap-

tures air-conditioning systems installed in houses that experience a high internal/solar load

on average. Since, an increase in overall temperature is observed, the internal load starts to

have a greater effect on the value of the energy impact metric than before causing the dif-

ference between the given system and the average system to increase in general. Therefore,

the advantage of reducing the thermal discomfort of the house, which is reduction in total

cooling hours, should be weighed against the deviation from the average system. As in the

82



(++-) case, the fault is the high value of the intercept of the energy model which needs to be

corrected for better performance.

2. Correction of discomfort level of the indoor environment is improving the air-conditioning

system’s relative performance (Γc
E < ΓE) – denoted by (+–)

A reduction in thermal discomfort of houses for air-conditioning systems belonging to this

case is accompanied by a reduction in the value of the energy impact metric as well as

a reduction in the total cooling hours of the system. The systems belonging to this case

therefore have immense benefit by adjusting their setpoint to produce a more comfortable

indoor environment. An adjustment of setpoint is improving the comfort level of the house,

reducing the number of cooling hours of the system (and hence cost) and also bringing the

energy consumption level of the system closer to that of the average system of the dataset.

The "fault" for systems in this case is that the systems are being operated at bad operating

conditions and the occupants should be notified of the possible improvements. Using the

condition derived for ∆Ec > 0 in equation 7.42 and the equations 7.3 and 7.8, the math for

this case is examined in the following,

Γc
E < ΓE (7.50)

=⇒
∑[

(ES − EM) + ∆Tic

(
βS
1 − βM

1

)]∑
(ES + βS

1 ∆Tic)
<

∑
(ES − EM)∑

ES

(7.51)

Upon cross-multiplying and cancelling the common terms we get,

=⇒ (βS
1 − βM

1 )(
∑

∆Tic)(
∑

ES) > (
∑

(ES − EM))(
∑

∆Tic)β
S
1 (7.52)

=⇒
∑

(ES − EM)∑
ES

<
βS
1 − βM

1

βS
1

(7.53)

=⇒ ΓE <
βS
1 − βM

1

βS
1

(7.54)

During the derivation because
∑

∆Tic < 0 (from 7.42) the sign in the above equation

switches. The energy impact in this case has an upper bound similar to (+++). Since the
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severity index is positive (Γc
E > 0) and energy impact is greater than the severity index

(Γc
E < ΓE), we also can infer that the energy impact must be strictly positive (ΓE > 0).

Putting this together with equation 7.54 we get,

0 < ΓE <
βS
1 − βM

1

βS
1

(7.55)

=⇒ βS
1 − βM

1

βS
1

> 0 (7.56)

=⇒ βS
1 > βM

1 (7.57)

Therefore, in this case too the mathematical condition is the same as in (+++). Equation 7.57

implies that the slope of the energy consumption model of air-conditioning systems lying

in this case is greater than the slope of energy consumption model of the average system

of the dataset in the climate region. Hence, we also can expect that house the system is

installed in this case will have lower insulation levels and/or higher infiltration rates than the

average house. The similarity in the properties of system in (+++) and system in (+–) seems

counter-intuitive. While (+++) represents systems that very likely possess a mechanical fault,

systems in (+–) however, are systems that may not have a mechanical fault but are definitely

being operated at bad operating conditions. Figure 7.5 provides further evidence for our

conclusions as we notice that the slope of models of all the systems falling in this category

is greater than that of the average system.

7.2.2 Air-conditioning systems with negative fault severity index (Γc
E < 0) – denoted by (-)

If the value of the fault severity index is negative it implies that the air-conditioning system

consumes less energy than the average air-conditioning system to produce the same completely

comfortable environment. In this case, there is a lot of incentive to notify the occupant of the pos-

sible improvement in comfort which sometimes may come at the cost of extra energy consumption

or may not. Since the system will consume less energy than the average system upon correction of

thermal discomfort is a given, the decision to adjust the setpoint to a comfortable value is primar-
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Figure 7.5: Histogram plot of intercept and slopes of models of all air-conditioning systems
wherein the house is over-cooled; upon correction of which will reduce the gap between the en-
ergy consumption of the system and the average system. Systems are being operated at inefficient
operating conditions.

ily dependent on whether or not this adjustment gives rise to an agreeable change in total energy

consumption of the system. If the extra cooling hours which will come at the cost of more energy

consumed is acceptable to the occupant, then they should be urged to correct their ineffective set-

points. The difference in cases that arises because of increase or decrease of the value of the energy

impact metric isn’t too relevant here because eventually the system will consume less energy than

the average system. Hence, there are only two sub-cases for systems in this case. Mathematically,

this will be expressed as the inverse of equation 7.15,

ΓE

∑
Ei

S +
∑

∆T i
ic(β

S
1 − βM

1 )] < 0 (7.58)
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7.2.2.1 Air-conditioning systems that consume more energy when they are made comfortable

(∆Ec > 0) – denoted by (-+)

Since, making all the periods of operation of the air-conditioning system thermally comfort-

able, in this case, causes an increase in total cooling hours of the system, though the number of

cooling hours is still less than how much the average system would have consumed, different oc-

cupants will have different preferences on whether or not the amount of extra energy consumed

is acceptable. Additionally, the occupant can choose as to how much of improvement in comfort

is acceptable as per the amount of extra energy consumed. As obtained in equation 7.18 systems

belonging to this case are at hotter temperatures than comfortable and hence need to be corrected,

which can be done by reducing the temperature. A reduction in indoor temperature, however,

comes at the cost of extra energy consumption.

Since, systems in this case contain both systems wherein the fault severity index is greater

than the energy impact and severity index is less than the energy impact, further mathematical

exploration cannot be done without splitting further. Since system falling in this broad category

are "better" than the average system, splitting this into further cases will not help in improving

our understanding of the system behavior. Figure 7.6 shows the histogram plot of the slope and

intercept of the energy consumption models of systems belonging to this case in comparison to the

those of the average system of the dataset. 93.5% of the systems belonging to this case have their

intercept lower than that of the average system. This implies that "fault" that is causing a negative

fault severity index is the lesser internal load of the system found on average.
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Figure 7.6: Histogram plot of intercept and slopes of models of all air-conditioning systems that
will consume lesser energy than the average system upon correction of thermal discomfort but
more than what they were consuming at the original level of comfort.

7.2.3 Air-conditioning systems that consume less energy upon becoming comfortable (∆Ec <

0) – denoted by (–)

This is the ideal case. The value of the energy impact metric of the air-conditioning system is

lower than the fault severity index and so is the amount of extra energy required to make the system

comfortable. The occupants can experience greater comfort by just adjusting their setpoint to an

optimal value. As described in the equation 7.42 the indoor temperatures of the system need to be

raised to a higher value so that systems become comfortable. An increase in indoor temperature

will come at benefit of lesser energy consumed by the system as lesser cooling will be required.

Figure 7.7 below is the histogram plot of slopes and intercepts of all the systems belonging to

this dataset and a common feature with the (-+) case is that 85.5% of the system have a lower value

of intercept than the average system of the dataset. The lower internal load value again contributes

heavily to the negative value of fault severity index. The reduction in total cooling hours is a
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consequence of the system being operated at colder than comfortable setpoints as opposed to hotter

than comfortable in the (-+) case.

Figure 7.7: Histogram plot of intercept and slopes of models of all air-conditioning systems that
are over-cooled but upon correction will consume less energy than the average system would have.
Systems are being operated at inefficient operating conditions.

7.3 Summary of the outlined cases

Each fault has an impact on the air-conditioning system and its occupants in complex ways. The

metrics developed in this thesis help delineate some of the intertwined relationships between faults

and characteristics of the system. In order to aid this process, the air-conditioning systems were

divided in to categories based on the values of the metrics. The systems were first divided into two

categories based on the sign of the fault severity index. Second, systems in each case were further

divided into two categories based on whether they consumed extra energy to become comfortable

or if they saved energy by becoming comfortable. Finally, the systems were subsequently divided

into two cases that depict how the relative energy consumption value changes when the indoor

environments of the houses become comfortable. Therefore, the flowchart shows all the cases into
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which the air-conditioning systems with a low to moderate value of fault severity index in the

dataset are divided, based on the cost & effect of reduction of discomfort,

Figure 7.8: Flowchart showing the various cases into which air-conditioning systems with low to
moderate fault severity index are sorted into.

In order to make it easier to visualize the systems on a graphical plot, each individual case was

allotted a region based on the value of metric they show. Therefore, upon converting the flowchart

above into a graphical plot, the following is obtained.

89



Figure 7.9: Graphical representation of the flowchart showing what happens to the air-conditioning
systems upon improvement of comfort level along with few characteristics of systems in each case.

The bubble plot shown in fig. 7.10 plots few of the systems in the format of the graphical plot

shown in fig. 7.9. The plot shows the variation of percentage change in total cooling hours (∆Ec)

when all the periods are made completely comfortable against the difference in the value of the

energy impact metric (Γc
E−ΓE) after and before making all the time periods comfortable. The size

of the bubble indicates the value of fault severity index i.e., the Γc
E . The bubbles on the blue plot

represent systems with positive fault severity index (Γc
E > 0) and the bubbles in orange represent

systems with negative fault severity index (Γc
E < 0). The larger the bubbles in blue & the smaller

the bubbles in orange the more severe is the impact of the fault.
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Figure 7.10: Bubble plot showing metrics of 100 systems from the dataset in the same format as
the graphical plot in fig. 7.9

Several conclusions have been drawn regarding the behavior of systems in various cases a

summary of which is given below:

1. The fault severity index of an air-conditioning system measures the severity of the impact

of a fault on the relative energy consumption of the system provided it produces no thermal

discomfort to the occupants. It can be used as a metric to rank systems objectively to pri-

oritize them for repair. Systems with with very high value of fault severity index need to

be identified and examined separately. Systems with moderate to low value of fault severity

index can be examined by dividing them into various cases.
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2. The impact metrics of the air-conditioning system measure the cost of reducing the thermal

discomfort of the house (∆Ec) and the effect it has on the relative energy consumption

(Γc
E − ΓE). Based on the cost and effect systems are divided into several categories.

3. Air-conditioning systems belonging to the case (+++) show a strong likelihood to possess

mechanical faults. These faults could include: reduction in amount of refrigerant, system that

was sized incorrectly, houses having obstruction in air-vents, very poor insulation, extremely

high solar/internal load etc. All the systems in this case will operate in houses with lower

level of insulation and/or higher infiltration rate on average (average here implies normalized

by system capacity)than the average house of the dataset. The occupants need to be alerted

of the possible faults in their system.

4. Air-conditioning systems belonging to the case (++-) have known to show greater value

static load (which in this case is a combination of internal and solar loads i.e., the intercept

of the energy consumption model) on average than the average system. This is causing a

high value of energy impact metric and correction of thermal comfort level will bring the

energy consumption level of the system closer to the average but it comes at the cost of extra

energy consumed. The occupant should be notified of the high static load of their system

and about the cost of improvement in comfort level.

5. Air-conditioning systems belonging to the case (+-+) have also known to show greater static

load than the average system of the dataset where again the static load in this implies a

high value of intercept in the energy model. However, they are being operated at colder

than comfortable temperatures and so reduction of thermal discomfort will yield savings in

energy at the cost of pushing their energy consumption level further away from the average

system. The occupant should again be notified of the high value of intercept of their house,

the reduction in which will yield significant amount of savings in energy and relative system

performance.
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6. Air-conditioning systems belonging to the (+–) case are systems that are being operated at

ineffective operating conditions. The occupant has a lot of incentive to improve the comfort

level of the house as it will benefit in energy savings as well as help bring the energy con-

sumption level of the system closer to that of the average system. Systems belonging to this

case also will operate in houses with a lower level of insulation and/or higher infiltration rate

on average (essentially the slope of the energy consumption model) than the average house

of the dataset, but by operating at cold setpoint temperatures and thereby overcooling their

house they end up using a lot of extra energy.

7. Air-condtioning systems with a negative value of fault severity index (cases:(-+) & (–)) gen-

erally have a value of the intercept lower than that of the average system. The lower static

load helps immensely in keeping the energy consumption level of the system lower than the

average system at the proposed level of comfort. The improvement in comfort can come at

the cost of extra energy consumption or with savings in energy. The latter represents the

cases where the systems are being operated and ineffective setpoints.
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8. CASE STUDIES

Chapter 7 outlined the various categories into which air-conditioning systems with a moderate

to low fault severity index can belong. The flowchart constructed is given below:

Figure 8.1: Flowchart showing the various cases into which air-conditioning systems with low to
moderate fault severity index are sorted into.

Although the previous chapter provides a good description of each case, examining interesting

systems in each case can provide further understanding as well as an opportunity to observe the

behavior of systems quantitatively rather than qualitatively. Therefore, this chapter chooses to

examine an air-conditioning system from each case to better understand its behavior. For each

case, the system performance at the original level of comfort is plotted followed by what would

94



happen to its performance at the proposed level of comfort which is when all the operating periods

of the system are made comfortable. The reader is urged to pay careful attention to the plot because

of the huge amount of information they provide and to understand the myriad of hidden details.

Before the case studies are discussed few of the variable that have previously been defined are

recapped here:

• Ei
S - Cooling effort of the given air-conditioning system in a 2-hour period as calculated

from the energy consumption model of the system

• Ei
M - Cooling effort of the average system operating operating in the climate region in a

2-hour period as calculated from the energy consumption model of the average system

• Ei
S,c - Cooling effort of the given air-conditioning system in a 2-hour period when the house

is comfortable at all points in time

• EM,c - Cooling effort of the average system operating in the climate region in a 2-hour period

when the house is comfortable at all points in time

• ∆Ei
SM = Ei

S −Ei
M - Difference between the cooling effort of the given system and cooling

effort of the average system in a 2-hour periods to produce the same temperature difference

between outdoor and indoor

• ∆Ei
SM,c = Ei

S,c−Ei
M,c - Difference between the cooling effort of the given system and cool-

ing effort of the average system in a 2-hour period at the proposed completely comfortable

levels

• ΓI - Thermal Comfort Impact Metric

• ΓE - Energy Impact Metric (at original level of comfort)

• Γc
E - Fault Severity Index (energy impact metric value when house is comfortable at all

points in time)
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• ∆Ec - Percentage change in cooling hours of the system when all 2-hour periods are made

comfortable i.e, at the proposed completely comfortable levels

8.1 (+++): Air-conditioning systems with a positive fault severity index that require more

energy to become comfortable in the process of which experience an increase in relative

energy consumption (Γc
E > 0;∆Ec > 0; Γc

E > ΓE)

Figure 8.2: Performance of a system belonging to the (+++) case at (a) original level of comfort
and (b) when all the operating periods of the system have been comfortable.

Figure 8.2 shows data from an air-conditioning system belonging to the case labelled (+++).

First, at the original level of comfort the value of the thermal comfort impact metric (ΓI) is 23.04%.

This implies that on average the occupants are 23% as uncomfortable as they would have been in

the absence of the air-conditioner at that geographical location. This can be evidenced by ob-

serving the points which each represent a single 2-hour period of operation where the indoors are

uncomfortable in the first subplot. Owing to the concentration of 2-hour periods with indoor PMV

values greater than 0.5 given by the points in orange the average discomfort indoors is greater than

0. The HVAC system is able to reduce the amount of discomfort the occupant would feel in its
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absence, but not fully. Hence, there is potential for even further reduction of discomfort, but at a

certain cost which is depicted in detail in the second subplot.

In both of the above subplots there are two ordinates one on either side. Each data point on the

scatter plot has a corresponding value on each of the axes. The axis in red represents the difference

between the amount of cooling effort required for the given system and the amount that would be

required by the average system of the dataset to maintain the same indoor temperature in a 2-hour

period (∆Ei
SM ). The axis in magenta of the subplot is just the cooling effort of the system in a

given 2-hour period (Ei
S). Subplot (a) shows the performance of the system at original level of

comfort and subplot (b) shows what would happen if the comfort level of the house in each period

was improved. According to the definition of energy impact,

ΓE =
ΣN

i=1(E
i
S − Ei

M)

ΣN
i=1E

i
S

(8.1)

Upon dividing the numerator and denominator by the total number of 2-hour periods, N the fol-

lowing is obtained:

ΓE =
∆ĒSM

∆ĒS

(8.2)

The value of the energy impact metric of the system (ΓE) as calculated from the original data is

20.42%. That implies that the average system run for 20.42% less amount of time than the given

system. So, if the given air-conditioning system were to run 100 hours, then the average system

of the dataset in the climate region would only run for 100 − 20.42 = 79.58 hours to provide an

indoor environment at the current level of comfort. Upon reducing thermal discomfort the value of

the energy impact metric of the system at this new “comfortable” state of operation of the system

is termed as the fault severity index of the system. Therefore, upon extending equation 8.2 for the

new hypothetical state:

Γc
E =

∆ĒSM,c

∆ĒS,c

(8.3)

Subplot (a) of fig. 8.2 indicates that the indoor environment of the house is uncomfortable because

the periods of the system are on average hotter than the comfortable region. This is indicated by the
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fact all the orange points that represent each of the 2-hour periods have indoor PMV values beyond

0.5. Improvement of comfort which can be brought about by the reduction indoor temperature,

requires the system to increase the amount of cooling it provides. Simultaneously, the amount

of cooling required by the average system to produce this comfortable environment would also

increase. This can be understood by looking at the plot of the energy consumption models of the

given and average system as given in fig. 8.3. Subplot (b) of fig. 8.2 indicates that both of these

values increase in such a way that the difference between the two as well as the respective ratios

also increase.

∆ĒSM,c > ∆ĒSM (8.4)

ĒS,c > ĒS (8.5)

The fault severity index of the air-conditioning system, Γc
E that represents the percentage of time

the average system runs lesser than the given system, is now 26.98%. This implies that if the given

system were to run for 100 hours to provide a completely comfortable indoor environment, the

average system of the dataset in the climate region run for only 100 − 26.98 = 73.02 hours. The

6.5% increase in energy impact metric value of the system as the indoor environment goes from

current level of comfort to the proposed comfortable level indicates that the thermal discomfort has

an adverse effect on the system’s energy consumption, which is not being captured by the value of

the energy impact metric at the original level of comfort.

Finally, the last metric that gives a complete picture of the system’s behavior is the percentage

change in cooling hours required to make the system comfortable. Since, the improvement of

comfort is accompanied by a reduction in indoor temperature, an increase in temperature difference

values can be observed. This increased temperature difference causes an increase in cooling effort

of the system, which is computed by the following:

∆Ec =
ĒS,c − ĒS

ĒS

= 19.54% (8.6)
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Further corroboration for the values of the energy impact metric, fault severity index and the per-

centage change in cooling hours can be found in the following plot which plots the energy con-

sumption model of the given system against that of the average system. The slope of the model of

the given system is greater than the slope of the model of the average system is evidence for the

system’s poorer than average value of (insulation + infiltration) level per unit capacity. Since, the

correction of comfort level causes a general increase in temperature difference values, the points

will be shifted to the right. This causes an increase in mean difference between the cooling effort

of the system and the average system (because of greater slope, βS
1 > βM

1 ) as well as an increase

mean cooling effort of the given system (because of positive slope, βS
1 ).

Figure 8.3: Energy consumption model of the given air-conditioning system against that of the
average system of the dataset at the original level of comfort. The arrow in green shows the
direction of movement of points along their respective lines as the house is made comfortable.

The fourth metric attempts to indicate that, upon improving the comfort level of the indoor en-

vironment, the total cooling hours of the system increase by close to 20% whereas the total cooling
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hours of the average system would increase by a lesser value. Therefore, the thermal comfort im-

pact metric is indicating that the system is being operated at ineffective operating conditions. Upon

correction of this leads to the system deviating further away from the average system implying that

there perhaps might be a mechanical fault with the system itself.

8.2 (++-): Air-conditioning systems with a positive fault severity index that require more

energy to become comfortable in the process of which experience a decrease in relative

energy consumption (Γc
E > 0;∆Ec > 0; Γc

E < ΓE)

Air-conditioning systems in this case belong to the second quadrant among the four selected

for all systems with a fault severity index greater than 0. Since, by definition the total cooling

hours of the system increase upon improvement of comfort in the house in this case, it indicates

that indoor temperature of the house has to be reduced. The 2-hour periods of the system must be

hotter than comfortable causing a discomfort which can be corrected by increase the total cooling

hours of the system. Evidence for this can be seen in the plot of an example system plotted in fig.

8.4 by noticing the values of indoor PMV on subplot (a).

Figure 8.4: Performance of a system belonging to the (++-) case at (a) original level of comfort
and (b) when all the periods of the system have been comfortable.
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Although the change is very marginal there is an increase in the value of mean cooling effort

of the system.

ĒS,c > ĒS (8.7)

The value of the thermal comfort impact metric of the system indicates that the indoor environ-

ment of the house is about half as uncomfortable as the environment outside. To reduce thermal

discomfort the periods of the system must be pulled back to the comfortable region and this can be

done by increasing the total cooling hours of the system by ∆Ec = 14.36%. The readers must be

cautious and notice that the scale of the two ordinates in 8.4 are wildly different. This is because,

the difference in slopes of the model of the given system and the model of the average system is

very low as shown in the fig. 8.5.

Figure 8.5: Energy consumption model of the given air-conditioning system against the model of
the average system of the dataset at the original level of comfort. The arrow in green shows the
direction of movement of points along their respective lines as the system is made comfortable.
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Since the slopes are very close to each other, a change in the value of ∆Toi will cause a much

lesser change in the difference of cooling efforts of the given and average system in comparison

to the change caused in the cooling effort of the given system. The plot in figure 8.5 indicate two

important details: The difference between the slope of the given system and the average system is

very low and the range of operation of ∆Toi values are more negative than positive (fig. 8.6). The

correction of level of comfort in the house as discussed above requires the increase in temperature

difference values. As observed in the plot in fig. 8.5 an increase in temperature difference values

will cause a marginal increase in difference between the cooling effort of the given system and the

mean system. This is further corroborated in the plot in fig. 8.4

∆ĒSM,c > ∆ĒSM (8.8)

Although both the numerator and denominator increase, the energy impact metric of the air-

conditioning system has decreased implying that the system’s energy consumption level gets closer

to that of the average system. Although the slope of the model of the given system is greater than

that of the average system even in case of (+++) and (+–), the reason why this system behaves dif-

ferently can be attributed to the following reasons: reducing thermal discomfort requires reduction

of indoor temperature, the difference between the two slopes is very low, the intercept of the model

of the system is greater than that of the average system and finally the range of operation of ∆Toi

values.
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Figure 8.6: Histogram of temperature difference values shows that the range of operation of tem-
perature difference value at original level of comfort is lower than the range observed at the com-
fortable level. Also notice the high concentration of values close to 0 for the original level of com-
fort (81% of values between -5◦C and 5◦C). This is peculiar system behavior because it means
that for many periods of operation the mean indoor and outdoor temperatures are approximately
equal.

8.3 (+-+): Air-conditioning systems with a positive fault severity index that require less

energy to become comfortable in the process of which experience a increase in relative

energy consumption (Γc
E > 0;∆Ec < 0; Γc

E > ΓE)

Air-conditioning systems in this case experience an increase in the value of the energy impact

metric when the comfort level is improved but benefit from savings in energy. Since a reduction in

total number of cooling hours was observed upon improvement of thermal comfort, the temperature

difference values in general must have decreased. Such a decrease is only possible with the increase

in indoor temperature. Since, the improvement of thermal comfort is accompanied by an increase

in indoor temperature, one can conclude that the 2-hour periods of the system are cooler than

comfortable. As in all the cases above consider the performance of the system given in the figure

below:
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Figure 8.7: Performance of a system belonging to the (+-+) case at (a) original level of comfort
and (b) when all the periods of the system have been comfortable.

As expected, a concentration of orange data points is observed with their indoor PMV value

less than -0.5 implying that all these periods are colder than comfortable. The mean cooling effort

of the system has decreased upon bring all the orange points to the edge of the comfortable region

implying a reduction in total cooling hours as shown in 8.7.

ĒS,c < ĒS (8.9)

The total number of cooling hours of the air-conditioning system reduce by ∆Ec = 2.49%. In

order to examine the behavior of the difference between the cooling effort of the system and that

of the average system, the models of both systems are plotted against each other in fig 8.8. Similar

to the system in the (++-) case, the slope of the model of the given system is marginally greater

than that of the average system of the dataset. The difference between the cooling effort of the

given system and the cooling effort of the average system is estimated by the distance between

each corresponding point on the two models. As the values of temperature difference decrease, the

points will get shifted to the left causing a decrease in the mean difference between the cooling
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effort of the given and the average system. This is corroborated by the plot in fig. 8.7,

∆ĒSM,c < ∆ĒSM (8.10)

Figure 8.8: Energy consumption model of the given air-conditioning system against the model of
the average system of the dataset at the original level of comfort. The arrow in green shows the
direction of movement of points along their respective lines as the system is made comfortable.

Although both the numerator and the denominator decrease (contrary to the case (++-)) the

energy impact value has however increased from 23.59% to 23.68%. Therefore, the correction

of thermal discomfort is causing the system’s energy consumption level to move farther away

from the average system, which can be attributed to marginal difference in slopes, the positive

difference in intercepts and the current level of comfort which requires a temperature increase for

correction. Air-conditioning systems falling in this category do not necessarily have a mechanical

fault because they see further deviation from the average system but it is likely. While occupants
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will find it beneficial to improve their comfort level because of the gains in comfort and energy,

manufacturers are urged to keep a watchful eye on the systems’ behavior to understand the reasons

for its deterioration.

8.4 (+–): Air-conditioning systems with a positive fault severity index that require less en-

ergy to become comfortable in the process of which experience a decrease in relative

energy consumption (Γc
E > 0;∆Ec < 0; Γc

E < ΓE)

This case is the exact opposite of the (+++) case as indicated in fig. 8.9 below:

Figure 8.9: Performance of a system belonging to the (+–) case at (a) original level of comfort and
(b) when all the periods of the system have been comfortable.

The occupants of the house in which the above air-conditioning system is installed experience

an average of 77.75% the amount of discomfort as compared to the amount of discomfort they

would have experienced if there were no air-conditioning system (ΓI = 77.75%). The data points

in orange indicate that the discomfort caused is because a good concentration of 2-hour periods of

the system indicate an indoor PMV value of less than -0.5, i.e., the house on average is colder than

normal.
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In order to reduce the discomfort felt by the occupants the value of indoor temperature must

be raised which can be done by reducing the amount of time the cooling system runs. A reduction

in total cooling time is tantamount to a reduction in mean cooling effort of the system, which is

indicated in fig. 8.9. Notice that the value of mean cooling effort decreases at the new level of

comfort:

ĒS,c < ĒS (8.11)

Since an increase in indoor temperature causes a reduction in the values of temperature difference

on average, the mean cooling effort of the given system as well as the average system decreases. In

order to examine the change in their difference, a plot of the models represented by both systems

is given below:

Figure 8.10: Energy consumption model of the given air-conditioning system against the model of
the average system of the dataset at the original level of comfort. The arrow in green shows the
direction of movement of points along their respective lines as the system is made comfortable.
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Similar to the system in (+++), the slope of the energy consumption model of the system in this

case too is greater than the that of the average system. Here a reduction in temperature difference

values causes the points to be shifted to the left which implies that the difference between the two

cooling efforts decreases. This is further corroborated in the plot in fig. 8.9:

∆ĒSM,c < ∆ĒSM (8.12)

Combining both of these effects the energy impact metric of the system reduces from 15.07% at

the original level of comfort to 10.96% at the proposed level of comfort. This indicates that energy

consumption level of the system is closer to the average system than what was initially indicated

at the original level of comfort. This must because the occupant is operating their system at an

ineffective operating condition. The occupant has set his setpoint at a temperature that is lower

than what would be comfortable and that’s causing extra consumption of energy in comparison

to the average system and in general too. The % change in total cooling hours of the system is

indicated by the value of ∆Ec which is,

∆Ec =
ĒS,c − ĒS

ĒS

= −14.02% (8.13)

Therefore, adjustment of setpoint temperature is very beneficial to the occupant because it will

reduce the energy consumed by the system by 14.02% and will also cause the performance to shift

closer to the average system of the dataset.

8.5 (-+): Air-conditioning systems with a negative fault severity index that require more

energy to become comfortable (Γc
E < 0;∆Ec > 0)

All the air-conditioning systems that have a negative value of fault severity index, essentially

consume lesser energy than the average system all the while providing a completely comfortable

indoor environment. However, systems falling in (-+) case require more energy to make their
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indoor environment comfortable because systems in this case will require a reduction in indoor

temperature. The plot depicting the system performance below shows why,

Figure 8.11: Performance of an air-conditioning system belonging to the (-+) case at (a) original
level of comfort and (b) when all the periods of the system have been comfortable.

A huge concentration of orange points is observed have an indoor PMV value more than 0.5.

In order to make these periods comfortable the PMV value must be pulled back to at least the

boundary of the comfortable region. This can be done by reducing the indoor temperature. As

concluded in the previous cases the reduction in indoor temperature on average is only possible

with the increase in energy consumption of the AC. The increase in energy consumption can be

observed in the plot by comparing the mean value of cooling effort of the system in the both cases.

ĒS,c > ĒS (8.14)

In order to examine how the difference in cooling effort of the given system and the mean system

changes, the energy consumption model of the given system is plotted against the model of the

average system of the dataset in 8.12
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Figure 8.12: Energy consumption model of the given air-conditioning system against the model of
the average system of the dataset at the original level of comfort. The arrow in green shows the
direction of movement of points along their respective lines as the system is made comfortable.

As noted in chapter 7 majority of the air-conditioning systems belonging to this case have lower

intercept than the average system. Therefore, as observed in 8.12 when the values of temperature

difference increase, the points will shift to the right, thereby bringing the points on the two models

closer to each other. That means that the magnitude of difference in energy consumption levels

between two systems gets smaller. However, since the mean difference is negative originally a

decrease in its magnitude actually implies an increase in mean difference. This is corroborated by

the fig. 8.11 wherein,

|∆ĒSM,c| < |∆ĒSM | (8.15)

Therefore, an increase in the value of mean cooling effort and decrease in magnitude of mean dif-

ference causes the value of the energy impact metric to decrease in magnitude and the system gets

closer in performance to the average system. However, since the given air-conditioning system

performs better than the average system at original levels of comfort itself, the reduction in mag-
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nitude of the energy impact metric actually means the performance of the system is getting worse.

By operating the system at ineffective setpoints, the occupants were able to conserve energy and

have their system consume less energy in comparison to the average system of the dataset. How-

ever, the system when operated at comfortable setpoints still consumes less energy that what the

average system would have but not as less as what it was before correction. The number of cooling

hours of the system are ∆Ec = 44.04% more. Occupants based on their budget can choose by how

much to reduce their thermal discomfort using this value as the maximum required to achieve fully

comfortable conditions. The reader is urged to note that this particular example had an increase

in energy impact metric value upon improvement of thermal comfort, however, that is not always

the case. Systems in this case show the reverse trend too, wherein an improvement of thermal

comfort decreases the energy impact metric further, which in most cases is more desirable. Re-

gardless of how the energy impact metric changes, the systems in this case will always experience

an increase in total cooling hours of the system and therefore, will always have a "cost" associated

with comfort improvement.

8.6 (–): Air-conditioning systems with a negative fault severity index that require less en-

ergy to become comfortable (ΓE < 0;∆Ec < 0)

Finally, this is the last case defined in chapter 7. When the indoor periods of the air-conditioning

system are initially cooler than necessary but now have become comfortable by increase of tem-

perature, a reduction in total cooling hours of the system in possible. This can be observed in the

plot in fig. 8.13 An increase in temperature of the indoor 2-hour periods decreases the temperature

difference values and thereby the total cooling hours of the system. Figure 8.13 points out that the

mean cooling effort of the system decreases,

ĒS,c < ĒS (8.16)

Figure 8.14 shows that the intercept of the energy consumption model of the system shown in 8.13

way lesser than the intercept of the model of the average system. In fact the intercept is shown to
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Figure 8.13: Performance of a system belonging to the (–) case at (a) original level of comfort and
(b) when all the periods of the system have been comfortable.

Figure 8.14: Model of the given system against the model of the average system of the dataset at
the original level of comfort. The arrow in green shows the direction of movement of points along
their respective lines as the system is made comfortable.
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be very close to 0. And so, as the temperature difference values reach 0 and go negative, the system

will have 0 cooling effort. That means that the system will stop cooling completely in the 2-hour

periods when the mean indoor temperature is more than the outdoor temperature. The low internal

load of the system removes the need for cooling at negative temperature difference values. The

difference of cooling effort between the system and the average system will decrease (increase in

magnitude but sign is negative) which can be observed in fig. 8.13

|∆ĒSM,c| > |∆ĒSM | (8.17)

The reduction in both the numerator and denominator happens to be such that the value of energy

impact metric also decreases as the system is made comfortable. So, the air-conditioning system’s

energy consumption level decreases than what it was in comparison to that of the average system.

This is a very desirable scenario and is a clear case of occupant operating their system at bad

operating setpoints. An adjustment will benefit the occupant in terms of actual energy saved,

relative energy saved and increased comfort level. The total cooling hours of the air-conditioining

system reduce by 18.27% as the average discomfort level of the indoor environment will drop from

41% to 0.19% in comparison to the average discomfort the occupant would have experienced if

they were outside in the absence of the HVAC system. As in the (-+) case the systems can also

undergo an increase in energy impact metric and not just a decrease, but the final value of the

energy impact metric will still be negative indicating that the system consumes lesser energy than

the average system of the dataset to provide the same comfortable environment. Additionally, the

improvement in comfort will come at the benefit of savings in energy.

In summary, this chapter studied an air-conditioning system belonging in each case to examine

its behavior with respect to its metrics. Corroboration for the values of four metrics as well as

an improved understanding of the behavior of systems in each case was found. Breaking down

the performance of the air-conditioning system in terms of values of its metrics and examining its
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behavior through the lens of these metrics provides a new insight into understanding characteristics

of systems.
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9. SUMMARY AND CONCLUSIONS

The adoption of smart thermostats in residential buildings and the increased aggregation of

data from homes has provided an opportunity to conduct large scale data analytics for identifying

air-conditioning systems with interesting behavior. The lack of huge diversity in data acquired

from smart thermostats coupled with the large number of homes available for analysis has forced

researchers to construct innovative ways to understand and characterize the behavior of various

systems. In particular manufacturers and occupants are interested in understanding the severity of

impact of a fault in the air-conditioning system. Based on the severity the manufacturer can then

rank systems to prioritize them for repair and the occupant can be notified the costs associated with

improvement of the system’s performance. The impact of a fault in the air-conditioning system can

affect its energy consumption and the thermal comfort of the occupants.

Studies in literature have attempted to build impact metrics for air-conditioning systems using

smart thermostat data but a common theme among the methods that have previously been used

to study the data is to compare the performance of a given air-conditioning system with a fixed

baseline subjective to that system. The huge amount of data available presents an opportunity to

compare the performance of a given air-conditioning system with respect to other systems oper-

ating in similarly sized houses in the same climate region. To this end the current thesis attempts

to provide metrics for each air-conditioning system in a dataset of systems in the same climate re-

gion that are a description of its performance with respect to other systems as well as a description

of the system’s inertia to change. The thesis first explores the construction of an energy impact

metric and a thermal comfort impact metric. The two impact metrics are then combined to form

an aggregate fault severity index which can be used to characterize the behavior of various sys-

tems. However, before describing each of the methods, first, chapter 2 provides an overview of the

research conducted by two former graduate students to give the reader a context into which this

research will fit. Chapter 3 then discusses existing studies in literature and the gaps therein and

proposes ideas to fill them which will be done so in the following chapters.
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Chapter 4 explores the construction of an energy impact metric. An objective way to compare

two air-conditioning systems relative energy consumption is by comparing the extra energy con-

sumed by the system in comparison to what would have been consumed by systems in the dataset

on average to produce the same indoor environment. This entails the construction of a baseline

performance for reference which is the performance of the average air-conditioning system of

the dataset. Energy consumed by an air-conditioning system can be estimated using simulation

tools such as Energy Plus, but owing to their high computational expense and their requirement

of unavailable metadata regarding a house they aren’t viable for the current study. Therefore, this

chapter proposes linear regression based method to model the energy consumption of a given sys-

tem as well as the average system of the dataset. The models developed were then used to quantify

the relative energy consumption level of each air-conditioning system.

Similarly, chapter 5 explores the construction of a thermal comfort impact metric by examining

the average discomfort level of the house. In order to do so, first a method to calculate the discom-

fort level at any instant in time using the Predicted Mean Vote (PMV) value of the environment is

given. A baseline environment once again was chosen for reference which was the thermal dis-

comfort the occupant would have experienced if they were living outside without the presence of

the HVAC system. By comparing the mean discomfort level in the house to the mean discomfort

level at the baseline environment a thermal comfort impact metric of the house was estimated.

Subsequently, chapter 6 attempts to put both of the metrics together. This is done by firstly

considering a hypothetical state of the air-conditioning system when the house is completely com-

fortable at all points in time. The change in indoor temperature required to reach this hypothetical

state is first estimated. The value of the energy impact metric at this operating state of the system

can be used to compare systems against each other objectively as all systems that have reached

this state produce no thermal discomfort. Hence, the value of the energy impact metric when the

house is completely comfortable is defined as the fault severity index of the air-conditioning sys-

tem. Reducing the thermal discomfort to zero also provides an opportunity to calculate the change
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in cooling hours required to improve the comfort level of the house and hence forms the fourth and

last metric that can describe the system completely.

In order to understand the relationships between the 4 metrics and what they indicate about

the characteristics and behavior of system chapter 7 builds 6 categories into which all the air-

conditioning systems of the dataset are divided into. The definition of each case was explored

mathematically as well as empirically and interesting conclusions about the systems were drawn.

Subsequently, chapter 8 is provided to quantitatively examine the air-conditioning systems in each

case. An example from each case is chosen and its performance and characteristics with respect

to its metrics was observed and discussed. This chapter provides the reader with a direction on

how the metrics built in this study can be used to understand air-conditioning systems in residential

buildings. Notably, the chapters attempt to provide a method to use the metrics to segregate systems

that operate under ineffective operating conditions with systems that possess mechanical faults.

While this study presents an approach to reduce the behavior of air-conditioning systems to

metrics that can be easily identified and understood, the author recognizes that several updates

can be made to make this calculation more accurate. The above analysis only considers those

periods where the system is trying to maintain a given setpoint and hence is in pseudo steady state.

Data from transient periods of system operation should also be added to the calculation of the

energy impact. Comparing the performance of the system when the cooling is turned off to the

performance of the system when the system is actively cooling the house to a new setpoint will

present interesting conclusions regarding the air-conditioning system and the house. When cooling

is switched off the variation in indoor temperature is governed only by the characteristics of the

house which can observed based on its rate of decay. Upon comparing the model so developed to

the model developed when the system is actively cooling where the variation in indoor temperature

depends both on the characteristics of the house and the system, faulty systems can be segregated

from systems operating in poor houses. This when put together with the observations from steady-

state data will help improve the diagnosis of faults in air-conditioning system.
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Furthermore, the construction of the energy impact metric requires the construction of a model

for the average system of the dataset as well as each given system. An approach on how to build

the model was presented here but several avenues can still be explored that can lead to better re-

sults. Especially, the effectiveness of black box models should be examined and a trade-off study

between using grey-box models as done here versus using black box models will also be useful. In

order to improve the estimation of thermal comfort impact, future work should focus on integrat-

ing data from occupancy sensors as well as better estimations of clothing, activity level and radiant

temperature that could lead to the calculation of a more accurate value the thermal comfort impact

metric. Data acquisition will be challenging but with the cooperation of the occupant it can still

be done a good example for which is through a mobile phone application. Furthermore, this study

utilizes the heat-based thermal comfort model to predict comfort levels in indoor environments.

However, with the advancement and growing popularity of personal comfort models, the estima-

tion of comfort level can become more accurate and more occupant-specific. Although several

methods can be chosen to improve the accuracy of calculation of both metrics, the basic concept

and construction of metric will not change with refinement of data used to calculate it. The author

believes that the analysis approach used in the study will still be relevant and can still be used an

approach to understand the behavior of residential HVAC systems.

Large scale analytic methods for HVAC systems therefore can be used in innovative ways a few

of which have been presented in this work. Since, the behavior of HVAC systems in residential

buildings especially is very dynamic in nature and often dependent on a myriad of interdependent

factors, smart thermostat data offers endless opportunities to build new perspectives to observe the

relationship between the occupant and his system.
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