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ABSTRACT

The residual Monte Carlo (RMC) method is also known in the literature as sequential Monte Carlo
and reduced-source Monte Carlo. Given a Monte Carlo method for solving a linear equation and an
approximate solution to that system, the residual method enables use of essentially the same Monte
Carlo algorithm to directly compute the additive error or “defect” associated with the approximate
solution. As the size of the defect decreases relative to the size of the solution, the residual Monte
Carlo method becomes increasingly efficient relative to the standard Monte Carlo (SMC) method.
Here we present a new RMC algorithm for evaluating the space-angle error in Discrete Ordinates
radiation transport solutions, and provide computational examples demonstrating that it can be far

more efficient than SMC for this purpose.
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1. INTRODUCTION

The Residual Monte Carlo (RMC) method enables one to directly compute the error associated
with an approximate deterministic solution, measured with respect to an "exact" (zero statistical
error) standard Monte Carlo solution. The only alternative to residual Monte Carlo is a calculation
of the error by first computing the standard Monte Carlo solution and then subtracting the approx-
imate deterministic solution from it. We later show that as the size of the error in an approximate
deterministic solution becomes smaller relative to the size of the solution itself, the RMC method
becomes increasingly more efficient than the SMC method. The purpose of our dissertation re-
search is to develop and test an RMC algorithm with several new characteristics and compare its

efficiency with the SMC method for a series of test problems.

In this introductory text we define the Linear Boltzmann transport equation as well as several
associated aspects relevant to this dissertation, including, but not limited to, the scalar flux. We
then discuss popular methods for obtaining approximate solutions to this equation and how the
defect of these solutions constitute our focal point. This is then followed by a literature review of

work on this topic.

1.1 The Linear Boltzmann Equation (LBE)

The linear Boltzmann transport equation [1], henceforth denoted as LBE, is used as a mathematical
model for describing many real-world physical phenomena such as neutral particle transport (e.g.,
neutrons, photons,) charged-particle transport (e.g., relativistic electrons,) and thermal radiation

transport, among others. In continuum-form the steady state linear Boltzmann transport equation



[1] is denoted as

Q- Vi(x,Q,E) + o(x, E)Y(x,Q, E)

- / / 04(x, Q-Q, E'—E)(x, Y, B )V dE' (1.1a)
E' J4w
+ q(x,Q, F) x €D, F €D, eD,,

Q- p,P(x, 2, E) = Q- npp (%, Q,E),  x€dD, Qe{Q : Q-nyp, <0} (1.1b)

where the angular flux is denoted by ¢ (particles/cm?—s—steradian), the spatial coordinate
is denoted by x (cm) in the spatial domain, D;, the direction of particle flow is denoted by the di-
mensionless unit-vector, {2, in the angular domain, D, (i.e. on the unit sphere, 47), and the particle
energy is denoted with £ (eV’) in energy domain, D,. Particles interact with a total macroscopic
interaction cross section, oy (cm ™), and transfer from E'—F and from Q'—€ via the macro-
scopic scattering/production cross section, o, (cm~'—steradians). Finally an inhomogeneous
source ¢ (particles/cm?3—s—steradian) may also be present.

On the boundary, 9D;, the condition relevant to this research is that ¢ is equal a known incident
angular flux, {™¢, relative to the outward pointing boundary normal, nyp., .

The independent variables in Eq. (1.1) are: space, x = [, y, 2|, angle, €2 = [sin 6, cos ¢, cos 0],
and energy, . The direction vector, €2, is defined in terms of the polar angle, 6, and the azimuthal
angle, ¢, (both following the convention as in [2]) and therefore constitutes only two variables,

resulting in a total of six independent variables. All six these variables are in continuum form.

1.1.1 The scalar flux

Any method that solves either the continuum- or multigroup form of the LBE is limited in the
ability to produce the actual continuum-form of the true solution, ¥ (x, €2, E'). For instance, at a
given geometrical point in space and a specific energy value, the angular distribution of ¢ can be

very complex and would require a potential prohibitively large amount of data points to resolve



with sufficient fidelity. Additionally, analytical solutions of Eq. (1.1) only exist for comparatively
simple problems mainly because the equation presents much complexity and a large amount of
independent variables. Consequently, for realistic or practical problems, the continuum solution
requires discretization of the independent variables so that an approximate solution can be found.
In the scope of this text we will restrict our focus to problems that seek ¢/ integrated over the

entire angle space, which is often referred to as the scalar flux,

o(x, E) = /4 b(x, Q, E)dSQ. (1.2)

The main reason the scalar flux is often the only solution sought is that it can be used to determine

a reaction rate across the entire domain via any reaction cross section, o, i.e.,

Reaction-rate(x, E) = o(x, F) | ©(x,Q, E)dQ
4 (1.3)

= U(X’ E)gb(X, E),

which in turn can provide a host of other spatially varying quantities (i.e., fission rate, collision
heating rate, material activation, etc.).

The scalar flux can, however, not be obtained for the continuum space- and energy domain, and
is commonly obtained as an integral over some spatial- and/or energy sub-domain, or in terms of
the finite number of coefficients in a finite element representation, or any combination of the prior

two.

1.1.2 The multigroup approximation

The most common approach, as part of the process to enable approximate solutions to be obtained,
is to first apply the multigroup approximation. The approximation requires the definition of numer-
ous non-overlapping energy sub-domains where each energy sub-domain, D, 4, is called an energy

group, normally denoted with group index g, and does not necessarily have to be contiguous. With



these sub-domains defined one can then define a group scalar flux,

¢9(X) = (b(X? E>dE De,g - De' (14)

De,g

Next we seek to have a group cross section (for any type of reaction), 0,4, such that we preserve

the continuous-energy reaction rate, i.e.,

04(X)dy(x) = / o(x, E)o(x, E)dE (1.5)

De,g
or in more common notation

- fDe’g o(x, E)p(x, E)dE

04(x) = I 90 B)IE (1.6)

In this definition ¢(x, F) acts as a weighting function. The major dilemma, however, is that we are
developing multigroup cross sections with the concise mission of determining an approximation
of the unknown ¢(x, E). One solution to this dilemma is to replace the flux with a representative

weighting spectrum, w(E), such that

fDe,g o(x, B)w(E)dE

fDe,g w(E)dE (1.7)

04(x) =

where w has the properties:

w(E) >0
/ w(E)dE = 1.

It is important to note that it is vital to choose the weighting function as close to the spectrum’,
that will be observed in ¢, as possible. This is not always an easy task since it will be position
dependent, and a material may experience a variety of flux spectra. Multiple methods exist to

obtain representative cross sections or to modify cross sections in special regions, however, that is

"We refer to the spectrum here as the character of the particle density per unit energy as a function of energy.



beyond the scope of this text. In this text we will simply state that a multigroup form of the LBE

can be derived, using the strategy above, and takes the form

Q- Vihy(x, Q) + 044(x)1y(x, Q)
No—1

= > { / Tagrsg (X, U - )1y (x, V) dSY (1.8a)
4

9'=0

+ ¢,(x,9), x €D g€0,Ne—1],Q € D,,

Q- nyp, (%, Q) = Qe npp Y(x,2), x€ID, Qe{Q: Q-nyp, <0}  (1.8b)

where Ng is the number of groups. This equation still maintains the continuum form for the

spatial- and angular independent variables but is now discrete in energy.

1.1.3 The residual, r, the defect, ), and the residual transport equation

The form of Eq. (1.8) is a statement of conservation and thus, given the exact solution, 4, the
statement will hold true, and the left-hand side of Eq. (1.8a) will equal the right-hand side exactly.
In reality it is impossible to obtain 1), in continuum-form, however, several methods exist to obtain
an approximate solution, zzg.

With a continuous approximate solution in-hand, the statement of conservation will in general

2, an aspect leading us to the definition of the

not hold at all points in the phase-space domain
residual, r,, which is simply the imbalance of the right- and left-hand sides of Eq. (1.8) when 1;9
is used instead of ¢,. It takes the form,

Ng-1

re(x,Q) = Z [/4 Tagrsg (%, Q- Q)ihy (x, XV | + ¢,(x, Q)

g'=0

(1.92)
— Q- Vi, (x, Q) — 01y (x)1hy(x, ), x € D,

2Space and angle



re(x,92) = Q- nyp, <¢;”C(x, Q) — ﬁg(x, Q)), x € 0D, Q2 E{Q : Q-ngp, < 0}
(1.9b)
This residual can be positive or negative, is in continuum and continuous form, and is a useful
quantity on the hand of another important definition namely the group angular flux-defect, ¢ p,,

defined as

PYpg(x, Q) = 1y (x, Q) — 1y (x, Q). (1.10)

Using this definition we can substitute 1;9 = 1)y — ¥py into Eq. (1.9) to firstly recover all the
terms in Eq. (1.8), all of which subsequently cancel to zero because of conservation, and secondly

produces terms that can be arranged into the form of a transport equation as

- Vihpy(x, Q) + 044(x)0py(x, )
Ng—1

= > l / agrsg (X, V- Q) by (x, Q) dQ (1.11a)
g'=0 47

+ 74(x,€2), x € Dy,

Q - npp,Up,y(x, Q) = 1,(x,Q), x € 0D, 2 €{Q : Q-nyp, <0} (1.11b)

This equation is simply another multigroup linear Boltzmann transport equation with the resid-
ual, 74, acting analogously to the inhomogeneous source, ¢,, and a boundary incident angular
flux, and with 1), as the unknown instead of ¢),. Since r, can produce positive or negative virtual
particles, the solution, ¥ p,, can also take on positive and negative values. For all discussions past

this point this transport equation will be referred to as the residual transport equation.

1.2 Overview of popular methods to solve the Linear Boltzmann transport equation

In this section we discuss the two most practical methods of solving the LBE, namely the Monte

Carlo method and the Discrete Ordinates method.



1.2.1 The Monte Carlo method

Perhaps the oldest and simplest method for solving Eq. (1.1) is the Monte Carlo method dating
back to 1947 [3]. The method is based on the fundamental definition of the interaction cross sec-
tion, o, which is conceptually a probabilistic property of a material [1, 2], and can therefore be used
to determine the average behavior of transported particles, provided that a sufficient amount, N,
of source particles are stochastically simulated. Methods based on probabilities, such as the Monte
Carlo method, are called probabilistic methods and although we will provide succinct detail on the
Monte Carlo method in later chapters, we will note here that production codes such as MCNP [4]
and GEANT-4 [5] are good examples of how the method can be used in modern applications with
exceptional accuracy and fidelity.

The Monte Carlo method has the primary benefit of being able to transport particles in contin-
uum form, i.e., without spatial-, angular- or energy-discretization, and consequently can provide
accurate insight into the true solution. The solution itself, however, can only be determined in
representable form. The most common representable-form obtained from production Monte Carlo
codes are based on integration over the independent variables, i.e., integration over a specific vol-
ume, angle-space, and energy-interval. This form is manifested in the concept of a tally [4, 5],
which can be modified (as will be shown later) with regards to the spatial variable to provide a
discontinuous finite element representation in space and/or harmonic expansions in angle.

Despite the accuracy of the Monte Carlo method its main drawback is the stochastic nature of
the solution, which is subject to statistical uncertainty. This uncertainty manifests as an error which
can be shown, via the central limit theorem, to be a normal distribution around the true value of the
solution (at any given point in phase-space). The standard deviation, .S, of this error can also be
shown to reduce with a factor of N, Y2 This fact is problematic because therein lies the inherent
cost of the Monte Carlo method, i.e., in order to decrease S by a factor of 2 the number of particles
simulated needs to increase by a factor of 4, a difficulty that is exasperated by particles that weakly

contribute to tallies (i.e. tallies behind shielding materials, tallies of small volume, etc.).



1.2.2 The Discrete Ordinates method

The multigroup form of the LBE, i.e., Eq. (1.8), can also be solved by applying a suitable spatial-
and angular-discretization. The Discrete Ordinates [1] method applies an angular quadrature to in-
tegrate the angular scattering source-term in the LBE, consequently the name "Discrete Ordinate"
stems from the discrete angles used in the quadrature, after which the method requires the solution
of the LBE for only this set of discrete angles. Therefore, with Np number of angles in the quadra-
ture, Eq. (1.8) is split into /Vp equations that are coupled via the scattering source. These equations
in turn require a suitable spatial discretization to provide a set of equations that forms a linear sys-
tem to be solved deterministically, resulting in an approximate solution. In general, methods based
on a discrete equation form (as opposed to a continuum form) are called deterministic methods.

The benefit of having a fully discrete system is that iterative schemes can be devised that lever-
age several powerful and efficient linear algebra techniques (commonly known as a sweep), how-
ever, the large dimensionality of this system often requires copious amounts of computer memory.
Refinement in the inherent discretizations infringe on these memory constraints and is unfortu-
nately necessary to minimize the truncation error associated with each of the discretizations. The
challenging aspect of such refinements is to assess when a particular refinement is sufficient.

The required refinement in spatial discretization is often the easiest to identify since one can
assess the effect of refinement in areas where the solution is rapidly varying. Many techniques can
be applied to provide concise information on where spatial refinement is required, however, such
techniques often assess the effect by using multiple simulations at different levels of refinement. In
this aspect we identify the first component of desirable information regarding discretization error,
which is to know what the approximate error is of a given spatial discretization without requiring
refinement.

Of particular concern regarding the angular discretization used in the Discrete Ordinates method
is the presence of "ray effects” [1] which are especially prevalent if the scattering ratio, ¢ = o/0y,
of the material is low and the source is localized. These ray effects normally manifest as nonphys-

ical oscillatory errors in the scalar flux solution where the magnitude of the oscillations increases



with radial distance from the source and the frequency is dependent on the angular quadrature.
The simplest remedy for these angular errors is to increase the order of the angular quadrature
(i.e., increasing Np), however, similar to the spatial discretization, it is often difficult to ascertain
what level of angular refinement is actually sufficient, especially considering that it can vary with

position and direction.

1.2.2.1 The Method of Characteristics (MOC) variant

A variation of the Discrete Ordinate method can be obtained by using rays at specific spatial in-
tervals, along the ordinate directions of the angular quadrature, to integrate the angular flux within
a given cell. These rays are an alternative to the concept of the sweep in the Discrete Ordinates
method and is essentially a different way of handling the left-hand side of Eq. (1.8). The equation
is solved along a characteristic ray (via a simple transformation of the gradient term), hence the
name "Method of Characteristics". The iterative scheme with respect to the scattering source, how-
ever, is often the same as the Discrete Ordinates method. Additionally, the method is also troubled
with the same ray effects as encountered in the Discrete Ordinates method.

The MOC is a very popular and efficient method for 2D nuclear reactor simulations, how-
ever, its adoption in practical 3D problems is scarce, mostly because of the increased ray-tracing
cost. The resulting representation of the scalar flux, in terms of the spatial discretization, can be

considered to be equivalent to the Discrete Ordinates method.

1.2.2.2  The Diffusion Approximation

The diffusion approximation arises from the assumption that the angular flux is at most linearly

dependent on angle. Using the current J, defined as

J(X,Q,E):/ Qp(x,Q, E) d, (1.12)
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the linear in angle assumption can then be used to derive a relationship between the group current,

J4 and the scalar flux, ¢,, which takes the form of Fick’s law

Jg(x,82) = =Dy (x)Vgy(x) (1.13)

where D, is the group diffusion equation. With this relationship the multigroup diffusion equation

can be derived as

_V.(Dg(x)ngSg(X)) + g (X)Bg(x) = Y [oso,gqg(X)cbg(X)] +4y(x), (1.14)

where 0, is the group removal cross section and o4 4,4 1 isotropic scattering cross section from
group ¢’ to group g.

The primary advantage of the diffusion approximation is that it eliminates the need for a sweep
algorithm because the angular dependence has been removed. Additionally, since the equation is
a diffusion-reaction equation the resulting system of equations, after discretization in space, forms
a matrix that is symmetric positive definite (SPD). Such systems are very well studied and can be
solved numerically with the preconditioned conjugate gradient algorithm which is known to be
the most efficient algorithm for such systems.

The approximate solution produced by solving the multigroup diffusion equation still requires a
quantification of discretization errors just like other deterministic methods. In this case, the spatial
discretization error and the error introduced by the linear in angle assumption are the aspects of

the approximate solution that needs to be quantified.

1.3 The focal point of this research

Given a Monte Carlo method for solving the residual transport equation and an approximate so-
lution to an associated system of equations, produced by methods discussed in section 1.2.2, the

residual Monte Carlo (RMC) method enables the use of essentially the same Monte Carlo algo-
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rithms for solving the continuum form of the transport equation, i.e., the standard Monte Carlo
(SMC) method, with the only difference being that we can now directly compute the additive error
or "defect" associated with the approximate solution.

The motivation to do so is that this defect is measured relative to the solution obtained from
standard Monte Carlo (SMC) in the limit of an infinite number of Monte Carlo histories (zero
statistical error). When the approximate solution is simply zero, the defect is the solution itself,
and RMC is identical to SMC. A defect in a quantity of interest (QOI) is obtained from a SMC
calculation by first computing the quantity of interest (QOI) and then subtracting the approximate
QOI from the SMC QOIL. If one is to compute the defect in a QOI with a statistical deviation of p-
percent, the defect need only be computed in a RMC calculation with this same percent deviation,
but the QOI must be computed in a SMC calculation with a percent deviation equal to p times
the defect divided by the QOI. Thus, as the size of the defect relative to the QOI itself approaches
zero, the percent deviation required for the SMC calculation approaches zero. This is the basis for
expecting that residual Monte Carlo can be signifcantly more efficient than standard Monte Carlo.
This property of the RMC method is the focal point of this research.

The major difficulty to overcome is the definition of a continuum residual which is required
to ensure that the RMC defect solution is the defect of the approximate discrete solution relative
to the continuum solution. This is a particularly hard problem on the hand of Eq. (1.9), which

requires the continuum angular flux.

1.4 Literature review

In the previous sections we referred to the flux-error as the flux-defect to avoid confusion with
statistical error. For the purpose of being consistent with the cited literature, we will refer to the
flux-error as simply the error unless explicitly stating the statistical error.

The topic of RMC, as it relates to this research, can easily be confused with the classical ap-
plication of RMC to achieve exponential convergence. We want to be clear that the topic of this

research is not to achieve exponential convergence but to apply the RMC method to the continuum
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transport equation such that we can determine the error between the solution of the discretized
transport equation and the solution to the continuum transport equation, thereby quantifying dis-
cretization errors.

As background information, we now briefly summarize how RMC is used to obtain exponential
convergence. For a fully discrete system, for which one can define a discrete residual, one can
perform multiple sequential RMC simulations that successively compute the error in the discrete
approximate solution. At each step the error is added to the approximate solution to obtain an
updated residual for the next step. Each RMC simulation is tasked with determining the statistical
uncertainty of the error as a fixed-fraction of the estimated error, thereby leading to exponential
convergence. Since a reduction in the Lo-norm of the error occurs at each step the corresponding
norm of the residual source also reduces at each step, hence leading to the RMC method also being
called the Reduced Source Method|6].

The first reference we found for the concept of residual Monte Carlo on discrete systems date
back to that of Halton in 1962 [7] and later in 1994 [8], which termed the process Sequential Monte
Carlo. The application of this technique to transport-like equations is later seen in work by Evans
et al. [9] which operated on the fully discretized thermal radiative diffusion equation.

Application of the method to continuum systems, also achieving exponential convergence, has
been demonstrated on simple 1D problems in the 1990s to the early 2000s [6, 10, 11, 12, 13],
however, significant difficulties were encountered with multidimensional problems.

The work by Peterson et al. [14] succinctly summarized the difficulties of achieving expo-
nential convergence for multidimensional continuum transport systems. The major difficulty to
overcome is that the Monte Carlo method can indeed solve the transport equation in continuum
form but it cannot provide a continuum representation of the solution. Hence, the RMC solution of
the error has to be projected onto a finite-dimensional solution space which itself incurs error, caus-
ing the sequential process to stall in terms of error convergence. The work by Peterson et al.[14]
involved only one dimension in space and one dimension in angle which allowed them to define

a two dimensional discretized phase-space with independent variables x for space and p for an-
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gle. Then, after detecting a convergence stall they applied mesh refinement on the 2D phase-space
based on the size of discontinuities. This A-refinement technique then allowed the exponential
convergence to continue down to machine precision, however, such a refinement technique for 2D
and 3D spatial dimensions is exceedingly complex.

An additional concern with the RMC source definition in most of the literature (like [14]) is that
the residual source definition uses the angular flux along the angular quadrature directions. This
is problematic because multidimensional DO problems can easily require the storage of thousands
of angles, requiring prohibitive amounts of memory.

We were unable to find references in literature that was purely concerned with finding the error
between discrete solutions and continuum solutions for multidimensional multi-material problems.
The literature we found on multidimensional problems (i.e., [13]) also did not define a continuum
residual which is difficult to do mostly because the angular flux solution is only available as either
the values at angular quadrature directions or as harmonic expansion coefficients. The latter cre-
ates a disconnect between the angular fluxes used to obtain the coefficients and those that can be
represented by the expansion.

We believe we have found a means to define a continuum residual which can be used to de-
termine the error in the scalar flux such that there is no disconnect between the scalar flux of the

approximate solution and the error of that scalar flux.

1.5 Overview of chapters

The remaining chapters of this text are as follows. Chapter 2 details the standard Monte Carlo
method. We begin this chapter by detailing the process of source sampling including the process
required to initialize source sampling, which allows for greater efficiency. The different types
of sources we describe are limited to point-, boundary- and cell-sources. We then describe the
stochastic transport process where particles are transported between interactions and/or surfaces.
Finally, the remainder of the chapter discusses the process of developing solutions from the trans-

port process and other essential utilities.
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Since the focal point of this research involves determining the defect of popular deterministic
methods we detail the deterministic method used in this research in Chapter 3, which is the Discrete
Ordinates method.

We then continue to Chapter 4 which details the processes involved in defining and sampling
the residual source. We introduce our fundamental assumption of using only the scalar flux from
a DO solution as the approximate solution, which allows us to define a residual that is continuous
in angle. We then explore different spatial representations and the relevant modifications to the
residual definitions. This is followed by the finer intricacies and initializations required for the
source sampling to function.

With our computational methods defined we detail several simulations in Chapter 5. The sim-
ulations range from homogeneous 1D problems to multidimensional multi-material problems with
geometries that are particularly challenging to any DO method.

We finish with a conclusion in Chapter 6 where we discuss the overall outcomes of the research

and identify further work.

14



2. INTRODUCTION TO THE MONTE CARLO METHOD

We now introduce the Monte Carlo method for particle transport. We start with the sampling of
the source which is discussed in detail. This will be followed by the particle transport process,
from its birth at a source to its eventual "death" where it is either absorbed or leaves the simulation
domain. We will assume (for discussion purposes) that, in the tracking process, that particles can
only experience two interactions namely, absorption via an absorption cross section, o,, or scatter
via a scattering cross section, o,. This is followed by a description of how the tracks, created by the
particle’s transport, are used to contribute to volumetric tallies. Finally, we add additional detail
on how some common conditions are fulfilled, i.e., multigroup transport, tally uncertainties, and

modification to tallies.

Throughout the discussions that follow we will repeatedly state that a discrete cumulative distribu-
tion function (CDF) is sampled. We note here the following meaning. Given discrete CDF, ¢, with
N discrete entries. Each entry is denoted as ¢;, with index i € {0, ..., N—1}, and needs to comply
with the requirements ¢; € [0,1] and ¢;.; > ¢; (monotonically increasing). If a pseudo-random

number, 0 € [0, 1) is generated then

1<i< N—-landc¢;_; < QR < ¢, Or
entry ¢ is the sampled-entry if (2.1)

i:OandO§93<cZ-.

2.1 Source sampling

The first step of starting the stochastic simulation of particles is the sampling of one or more
sources. In this research we will limit the standard Monte Carlo method to using one of three types

of sources: 1) isotropic point-sources, ii) isotropic boundary-sources, and iii) isotropic cell-sources.
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The latter two have a strong connection with the geometry of cells used in the spatial discretization
with the cell-source following the convention of being constant within a cell.

The ultimate goal of source sampling is to determine a source particle’s position, x;, direction,
(2;, and either its energy, F, if continuous energy cross-sections are used, or its energy-group, g,
if multigroup cross sections are used. In other words, we need (x;, €2;, E) or (x;, €2;, g) depending
on whether we use continuous- or multigroup cross-sections, respectively.

Figure 2.1 below, graphically represents all the stochastic sampling procedures required for

each source type relevant to our standard Monte Carlo method.

2.1.1 Sampling a particular source

A problem can comprise several sources of different type, with each source-type requiring special-
ized sampling procedures. The sampling process starts with the sampling of discrete source-index
CDF, c,, with a total number of /N entries (i.e., the number of sources) where each entry, with

indexi € {0,..., Ny—1},is

. ;}Qx (2.2)
” C2150t‘al ’
where (), is the strength of source x, given by

G-1
Qe =Y Qug (2.3)

g=0

(
Spoint, g1 for a point-source,

Qug = 1 Sbndry,e,g dS, for a boundary-source, 2.4)

Sop

/ Seell,z,g AV, for a cell-source,
\ / Vp

Ng—1
Qtotal - Z Qaﬁ (25)
=0
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Spoint,z,g» 1S @ point-source strength with units [3*1], Sbndry,z,g 15 @ boundary-source strength with
units [em ™25, and See . 4 18 @ cell-source strength with units [em™3s™!], all for a source energy-
group g.

With a source index z established, we next sample a group index g, from a discrete source-
specific energy-group-index CDF, ¢, ., with a total number of GG entries where each entry, with
index g, is

Zgi Qx,g’
_9'=0
Csz,eg = T

The multigroup format of the source-strength, for a specific source (Spoint.z.g» Sbndryz,g OF

(2.6)

Seell,z,g)> 18 @ commonly used format for specifying energy dependent sources, but it can also be
generalized to sources that emit particles with discrete energies, i.e., sources that mimic radioactive-
decay, where the energies are discrete rather than continuous within a group. For this research we
will only focus on the multigroup format, and although there is no requirement that the structure
of the energy sub-domains (i.e., groups) of a source be the same as those used in any tallies, cross
sections, or other sources in the problem, we will use the same multigroup structure throughout

this text for improved comprehension of the core ideas.

2.1.2 Sampling the group and/or energy

In production codes (such as MCNP[4]) the group strength can be supplied in two ways: 1) a
histogram of group-integrated probability densities (top of Figure 2.2), or ii) the group boundary-
points on the energy-dependent PDF (bottom of Figure 2.2). If a histogram is supplied, once the
relevant histogram bin is sampled (from a CDF built from S;-Values‘), the energy is uniformly
sampled within the energy-group’s sub-domain D, , which, for contiguous D, , would simply be
between the group-boundaries. If the boundary-points are supplied (for contiguous D, ), i.e.,

S(E,) and S(E,_1), an interpolated PDF can be created (red-dash curve in Figure 2.2). This

'S} is the source strength, S(E), integrated over D, , and normalized with [, S(E)dE
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PDF can then be integrated piecewise, producing S;—Valuesz, to construct a group CDF which is
sampled, to identify the group. Within a group the analytic interpolated-PDF (which is linear) is
then integrated to provide an invertable CDF, sampled to provide the energy within the interval.

In this research, we used only the histogram-type of specification.

—ny

Samplez € {1,...,N}—>» €Cs1,---,CsN,
Y Y
Point-Source Boundary-Source Cell-source
\ 4 ) 4
Sample ole c P Sample
9€{0,...,G — 1} [>|Comes Py— K s2e9 € g c {0,...,G — 1}
) ge oG-y o]
Sample E € D,
4 — B
(if required) B le—oI Samfle E.EdDeag
¢ Sample E € D, 4 > E U EEMEES)
Position same as > x; (if required) l
source
l Cszege (€ Sample elemente € D
Sample pp € |—1,1 l 'L
kel ) Sample facet f € 0D > Cszeq,f xo
Q; % Sample 1 € [0,1) PR
Sample € [0, 27) :\ x;=pxo+(1—p)x o
1D X » X=X - Rejection sample x
L > x {w,mel0,1) : p+n<1}
I *i x=(2 — p — n)xo <
X0 Sample p € [0,1) S x x
2D x;=(1 — p)xq + pxy +ux) + nx2 1 2
X1
X0 Rejection sample X3
Rejection sample (e,m€e[0,1) : pinté <1}
8D A_-) {mel0,1) : utn<1} | | T x=(1-u-n—-9x [€ 32
x1 x5 x=(2— p—n)xg +pxy + X2 +£Xg *o
pxy X 4
v Sample 1 € [—1,1)
Sample p? € [0,1) — \ 4 0, <
ransform to
}_> Q2 b > {2 Sample ¢ € [0, 27)

Sample ¢ < [0, 27)

Figure 2.1: The source sampling process.

ZS; is the interpolated PDF integrated over D, and normalized with [, S(E)dE
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Figure 2.2: Different input-representations of the energy-dependency of sources, assuming con-
tiguous group sub-domains. [Top] A histogram representation. S is the source strength of group
¢ normalized with fDe S(E)dE. [Bottom] An interpolated PDF with points, S(E,), from the true
PDF (the blue curve) supplied at group boundaries. Sj is the source strength over fDe,g S(E)dE

normalized with [, S(E)dE.

2.1.3 Sampling the position

For a point-source there is no sampling required since the source-particle’s position will be the
source location, X;.

For boundary-sources the process requires the sources’ geometry to be decomposed into ele-
mentary facets. For a linear 2D element the fundamental facet will be a line and for a linear 3D
element each face can be decomposed into elementary triangles. The lengths and areas, respec-
tively, of these facets can be used to construct a discrete CDF from which a specific facet can

be sampled. Once a facet is identified a position with the facet can be sampled as indicated in
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Figure 2.1.

For cell-sources a similar process is followed. The cells are decomposed into elementary sub-
elements. For linear 1D elements the sub-element is a line, for linear 2D elements the sub-elements
are triangles (formed with the cell-centroid), and for linear 3D elements the sub-elements are
tetrahedrons (formed with the face and cell-centroids). The volumes are then used to construct
a discrete CDF from which a specific sub-element is sampled followed by the sampling of the

position as indicated in Figure 2.1.

2.1.4 Sampling the direction

For this research we only considered isotropic sources.
The isotropic point-source and cell-source share the same direction sampling technique. First

the polar cosine ;1 = cos @ is sampled uniformly in [—1, 1) using a pseudo-random number 0y as

pw=20p— 1. (2.7

This is followed by the use of another pseudo-random number which is used to sample the az-

imuthal angle, ¢, uniformly in [0, 27) as

o = 270, 2.8)

after which the direction vector is assigned as

1 — p?cosp
Q= | /1 —p2sing| - (2.9)

i

For a boundary-source there are only two differences, the first being the sampling of the polar
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cosine which is performed as a cosine-law sampling [18],

i = 210

and the second difference is the fact that the direction vector needs to be rotated, from a reference
coordinate system, to a coordinate system aligned with the negative of the boundary normal, —n,
at the sampled position (inwardly pointing). In later discussions we will discuss how such rotations

are applied.

2.1.5 Conclusion of source sampling

With a source particle’s position, direction, and energy- or group sampled, the source particle is
subject to transport which follows, however, it is important to note that, at the time of creation,
a source particle needs to know in which cell it is located, an aspect that can be identified from
the sub-facets or elements created. This information will be tracked as the particles traverses the
domain.

It should also be noted that the source sampling procedure requires many pieces of information
that needs to be compiled during initialization-time, i.e. the decomposition of cells, the integration
of source strengths, and the creation of CDFs, all which will allow efficient repeated sampling of
source particles. We will not detail such processes since it can be achieved in multiple ways and

distracts from the overall algorithm.

21



2.2 The stochastic transport process
The transport process can be summarized with the following steps:

Step 1: Transporting a particle to a material interaction. This step needs to determine if a

particle will have an interaction within a cell or on its surface.

Step 2: Randomly sampling a reaction type. A sample is made of the CDF constructed
from all the different reaction types (i.e., absorption, scattering, etc.). Optionally,
this could also be precluded by the sampling of a CDF to identify a component of

a material.

Step 3: Applying scattering. If the particle encountered a scattering reaction the final di-

rection and energy needs to be sampled and/or computed.

2.2.1 Step 1: Transporting a particle to a material interaction

Figure 2.3 below will be used as a reference for this discussion. The red track denotes a track
where the distance to an interaction is within the cell, while the blue track denotes a track where

the distance to an interaction is beyond the distance to the surface of the cell.
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x; + d;i€2;

Figure 2.3: Schematic of the two ways in which a particle track can be traced within a cell, i.e.,
either from the initial position, x;, to an interaction, or from x; to the cell surface.

2.2.1.1 Step la - Distance to interaction within a cell

Suppose a particle is created within a cell. Given the particle’s initial position, x;, direction, €2;, and
energy, F;, we first want to sample a random distance to interaction, d;, along the track x; + s{2;,
where {s : s € R,s € [0,00)} and d; € s. In order to do this we need to relate a random number
Or to a distance traveled, d. We start with using the definition of the cross section, for which the

uncollided particle density, n(s), along €2; will vary according to the equation

dn(s)

Is = —omn(s). (2.11)

The solution of this ordinary differential equation is

n(s) = n(0)e 7, (2.12)

where n(0) is particle density at the start of the track.

The cumulative probability of interacting in a distance d, also known as the interaction cumu-
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lative distribution function (CDF), ¢, (d), is then

co(d) = —"——" =1—c 7% (2.13)

which is a monotonically increasing function in the space ¢, (d) € [0, 1).
This CDF can be solved using the inverse distribution method since the inverse of this CDF
is obtainable analytically. Therefore, to sample the distance to an interaction we set d = d; and

replace ¢, (d) with a pseudo-random number 6, after which we solve for d;. Consequently,

Oy

This equation can therefore be used to randomly sample a distance to interaction in any material
as long as it is homogeneous. The obvious question then arises: In a discretized system of cells,
what is done to account for the finite size of a cell when the material changes between cells (i.e.,

an inhomogeneous domain)?

2.2.1.2 Step 1b - Distance to a cell surface (surface interaction)

Conceptually, a spatially discretized domain comprises volumes defined by surfaces. Therefore, in
order to determine whether d; is beyond the current cell’s sub-domain, we require the distance to
the cell-surface, ds € s, along the track x; + s{2; which also describes a line in 3D space. Finding
d, is therefore a matter of finding the intersection of a 3D line with a 3D surface regardless of what
spatial dimension the simulation is using. To name a few examples, a 1D slab cell would require

the intersection of a line with a plane, a 2D linear polygon® would require the intersection of a line

3In this text a linear polygon is a cell type where each edge comprises a line with only 2 vertices, the edges
are orientated counter-clockwise (right-hand-rule), and each edge can be used to form a counter-clockwise orientated
triangle with the cell-centroid such that the triangle normal is in the same direction as the right-hand-rule representation
of the edges.
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with a strip®, and a 3D linear polyhedron® would require the intersection of a line with a triangle.

Fully detailed algorithms to find d, for multiple cell types, are presented in appendix A.

2.2.1.3 Conclusion of step 1

If d; < ds the particle will interact with the material within the cell, alternatively, if d; > d;,
the particle will have a surface interaction. When a material interaction occurs, the particle is
transported to x; = x; +d;€2; and step 1 is complete. If the particle has a surface interaction it will
be transported to the surface, i.e., Xy = x; + d;{2;, where cell-scope will be transferred to the cell
adjacent to the current cell (at the interaction surface) and step 1 will be repeated (x; becoming
X;), or, if it interacts with a surface that is on a domain boundary, it will be killed or reflected (the

latter only if the boundary is of a reflecting type).

2.2.2 Step 2: Randomly sampling a reaction type

The distance to interaction is sampled in step 1 using the material total interaction cross section,
o, which could comprise a number of reactions. The most typical reactions are to be absorbed via
an absorption cross section, o,, or to scatter via a scattering cross section, o,. For simplicity of
discussion we will assume that a particle can experience a total number of /V; reactions via cross

sections 07y, . .., oy,, where
Ny
O = E ;.
i=1

These discrete cross sections can then be used to construct a discrete CDF, c,s, where each entry

is given by
J
o, ,
Czs,0 =0, Ces,j = O__Z, jE{O,...,NI}.
. t
i=1

“In this text we define a strip using two vertices, v0 and v1, to form a vector v, and a normal vector n. A point, x,
is on the strip if n-(x — v0)=0 and 0<(x — vg)-v<||v]|.

3In this text we define a 3D linear polyhedron as a polyhedron where each face is a linear polygon and each triangle
in each face can be used to construct a non-inverted tetrahedron (using the cell-centroid as an extra vertex).
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This CDF can then be sampled to identify the relevant reaction.

If the sampled reaction is the absorption reaction, o, the particle is killed. Alternatively, the
most common interaction is to scatter, however, other reactions such as those creating additional
particles can occur. In such cases the additional particles are created (according to the underlying
physics of the reaction) and banked for later retrieval. Banked particles are retrieved and trans-
ported when the current particle is killed. For the purpose of this text we will only consider the
simplistic case where a particle can either be absorbed or scattered.

It should be noted that, in production codes, the material is often comprised of different isotopic
elements each with its own set of cross sections. This is often necessary because it is rare to have
available nuclear data on a material basis. In this research we manufactured cross sections on
a material-basis and therefore did not have to deal with this difficulty, however, this capability
merely implies that another CDF be constructed from the individual isotopes’ o;-values and then

subsequently sampled to identify the appropriate cross-section set.

2.2.3 Step 3: Applying scattering

Scattering cross sections are always accompanied by some information regarding the angular dis-
tribution. For continuous energy, elastic scattering, cross sections this information is a probability
density function (PDF) as a function of the scattering cosine in the center-of-mass (COM) refer-
ence frame®, jic, at a specific energy. Since these PDFs are stored at a number of discrete energies,
the PDF at the required energy must be obtained using interpolation between the discrete energies
(with subsequent normalization). With a PDF established, a suitable CDF’ is constructed and sam-
pled with a pseudo-random number to obtain y from which we can determine the scattering angle
in the COM reference frame, 0 = cos™ ! (uc).

For elastic scattering reactions of neutrons (as an example) the scattering angle in the laboratory

®Ordinarily these PDFs are constant as a function of yc for most energies except high energies, where quantum
mechanical effects dominate.

"Most production codes create a discrete CDF at a resolution equal to or greater than that stored for the PDF, using
interpolated values of the PDF.
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reference frame, 6, is related to the COM reference frame through the use of the atomic mass ratio

of the target nucleus mass to the particle mass, A. This relation, adapted slightly from [2], is

in o
0, — tan~! (%};) (2.15)
A

and allows us to subsequently compute the true scattering cosine, (. = cos 7, about the current
direction of flight, €2;.

We can also, at this point, determine the particles energy after the scattering reaction, E,
which can be derived from particle kinematics or any relevant physics relations. For simplicity this

relation is again adapted from [2] for neutrons, and is given by

(L+a) + (1 - a)uo
2

E; = B, (2.16)

2
where o = <£—+}> . In production simulations, where the full compliment of complex interactions

can occur the change in energy needs to consider many aspects. For neutrons the change in energy
can involve inelastic scattering, thermal free-gas scattering, material motion related up-scattering,
etc.

The final requirement to determine the particle’s new direction is to establish the azimuthal
angle, ¢y, of the scattering reaction relative to €2;. The probability distribution for ¢, is isotropic

in [0, 27| for all physically known cases® and can therefore be sampled as

or = 27m0R. (2.17)

We can now use these angles to rotate 2; to the scattered direction, £2, by defining two axes of
rotation. The first axis of rotation assists us in emulating the polar angle of the scattering and since

the azimuthal rotation is arbitrary we can use any direction for this axis as long as it is perpendicular

81f the cosine is known, o, will always be relative to the chosen laboratory reference frame, which inherently can
be rotated arbitrarily about the current direction of flight without changing the cosine.
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to €2;. Using the upward pointing vector, k= 0,0, 1], we can define the polar rotation axis (or

tangent vector), t, as

Q; x k -
—XA, Q-k<l—e
e — ) < k]| , (2.18)
i Q-k>1—c¢
where ¢ is an arbitrary tolerance such that ||€2; x k|| # 0, and ¢ = [1,0,0]. The second axis of

rotation is simply €2; since, after the polar rotation is applied, the polar-rotated vector, €2, needs

to be rotated azimuthally. This process is depicted in Figure 2.4 below.

>
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Polar Rotation Azimuthal Rotation

Figure 2.4: Schematic of the two rotations applied to {2; when scattering through a cosine cos 6,
applying first the polar rotation about t to produce €2, then the random azimuthal rotation of €2,
by an angle (;, about the original €2;.

We now seek a means to rotate any vector, v, about an axis defined by a unit normal, a, by

a right hand-rule oriented angle, . From first principles we can derive a formula known as
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Rodrigues’ formula[15], which is

Viyotated = COSOr v+ (a-v)(1 — cosfg) a+sinfg (a X v)
(2.19)

= RotationAboutAxis(v, a, Op)

where V,,qieq 18 the resulting rotated vector and "RotationAboutAxis" a function name. Now we

can apply two rotations, firstly the polar rotation of €2; about the axis t by an angle 6,

2, = RotationAboutAxis(2;, t, —0p), (2.20)

and then the azimuthal rotation of €2, about the axis £2; by an angle ¢y,

Q; = RotationAboutAxis(2,, 2;, p1.). (2.21)

2.3 Contributing to volumetric tallies

There are numerous ways to estimate quantities in a Monte Carlo simulation. Particles crossing
a specific surface can be used to determine the average current or flux on a surface, this process
involves so-called current and surface-crossing estimators. Collisions can be counted, a process
called a collision estimator. Finally, the average flux within a volume can be determined using a
track-length estimator.

For this research we have little need for the current and surface-crossing estimators since we do
not require the current or flux on surfaces. The collision estimator will also not be used because it
has an efficiency concern, i.e., the probability of a source particle contributing to the estimation is
dependent on o,. This leaves just the track-length estimator where the scalar flux can be estimated
directly. Additionally, the track-length estimator can be modified to incorporate particle weights
(i.e., when applying biasing or variance reduction) and to provide quantities such as the spherical

harmonic expansion coefficients for the angular flux and integrals weighted with finite element
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basis functions.

To comprehend how a track-length estimator is used, we will now discuss how it used to esti-
mated the scalar flux. The process is as follows: As one repeatedly applies the stochastic particle
transport process above, the particles trace tracks across the domain each time it is transported
from a position x; to x. At each instance, where this position pair is updated, we can contribute

to the volumetric tally, within which the track took place, by computing a track-length, ¢, as

From first principles we can derive that if each track-length, ¢;, is contributed to tally 7" then the

average scalar flux in the tally, ¢, can be estimated from

Ny
1 1
S — x,) dQ dV = l;, (2.23)
or = /v v >

where N, is the total number of particles simulated, [V, is the total number of tracks traced within
the tally’s spatial domain, and V7 is the tally volume. Incorporating energy, requires the average

track-length of all particles with energies within the group energy sub-domain D, 4, hence

Ny g
1 )
~ e, 2.24
QST,Q NpVT p ( )

is the group average flux, where IV, , is the total number of tracks traced, by particles of energy

E € D.,, in the tally. This energy grouping used in tallies is required even if the particles are

e,g»
transported in continuum form (continuum energy, angle and space) since the probability, of a
particle having an energy exactly at the energy required, is essentially infinitely small.

The final addition to the notion of a tally is the inclusion of a track-weight (or particle weight),

wj;, such that

1
Org A > wit. (2.25)
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Note here that weights can be used for biased sampling, variance reduction and for the computation
of several other quantities related to the track-length, and does not necessarily change the value of

a tally at the conclusion of a simulation but can greatly influence the statistical uncertainty.

2.4 Determining the statistical uncertainty of a tally

The mean tally value in Eq. (2.24) is subject to statistical uncertainty and, as mentioned in the
introduction, the central limit theorem can be used to show that the statistical distribution of the
sample mean is a normal distribution about the true mean[1, 18]. For purposes of this discussion
we will consider a tally in abstract-form with individual contributions to the tally simply being

samples denoted as z;, the true mean, x, and a sample mean, z, being

where N, is the number of contributions or sample size. The unbiased sample variance, S, is

given by

where the ﬁ term is often set to NLC when N, is large enough. This form closely follows the
standard definition of the variance, however, it is not entirely practical to use because it requires
the storage of all the x; values. A more practical form can be obtained by multiplying out the
square term in Eq. (2.27) and performing some manipulations (assuming a large sample size) to
obtain

2 1

1
S? = NCTQl — F62(TQZ)2, (2.28)

where

Ne Ne
TQl = ZI? and TQQ = ZZEZ
i=1 i=1
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This form therefore requires us to make contributions to both the tally quantities, 7'¢); and 7'Q)y
when a tally score is made (i.e., when a track is traced both w/ and (w¢)? is contributed).
The final step is to relate the variance of the sample mean about the true mean, S, to the sample

variance, Sz. Fortunately, this can easily be shown from statistical theory[1, 18] to be

g2 L

i =N Sz, (2.29)

which provides us with the final equation to provide us with the tally standard deviation,

1 /1 1

In this context a tally value should always be presented in the form & 4 S;, which translates to our

earlier definition of a flux tally as

Tally result: o7, + Sy,

where
1 1 1 1
Sery = vl - (T 2 2.31
bT.9 NpVT \/Np (Np QT7971 Ng( QT,Q,?) ) ( )
and
Ny
TQrg1 =Y (wil)’ (2.32)
i=1
Ny,
TQrg2 = Zwi«@- (2.33)

=1

Of special note, in the equations above, is that the accumulations are done over [V, , but the stan-
dard deviation is computed using NNV,. This is because each source particle j, where j € [1, N,)],
always theoretically contributes to all tallies in the problem but only the subset i € [1, N, ;] con-

tribute non-zero track-lengths.
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2.5 Modifications to allow for multigroup cross sections

Methods that use multigroup cross sections often apply a reduced order model for the angular
dependence of the scattering cross section. The most popular model for this is the Legendre ex-
pansion of o, y_,,(2'—€2), or o, 4_,4(str), at any position in space, where 4, is the scattering

cosine in the laboratory reference frame. The expansion is

L

20+ 1
Os,g'—g(HL) = 05 9 —g (1r) Z 08379’—>QP€(ML>a (2.34)
=0

where L is the expansion order (also referred to as the scattering-order), the P, functions are

Legendre polynomials of order ¢, and o o, , are expansion coefficients defined as

1
Ostg'—g = / Os.g—g(pir) Pe(pr)dpir. (2.35)

1

These expansion coefficients are normally known or supplied as input for any method that uses it
and greatly reduces the size of the data set required to store the angular distribution information.
Additionally, the Legendre polynomials have advantageous properties with regards to spherical
harmonic expansions of the angular flux (i.e., orthogonality, special identities, etc.), which are

used by nearly all deterministic methods.

2.5.1 The energy change

Unlike the continuous energy scattering process, where the energy change is determined from the
sampled cosine, multigroup cross section require us to use the isotropic scattering moments to

build a CDF for each group ¢', denoted as ¢,/, and with g-indexed elements as

g
Z Os,9'j,0

Cqlsg = NGI— (2.36)
Z Os,9'=3,0
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Given that a particle will be at energy group ¢, this CDF is then first sampled with a pseudo-
random number to determine the destination energy group g, and with the combination of ¢’ and ¢

we can then construct the Legendre expansion in Eq. 2.34.

2.5.2 Sampling the scattering cosine

There is a problematic aspect to the sampling process related to a Legendre expansion of o, which
stems from the fact that the multigroup approximation changes the J-function nature of continuous
energy scattering kinematics into a shape, as a function of 1y, that normally resembles a combina-
tion of a step and a ramp function. This shape is normally sufficiently well approximated by low
orders of the Legendre expansion as shown in Figure 2.5, where the isotropic scattering and peak
at the correct cosine value are well approximated. The problem with this form, as it relates to the
Monte Carlo method, is that we cannot construct a CDF from this information because it results
in a CDF as shown in Figure 2.6, which violates the required properties of a CDF (i.e., strictly
positive and monotonically increasing).

Two solutions to this problem are generally known[18]. The first is the use of rejection sam-
pling, and the second is the use of discrete cosines from a generalized Gauss-quadrature that pre-

serves the Legendre expansion moments.

2.5.2.1 Rejection sampling of the Legendre expansion

Using rejecting sampling on the Legendre expansion is a conceptually simple process given that we
can, at initialization-time, determine the maximum probability density, p,,.... We can then sample

a random cosine, i, € [—1, 1] after which we sample a random probability density p, € [0, ppaz]

L

and also evaluate the expansion at the sampled cosine, o,

(11-). The sampled cosine is accepted

L

g’ %g(,ur)\. This sampling process has, however, a very low sampling efficiency since

ifp, <o
the area under the curve can be very small (see Figure 2.5) as compared to the rectangle created

with paz.
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Figure 2.5: Legendre expansion of a test function for different values of L.
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Figure 2.6: A problematic CDF constructed from a Legendre expansion.
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Techniques are available to improve rejection sampling efficiency [18] which all involve using

a bounding-function, h(u), to ok such that h(u) > ol (n), either over the entire span of

8,9'—g
i € [—1,1] or sub-intervals of this span.
Ultimately, rejection sampling is not as efficient as the next method we introduce, therefore we

will not detail the intricacies of rejection sampling o~ ' further.
2.5.2.2 A generalized Gauss-quadrature from Legendre expansions of o

A very good solution for the CDF-related problem of the Legendre expansions is to replace the

expansion with a generalized Gauss-quadrature as was done by Sloan[16]. The quadrature replaces

the continuous form of o -y With a discrete form,
NgQ
Oy g '—g ML Z wq5 :uL — s, z) (237)

where N is the number of discrete cosines used in the quadrature, w; are the weights (required
to be positive), and ji,; are the discrete scattering cosines such that —1 < p,; < 1. Additionally

the quadrature needs to be moment preserving, i.e.,

NGQ

1
Tosrot = | Guarmalin) P )i = Y- wl P 238)
—1

i=1

The Modified Chebyshev Algorithm (MCA) as depicted by Golub and Fischer[17] provides a
succinct means to compute the recurrence coefficients of an orthogonal polynomial (w.r.t. to the
weight function o ,_,,), given the moments o 4, that is then used to compute the weights, wy,
and discrete cosines, y5 ;, in Eq. (2.38).

Since P, is a polynomial with a maximum order L, the quadrature rule will produce Ngg
quadrature points such that 2Ngg — 1 = L.

Figure 2.7 below shows an example application to an analytical function for o, ,_,,. Since

L = 7, only 4 quadrature points (Ngg = 4) are generated at cosines that will allow the preservation
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of the first L + 1 = 8 moments.

In order to build a discrete cosine CDF, ¢, , for the scattering cosine y;, we simply have to use

the cosines and weights in Eq. (2.37).
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Figure 2.7: Example application of the generalized Gauss Quadrature.

2.6 Modifications to tallies to provide finite element representations

Using the finite element method for spatial discretization allows the scalar flux to be represented

as the summation of discrete coefficients, ¢;, and associated basis functions, b;(x), in the form

Ny
B(x) & on(x) = > dsb;(x), (2.39)
j=1

where ¢, is the expanded flux and [V, is the number of basis functions. In order to find the ¢;

coefficients we define /V, number of equations as volumetric integrals, weighted with basis function
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b;, such that

/V by (X) 00 (x)dV /V bi(x)$(x)aV, (2.40)

after which we substitute in Eq. (2.39) for ¢, to get

Z% | monxav = [ nexoav @.41)

which forms a system in the form A¢ = b where the ¢; coefficients are the unknowns and
Aij = / bz (X)bj (x)dV, and (242)
v

Vv

where the 0; values are essentially weighted tallies.

This system can be fairly large and sparse if a continuous finite element method (CFEM) is
used for discretization but it will be symmetric positive definite (SPD) and can therefore easily
be solved with a preconditioned Conjugate Gradient method. When using a discontinuous finite
element method (DFEM), however, the basis functions are only restricted to those on a given cell,
the amount of which rarely exceeds ~20 (i.e., polyhedrons). Consequently, instead of one large
system to solve, we have a small system for each cell that can easily be solved using Gaussian-
elimination, although, in the DFEM case the A-matrix is not group or moment dependent and
therefore it is more efficient to obtain the small inverse matrix, A~!, via LU-decomposition, and
reuse it for different b vectors on the same cell but different groups and moments.

The conversion of a tally to a DFEM representation requires first that we define tallies that

allow the computation of the coefficients of the b-vector. Such tallies are simply

N¢g

/ bi(X)pr g (x)dV =~ — wa] i (2.44)
1%

and are largely the same as the volumetric tallies defined in Eq. (2.25), differing only in that there

38



is no division by the tally volume, and the addition of the average basis-function value, b;.

These tallies can therefore be computed as part of a normal simulation after which, in a post-
processing step, these tallies can be transformed to expansion coefficients by solving the individual
system on each cell. Figure 2.8 below shows an example of how a finite element representation
improves the visual fidelity of a solution.

The DFEM representation unfortunately has a performance-cost since the tally contributions
involves the computation of the average basis function value. This computation in-turn also in-
troduces a form of a weight, lower than the weight used to represent the cell-average (i.e., only a
fraction of the volume is contributed), and therefore reduces the rate at which the statistical uncer-

tainty of the DFEM tallies reduce (albeit still 1/4/N,)) as compared to the cell-averaged tallies.

| —— —— Cell-averaged tally
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Figure 2.8: Example of a 1D slab simulation with an isotropic cell-source over the first half of the
domain. The cell-averaged tallies and DFEM tallies are shown.
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2.7 Modifications to tallies to provide spherical harmonic expansions of the angular flux

The angular flux, ), at a given energy (or group) and position, can be expanded into spherical

harmonic bases as
; Lol E
V() = Y7 (Q) = E E GomYem (€2). (2.45)

41
/=0 m=—/

where L is the expansion order, the expansion coefficients, ¢y, are

Pom ¢( )Yim (§2)d82, (2.46)

and the fresseral spherical harmonics, Y,,,, are given by

—1>m\/—(2)\/ EZ}ZB:PW(COS 0)sin|m|p ifm <0

Yo (€2) = Yo (2 = (0,0)) = Py (cost) iftm=0- (247)

)™/ (2) Eﬁ+m Py (cos @) cos mep ifm>0

where €2 is mapped to (6, ¢) and the associated Legendre polynomials, P}, are defined as a recur-

sion,
Pé] =1, P) =,
Pf=—(20—-1)v1—22P}(z) and (2.48)

(—m)P" = (20 — 1)z P"y(x) — (L +m —1)P"y(x).
The expansion coefficients, ¢,, can be computed in a flux tally by weighing with the corre-

sponding spherical harmonic. Therefore the tally takes the form

Neg

> wiliYom () (2:49)
i=1

pVT . —

¢€m,T,g - / ¢g(X, Q)}/ﬁm(g)dQ =~
4

where the only new definition required is the direction vector of the i-th track, £2;.
In practice the spherical harmonic weights, which involve the recursive functions above, should

never be computed at each tally contribution since this will require multiple unnecessary function
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evaluations. Instead, the particle carries its harmonic values in the same way it carries its weight,
and subsequently modifies them at each direction change. In this fashion the particle can poten-
tially contribute these harmonic weights to many tallies before it needs to be recomputed.

This modification gains value in the fact that, in many deterministic methods, the angular flux is
subject to discretization which can subsequently introduce ray-effects. By supplying the harmonic
expansion coefficients, the Monte Carlo method can be used to supply the n-th collided-source by
simulating particles only until they have collided n-times, allowing the deterministic method to

apply iterative methods to convergence scattering sources.

2.8 The overall process

A summary of the Monte Carlo method is as follows:
1. Source sampling CDFs and quantities are initialized.
2. A'loop is started for /N, number of source particles. Within this loop:

(a) A source particle is sampled as per section 2.1.

(b) The particle is stochastically transported as per section 2.2 until it is killed (either by
being absorbed or by leaving the domain). During its transport journey it contributes

to tally quantities 7'Q); and T'Q)5 in Eq. (2.31).

(c) Any banked secondary particles are simulated as per the previous item.

3. Tallies are normalized as per section 2.3 and their uncertainties are computed as per section

2.4.
4. DFEM transforms are applied as per section 2.6.

A good practice for applying the loop in step 2 is to split this loop into multiple batches of particles.
After each batch is computed the uncertainty is computed and contributed to a tally fluctuation

chart (TFC) which can be used to ascertain the efficiency of a tally.
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2.9 Batches of particles

In many cases it is beneficial to subdivide the total simulation, which requires N, number of source

particles, into several smaller simulations each simulating N)*“"" : i € [0, Nyqsches—1] number of

source particles, such that N, = ) N;jmh’i. These smaller simulations are then referred to as
i

batches, and the number of batches 1S Ny,iches-

Simulation-batches offer a multitude of benefits. The most important benefit is that the pro-
gression of tally-uncertainties can be tracked in what is known as a Tally Fluctuation Chart (TFC).
This involves the application the equations to compute tally estimated standard deviations (the
process in section 2.4) at the end of each batch, and storing these values for each batch. At the
end of the simulation, after all batches have been simulated, the TFC for each tally comprises
the estimated standard deviation for each batch, which can collectively be analyzed to ascertain
whether their estimated average is of sufficient accuracy. One indicator, for example, for ascer-
taining whether N, is sufficiently large, is to observe the 1/ V/N relationship described in section
2.4. Another important benefit, for parallel simulations, is that batches can be used as a point of
synchronization.

Apart from the primary benefits, batched simulations are a means to better understand the
performance of a given simulation even if it just provides an opportunity to output information,
manipulate data, or to provide intervals at which problem restart-data® can be dumped to storage.

Batches require only a single modification to the overall process in section 2.8, being step 2,
the loop over NV,,. This loop is now split into a nested loop comprising an outer loop over Nygsches,

representing each batch, and an inner loop over Ngatc"’i.

9Problem restart-data comprises information about the problem and tallies that will allow the simulation to be
stopped and restarted. This mostly involves the storage of the tally accumulators described in section 2.4.
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3. INTRODUCTION TO THE DISCRETE ORDINATES METHOD

The Discrete Ordinates (DO) method for solving the multigroup LBE involves the application of

an angular discretization as well a spatial discretization.

3.1 Angular discretization
3.1.1 Modification of the scattering source

The scattering source in Eq. 1.8 couples the multigroup LBE, for angle €2, to all other angles in
the angular phase-space, i.e., angles €2’. In continuum form, we cannot derive a set of discrete
equations for this coupling and therefore require some form of discretization.

If the angular domain was to be discretized, into N; amount of discrete angles {€2, : n €
{0,..., Ng—1}}, then one could theoretically develop scattering cross-sections for the entire set
of possible discrete cosines {/isnm : thsnm = Qn * Qm, n,m € [0,..., Ng—1]}. Such a scenario
however, could require an insurmountable of storage since one would have to store the entire set of
discrete angular-fluxes, for each energy group, at each spatial node of the problem. Additionally
one would have to store o, _,4 at all of the discrete cosines, for all groups, and all materials.

To overcome this difficulty, it has long been customary[1] to use a Legendre expansion of o4y,
as in Eq. 2.34 along with a spherical harmonic expansion of 1), as in Eq. 2.45. This effectively
applies a reduced order model of the scattering source, where the expansions are truncated at a

scattering-order, L, to get

/ 059/H9<X7 Q- Q)wg’ (Xa Q/)dﬂ/
4m

~ / ol (%, Q- Q)L (x, Q) dY 3.1)
47
L L A
20 + 1 20 +1
— — Oy P, Q/.Q "0'm! Y’m’ Q, dQ/
/[Z KPS - 9) [§ 2 s Vi)
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This term can then be simplified substantially using the favorable properties of the combination
of the Legendre- and spherical harmonic expansions, the first of which is the addition theorem of

spherical harmonics[2] which states

Z Yo () Yo (), (32)

m=—/

and the second is the orthogonality of spherical harmonics [2], which requires

4dr
20 +

/ Yt () Yo (V) dY = St (3.3)
4

where ¢ is the Kronecker delta. 1f equations (3.2) and (3.3) are substituted into Eq. (3.1) then the

scattering source reduces to

L ¢
, N ey 20+ 1
/ Osg'—g(%, 2 - Q)thy (x, Q)dEY ~ Z Z { A Yom(£2)0st,9—9(X) Dy m (%) (3.4)
4m

(=0 m=—/¢

where

Ggrem (X / Yy (X, 2) Y, (£2)dS2, (3.5)

and is yet to be resolved.

With the scattering moments o4 ,_,, available as input, the only unknowns are the flux mo-
ments, ¢ s, Which are computed with Eq. (3.5). It is important to note here that the integral over
the angular domain is not only important for the computation of the ¢ ¢, coefficients but also for
the computation of the scalar flux in Eq. (1.2). The scalar flux for group ¢, ¢, is, however, the
same as ¢4 since Ypo(£2)=1 according to the definition of the spherical harmonics in Eq. (2.47).

We now turn our attention to a method for computing these angular integrals.
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3.1.2 Application of an angular quadrature

In order to evaluate the angular integrals in Eq. (3.5), the discrete ordinates method uses an angular

quadrature in the form

Ng—1

/ Q) ~ D " wif(Q) n={0,...,Ns—1} (3.6)
dm n=0

where f is an arbitrary function of direction, €2,, are the quadrature points on the unit-sphere, N is
the total number of quadrature points, and w are the associated weights. There are several choices
for angular quadratures, all with the requirement that it approximates the angular integral as close
as possible. Unlike one dimensional polynomial quadratures, angular quadratures for the integrals
in Eq. (3.5) are rarely able to provide the exact integral for practical problems mostly because the
angular flux, 1y, is unlikely to be a smooth-function of 2.

The most commonly used quadrature in 1D is the Gauss-Legendre quadrature (with an even
amount of quadrature points N; = 2/N). For 3D problems, quadratures can range from the classical
Level Symmetric quadratures [1] (N; = N(N + 2)), product quadratures such as the Gauss-
Legendre-Chebyshev quadrature, and many others, all with unique properties.

With a quadrature selected, Eq. (3.5) is evaluated, after substituting f(£2) = ¥y (x, £2) Y7, (€2)
and ¢,y = 1y(€2,,), as
Ng—1
Gyrem(X) = > Wy Yom () 3.7)
n=0
where the unknowns are still ¢/, at the ordinate direction 7.

To find these unknowns the discrete ordinates method then requires /V; amount of multigroup

equations, which can be defined from Eq. (1.8) by first substituting all 2 for €2,, followed by
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substituting the scattering source with Eq. (3.4), to get

et 20+ 1
Qn ° V¢gn<x) + Utg wgn Z Z Z |i Yv@m )Usé,g/%g(x>¢g’2m (X)

g'=0 ¢=0 m=—¢
(3.8)
+ QQ(Xa Qn)a

x €Ds,g€{0,...,Ng—1},n € {0,...,Nys—1}.

At this point it will also be convenient to replace the double indexed harmonics, Y;,,, with a
single indexed harmonic, Y}, such that b — (¢,m) and h € {0,..., N,—1}, with N, the total
number of harmonics. We then also define an equivalent of Eq. (3.5),

Ng—1

Pyrn(x Z W Vi (), (3.9)

to get a simplified equation

(Qn . V+0't9< >wgn Z {wth Ushg %g( )(bg’h(x) + Qg<X7 Qn)a
h=

(3.10)

glf

20+1

where wy,(h — (¢,m)) = , and all other quantities with subscript i are the equivalent
quantities with subscript ({m).
This form of the multigroup LBE will henceforth be referred to as the discrete ordinates equa-

tions.

3.2 Spatial discretization

There are many possible spatial discretizations that can be applied to Eq. (3.10). For this
research we will mainly focus on linear DFEM on 1D cells and the piecewise-linear DFEM [20,
21, 22] as a generic spatial discretization in 2D and 3D, where the definition of the basis functions,
b;(x) (i being the node index), are detailed in appendix B. The DFEM-representation of unknowns

utilize N . number of basis functions or nodes for each cell ¢, which we can use to develop a
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spatially discretized form of Eq. 3.10.

3.2.1 A DFEM representation of a continuum-variable

A DFEM representation of the continuum-form of ¢, is performed by expanding these variables

into a weighted sum of the DFEM basis functions, which are specific to cell c, i.e.,

Nb,(:fl

(wgn(x)) ~ Z wganbj(X)a and (311)
D =0

where x € D,, D, is the volumetric domain of cell ¢, and the weights 1),,,.; are now the discrete
unknowns.

For the remainder of this text, any symbol for group-, direction-, cell-, and node-indices can be
used to identify a discrete unknown as long as that index denotes the appropriate category, i.e., 7 is
sometimes also used for the node-index, ¢’ is sometimes used for the group-index, etc.

The order of the indices is also used to denote a sequence of entries, helpful when defining

vector- or matrix nesting-structures.

3.2.2 The weak form of the discrete ordinates equations

With a discrete representation of variables defined we now turn our attention to discretizing the
discrete ordinates equations. In order to simplify the mathematical formulation we will suppress
the group- and direction-indices, g and n respectively.

We will also combine the scattering source and the external source into a single, space-dependent

source, ¢, to get

Q- ViY(x) + 0 (x)(x) = q(x), (3.12)

representing the most basic form for our discussions.
We now seek to develop the Galerkin DFEM weak-form of this equation. We do this by first

weighting this equation over a trial space, D, with the space and weight defined by a basis function
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of the piecewise-linear DFEM representation of cell ¢, b;(x) where i € {0, ..., N, .—1}, for which

we test

[ ) (29060 + 00 Jav = [ bxata (3.13)

c

Since the DFEM basis functions are defined on cells, the volume integrals in this equation are
also the integrals over cells, i.e., in this case, cell c out of a total number of N, cells. We now
take the gradient-term and apply integration by parts as well as a subsequent application of Gauss’

divergence theorem, to get

[ oenbeueda- [ @ (nm)uedr
ODe ¢ (3.14)

+/ bi(x)at(x)ﬂ)(x)d‘/:/ b;(x)q(x)dV,

c

where n is the position dependent surface normal and 0D. is the surface of cell c.
We next apply an upwinding scheme to the surface-integral term, in which we replace ¢ with
an upwinded 1&, such that

) O(x), if Q-n>0
D(x) = (3.15)
bus(x), if Qen <0,

where 1), is the angular flux, at the same direction, either at the boundary, or in the cell adjacent

to cell c at the surface. The DFEM weak-form is finally,

/ Q- n by(x)(x)dA — / Q- (Vh,(x))(x)dV
9De De (3.16)

; / ()0 (x)p(x)dV = / bi(x)g(x)dV.

c
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3.2.3 A cell-by-cell system to solve

With the group-index, g, and direction-index, n, still suppressed the final step of discretization is

now to approximate both ) and ¢ as expansions of the DFEM basis functions, i.e.,

Ny —1
Y(x)~ Y bi(x), and (3.17)
=0
Np,.—1
q(x) ~ Z q;b;(x), (3.18)
j=0

where 1); and ¢; are unknown constants. These approximations are then inserted into Eq. (3.16) to

obtain, after rearrangement,

Ny o—1

> UaDC Q-1 b;(x)b;(x)dA — i Q-(Vbi(x))bj(x)dV+/ bi(x)at(x)bj(x)d‘/]i/}j
J=0 Q-n>0 c c
+N%£01[/?DC Q- 0 bi(X)tus bj(X)dAa] = Nfﬁgl[/cbi(x)bj(x)dvl q;-

(3.19)

For the piecewise-linear basis functions of interest, and their associated cells, we can segregate
the surface of a cell into Ny . number of faces, each with an average normal, n¢ ., which allows
us to redefine the surface-integrals above into a summation of face-based surface-integrals (with
0D, ; being the surface of the face). The face terms are then integrals of the basis-functions, b;b;,
over the face-area, taking the form of a face mass-matrix for all values of ¢ and 7, and is denoted
with M. ;. Additionally, o, is defined as constant over a cell (by manner of convention in this
research), and since the volume-integrals are only over the volume of the cell, the integral term

containing o, can be written as a product of o; and a cell mass-matrix, M.. The set of equations
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can then be written, in matrix- and tensor-notation, as

Nf,cfl Nf7c—1
JE:O (Q . nﬁC) MCJ —& {G}c + o ¢c + Z (Q : nf,c) Mc,f¢us,cf = M.q,
Q-ny >0 =0
Q-l‘lfﬁc<0
(3.20)
where the notation {} denotes a tensor, and
(Me,f)i; = / bi(x)b;(x)dA, (3.21)
oD,
(M) = [ bty ejav. (3.22)
Also, {G}. is arank 3 tensor, with its first two indices denoting
(G} = [ (VG (0aV, (3.23)

(&

which we will refer to as the gradient tensor. The vectors ., Y and q. are all vectors of

us,cf?
general form v with entries (v); = v;, at the nodes i € {0,..., N,.—1} of the cell’s DFEM-
representation. The vector 1), ., has scope only to face f and may have many zero entries, for
example, Figure 3.1 shows a dependency for cell 1 at face f as ¥, = [too,- -, %0s]7, ¥ =
[V10, .., 15]T and Yus1p = 10,0,0,0, %02, Yo1)7, the latter indicating 1, 1 74 — o2 and Y15 —

Yor-
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Figure 3.1: Example cell dependency for 2D polygons where cell 1 is dependent on cell O at face f.

With all of the entries ¢; and 1, ; known, these equations describe a linear system of equations

in the form
Alocal,c’lpc == blocal,cu (324)
where
Ny -1
Alocahc = ];0 <Q ) nf’c) Mc,f —f- {G}C T UtMC s and (325)
Q-n;c>0
Njo—1
blocal,c - Mcqc - Z LlOC@l,Cf ’(pus,cf' (326)
ey <0
Llocal,cf = (Q y nf,c) Mc (327)

This system is often small and A;,.q . is dense. The optimal choice of solution is Gauss-Elimination
(even though it scales as O(N, ic)) since it is much more economical than numerical solvers for this

system’s typical size (rarely NV, . > 20).
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3.3 The cell-by-cell system in a global-system perspective

The upstream values, v for a given cell can potentially always be known if the sequence

us, f>
in which we solve the cell-by-cell systems strictly follows the dependency between cells. If one
develops a mapping ¢ — k, mapping cell-index c to k in a manner that allows cell % to be dependent
only on cells with indices %', such that £’ < k, then the cell-sequence k = {0,..., Neeys—1}
represents a topological sorting of the cells for a particular direction, 2.

Under some circumstances, such as certain types of unstructured meshes, cyclic dependencies
between cells can exist which does not allow for the creation of a topological sorting. Such cases
require specialized iterative methods to enable some resemblance of such a sorting. An example
of such a method is detailed in previous work by the author[23], however, for the discussions in
this text we will assume that no cyclic dependencies are present.

Along with the cell-index remapping, we can also define the mapping (¢, j) — (ig, jg), which
maps the cell-local matrix indices (i, j), of matrix Aj,.q, to a global system matrix, Agiobal, Incor-

porating all cells, with indices (i¢, j¢). In order to develop this mapping we require an underlying

global structure, for which we first define the total number of unknowns for a particular n and g as

Neenrs—

1
Nuodes = ¥, Ny (3.28)
c=0

We then construct a vector, 1., for all the cells and their associated nodes, at a particular direction

gn’

n and group g, with definition

¢gn - {wgnkz : Vk,i € [O, N@k—l]} (3.29)

with discrete dimension (Ny,pqes X 1). With the underlying structure now defined we can create the
mapping ¢ — i (which is the same as j — j¢), for each cell, allowing us to write

Nf’kfl

Aglobal,gnk’(/)gn + Z Lglobal,gnkf ’(/)gn = bglobal,gnk; (330)

f=0
Q-ny <0
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where Agiobat,gnk and Lgiopar gnk s are sparse matrices with the same square-size as v J W (Nnodes X Nnodes )
and its entries are those in Ajoeqk and Lioeq 15 respectively (at the respective g and n), remapped
using (7,7) — (i, je). Special care is taken in mapping Lj,.q s since the cell-node-mapping
needs to be unto the cell-node-pair the particular node depends on, which is often not the same
cell. The vector byopar gni 18 the same size as 1 on with entries mapped from M, ,q; (again at the
respective g and n).

With these definitions in place and 1), common between all cells we can define the global

system at direction n and group g as

Lgm/)gn = by, (3.31)
where
Neepis—1 Nyp—1
Lgn = |:Aglobal,gnk + E Lglobal,gnkf:|
k=0 =0
Q~nf,k<0 (3.32)
Ncelle_l
bgn = bglobal,gnk"
k=0

The matrix L, is a block lower-triangular matrix with the Agopq1 gni-entries on diagonal block &

and the L gjopar gni s €ntries all to the left of diagonal block &.

3.4 The system solution technique known as a ''sweep"'

In order to further comprehend the structure of L, consider Figure 3.2 showing the topological

sorting of a 3x3 mesh for direction €2.

3|17 —c=k |2|4]6

0161]8 011]3
Q

Natural cell-index ¢ Topologically sorted

Figure 3.2: Example topological sorting of a 33 mesh.
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For this discussion only, we will use a shorter notation for A;,cq; x and Lijocqr k¢ as just Ay and

Ly ¢, respectively. The block structure of L,,, using this notation, is then

0 L50 0 0 AS 0

(4, O 0 O O O 0 0 O

Ly 4 0 O O 0 0O 0 0

Ly 0 A, 0O 0O 0 0 0 0

0 Ly O A3 0 O 0 0 0

Lgn = Loy Lis 0 A 0 0 0 0
0 0

0

0 0 Lep Les 0 A O
O 0 0 L70 L73 O A? O
0 0 0 0 0 Lsgo Lsgs Ag_

o O oo o

which allows one to solve a block-row at a time starting at the top row and sweeping downward.
This sweeping action is the origin of the term "sweep" used to describe the action of inverting
lower-triangular matrices.

The speed and efficiency of sweeping algorithms in parallel simulations has undergone much
progress in the last two decades. The first parallel implementations applied the so-called KBA-
partitioning, originating from the method described in [24], where the mesh is partitioned into
subsets along a P, x P, overlaid grid, P; being the number of processors used on the i-th axis. The
KBA-method has since been extended to PP, x P, x P, overlaid grids and was the subject of many
theoretical studies [25, 26, 27, 28] and performance analysis. The extended KBA-method has also
been demonstrated on semi-structured meshes [28] and later fully unstructured meshes, by cutting
the mesh to preserve the orthogonal P, x P, x P, sub-domains [23]. Other partitioning schemes
such as ParMETIS[29], has also been studied in [23], allowing a more versatile partitioning com-
mon to other physics-fields. The latter however, introduces cyclic dependencies in parallel and

therefore requires special sweep algorithms.

3.5 Combining all angles and groups

The vectors v, and by, and associated matrix L,-matrix, thus far only encompass a single

direction and group. In order to account for all the other directions and groups we abstractly define
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a combination of these elements to eventually obtain the operator form of the discrete ordinates
method.

We start by grouping together all the directions for group g into vectors ), and b, such that

Ibg = {wgnkz : Vn, k,l S {0, Nb,k_l]}a (3.33)

bg = {bgnkz : Vn, ]{?,i € [0, Nb,k_l]}, (3.34)
which can be regarded as nested vectors, ¥, = {1, : Vn} and b, = {b,, : Vn}. We then

define the matrix L4, as a nested matrix containing elements L, on its diagonal, such that

L, = diag({L,, : ¥n}). (3.35)

Next we combine all groups together into vectors @ and b such that

Y = {Ygnri : Vg,n, ki €0, Npp—1]}, (3.36)

b= {bgnkz : Vg,n,k,i € [OaNb,k_]-]}7 (337)

which can again be regarded as nested vectors, 1 = {1, : Vg} and b = {b, : Vg}. We follow
the same principal for a group combined matrix L, as a nested matrix containing elements L, on

its diagonal, such that

L = diag({L, : Vg}). (3.38)

The resulting system, is then finally

Lip = b, (3.39)

where L is known as the transport operator, the inversion of which requires a series of operations
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on the operators contained within L to get

Y="L"b (3.40)

Since the first two nested levels of L are block diagonal matrices, they are trivially inverted, how-
ever, the third nested level contains the discrete entries requiring Gaussian-elimination, on a cell-
by-cell system, in a sweeping fashion. For a known b-vector a sweep-operation inverts the trans-

port operator exactly (with no iteration).

3.6 Operator form of the scattering and external source

Starting with the spatial discretization of the discrete ordinates equations we grouped the scatter-
ing source and external source into a single source. This is an important step since all iterative
algorithms require this form to invert the transport operator L. We now discuss how the vector b

is formed.

3.6.1 The discrete-to-moment operator

From Eq. (3.9) we note that nodal values for ¢, can be represented as a quadrature formula based
on the nodal values of 1),,,. Therefore, the nodal flux moment at harmonic-index h, for cell £, at

the node local-index ¢, can be computed from

Ng—1

n=0

This formulation can be altered into a more succinct form as follows. Suppose we define a flux-

moment vector at a given (g, k, 7)-set, @ ;; = {@gnri : Yh}, and an angular-flux vector at a given

(gv ka i)-set, ¢gki = {wgnk:z : vn}, then ’(pgki = ¢gki as

Gy = D" gy, (3.42)
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where D™°%! is a matrix with dimension (N}, x N,) with entries

Dpedal — QY5 (Q,,). (3.43)

We now require a means to extend this formalism of D" to a global operator D, such that

¢ = D). In function form we can define
Ng—1
D = Fp($ = @) : Sgnei = >, Dhpe™ g, (3.44)

n=0

where Fp is the function-analog for D). We now call D the discrete-to-moment operator since it

maps a set of discrete angular fluxes onto a set of discrete flux moments.

3.6.2 The moment-to-discrete operator

Using Eq. 2.45, when given any flux moment vector, ¢ ,;, for a given group g, cell k£ and node-

gki»

index ¢, we can compute the angular flux vector, 1, as

’d)gki = Mno{iald)gkia (345)

where M4 is a matrix with dimension (N x N},) with entries

M7l — 4, Y3 (92,), (3.46)

20+ 1
47
M. In function form we define

where wy,(h — (¢, m))=

. We now also extend this to a global operator M, such that @) =

Nj,—1

M = Far(¢p =) : tgmii = Y Mg dgni, (3.47)

h=0
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where F); is the function-analog for M ¢. We now call M the moment-to-discrete operator since

it maps a set of discrete flux-moments to a set of discrete angular fluxes.

3.6.3 The scattering operator

The scattering operator is conceptually formed just from the scattering moments, o, o/ 4. It maps

one vector of flux moments to another. In function form we define
Ng—1
Sp=Fs(¢ = @) : i = D Osggmkbynri (3.48)

g'=0

where Fj is the function-analog for S¢. We now call S the scattering operator.

3.6.4 The operator-form of the scattering- and external-source

At the start of the application of spatial discretization we combined the scattering- and external-
source into a single quantity. This quantity is essentially the right-hand side of Eq. 3.10, and if

expanded to include all cells, directions and groups can now be written as

b =MSDy +q, (3.49)
where q = {qgnr @ Vg,n,k} and ggnir = ¢4(x, Q) : x € Dy, but since, according to convention,

the external sources are constant within a cell, g, = ¢,(£2,,) for cell .

3.7 The complete operator-form of the discrete ordinates equations

Combining the operator forms in sections 3.5 and 3.6.4, we get the complete operator-form of the

spatially discretized discrete ordinates equations,

Lap = MSDp + q, (3.50)
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henceforth referred to as the discretized DO-system. In this form the system not yet ready to solve

for 1) and requires special algorithms.

3.8 Algorithms to solve the discretized DO-system

The inversion of L in Eq. (3.39) can easily be performed if a scattering source is fixed and known
since the sweep operation inverts this operator exactly (not requiring iteration). When the scattering
source is included we need to solve the system in Eq. (3.50), however, by moving all the terms in
Eq. (3.50) containing ), to the left-hand side such that (L — M S D)1 = q, we have a system with
a matrix A = L — M S D that cannot be inverted directly using sweeping.

With A being a non-symmetric matrix the system can theoretically be constructed and solved
using the Krylov sub-space method called GMRES[30], however, there are two major difficulties
in doing so. The first is that the system, based on angular fluxes, can be of immense size with a
single Krylov-vector containing (Ng X NgX Nyoqes)-entries. Therefore, building the entire system,
or even a subset of it, could be prohibitively expensive i.t.o. memory. The second difficulty is
that the iterative process has a poor convergence rate since some of the eigen-values of A are
in the complex-plane. The GMRES method, operating on a fully constructed matrix, has never
been applied practically. Instead, a modified matrix-free GMRES method can be used involving
sweeping, which we will discuss in sections that follow.

Alternatives to the GMRES method include Algebraic Multi-Grid (AMG) methods, one of
which, the Approximate Ideal Restriction (AIR) AMG-method, has been successfully applied in
the solution of transport problems[36]. Such methods, however, still face the difficulty of having to
build the entire system. Additionally, the performance of AMG methods are still not comparable
to methods employing sweeps as stated in the conclusion of [36].

In the sections that follow we will discuss the two practical methods for solving Eq. (3.50)

namely Richardson-iteration and sweep-based GMRES.
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3.8.1 Richardson iteration

The classical method for solving the system in Eq. (3.50) is known as source-iteration[1], or more
commonly, Richardson-iteration. In this process the scattering source is lagged at iteration ({)

such that

L¢(6+1) _ MSD’(P(Z) +q, ¢(0) —0. (3.51)

At each iteration we essentially have the form of Eq. (3.39) where b = MSDvY + q. The

transport operator is inverted at each iteration (¢ 4 1) using sweeping,
P = ! [MSDW“ + q} . (3.52)

Additionally, the necessity to store 1/ can be negated by noting that qb(“l) = sz(”l) and directly

contributing to the flux moments in the form

D — Dyt — prt {]\/[qu“) + q]. (3.53)

“Y on a cell-by-cell basis, without necessarily' re-

where the right most terms directly build @'
quiring 1) to be stored across all cells, directions and groups.
Richardson iteration is a versatile method that can be implemented with little difficulty but can

converge slowly in problems that are scattering dominated (i.e., high o, to o; ratio).

3.8.2 Sweep-based GMRES

The sweep-based GMRES algorithm has been in practical use for a number of years dating back to

1991[37], after which numerous studies have been published [38, 39]. The method is as follows.

'For a given cell, the cell-by-cell system can be constructed for a subset of direction-group pairs spanning a subset
of all the directions as well as a subset of all the groups. This is normally done for machine related efficiency (aka
caching-effects) and will require the temporary storage of the associated angular fluxes.
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By manipulating Eq. (3.50) as follows

Ly — MSDvyp = q
multiply L™ —: 4 — L™'MSDyp = L™'q
(3.54)
multiply D —: D — DL™*MSDvyp = DL 'q

Dyp=¢: (I—DL'MS)p=DL 'q,

we get a familiar system-form A;¢ = by, where b, is computed with a single sweep, storing the
result in a flux-moment form. The application of the GMRES algorithm, in a matrix-free fashion,
then requires one to be able to only compute the action of matrix A4 on a Krylov-vector, v, as
Ayvi. The latter matrix-action is computed at each GMRES-iteration.

The matrix-action can be defined as
Apvi :(FAU(VK V) L Vi =V — Vi, Vi = DL_IMSVK> (3.55)

where Fy, is the function-analog of A,vyx and DL~'MSvy is equivalent to solving the system
Lap . = M Svi where (sz Vi D Vi = szK).

This algorithm, like Richardson-iteration, has the benefit of not requiring the storage of full-
size angular flux vectors since it operates on flux-moment vectors, vx. It also allows an effective
acceleration of convergence[38], as compared to Richardson-iteration, by using a Krylov-subspace
to project a solution that minimizes the residual at every iteration.

The size of the Krylov-subspace can be a topic for concern since computer memory can be
exhausted if too many Krylov-vectors are used to form the subspace. An apt solution to this prob-
lem is to use the restarted GMRES algorithm[30], which restarts the construction of the Krylov-
subspace after a specified amount of iterations, bounding the total memory requirement of the
algorithm. One needs to exercise caution, however, when specifying the iteration-limit before
restarting, since the algorithm can experience slowed convergence if the subspace is too small.

From experience gained, executing many transport simulations of scattering-dominated problems,
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we have learned that the iteration-limit should not be decreased below the range of 7 to 9. Any
limit below this hampers the algorithm’s ability to project a substantially improved solution at each
iteration, in addition to wasting an iteration every time a restart occurs. The latter occurs because
the residual is recomputed? at iteration (¢ + 1), if iteration (¢) incurred the restart, using the same

Krylov-vector as iteration (¢), and can comprise a significant fraction of the total iterations®.

3.9 Convergence acceleration techniques

There are many techniques to accelerate the converge rates of the algorithms discussed in section
3.8 and although it is beyond the scope of this text to explore all these techniques, we will briefly
discuss the two techniques applied to the DO code used in this research.

The first portion of acceleration is the within-group scattering acceleration, which can be ac-
celerated with a technique called Diffusion Synthetic Acceleration (DSA) [31, 32]. DSA operates
on the incremental change of the scalar flux between iterations of algorithms in section 3.8, and
essentially constructs a system based on the diffusion approximation, using the change in the scalar
flux as a source. This system is then solved to add another scalar flux increment, forming the new
iterative for the transport algorithm. An implementation of DSA, consistent with the spatial dis-
cretization used in this work, is called the Modified Interior Penalty (MIP) formulation of DSA
[33] and is implemented in the code used for this research.

The second portion of acceleration relates to group-to-group scattering, which can be prob-
lematic for problems scattering from lower energy groups to higher energy groups. The technique
employed in this research is Two-Grid Acceleration (TGA)[34] and functions similar to within-
group DSA with the exception that a single system is solved for all energy groups.

The combination of these techniques is employed as described in [35].

*Recomputing the residual requires A,V to be applied and therefore necessitates a sweep.
3 A single restart iteration can require 20% of the total iteration time if the restart limit is 5
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3.10 The fundamental drawbacks of the discrete ordinates method

Besides the spatial discretization, the angular quadrature applied as part of the angular discretiza-
tion of the multigroup LBE has a direct effect on the accuracy of the solution. This is because
the discrete directions used can result in a phenomenon known as ray effects. To illustrate this,
visualizations of the scalar flux distribution of a sample 2D problem is shown in Figures 3.3 and
3.4 below, for simulations using different amounts of azimuthal angles in a product quadrature.

Figure 3.3 is a pure absorber problem with a localized source and varying amounts of azimuthal
angles. The figure shows how ray-effects reduce with an increase in the number of angles.

In Figure 3.4, the dimensionless problem comprises a 5-unit square domain with an incident
1sotropic boundary source to left of the domain. The interior of the domain is largely alow o, = 0.1
material with no scattering, mimicking a low density material like air. Additionally, three square
volumes are within the domain, one volume with a high 0; = 4 and a scattering ratio of 0.1 (the
dark square to the most left), and two other volumes with o, = 1 and a scattering ratio of 0.1 (the
blocks barely visible in the bottom right of Figure 3.4). The mesh used to discretize the domain is
a square orthogonal mesh (40 x40 mesh cells), with all cells the same size (% X %).

As can be seen in Figure 3.4, the ray effects are visually prominent when only 16 azimuthal
angles are used and becomes indiscernible at 64 azimuthal angles. The visual change between the
32 and 64 azimuthal angle simulations is an indication of the problem area this research attempts

to address. The questions here are apparent:

e Visually the ray effects seem to be of no concern at 64 azimuthal angles, however, are they

still present and just not visually discernible?

e [s the simulation using 128 azimuthal angles more accurate than the 64 azimuthal angle

simulation given that there is no visible difference?
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Figure 3.3: Ray effects for a pure absorber problem with varying levels of angular discretization.
[Top left] 4 azimuthal angles. [Top right] 12 azimuthal angles. [Bottom left] 36 azimuthal angles.
[Bottom right] 108 azimuthal angles.




16 azimuthal 32 azimuthal
angles angles

128 azimuthal

64 azimuthal
angles

angles

Figure 3.4: Sample DO simulation showing visual ray effects for different amounts of azimuthal
angles in the angular quadratures.

The questions posed here are central to our mission. In large simulations, already using thousands
of directions, it is often not feasible to consider additional angular refinement (i.e., using even more
directions) to judge whether the value of a quantity-of-interest (QOI)* has changed. Additionally,
given the oscillatory nature of ray effects, the refinement may not capture a change in QOI at all,
falsely indicating that the angular refinement is sufficient.

The questions here also extend to the resolution of the spatial discretization. There could’ve
been a QOI within the dark block in Figure 3.4, that is within a flux field that is orders of magnitude
smaller than that outside the block. The spatial resolution of the mesh may not have been sufficient

to accurately capture the attenuation of the incident flux within the block, resulting in significant

4A QOI can be the scalar flux in an area of interest (including a point), a reaction rate in a given volume, or even a
visual distribution
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error deep within the block. This would be of immense concern if the mesh is already refined to
such a level that makes additional refinement prohibitive.
It is therefore clear that we require a means to ascertain the error in the transport solution

beyond traditional methods (i.e. successive refinement).
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4. THE RESIDUAL MONTE CARLO SOURCE SAMPLING

In the introductory chapter we developed the multigroup residual transport equation, Eq. (1.11),
which takes the same form as the regular multigroup transport equation in Eq. (1.8) except for
the replacement of the external source, ¢, and boundary incident angular flux, with the multigroup
residual, 7,4, as well as the replacement of the regular angular flux 1), with the angular flux de-
fect ¥pgy.

We recall that any solution to the multigroup LBE, Eq. (1.8), can at-best be an approximate
solution, 1;9. To assist with the discussions in this chapter we now repeat the definition of the

angular flux defect in Eq. (1.10),

Upg(x, ) = 1,(x, Q) — 1y (x, Q). 4.1)
We also repeat the multigroup residual transport equation,

- Vihpy(x, Q) + 044(x)¥py(x, 2)
Ng—1

= Z |:/4 Usg’—>g(x7 Q/'Q)ng’ (Xa Q/)dﬂl (4.2a)

g'=0

+ ry(x,Q), x € Dy,

Q- nop,Upy(x, ) =ry(x,9Q),  x€0D,,Qe{Q : Q-nyp, <0}, (4.2b)
and the definition of the continuum-form of the multigroup residual,

Ng—1

Tg(X, Q) = Z [/1 Usglﬁg(xa Q/'Qﬁgg’ (x, Q/)dﬂl + qg(x, Q)

g'=0

(4.3a)
— Q- Vi, (x, Q) — 015 (%), (x, Q), x € D,

re(x,82) = Q- nyp, (1/1”“()(, Q) — Py(x, Q)), x € 0D, 2 €{Q : Q-nyp, <0}. (4.3b)

g
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The transport problem defined in Eq. (4.2) can be solved in continuum-form using the Monte
Carlo method. The method detailed in chapter 2 however, only defined source sampling for sources
with strictly positive-weighted particles. This is problematic because the residual transport prob-
lem now uses r, which can indeed assume negative-values. Additionally, chapter 2 only defined
source-sampling for sources that are constant on a boundary-face or within a cell, both in space
and direction, and from Eq. (4.3) we can see that the residual will indeed vary both in space and
direction. We therefore require a source-sampling technique that is custom to 7.

At first one might be tempted to propose rejection-sampling on the entire residual source,
however, this will be problematic for several reasons. Firstly, r, is dependent on 5 independent
variables (3 in space, 2 in direction), requiring multivariate rejection sampling in a phase-space
domain that could potentially be very large. Secondly, recalling that unmodified rejection sam-
pling requires uniform sampling in the phase-space domain, an elaborate phase-space-dependent
bounding-function ! will have to be constructed to improve the sampling efficiency. This is because
r4 itself is dependent on v which can vary by orders of magnitude across space and direction.

An alternate option is to construct multiple nested CDFs, similar in nature to the CDFs detailed
in the source-sampling section of chapter 2, for boundary- and cell-sources, whereby we sample
the relevant source first, then the energy group, followed by the relevant element. Sampling within
an element would require a specialized algorithm since this aspect is the fundamental difference
(phase-space variation within an element).

Such a nested CDF would comprise firstly a discrete CDF to sample between the boundary
residual and the interior-domain residual, followed by a discrete CDF for a given residual-source’s
energy-group, finally followed by a discrete CDF for the elements constituting the respective
residual-source (either boundary-faces or cells).

The fundamental components of these CDFs would be the phase-space integrals for a given

group, of the residual PDF over a boundary-face or a cell. The problem of course is that we have

!Given a randomly sampled point, , in the domain of function f(x), a bounding-function, m(x), limits the
sampling range of f’, which is used to judge if a sample is rejected, i.e., when f’ > f(z), the sample is rejected.
Instead of sampling f in the range of f’ € [0, max(f(z))), the sampling is done in the range f’ € [0, m(x)), after
which an appropriate correction is made based on m(z).
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not yet defined a functional form for either the boundary-face- or cell-PDF. A candidate function,
i.e., Eq. (4.3), is not of the proper form for these PDFs since it can be of negative value, and is not

normalized.

4.1 Using the absolute value of the residual source as a source PDF

Using the absolute value of Eq. (4.3), |r,|, would allow us to fulfill the strictly-positive requirement
of a PDF. Under the perspective that the residual source can be split into a positive- and negative-
source, v and r~ respectively, the absolute value here is suitable since the Monte Carlo method is

subject to superposition such that

Ypg(x, Q) = V5, (x, Q) — ¥y, (x, Q) 4.4)

where a mapping, via the solution of Eq. (4.2) for which r, — 1p,, is made such that

rtes ottt > 0,45 >0, and
g Dg - "g Dy (4.5)

ry | = ¥p, i1y < 0,95, >0,

where

lrgl =y + |1, | (4.6)

The strictly positive character of |r,| still requires normalization for which we need the relevant

phase-space integrals over individual boundary-faces and cells.

4.2 Computing phase-space integrals of the residual source for boundary-faces and cells

The relevant phase-space integrals, to normalize the source defined by |r,|, take the form

/ 74(x, )| dS2dV, and (4.7a)
D. J4rw
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/a [ mx oy ania 4.7b)
c,f ™

the latter which is only for a cell-face pair, (¢, f), on a boundary (i.e., x € 9D;).

4.2.1 The angular nature of the approximate solution ¥

We now turn our attention to the nature of the available angular information, in order to perform
the angular integral portion of Eq. (4.7). At first one might think to use the angular flux as
it manifests in the discrete ordinates method, i.e., the discrete angular fluxes at the quadrature
directions, {tg, : n € [0, No—1]}, for which we can use the matching quadrature rule to integrate
|r4|. The problem with this however, is that these angular fluxes are rarely stored for practical
problems, necessitating a different approach.

Another means to obtain angular flux information is to use the flux moments, {¢g, : h €
[0, N;,—1]}, used for the DO scattering source and typically stored, whereby an angular flux is
reconstructed using the harmonic expansion of the angular flux, i.e., using Eq. (3.45). This unfor-
tunately decouples the approximate solution from the actual angular flux used in the relevant DO
simulation because the truncated expansion is a poor representation of the angular flux solved in
the cell-by-cell system, Eq. (3.31). This then prevents us from relating 1/p, to the 1; produced in
the DO simulation.

One solution devised in this research is to only use the~scalar flux, gggo = gzggh : h = 0, produced
by the DO simulation. We then assume that zﬂg (x,Q) = (/5940—7(:(;). The logic, of why we can do this,
follows from the fact that the Monte Carlo method cannot produce an exact representation of ¢ p,,

only a discretized representation. Conversely, it can produce the exact value of ¢ p, (in the limit of

N,—00), defined as

bpg(x) = [ Ypg(x, Q)d, (4.8)

47
via track-length estimation. Therefore, ¢p, has the same relationship with gz;go, as ¢ p, has with a

full fidelity zzg. We will henceforth refer to the zeroth moment ¢go = ¢4, : h = 0 as just the scalar
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flux ¢,.

Using only the scalar flux from the DO simulation is the solution we will use for thi~s research,
and all further discussions are based on the underlying assumption that @Eg(x, Q) = %ﬂ}_{). We
have left the first approach, i.e., storing the DO simulation’s discrete angular fluxes, as further work

that needs to be characterized w.r.t. performance and overall memory footprint.

4.2.2 The finite element nature of the approximate solution 1;

In the previous section we introduced the assumption that @/;g(x, Q) = . We will now analo-

&g (x)
AT
gously refer to v, as ¢, for further discussions.

Depending on whether the finite element representation of gzgg is based on a continuous- or

discontinuous FEM, the form of the residual integrals on specific cells will be different.

4.2.2.1 Continuous representations of (/Eg

For continuous representations of gz;g the solution is expanded into weighted basis functions as

Np.p

Gg(x) = Y dgibi(x), x €D (4.9)
=0

where the weights, gEgi, are discrete values obtained from solving the discretized DO equations,
N, p is total number of basis-functions or nodes in the domain, and the basis-functions, b;(x), are
based on the nodes of the problem. For a continuous FEM the nodes are shared between cells, for
example, using the piecewise-linear basis functions defined in appendix B, the nodes are on the
vertices and the basis functions are non-zero within the cells that share the relevant vertex.

For continuous representations of gEg, the residual takes the same form as Eq. (4.3) but with

the substitution of the angular approximation and the FEM-representations of 1/;9, still needed. We
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start the substitutions first with the scattering source,

Ng—1

> { / Tagr g (3, - Q)ihy (x, ) dQY |, (4.10)
4

g'=0

where we expand the scattering cross-section, o,y _,4, using Eq. 2.34 and substitute the approxi-

mation for 1/;9 = f—;, the latter which cancels or higher moments of scattering, to get

Ng—1 3
1 ! ’
> Ul EUSQ'—>970(X)PO<NS>%4—;_X)CZQ:|
gl:o 4.11)
| Nt )
= 5 2 |l 09
g’'=0

noting that ps = €' and Py(u5) = 1. We then complete the substitutions in the other terms, for

which the residual is then

(4.122)

) 1 -~
74(%, ) = Q- nyp, (¢;”C(x, Q) — Egzﬁg(x)), x € 0D, e{Q : Q-nyp, <0}. (4.12b)

4.2.2.2 Discontinuous representations of gz;g

For discontinuous representations of (;NSg the solution is expanded into weighted basis functions as

Nb,c

Og(x) =D dyeibi(x), x €D, (4.13)
=0

where the weights, <5gm-, are again discrete values obtained from solving the DO equations (this

instance being specific to a cell ¢), IV, . is the number of basis-functions or nodes on cell ¢, and
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the basis-functions, b;(x) are based on the nodes of cell ¢. For a discontinuous FEM the nodes
are not shared between cells, but each cell has its uniques set of nodes, for example, using the
piecewise-linear basis functions defined in appendix B, the nodes are on the vertices and the basis
functions for cell c are non-zero only within cell c.

Discontinuous representations require a modification to the residual that is related to conserva-
tion. Since the solution-representation is discontinuous at the cell boundaries we have to account
for the J-function derivatives now present, the residual therefore is the same as in Eq. (4.12) but

with an additional term at all cell boundaries representing an upwinded-scheme,

| Ve )
Tg(X, Q) = E Z |:Usg/—>g,0(x)¢g’ (X):| + QQ(Xv Q)
7=0 (4.14a)
1 ~ 1 -
— EQ Vo,(x) Eatg(x)gbg(x), x € Dy,

1 - 1 -~
re(x, Q) =Q - nf,c(ggbév - E%(X))’ x €0D.;, 2 €{Q : Q-np.<0}. (4.14b)

. 1 -~
re(x,2) = Q- ngp, <w;”c(x, Q) — E%(X)), x € 0D, 2 €{Q : Q-nyp, <0}. (4.14c)

where gzzév is the approximate solution in cell /V, which is a neighbor to cell ¢ at face f (of cell ¢)
where 2 - ny . < 0, and with ny . being the face normal.

Note here that this discontinuous formulation can also account for representations where ¢ is
constant within a cell, i.e., cell-averaged values or, in other words, where there exist only a single
node (node 0) in the cell and an associated unitary basis-function being constant over the entire

cell, by(x) = 1.

4.2.3 Integrals of the absolute value of multivariate functions with Monte Carlo integration

The multivariate nature of equations (4.12) and (4.14) embeds a great deal of difficulty in the
endeavor of computing integrals of the absolute value of these equations. The integration over

angle-space, in particular, makes such integration unwieldy.
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A rather simplistic solution to this problem is to use multivariate Monte Carlo integration[40].
This method samples the individual domains, D;, of the elements of a set of independent variables

{y € D, : y; € D;}, atotal amount of NV, times to obtain the average value of a function f(y) as

N
1 Y
favg,y = E Z f(YJ)a (415)
7j=1
and with the domain volume
Vy = / dy, (4.16)
D

Y

the integral of the function can be approximated with
Iy = | f(y)dy =V favgy- (4.17)
Dy

Following the law of large numbers this approximation becomes exact in the limit of N, — oo
and follows an uncertainty profile similar to that of tallies (see chapter 2). Using the central limit

theorem it can be shown[40] that the standard deviation, o . of I follows the approximation

O—fa'ug

VN,

O'If%‘/;/

(4.18)

where o, is the unbiased estimate of the standard deviation of fug,y-

With Monte Carlo integration we can evaluate volume integrals as

N,
ATV, —
/ Iry(x, Q)| dVdQ ~ ¥ > Jrg((x,2);)], (4.19)
4w J D, ¥ =1
and, since the method extends well to area-integrals, we can compute area integrals in the form
Ny
TA
[ ] dade = 323y, (4.20)
7w JOD Yy j=1

Given that these integrals provide approximate values, we require some characterization of the
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associated error. Logically, this relates to the concern for how large N, must be in order for the

uncertainty of these integrals to not have a substantial effect on the uncertainty of ¢p,.

4.2.3.1 Analyzing multivariate Monte Carlo integration of the absolute value of the residual

One way to analyze the effect of the uncertainty of a given source-group-element set is to evaluate
its effect as a perturbation. For example, suppose that the most fundamental discrete-value of
a nested residual-source CDF is R = {R; : ¢ € [0, Np—1]}, where N, is the total number of
fundamental discrete-values. Also, suppose that these discrete values map to a set of discrete scalar
fluxes, ¢, as R il ¢p via a Monte Carlo process using /N, number of source particles, where
ép ={op; : 1 €[0,Ny]}, and N is the total number of angular flux unknowns. In function-form

this can be written as

bp = FrR 3 ¢p) 4.21)

where F is the function-analog to the Monte Carlo process using a residual source. The sensitivity

of ¢ to changes in R can be determined from the relationship
A¢p = J(R) AR (4.22)

where J is the Jacobian-matrix, evaluated at a given R, with entries

dépi
OR;

These entries cannot be easily predicted since the influence of a given I?; source-element on a
flux variable is governed by complex physical processes, i.e., the particle transport-process which
includes the crossing of material interfaces and stochastic material interactions.

An approximation of these entries can be found by using a finite difference approximation such
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that

aQsz‘ oy ¢]L)z _ ¢Dz‘ (4 24)
8Rj €; .

where ¢p; € ¢p and gbfji € qub = Fr((R+ejel™) il qub). The vector ¢]b is the flux-solution
given a change ¢; of the j-th component of R. The vector e is the same dimension as R,
with all entries zero except for the j-th component, which is 1. Symbolically, e :{efj NS
[0, Np—1], ef I = 0ij } The coefficients ¢, is taken as the predicted standard deviation of the Monte
Carlo integration (see Eq. (4.18)), applied to compute R;.

The development of the Jacobian requires a single primary simulation for the computation of
¢ p. followed by Ny simulations to compute the vectors {¢}, : j € [0, Ng—1]}. With the
Jacobian in-hand we can stochastically sample a number of AR vectors, each randomly perturbing
all elements R?; within an interval about 1?; defined by the standard deviation of the integral used
to estimate Z;. At each AR sample, we compute a respective A¢, via Eq. 4.22 which allows us
to infer the confidence intervals for ¢, on the hand of the Monte Carlo integration process. We
shall denote the integration related confidence interval for value ¢p; € ¢ as ¢p; £ alDf ‘. This
confidence interval is different from the statistical uncertainty related to the process as shown in
Eq. (4.21) which we shall denote as ¢ p; + 0. The integration related uncertainty is then deemed
unacceptable if o7 > o .

Clearly, the additional Nz Monte Carlo simulations add considerable cost to the goal of only

obtaining ¢ . We therefore never apply this analysis technique in routine simulations.

4.2.3.2 Batches of particles as a means to ascertain the effect of source uncertainty

In section 2.9 we introduced the concept of batches of simulated particles. We also noted that, at
the conclusion of each batch, there is an opportunity to manipulate data if needed. Reapplying the
Monte Carlo integration of the residual source, at the conclusion of each batch, provides a means

to include the integration uncertainty into the uncertainty of the tallies. To comprehend this aspect
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consider that the batch value for each tally is given by

1 X

orp =

where V,,; is the total number of particles simulated at the end of batch b. If we treat ¢7 as

another random variable, sampled Nyq¢ches times, then the estimation of the variance of ¢, is

Nyatches
1 ~
82 = E ;— 2 4.26
¢T,b Nbatches - 1 b =1 (¢T7b ¢T’b) ( )

where (%T,b is the estimated batch mean for ¢, computed as

1 Nyatches

brp = D1y (4.27)

N,
batches b—1

From the expression for the variance we can then derive a practical form

Nb tch 5 ~
2 o atches 2
Sors = N 1|90 O1s: (4.28)
where
— 1 Nbatches
v o 4.29
¢T7b Nbatches I; ¢T7b ( )

We then use this variance, with sufficient amount of batches, to determine the uncertainty

1

incurred by the Monte Carlo integration, on the batch-average variance, ; .
batches T,b

4.3 Building the residual source CDF

We now discuss how a nested CDF is constructed to select a specific cell or cell-face pair to sample,
given that the residual source can take on a cell-by-cell nature and a surface nature. We will refer
to the residual source based on cells as the interior residual source, and the residual source based

on cell-surfaces as the surface residual source.

77



We start by computing phase-space integrals of the absolute value of the residual for each cell
¢, from Eq. (4.19), and each cell-face pair (c, f) (if appropriate), from Eq. (4.20). We do so for

each group g. Therefore,
47V,

Rinterior —

((x, €);)| (4.30)

is an element of th group-wise interior residual CDF for group g, cell c. The surface elements are

N,
sur face WAC, -
Rgc,ff - Nyf Z [rg((x,€2);)] (4.31)
j=1

but are only computed, for a given cell-face pair, if appropriate.

For both the equations above, r, is defined either by Eq. (4.12) or Eq. (4.14) depending on
whether the finite element representation of o s respectively continuous or discontinuous. For the
remainder of this discussion, we will assume that there exist an Rzg’}f ““_term for each cell-face
pair, with only the appropriate pair being non-zero, even though in practice we remove these terms
from the CDF to improve performance.

interior

We now build the element-wise interior residual source CDF, Cy , and element-wise surface

residual source CDF, cf;“"f ace as

Neens—1
Rmttfz";lor — Z R;rétemor (4.32a)
c=0
. ' c Rinterior
ginterior _ Z(Rmm) e [0, Noa1] b (4.320)
c g,total
and
(‘ells_l Nf C_l
Ryl = Z Z Ro7e (4.332)
o Rsurface
gmsace _ {5~ E( ) DN DNy @3
R
c=0 f=0 g,total

Next, we build the group-wise interior residual source CDF, ¢¢"" and group-wise surface
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residual source CDF, ¢svrface ag

Ng—1
Ry = 3" R (4342
g=0
, ' g Rinterior
cinterior {Z (—Rfj;i‘;lor) : g €10, NG—H} ; (4.34b)
g=0 total
and
Ng—1
Rygi™ = > Ryl (4.352)
g=0
’ sur face
9 (R
Csurface _ Z( g,total ) . g/ c [O;NG_]-] . (435b)
— Rsurface
9=0 total
Finally we build the top-level CDF, c¥, as
1
R . .
c = - - ~ur face Rmtemor’ Rsurface} (436)
Rzzfs{zor + RtotaJ; { total total

which only has 2 elements.

The top-level CDF, cft, allows sampling between the surface sources (cell-face pairs) and cell
sources. The group-wise CDFs, c¢i™¢"" and c**"/e¢ allows the sampling of the relevant group.
The element-wise CDFs, c_f]”te”” and c_f]mf aceallows the sampling of a given element in a respec-
tive CDF, being either a cell or a cell-face pair. With this nested CDF constructed we can sample
an individual cell or cell-face pair, however, we have not yet resolved how to sample within these

elements, which is the topic of the next section.

4.4 Rejection sampling the residual within a cell or on a cell-face pair

The complexity of the residual within a cell or a cell-face pair warrants rejection sampling which
requires us to sample the range of |r,| on the relevant element at a randomly sampled pair (x, €2).
The absolute value bounds the lower limit of this range to zero, however, we still require the upper

limit. Now, in the process of performing the Monte Carlo integrations one can determine and store
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an approximation of the maximum value of |r,(x, )|, which we will denote as

max(|ry(x, 2)])y """, and (4.37a)
max(|rg(x, Q)| . (4.37b)

Since these are approximate values, they too are sensitive to the number of integration samples, [V,),
used during the Monte Carlo integration. This sensitivity is then accounted for in the same fashion
as we account for the uncertainty of the Monte Carlo integrations, i.e., by rebuilding the residual
source CDF after the execution of each batch, thereby obtaining different maximum values.

With the range of |r,| known we can apply rejection sampling to a given cell or cell-face pair.

4.4.1 Rejection sampling within a cell

We start the process by sampling a random position, X, within a cell. This is done trivially within
a 1D element. In 2D and 3D cells the cell is first split into its constituent primitive cells, i.e.,
triangle for 2D polygons and tetrahedrons for 3D polyhedrons. A primitive constituent cell is then
sampled by building a discrete CDF from the constituent volumes/areas. Finally, a position within
a primitive constituent cell is sampled as shown in Figure 2.1. With this position established we

evaluate the finite element representation of the approximate solution to get, at X, its values,

Ny —1
¢g(XR) = Z Pgeibi(Xr), Vg, (4.38)
i=0
for all groups and then the gradient,
Ny —1
Voy(xr) = Pgei Vbi(XR), (4.39)
i=0

for group g only. We then isotropically sample a direction, Qg, by sampling ¢ € [—1,1) and

@ € [0,2m).
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We now have all the components required to evaluate Eq. 4.12a or Eq. 4.14a, depending on
the FEM used to represent ¢, from which we obtain 74 (xz, Qz) and thus |r,(xg, Q). In order to
determine if we accept or reject the sampled position and direction we uniformly sample the range

range
TglR , dS

of |ry|. Using a pseudo-random number, 5, we obtain a range sample,

ol = B max(fry (x, ) e (4.40)

A sampled pair (xp, Q) is accepted if |ry| 5" < |ry(xr, Qr)|-

If a sample is accepted we now have to account for the actual sign of r,. One method in
which to do this is to assign a marker to the created particles, allowing it to contribute only to
tallies associated with positive values of r, if 74(xg, Qr) > 0, or to tallies associated with the
negative values of r, if r,(xg, 2z) < 0. This method is consistent with the superposition principle
discussed in section 4.1.

Another method for accounting for the sign is to assign to the particle a unity-weight with the

sign the same as r,(xg, 2r). In other words the particle weight,

w = sgn(ry(xp, Qr)), (4.41)

is assigned after which the particle can contribute to ordinary flux tallies, i.e., tallies not selective
torTorr.
One can of course also do both, however, storing three sets of multigroup nodal ¢ solutions

for routine simulations might require a lot of memory.

4.4.2 Rejection sampling on a cell-face pair

Sampling the position on a cell-face pair is essentially the same as for a cell. We decompose a
face into its constituents and sample first which constituent element to use, and then we sample a

position within that element.
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With a position, xg, sampled we need to evaluate the approximate solution, gz;g as we did for
a cell, but on a face we require this value only for group g. If the face forms a cell interface, and
if the FEM representation of ¢ is discontinuous, then we also need to evaluate the approximate

solution of the neighboring cell, gz;év . Therefore,

Ny .—1
¢9(XR) = ¢gcibi(XR)a (442)
1=0
and
NbN 1
oy (xr) Z Panibi(Xr). (4.43)

We then sample the cosine-weighted incident direction, {2z, by sampling, in a reference frame
along the negative of the face normal, ;> € [0,1) and ¢ € [0, 27). With this direction established,
and if the face is on a boundary, we can obtain the incident angular flux w;nc(x R, QR).

We now have all the components required to evaluate the surface residuals in Eq. (4.12) or Eq.
(4.14), depending on the FEM used to represent , from which we obtain re(Xg, Qr) and thus
|74(xR, Q2g)|. We then sample the range of the residual as

‘rg range __ HR max(]rg(x, Q)Dsurface. (444)

ge,f

range

A sampled pair (xpg, 2z) is accepted if |r,|z"?" < |r,(xgr, Qr)|. We then apply the same sign-

accounting methodology used for a cell.

4.5 Summary of our residual Monte Carlo source sampling method

We now summarize the processes involved in the sampling of the residual source. We start with
the CDF-construction phase which builds a nested CDF, that can be sampled to identify a cell or
cell-face pair, at a specific group g, to be further subjected to sampling. We then summarize the

process of actually sampling the source.
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In both of these phases we apply a fundamental process which is the sampling of the residual

source at a random position, x,,, and direction, {2, and is described in Figure 4.1. We now refer to

this process in the detail of the two phases.

Given cell ¢

»i
«

=

Sample p € [0,1)

x;=pxo+(1—p)x1

Rejection sample
{mnel0,1) : ptn<1}
Xi=(2— p— %o
+px) + X2

wEE(0,1) 2 ptntE <1}
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Figure 4.1: Schematic representation of the processes involved in obtaining a residual source sam-

ple.

4.5.1 Construction of the nested CDF

The construction process of the nested CDF is done at simulation initialization time as well as at

the end of each batch. The process is as follows:
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1. For each group, g, in the problem:

(a) For each cell, ¢, in the problem:

i. Sample the cell-interior residual NV, times using either Eq. (4.12a) or Eq. (4.14a),

interior

and Figure 4.1. Then compute R**"°" from Eq. (4.30), and determine max(|r,(x,
g p gc q g gc

from the residual samples.
ii. For each face, f, of the cell:
A. If a DFEM representation for cﬁg is not used, and face f is not on a boundary,
skip this face.
B. Sample the cell-face residual NV, times using either Eq. (4.12b) or Egs. (4.14b)

and (4.14c), and Figure 4.1. Then compute R;ﬁ;f ““ from Eq. (4.31), and

sur face

determine max(|r,(x, Q)Dgc,f

from the residual samples.

interior interior . sur face surface
(b) Compute R{"577" as the sum of Ry; : Ve, and R 5, as the sum of R\ 75

Ve, f € [0, Nf,c—l).

(c) Compute the interior element-wise CDF, cgme”o”, from Eq. (4.32b) and the surface

element-wise CDF, c;”f @ from Eq. (4.33b).

interior interior . sur face sur face
2. Compute Ry, as the sum of R 50" : Vg, and R, ,,"" as the sumof R, 5" : Vg.

3. Compute the interior group-wise CDF, ¢™*"°" from Eq. (4.34b) and the surface group-wise

CDF, c**/ac¢ from Eq. (4.35b).

4. Compute the top-level CDF, ¢, from Eq. (4.36).

4.5.2 Sampling the residual source

The sampling phases is as follows:

1. Sample the top-level CDF, ¢, to identify whether a the surface- or interior residual source

is to be sampled.
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2. If the interior residual source is to be sampled, sample the group-wise CDF, ¢ to

identify group g.

(a) Sample the element-wise CDF, cz”te”"r, to identify a cell c.

(b) Sample the cell-interior residual, 7,4, using either Eq. (4.12a) or Eq. (4.14a), and Figure
4.1.

(c) Sample the cell-interior residual range, |r,|x"’¢, from Eq. 4.40.

range

(d) Reject the sampled residual if |ry|z"9 > |r]|.

(e) If the sample is accepted, then flag and/or weight the particle with the sign of r, and

pass the particle to the transport process.

sur face

3. If the surface residual source is to be sampled, sample the group-wise CDF, ¢, """, to
identify group g.
(a) Sample the element-wise CDF, c;Wf ace_ to identify a cell-face pair, (c, f).

(b) Sample the cell-face residual, r,, using either Eq. (4.12b) or Eqgs. (4.14b) and (4.14c¢),

and Figure 4.1.
(c) Sample the cell-face residual range, |r,|"?¢, from Eq. 4.44.
range

(d) Reject the sampled residual if ||z > |ry|.

(e) If the sample is accepted, then flag and/or weight the particle with the sign of r, and

pass the particle to the transport process.
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5. SIMULATIONS

We present in this chapter problems and associated simulations that can be used to compare the
performance of the Monte Carlo-method using a residual source, which we refer to as the Residual
Monte Carlo (RMC) method. The performance of the RMC method will be related to the standard
Monte Carlo method (SMC), as described in chapter 2. The SMC method solves the same problem
(i.e., geometry, boundary conditions, and sources) as the method that generated the approximate
solution ¢. In contrast, the RMC method solves a similar problem, with the difference being the

source-definition.

5.1 Definitions

5.1.1 Quantity of Interest (QOI)

For a given problem there can be one or more specific quantities constituting the need to simulate
the given problem. Such quantities can range from simply obtaining a scalar flux distribution over
the entire domain, to the scalar flux in a particular volume or on a surface. Any quantitative or

qualitative quantity can therefore be called a Quantity of Interest (QOI).
5.1.2 Simulation load

The simulation load refers to the required number of source particles, N,, to be simulated in order
to achieve a specific QOI-uncertainty. Since most of the QOls, in the problems considered in this
research, are tally-based, the required uncertainty has a relationship with the number of source
particles that follows

0" = — 5.1

where C'is some constant, specific to the tally and problem under consideration, o is the uncer-

tainty of the QOI value, and ¢ is the standard deviation of the QOI value.
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5.1.3 Efficiency n* ~*

Given simulation X with N;( number of source particles producing a value for a QOI with an un-
certainty 0. The required amount of particles, N;( . to achieve an uncertainty (for the same QOI)
of 0% produced by simulation Y, can be determined from the ratio of the respective uncertainties

and load factors as

(712, C N;(
sz(’
therefore,
X/ Xag(
Ny =N, 2 5.2)
%

The efficiency, n¥ =, is then analogous to the ratio of source particles required to achieve this

change in uncertainty, and is then

NX' 52
nY—>X — ZVPX — o__;( (53)

5.1.4 Source particle Sampling Time 57’y

For simulation X, the average time required to sample a million source particles, units |s per million].
5.1.5 Source particle Transport Time 777y

For simulation X, the average time required to transport a million source particles, units [s per million].
5.1.6 Source particle Total simulation Time 77’y

For simulation X, the average time required to sample and transport a million source particles,
units [s per million].
5.1.7 Overall effectiveness Y 7%

If two Monte Carlo methods, X and Y, determine uncertainties for the value of a QOI, a_%( and

052/, using the same amount of source particles, simulated at rates 7"y and 77y, then the overall
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effectiveness of simulation Y over X is the product of the efficiency, n¥ =%, and the ratio of TT’x

to 1T"Ty, such that

T
EY2X g YoX X 5.4
T, (5.4

5.1.8 Key Performance Indicators (KPIs)

For all the simulations that will be presented in the sections that follow we will have performance
indicators that are common to each scenario. These indicators will be called Key Performance

Indicators (KPIs) and are as follows.

1. The standard deviations, oy and ogpc, of the value of a QOI. This is a reflection of the

uncertainty in the value of the QOL.

2. The efficiency of the RMC method compared to the SMC method, n#M¢=5MC  This is a
measure of the "per source particle" efficiency of a given method. It is the factor by which
the SMC simulation must adjust NV, to achieve the same uncertainty, o2, as that achieved in

the RMC simulation.

3. The source particle sampling time, STryc and STy . This measures the efficiency of the

source sampling technique.

4. The source particle transport time, 7'rTry ¢ and T'r1sp;c. Since both methods use the same
transport algorithms this KPI is a measure of the relative distribution of the source (similar

sources will have similar transport times).

5. The source particle total simulation time, T Tryc and TTsyc. A measure of the overall

speed per source particle. It is the sum of the source sampling time and the transport time.

6. The overall RMC effective compared to the SMC method, EfM¢—=SMC - A combination of

the "per particle" efficiency, and the overall speed gives the overall effectiveness.
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5.2 Problem 1 - One Dimensional, homogeneous

Consider the problem as shown in Figure 5.1, which shows a 1D slab with an incident boundary
condition on the left boundary. The material is homogeneous with a scattering ratio of 0.5. The
QOI for this problem is the right-most scalar flux.

For this simple problem we investigate several aspects of the RMC method. We direct the
reader to Figures 5.2, 5.3 and 5.4 which will be in the scope of our discussions in this section.
Each figure has two columns or sides. The left column/side displays scalar flux profiles whereas
the right column/side displays scalar flux defect profiles. The scalar flux profiles have one profile,
determined with SMC, and another computed from a DO simulation (i.e., ¢), using varying angular
discretizations and a 20 cell linear DFEM spatial discretization. Quantitative data related to these

figures is contained in Table 5.1.

Incidentllsotropic Source

wa’D _ 1
/ 4r - Exiting flux (QOI)

| |
| |
| ) U
| |

Figure 5.1: One dimensional homogeneous material problem geometry.

The first aspect we want to discuss is the reduction of the RMC method to the SMC method
when a zero approximate solution is provided (¢ = 0). In this case the RMC’s scalar flux defect
should exactly recover the SMC solution, both in value and uncertainty, because the source terms

are the same (from Eq. (4.3) with ggg = 0). The left side of Figure 5.2 shows the scalar flux,
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computed with SMC, and ¢ = 0. The right hand side shows the scalar flux defect computed both
using the SMC scalar flux solution (¢p = ¢ — 45) and scalar flux defect using RMC, from which
we can see that both methods produce the same scalar flux defect.

The first row of Table 5.1 contains the related KPIs. It firstly shows that the QOI variance is
approximately the same for the RMC and SMC methods. This is a good indicator that the methods
are solving an identical problem, which it should. Secondly it shows that the source sampling
time for SMC is far less than that for RMC, which is not surprising since RMC uses rejection
sampling whereas SMC uses the process in Figure 2.1. The transport time for the two methods
is approximately the same, indicating again that the source distribution is equivalent. The total
source particle simulation time directly reflects the increased sampling time of RMC, indicating
that overall the RMC method is slower. Finally, the overall effectiveness, &/ < 1, shows that,

because of the increasing sampling cost, RMC is not a good choice when g% =0.

l — DO
\ --- sMC
ol 0.5
\
1
|}
| “ 0.4
\ ¢ =
\ g 4
\
0.3 1 \
) : 503
AY
AY
\
. . 0.2 1
\
hY
\
Y
\\
0.1 p -
s e 1 0.0
0 . : - M 5 0 1 2 3 4 5

Position Position

Figure 5.2: Scalar flux solutions and computed defects for problem 1. Here, ¢ was taken as zero.

The next aspect under consideration is the effect of different representations of o. Graphical
representations, for gg obtained from Sy angular quadrature- DO simulations, is shown in Figure

5.3 and Figure 5.4. Figure 5.3 shows results for a discontinuous cell-constant, (0, representation,
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as well as a discontinuous linear, (1, representation, whereas Figure 5.4 shows results only for a
continuous ()1 representation'. The relevant performance data is shown in Table 5.1 where rows 2
to 4 are for the DO simulations using an S5 quadrature, and rows 5 to 7 are for the DO simulationns
using an Sg quadrature.

The KPIs show that the efficiency, n#M¢=SMC for a given angular quadrature used, is lowest
for the discontinuous ()0 representations and the highest for the continuous ()1 representations.
This trend is the same for both the S; and the Sy quadrature. The timings show that the RMC
method has considerably higher sampling times as compared to SMC (for all configurations) but
with no observable trend when comparing the transport times. The overall effectiveness factor, £,
shows that in-general the Sg angular quadrature performed better than the S5 angular quadrature.
This is not surprising since we hypothesized, in the introduction, that the RMC method should be
able to produce a QOI-uncertainty much lower than that of SMC if the true defect is much smaller
than the tally value. The latter is indeed the case because the defect in the Sg solution is much less

than that in the S, solution.

!Obtained from the discontinuous Q1 solution by taking nodal averages
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Figure 5.3: Scalar flux solutions and computed defects for problem 1. The top 2 plots are for
¢ being a cell-constant representation, 0, computed from a linear discontinuous DO simulation
with an Sy quadrature. The bottom 2 plots are for ¢ taken directly as the linear discontinuous DO
solution.
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Figure 5.4: Scalar flux solutions and computed defects for problem 1. Here, ¢ is a linear continuous
representation, ()1, computed from a linear discontinuous DO simulation with an S, quadrature.

Table 5.1: Key Performance Indicators for problem 1 using different approximate solutions, o, as
input to the RMC method. All Monte Carlo simulations here were performed using 107 source

particles.
QOI std. dev Efficiency Sampling Time Transport Time Total Time Overall effectiveness
- STsmc TrTsyc TTsyc
QoI iy nEe G STy TrTrmc | TTrmc | Rate ratio | ERMC-SMC
[s per 10°] | [s per 10%] | [s per 10°]

Right-most cell 7.734E-06 0.219 1.649 1.868

$=0 7.669E-06 1.017 0.913 1.766 2.679 0.697 0.709
Right-most cell -

$ Q0 S2 7.770E-06 0.991 1.181 1.596 2.778 0.673 0.666
Right-most cell -

$ Q1 Disc. S2 4.614E-06 2.809 1.370 1.442 2.813 0.664 1.866
Right-most cell -

$ QI Cont. S2 4.612E-06 2.812 1.382 1.411 2.793 0.669 1.881
Right-most cell -

$ Q0S8 6.787E-06 1.298 1.254 1.522 2.776 0.673 0.874
Right-most cell <

$ QI Disc. S8 2.926E-06 6.985 1.387 1.390 2.778 0.673 4.698
Right-most cell -

$ QI Cont. S8 2.888E-06 7.170 1.396 1.619 3.015 0.620 4.442
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One particular observation to make, is that the discontinuous )0 representation of the approx-
imate solution for the S, quadrature has an efficiency less than 1, and is not much better for the
Sg quadrature (not enough to overcome the source sampling cost). This observation is particularly
interesting, prompting further investigation. The ()0 representation was used before in [41], a con-
ference article, but the authors did not detail the same KPIs as we do here. We argued that the
inefficiency could only be explained by the superposition principal of the positive- and negative-
valued, ™ and r~, respectively. For a more in-depth investigation we then split the respective
solutions into positive- and negative-contributions, shown in Figure 5.5. The left side of the figure
shows the results for the discontinuous ()0 representation and the right side shows the results for
the continuous ()1 representation.

The source of the inefficiency is clearly seen in this comparison. The magnitude of ¢}, and
¢, individually impact their absolute uncertainties (as compared to their relative uncertainties)
and since the ()0-based RMC solution introduces large positive and negative sources (at the cell
interfaces) the associated defect solutions are large, even approaching the magnitude of the solution
itself. It is clear that the continuous ()1-based RMC solutions have much reduced magnitudes and

therefore reduced absolute uncertainty resulting in the better efficiency.
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Figure 5.5: RMC defecg, using a discontinuous ()0 representation for 45 [Left], and a discontinuous
@1 representation for ¢ [Right], with contributions split into positive and negative components.
Both solutions were obtained with a DO simulation using an S, angular quadrature.

In this comparison we did not show the discontinuous (Q1-based RMC solutions since it very

closely represented its continuous counterpart. It did however point to the efficiency reducing ef-

fects of the cell-surface discontinuities. It would therefore be beneficial if we used a continuous

representation for the approximate solution for all our further investigations, with the only surface

based source terms involving the boundaries. Fortunately, for any discontinuous approximate solu-

tion provided, which we shall denote with ¢*, we can easily compute a continuous representation

by taking nodal averages, which will then be used as ¢. The RMC obtained defect can then trivially

be related to the original approximate solution as

where ¢7, is the defect of the original discontinuous approximate solution.

The overall insights gained in this section are as follows:
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e The RMC method correctly reduces to the SMC method when ¢ =0.

e Discontinuities in ¢ hinder the efficiency of the RMC method because it increases the magni-
tude of the respective positive and negative defect solutions, without affecting the net defect

solution.

e A continuous ¢ should be constructed if the supplied approximate solution is discontinuous

in order to minimize discontinuities. The discontinuities at the boundaries are unavoidable.

e The RMC method’s effectiveness increases as ¢ approaches the true solution but it has a
lower bound, dictated by the increased source sampling cost, where SMC will be more ef-

fective.

5.3 Problem 2 - One Dimensional, multi-material

Consider the problem as shown in Figure 5.6, which shows a 1D slab comprising three different
materials. The material to the left is pure absorbing, o, = 0, but with a homogeneous isotropic
source of strength 10. The middle material is a pure scattering material, o; = 0.2. Finally, the
material to the right mimics a zero-scattering, low-density material, with oy, = 0.01.

For this problem we are interested in both the profile of the scalar flux over the entire domain
as well as the exiting flux at the right boundary. Therefore, we have two QOlIs, the first being the
Ly-norm of the scalar flux defect and the second being the scalar flux at the right most cell. The
approximate solution for this problem was generated with a DO simulation using an Sy and Sg

angular quadrature and a 60 cell linear DFEM spatial discretization.
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Figure 5.6: One dimensional test problem setup with multiple-materials. The dimensions are in
mean-free-paths.

A graphical representation of the solution- and defect-profiles are shown in Figure 5.7. In the
figure one can clearly observe the Sy DO solution being smaller in magnitude in the source region
but larger in magnitude outside the source region. The defect solution is well captured as shown
on the right of the figure. The relevant performance data is shown in Table 5.2 where the first
two rows are relevant to using an S, quadrature and the last two rows are relevant to using an Sg
quadrature.

The KPIs for the L2-norm QOI show that the efficiency, nM¢=5MC 5 very large both using
an S, and S, quadrature when generating ¢. Consistent with the previous problem, the Sg-based )
decreases the number of source particles required more than its Sy counterpart. The same trend is
observed for the exiting cell QOI, albeit less of an improvement is observed. This is because the
RMC method becomes increasingly efficient as the defect solution becomes smaller.

For all the cases the RMC method again manifests increased source sampling times, S7’, but for
this problem the transport time, 7'r7", is also notably increased. This is caused by a redistribution
of the source where the RMC source is now effectively concentrated (relatively) further from the
boundaries and closer to the middle scattering material where particles survive longer.

The overall effectiveness, £, shows that RMC improves the computation of the defect drasti-
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cally when considering the overall scalar flux profile (i.e., the QOI based on the L2-norm), and

less so for the exiting flux QOI. Regardless, RMC shows a significant improvement.

81 -~ — DO 0.8 4
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Figure 5.7: Scalar flux solutions and computed defects for problem 2. Here, gz~5 is a linear continuous
representation, ()1, computed from a linear discontinuous DO simulation with an Sy quadrature.

Table 5.2: Key Performance Indicators for problem 2 using different angular quadratures in the
production of ¢, as input to the RMC method. All Monte Carlo simulations here were performed
using 107 source particles.

QO std. dev Efficiency  Sampling Time Transport Time  Total Time Overall effectiveness
oo STsmc TrTsyc TTsyc
QOI OrMC pjadC M0 STrmc TrTruc TTrmc | Rate ratio | ERMC-SMC
[s per 10°] | [s per 10°] | [s per 10°]
L2 norm of ¢p 1.260E-03 0.432 4.114 4.545
$ Q1 Cont.S2 4.420E-04 8.126 2.100 6.616 8.717 0.521 4.238
Right most cell 4.610E-04 - - -
¢ Q1 Cont. S2 2.810E-04 2.691 2.100 6.616 8.717 0.521 1.404
L2 norm of ¢p 1.260E-03 - - -
$ Q1 Cont. S8 2.710E-04 21.617 2.179 6.821 9.000 0.505 10.918
Right most cell 4.610E-04 & . E
$ Q1 Cont. S8 1.750E-04 6.939 2.179 6.821 9.000 0.505 3.505
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The overall insights gained in this section are as follows:

e The RMC method drastically improves the computation of a flux-profile defect, with more
than an order of magnitude improvement for the Sg angular quadrature based qg This indi-

cates the method can be very useful to correct problems with wide spread error/defect.

e RMC on multi-material problems can alter the transport time of source particles significantly,

especially since the method delocalizes the source from the original source material.

e RMC is effective for localized QOIs and distributed QOIs, and increases in efficiency with a

decrease in the defect (i.e., better approximate solutions).

5.4 Problem 3 - Multidimensional homogeneous pure absorber material with a large dis-

tributed source.

Consider the pure absorber problem shown in Figure 5.8. The domain is a 5 unit square with two
large regions, one region with a homogeneous isotropic source with a strength of 3 and another
with no source. Both regions have o, = 1.

We investigate, with this problem, the ability of the RMC method to correct for angular dis-
cretization errors without directly analyzing ray effects. The large distributed source region as-
sists the DO simulation, which used a low order S; angular quadrature, in developing a relatively
smooth solution in the interior of the domain. This solution is shown in Figure 5.9. The resolution
provided by the spatial dicretization, i.e., the number of cells in = and y, was also chosen such that
it should not incur spatial discretization error on the same order of magnitude as the angular dis-
cretization error (i.e., cell-sizes are 1/10-th of a mean-free path). The corresponding SMC solution
of this problem is shown in Figure 5.10.

The RMC computed defect solution is shown in Figure 5.11. The defect follows a complex
but smooth pattern. The S, angular discretization is the likely cause of the two ray like structures

emanating from the upper corners of the source region, as well as the negative defect area in the
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Figure 5.8: Multidimensional pure absorber material test problem with a distributed isotropic
source in a large portion of the domain.

center of the domain just above the source region. The relevant performance data is shown in Table
5.3.

First analyzing the case where an S5 angular quadrature solution is used, the KPIs for all three
QOIs show that the RMC method has superior efficiency, however, its efficiency for the L2-norm
QOI is much less than the localized QOIs, which is contrary to the previous problem. The likely
cause for this is that, compared to the localized QOIs, the L2-norm QOI includes the uncertainty for
areas where the defect is much larger than that of the localized QOIs. Therefore, as the previous
problems highlighted, the method has reduced efficiency when the defect solution is large. The
efficiency, n*MC=SMC for QOI-1 is larger than that of QOI-2. This is because QOI-1 resides in
an area with a lower magnitude defect and by the same mechanism referenced above, the RMC
method exhibits better efficiency.

The KPIs, for the case where an S14 angular quadrature solution is used, are similar to that of
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Figure 5.9: DO solution of problem 3 using an S, angular quadrature.

the .S, case except that the uncertainties have further reduced. This is because the overall defect
decreased. This effect will reach a limit where the angular discretization will no longer dominate
and the spatial discretization will be the dominant form of error.

The increase in the sampling time, ST, for the RMC method is again at the forefront of limiting
its effectiveness. The transport time, 777, is also longer which can be explained by observing
the distribution of the cell-wise absolute residual source strength, shown in Figure 5.12. More
particles created towards the center of the domain result in the particles having less proximity to
the boundaries which increases the likelihood that a particle can be transported across many cells.
Even with the considerable source-sampling cost the overall effectiveness, £, for all the QOIs

show that the RMC method is more effective than the SMC method.
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0.2
0.00292602

Figure 5.10: Standard Monte Carlo solution of problem 3 using 10x 10® source particles.

RMC

0.275511
0.2
0.15

-0.260604

Figure 5.11: The RMC defect solution, for a DO simulation using an S; angular quadrature, of
problem 3 using 10x 10° source particles.
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Table 5.3: Key Performance Indicators for problem 3. All Monte Carlo simulations here were
performed using 107 source particles.

QO std. dev Efficiency  Sampling Time Transport Time  Total Time Overall effectiveness
Osmc RMC—SMC e e i : RMC—SMC
QOI Ormc n STrmc TrTruc TTrmc | Rate ratio | E
[s per 10°] | [s per 106] | [s per 109]
L2 norm of ¢p 1.390E-02 0.720 19.280 20.000
¢ Q1 Cont. S2 9.730E-03 2.041 3.782 21.933 25.714 0.778 1.587
QOI-1 8.760E-04 - . -
$ Q1 Cont. S2 2.960E-04 8.758 3.782 21.933 25714 0.778 6.812
QOI-2 3.410E-03 - - -
¢ Q1 Cont. S2 1.280E-03 7.097 3.782 21.933 25.714 0.778 5.520
L2 norm of ¢p 1.390E-02 . - .
$ Q1 Cont.S16 4.628E-03 9.022 4.124 23.487 27.611 0.724 6.535
QOI-1 8.760E-04 - - -
¢ Q1 Cont. S16 2.479E-04 12.488 4.124 23.487 27.611 0.724 9.046
QOI-2 3.410E-03 . - -
$ Q1 Cont.S16 1.079E-03 9.995 4.124 23.487 27.611 0.724 7.240

Cell-wise Irl

2.16242
2
[1.8
— 1.6
—14
—1.2
—1
— 0.8

0.6
0.4
0.2
2.67201e-06

Figure 5.12: Cell-wise residual source for problem 3.
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5.5 Problem 4 - Multidimensional multi-material domain with a duct and a localized source

Consider the problem shown in Figure 5.13. The domain has a 5 unit square dimension. At
the longitudinal bottom and lateral center is a localized source material containing a distributed
isotropic source of strength 3. This material is a high-density pure absorber, o; = 6. On either
lateral side of the source are two large blocks of medium-density scattering material, o; = 2 and a
scattering ratio of 0.8. The same type of material is present as an "end-piece" at the longitudinal
top and lateral center. The remainder of the domain contains a low-density pure scattering material,
o = 0.01, and forms a duct, between the two scattering blocks along the longitudinal direction,
and joins the QOl-area at the general longitudinal top area. The first QOI for this problem is the
scalar flux in the area just above the termination of the duct and the second QOI is laterally to the

side of the first, but outside the direct path of the duct.

Material
0,=0.01
0,=0.01

O't=2

= o0,=1.6
Ut=6
28 o,=0
q=3

Figure 5.13: Multidimensional multi-material test problem with a localized isotropic source.
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The design of this problem is such that we can incur ray effects from a DO simulation. Because
the source is localized we can expect rays emanating from its location outward, along the directions
of the angular quadrature. The ducted channel also provides a particular challenge since the direct
contribution to QOI-1 will be very sensitive to the directions used.

A DO solution, using a GLC angular quadrature with 6 polar- and 6 azimuthal-angles per
octant, is shown in Figure 5.14. The corresponding SMC solution is shown in Figure 5.15. The
comparison of these two solutions highlight the ray effects that can clearly be seen in Figure 5.14.

The RMC computed defect solution, using the above DO solution, is shown in Figure 5.16. The
defect solution surprisingly shows a lot of defect in and around the source material suggesting that
spatial discretization error dominates in this area. Away from the source the defect solution follows
the ray effects present in the DO solution and within the duct the large discrepancy is highlighted.

The related performance data is shown in Table 5.4. The KPIs for all three QOIs again shows
that the RMC method has superior efficiency. There are two particular performance items to dis-
cuss; the first is the comparatively high efficiency for QOI-1, and the second is the dramatically

increased transport time of the RMC method.

DO 36 angles PO

0.393055
0.2

0.1

0.05

0.0005
0.0002
0.0001
4.97079e-05

Figure 5.14: DO solution of problem 4 using a GLC angular quadrature with 6 polar- and 6
azimuthal-angles per octant.
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7.30975e-05

Figure 5.15: Standard Monte Carlo solution of problem 4 using 10x 10°® source particles.
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Figure 5.16: The RMC defect solution, for a DO simulation using a GLC angular quadrature (6
polar- and 6 azimuthal-angles per octant), of problem 4 using 10x 10° source particles.
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Table 5.4: Key Performance Indicators for problem 4. All Monte Carlo simulations here were
performed using 107 source particles.

QO std. dev Efficiency  Sampling Time Transport Time  Total Time Overall effectiveness
Osmc RMC-SMC g L e q RMC~SMC
QOI g n STruc TrTruc TTgmc | Rateratio | E
[s per 10°] | [s per 10°] | [s per 10°]
L2 norm of ¢p 1.420E-04 0.538 14.846 15.385
$ Q1 Cont.GLC6,6 | 5.846E-05 5.900 2.134 23.580 25.714 0.598 3.530
QOI-1 7.590E-05 - - -
$ Q1 Cont.GLC6,6 | 2.180E-05 12.122 2.134 23.580 25.714 0.598 7.252
QOI-2 1.320E-05 - - .
$ Q1 Cont.GLC6,6 | 7.379E-06 3.200 2.134 23.580 25.714 0.598 1.915
L2 norm of ¢p 1.420E-04 0.538 14.846 15.385
$ Q1 Cont.GLC64,6 | 4.507E-05 9.929 1.997 21.533 23.529 0.654 6.492
QOI-1 7.590E-05 - - .
$ Q1 Cont.GLC64,6 | 2.122E-05 12.797 1.997 21.533 23.529 0.654 8.367
QOI-2 1.320E-05 - . -
$ Q1 Cont.GLC64,6 | 6.632E-06 3.961 1.997 21.533 23.529 0.654 2.590

In order to analyze the performance items mentioned above we developed several visualiza-
tions. The first is the cell-wise residual source absolute strength, which is the result of applying
Eq. 4.30. The visualization of this quantity is shown in Figure 5.17 in both logarithmic- and linear
scale, left and right respectively. Now our argument is that the transport time, 7'r7T’, can increase
in two ways. The first is if particles are created further from the boundary (as we’ve seen in the
previous problems) and the second, which is more likely for this problem, is if proportionately
more particles are directly created within highly scattering materials. The linear-scale visualiza-
tion in Figure 5.17 shows that the residual source is localized around the source material but falls
somewhat outside of it. This causes more particles to be born directly into the scattering blocks
and results in more transport events that contribute to longer transport times.

We also investigated the angular nature of the residual source in a cell. Again using Monte

Carlo integration, we compute the cell-averaged P, expansions of the residual source for each cell,
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re°!!, to obtain the expansion of the residual source in the form

CE. 1 Ce.
r ”(Q) = E(TOOH +3Q-7J,) (5.6)

where 75! is the zeroth-moment and J,. is formed from the moments at ¢ = 1. The anisotropy of

ree!" can be characterized by computing an anisotropy index, I, as

(5.7

which varies I, € [0, 1] with I, = 0 indicating an isotropic nature and [, = 1 indicating a pure
delta-function anisotropic nature.

A visualization of the cell-wise currents J,. (as arrows), overlaid on a color scale representing
the anisotropy index, I, is shown in the center of Figure 5.18. On either side of this visualization is
a magnification of the source material region, the left is colored by the cell-wise absolute residual
source strength and the right is colored by the anisotropy index (same as the center visualization).
The left magnification highlights that some source particles are indeed born in the scattering blocks
and from both the size of the arrows and the correspondence with the right magnification we can
see that they are born nearly isotropically when in the scattering materials. The residual source
directly within the source material is more anisotropic. The overall effect here results in more
particles proportionally created in the direction of the scattering blocks as opposed to isotropically
in the SMC method. These anisotropy effects, in combination with the more distributed nature of
the residual source, are the likely cause for the dramatic increase in 777"

Increasing the resolution of the angular discretization used in the DO simulation, from a Gauss-
Legendre-Chebyshev with 6 polar- and azimuthal angles per octant to 64 azimuthal- and 6 polar
angles, resulted in a general increase in the per particle efficiency.

We now seek an explanation of why the load factor for QOI-1 is so much larger than that for

QOI-2. We continue this investigation in the discussions of the next problem.
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Figure 5.17: Cell-wise residual source for problem 4, showing a logarithmic scale [Left] and a
linear scale [Right].
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Figure 5.18: Vector-based visualizations of the P; expansion of the residual source moments of
problem 4.

The overall insights gained in this section are as follows:

e The ducted problem with a source at its end is a challenging problem for DO simulations
because of ray effects. The RMC method shows very high effectiveness for QOIs that are

sensitive to these ray effects (QOI-1 in this case) with a very high gain factor (G = 12.122).

e The residual source can be very anisotropic and in combination with its distribution can alter
the transport characteristics quite significantly, resulting in significantly increased transport

times, 17T

5.6 Problem 5 - A distributed-source variation of problem 4.

Consider the problem shown in Figure 5.19. The problem is nearly identical to problem 4 with the

exception that the localized source is now distributed laterally.
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The problem is designed to test a hypothesis relating to the reduced efficiency of the RMC
method for QOI-2 in the previous problem, which has the same geometric position as QOI-2 in
this problem. The hypothesis we are testing here is that the reduced effectiveness is a consequence
of the similarity in source distribution.

From the SMC perspective of QOI-2, the localized source is behind the scattering blocks and
particles likely to reach its volume can just as likely come from multiple scattering tracks within the
blocks as it can from the duct. From the RMC perspective of QOI-2, the source is very similarly
localized as can be seen in the linear-scale visualization of Figure 5.17. Therefore, the RMC
method could be solving a very similar problem as SMC and therefore not exhibit the same drastic
improvement as observed for QOI-1.

We verify this argument by using a distributed source that is likely to create an RMC source
distribution that will be even more similar to that of the SMC problem (as compared to problem 4).
If the source perspective is the likely cause then we should observe the same reduction in efficiency

for QOI-2.
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Figure 5.19: Variation of problem 4 where the localized source is now distributed laterally.

A DO solution, again using a GLC angular quadrature with 6 polar- and 6 azimuthal-angles
per octant, is shown in Figure 5.20. The corresponding SMC solution is shown in Figure 5.21.
The RMC computed defect solution, using the DO solution, is shown in Figure 5.22. As we
observed in problem 4, the defect solution again shows significant defect in the vicinity of the
source material, hinting at insufficient spatial discretization. The large defect in the duct is similar
to that of problem 4.

The related performance data is shown in Table 5.5. The KPIs for all three QOIs again shows
enhanced efficiency as compared with SMC, however, for this problem the efficiency, 7, for QOI-2
is even lower than that of problem 4, at 1.604. This low efficiency is insufficient to overcome
the combined increased source-sampling and transport times, resulting in an overall effectiveness
factor, &/ < 1, for QOI-2. The other two QOIs still show a significant gain £/ >> 1. The increased
angular resolution of the DO solution shows a further increase in the efficiency with all other KPIs

similar.
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Apart from the increased source sampling times (which we already know is caused by the
rejection sampling), the transport times, 7'rT', for the RMC method is considerably more than
that of the SMC method. This is caused by the residual source being distributed deeper into the
scattering blocks. We tested this phenomenon (not shown) by reflecting the problem longitudinally
at the bottom boundary, which removes much of the boundary escape for both the RMC and SMC.
This then resulted in the transport times being more equal. This phenomenon is an important

consideration for the application of the RMC method.

DO 36 angles PO
0.393055
0.2
0.1
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—0.02
=0.01
= 0.005
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0.001
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0.0002
0.0001
4.9707%9e-05

Figure 5.20: DO solution of problem 5 using a GLC angular quadrature with 6 polar- and 6
azimuthal-angles per octant.
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Figure 5.21: Standard Monte Carlo solution of problem 5 using 10x 10 source particles.
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Figure 5.22: The RMC defect solution, for a DO simulation using a GLC angular quadrature (6
polar- and 6 azimuthal-angles per octant), of problem 5 using 10x 10° source particles.
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Table 5.5: Key Performance Indicators for problem 5. All Monte Carlo simulations here were
performed using 107 source particles.

QOI std. dev Efficiency  Sampling Time Transport Time  Total Time Overall effectiveness
Osmc RMC—SMC e i TTsmc ] RMC-SMC
QOI a ] STruc TTTruc TTrmc | Rate ratio | E
[s per 10°] | [s per 10%] | [s per 10°]
L2 norm of ¢p 1.560E-03 0.699 9.586 10.286
$ Q1 Cont.GLC6,6 | 5.100E-04 9.356 3.540 25.968 29.508 0.349 3.261
QOI-1 3.540E-04 - - -
$ Q1 Cont.GLC6,6 | 1.450B-04 5.960 3.540 25.968 29.508 0.349 2.078
QOI-2 8.510E-05 - - -
$ Q1 Cont.GLC6,6 | 6.720E-05 1.604 3.540 25.968 29.508 0.349 0.559
L2 norm of ¢p 1.560E-03 0.699 9.586 10.286
$ Q1 Cont. GLC64,6| 4.863E-04 10.291 3.766 22.901 26.667 0.386 3.969
QOI-1 3.540E-04 - . -
$ Q1 Cont.GLC64,6| 1.343E-04 6.950 3.766 22.901 26.667 0.386 2.681
QOI-2 8.510E-05 - - .
$ Q1 Cont. GLC64,6| 6.639E-05 1.643 3.766 22.901 26.667 0.386 0.634

We now look at the residual source visualization as shown in Figure 5.23. Compared to the
source distribution shown in Figure 5.19 we can see that the sources are very similarly distributed.
Therefore, as we discussed in the beginning of this section, from the perspective of QOI-2 the
source distribution looks the same for the RMC- and SMC method.

Another insight into the increased transport times can be gained by looking at the anisotropy of
the residual source which is shown in Figure 5.24, magnified to more closely observe the bottom
source region. We can see that the residual source is quite anisotropic in the source material,
resulting in a proportionally larger amount of source particles transported in the direction of the
scattering media, as compared to the isotropic SMC source. These particle will then experience

more transport events and therefore longer average transport time.
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Figure 5.23: Cell-wise residual source for problem 5.
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Figure 5.24: Vector-based visualizations of the P; expansion of the residual source moments of
problem 5.

Insights gained from this section:

e The distribution and anisotropy of the residual can greatly influence the transport times,

T'rT, and can easily result in reduced overall effectiveness.
e The SMC method can become competitive if the perspective of the QOI is such that the SMC
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and RMC problems appear similar. QOIs in areas that are relatively insensitive to spatial-

and angular-discretization seem to not benefit much from the RMC method.

5.7 Adjoint-based source-biasing for problem 5

Since the residual source takes on a more distributed nature as compared to the normal problem,
we attempted to apply adjoint-based source biasing in order to improve the efficiency of the lowest-
efficiency QOI in problem 5. We will not detail how the adjoint problem is formulated which is
succinctly detailed in [1]. Instead, we will simply summarize the methods outcome.

It should be noted that certain expectations are inherent to source biasing. Biasing the source
with any manner of importance, be it cell-wise and/or angular importance, does only guarantee a
higher probability of a source particle scoring within a QOI. It does not guarantee any outcome
with regards to changes in the transport-time of the biased source particles, and in some sense
one can comprehend that source biasing attempts to preferentially keep particles alive that are
more likely to contribute to a QOI. It would therefore not be unexpected to observe an increase in

transport time.

5.7.1 The adjoint-flux

The adjoint flux, ?)', obtained by solving the adjoint problem, is not developed using the propa-
gation of a source in a classical sense but rather uses the QOI as a source-analogue. Interesting
properties of the adjoint solution is that the scalar adjoint flux, ¢, is representative of the overall
importance to the QOI and the angular adjoint flux, ', is representative of the angular importance
to the QOI. The product of this solution with a source distribution provides a means to bias the
source sampling process to proportionally sample more particles from high importance regions.
Figure 5.25 shows the cell-averaged adjoint scalar flux distribution, in both logarithmic- and
linear-scale, for problem 5. This adjoint solution was produced by a DO adjoint method using

a GLC angular quadrature with 48 azimuthal angles and 6 polar angles. The distribution shows
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that the areas closer to the QOI are of greater importance than those further away, which is an
intuitive result. The logarithmic distribution also indicates that some importance is given to the

duct, however, this is practically invisible in the linear plot.

Adjoint phi - log scale Adjoint phi - linear scale
2.09988e-07 0.0001 0,001 0.01 0.182934 2.09988e-07 0.040.060.08 0.1 0.120.14  0.182934
| : e :

Figure 5.25: The scalar adjoint flux for problem 5, showing a logarithmic scale [Left] and a linear
scalr [Right]. The solution is based on a DO simulation using a GLC angular quadrature with 48
azimuthal angles and 6 polar angles.

5.7.2 Abstraction of unbiased source sampling

In order to describe how we apply source biasing, knowing only the importance of a given cell,

consider the following abstraction of the discrete PDF used to sample a collection of sources.
Given a source with index z of a total of N, sources, a group with index g of which there

are N& number of groups for source z, and an element with index e of a total of N’ elements

for source x, group g. An element can be a cell, a cell-face-pair, or a point-source. Therefore
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an element index, e, can map to a cell index, ¢, or a cell-face index-pair, (¢, f), or just to O for a
point-source, the latter which can additionally also map to which cell index ¢ contains the source.

Then we define

Sgg1 1 e 0=c , 1f source x is a point-source

QY9 = | / Szg(e,r) dA e (c, f) , if source x is a surface-source (5.8)
De s
/ Szge dV 1 e c , 1f source x is a cell-source,

as the element-wise source strengths for source z, group g, where e € [0, Nz’ —1]. The group-wise

source strengths, (), and the source-wise source strengths, (), are then

Ng9—1

sz{sz > QU ge [0,N5—1]}, and (5.9)

e=0

{ NZI Q° —1]} (5.10)

For an unbiased simulation these source strengths can be used to define an unbiased normalized

discrete PDF by computing the total source strength
Ny—1N&—1Ng—1
VD DD D INe 11

z=0 g=0 e=0

and then normalizing the source strengths,

TG _ ng
De Qtotal )

(5.12)

Ng9—1

:{pg_ > <0 NG- 1]}, and (5.13)
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p:{px = Z Py i TE [O,Nm—l]}, (5.14)

g=0
where p?7 is the discrete value of the global PDF for source z, group g, element e, p” is the group-
wise discrete PDF, and p is the source-wise discrete PDF.
These PDFs are easily used to compute discrete CDF from which to sample the combination

of a source-group-element.

5.7.3 Applying the scalar adjoint flux as source biasing on a cell-by-cell basis

Applying source biasing will give us the biased equivalents, Q* and p*, of all unbiased quantities

() and p, as
Q* { = Z o'Q™ g€ [0,Ng 1]},and (5.15)
Ng”fl
Q" :{QZZ Z Q) 1 z€ [07Nx—1]}. (5.16)
g=0

For an unbiased simulation these source strengths can be used to define an unbiased normalized

discrete PDF by computing the total source strength
N,—1 NZ—1N&I_1
*total Z Z Z Qm (5 17)

z=0 g=0 e=0

and then normalizing the source strengths,

rag Qe
Pe ‘= Q*total’ (518)
Np—1
p* ={p2’” = Z p? g€ [071\@—1]}, and (5.19)
e=0

Ng-1
P I{pﬁ— dopyiae [O,Nz—l]}, (5.20)

g=0
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where p:*9 is the discrete value of the global biased PDF for source z, group g, element e, p** is

the group-wise discrete biased PDF, and p* is the source-wise discrete biased PDF.

Required weight correction:

In order to compensate for the biased sampling, each time a particle’s parent element is identified,
the weight of that particle needs to be modified to preserve the relative contribution of the particle
to any tallies. For instance, if an element is biased such that it is sampled twice as often, then the

weight needs to be halved in order to preserve its relative contribution to tallies. For our source

Tge

biasing scheme this involves the element weight correction, w;" ., as
g
rge e
Wheorr = *Tg ) (521)
De

which is the ratio of the unbiased discrete PDF evaluation to the biased discrete PDF evaluation

for the sampled index.

5.7.4 Results using only the scalar adjoint flux, ¢', for biasing

Since the adjoint solution has been developed for QOI-2 we only discuss the relevant results for
this QOIL. In order to make a fair comparison of the effect of the adjoint-based biasing we have to
apply the same source biasing to the SMC simulation as we do the RMC simulation.

The relevant performance data is shown in Table 5.6. The first row of the table is a copy of the
corresponding data in Table 5.5 since it represents the unbiased simulations. The second row of
the table is the scalar adjoint flux biased counterpart of the first row. For both simulations the un-
certainties for QOI-2 reduced by approximately 20%. The relative efficiency of the RMC method
only increased slightly, from 1.6 to 1.7. The source sampling time for both simulations remained
relatively unchanged. This is not surprising since the scalar adjoint flux biasing influences only
the selection of the element not the sampling algorithm within the element. This means that the

rejection sampling technique within a cell performed the same in the RMC method.
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Both simulations showed an increase in transport time, although, the transport time increased
more than two-fold for the RMC simulation. The increase in transport time for the SMC simulation
is due to the source being sampled further away from the boundaries, however, since the source
material is very localized, the effect is not pronounced. The increase in transport time for the
RMC simulation is more drastic because the source is more distributed, with large portions in the
scattering media. This causes inherently much more particles to be sampled directly within the
scattering media. This effect can be visualized by looking at the product of the scalar adjoint flux
and the cell-by-cell absolute residual source strength, essentially the product of Figure 5.23 and
Figure 5.25, as shown in Figure 5.26. This figure shows that considerably more particles will be
created in the scattering medium.

To further analyze the increase in the RMC 71" we show particle tracks, for the first 4000
source particles, in Figure 5.27. The two figures on the left are for SMC and those on the right are
for RMC. The top row shows the tracks for the unbiased sources and the bottom row shows the
tracks for the source biased with ¢f. Source points are denoted with red dots.

As expected, the SMC source distribution is confined to the source material in both biased
and unbiased cases. In the biased SMC case we can see that more particles are sampled in the
higher y-coordinate but still confined to the source material. This is because the adjoint-importance
generally increases as a function of the y-coordinate in this region. The overall effect of biasing for
SMC is that it results in more particles entering the scattering medium and therefore we see more
particle tracks when SMC is biased, increasing from 19,270 tracks, in the unbiased case, to 30,727
tracks in the biased case. This is the cause of the increase in 7T for SMC, from 9.586 to 11.930.

The unbiased RMC source-points and tracks reflect the residual source shown in Figure 5.23.
Since there are significantly more particles born in the scattering medium it is not surprising that
the number of tracks is high, 42,445, as compared to the unbiased SMC, which explains why the
unbiased RMC T'rT" is much higher than the unbiased SMC 17T, 25.968 vs 9.586 respectively.
The biased RMC source-points and tracks reflect the distribution shown in Figure 5.26 and we

observe an even higher amount of source particles created directly in the scattering medium, re-
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sulting in a tremendous amount of tracks, 125,355 in total. This explains why the biased RMC

TrT increases to 56.822.

Table 5.6: Key Performance Indicators for problem 5 with scalar adjoint flux biasing for QOI-2.
All Monte Carlo simulations here were performed using 107 source particles.

QOI std. dev Efficiency Sampling Time Transport Time Total Time Overall effectiveness
o ur STsmc TrTsyc TTspmc
QOI Ormc nesi | SThje TrTpuc | TTrmc | Rate ratio | ERMCSMC
[s per 10°] | [s per 10°] | [s per 10°]
QOI-2 unbiased 8.510E-05 0.699 9.586 10.286
$ Q1 Cont.GLC6,6 | 6.720E-05 1.604 3.540 25.968 29.508 0.349 0.559
QOI-2 ¢ biased | 6.993E-05 0.701 11.930 12.632
$ Q1 Cont.GLC6,6 | 5.367E-05 1.698 3.611 56.822 60.433 0.170 0.289

Product phi-star - r
0.000175960

0.0001
5e-5
—2e-5

=leb

= 5e-6

le-6
5e-7
2e-7
7.80056e-08

u(

Figure 5.26: The product of ¢! and [, |r|dV" for problem 5.
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Np=4000 Niracks = 19270 Np=4000 Ntracks = 42445
Nsurfev = 14266 Nscatey = 1004 Ngeathevy = 4000 Nsurfey = 34838  Nscatey = 3607  Ngeathey = 4000

Np =4000 Niracks = 30727 Np=4000 Niracks = 125355
Nsurrey = 24767  Nscatey = 1960  Ngeathey = 4000 Nsurfey = 111727 Nscatey = 9628  Ngeathey = 4000

i

Figure 5.27: Particles tracks for SMC and RMC problem 5 of the first 4000 source particles. The
RMC is based on a DO solution using a Gauss-Legendre-Chebyshev angular quadrature with 6
polar angles and 6 azimuthal angles. The red dots indicate source particle creationg. [Top-left]
SMC unbiased. [Top-right] RMC unbiased. [Bottom-left] SMC biased with of. [Bottom-right]
RMC biased with ¢'. Ny.qcis is the total number of linear tracks drawn, Ny, fev 18 the total number
of surface-events drawn, Ny.q., 1S the total number of scattering events drawn and Nyeqiper 18 the
total number of death events recorded.
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5.7.5 Angular biasing using the P,-expansion of 1/

The adjoint DO simulation produces the harmonic expansion coefficients of the angular adjoint

flux in the same fashion as the non-adjoint simulation. The P; order expansions allow us to write

WI(Q) ~ i(qﬁ* + 3|3 (5.22)

JT
where ¢ and J are formed from the P,-moments and y = €2 - m This form of the is not very
conducive to angular biasing since it provides a poor approximation of highly forward-peaked
angular fluxes. We detail a method, in Appendix C, by which we can use the P, moments to

construct a moment-preserving exponential representation of the expansion in the form,

VI p) =~ glet T, (5.23)

where a and b are coefficients, determined as shown in Appendix C. As pointed out earlier, this

representation is moment preserving such that

1
2 / e dy = @' and
-1

1
27T/ ot e dy = |JT).
-1

We can make this distribution independent of ¢ by normalizing 1] with ¢ to get

VL (Q = p) = et (5.24)

and using 1] as the biasing function.

Applying this function to a biasing scheme requires a modification to the integrals used to
determine the source strength within a cell. For SMC the cell-sources are constant and isotropic
and since the integral over angle-space of Eq. (5.24) is 1 it does not influence the computation of

the source strength. As shown in Appendix C this distribution can be sampled to obtain p which is
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then used in the SMC method to bias source sampling.

For RMC we apply this biasing function to Eq. 4.30 which becomes,

ATV,
Ry = D Uk ()l (%, 2);)], (5.25)

Jj=1

from which we construct the cascade of discrete CDFs as we did before. Note that the biasing func-
tion can change the maximum of the integrated function, which we use during rejection sampling,
and therefore we need to obtain a new maximum. Rejection sampling within the cell requires us

to then evaluate ¥}, (Q)|r,(x, )| instead of just |r,(x, 2)|.

Required weight correction:

The required weight correction can be derived as

R*interior
gc gc
acorr ~

Dinteriord " (5.26)
Rgct 77/}6n

5.7.6 Results using both the scalar adjoint flux, ¢, and the angular adjoint flux, /7, for
biasing
The relevant performance data is shown in Table 5.7. The first row of table is again a copy of
the corresponding data in Table 5.5, i.e., the unbiased simulation KPIs. The second row is a
copy of the second row in Table 5.6 (¢ biased simulations) and the third row is the KPIs for
scalar- and angular adjoint flux biased simulations. For both the RMC and SMC simulations the
uncertainties for QOI-2 reduced, however, the RMC simulation’s reduction is nearly negligible.
The source sampling times increased for both methods, although for SMC only slightly which can
be attributed to minor changes to the localization of the SMC source. The transport times for the
SMC simulation is higher with the angular biasing because particles are biased towards the inner

scattering medium. The increased transport time for RMC is analyzed in further paragraphs.
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SMC exhibits a greater decrease in uncertainty when v is applied in addition to ¢, resulting
in RMC’s relative per-particle efficiency being lower than SMC. We have made many observations
to try to understand why using 1! is not as effective for the RMC simulation, but we still can make
no conclusions. From our observations we determined that an error in the algorithm is unlikely for
the following reasons. The adjoint solution used for the biased SMC simulations is the same as
that for the biased RMC simulations and the source biasing algorithms are identical. The correct
QOI-value is obtained with both biasing techniques which, if the algorithm had an error, would not
occur. Finally, simplified problems show that the angular biasing is indeed effective, showing no
obvious signs of error. We left the analysis of this aspect as a topic for future work.

The increase in the RMC T'rT to 62.557 is a point of interest, recalling that for the ¢' biased
RMC simulation this was 56.822. Intuitively one may think that, since the particles are now di-
rected towards the QOI-region, the transport time would decrease. So why did it increase? To
analyze this aspect we again created particle tracks for the first 4,000 source particles, for both
SMC and RMC, as shown in Figure 5.29. As can be seen in the figure, the number of SMC- and
RMC-tracks increased compared to the tracks when just ¢ is used. For SMC this is because the
source particles are now directed away from the bottom boundary when created and preferentially
move in the direction of the scattering medium. For RMC the cause is not so clear.

To ascertain the contribution to T'rT of particles created in the top portions of the low-density
material (which includes the peak region in Figure 5.26 and everything with 4.0 < y < 4.5) we
sampled these particles as normal, but killed them directly after creation. This effectively removed
the transport time spent on these particles. With this technique we determined that, for RMC, these
regions contributed 13.4% of the total transport time with only ¢ biasing, and 19.2% of the total
transport time when biasing with ¢! and ¢". Now, when placing a reference point at the lateral
central and longitudinally y = 4.25 we can observe than only a small percentage of the azimuthal
angle space will escape the scattering material. If the angular biasing was pure J-function in nature
then indeed our intuition would be accurate in the fact that we would direct the particles directly

at the QOI and see a considerable improvement in the 19.2% portion of the particles created.
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However, the angular biasing in the peak regions has an anisotropy-index between 0.4 and 0.6
(see Figure 5.28), which will not direct the particles toward the QOI as well as we expect for an
isotropy-index of close to 1.0, especially considering that the residual source is nearly isotropic in
that region (see Figure 5.24).

Additionally, a non-intuitive aspect of the angular biasing is the effect, in the scattering medium,
at the boundaries. Especially considering that the angular biasing is almost exclusively towards
the inner part of the domain (see Figure 5.28). Near the bottom boundary source particles are bi-
ased inward quit strongly, with an anisotropy-index of approximately 0.89. Additionally, one sees
moderately high anisotropy-indices of approximately 0.6 at the left and right boundary where the
residual-source has a comparatively small anisotropy-index < 0.1. The inwardly directed particles
have a greater probability of surviving compared to isotropically sampled particles and therefore
the contribution to T'rT" of these inwardly directed particles is likely overthrowing the benefit of

the angular biasing at the biased-source peak.
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Table 5.7: Key Performance Indicators for problem 5 with scalar adjoint flux and angular adjoint
flux biasing for QOI-2. All Monte Carlo simulations here were performed using 107 source parti-
cles. The sub-table below the main table is a summary of the downward trend of the uncertainty
with application of additional biasing.
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QO std. dev Efficiency  Sampling Time Transport Time  Total Time Overall effectiveness
oy, . STsmc TrTsyc TTsuc - .
QOI o n STrmc TrTgruc TTrmc | Rate ratio | ERMC>SMC
[s per 10¢] | [s per 10°] | [s per 109]
QOI-2 unbiased 8.510E-05 0.699 9.586 10.286
¢ Q1 Cont.GLC6,6 | 6.720E-05 1.604 3.540 25.968 29.508 0.349 0.559
QOI-2 ¢t bias 6.993E-05 0.701 11.930 12.632
$ Q1 Cont.GLC6,6 | 5.367E-05 1.698 5.844 54.589 60.433 0.170 0.289
QOI-2 ¢t yptbias | 4.897E-05 0.738 10.476 11.215
$ Q1 Cont.GLC6,6 | 5.350E-05 0.838 4.110 62.557 66.667 0.154 0.129
Osmc ORrMC
No bias 8.510E-05 | 6.720E-05
¢* bias 6.993E-05 | 5.367E-05
' ¥ bias 4.897E-05 | 5.350E-05
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Np=4000 Niracks = 71088 Np=4000 Niracks = 127702
Nsurfev: 114094 Nsratev =9608 Ndea
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Figure 5.29: Particles tracks for SMC and RMC problem 5 of the first 4000 source particles. The
RMC is based on a DO solution using a Gauss-Legendre-Chebyshev angular quadrature with 6
polar angles and 6 azimuthal angles. The red dots indicate source particle creationg. [Left] SMC
biased with ¢ and 7. [Right] RMC biased with ¢ and ©f. Nj,.qs is the total number of linear
tracks drawn, Ny, e, 18 the total number of surface-events drawn, Ncqe, is the total number of
scattering events drawn and Ngjeq:ney 1S the total number of death events recorded.

5.7.7 Opverall insights from adjoint-based biasing

The overall insights gained from adjoint-based source biasing:

e Since the residual-source is domain-wide, biasing the source with ¢ can potentially create a
very different source-distribution compared to the unbiased residual-source. This can greatly

impact the total transport time of a given RMC simulation.

e Source biasing, in general, is a variance reduction technique. The response of SMC and
RMC to source biasing, just like many variance reduction techniques, could potentially be
very different depending on the problem. For this problem SMC responded similar to RMC,
when using ¢! for source biasing, with the goal of reducing QOI uncertainty. Additionally
using v for angular biasing, SMC had an additional reduction in uncertainty much larger

than for RMC. Because of the distributed nature of RMC, this problem forced more particles
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to be created directly within the scattering medium which resulted in additional transport

time per source particle, ultimately rendering RMC less effective than SMC.

e Source biasing makes no guarantees regarding total simulation time. It only increases the
probability that a source particle will score a contribution within a QOI. Therefore, source

biasing for the purpose of reducing the required run-time needs to be applied judicially.

e The single attempt at variance reduction does not rule out the possibility of using other
advantageous variance reduction schemes, however, the exploration of such techniques was

left as future work.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation our research involved the following novelties:

1. A continuum residual definition of the multigroup linear Boltzmann equation (with space and
angle in continuum form), where we use only the scalar flux from an approximate solution
as a continuum definition of the angular flux. This provides a strong connection to the
scalar flux component of an approximate solution, produced by a Discrete Ordinates (DO)
simulation, and the associated defect in the scalar flux even though we do not use the full

fidelity of the angular flux.

2. We created normalized discrete probability distributions of the residual source by using mul-
tivariate Monte Carlo integration and related the uncertainty of the Monte Carlo integration
to the simulation result by recomputing the source strengths at batched intervals. Therefore
the Monte Carlo integration uncertainty reflected in the uncertainty of the simulations. This
negated the need for overly biased source particle creation and essentially allowed unity
weights for source particles, as opposed to other work in literature which sampled an equal

amount of particles in each cell, weighted by their respective residual source strength.

3. We explored different spatial representations of the approximate solution based on the DFEM
solution produced by the DO simulation. We first used a cell-constant solution computed as
the cell-average of the DFEM approximate solution which created numerous and strong
inter-cell discontinuities. We showed that this representation introduces large positive- and
negative components of the scalar flux defect even if the cell-averages are exact, resulting in
very poor efficiency of the RMC method. We then used the linear-, in 1D, and piecewise-
linear (PWL), in 2D and 3D, discontinuous FEM representations of the approximate solution,

as produced by a DO simulation, and compared that to the continuous counterparts of the
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these representations (determined from nodal averages). This indicated that the continuous
FEM representations are the most efficient representations to use. We therefore showed that
one does not have to use the exact same solution as produced by a DO simulation, in other
words one can make advantageous modifications to the approximate solution, as long as the

modifications can be related to the original solution.

. Using just the continuous FEM representations, we then applied the RMC method to sev-
eral multidimensional problems. The problems ranged from homogeneous pure absorber
problems to multi-material problems with highly scattering media and low optical thickness

"ducts" that greatly challenged the DO simulations.

The Lo-norm of the defect across the entire domain and two localized QOIs was used to judge
the efficiency and effectiveness of the RMC method. We defined the RMC efficiency as the
ratio of additional particles an SMC method has to simulate to obtain the same uncertainty for
a QOI as obtained as the RMC method. This can also be regarded as the "per source particle"
efficiency of the RMC method compared to that of the SMC method. Since the RMC method
incurred additional source sampling cost and additional average transport times we arrived at
the definition of the overall effectiveness of the RMC method as the product of the efficiency

and ratio of total simulation time.

. Across all unbiased problems, the RMC efficiency for all the QOIs indicated that the RMC
method has superior efficiency compared to SMC. This was the same for the overall ef-
fectiveness across all problems and QOIs except for a single problem where the efficiency
gain of a single QOI was offset by significant increases in total simulation time. The latter
hinted at the possibility that for some problems not all QOIs will benefit from using the RMC

method, unless of course the source sampling time-increase can be improved.

. The simulations, where the true defect of the DO simulation was comparatively small, exhib-
ited drastic increases in efficiency and were highly effective. This is indicative that the RMC

method becomes increasingly effective when the discretization errors are small, making the
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method a suitable method for uncertainty quantification.

7. The ducted simulations, where the QOI along the duct is particularly sensitive to angular
discretization, showed drastic increases in efficiency and effectiveness. This makes the RMC
method a beneficial method to use when angular discretization proves challenging for the DO

simulation.

6.2 Future work

6.2.1 Improvements in source sampling

The rejection sampling within a cell, or cell-face pair on a boundary, proves to be comparatively
costly. Techniques could be available to improve the rejection efficiency by establishing bounding-
functions over the individual domains of the independent variables, i.e., position and angle.

In the current implementation we uniformly sample position and angle simultaneously, then
evaluate the residual. Bounding-functions can be used on course intervals of phase-space to limit
the size of the individual space- or angular phase-space domain to sample. For example we could
break polygonal or polyhedral cells into their constitutive primitive cells, i.e., triangles and tetra-
hedra respectively, which will establish different and likely less voluminous phase-space domains,

per element, to sample.

6.2.2 Using mesh-based residual source with parametric surface based geometry and QOIs

In this research we performed Monte Carlo simulations of a given problem on the same mesh
used to perform a DO simulation. This allowed us to project the Monte Carlo solutions onto the
same space as the DO solution and therefore enabled comparison of these solutions over the en-
tire domain. The unfortunate consequence was that the entire domain was laden with volumetric
tallies, which required tally contribution algorithms to be applied every time a particle track oc-

curred within each tally. These tallies were also defined such that we could make a finite element
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projection of the domain-wide solution, adding additional layers of processes to the algorithms.
The large amount of tallies as well as the finite element aspects of these tallies added a tremendous
cost to the transport algorithms. Many practical problems are not concerned with the solution over
the entire domain, and especially not a finite element representation of this solution. Instead they
require the solution integrated over a localized QOI sub-domain.

The standard mode of operation of production codes like MCNP and GEANT-4 is to represent
the geometry with parametric surfaces, logically combined to define cells or regions with homo-
geneous material composition. The flux solution is then obtained only in a QOI reqion. In this
mode, the cells require absolutely no discretization, resulting in a drastic reduction of the number
of surfaces in the simulation, as well as tally contribution algorithms that do not have any finite
element related processes. These aspects exhibit drastically reduced transport times.

If one is to develop a coarsened version of the DO mesh, maintaining the same material inter-
faces and overall QOI sub-domains, then one can use this coarsened mesh for the transport phase
of Monte Carlo simulations. RMC can then become a very attractive and efficient method for
uncertainty quantification of QOIs, because only the residual-source is required to use the refined
DO mesh. Additionally, since one is only concerned with volume integrated solutions in QOls, the
finite element processes within tally contribution algorithms can be disabled. In fact, all cell-wise
tallies can be disabled, except for those required by the QOIs. The simplified mesh, and simpler
tally algorithms, would then result in a drastic increase in the Monte Carlo simulation performance

since it reduces the overall transport time.

6.2.3 Different choices for the approximate angular flux other than the scalar flux

Our definition of the continuum residual required the assumption that the angular flux is isotropic.
This simplified the residual greatly with respect to the angular dependence and the integral of the
scattering source. We have yet to explore the efficiency of the RMC method if we used angular
fluxes at the angular quadrature points and the harmonic expansion of the angular flux for the

scattering source.
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Although the expansion coefficients for harmonic expansions are typically stored for most
problems, the angular flux is very memory consuming to store and is less likely to be stored.
We have found some work in literature that used these two sets of solutions but they are normally

restricted to 1D problems or very simple and small multidimensional problems.

6.2.4 The potential of computing energy discretization errors

In the process of developing discrete CDFs for sampling the residual source we applied cell-wise
integrals of the absolute value of the residual source for each energy group. We used multivariate
Monte Carlo integration to perform these integrals and therein realized several aspects. The first is
that the multigroup structure of the DO solution does not necessarily have to dictate the multigroup
structure of the defect solution. The second is that we can use continuous energy cross sections in
Monte Carlo integrals, where the energy is uniformly sampled in the DO defined group interval.
We can then project a coarse-group DO simulation’s approximate solution onto a refined group-
structure and determine the defect with respect to the refined group structure. This will allow us
to compare reaction rates, in-turn allowing us to determine if any energy discretization errors are

significant.
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APPENDIX A

RAY TRACING TO CELL SURFACES

A.1 Intersection of a line and a plane

Consider the arrangement depicted in A.1.

ry
2

7 .

Vf

//
7
-< )
v
Po
\ Target plane

Figure A.1: Graphical representation of intersection of a line with a plane.

3D Line definition 1:

Given a particle’s location, r;, and direction, {2, we can create a 3D line of the form

r=r;+s§
(A.1)

(I,y,Z) = (xwyuzz) +s [Qaza an Qz]

where s is the only unknown parameter required to define r = (z,y, 2).

3D Line definition 2:

If we are supplied with another point on the line, p; and then define a weight, w € [0, 1], which
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can define a line segment

r =wr;, + (w—1)ry A2)

(xayv Z) = w(ﬂ%yz‘, Zi) + (w - 1)($f7yfazf)

3D Plane definition:
For the equation of a plane we need a refence point, py, and a normal, n, after which we can form
a vector from point py to r, = (2, v, ), an arbitrary point on the plane. The plane is then defined

by the relationship

n-(r,—pg) =0

N (2 — Pox) + 1y(y — Poy) + n=(z — po) = 0. (A.3)

Computing the intersection of a line with a plane:
There are several options for computing the intersection. One option is to substitute r in equation
A.1 into r, int he equation for the plane (equation A.3) and solve for s. If s < 0 then there is no

intersection. If s < ||r; — r;|| then there is an intersection at point r; + s €2.

A very simple way to simultaneously determine whether a line segment intersects the plane and
where the intersection is, is to use the segment definition of the line and compute two vectors; one

from py to r;, and another from p, to ry

vVi=r;—pyo and Vvy=rT;—Ppg

after which we compute the projection of these vectors along the normal of the plane by taking the
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dot-products

Di=n-v; and D;=mn-vy.

Since we use the same normal for both computations the line is intersecting the plane only if the

signs of the dot-products is not equal and w can then be computed as

if sgn(D;) # sgn(Dy)

| D

W= ——————
| Dil + | Dyl

A.2 Intersection of a line and a strip

The algorithm to determine the intersection of a line with the face of a polygon, or an intersection
with a segment of a polygon, is captured within this utility. A strip is formed by a normal n and two
points v, and vy, and infinite along the direction defined by (v; — vg) - n. For further clarification,
typical strips are as shown in Figure A.2 below.

Firstly we apply the algorithm in A.1 to determine the intersection point p with the plane of

which the strip is a subset. We then compute 3 vectors for this utility.

Vo1 = V1 — Vg
Vop =P — Vo

Vip=Pp—V1

after which we compute the projection of v, and v, along the strip’s characteristic vector v

as dot products
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Figure A.2: A schematic of the raytracing required for 2D cells. This involves the intersection of
3D line with a strip.

Dy = Vop * Vo1
D, = Vip * Vo1

The intersection point is on the strip if

sgn(Dy) # sgn(Dy)
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Figure A.3: The formation of a tetrahedron from a triangulation of polyhedron faces.

A.3 Intersection of a plane and a triangle

For this algorithm we use a modified version of the Moller-Trumbore intersection algorithm [19].
We decompose a polyhedron, as shown in Figure A.3 below, and trace from entry to the nearest
face-side triangle intersection. The nearest face is considered only if the cell has been marked as

having a concavity, otherwise the first triangle intersection is used for calculating the ray length.
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APPENDIX B

BASIS FUNCTION FOR PIECEWISE-LINEAR FEM

B.1 2D Polygon cells

The support points for the nodes of a polygon, using piecewise-linear basis functions, are the

vertices. The basis functions for each node i are then

where the functions /V; and /N, are the standard linear functions defined on triangles. The subscripts
1 and c refer to the vertices ¢ and center of the polygon, respectively. The (3; value is a weighting

constant defined such that

N
Xe = Z /BSXS,CLUg7 (B2)
s=0

where x. is the cell-centroid, x; 4,4 1s the average coordinate of the two vertices of a side. Naturally

) 1 . . . .

it follows that 5, = A where N is the amount of sides. An example basis function is shown
S

in Figure B.1. It should be noted that a volumetric integral of a single basis function requires

integration on each of the sub-triangles of the polygon instead of just a single one. The sub-

triangles are formed from each edge of the polygon and the cell-centroid.
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0

Figure B.1: Piecewise-linear basis function on a 2D polygon.

The method is versatile enough to applied to triangles and quadrilaterals where examples of

the shape functions are shown in Figure

a0

)

Figure B.2: Piecewise-linear basis functions on a triangle and on a quadrilateral.
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B.2 3D Polyhedron cells

The shape function for each vertex/node ¢ of the polyhedron is given by

faces at i

P(z,y,2) = Ni(z,y,2) + Y BeNp(z,y.2) + acNo(z,y, 2) (B-3)

where the functions N (z,y, z) are the standard linear shape functions defined on a tetrahedron. /3,
and o is the weight that gives the face centroid, xy., and cell centroid, X.., respectively from the

sum of the vertices that constitute them. i.e.

Nvf

Xfe = ZB]‘XW (B4)

v=0

X,0 = Z Xy (B.5)

v=0

where N, ¢ is the number of vertices for the given face and N, is the number of vertices for the

1 1
entire cell. Naturally it follows that 8y = N and o, = . The format of equation B.3 is not
vf ve

intuitive at first sight ... it is hard to comprehend the summation over faces “at j", but let us try to

clarify this with a diagram (see Figure B.3).
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Figure B.3: Connection of the vertex of interest to the tetrahedrons that comprise the cell.

Firstly we split the polyhedron into faces, where each face can be a polygonal face. Each face
is then split into a number of sides. A side is a tetrahedron, corresponding to a face, which is
formed from each edge of the polygonal face where the vertex collection are the two vertices of
the edge, the face center and the cell center. In other words the face center and the two vertices of

the edge forms a triangle, and the cell center makes it a tetrahedron.

As was the case with the polygon, all the other vertices j (not 7) are connected to the vertex of
interest ¢ through the cell center. Again, we don’t include the cell center as a point in the sim-
ulation so we have to spread its effect through to each of the vertices using the a, factor. We
also have face centered shape functions associated with the division of each polygonal face into
sides. On each face, to which vertex ¢ belongs, the shape functions defined on the face centers
will protrude into the tetrahedron under consideration (i.e. the tetrahedron associated with vertex
1 associated with face f, side s). Therefore more clearly we can express the shape functions on a

tetrahedron-by-tetrahedron basis
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(

a.Ne(z,y, 2) no matter which tetrahedron

Pz, y, 2) = ¢ +B¢N¢(x,y, 2) if vertex 4 is part of the face (B.6)

+Ni(z,y, 2) if vertex i is part of the face-side pair
\

Figure B.4 shows the influence of a shape function (centered on a specific point as denoted by the
start of an arrow) from a specific vertex (color). The orange colored vertex’s influence is shown on
the left most figure where the shape function is then the full equation because all of the conditions
are met; i.e. «./V. is always present, vertex ¢ is indeed part of the face where this tetrahedron
is defined and therefore 3;N is present, finally it is also part of the side of the tetrahedron and

therefore its basic shape function /V; is present.

The middle figure shows the red vertex as a vertex that only has the contribution of a./N. and
BNy because the red vertex is not on the side comprosing the tetrahedron of interest. The right-
most figure shows only the contribution of a,. /N, because the blue vertex is not part of any adjacent

face.
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Figure B.4: Influence of different vertices on the shape functions of within a tetrahedral portion of
the cell.
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APPENDIX C

AN EXPONENTIAL REPRESENTATION OF A P1 ANGULAR FLUX EXPANSION

The P, approximation of an anisotropic angular flux is given by

Y(Q) = %cH%Q-J (C.1)

where
[¢0,0, $1,1, P1,-1, ¢1,0] = [¢> Sy Iy, Jz]

J =1, Jy, J]

which is essentially a linear representation w.r.t. the cosine, u, of the angle between the desired

J
direction €2 and the direction of the current 2, = m For highly anisotropic angular fluxes this

P, representation is not assured to be positive and hence cannot be used to construct a PDF for

random sampling.

C.1 An exponential representation

To circumvent the property of the P, approximation possibly being negative, we replace the P;

approximation by an exponential representation of the form

@/J(Q) — ea-i-b Q;-Q (C.2)

where €2 is the unit direction along J, and a and b are constants such that

/ e?0 2 1O — ¢ and
47

/ et O dQ = J.
4m
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C.1.1 Change in reference frame

For known values of ¢ and J we need to construct a system of equations to solve for a and b. From

the equation above we see that we have more equations than unknowns. One simplification we can

apply is to rotate our angular coordinate system to be aligned with {2; with a rotation matrix R.

This rotation is such that

Q'=RQ, and

J=RJI=1|JQy,

for which we can define y as the cosine between €2’ and €2; which reduces the above integrals to

one dimensional integrals as

which evaluates to

1
27?/ eV dy' = ¢ and

1

1
27'('/ ea-i—bu’ HJ/ du’ _ |J|,

1

4
%e“ sinh b = ¢ and

—e¢” (bcoshb — sinh b) = |J|.

C.1.2 Only working with the shape of the angular flux

(C.3)

Another simplification we can make originates from the observation that the shape of the angular

flux (as a function of i/ = Q - Q') is dictated only by the ratio of |J| to ¢. So if we amend our

previous definition of the desired exponential representation (eq. C.2) to rather be
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and redefine the integrals, denoting the properties that the coefficients a and b must support, as

1
om / e dy =1 and
-1 (C.5)

which evaluates to

4%(2& sinhb = 1 and

Ar (C.6)
b—Qea (bcoshb — sinhb) = r,
J
where r = u : 0 < r < 1, we now have grounds to construct a system characterized only by

constant r and the unknowns ¢ and b.

C.1.3 Thecornercasesatr — OQandr — 1

As r tends to zero the angular distribution becomes increasingly isotropic making the value of
b — 0, which is problematic in the equations above since b appears as a divisor. To accommodate
this case we set a lower bound, 7;,,,, for , below which we explicitly set b = 0 and a = ln(ﬁ).
As r tends to 1 the angular distribution approaches a d-function, which becomes difficult to
solve in its non-linear form. To accommodate this case we set an upper limit, 7,4, above which
we limit 7 as 7 = min(r, 74,,). In this research the exponential distribution is used for angular
biasing, allowing us to set rp;,, comparatively low at 74,4, = 0.9. This allows the angular biasing to
still be effective, on the hand of the P, expansion, whilst not resulting in excess weight reductions

to account for the biasing.
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C.1.4 A non-linear system

The non-linear system, of the form, F'(x) = 0, with unknowns x = |[a, b], is developed from
Eq. (C.6) and is defined by
dmea ginhb — 1,

F(x+ (a,b)) = ' , (C.7)

3¢ (bcoshb — sinh b) — r

for which the Jacobian matrix, F’(x), has elements

F 4
F'(x)o0 = % = %e“ sinh b,
8F0 47
/ _Yr0 oo
F'(x)o1 = % 72 (bcoshb — sinhb),
8F1 47
/ _ Yl = a o
F'(x)10 = 5 72 (bcosh b — sinh b),
8F1 47
/ _ -1 _ 7" 2 : o
F'(x)11 = 5 - e ((b° 4+ 2) sinh b — 2bcosh b),
such that
0, OF,
F(x) = da  Ob
0F OF:
Ja  Ob

These definitions allow us to formulate a multivariate Newton-method to solve the non-linear sys-
tem. The solution process is then to first choose a starting value for x and give it an iteration index
i = 0, i.e., we choose xy. Next we evaluate F'(xo) and F’(x,) which we use to compute x; from

the iterative scheme

Xit1 = X — [F/<Xi)}71 F(XZ> (CS)

We repeat this process until || F(x;)||2 < e.
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C.1.5 Example distributions

]

Figure C.1 below shows the resulting exponential distribution for different values of r = E Note

the J-function nature at values of r approaching 1 (in Figure C.1 r=0.98).

08
—P1 =0 1 —Expr=0
— = I
o | (W) = (@ + 311D —Expr=05 || () = et
0.6 P1r=0.75 4m
P1 120,98 Exp r=0.75
= —Exp =098

04

0.2
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0.0 - J
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-1 08 06 04 02 0 02 04 06 08 1-1 08 06 -04 -02 0 02 04 06 08 1

I w

Figure C.1: Examples of the exponential representation of the angular flux for P approximations
with a different r-value.

C.2 Sampling the exponential distribution

From our previously defined properties we know that, if the coefficients a and b are known, then

1
27?/ eVt dy =1,

1

which is equivalent to having a normalized continuous PDF

(i) = 2me O (C.9)
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The corresponding continuous CDF, ¢(y) is then,

which can be inverted algebraically to get

)

where

(C.10)

(C.11)

This continuous CDF can then be sampled by replacing ¢(y') with a pseudo random number,

0r € [0, 1), and evaluating the above function.
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