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ABSTRACT

The guiding design principle behind humans building machines has been the repeated execu-

tion of a particular task in a precise and efficient manner. While we have systems that can solve

tasks ranging from the relatively mundane like crunching numbers to highly complex tasks like rec-

ognizing objects and harvesting wheat, they are incredibly specific in that they perform the tasks

that they are trained for and not good at generalization. For instance, a robotic arm that can weld

two parts of a car together may be rendered completely useless in a situation that requires welding

components in a computer motherboard. Developing agents that are endowed with human-like

abilities to generalize in diverse scenarios is a core research topic in artificial intelligence.

In order for an agent to develop general-purpose skills in a completely self-supervised manner,

learning rich representations of the world that it is embodied in as well as using these representa-

tions to adapt and learn more about the environment are useful. The prediction and anticipation of

future events is a key component of such intelligent decision-making systems. Prediction serves as

a useful means to learn useful concepts about the world even from a raw stream of sensory obser-

vations, such as images from a camera. If the agent can learn to predict raw sensory observations

directly, it does not need to assume availability of low-dimensional state information or an extrin-

sic reward signal. This is beneficial in learning skills in real-world environments, where external

reward feedback is extremely sparse or non-existent, and the agent has only indirect access to the

state of the world through its senses. Images are high-dimensional and rich sources of information,

underlying the potential of video prediction to extract meaningful representations of the underlying

patterns in video data.

Video prediction refers to the problem of generating pixels of future frames given context

information in the form of past frames of a video. When combined with planning algorithms, the

agent is able to take actions towards a desired goal in an unsupervised manner by using data as its

own supervision. Motivated by this objective of learning generalizable behavior in the real world,

we introduce the Hierarchical Variational Autoencoder (HVAE), a model that leverages a hierarchy
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of latent sequences to solve the task of video prediction.
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1. INTRODUCTION

The prediction and anticipation of future events is a key component of intelligent decision-

making systems. Biological agents can perform complex visual tasks, typically without requiring

external supervision in the form of millions of labelled examples. They use perceptual systems

for obtaining sensory information that enables them to act and accomplish their goals [1] [2]. The

idea of video prediction has biological roots, and draws inspiration from the predictive coding

paradigm [3] borrowed from the cognitive neuroscience field [4]. If an agent can learn to predict

the future, it can take anticipatory actions, plan through its predictions, and use prediction as a

proxy for representation learning. For example, robots can quickly learn manipulation skills when

predicting the consequences of physical interactions. Also, an autonomous car can slow down or

brake when predicting that a person is walking across the driving lane.

The task of video prediction is a generative modeling problem that uses self-supervision to

predict future frames from raw video data. Videos provide complex transformations and motion

information temporally, which means that computational models of perception based on egomotion

(i.e. self motion) can be formulated for learning useful visual representations. Although training

such models does not need annotated data, the models need to capture the complex dynamics of

real-world phenomena to generate coherent sequences. Uncertainty is a key difficulty associated

with prediction, as many plausible outcomes might occur from a sequence of observations. The

future is by nature multimodal, and the assumption that all possible outcomes are reflected in the

input data make prediction under uncertainty extremely challenging.

Figure 1.1 shows video predictions on the Moving MNIST dataset using our algorithm for a

time horizon of 1000 time steps using 36 context frames as input. Our main contributions in this

work are:

• We introduce a simple hierarchical video prediction model that leverages different transition

speeds of latent variables per level to learn long-term dependencies in video.
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Figure 1.1: Example results We show example predictions of a video sequence using our method.
The input sequence consists of two digits, 3 and 7 moving in an enclosed space and bouncing
off the edges. Our method is able to preserve the structural integrity of the digits throughout the
prediction horizon, and is able to do so by learning useful representations of the data rather than a
distribution over the pixels.

• We demonstrate that our method improves over previous work on accurate long-term predic-

tions, and also support this claim by an empirical evaluation.

2



2. VIDEO PREDICTION

2.1 Background

Predicting video frames from past frames through classical methods and deep learning has been

an important aspect of video compression for long [5] [6]. However, a lot of progress has been

made in video prediction with the advent of deep image generation models [7]. A simple approach

to the problem has been to use temporally autoregressive models which predict one image after

another, based on previously observed or generated images [8] [9]. However, these can be compu-

tationally expensive as they operate in the high-dimensional image space and at the frame rate of

the dataset. Initially, the problem has been tackled by a deterministic model [10] [11]. Variational

Autoencoders were later adopted to model the stochasticity of future visual observations [12] [13]

[14]. The issue of blurry predictions that arise from using a trajectory-based latent variable model

to model the stochasticity of the real world has then been addressed by two lines of orthogonal

work- VAE-GANs [15] and timestep-based latent variable models [9]. While these models address

the issue of blurriness on small-scale video datasets like the BAIR robot action dataset [16], they

suffer from severe underfitting in large-scale datasets.

Latent dynamics models, which are typically trained using variational inference, predict a se-

quence of learned latent states forward that is then decoded into the video, without feeding gen-

erated frames back into the model [17]. Hierarchical latent variable models are used to better

represent complex data and learn multiple levels of features. Some examples include Ladder VAE

[18], VLAE [19], NVAE [20], and very deep VAEs which are used for generating static images

[21]. Castrejon et al. [22] apply dense connections to hierarchical VAEs to address the optimiza-

tion challenge of fitting hierarchical variational video prediction models, but are unable to scale up

its hierarchical VAE. Deep video prediction models which use hierarchical latents and can learn to

separate high-level details, such as textures, from low-level details, have also been used. However,

all these models fail to predict very far into the future and are mainly focused on short-term video

3



prediction of under 100 frames.

Latent dynamics models that use temporal abstraction predict learned features at a slower fre-

quency than the input sequence. Learning spatio-temporal structure hierarchically in sequential

data is critical for an intelligent agent exploring an environment as it can enable efficient option-

learning and jumpy future imagination, which are essential to solve the sample efficiency problem.

Variational Temporal Abstraction(VTA) models videos using two abstraction levels, where the ab-

straction level with faster transitions decides when the slow states should tick [23]. In this work,

we use a temporally abstract latent dynamics model to learn long-term dependencies in videos.

2.2 Temporal Information in Videos

Videos provide complex transformations and motion patterns in the time dimension, which is

not the case in static images. For instance, if we look at the big picture, consecutive frames appear

to be visually different due to occlusions or changes in the lighting conditions, but semantically co-

herent. However, at a fine granularity, a small patch at the same spatial location across consecutive

time steps appears to have a wide range of visually similar local deformations due to temporal co-

herence. This information can be used by predictive models to extract spatio-temporal correlations

depicting the dynamics in a video sequence. For instance, egomotion, i.e. self motion is shown to

be a useful source of intrinsic supervision for visual feature learning in mobile agents [24].

2.3 Stochasticity of Observations

A model that can accurately predict future observations of complex sensory modalities such as

vision must inherently learn a representation of the complex dynamics of real-world objects and

people, and subsequently such a representation can be used to solve a variety of visual perception

tasks, like object tracking and action recognition [25]. However, there are a number of spatio-

temporal factors of variation that make up the dynamics of how video frames change through time.
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3. GENERATIVE MODELING

Generative modeling is a broad area of machine learning which deals with models of distribu-

tions p(X), defined over datapoints X in some potentially high-dimensional space X . Images are

high-dimensional sources of data where each image has a number of dimensions (pixels), and the

generative model’s goal is to capture the dependencies between the pixels, e.g. that nearby pixels

have similar color, and are organized into objects. In the context of video prediction, generative

models become useful to deal with the multimodal nature of the problem, where the space of pos-

sibilities diverges beyond a few frames. Methods that use deterministic models and loss functions

such as mean-squared error (MSE) are unequipped to handle this uncertainty, and average together

possible futures, resulting in blurry predictions.

In effect, the goal in generative model training is to learn an unknown or intractable probability

distribution from a typically small number of independent and identically distributed samples. We

can formalize this setup by saying that we get examples X distributed according to some unknown

distribution pdata(X), and our goal is to learn a model p which we can sample from, such that p is

as similar as possible to pdata.

3.1 Latent variable models

The task of training generative models becomes harder the more complicated the dependencies

between the dimensions. For example, let us consider the problem of generating handwritten

characters 0 − 9. If the left half of the character contains the left half of a 5, then the right half

cannot contain the left half of a 0, or the character will not look like a real digit. If the model

develops an intuition to make a decision as to which character to generate before assigning a value

to any pixel, it would be beneficial. This kind of decision is called a latent variable. In order to

declare that the model is representative of the dataset, we need to ensure that for every datapoint

X in the dataset, there exists a setting of the latent variables which causes the model to generate

something very similar to X .

5



By defining a joint distribution over visible and latent variables, the corresponding distribution

of the observed variables is then obtained by marginalization. Formally, say we have a vector of

latent variables z in a space Z which can be sampled according to some PDF p(z) defined over Z .

Then, say we have a family of deterministic functions f(z; θ), parameterized by a vector θ in some

space Θ, where f : Z x Θ 7→ X . f is deterministic, but if z is random and θ is fixed, then f(z; θ)

is a random variable in the space X . We wish to optimize θ such that we can sample z from P (z)

and, with high probability, f(z; θ) will be similar to the X’s in our dataset. The aim is to maximize

the probability of each X in the training set under the entire generative process, according to:

p(X) =

∫
p(X|z; θ)p(z)dz. (3.1)

Here, f(z; θ) is replaced by the distribution p(X|z; θ), making the dependence of X on z

explicit using the law of total probability.

3.2 Variational Autoencoders

A variational autoencoder provides a probabilistic approach to describe an observation in latent

space. The input data is converted into an encoding vector where each dimension represents some

learned attribute about the data. VAEs approximately maximize Equation 3.1, according to the

model shown in Figure 3.1.

Figure 3.1: Standard VAE model represented as graphical model.
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To solve Equation 3.1, VAEs answer two questions: how to define the latent variables z, and

how to deal with the integral over z. Taking the handwritten digits example, the model needs to

make complicated ’latent’ decisions before drawing the digit, like choosing the angle of the digit or

the stroke width. The key idea behind the variational autoencoder is to attempt to sample values of

z that are likely to have produced X , and compute p(X) just from those. The marginal density of

the observations p(X) is also called the evidence. This means that a new function q(z|X) is needed

which can take a value of X and output a distribution over z values that are likely to produce X .

The Kullback-Leibler divergence (KL divergence or D) between p(z|X) and q(z), for some

arbitrary q (which may or may not depend on X) is given by:

D [q(z)‖p(z|X)] = Ez∼q [log q(z)− log p(z|X)] . (3.2)

By applying Bayes rule to p(z|X):

D [q(z)‖p(z|X)] = Ez∼q [log q(z)− log p(X|z)− log p(z)] + log p(X). (3.3)

Rearranging and expressing a part of Ez∼q as a KL-divergence term yields:

log p(X)−D [q(z)‖p(z|X)] = Ez∼q [log p(X|z)]−D [q(z)‖p(z)] . (3.4)

Since we’re interested in inferring p(X), it makes sense to construct a q which depends on X and

one which makes D [q(z)‖p(z|X)] small:

log p(X)−D [q(z|X)‖p(z|X)] = Ez∼q [log p(X|z)]−D [q(z|X)‖p(z)] . (3.5)

Equation 3.5 serves as the core of the variational autoencoder. The left-hand side of the equation

has the quantity we want to maximize. The right-hand side is something that we can optimize via

stochastic gradient descent given the right choice of q. This framework is in a form similar to that
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of an encoder, as q is "encoding" X into z, and p is "decoding" it to reconstruct X . The objective

is to maximize log p(X) while simultaneously minimizing D [q(z|X)‖p(z|X)]. The intractable

p(z|X) is made tractable by using q(z|X).

3.2.1 The evidence lower bound

The right-hand side of Equation 3.5 is called the evidence lower bound (ELBO) and is given

by

ELBO(q) = Ez∼q [log p(X|z)]−D [q(z|X)‖p(z)] . (3.6)

The property of the ELBO is that it lower-bounds the (log) evidence, log p(X) ≥ ELBO(q) for

any q(z) and hence the name. To see this, from Equations (3.5) and (3.8), we can express the

evidence as

log p(X) = D [q(z|X)‖p(z|X)] + ELBO(q).

The bound then follows from the fact that the KL term D(·) ≥ 0.

3.3 Recurrent State-Space Model

The recurrent state space model is a latent dynamics model that is used by PlaNet [26], a

model-based agent that learns the environment dynamics from pixels and chooses actions through

online planning in a compact latent space. The model explains the video sequence x1:T using a

latent sequence of compact states s1:T and is autoregressive in latent space but not in image space,

allowing for future predictions without generating images along the way,

p (x1:T , s1:T ) =
T∏
t=1

p (xt|st) p (st|st−1) . (3.7)

Given a training sequence of context frames, the model first individually embeds the frames

using a CNN. A recurrent network with deterministic and stochastic components then summarizes

the image embeddings. The stochastic component helps with generating multiple features, while

the deterministic component helps remember information over multiple timesteps. The states are
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then decoded using another CNN to provide a training signal,

Encoder: et = enc(xt)

Posterior transition qt : q (st|st−1, et)

Prior transition pt : p(st|st−1)

Decoder: p(xt|st).

As the likelihood of the training data under the model cannot be computed in closed form, the evi-

dence lower bound (ELBO) is used as the training objective. The ELBO contains a reconstruction

term and a regularization term,

max
q,p

T∑
t=1

Eqt [ln p (xt|st)]−
T∑
t=1

Eqt−1 [D [qt||pt]] . (3.8)

All components jointly optimize Equation 3.8 using stochastic backpropagation, a modified form

of gradient backpropagation that allows for the joint optimization of the parameters of both the

generative and inference models [27]. Both the first and second term are stochastic with respect to

the latent state random variable. The optimization uses a reparameterization trick which converts

the representation of the latent state random variable into a stochastic and deterministic part, in

order to provide a clear path for the backpropagation algorithm [28].

3.3.1 Variational bound

The variational bound for latent dynamics models p(x1:T , s1:T )
.
= ΠT

t=1 p (xt | st) p (st | st−1)

and a variational posterior q (s1:T | x1:T ) = ΠT
t=1 q (st | st−1, xt), follows from importance weight-
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ing and Jensen’s inequality as below,

ln p (x1:T )
.
= lnEp(s1:T )

[
T∏
t=1

p(xt | st)

]

= lnEq(s1:T | x1:T )

[
T∏
t=1

p (xt | st) p (st | st−1) /q (st | xt, st−1)

]

≥ Eq(s1:T | x1:T )

[
T∑
t=1

ln p(xt | st) + ln p(st | st−1)− ln q (st | xt, st−1)

]

=
T∑
t=1

(
Eqt [ln p(xt | st)]− Eqt−1 [D [qt‖pt]]

)
(3.9)

3.4 Multiscale Recurrent Neural Networks

Multiscale RNNs have been useful for modeling hierarchical and temporal representation by

grouping hidden units into multiple modules of different timescales. The key idea lies in updating

the weights of neurons belonging to different layers of the stack, corresponding to the layers of

hierarchies in the data. This method is able to efficiently deliver long-term dependencies with fewer

updates at the higher layers, thereby mitigating the vanishing gradient problem. Implementations

of these models include approaches like setting timescales as hyperparameters [29] and a model

which can learn the hierarchical multiscale structure from temporal data without explicit boundary

information [30].

3.5 Generative Adversarial Nets

Generative adversarial networks [7] are a framework similar to a minimax two-player game

to estimate generative models via an adversarial process, in which we simultaneously train two

models: a generative model G that captures the data distribution, and a discriminative model D

that estimates the probability that a sample came from the training data rather than G. GANs

enable machine learning to work with multi-modal outputs, making them very useful for tasks like

image generation and video generation.

The basic idea of a GAN is to set up a game between two players. The generator creates
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samples that are intended to come from the same distribution as the training data pdata. The dis-

criminator, on the other hand, examines samples to determine whether they are real or fake. Let

X be a datapoint representing an image. D(X) is the discriminator network which outputs the

probability that X came from the training data rather than the generator and can be thought of as a

traditional binary classifier. The generator function is represented by G(z) which maps the latent

variable z to the high-dimensional space of the input data. The goal of G is to estimate a distribu-

tion pg from which it can generate fake samples that resemble images from the actual training data

distribution pdata. The value function is given by

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] . (3.10)

Although GANs overcome the limitations of pixel-wise losses, they are notoriously susceptible

to "mode collapse", where latent random variables are often ignored by the model. This makes

them difficult to apply to the generation of diverse and plausible futures, conditioned on context

frames, making them unsuitable to solve the long-horizon prediction problem.
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4. PRACTICAL IMPLEMENTATION AND RESULTS

In this section, we discuss our algorithm and its performance on a few standard datasets.

4.1 Hierarchical Variational Autoencoder

We propose the Hierarchical Variational Autoencoder by using ideas from latent dynamics

models like the one used by PlaNet and multiscale recurrent neural networks [30] to learn long-

term correlations of videos. Our model predicts ahead on multiple timescales, as shown in Figure

4.1. HVAE consists of a hierarchy of recurrent latent variables, where each level transitions at a

different frequency. The transitions slow down exponentially as we go up the hierarchy by a factor

k, which we denote as the temporal abstraction factor. The latent state at time t and level l is

denoted by slt and the video frames by xt. We define a set of active time steps Tl for each level

l ∈ [1, L] as those time instances for which the state transition generates a new latent state,

Tl
.
= {t ∈ [1, T ] | t mod kl−1 = 1}. (4.1)

Figure 4.1: Hierarchical Variational Autoencoder.
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At each level, we condition k consecutive latent states on a single latent variable in the level

above. For example, in the model shown in Figure 4.1, with the temporal abstraction factor k = 2,

T1 = {1, 2, 3, . . .}, T2 = {1, 3, 5, . . .}, both s11 and s12 are conditioned on the same s21 from the

previous level. Each level of the hierarchy of latent variables has a separate state variable per

time step, with the previous state being updated every kl−1 time steps, and otherwise copying the

previous state. So, ∀t /∈ Tl, the copied states are given by:

slt
.
= slmaxτ{τ∈Tl|τ≤t}. (4.2)

We factorize the joint distribution of a sequence of images and active latents at every level into two

terms:

• the reconstruction terms of the images given the lowest latents, and

• state transitions at all levels that are conditioned on the previous latent and the latent above,

p
(
x1:T , s

1:L
1:T

) .
=
(
ΠT
t=1 p

(
xt | s1t

)) (
ΠL
l=1 Πt∈Tl p

(
slt | slt−1, sl+1

t

))
. (4.3)

In order to implement the distribution in Equation 4.3, we use the following components, ∀l ∈

[1, L], t ∈ Tl,

Encoder: elt = e (xt:t+kl−1−1)

Posterior transition qlt : q
(
slt | slt−1, sl+1

t , elt
)

Prior transition plt : p
(
slt | slt−1, sl+1

t

)
Decoder: p

(
xt | s1t

)
.

(4.4)

4.1.1 Inference

In the inference stage, the embeddings are computed using a CNN and the posterior transition

function is then calculated. Each active latent state at level l receives image embeddings of its
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corresponding kl−1 observations (dashed lines in Figure 4.1). The belief qlt is computed as a func-

tion of the input features, the posterior sample at the previous step, and the posterior sample above

(solid lines in Figure 4.1). The belief is a Gaussian distribution with a diagonal covariance matrix.

4.1.2 Generation

During the generation stage, the prior plt is computed by applying the transition function from

the latent state at the previous time step in the current level, as well as the state belief at the level

above (solid lines in Figure 4.1). Finally, the posterior samples at the lowest level are decoded into

images using a transposed CNN, which is an upsampling operation on the latent space feature map

to produce the image in the higher dimensional space.

4.1.3 Training Objective

We cannot compute the likelihood of the training data under the model in closed form. In-

stead, we use the evidence lower bound as the training objective, as defined in Section 3.3.1. This

objective optimizes a reconstruction loss at the lowest level, and a Kullback-Leibler divergence

regularization term at every level summed across active time steps,

max
e,q,p

T∑
t=1

Eq1t
[
ln p

(
xt | s1t

)]
−

L∑
l=1

∑
t∈Tl

Eqlt−1q
l+1
t

[
D
[
qlt ‖ plt

]]
. (4.5)

The function of the KL regularization terms is to restrict the amount of information about the

images that enters via the encoder. This prioritizes information available from the previous and

above latent levels, and extracts information from the input image only to the extent necessary. As

the number of active time steps decreases higher up in the hierarchy, the number of KL terms per

level decreases. This makes it easier for the model to store slowly changing information in the

higher levels than to pay a KL penalty to repeatedly extract information from images in the lower

level.
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4.1.4 State Components

We split the state slt into stochastic (zlt) and deterministic (hlt) parts, as shown in Figure 4.2. The

deterministic state is computed using the top-down and temporal context, which then conditions

the stochastic state at that level. A Gated Recurrent Unit (GRU) per level is used to update the

deterministic variable at every active step.

Figure 4.2: State components of HVAE.

The motivation for including a deterministic component is due to the fact that purely stochastic

transitions make it difficult for the transition model to reliably remember information for multiple

time steps. In theory, although the model could learn to set the variance to zero for some state

components in the purely stochastic transition case, the optimization procedure may not find this

solution.

4.2 Datasets

We choose two different video datasets for the benchmark. The MineRL Navigate dataset was

crowdsourced for reinforcement learning applications by Guss et al. [31]. We process this data to

create a long-horizon video prediction dataset by combining the Navigate and Navigate Extreme

tasks, splitting them into non-overlapping sequences of length 500, and splitting them into training
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and test sets. The Moving MNIST dataset contains 2x106 frames where two digits move with

velocities sampled in the range of 2 to 6 pixels per frame, and bounce within the edges of the

image.

4.3 Quantitative Evaluation

We compare HVAE to two well-established video prediction models, and an ablation of our

method where the states at all levels are updated at the fastest scale with a temporal abstraction

factor of 1, which we denote as HVAE-Fast. PlaNet uses the recurrent state-space model, which

is commonly used as a world model in reinforcement learning [26]. It predicts forward using

a sequence of compact latents without generating images along the way. SVG-LP (or SVG for

short) has been shown to generate predictions that are both varied and sharp on visually complex

datasets [9]. It autoregressively feeds generated images back into the model, while also using a

latent variable at every time step.

4.4 Training details

We train all models on all datasets for 300 epochs on training sequences of 100 frames of size

64 x 64 pixels. For the baselines, we tune the learning rate in the range [10−4, 10−3]. We use a

temporal abstraction factor of 6 for HVAE.

4.4.1 Model Architecture

We use the discriminator and generator of DCGAN [32] for the convolutional frame encoders

and decoders, respectively. To obtain input embeddings elt at a particular level, kl−1 input em-

beddings are pre-processed using a feed-forward network and then summed to obtain a single

embedding. We do not use any skip connections between the encoder and the decoder, which

would bypass the latent states. The posterior and prior transition models are implemented using a

recurrent neural network.
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4.4.2 Hyperparameters

We keep the feature dimension of the encoder output at each level of HVAE as |elt| = 1024,

that of the stochastic states as
∣∣plt∣∣ =

∣∣qlt∣∣ = 20 and that of the deterministic states as
∣∣hlt∣∣ = 200.

The number of hidden layers in the RNN cell is set to 200. We train using the Adam optimizer [33]

with a learning rate of 3 x 10−4 and ε = 10−4 using a batch size of 30 sequences with 100 frames

each.

We use 36 context frames for video predictions, which is the minimum number of frames re-

quired to transition at least once in the highest level of the hierarchy. With 3 levels in the hierarchy

and a temporal abstraction factor of 6, each latent state at the highest level corresponds to 36 images

in the sequence, and thus its encoder network expects 36 images as input. This follows from Equa-

tion 4.4 where each active latent state at level l receives image embeddings of its corresponding

kl−1 observations, where k is the temporal abstraction factor.

4.5 Evaluation Metrics

We use three different metrics to evaluate the open-loop predictions:

• Structural Similarity Index (SSIM): SSIM is a method for measuring the similarity between

two images [34]. The SSIM index can be viewed as a quality measure of one of the images

being compared, provided the other image is regarded as of perfect quality. The higher this

quantity, the better the quality of prediction.

• Peak Signal-to-Noise Ratio (PSNR): PSNR is used as a quality measurement between the

ground truth and test image. The higher the PSNR, the better the quality of the predicted

image.

• Learned Perceptual Image Patch Similarity (LPIPS): LPIPS is a metric that evaluates the

distance between image patches. A higher value indicates that the images are further or more

different. A lower value indicates that the images are similar, and the prediction quality is

good.
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4.6 Results

We evaluate the 4 models on two datasets and three metrics. HVAE outperforms the existing

methods, which we attribute to its hierarchical latents and temporal abstraction.

MineRL Navigate Moving MNIST
SSIM PSNR LPIPS SSIM PSNR LPIPS

HVAE 0.64 22.91 0.31 0.68 13.04 0.26
PlaNet 0.66 23.48 0.31 0.64 12.79 0.28
SVG 0.56 17.22 0.32 0.64 11.73 0.31
HVAE-Fast 0.56 20.39 0.36 0.66 12.93 0.26

Table 4.1: Quantitative comparison of HVAE with other state-of-the-art video prediction models.
The scores are averaged across frames of all evaluation sequences of a dataset. The best performing
model and those within 5% of its performance are highlighted in bold.

4.6.1 Moving MNIST

We run our prediction algorithm on the Moving MNIST dataset as shown in Figure 4.3. We

use the first 36 frames as context and generate open-loop prediction of 1000 frames. Here are some

observations from running the models on this dataset:

• We observe that HVAE is able to remember digit identities across all 1000 frames of the

prediction horizon, whereas the other models forget the digit identities at around 300 time

steps.

• PlaNet outperforms SVG, but starts to forget digit identities much sooner than HVAE.

• HVAE predicts accurate positions of digits until around 100 steps, and predicts a plausible

sequence thereafter.

• PlaNet also predicts correct location of digits for at least as long as HVAE, whereas SVG

starts to lose track much sooner.
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• The prediction models that predict purely in latent space are slightly blurry compared to

those generated by SVG.
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Figure 4.3: Long-horizon open-loop video predictions on Moving MNIST.

Figure 4.4 shows a grid of predicted video frames for HVAE for 1000 time steps. The predic-

tions are able to maintain the structural integrity of the two digits 5 and 8 throughout the prediction

horizon.

Figure 4.4: Open-loop video prediction using HVAE for 1000 frames shown as a grid.
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Figure 4.5: Long-horizon video predictions on the MineRL dataset.

4.6.2 MineRL Navigate

Video predictions for sequences of 500 frames are shown in Figure 4.5. Given a canyon on

the horizon and a body of water as context, HVAE correctly predicts that the player will enter

the canyon (as the player typically navigates straight ahead in the dataset). Here are some other

observations from the predictions:

• HVAE predicts diverse variations in the terrain, such as grass, rocks, trees, and a body of

water.

• PlaNet generates plausible images but fails to capture long-term dependencies, such as con-

sistent movement towards the island.

• SVG does not have variations after the first few frames.

• The predictions are blurry as the model capacity is small.

4.6.3 Temporal Abstraction Factor

We compare the quality of open-loop video predictions on Moving MNIST for HVAE with

temporal abstraction factors 2, 4, and 6 - all with equal number of model parameters, as shown

in Figure 4.6. We observe that increasing the temporal abstraction factor directly increases the

duration for which the predicted frames are accurate.
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Figure 4.6: 3 versions of HVAE with temporal abstraction factors of 2, 4, and 6.

4.7 Discussion

In this work, we introduce the Hierarchical Variational Autoencoder (HVAE) that uses a tempo-

rally abstract hierarchical structure of latent variables for long-term video prediction. We demon-

strate the empirical performance of the model on two diverse video prediction datasets with up to

1000 frames, and show that HVAE outperforms state-of-the-art video prediction models from the

literature.

4.7.1 Challenges

We point out some of the challenges of our work here that could be promising directions for

future work:
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• The typical video prediction metrics are not ideal at capturing the quality of video predic-

tions, especially for long horizons. To this end, we have experimented with evaluating the

best out of 30 samples for each evaluation video without observing any significant differ-

ences in the results. Using datasets where attributes of the scene are available would allow

evaluation of long-horizon predictions by how well those attributes can be extracted from

the underlying representations using a separately trained network.

• We used relatively small convolutional neural networks for the encoder and decoder. A larger

architecture could increase the quality of generated images, where the model is able to better

predict both high frequency details and long-term dependencies in the data.
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