
CONVERGENCE, ADAPTIVITY, AND APPLICATIONS OF PHYSICS-INFORMED

MACHINE LEARNING

A Dissertation

by

LEVI DANIEL MCCLENNY

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Ulisses Braga-Neto
Co-Chair of Committee, Narasimha Reddy
 Committee Members, Yang Shen
 Raymundo Arroyave
Head of Department, Miroslav M. Begovic

May 2022

Major Subject: Electrical Engineering

Copyright 2022 Levi D. McClenny

ABSTRACT

Extensive work in applying deep learning to broader fields of science and engineering have

been emerging in recent times, to include materials informatics, thermodynamics, and numerous

other fields of computational sciences. Advances in these areas have been of particular excitement

as future materials and new and informative laws of nature can be learned from data, even if that

data is less than what would typically be required of a deep learning approach. In this work,

we focus on the development and democratization of Physics-Informed Deep Learning, a field

of science that was proposed before the turn of the century but has recently been gaining rapid

popularity among academia and industry alike.

This dissertation is centered around recent work in physics-informed deep learning, as well as

other areas of deep learning applications in computational sciences, such as materials informatics.

Specifically, we will address recent advances in training stability and convergence of PINN solvers

to semi-linear and stiff problems where the baseline PINN fails to converge or train effectively.

We will discuss specific applications of PINNs to computational science domains where it could

provide a force multiplier to researchers, and work performed in deep learning estimation of phase

field modeling. Additionally, we will discuss the open-source package TensorDiffEq, a Python

package based on Tensorflow that allows for easy implementation of PINN-based forward, inverse,

and data assimilation solvers.

ii

DEDICATION

To my mother, father, stepfather, brother and loving wife. Without your unyielding support,

patience, and encouragement this work would not have been possible.

iii

ACKNOWLEDGMENTS

To my research advisor, Dr. Ulisses Braga-Neto - thank you for believing in me and giving

me this opportunity. To Dr. Mulugeta Haile, from the US Army Research Lab, thank you for the

unyielding support. To all my mentors and friends along the way, thank you for being a part of this

journey.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr. Ulisses Braga-Neto [ad-

visor, ECEN], Dr. Narasimha Reddy [ECEN], Dr. Yang Shen [ECEN, CSCE] and Dr. Raymundo

Arroyave [MSEN, MEEN].

The approaches and results listed in chapter IV are in collaboration with graduate students from

the departments of Petroleum Engineering (Emilio Coutinho, Marcelo Dall’Aqua) and Physics

(Xingzhuo Chen). Additional credit goes to Ming Zhong (TAMIDS) for his assistance and subject

matter expertise contributing to those manuscripts. Synthetic microstructure data used in section I

is contributed by Vahid Attari (MSEN).

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

The authors would like to acknowledge the support of the D3EM program funded through

NSF Award DGE-1545403. The authors would further like to thank the US Army CCDC Army

Research Lab for their generous support and affiliation.

v

NOMENCLATURE

PINN Physics-Informed Neural Network

SA-PINN Self-Adaptive Physics-Informed Neural Network

CNN Convolutional Neural Network

DMTL-R Deep Multimodel Transfer-Learned Regression

MSE Mean Squared Error

ReLu Rectified Linear Unit

ADAM Adaptive Moment Estimator

GPU Graphics Processor Unit

PDE Partial Differential Equations

AC Allen-Cahn PDE System

CH Cahn-Hilliard PDE System

TDQ TensorDiffEq

SGD Stochastic Gradient Descent

GPR Gaussian Process Regression

NTK Neural Tangent Kernel

BL Buckley-Leverett

PINN-RT PINN for Radiative Transfer

MM-PCNN Mesoscale Multi-Physics Constrained Neural Network

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xiii

1. Deep Multimodal Regression in Data Poor Domains with Applications in Materials In-
formatics . 1

1.1 Related Work . 2
1.2 Development of the Model . 4
1.3 Training the Model . 7

1.3.1 Training Data . 7
1.3.2 Experimental Setup. 9

1.4 Results . 9
1.4.1 Model Fine-Tuning for CNN-Based Regression . 9
1.4.2 Single-Target DMTL Regression . 10
1.4.3 Multi-Target DMTL Regression . 12

1.5 Conclusion. 14

2. Self-Adaptive Physically-Informed Neural Networks . 15

2.1 Introduction. 15
2.2 Background . 16

2.2.1 Physics-Informed Neural Networks . 16
2.2.2 Related Work . 18

2.2.2.1 Nonadaptive Weighting . 18
2.2.2.2 Learning Rate Annealing . 18
2.2.2.3 Adaptive Resampling . 18
2.2.2.4 Stochastic Gradient Descent . 19

vii

2.2.2.5 Time-Adaptive Approaches . 19
2.2.2.6 Neural Tangent Kernel (NTK) Weighting . 19

2.3 Self-Adaptive Physics-Informed Neural Networks . 19
2.4 Allen-Cahn Reaction-Diffusion PDE . 24

2.4.1 Average Weights with Time. 27
2.5 Self-Adaptive PINNs with Stochastic Gradient Descent . 29
2.6 Neural Tangent Kernel Training Dynamics Analysis. 31

2.6.1 SA-PINN NTK Analysis - 1D Advection PDE . 37
2.7 Additional Examples with SA-PINNs . 39

2.7.1 Burgers’ Equation . 41
2.7.2 Helmholtz Equation . 41

2.8 Conclusion. 45

3. TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed
Neural Networks . 47

3.1 Introduction. 47
3.2 Mathematical Underpinnings of PINNs. 48
3.3 Using TensorDiffEq for Forward Problems . 49

3.3.1 Define the Problem Domain . 50
3.3.2 Describe the Physics of the Model . 50
3.3.3 Define the ICs/BCs . 51
3.3.4 Define the Neural Network Architecture . 51
3.3.5 Select and Define The Solver . 52
3.3.6 Solve the PDE . 52

3.4 Solving Inverse Problems . 53
3.5 Conclusion. 53
3.6 Example - Solving a Nonlinear PDE in TensorDiffEq . 53
3.7 Example - Solving the Semi-linear Allen-Cahn PDE System in TensorDiffEq 56

4. PINN Expansion and Adoption . 60

4.1 Solving Hyperbolic PDEs with PINNs. 60
4.1.1 PINNs with a Learnable Artificial Viscosity . 61
4.1.2 Parameterized Artificial Viscosity Map . 61
4.1.3 Residual-Based Artificial Viscosity Map . 62

4.2 PINNs for Radiative Transfer. 64
4.3 PINNs for Solving Cahn-Hilliard . 66

4.3.1 Solving 1D Cahn-Hilliard with PINNs . 66
4.3.2 Mesoscale Multi-Physics Constrained Neural Network . 66

5. SUMMARY AND CONCLUSIONS . 69

5.1 Challenges . 70
5.2 Further Study . 70

viii

REFERENCES . 72

ix

LIST OF FIGURES

FIGURE Page

1.1 Single-domain input vs. multi-domain input for multimodal regression. In (b) the
images are combined with a corresponding vector describing the image in question
in another data domain . 1

1.2 Proposed DMTL-R Estimator architecture. The left image is a block diagram of
the VGG16 architecture, with its featurization weights wf highlighted. These are
an example of featurization weights that can be used in the DMTL-R (right) to
estimate the target value at the output layer. 6

1.3 Microstructure images generated with phase-field simulation and input to the com-
bined image-parameter regressor. The images are featurized using ConvNet archi-
tectures and conditioned with descriptive statistics. The original image sizes are
512x512x3. 8

1.4 Training flow of the proposed Deep Multimodal Transfer-Learned Regressor (DMTL-
R), the internals of which are shown in Figure 1.2 . 8

1.5 True vs. predicted estimates from CNN-based feature extraction using VGG16-
based model fine-tuning. Max Composition, Min Composition, etc. are physical
output characteristics of the spinoidal decomposition simulations.. 10

1.6 True vs. predicted estimates from single-target DMTL regression . 10

1.7 Single-target DMTL-R regression train and test set loss over 20 training epochs 11

1.8 Estimates and train/test loss over 20 training epochs for the multi-target regressor . . . 12

2.1 Mask function examples. From the upper left to the bottom right: polynomial
mask, q = 2; polynomial mask, q = 4; smooth logistic mask; sharp logistic mask. . . 22

2.2 Top: Plot of the approximation u(x, t) via the self-adaptive PINN. Middle: Snap-
shots of the approximation u(x, t) vs. the high-fidelity solution U(x, t) at various
time points through the temporal evolution. Bottom left: Residual r(x, t) across
the spatial-temporal domain. As expected, it is close to 0 for the whole domain
Ω. Bottom right: Absolute error between approximation and high-fidelity solution
across the spatial-temporal domain. 26

2.3 Learned weights across the spatio-temporal domain. Brighter colors and larger
points indicate larger weights. 27

x

2.4 Average learned collocation weights across various partitions of the solution do-
main. Note that earlier times require heavier weighting, with the highest average
weights being the initial condition weights. This is consistent with the rationale
that earlier solutions must be correctly learned for time-diffusive processes. 28

2.5 Average loss magnitude on the initial condition and residual points over 10k Adam
training iterations. For the SA-PINN loss, the weights were removed from the loss
value to provide a consistent comparison. 29

2.6 Average loss magnitude on the initial condition and residual points over 10k Adam
training iterations. For the SA-PINN loss, the weights were removed from the loss
value to provide a consistent comparison. 29

2.7 Exact 1D wave solution vs. baseline SGD training over 80k Adam iterations 32

2.8 Exact 1D wave solution vs. Self-Adaptive SGD training over 80k Adam iterations . . 32

2.9 Cross-sections of the domain of 1D wave with GP-SA SGD training. L2 error on
this run is 2%.. 33

2.10 Top: Plot of the approximation u(x, t) via the baseline PINN, showing the exact
solution vs predicted solution vs absolute error. Bottom: The SA-PINN results, L2
error decreases by an order of magnitude and the SA-PINN closely captures the
exact solution. 39

2.11 Top: Plot of the approximation u(x, t) via the baseline PINN, showing cross sec-
tions of the spatial domain at t = 0.02, 0.10, 0.18 Bottom: The SA-PINN results
at the same time steps, with the same number of epochs (10k Adam) and all other
parameters held constant. 40

2.12 NTK eigenvalues of the baseline PINN (solid) vs. the SA-PINN (dashed) for
τ =1000, 5000, and 10000 training iterations. It can be observed that the SA-
PINN accurately matches the magnitudes of the NTK eigenvalues between terms
of the loss function, in this case the initial condition Kuu and the residual loss Krr . . 40

2.13 High-fidelity (left) vs. predicted (right) solutions for Burgers’ equation. 42

2.14 Top: predicted solution of Burger’s equation. Middle: Cross-sections of the ap-
proximated vs. actual solutions for various x-domain snapshots. Bottom left:
Residual r(x, t) across the spatial-temporal domain. Bottom right: Absolute error
between prediction and high-fidelity solution across the spatial-temporal domain. . . 43

2.15 Trained weights for collocation points across the domain Ω. Larger/brighter col-
ored points correspond to larger weights. 44

2.16 Exact (left) vs. predicted (right) solutions for Helmholtz equation. 44

xi

2.17 Top predicted solution of Helmholtz equation. Bottom Cross-sections of the ap-
proximated vs. actual solutions for various x-domain snapshots . 45

2.18 Self-learned weights after training via Adam for the Helmholtz system. Brighter/larger
points correspond to larger weights. 46

3.1 Top: predicted solution of Burger’s equation. Middle: Cross-sections of the ap-
proximated vs. actual solutions for various x-domain snapshots. Bottom left:
Residual r(x, t) across the spatial-temporal domain. Bottom right: Absolute error
between prediction and high-fidelity solution across the spatial-temporal domain. . . 56

4.1 Top: PINN-learned solution of 1D Cahn-Hilliard. Bottom: Exact phase-field solu-
tion of 1D CH. The L2 error is approx. 3%. 67

4.2 left: MM-PCNN-learned solution of 2D Cahn-Hilliard without physics of the model
included. right: Exact phase-field solution of 2D CH. 68

4.3 left: MM-PCNN-learned solution of 2D Cahn-Hilliard with physics of the model
included. right: Exact phase-field solution of 2D CH. 68

xii

LIST OF TABLES

TABLE Page

1.1 Comparison of R2 values (with 95% confidence intervals) for single-target and
multi-target regression via DMTL-R (our approach) described in Figure 1.4. R2

values are after 20 training epochs. Results are derived from each of the ResNet [1],
VGG16 [2], and Inception [3] architectures. 13

2.1 Wave PDE results.. 31

xiii

1. Deep Multimodal Regression in Data Poor Domains with Applications in Materials

Informatics

Consider the following problem - shown in Figure 1.1 - in which we desire to apply deep

regression in an application domain in which a ConvNet has not been trained, and there exists

additional data which is hypothesized to assist in this regression task. In this instance, assume

further that there does not exist sufficient data to train a new ConvNet from random initializations.

In this article, we provide a multimodal architecture which takes advantage of model fine-tuning

and transfer learning to overcome a lack of sufficient training data. The result is a regression

approach that combines images and descriptive statistics which can be effectively trained on a

modestly sized dataset.

(a) CNN Estimation on an image-only do-
main. Here, F : X→ y is a ConvNet used to
predict a value in the target domain

(b) Estimation on a multimodal image-
descriptor domain. Here F : X1,X2 → y
is the proposed DMTL-R estimator

Figure 1.1: Single-domain input vs. multi-domain input for multimodal regression. In (b) the
images are combined with a corresponding vector describing the image in question in another data
domain

This paper makes the following major contributions:

• Develops a multimodal deep learning regression methodology that incorporates CNN-based

1

image featurization conditioned on descriptive statistics of the input images

• Shows efficacy of the multimodal transfer-learned regression methodology in a data-poor

application domain

Our approach yields a transfer-learned regressor with better residual R2 than image-only re-

gression alone, and presents an algorithm that allows for the combination of image and descriptive

statistics that can be applied to a large variety of scientific domains. This provides a potential

approach to a significant question in deep learning - how to effectively incorporate interpretable

a priori descriptive information about an image-based system into an estimation task - which we

address in this work via multimodal deep learning.

We validate this approach on images of phase-field simulated microstructures with accompa-

nying descriptive statistics about the corresponding material system, and present this concatenated

information to an estimator that seeks to regress parameters about the image in question. Phase-

field simulation microstructures are extensively used to study the physical and mechanical proper-

ties of materials and provide a relevant example in the context of this algorithm, as microstructure

data is expensive to obtain.

1.1 Related Work

Multimodal Learning The concept of combining different domains of input into a single estima-

tor for the desired learning task has been of distinct interest in the last decade [4, 5]. Applications

include speech classification using audio and video input [6], tagging or labeling of images using

features and textual information [7], and numerous others. This framework is useful in approach-

ing the problem we outline in Figure 1.1, as it allows for combinations of different types of input

data, which together describe a similar location in the input space. It is worth clarifying that what

could be considered descriptive information about the image in [7] are image captions, i.e. tex-

tual information. In this work, we refer to descriptive information as numerical vectors describing

the image. We apply this framework for a regression task, specifically combining the image and

descriptive input domains into a single estimator.

2

Multi-Source Domain Adaptation Domain Adaptation is considered a branch in the broad area

of transfer learning [8, 9]. Specifically, multi-source domain adaptation addresses the question

of multiple sensor inputs to an estimator in which there is only one target domain, and how to

effectively leverage information from another domain in this new application. This can typically be

accomplished either via adding up all the data sources into a single source or by training classifiers

on each branch and aggregating those results for a final estimation. This particular approach, most

generally, aggregates results from classifiers trained on the same type of data, from various sources,

not necessarily different domains (or modes), such as what we see in Figure 1.1. In this work, we

seek to develop a multimodal domain adaptive regressor using transfer learned networks.

Multi-Input Transfer Learning As mentioned above, domain adaptation is a broad branch of

transfer learning. Recently, multi-source domain adaptation using pre-trained networks has caught

much attention, as it generates models that allow for a smaller amount of training data for the

model in question [10]. Recent work has been done in the multi-source transfer learned estimator

space [11, 12, 13], using text-text and text-image combinations to perform classification. Most of

these works propose frameworks that are built in an ensemble fashion, i.e. trained independently,

and then the best classifier selected. In this work, we address the task of regression specifically,

using a single estimator (built around a transfer-learned network) with synchronous training of

parameters.

Deep Regression Recently, image-based deep regression has become a rapidly advancing appli-

cation of deep learning [14]. Taking a CNN and applying it to the task of regression is a problem

that has large implications in many areas of science and engineering. While the work in [14] is

extremely thorough in the task of fine-tuning a CNN model using pre-trained weights, it does not

incorporate the additional statistics described in this article as a component of their model. It does

offer important insight into the task of using CNNs for regression, insight which is used in the

formulation of the models in this article. We offer an extension of the deep regression task in [14]

by taking additional descriptive information about images and incorporating that information into

the estimation.

3

The proposed Deep Multimodal Transfer-Learned Regression (DMTL-R) algorithm is novel

in that it requires the training of only one estimator, whereas most work related to multimodal

transfer learned estimation requires the training of multiple estimators. Additionally, the entire

model is built of connected layers, allowing backpropagation to flow through the entire network

at once, removing any sort of selection requirement seen in other multi-source transfer learning-

based regressors. Moreover, the results presented in section 1.4, which are gathered from a data set

with a modest number of samples, indicate that our approach to multimodal regression is accurate

and efficient in a data-poor environment.

1.2 Development of the Model

Fine-Tuning the ConvNet We define a ConvNet as a nonlinear function approximator that maps

an image input to a target label (for prediction) or target value (for regression). The ConvNet is

trained on input-target realizations x ∈ X and y ∈ Y. Here we can say that the image-target

pairs exist in the ILSVRC-2012 dataset [15], more commonly known as ImageNet. We’ll call this

domain G. Once trained, a ConvNet makes a prediction y for an input image or batch of images x.

We define a prediction on a ILSVRC-2012 trained ConvNet F : X→ y as

y(x) = F (x,wT), x, y ∈ G (1.1)

where G is the ILSVRC-12 domain, x and y are the image and target domains respectively,

and wT are the trained weights of the network. In most applications, these weights are trained

specifically to best featurize the images in the training domain of the ConvNet. These weights are

unique to the layer to which they belong, and we can index them as wi, i ∈ {1, n} where n is

the number of trainable layers in the network. Model fine-tuning typically takes advantage of the

subset of layers used to featurize an image, i.e. excluding the fully-connected layers in the VGG16

architecture. Here we can subset those weights as the image featurization weights wf ∈ wT . We

generate a new neural network around the wf layers, with trainable weights wFT , and create a

featurization u which captures the features of a new domain H /∈ G. We can define a new function

4

u(xH) = F
∗
(xH , wf , wFT) (1.2)

Here F
∗

is trained via backpropagation in a similar sense to the original model, but the featur-

ization layers wf are held constant - this creates a mapping of the activations of the image to a new

trainable set of fully-connected layers wFT .

Conditioning on Descriptive Statistics We define a descriptive variable of arbitrary length n as

some associated vector describing the image data input to the ConvNet.

In Figure 1.1(b) we see the descriptor domain X2 where a vector realization x2 ∈ Rn is used

as a descriptive statistic to condition the regression output of the multimodal regressor outlined

in Figure 1.2. We generate a small fully-connected network with trainable weights wMLP to al-

low the featurization of the conditioning statistics and allow for the optimal MSE regressor via

backpropagation through the whole network. We will call this featurization component v, defined

as

v(x2) = F (x2, wMLP) (1.3)

Featurized image components and descriptive conditioning statistics are then concatenated in a

fully-connected layer, which does not affect the differentiation of backpropagation. This combines

the values and allows for addition of a final few fully-connected layers, with a dropout[16] com-

ponent added between most fully-connected layers induce regularization in the model via random

masking of nodes. The weights wr of these last few layers are also trainable and result in the final

regression. The output layer has a linear activation function, while all the intermediate layers use

ReLu activation.

We are left with a final regression algorithm r(x1, x2) which accounts for image and descriptive

statistics at sample point i as follows:

5

Figure 1.2: Proposed DMTL-R Estimator architecture. The left image is a block diagram of the
VGG16 architecture, with its featurization weights wf highlighted. These are an example of fea-
turization weights that can be used in the DMTL-R (right) to estimate the target value at the output
layer.

ri(x1, x2) = F (u(xi1), v(xi2), wr) (1.4)

= F (xi1, x
i
2, wf , wFT , wMLP , wr) (1.5)

This is optimized via backpropagation, in the form of batch gradient descent against an MSE

loss function

Lbatch =
1

n

n∑
i

(yT − y)2 =
1

n

n∑
i

(yiT − F (u(xi1), v(xi2), wr))
2 (1.6)

=
1

n

n∑
i

(yiT − F (xi1, x
i
2, wf , wFT , wMLP , wr))

2 (1.7)

where n is the batch size, i ∈ {1, n} is a sample of that batch, and y and yT are the predicted

and actual target values for that sample, respectively. All the trainable weights wFT , wMLP and wr

are updated through the entire combined regressor using the final target prediction value ri(x1, x2).

6

The intermediate functions u(x1), v(x2) are not individually optimized.

1.3 Training the Model

1.3.1 Training Data

The training images used in this study are of material microstructures generated from a sweep

of input physical coefficients to physics-based phase-field simulations, which are a powerful tool

in materials science to predict complex evolution kinetics in materials processes [17]. The images

utilized for this example are visual depictions of material phase separation during processing (also

known as spinodal decomposition) and are results from the phase-field simulations. Our descrip-

tive statistics in this example are 18-tuple sets of continuous input processing parameters used for

the phase-field simulation. These tuples act as physical parameters to a nonlinear set of coupled

partial differential equations which are computationally difficult to analyze and must be solved

numerically via Fourier spectral method (or another similar numerical solver) across many CPU

cores - potentially hundreds. Combining the two sets of inputs, we have an input data set com-

posed of image data and corresponding vectors of numerical values. The target (output) values

to be regressed are 6-tuple physical characteristic outputs from the phase field simulation, such

as min/max compositions and chemical potential. These are simulated outputs from the phase-

field solution that we seek to regress from the image data and corresponding input vectors using

the above outlined DMTL-R approach. The results are discussed for various regression trials in

section 1.4.

The training/test data consists of 2500 images of fully spinoidally decomposed microstructures

obtained from the open phase-field microstructure database [18].1 Spinoidally decomposed images

were chosen as they are the most visually diverse and informative images. 2500 images is a very

small dataset for a CNN architecture, and the fully-connected architecture described in this review

has a few million trainable parameters, i.e. p >> n. It is worth noting, however, that this is far

fewer trainable parameters than most commonly used CNN architectures [19]. We account for

the p >> n phenomenon in the model by introducing dropout to prevent overfitting via sparsity

1http://microstructures.net/

7

Figure 1.3: Microstructure images generated with phase-field simulation and input to the com-
bined image-parameter regressor. The images are featurized using ConvNet architectures and con-
ditioned with descriptive statistics. The original image sizes are 512x512x3.

induction. This is in addition to utilizing the transfer-learned ConvNet architecture, which on its

own is a method of to proceed when using large deep learning methodologies with insufficient data

to train a full-scale CNN model from random initializations.

The dataset is split randomly into train and test sets, with 2/3 of the data for training and 1/3

for testing, or ~1675/825. This split is done randomly and independently for each trial.

Figure 1.4: Training flow of the proposed Deep Multimodal Transfer-Learned Regressor (DMTL-
R), the internals of which are shown in Figure 1.2

8

1.3.2 Experimental Setup

Once the available data is split into train and test sets, the images are resized (compressed) to

the required input size (224x224 or 299x299, depending on the architecture) and mean pixel values

are removed from each channel, as is common practice to centralize the image pixel distributions

for ImageNet-based tasks and provide added stability in training. The descriptive statistics and

the output target scalar values are mean-corrected and scaled to unit variance. Training iterations

are reported in the next section for 20 training epochs. Adam optimization [20] was utilized for

parameter optimization during training, with learning rate ranging from .0001 < lr < .001 with

moderate decay. Batch size was set to 32 for all training comparisons in table 1.1. The model was

built in Keras [21, 22, 23] and trained using a single Nvidia V100 GPU made available through

an Amazon Web Service (AWS) P3 instance. With this setup, it takes 3-4s per epoch to train the

DMTL-R network.

1.4 Results

1.4.1 Model Fine-Tuning for CNN-Based Regression

The VGG16 architecture shown on the left side of Figure 1.2 was used as a feature extractor

for the microstructure images shown in Figure 1.3 and trained as a regressor with 3 additional

fully-connected layers of size [1000, 100, noutput]. The final output layer is given a linear activation

function, while the intermediate layers use ReLu to induce nonlinearity to the estimation.

While this architecture does accomplish the goal of predicting a target from a transfer learned

ConvNet featurization, it can be determined from inspection of Figure 1.5 that the images on

their own provide only weak training for the regression task. This does not mean that the model is

ineffective. Rather, it implies that there is not enough information in the images alone to effectively

train a regressor, which on its own is somewhat useful information about the physical problem at

hand. To aid in this problem we condition on descriptive features, as shown in Figure 1.2, which is

a focal point of this work. This generates a multimodal estimator that includes multi-domain input

information for a single point in the input space. The results shown in Figure 1.5 should be used

9

Figure 1.5: True vs. predicted estimates from CNN-based feature extraction using VGG16-based
model fine-tuning. Max Composition, Min Composition, etc. are physical output characteristics
of the spinoidal decomposition simulations.

as the baseline for comparison for the results in sections to follow, and are quantitatively tabulated

for comparison in Table 1.1.

1.4.2 Single-Target DMTL Regression

The first validation experiment conducted with DMTL-R is that of single-target regression.

The CNN-based featurization from section 1.4.1 is paired with descriptive statistics as suggested

in the architecture in Figure 1.4. The final layer in the model from Eq. 1.5, with a linear activation

function and MSE loss from Eq. 4.14, was given a node size of 1 and trained to regress a single

parameter at a time. The DMTL-R results are shown in Figure 1.6, with plots of the MSE loss

through training epochs shown in Figure 1.7.

Figure 1.6: True vs. predicted estimates from single-target DMTL regression

10

We note here that the predicted estimate vs. true target values are, on average, very accurate

with a reasonably low residual MSE. It’s important to note that the regression targets, as well as

the input descriptive vectors, were scaled using a standard scaler, i.e. subtracting the mean and

scaled to unit variance. Therefore, the MSE values are somewhat arbitrary when discussing the

predicted values of the parameters themselves. The MSE metric is, however, useful in comparing

methodological and architectural differences, as well as providing a very stable loss function for

training the DMTL-R network.

Figure 1.7 shows the training and test loss for each training epoch in the single-target regres-

sion case. We see that the model architecture, despite being in a position where overfitting could

be preeminent in the model, does a reasonably good job in maintaining generalization to the test

set. After 20 training epochs, the loss values approximately converge and the test set error does

not exceed the training set error, which is typically interpreted as an indication of overfitting in the

model. This would suggest that, despite the temptation of overfitting when training in a p >> n

environment, ConvNet transfer learning paired with standard sparsity induction techniques (such

as dropout) do a reasonably good job of maintaining generalization while creating a strong multi-

modal regressor.

Figure 1.7: Single-target DMTL-R regression train and test set loss over 20 training epochs

11

1.4.3 Multi-Target DMTL Regression

Multi-target regression has been a longstanding topic in traditional pattern recognition spaces.

One of the biggest strengths of deep learning is that increasing target diminsionality is as straight-

forward as increasing the number of nodes in the output layer. Here we extend the DMTL-R

regressor to multi-target regression, in this case regressing all 6 parameters shown in Figures 1.6

at the same time. This results in little additional computational cost and can potentially have a

positive effect on the accuracy of the individual dimensions estimated by the regressor, as seen in

Table 1.1. The loss and regression results of the multi-target regression are shown in Figure 1.8.

Figure 1.8: Estimates and train/test loss over 20 training epochs for the multi-target regressor

Table 1.1 outlines interpretation metrics for the regressor models, including the R2 values for

the respective regressors. This R2 is from a linear fit for each true parameter vs. it’s estimates, on

the test set, for each output variable regressed. The slope, in all instances, is very close to 1, as

anticipated. The R2 value is listed as a metric by which we can assess the goodness-of-fit of the

regressor. These values are listed in table 1.1 with 95% confidence intervals derived from multiple

independent trials with independent splits of train/test sets for each trial, to validate generalization.

We can see here that the multimodal DMTL-R regressor fares very well in regressing the target

parameters, with most R2 values well over 0.90. This method of analysis provides an intuitive

illustration of a large statement - that the multimodal DMTL-R regressor provides a good, suffi-

ciently general estimate to test data. Further, analysis of the trend of losses in Figures 1.7 and 1.8

12

also suggests that the models are able to maintain generality across test sets.

Single-Target Regression Multi-Target Regression

DMTL-R Image Only Statistics Only DMTL-R Image Only Statistics Only

Target Index ResNet50

1 0.979 ± .0040 0.375 ± .1194 0.969 ± .0011 0.981 ± .0020 0.660 ± .0630 0.963 ± .0060
2 0.984 ± .0058 0.290 ± .1136 0.974 ±.0009 0.985 ± .0019 0.688 ± .0485 0.966 ± .0063
3 0.978 ± .0065 0.567 ± .1157 0.963 ± .0012 0.979 ± .0020 0.608 ± .0621 0.956 ± .0038
4 0.899 ± .0246 0.507 ± .0673 0.895 ± .0053 0.925 ± .0059 0.657 ± .0435 0.886 ± .0152
5 0.780 ± .0420 0.316 ± .0208 0.763 ± .0019 0.823 ± .0108 0.405 ± .0408 0.732 ± .0186
6 0.943 ± .0084 0.505 ± .0405 0.751 ± .0084 0.736 ± .0183 0.522 ± .0575 0.705 ± .0037

VGG16

1 0.973 ± .0039 0.797 ± .0210 0.969 ± .0011 0.980 ± .0022 0.808 ± .0254 0.963 ± .0060
2 0.976 ± .0026 0.805 ± .0171 0.974 ±.0009 0.983 ± .0021 0.817 ± .0212 0.966 ± .0063
3 0.965 ± .0028 0.821 ± .0270 0.963 ± .0012 0.976 ± .0029 0.828 ± .0289 0.956 ± .0038
4 0.926 ± .0080 0.684 ± .0509 0.895 ± .0053 0.939 ± .0059 0.735 ± .0390 0.886 ± .0152
5 0.843 ± .0342 0.340 ± .1703 0.763 ± .0019 0.803 ± .0366 0.512 ± .1046 0.732 ± .0186
6 0.786 ± .0196 0.620 ± .0312 0.751 ± .0084 0.752 ± .0231 0.786 ± .0196 0.705 ± .0037

InceptionV3

1 0.983 ± .0035 0.541 ± .0607 0.969 ± .0011 0.957 ± .0043 0.439 ± .0668 0.963 ± .0060
2 0.987 ± .0018 0.546 ± .0694 0.974 ± .0009 0.956 ± .0049 0.439 ± .0695 0.966 ± .0063
3 0.978 ± .0020 0.509 ± .0379 0.963 ± .0012 0.950 ± .0048 0.446 ± .0521 0.956 ± .0038
4 0.903 ± .0077 0.530 ± .0313 0.895 ± .0053 0.853 ± .0066 0.488 ± .0469 0.886 ± .0152
5 0.794 ± .0174 0.315 ± .0285 0.763 ± .0019 0.728 ± .0334 0.321 ± .0423 0.732 ± .0186
6 0.943 ± .0053 0.425 ± .0343 0.751 ± .0084 0.777± .0305 0.347 ± .0261 0.705 ± .0037

Table 1.1: Comparison of R2 values (with 95% confidence intervals) for single-target and multi-
target regression via DMTL-R (our approach) described in Figure 1.4. R2 values are after 20
training epochs. Results are derived from each of the ResNet [1], VGG16 [2], and Inception [3]
architectures.

For comparison, in Table 1.1, Image-only statistics are fine-tuned CNN regressors trained with-

out descriptive statistics with varying transfer learned architectures as shown, which are described

briefly in section 1.4.1. Statistics-only columns refer to a regressor trained without the image com-

ponent. These are fully-connected network regressors with hidden layer sizes [dinput, 100, 100, 50, doutput],

which mimics the input to the descriptive statistic component of the DMTL-R model. This is

trained with identical hyperparameters for learning rate, epochs, train/test split ratios, and training

batch size. These results are shown in each row only for comparison and do not vary with CNN

13

architecture.

It is interesting to note that, in most instances, the DMTL-R approach was able to improve upon

the image or statistic only fits. This confirms the hypothesis that an estimator which is capable

of including both modes of information, such as the DMTL-R model, is a more exhaustive and

complete model. With how DMTL-R is trained and the ability to generalize, we believe DMTL-R

is the superior model for the task of multimodal image-descriptor regression in the presence of

small training data. We demonstrate with an improvement inR2 by a range of 4-5% over statistics-

only and 59-117% over image-only regression.

1.5 Conclusion

In this paper, we presented a Deep Multimodal Transfer-Learned Regressor (DMTL-R) for

predicting target parameters in data-poor domains. The inputs to the regressor are images and

a corresponding n-tuple of statistics containing information we know to be true about the image

from another data domain. The suggested DMTL-R approach, built around a pre-trained CNN,

featurizes the image then conditions its features with corresponding descriptive statistics. We

studied a materials science application, regressing 6 dimensions of output target parameters from

input images and 18-tuple input statistics. We found that with the available small training sample,

our approach results in better regression accuracy (R2) of target parameters than a similar model

trained over images or descriptive parameters alone. Here we have demonstrated the efficacy of

DMTL-R on materials data, but the model could be extended to other data-poor domains such as

healthcare, climatology, and beyond.

14

2. Self-Adaptive Physically-Informed Neural Networks

2.1 Introduction

As part of the burgeoning field of scientific machine learning [24], physics-informed neural

networks (PINNs) have emerged recently as an alternative to traditional numerical methods for

partial different equations (PDE) [25, 26, 27, 28]. Typical data-driven deep learning methodologies

do not take into account physical understanding of the problem domain. The PINN approach is

based on a strong physics prior that constrains the output of a deep neural network by means of

a system of PDEs. The potential of using neural networks as universal function approximators

to solve PDEs had been recognized since the 1990’s [29]. However, PINNs promise to take this

approach to a different level by using deep neural networks, which is made possible by the vast

advances in computational capabilities and training algorithms since that time [30, 31], as well as

by the invention of automatic differentiation methods [32, 33].

A great advantage of PINNs over traditional time-stepping PDE solvers is that the entire spatial-

temporal domain can be solved at once using collocation points distributed irregularly (rather than

on a grid) across the spatial-temporal domain, in a process that can be massively parallelized via

GPU. As we have continued to see GPU capabilities increase in recent years, a method that relies

on parallelism in training iterations will likely emerge as the predominant approach in scientific

computing.

The original continuous PINN algorithm proposed in [25], henceforth referred to as the “base-

line PINN” algorithm, is effective at estimating solutions that are reasonably smooth, such as

Burgher’s equation, the wave equation, Poisson’s equation, and Schrodinger’s equation. On the

other hand, it has been observed that the baseline PINN has convergence and accuracy problems

when solving “stiff” PDEs [34] with solutions that contain sharp and intricate space and time tran-

sitions [27, 35]. This is the case, for example, of the Allen-Cahn and Cahn-Hilliard equations of

phase-field models [36].

15

To address this issue, various modifications of the baseline PINN algorithm have been pro-

posed. For example, in [27], a series of schemes are introduced, including nonadaptive weighting

of the training loss function, adaptive resampling of the collocation points, and time-adaptive ap-

proaches, while in [35], a learning rate annealing scheme was proposed. The consensus has been

that adaptation mechanisms are essential to make PINNs more stable and able to approximate well

difficult regions of the solution.

This paper introduces Self-Adaptive PINNs, a fundamentally new method to train PINNs adap-

tively, which uses trainable weights as a soft multiplicative mask reminiscent of the attention mech-

anism used in computer vision [37, 38]. The adaptation weights are trained concurrently with the

network weights. As a result, initial, boundary or collocation points in difficult regions of the solu-

tion are automatically weighted more in the loss function, forcing the approximation to improve on

those points. The basic principle in Self-Adaptive PINNs is to make the weights increase as the cor-

responding losses do, which is accomplished by training the network to simultaneously minimize

the losses and maximize the weights, i.e., to find a saddle point in the cost surface. We show that

this is formally equivalent to a penalty-based solution of PDE-constrained optimization methods.

Experimental results show that Self-Adaptive PINNs can solve a “stiff” Allen-Cahn PDE with

significantly better accuracy than other state-of-the-art PINN algorithms, while using a smaller

number of training epochs. We also report in the Appendix results obtained with easier-to-solve

Burger’s and Helmholtz PDEs, which confirm the trends observed in the Allen-Cahn experiments.

2.2 Background

2.2.1 Physics-Informed Neural Networks

Consider the initial-boundary value problem:

Nx,t[u(x, t)] = f(x, t) , x ∈ Ω , t ∈ (0, T] , (2.1)

Bx,t[u(x, t)] = g(x, t) , x ∈ ∂Ω, t ∈ (0, T] , (2.2)

u(x, 0) = h(x) , x ∈ Ω . (2.3)

16

Here, the domain Ω ⊂ Rd in a open set, Ω is its closure, u : Ω× [0, T]→ R is the desired solution,

x ∈ Ω is a spatial vector variable, t is time, and Nx,t and Bx,t are spatial-temporal differential

operators. The problem data is provided by the forcing function f : Ω → R, the boundary

condition function g : ∂Ω × (0, T], and the initial condition function h : Ω → R. Additionally,

sensor data in the interior of the domain may be available. In any case, we assume that the data are

sufficient and appropriate for a well-posed problem. Time-independent problems and other types

of data can be handled similarly, so we will use the equations (1)-(3) as a model.

Following [25], let u(x, t) be approximated by the output u(x, t;w) of a deep neural network

with inputs x and t (in the case of a PDE system, this would be a neural network with multiple out-

puts). The value of Nx,t[u(x, t;w)] and Bx,t[u(x, t;w)] can be computed quickly and accurately

using automatic differentiation methods [32, 33].

The network weights w are trained by minimizing a loss function that penalizes the output for

not satisfying (1)-(3):

L(w) = Ls(w) + Lr(w) + Lb(w) + L0(w) , (2.4)

where Ls is the loss term corresponding to sample data (if any), while Lr, Lb, and L0 are loss

terms corresponding to not satisfying the PDE (2.1), the boundary condition (3.2), and the initial

condition (3.3), respectively:

Ls(w) =
1

2

Ns∑
i=1

|u(xis, t
i
s;w)− yis|2, (2.5)

Lr(w) =
1

2

Nr∑
i=1

|Nx,t[u(xir, t
i
r;w)]− f(xir, t

i
r)|2, (2.6)

Lb(w) =
1

2

Nb∑
i=1

|Bx,t[u(xib, t
i
b;w)]− g(xib, t

i
b)|2, (2.7)

L0(w) =
1

2

N0∑
i=1

|u(xi0, 0;w)− h(xi0)|2. (2.8)

where {xis, tis, yis}Ns
i=1 are sensor data (if any), {xi0}

N0
i=1 are initial condition points, {xib, tib}

Nb
i=1 are

17

boundary condition points, {xir, tir}Nr
i=1 are collocation points randomly distributed in the domain

Ω, and Ns, N0, Nb and Nr denote the total number of sensor, initial, boundary, and collocation

points, respectively. The network weights w can be tuned by minimizing the total training loss

L(w) via standard gradient descent procedures used in deep learning.

2.2.2 Related Work

The baseline PINN algorithm described in the previous section, though remarkably successful

in the solution of linear PDEs and nonlinear PDEs with smooth solutions, can produce inaccurate

approximations around sharp space and time transitions in the solutions of “stiff” PDEs. Much of

the recent literature on PINNs has been devoted to mitigating these issues by introducing modifica-

tions to the baseline PINN algorithm that can increase training stability and accuracy. We mention

some of these approaches below.

2.2.2.1 Nonadaptive Weighting

In [27], it was pointed out that a premium should be put on forcing the neural network to

satisfy the initial conditions closely, especially for PDEs describing time-irreversible processes,

where the solution has to be approximated well early. Accordingly, a loss function of the form

L(θ) = Lr(θ) + Lb(θ) + C L0(θ) was suggested, where C � 1 is a hyperparameter.

2.2.2.2 Learning Rate Annealing

In [35], it is argued that the optimal value of the weight C in the previous scheme may vary

wildly among different PDEs so that choosing its value would be difficult. Instead they propose to

use weights that are tuned during training using statistics of the backpropagated gradients of the

loss function. It is noteworthy that the weights themselves are not adjusted by backpropagation.

Instead, they behave as learning rate coefficients, which are updated after each epoch of training.

2.2.2.3 Adaptive Resampling

In [27], a strategy to adaptively resample the residual collocation points based on the magnitude

of the residual is proposed. While this approach improves the approximation, the training process

18

must be interrupted and the MSE evaluated on the residual points to deterministically resample

the ones with the highest error. After each resampling step, the number of residual points grows,

increasing computational complexity.

2.2.2.4 Stochastic Gradient Descent

A training procedure where a different subset of collocation points are randomly sampled at

each iteration was proposed by [35]. While stochastic gradient descent approaches a global mini-

mum in an infinite limit [39], it is a random method that relies on sufficient random sampling and

an large training horizon, which may be computationally intractable.

2.2.2.5 Time-Adaptive Approaches

In [27], another method is suggested, which divides the time axis into several smaller intervals,

and trains PINNs separately on them, either sequentially or in parallel. This approach is time-

consuming due to the need to train multiple PINNs.

2.2.2.6 Neural Tangent Kernel (NTK) Weighting

Most recently, [28] introduced weights on the collocation and boundary losses, which are up-

dated via the eigenvalues of the neural tangent kernel matrix.

2.3 Self-Adaptive Physics-Informed Neural Networks

While the various previously proposed weighting methods produce improvements in stability

and accuracy over the baseline PINN, they are either nonadaptive or require brute-force adaptation

at increased computational cost. Here we propose a simple procedure that uses fully-trainable

weights to produce a multiplicative soft attention mask, in a manner that is reminiscent of attention

mechanisms used in computer vision [37, 38]. Instead of hard-coding weights at particular regions

of the solution, the proposed method is in agreement with the neural network philosophy of self-

adaptation, where the weights in the loss function are updated by gradient descent side-by-side

with the network weights.

Using the PDE in (1)-(3) as reference, the proposed Self-adaptive PINN utilizes the following

19

loss function

L(w,λr,λb,λ0) = Ls(w) + Lr(w,λr) + Lb(w,λb) + L0(w,λ0) , (2.9)

where λr = (λ1
r, . . . , λ

Nr
r), λb = (λ1

b , . . . , λ
Nb
b), and λ0 = (λ1

0, . . . , λ
N0
0) are trainable, nonnegative

self-adaptation weights for the initial, boundary, and collocation points, respectively, and

Lr(w,λr) =
1

2

Nr∑
i=1

m(λir) |Nx,t[u(xir, t
i
r;w)]− f(xir, t

i
r)|2 (2.10)

Lb(w,λb) =
1

2

Nb∑
i=1

m(λib) |Bx,t[u(xir, t
i
r;w)]− g(xib, t

i
b)|2 (2.11)

L0(w,λ0) =
1

2

N0∑
i=1

m(λi0) |u(xi0, 0;w)− h(xi0)|2. (2.12)

where the self-adaptation mask function m(λ) defined on [0,∞) is a nonnegative, differentiable,

strictly increasing function of λ. A key feature of self-adaptive PINNs is that the lossL(w,λr,λb,λ0)

is minimized with respect to the network weightsw, as usual, but is maximized with respect to the

self-adaptation weights λr,λb,λ0, i.e., the objective is:

min
w

max
λr,λb,λ0

L(w,λr,λb,λ0) . (2.13)

Consider the updates of a gradient descent/ascent approach to this problem:

wk+1 = wk − ηk∇wL(wk,λkr ,λ
k
b ,λ

k
0) (2.14)

λk+1
r = λkr + ηk∇λrL(wk,λkr ,λ

k
b ,λ

k
0) (2.15)

λk+1
b = λkb + ηk∇λb

L(wk,λkr ,λ
k
b ,λ

k
0) (2.16)

λk+1
0 = λk0 + ηk∇λ0L(wk,λkr ,λ

k
b ,λ

k
0) . (2.17)

where ηk is the learning rate at step k.

20

∇λrL(wk,λkr ,λ
k
b ,λ

k
0) =

1

2


m′(λk,1r)

∣∣Nx,t[u(xir, t
i
r;w

k)]− f(x1
r, t

1
r)
∣∣2

· · ·

m′(λk,Nr
r)

∣∣Nx,t[u(xir, t
i
r;w

k)]− f(xNr
r , tNr

r)
∣∣2

 , (2.18)

∇λb
L(wk,λkr ,λ

k
b ,λ

k
0) =

1

2


m′(λk,1b)

∣∣Bx,t[u(xib, t
i
b;w

k)]− g(x1
b , t

1
b)
∣∣2

· · ·

m′(λk,Nb

b)
∣∣∣Bx,t[u(xib, t

i
b;w

k)]− g(xNb
b , tNb

b)
∣∣∣2
 , (2.19)

∇λ0L(wk,λkr ,λ
k
b ,λ

k
0) =

1

2


m′(λk,10)

∣∣u(x1
0, 0;wk)− h(x1

0, t
1
0)
∣∣2

· · ·

m′(λk,N0

0)
∣∣u(xi0, 0;wk)]− h(xN0

0)
∣∣2

 . (2.20)

Hence, sincem′(λ) > 0 (the mask function is strictly increasing, by assumption), then∇λrL,∇λb
L,∇λ0L ≥

0, and any gradient component is zero if and only if the corresponding unmasked loss is zero. This

shows that the sequences of weights {λkr ; k = 1, 2, . . .}, {λkb ; k = 1, 2, . . .}, {λk0; k = 1, 2, . . .}

(and the associated mask values) are monotonically increasing, provided that the corresponding

unmasked losses are nonzero. Furthermore, the magnitude of the gradients ∇λrL,∇λb
L,∇λ0L,

and therefore of the updates, are larger if the corresponding unmasked losses are larger. This

progressively penalizes the network more for not fitting the residual, boundary, and initial points

closely (the self-adaptive weights, i.e., the amount of penalty, is are typically initialized to small

nonzero values). We remark that any of the weights can be set to fixed, non-trainable values, if

desired. For example, by setting λkb ≡ 1, only the weights of the initial and collocation points

would be trained. The sensor data loss is not masked, as these data consist of noisy observations,

and weighting them requires extra care to avoid overfitting.

The shape of the function g affects mask sharpness and training of the PINN. Examples include

polynomial masks m(λ) = cλq, for c, q > 0, and sigmoidal masks. See Figure 2.1 for a few ex-

amples. In practice, the polynomial mask functions have to be kept below a suitable (large) value,

to avoid numerical overflow. The sigmoidal masks do not have this issue, and can be used to pro-

21

Figure 2.1: Mask function examples. From the upper left to the bottom right: polynomial mask,
q = 2; polynomial mask, q = 4; smooth logistic mask; sharp logistic mask.

duce sharp masks. For example, in the bottom right example in Figure 2.1, the mask is essentially

binary; it starts small for small starting values of the self-adaptive weight λ, and after these exceed

a certain threshold, the mask value will quickly take on the upper saturation value. Similarly to

neural network nonlinearities, sigmoid mask functions can suffer from vanishing gradients during

training. This is particularly a problem at the lower starting value. Therefore, excessively sharp

sigmoidal mask functions should be avoided.

22

For another perspective, consider the following PDE-constrained optimization problem

min
1

2

Ns∑
i=1

|u(xis, t
i
s;w)− yis|2 (2.21)

subject to

Nx,t[u(xir, t
i
r;w)] = f(xir, t

i
r), , i = 1, . . . , Nr (2.22)

Bx,t[u(xib, t
i
b;w)] = g(xbr, t

i
b), , i = 1, . . . , Nb (2.23)

u(xi0, 0;w) = h(xir), , i = 1, . . . , N0 (2.24)

(2.25)

Formally, Self-Adaptive PINN training corresponds to a penalty method to solve the previous

optimization problem [40]. In a typical penalty optimization method, a constrained problem

min L(x) (2.26)

subject to

r(x) = 0 (2.27)

is solved as a sequence of unconstrained problems

min L(x) + ckP (x), k = 1, 2, . . . , (2.28)

where c1 < c2 < . . . is a fixed sequence of increasing penalty costs, and P (x) is a suitable penalty

function, which is small in the feasible region R = {x | r(x) = 0}, and large outside of it. A

typical choice is the polynomial penalty P (x) = |r(x)|p, for p > 1. It can be shown that a limit

point of a sequence of solutions of the unconstrained problem, where the solution at step k is used

as the initialization for step k + 1, is a solution of the original constrained problem [40].

One can see Self-Adaptive PINN training as a penalty method, with costs ck = m(λk). The

self-adaptation weights, and mask values, produce increasing penalty costs that are not selected

23

a-priori, but are adaptively updated by the neural network training procedure. Although the use

of neural networks in regular penalty-based constrained optimization has been suggested [41, 42],

neural networks have not been used in PDE-constrained problems, as far as we know.

The gradient ascent/descent step can be implemented easily using off-the-self neural network

software, by simply flipping the sign of ∇λrL, ∇λb
L, and ∇λ0L. In our implementation of Self-

Adaptive PINNs, we use Tensorflow 2.3 with a fixed number of iterations of Adam [20]. In

some case, these are followed by another fixed number of iterations of the L-BFGS quasi-newton

method [43]. This is consistent with the baseline PINN formulation in [25], as well as follow-up

literature [27]. However, the adaptive weights are only updated in the Adam training steps, and

are held constant during L-BFGS training, if any. A full implementation of the methodology de-

scribed here has been made publicly available by the authors1 and it is included in the open-source

software TensorDiffEq [44].

2.4 Allen-Cahn Reaction-Diffusion PDE

In this section, we report experimental results obtained with the Allen-Cahn PDE, which con-

trast the performance of the proposed Self-Adaptive PINN algorithm against the baseline PINN

and two of the PINN algorithms mentioned in Section 2.2.2, namely, the nonadaptive weighting

and time-adaptive schemes (for the latter, Approach 1 in [27] was used).

The main figure of merit used is the L2-error:

L2 error =

√∑NU

i=1 |u(xi, ti)− U(xi, ti)|2√∑NU

i=1 |U(xi, ti)|2
. (2.29)

where u(x, t) is the trained approximation, and U(x, t) is a high-fidelity solution over a mesh

{xi, ti} containingNU points. We repeat the training process over a number of random restarts and

report the average L2 error and its standard deviation.

The Allen-Cahn reaction-diffusion PDE is typically encountered in phase-field models, which

can be used, for instance, to simulate the phase separation process in the microstructure evolution

1https://github.com/levimcclenny/SA-PINNs

24

of metallic alloys [36, 45, 46]. The Allen-Cahn PDE considered here is specified as follows:

ut − 0.0001uxx + 5u3 − 5u = 0 , x ∈ [−1, 1], t ∈ [0, 1] , (2.30)

u(x, 0) = x2cos(πx) , (2.31)

u(t,−1) = u(t, 1) , (2.32)

ux(t,−1) = ux(t, 1) . (2.33)

The Allen-Cahn PDE is an interesting benchmark for PINNs for multiple reasons. It is a “stiff”

PDE that challenges PINNs to approximate solutions with sharp space and time transitions, and

is also introduces periodic boundary conditions (3.15, 3.16). In order to deal with the latter, the

boundary loss function Lb(w,λb) in (2.11) is replaced by

Lb(w,λb) =
1

Nb

Nb∑
i=1

g(λib)(|u(1, tib)− u(−1, tib)|2 + |ux(1, tib)− ux(−1, tib)|2) (2.34)

The neural network architecture is fully connected with layer sizes [2, 128, 128, 128, 128, 1].

(The 2 inputs to the network are (x, t) pairs and the output is the approximated value of uθ.) This

architecture is identical to [27], in order to allow a direct comparison of performance. We set the

number of collocation, initial, and boundary points to Nr = 20, 000, N0 = 100 and Nb = 100,

respectively (due to the periodic boundary condition, there are in fact 200 boundary points). Here

we hold the boundary weights wib at 1, while the initial weights wi0 and collocation weights wir

are trained. The initial and collocation weights are initialized from a uniform distribution in the

intervals [0, 100] and [0, 1], respectively. Training took 65ms/iteration on a single Nvidia V100

GPU.

Numerical results obtained with the Self-Adaptive PINN are displayed in figure 2.2. The aver-

age L2 error across 10 runs with random restarts was 2.1%± 1.21%, while the L2 error on 10 runs

obtained by the time-adaptive approach in [27] was 8.0% ± 0.56%. Neither the baseline PINN

nor the nonadaptive weighted scheme, with initial condition weight C = 100, were able to solve

25

Figure 2.2: Top: Plot of the approximation u(x, t) via the self-adaptive PINN. Middle: Snapshots
of the approximation u(x, t) vs. the high-fidelity solution U(x, t) at various time points through the
temporal evolution. Bottom left: Residual r(x, t) across the spatial-temporal domain. As expected,
it is close to 0 for the whole domain Ω. Bottom right: Absolute error between approximation and
high-fidelity solution across the spatial-temporal domain.

this PDE satisfactorily, with L2 errors 96.15% ± 6.45% and 49.61% ± 2.50%, respectively (these

numbers matched almost exactly those reported in [27]).

Figure 2.3 is unique to the proposed self-adaptive PINN algorithm. It displays the trained

26

weights for the collocation points across the spatio-temporal domain. These are the weights of

the multiplicative soft attention mask self-imposed by the PINN. This plot stays remarkably con-

stant across different runs with random restarts, which is an indication that it is a property of the

particular PDE being solved. We can observe that in this case, more attention is needed early in

the solution, but not uniformly across the space variable. In [27], this observation was justified

by the fact that the Allen-Cahn PDEs describes a time-irreversible diffusion-reaction processes,

where the solution has to be approximated well early. However, here this fact is “discovered” by

the self-adaptive PINN itself.

Figure 2.3: Learned weights across the spatio-temporal domain. Brighter colors and larger points
indicate larger weights.

2.4.1 Average Weights with Time

Directly related to the figure shown in 2.3 is that shown in figure 2.4, a plot of average colloca-

tion points from various partitions of the solution domain. While all the weights are monotonically

increasing (a behavior expected by the selection of the weight function λ2), the rate of increasing is

of importance. Note that early in the domain of the Allen-Cahn example we note that the weights

increase much faster than in later parts of the domain, and that the initial condition weights increase

27

the fastest. This indicates that the SA-PINN has resolved that the earlier components of the solu-

tion are the most important, and more heavily weights those components. A likely explaination is

that, since the Allen-Cahn problem is time-diffusive, the only reliable way to generate an accurate

solution in later time steps is by generating a reasonably accurate one early on. This is not to be

confused with a typical time-marchin approach, where earlier time steps are solved prior to later

ones, as out approach does solve all the collocation points at once, however this phenemonon does

confirm that early time evolution in the solution could be viewed as “more important" than later

time evolution.

Figure 2.4: Average learned collocation weights across various partitions of the solution domain.
Note that earlier times require heavier weighting, with the highest average weights being the initial
condition weights. This is consistent with the rationale that earlier solutions must be correctly
learned for time-diffusive processes.

28

Figure 2.5: Average loss magnitude on the initial condition and residual points over 10k Adam
training iterations. For the SA-PINN loss, the weights were removed from the loss value to provide
a consistent comparison.

Figure 2.6: Average loss magnitude on the initial condition and residual points over 10k Adam
training iterations. For the SA-PINN loss, the weights were removed from the loss value to provide
a consistent comparison.

2.5 Self-Adaptive PINNs with Stochastic Gradient Descent

Stochastic gradient descent (SGD) [47] uses randomly sampled subsets of the training data

to compute approximations to the gradient for training neural networks by gradient descent [48].

It has been claimed that the empirical superior performance of stochastic gradient descent over

large-batch training is due to a tendency of the latter to converge to “sharp” minima in the loss

29

surface, which have poor performance, while SGD with small batches converge to better “flat”

minima [49].

The issue has not been well studied in the context of PINNs at the time of writing, though

there is some empirical evidence that SGD can indeed improve the L2 performance of PINNs

with some PDEs. It should be pointed out that PINNs are well-suited to SGD since a new set of

collocation, initial and boundary points can be sampled each time rather than subsampling a given

set of training data points as in conventional machine learning. This is an important difference

from SGD in its common vernacular, where minibatches of predefined training data are sampled

to train. In the context of PINNs, it is possible to completely resample points from the domain

that the training process has never seen before, on each training iteration. This rapidly increases

convergence when utilized, as shown in table 2.1.

The baseline self-adaptive PINN algorithm described previously cannot take advantage of

small-batch SGD since the self-adaptive weights are attached to specific training points. In this

section, we examine an extension of self-adaptive PINN that allows the use of SGD. The basic

idea is to use a spatial-temporal predictor of the value of self-adaptive weights for the newly sam-

pled points. Here we use standard Gaussian processes regression due to its flexibility and power.

The GP regressor acts as a weight generating function, extending the SA-PINN to a continuous

domain, as opposed to individual weights being assigned to individual points. This has the added

benefit of creating a continuous weighting map, which can be assessed for uncertainty quantifica-

tion in the idealized weights of the PINN loss function.

Implementation of the GPR-based SA-PINN is a relatively straightforward modification of the

original SA-PINN algorithm. After a set number of iterations (i.e. 500 epoch of training) the SA

weights are used for supervised training of a Gaussian process that generates SA weights for each

combination of {xf , tf}. A separate GP weight generating function is trained for ICs and BCs to

facilitate convergence.

A problem where GPR SA-PINN based SGD seems to have a strong impact is the 1D wave

30

equation:

utt(x, t)− 4 = 0 , x ∈ [0, 1] , t ∈ [0, 1] , (2.35)

u(0, t) = 0 , u(1, t) = 0, t ∈ [0, 1] , (2.36)

ut(x, 0) = 0 , x ∈ [0, 1] , (2.37)

u(x, 0) = sin(πx) +
1

2
sin(4πx) , x ∈ [0, 1] . (2.38)

This problem was considered in [28] to study their NTK weighting scheme. Here, we adopt the

same initial condition, velocity parameter, and training sample sizes as in [28]. The problem has

an analytical solution:

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt) , x ∈ [0, 1] , t ∈ [0, 1] . (2.39)

Results from Self-Adaptive SGD training are shown in figures 2.7 and 2.8. The L2 error across

10 trials is listed in table 2.1.

PINN method No SGD SGD
baseline 0.3792± 0.0162 0.4513± 0.0255
fixed weights 0.7296± 0.1421 0.2079± 0.0624
self-adaptive 0.7971± 0.0497 0.0295± 0.0070

Table 2.1: Wave PDE results.

2.6 Neural Tangent Kernel Training Dynamics Analysis

In this section, we investigate the dynamics of self-adaptive PINN training by studying its

neural tangent kernel (NTK). First, note that (14) can be written as

wk+1 −wk

ηk
= −∇wL(wk,λkr ,λ

k
b ,λ

k
0) . (2.40)

31

Figure 2.7: Exact 1D wave solution vs. baseline SGD training over 80k Adam iterations

Figure 2.8: Exact 1D wave solution vs. Self-Adaptive SGD training over 80k Adam iterations

In the limit as the learning rate ηk tends to zero, the previous expression yields the gradient flow

differential equation [?]:

dw(τ)

dτ
= −∇wL(w(τ),λr(τ),λb(τ),λ0(τ)) , (2.41)

where τ ≥ 0 denotes the (continuous) training time. Notice that the usual gradient descent step

corresponds to a forward Euler discretization of (2.41). It follows that the properties of gradient

descent optimization can be investigated by studying this differential equation.

Under this vanishing learning-rate limit, the neural tangent kernel (NTK) [?] characterizes the

32

Figure 2.9: Cross-sections of the domain of 1D wave with GP-SA SGD training. L2 error on this
run is 2%.

training dynamics of the neural network, i.e., the evolution of the output u(x, t;w(τ)) as a function

of training time τ . In [50], the NTK for PINNs was derived and its properties were studied. Here

we show how those results are modified by the introduction of self-adaptive weights in the loss

function.

Let the response vectors be

us(τ) = [u(x1
s, t

1
s;w(τ)), . . . , u(xNs

s , tNs
s ;w(τ))]T (2.42)

ur(τ) = [Nx,t[u(x1
r, t

1
r;w(τ))], . . . , Nx,t[u(xNr

r , tNr
r ;w(τ))]]T (2.43)

ub(τ) = [Bx,t[u(x1
b , t

1
b ;w(τ))], . . . , Bx,t[u(xNb

r , tNb
b ;w(τ))]]T (2.44)

u0(τ) = [u(x1
0, 0;w(τ)), . . . , u(xN0

0 , 0;w(τ))]T (2.45)

Likewise, the data vectors are denoted by

vs = [y1
s , . . . , y

Ns
s]T (2.46)

vr = [f(x1
r, t

1
r), . . . , f(xNr

r , tNr
r)]T (2.47)

vb = [g(x1
b , t

1
b), . . . , g(xNb

r , tNb
b)]T (2.48)

v0 = [h(x1
0, 0), . . . , h(xN0

0 , 0)]T (2.49)

33

We will write up(τ) = (u1
p(τ), . . . , u

Np
p (τ)) and vp = (v1

p, . . . , v
Np
p) to identify the individual

responses uip(τ) and data point vip, for p = s, r, b, 0.

The loss function at training time τ can be written as

L(w(τ),λr(τ),λb(τ),λ0(τ)) =
1

2

Ns∑
j=1

|ujs(τ)− vjs|2 (2.50)

+
1

2

∑
q=r,b,0

Nq∑
j=1

m(λjq(τ)) |ujq(τ)− vjq |2 (2.51)

Hence, the gradient flow in (30) becomes

dw

dτ
= −

Ns∑
j=1

∇wujs(τ)(ujs(τ)− vjs) −
∑
q=r,b,0

Nq∑
j=1

∇wujp(τ)m(λjq(τ)) (ujq(τ)− viq) (2.52)

= −JTs (τ)(us(τ)− vs) −
∑
q=r,b,0

JTq (τ)Γq(τ)(uq(τ)− vq) (2.53)

where Jp(τ) is the Jacobian of up(τ) with respect to w, for p = s, r, b, 0, and Γp(τ) is a diagonal

matrix of dimension Np ×Np containing the self-adaptive mask values m(λ1
p(τ)), . . . ,m(λ

Np
p (τ))

in the diagonal, for p = r, b, 0.

It follows that

dup(τ)

dτ
= Jp(τ) · dw(τ)

dτ

= −Jp(τ)JTs (τ)(us(τ)− vs) −
∑
q=r,b,0

Jp(τ)JTq (τ)Γq(τ)(uq(τ)− vq) , (2.54)

for p = s, r, b, 0.

Now define

Kpq(τ) = Jp(τ)JTq (τ) , p, q = s, r, b, 0 . (2.55)

34

Notice that these are matrices of dimensions Np ×Nq, with i, j elements

(Kpq)ij (τ) = ∇wuip(τ)T · ∇wujq(τ) =
∑
w∈w

duip(τ)

dw
·
dujq(τ)

dw
(2.56)

This allows us to collect the previous results in the following differential equation describing the

evolution of the output of the self-adaptive PINN in the vanishing learning-rate limit:

du(τ)

dτ
= −K(τ) · (u(τ)− v) (2.57)

where

u(τ) =



us(τ)

ur(τ)

ub(τ)

u0(τ)


, v =



vs

vr

vb

v0


, (2.58)

and

K(τ) =



Kss(τ) Ksr(τ)Γr(τ) Ksb(τ)Γb(τ) Ks0Γ0(τ)

Krs(τ) Krr(τ)Γr(τ) Krb(τ)Γb(τ) Kr0Γ0(τ)

Kbs(τ) Kbr(τ)Γr(τ) Kbb(τ)Γb(τ) Kb0Γ0(τ)

K0s(τ) K0r(τ)Γr(τ) K0b(τ)Γb(τ) K00Γ0(τ)


(2.59)

is the empirical neural tangent kernel matrix for the self-adaptive PINN. (When all the mask values

are 1, this reduces essentially to the expression in Lemma 3.1 of [?].)

The square matrices Kpp(τ) are symmetric and positive semidefinite, with nonnegative eigen-

values µ1
p(τ), . . . , µ

Np
p (τ) for p = s, r, b, 0. The square matrices Kpp(τ)Γp(τ) are not symmetric,

for p = r, b, 0, unless all values in the diagonal of Γp(τ) are identical. However, under the assump-

tion that Kpp(τ) is positive definite, and thus invertible, the matrices Kpp(τ)Γp(τ) are diagonaliz-

able. To see this, note that

Krr(τ)−
1
2 Krr(τ)Γp(τ)Krr(τ)

1
2 = Krr(τ)

1
2 Γp(τ)Krr(τ)

1
2 . (2.60)

35

K(τ)−
1
2 K(τ)Γ(τ)K(τ)

1
2 = K(τ)

1
2 Γ(τ)K(τ)

1
2 . (2.61)

But Kpp(τ)
1
2 Γp(τ)Kpp(τ)

1
2 is a product of symmetric matrices, and thus symmetric itself. Hence,

Kpp(τ)Γp(τ) is similar to a real symmetric matrix, and thus diagonalizable.

d

dτ



us(τ)

ur(τ)

ub(τ)

u0(τ)


= −K ·



us(τ)−vs

ur(τ)−vr

ub(τ)−vb

u0(τ)−v0


(2.62)

which has the solution



us(τ)

ur(τ)

ub(τ)

u0(τ)


= (I− e−Kt) ·



vs

vr

vb

v0


(2.63)



us(τ)−vs

ur(τ)−vr

ub(τ)−vb

u0(τ)−v0


= −QT e−MtQ ·



vs

vr

vb

v0


(2.64)

that is

Q



·us(τ)−vs

ur(τ)−vr

ub(τ)−vb

u0(τ)−v0


= −e−MtQ ·



vs

vr

vb

v0


(2.65)

where Q is the matrix of eigenvectors and M is a diagonal matrix containing the eigenvalues µi of

K.

36

let µ1(τ) ≥ · · · ≥ µn(τ) and γ1(τ) ≥ · · · ≥ γn(τ) be the eigenvalues of K(τ) and K(τ)Γ(τ)

respectively. Also let λ1(τ) ≥ · · · ≥ λn(τ) be the self-adaptive weights sorted by magnitude.

Then it can be shown that

γi+j−1 ≤ m(λi)µ
j (2.66)

γi+j−n ≥ m(λi)µ
j (2.67)

(2.68)

2.6.1 SA-PINN NTK Analysis - 1D Advection PDE

To analyze the SA-PINN further, we view the underlying gradient flow via the SA-PINN’s

NTK, similar to the studies performed in [28]. Here we examine the application of PINNs to the

the classical univariate advection of a tracer in a moving fluid, with a Riemann initial condition.

The evolution of the tracer concentration q(x, t) in a pipe, for 0 ≤ x ≤ L and t > 0, is governed

by the univariate linear advection hyperbolic PDE [51]:

qt + uqx = 0 (2.69)

where u is the constant velocity. The Riemman initial condition is a piecewise function described

by

q(x, 0) =


ql, 0 ≤ x < x0 ,

qi, xi < x ≤ xi+1 ∀i ∈ 1...6

qr, x6 < x ≤ L .

(2.70)

where x0 = 1, xi = [1, 0.25, 0.5, .075, 1.25, 1.5, 1.75], ql = 4, qi = [0.4, 4, 1.4, 3, 0.4, 4] and qr

37

= 0.4. This simple problem has as solution:

q(x, t) =


ql, 0 ≤ x < x0 + ut ,

qi, xi + ut < x ≤ xi+1 + ut ∀i ∈ 1...6

qr, x6 + ut < x ≤ L .

(2.71)

for 0 ≤ t < (L − x0)/u. In other words, the initial discontinuity in concentration is simply

advected to the left with speed u. In this case, we provide a piecewise initial condition that is more

complex than the typical hyperbolic "single shock" typically modeled using the advection PDE

system. This system is quite difficult to solve numerically, and discretized methods have been

proposed to do so [51]. We see in figures 2.10 and 2.11 that the baseline PINN also struggles

to capture the nonlinear high-frequency shock at the boundaries in the system. The SA-PINN,

however, is capable of capturing the dynamics significantly more effectively, and training in a

matter of seconds on GPU. A cross-section of the solution can be seen in figure 2.11 and the

spatio-temporal solution can be seen in figure 2.10.

The results presented in figures 2.10, 2.11, and 2.12 are generated with a neural network archi-

tecture of [2, 400, 400, 400, 400, 1], trained for 10k Adam iterations with a neural network weight

learning rate of 0.001 and a self-adaptive weight learning rate of 0.1. Glorot Normal initialization

was utilized, and all training was completed in Tensorflow on a single V100 GPU with an average

training time of 7 seconds for 10k iterations. At the end of 10k training iterations, the baseline

PINN failed to grasp even the high level structure of the solution, but the SA-PINN was able to

approximate the solution with 5% L2 error. This error can be further reduced by training with a

learning rate schedule and for more training epochs. However, for NTK analysis performed in this

section, a simple training scheme was utilized with no learning rate schedule.

An analysis of NTK eigenvalues similar to that performed in [28] is demonstrated in figure 2.12.

We can see that the eigenvalues of the NTK are increased greatly in magnitude, facilitating train-

ing, but are also more closely matched in scale between Kuu and Krr. This implies that training

38

Figure 2.10: Top: Plot of the approximation u(x, t) via the baseline PINN, showing the exact
solution vs predicted solution vs absolute error. Bottom: The SA-PINN results, L2 error decreases
by an order of magnitude and the SA-PINN closely captures the exact solution.

steps taken while training the network weights are more accurately describing the direction and

magnitude of training the whole loss function, instead of over or under-weighted parts of it. Many

times in PINN training, large and unbalanced gradient magnitudes will dominate training and lead

to an approximation that fails to converge to the true solution.

2.7 Additional Examples with SA-PINNs

Here we present additional experimental results with Burger’s and Helmholtz PDEs, which

confirmed the trends observed previously.

39

Figure 2.11: Top: Plot of the approximation u(x, t) via the baseline PINN, showing cross sections
of the spatial domain at t = 0.02, 0.10, 0.18 Bottom: The SA-PINN results at the same time steps,
with the same number of epochs (10k Adam) and all other parameters held constant.

Figure 2.12: NTK eigenvalues of the baseline PINN (solid) vs. the SA-PINN (dashed) for
τ =1000, 5000, and 10000 training iterations. It can be observed that the SA-PINN accurately
matches the magnitudes of the NTK eigenvalues between terms of the loss function, in this case
the initial condition Kuu and the residual loss Krr

40

2.7.1 Burgers’ Equation

The viscous Burgers’ PDE considered here is

ut + uux − (0.01/π)uxx = 0 , x ∈ [−1, 1], t ∈ [0, 1] , (2.72)

u(0, x) = −sin(πx) , (2.73)

u(t,−1) = u(t, 1) = 0 . (2.74)

All results for Burgers equation were generated from a fully-connected network with input later

size 2 corresponding to inputs of (x, t), 8 hidden layers of 20 neurons each, and an output layer

of size 1 corresponding to the output of the approximation u(x, t). This directly mimics the setup

of the results presented in [25]. All training is done for 10k iterations of Adam, followed by 10k

iterations of L-BFGS to fine tune the network weights, consistent with related work. Additionally,

the number of points selected for the trials shown are N0 = 100, Nb = 200, and Nr = 10000.

Training with this architecture took 96ms/iteration on a single Nvidia V100 GPU.

We achieved an L2 error of 4.803e-04 ± 1.01e-4 over 10 random restarts, which is a smaller

error than the errors reported in [25] in 1/5 of the number of training iterations for an identical

fully-connected architecture. The high-fidelity and predicted solutions are displayed in figure 2.13.

Figure 2.14 demonstrate the accuracy of the proposed approach, using a significantly shorter train-

ing horizon than the baseline PINN.

Figure 2.15 shows that the sharp discontinuity at x = 0 in the solution has correspondingly

large weights, indicating that the model must pay extra attention to those particular points in its

solution, resulting in an increase in approximation accuracy and training efficiency.

2.7.2 Helmholtz Equation

The Helmholtz equation model is typically used to describe the behavior of wave and diffu-

sion processes, and can be employed to model evolution in a spatial domain or combined spatial-

temporal domain. Here we study a particular Helmholtz PDE existing only in the spatial (x, y)

41

Figure 2.13: High-fidelity (left) vs. predicted (right) solutions for Burgers’ equation

domain, described as:

uxx + uyy + k2u− q(x, y) = 0 (2.75)

u(−1, y) = u(1, y) = u(x,−1) = u(x, 1) = 0 (2.76)

where x ∈ [−1, 1], y ∈ [−1, 1] and

q(x, y) = − (a1π)2 sin(a1πx) sin(a2πy)

− (a2π)2 sin(a1πx) sin(a2πy)

+ k2 sin(a1πx) sin(a2πy)w (2.77)

is a forcing term that results in a closed-form analytical solution

u(x, y) = sin(a1πx) sin(a2πy) . (2.78)

To allow a direct comparison to the results reported in [35], we take a1 = 1 and a2 = 4 and use the

same neural network architecture with layer sizes [2, 50, 50, 50, 50, 1]. Our architecture is trained

for 10k Adam and 10k L-BFGS iterations, again keeping the self-adaptive mask weights constant

42

Figure 2.14: Top: predicted solution of Burger’s equation. Middle: Cross-sections of the approx-
imated vs. actual solutions for various x-domain snapshots. Bottom left: Residual r(x, t) across
the spatial-temporal domain. Bottom right: Absolute error between prediction and high-fidelity
solution across the spatial-temporal domain.

through the L-BFGS training iterations and only allowing those to train via Adam. We sample

Nb = 400 (100 points per boundary). Given the steady-state initialization and constant forcing

term, there is no applicable initial condition and consequently no N0. We create a mesh of size

(1001,1001) corresponding to the x ∈ [−1, 1], y ∈ [−1, 1] range, yielding 1,002,001 total mesh

points, from which we select Nr=100k residual collocation points.

We can see in figure 2.16 that the Self-Adaptive PINN prediction is very accurate and indis-

tinguishable from the exact solution. We achieve a relative L2 error of 3.2e-3 ± 2.2e-4, which

43

Figure 2.15: Trained weights for collocation points across the domain Ω. Larger/brighter colored
points correspond to larger weights.

improves upon the learning-rate annealing weighted scheme proposed in [35], and begins to en-

croach on the accuracy of their improved fully-connected scheme with no additional modifications

to the network structure itself. It is also worth noting that the Self-Adaptive PINN is trained for

1/2 of the training iterations listed in [35] as well (at 10k Adam and 10 L-BFGS vs. 40k Adam),

and achieves better L2 accuracy than a comparable architecture listed in table 2 of [35].

Figure 2.16: Exact (left) vs. predicted (right) solutions for Helmholtz equation

44

Figure 2.17: Top predicted solution of Helmholtz equation. Bottom Cross-sections of the approxi-
mated vs. actual solutions for various x-domain snapshots

Figure 2.17 shows individual cross-sections of the Helmholtz solution, demonstrating the Self-

Adaptive PINN’s ability to accurately approximate the sinusoidal solution on the whole domain.

Figure 2.18 shows that the Self-Adaptive PINN largely ignores the flat areas in the solution, while

focusing its attention on the nonflat areas.

2.8 Conclusion

In this paper, we introduced Self-Adaptive Physics-Informed Neural Networks, a novel class of

physics-constrained neural networks. This approach uses a similar conceptual framework as soft

45

Figure 2.18: Self-learned weights after training via Adam for the Helmholtz system.
Brighter/larger points correspond to larger weights.

self-attention mechanisms used in Computer Vision, in that the network identifies which inputs

are most important to its own training. It was shown that training of the Self-Adaptive PINN

is formally equivalent to solving a PDE-constrained optimization problem using penalty-based

method, though in a way where the monotonically-nondecreasing penalty coefficients are trainable.

Experimental results with Burgers’, Helmholtz, and Allen-Cahn PDEs indicate that Self-Adaptive

PINNs allow generate more accurate solutions of PDEs with smaller computational cost than other

state-of-the-art PINN algorithms.

We believe that self-adaptive PINNs open up new possibilities for the use of deep neural net-

works in forward and inverse modeling in engineering and science. However, there is much that

is not known yet about this class of algorithms, and indeed PINNs in general. For example, the

use of standard off-the-shelf optimization algorithms for training deep neural networks, such as

Adam, may not be appropriate, since those algorithms were mostly developed for image classifi-

cation problems. How to obtain optimization algorithms specifically tailored to PINN problems

in an open problem. In addition, the relationship between PINNs and constrained-optimization

problems, hinted at here, is likely a profound and fruitful topic of future study.

46

3. TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed Neural

Networks

3.1 Introduction

As part of the burgeoning field of scientific machine learning [24], physics-informed neural

networks (PINNs) have emerged recently as an alternative to traditional partial different equation

(PDE) solvers [25, 26, 27, 28], and have given rise to the larger field of study in neural network

approximation of PDE systems, generally referred to as Neural PDEs. Typical black-box deep

learning methodologies do not take into account the underlying physics of the problem domain.

The Neural PDE approach is based on constraining the output of a deep neural network to satisfy

a physical model specified by a PDE. PINNs typically perform this task via PDE-constrained

regularization of a residual function defined by the approximation of the solution network u and

forward-pass calculations through the physics of the PDE model, with the applicable derivatives

of u calculated via reverse-mode automatic differentiation in a modern deep learning framework

such as Tensorflow [30].

The potential of using neural networks as universal function approximators to solve PDEs had

been recognized since the 1990’s [29, 52]. However, Physics-Informed Neural Networks promise

to take this approach to a different level through deep neural networks, the exploration of which is

now possible due to the vast advances in computational capabilities and training algorithms since

that time [30, 31] and modern congenial automatic differentiation software [32, 33].

A great advantage of the PINN architecture over traditional time-stepping PDE solvers is that

the entire spatial-temporal domain can be solved at once using collocation points distributed quasi-

randomly (rather than on a grid) across the spatial-temporal domain, in a process that can be mas-

sively parallelized via GPU. As we have continued to see GPU capabilities increase in recent years,

a method that relies on parallelism in training iterations could begin to emerge as the predominant

approach in scientific computing. To this end, while other software suites exist to define and solve

47

PINNs [53, 54, 55, 56], many of those platforms are either restricted to single-GPU implementa-

tion or are not fully open-source. Additionally, with full support and customization capabilities

of the Keras neural network ecosystem built in to the package, researchers and practitioners can

define and train their own custom neural network architectures to approximate the solution of their

problem domains. TensorDiffEq provides these scalable, modular, and customizable multi-GPU

architectures and solvers in a fully open-source platform, tapping into the collective intelligence

of the field to improve the implementation of the software and provide input on the direction,

structure, and feature coverage of the framework.

3.2 Mathematical Underpinnings of PINNs

Consider a general nonlinear PDE of the form:

Nx,t[u(x, t)] = 0 , x ∈ Ω , t ∈ [0, T] , (3.1)

u(x, t) = g(x, t) , x ∈ ∂Ω, t ∈ [0, T] , (3.2)

u(x, 0) = h(x) , x ∈ Ω , (3.3)

where x ∈ Ω is a spatial vector variable in a domain Ω ⊂ Rd, t is time, and Nx,t is a spatial-

temporal differential operator. Following [25], let u(x, t) be approximated by the output u(x, t;w)

of a deep neural network with inputs x and t. Define the residual network r(x, t;w), which share

the same network weights w as the approximation network u(x, t;w), and satisfies:

r(x, t;w) := Nx,t[u(x, t;w)] , (3.4)

where all partial derivatives can be computed by automatic differentiation methods [32, 33]. The

shared network weights w are trained by minimizing a loss function that penalizes the output for

not satisfying (1)-(3):

L(w) = Ls(w) + Lr(w) + Lb(w) + L0(w) , (3.5)

48

where Ls is the loss corresponding to sample data (if any), Lr is the loss corresponding to the

residual (3.4), Lb is the loss due to the boundary conditions (3.2), and L0 is the loss due to the

initial conditions (3.3):

Ls(w) =
1

Ns

Ns∑
i=1

|u(xis, t
i
s;w)− yis|2, (3.6)

Lr(w) =
1

Nr

Nr∑
i=1

r(xir, t
i
r;w)2, (3.7)

Lb(w) =
1

Nb

Nb∑
i=1

|u(xib, t
i
b;w)− gib|2, (3.8)

L0(w) =
1

N0

N0∑
i=1

|u(xi0, 0;w)− hi0|2. (3.9)

where {xis, tis, yis}Ns
i=1 are sample data (if any), {xi0, hi0 = h(xi0)}N0

i=1 are initial condition point,

{xib, tib, gib = g(xib, t
i
b))}

Nb
i=1 are boundary condition points, {xir, tir}Nr

i=1 are collocation points ran-

domly distributed in the domain Ω, and Ns, N0, Nb and Nr denote the total number of sample data,

initial points, boundary points, and collocation points, respectively. The network weights w can

be tuned by minimizing the total training loss L(w) via standard gradient descent procedures used

in deep learning.

3.3 Using TensorDiffEq for Forward Problems

TensorDiffEq has a boilerplate model that can loosely be followed in most instances of usage

of the package. In forward problems, this process is generally described in the following order:

1. Define the problem domain

2. Describe the physics of the model

3. Define the Initial Conditions and Boundary Conditions (IC/BCs)

4. Define the neural network architecture

5. Select and define the solver

49

6. Solve the PDE using the fit method

Each of these steps has multiple options and definitions in the TensorDiffEq solution suite.

The following sections will provide a brief overview of some of the built-in functionality of the

package.

3.3.1 Define the Problem Domain

A Domain object is the first essential component of defining a problem in TensorDiffEq. The

domain object contains primitives for defining the problem scope used later in your definitions of

boundary conditions, initial conditions, and eventually to sample collocation points that are fed

into the PINN solver.

The Domain object is defined iteratively. As many dimensions as are required can simply be

added to the domain using the add method. This means TensorDiffEq can be used to solve spatial

(steady-state) or spatiotemporal 2D, 3D, or ND problems.

3.3.2 Describe the Physics of the Model

Since TensorDiffEq is built on top of Tensorflow [57] physics of the model can be defined via a

strong-form PDE, with gradients defined using the built-in tf.gradients function. This allows

for a definition similar to that seen in [25]. An example of defining the PDE for a viscous Burger’s

system is shown below:

1 def f_model(u_model, x, t):

2 u = u_model(tf.concat([x, t], 1))

3 u_x = tf.gradients(u, x)

4 u_xx = tf.gradients(u_x, x)

5 u_t = tf.gradients(u, t)

6 f_u = u_t + u * u_x - (0.01 / tf.constant(math.pi)) * u_xx

7 return f_u

Due to the nature of how the PDE system is defined in TensorDiffEq, one could define a separate

system of u and allow for a coupled PDE definition using a similar style as the one shown above.

50

3.3.3 Define the ICs/BCs

TensorDiffEq supports various types of ICs and BCs and the list will continue to grow. The ICs

and BCs that require functions allow for intuitive definitions of those functions of system variables

as a Python function, which allows for nonlinear and non-continuous function definitions of

state variables. One could define piece-wise functions, Boolean functions, etc using this verbiage

and it would be valid input to TensorDiffEq’s solvers. At the time of this writing, TensorDiffEq

supports constant Dirichlet, Function Dirichlet, and periodic BCs, as well as function-based ICs.

TensorDiffEq takes the ICs and BCs as a list, therefore one can add as many as necessary to define

the system. If a BC is not defined on a particular boundary or it is overlooked in the problem

definition then the solver will attempt to approximate that boundary using PDE-constrained regu-

larization of the inner points on or around that boundary.

3.3.4 Define the Neural Network Architecture

The default architecture of the neural network is a fully connected MLP defined in the Keras

API [19]. To take advantage of the built-in MLP, a list of hidden layer sizes is passed into the solver.

However, this baseline architecture can be overwritten by any Keras neural network. Currently,

the solver requires the number of inputs of the neural network to be the same as the number of

dimensions of the system, and the output is the scalar value of the approximation of u(X) at that

combination of input points. However, this “single-network” output architecture is actively being

expanded at the time of this writing.

In the event one desires to add batch norm, residual blocks, etc, then the Keras API could be

used to define the model and the internal parameters of TensorDiffEq’s solvers could be modified

to use that network as the solution network for u(X). In this way, so long as the input to the neural

network has the correct dimensionality for the system (i.e. 3 nodes for a problem with x, y, t

dimensions) and the output node is the correct number of dimensions then one could build any

architecture the Keras API allows and pass it into the solver. This features also allows for custom

neural network layer support using the Keras lambda layer ecosystem, allowing for complete

51

autonomy in the definition of the neural network model internals and training via built-in Keras

optimizers.

3.3.5 Select and Define The Solver

TensorDiffEq is a suite designed to provide forward and inverse PINN solvers. As such, there

are various solvers to perform these tasks. At the time of this writing, there are Collocation Method

solvers for forward modeling and the Discovery Model for inverse modeling.

Hyperparameter selection can be modified by the user by overwriting the default Adam opti-

mizer [20] with any of the other available optimizers in Keras, to include AdaDelta [58], Root-

Mean-Square Propagation, SGD, and others. Some of these different optimization techniques

prove more stable in training than others, and there exist various methods of modifying the loss

function of the collocation solver to improve convergence [28, 35]. To this end, TensorDiffEq

supports self-adaptive training methods, which have proven to be effective in helping semi-linear

PDE systems, such as Allen-Cahn [59], converge where the baseline collocation method fails [60].

Other methods of improving convergence in Neural PDE and PINN training are continuously being

considered.

3.3.6 Solve the PDE

Each solver has a compile and fit method, to give the package a feel similar to modern

popular machine learning or deep learning frameworks such as Keras [19] or scikit-learn [61].

In most instances, the compile function places parameters such as the domain size and shape,

neural network sizes, BCs/ICs, etc. into the solver, and the fit function takes only the number of

iterations of Keras optimizer runs or newton solver runs.

A feature unique to TensorDiffEq is that the Keras neural network model can be exported and

saved for later use. This could allow for training on a data center platform, but inference on

a local machine. Additionally, being able to export the Keras neural network model opens the

door to transfer learning possibilities previously difficult with the versions of Neural PDE solvers

currently in circulation. In the case of TensorDiffEq, this is a natural result of leaning on the

52

Tensorflow/Keras APIs.

3.4 Solving Inverse Problems

TensorDiffEq comes with a base class solver for inverse problems. Inverse problems can im-

ply parameter estimation or even estimate the interactions between nonlinear operators [62] from

data. TensorDiffEq contains solvers that perform parameter estimation in a PDE system. These

parameters can be mobility parameters, diffusivity parameters, etc, where there is some level of a

priori physical knowledge about the system in question, but a specific parameter may be unknown.

TensorDiffEq contains built-in support for solving of such systems that can be solved in ND cases.

Parameters are defined as variables that are learned over the course of the training, therefore a

natural output is a trained u(X, t) solution as well as the estimate of the parameters in question.

3.5 Conclusion

In this article, the authors introduce TensorDiffEq, a scalable multi-GPU solver for PINNs/Neu-

ralPDEs. Some of the main highlights of the software are covered, and more features are currently

underway. TensorDiffEq contains support for various types of initial conditions, boundary condi-

tions, and allows the user to custom-define their PDE system for their specific problem. In the

event that inverse modeling is required, TensorDiffEq contains solvers that will accommodate pa-

rameter estimation of a PDE system. Currently, TensorDiffEq is the only software suite to support

self-adaptive solving, demonstrated to improve training convergence and accuracy of the final so-

lution. TensorDiffEq takes a step forward in modern implementations of PINN solvers, and fills

a unique niche of being a fully open-source multi-GPU PINN solver in the current ecosystem of

Scientific Machine Learning software offerings.

3.6 Example - Solving a Nonlinear PDE in TensorDiffEq

Here we demonstrate the basic usage of the package. More examples are available at github.

com/tensordiffeq/ and the most up-to-date documentation is available at docs.tensordiffeq.

io

53

github.com/tensordiffeq/
github.com/tensordiffeq/
docs.tensordiffeq.io
docs.tensordiffeq.io

The viscous Burgers’ PDE considered here is

ut + uux − (0.01/π)uxx = 0 , x ∈ [−1, 1], t ∈ [0, 1] , (3.10)

u(0, x) = −sin(πx) , (3.11)

u(t,−1) = u(t, 1) = 0 . (3.12)

and is a fundamental example in PINN literature [25]. To solve this PDE system in TensorDif-

fEq, the following code could be used:

1 import math

2 import tensordiffeq as tdq

3 from tensordiffeq.boundaries import *

4 from tensordiffeq.models import CollocationSolverND

5

6 # Define the problem domain

7 Domain = DomainND(["x", "t"], time_var=’t’)

8 Domain.add("x", [-1.0, 1.0], 256)

9 Domain.add("t", [0.0, 1.0], 100)

10

11 N_f = 10000

12 Domain.generate_collocation_points(N_f)

13

14 # Define the Initial Condition (IC)

15 def func_ic(x):

16 return -np.sin(x * math.pi)

17

18 # Define the IC/BCs

19 init = IC(Domain, [func_ic], var=[[’x’]])

20 upper_x = dirichletBC(Domain, val=0.0, var=’x’, target="upper")

21 lower_x = dirichletBC(Domain, val=0.0, var=’x’, target="lower")

22

23 BCs = [init, upper_x, lower_x]

54

24

25 # Define the physics in tf.gradients syntax

26 def f_model(u_model, x, t):

27 u = u_model(tf.concat([x, t], 1))

28 u_x = tf.gradients(u, x)

29 u_xx = tf.gradients(u_x, x)

30 u_t = tf.gradients(u, t)

31 f_u = u_t + u * u_x - (0.01 / tf.constant(math.pi)) * u_xx

32 return f_u

33

34 # List of layer sizes for the FC network

35 layer_sizes = [2, 20, 20, 20, 20, 20, 20, 20, 20, 1]

36

37 # Define and compile the model

38 model = CollocationSolverND()

39 model.compile(layer_sizes, f_model, Domain, BCs)

40

41 # to reproduce results from Raissi and the SA-PINNs paper, train for 10k

newton and 10k adam

42 model.fit(tf_iter=10000, newton_iter=10000)

This trains a neural network in the model class that can later be called with a predict

method to allow for visualization of the solution, similar to that show in fig 3.1,

55

Figure 3.1: Top: predicted solution of Burger’s equation. Middle: Cross-sections of the approx-
imated vs. actual solutions for various x-domain snapshots. Bottom left: Residual r(x, t) across
the spatial-temporal domain. Bottom right: Absolute error between prediction and high-fidelity
solution across the spatial-temporal domain.

3.7 Example - Solving the Semi-linear Allen-Cahn PDE System in TensorDiffEq

Another well-explored example is the Allen-Cahn PDE system for reaction-diffusion, describ-

ing the process of phase separation in multi-component alloy systems.

An example of the system is shown below:

56

ut − 0.0001uxx + 5u3 − 5u = 0 , x ∈ [−1, 1], t ∈ [0, 1] , (3.13)

u(x, 0) = x2cos(πx) , (3.14)

u(t,−1) = u(t, 1) , (3.15)

ux(t,−1) = ux(t, 1) . (3.16)

In order to implement this system, and solve it effectively, we must employ self-adaptive solv-

ing [60]. Otherwise, the baseline PINN will fail to train or accurately capture the system evolution

dynamics in the solution approximation. Additionally, the below example highlights the ability of

TensorDiffEq to implement custom-defined Keras neural networks and include batch norm layers,

as an example.

1 import math

2 import tensordiffeq as tdq

3 from tensorflow.keras.models import Sequential

4 from tensorflow.keras.layers import Dense, BatchNormalization

5 from tensordiffeq.models import CollocationSolverND

6 from tensordiffeq.boundaries import *

7

8 # Define the problem domain

9 Domain = DomainND(["x", "t"], time_var=’t’)

10 Domain.add("x", [-1.0, 1.0], 512)

11 Domain.add("t", [0.0, 1.0], 201)

12

13 N_f = 10000

14 Domain.generate_collocation_points(N_f)

15

16 # Define the Initial Conditions (ICs)

17 def func_ic(x):

18 return x ** 2 * np.cos(math.pi * x)

57

19

20

21 # Conditions to be considered at the boundaries for the periodic BC

22 def deriv_model(u_model, x, t):

23 u = u_model(tf.concat([x, t], 1))

24 u_x = tf.gradients(u, x)[0]

25 return u, u_x

26

27

28 init = IC(Domain, [func_ic], var=[[’x’]])

29 x_periodic = periodicBC(Domain, [’x’], [deriv_model])

30

31 BCs = [init, x_periodic]

32

33

34 def f_model(u_model, x, t):

35 u = u_model(tf.concat([x, t], 1))

36 u_x = tf.gradients(u, x)

37 u_xx = tf.gradients(u_x, x)

38 u_t = tf.gradients(u, t)

39 c1 = tdq.utils.constant(.1)

40 c2 = tdq.utils.constant(5.0)

41 f_u = u_t - c1 * u_xx + c2 * u * u * u - c2 * u

42 return f_u

43

44 # Define initial and residual collocation weight vectors

45 col_weights = tf.Variable(tf.random.uniform([N_f, 1]), trainable=True, dtype=

tf.float32)

46 u_weights = tf.Variable(100 * tf.random.uniform([512, 1]), trainable=True,

dtype=tf.float32)

47

48 # still required to define an FC network, will be overwritten later

49 layer_sizes = [2, 128, 128, 128, 128, 1]

58

50

51 # Define a custom naural network architecture in Keras for use in tdq’s solver

52 model_bn = Sequential()

53 model_bn.add(Dense(128, input_dim=2, activation=tf.nn.tanh,

kernel_initializer="glorot_normal"))

54 model_bn.add(BatchNormalization())

55 model_bn.add(Dense(128, activation=tf.nn.tanh, kernel_initializer="

glorot_normal"))

56 model_bn.add(BatchNormalization())

57 model_bn.add(Dense(128, activation=tf.nn.tanh, kernel_initializer="

glorot_normal"))

58 model_bn.add(BatchNormalization())

59 model_bn.add(Dense(128, activation=tf.nn.tanh, kernel_initializer="

glorot_normal"))

60 model_bn.add(Dense(1, activation=tf.nn.tanh, kernel_initializer="

glorot_normal"))

61

62

63 # Define the model and compile with the self-adaptive weights

64 model = CollocationSolverND()

65 model.compile(layer_sizes, f_model, Domain, BCs, isAdaptive=True, col_weights=

col_weights, u_weights=u_weights)

66

67 # replace the default FC network in the model with our new one, to include

batch norm layers

68 model.u_model = model_bn

69

70 model.fit(tf_iter=1000)

59

4. PINN Expansion and Adoption

This section contains up-and-coming work related to utilization of PINNs in various collabo-

rative areas of science and engineering. The applications of PINNs is abound, and the schema can

be utilized in almost any instance where a system of governing PDEs controls a system. In some

instances, the systems can be difficult to train and require modifications to the baseline PINN algo-

rithm to successfully perform forward or inverse modeling. This section highlights some of those

instances wherein the self-adaptive PINN or the or some other derivative PINN has been successful

in modelling of problems where baseline PINNs have failed, or where PINNs are emerging as a

potential successful training methodology.

4.1 Solving Hyperbolic PDEs with PINNs

Recently, work has been completed in analysis of PINNs for hyperbolic PDEs. Studies have

been conducted to employ PINNs to solve a classic problem in petroleum reservoir engineering

referred to the Buckley-Leverett equation [63, 64, 65]. It has been demonstrated that PINNs fail

to find the solution of the PDE when it has hyperbolic behavior with shocks and contact disconti-

nuities in the solution. Adding artificial viscosity to reduce the hyperbolicity of the PDE is a well-

known approach in traditional scientific computation [66]. In the context of PINNs, [67] proposed

using Welge’s method [68] to handle the shock front in the Buckley-Leverett problem. Welge’s

method transforms the fractional flow function to assure that the entropy condition is satisfied but

notably this method is only valid with homogeneous initial conditions.

In this series of work, performed in parallel with Texas A&M Dept. of Petroleum Engineer-

ing, various methods of PINN-native solvers are proposed to handle the hyperbolic nature of the

Buckley-Leverett PDE system. 3 major modifications to the PINN methodology incorporating

characteristics specific to Buckley-Leverett are analyzed in this work:

1. Learnable Artificial Viscosity

2. Parameterized Artificial Viscosity Map

60

3. Residual-based Viscosity Map

The bulk of experimentation in this section is credited to our collaborators in Texas A&M

PETE1 and was supported by work performed using the SA-PINN.

4.1.1 PINNs with a Learnable Artificial Viscosity

To address the issue of overparameterization of the model, or arbitrary selection of a viscosity

parameter, a learnable artificial viscosity parameter is introduced that is trainable against the overall

loss function of the PINN. This requires adjustment of the residual to include an adaptive viscosity

term, i.e.

r(x, t,w, ν) =
∂u(x, t,w)

∂t
+N (u(x, t,w))− ν ∂

2u(x, t,w)

∂x2
, (4.1)

And the proposed training loss will be modified to

L(w, ν) = Lr(w, ν) + Lb(w) + L0(w) + αviscLvisc(ν) (4.2)

This loss is subsequently minimized via a separate stage of gradient descent, independent of

network optimization, but is performed simultaneously in the same network training loop.

4.1.2 Parameterized Artificial Viscosity Map

Parameterized artificial viscosity relies on the a-priori intuition that a shock front will manifest

immediately after initialization. This method removes artificial viscocity from the entire problem

domain and allows for a trainable artificial viscosity only along the shock front, which facilitates

training along the discontuinity but does not comprimize accuracy along other portions of the

domain. A problem etup such as this is not possible with traditional solvers of Buckley-Leverett,

and is unique to PINNs.

1Released in a manuscript entitled Physics-Informed Neural Networks with Adaptive Localized Artificial Viscos-
ity [69], primarily authored by Emilio Coutinho

61

In this instance, we learn the shock front viscocity and only apply it to the front as it moves in

the time domain, however in order to perform this operation we must first identify the velocity of

the shock front itself. Therefore, the PINN formulation simultaneously learns the shock front ve-

locity as well as the value of the artificial viscosity required to train the forward model. Therefore,

the final PDE minimized via the PINN formulation is

r(x, t,w, ν) =
∂u(x, t,w)

∂t
+N (u(x, t,w))− νmaxν(x, t)

∂2u(x, t,w)

∂x2
, (4.3)

where ν(x, t) is a spatial-temporal map that has its values bounded between 0 and 1, and νmax

is the maximum value of artificial viscosity. The map ν(x, t) can be parameterized, for example

using the shock front velocity. In this case, we are not learning an individual weight or solution for

each collocation point, as is the case for the SA-PINN, but rather a set of hyperparameters used to

build a map of artificial viscosity at the shock front.

4.1.3 Residual-Based Artificial Viscosity Map

The final approach modeled is a residual-based artificial viscosity parameter that is relient on

the gradients of the residual, i.e. areas with higher residual gradients (wrt spatiotemporal variables,

not loss function gradients as in the SA-PINN) indicates discontinuities in the solution, and there-

fore is likely the location of the shock in the solution. In this regime, the residual of the PDE is

used to target the location of the residual by solving the residual form

r(x, t,w, ν) =
∂u(x, t,w)

∂t
+
∂f(u)

∂x
− νmaxν(x, t)

∂2u(x, t,w)

∂x2
, (4.4)

where ν(x, t) is a spatial-temporal map individualized to each collocation point, a major dif-

ference from the aforementioned approach in the previous section.

62

The residual-based artificial viscosity map is defined as:

ν = min (ν1, νr), (4.5)

where ν1 is called first-order viscosity vector and νr is the high-order residual viscosity vector. At

each collocation point i the first-order viscosity is calculated by:

ν1,i = max
loc
|f ′(u)i|, (4.6)

where the notation maxloc represents the maximum value taken over the neighbors of the collo-

cation point with index i. The high-order residual viscosity at collocation point index i is defined

as:

νr,i = max
loc

|R(u)i|
n(u)i

, (4.7)

where the R(u) is the inviscid PDE residual. The normalization term n(u) is chosen as:

n(u)i =
∣∣∣ũi − ‖u− u‖L∞(Ω)

∣∣∣ , (4.8)

where:

ũi = max
loc

ui −min
loc

ui, (4.9)

u is the mean of u, and the notation minloc is defined similarly as the maxloc.

The artificial viscosity map obtained from Eq. 4.5 has its numerical values obtained from the

fraction flow curve f(x) and a relation of the inviscid residual equation. So, the ν map will be

normalized between 0 and 1 using the following equation:

ν̂ =
ν − νmin

νmax − νmin

, (4.10)

and since this is a simple transformation, we will remove the upper hat notation and keep denoting

the normalized artificial viscosity map simply as ν. The learnable parameter νmax will control the

63

magnitude of the viscosity values applied to the diffusion term.

4.2 PINNs for Radiative Transfer

In this work, we evaluate the ability of PINNs to expand to solving problem in astrophysics

through our collaboration with Texas A&M Physics and Astronomy. Specifically, we address the

ability of PINNs in solving the spectrum of a Type 1a supernovae. This problem is interesting

in the realm of astrophysics because the explosion mechanisms are not entirely clear due to the

complexity of the underlying physical systems, typically resulting in complex calculations using

models that must take physical "short cuts" to generate results. This is particularly true in the

nucleosynthesis and the hydrodynamics of the system, in which the complexity/dimensionlaity

can be overwhelming. In this case, we are interested in solving the inverse problem to yield the

specific intensity (spectrum) of the explosion using the radiative transfer equation [70] and the

inverse modeling power of PINNs.

In the one-dimensional spherical symmetric coordinate, the radiative transfer equation in the

rest frame is:

cos(ϕ)
∂I

∂r
− sin(ϕ)

∂I

∂ϕ

1

r
− jem

(ν̄
ν

)−2

+ kabs

(ν̄
ν

)
I = 0 , (4.11)

where I , as a function of spatial coordinate, viewing direction and frequency, is the specific

intensity, r is the radius, ϕ is the angle between the viewing direction and the radius vector, kabs

is the absorption term, jem is the emission term,
(
ν̄
ν

)
is the frequency ratio in the comoving frame

and the rest frame which observes the following relation:

ν̄

ν
= γ[1− cos(ϕ)β] , (4.12)

where γ = (1 − β2)−0.5 is the Lorentz factor, β = v/c is the velocity of the material divided

by the speed of light [71]. Additional information on the specifics of the terms present in 4.11 can

be found in the full manuscript of this work2 and are unique to ratiative transfer and its various

2To be released in a manuscript tentatively titled Using Physics Informed Neural Networks for Supernova Radiative

64

modeling subtleties. Additionally, the time independent gamma-ray radiative transfer equation is:

cos(ϕ)
∂Iγ
∂r
− sin(ϕ)

∂Iγ
∂ϕ

1

r
+ (kC + kp)Iγ − jC − jr = 0 , (4.13)

where jr is the gamma ray source in the supernova atmosphere.

In the case of our work, done in collaboration with Texas A&M University Physics and As-

tronomy, we seek to use a PINN-based inverse model to capture the intensity of the spectrum

Iν = f(r, ϕ, w), where w represents the trainable parameters in the neural network, Iν is a vector

representing the intensity at a given spectral sampling grid.

To train the neural network, we sample upper BC, lower BC, and collocation points from

the interior of the domain (r, ϕ). The first set of collocation points are randomly sampled in

the parameter space from uniform distributions: ri,p ∈ U(rmin, rmax), ϕi,p ∈ U(0, π), denote as

reesidual collocation points. The second set of collocation points are sampled in rj,l = rmin,

ϕj,l ∈ U(0, π/2), and are lower BC points. The third set of collocation points are sampled in

rk,u = rmax, ϕk,u ∈ U(π/2, π), and are upper BC points.

The PDE collocation points are used into equation (4.11) or equation (4.13) to calculate the

residualRi,p. To notice, the computation processes in the neural network are addition and multipli-

cation of matrices and non-linear differentiable activation functions (i.e., tanh, ReLU), the partial

differential terms in equation (4.11) or equation (4.13) are thus calculated analytically using the

chain rule of derivation, and there is no need to sample (ri,p + dr, ϕi,p + dϕ) for numerical gradi-

ents. The upper and lower boundary collocation points are directly used to calculate the predicted

specific intensities: Ik,u = f(rmax, ϕk,u, w), Ij,l = f(rmin, ϕj,l, w), then calculate the residual with

respect to the pre-defined boundary conditions Rj,l, Rk,u.

The loss function is written as:

L = wp
∑
i,ν

R2
i,p + wl

∑
j,ν

R2
j,l + wu

∑
k,ν

R2
k,u , (4.14)

Transfer Simulation, primarily authored by Xingzhuo Chen

65

where wp, wl, wu are the weight parameters which should be specified before training, and the

summation is over collocation points and spectral sampling pixels.

This approach provides insight into the possibilities of PINNs in radiative transfer, and the

results of both the spectrum and the temperature vs. velocity plots closely match as compared

to real data from SN 2011fe at 12.35 days after explosion, a spectrum [72] observed by Double

Spectrograph (DBSP) mounted on Palomar 200-inch (P200) Telescope.

4.3 PINNs for Solving Cahn-Hilliard

The work in this section is performed in collaboration with Texas A&M University Dept. of

Materials Science and Engineering3, and primarily revolves around solving the phase-field equa-

tions for material decomposition.

4.3.1 Solving 1D Cahn-Hilliard with PINNs

In the 1D case, the system can be defined as follows:

ut − (γ2(u3 − u)− γ1uxx)xx = 0 , x ∈ [−1, 1], t ∈ [0, 1] , (4.15)

u(x, 0) = −cos(2πx) , (4.16)

u(t,−1) = u(t, 1) , (4.17)

ux(t,−1) = ux(t, 1) . (4.18)

This system is typically solved using Finite Differencing or Fourier Spectral Methods when

used in the context of microstructure informatics [73, 18], however it can also be solved using the

SA-PINN with 3% error, as shown in figure 4.3.

4.3.2 Mesoscale Multi-Physics Constrained Neural Network

In the 2D case, the model itself is more complex, but can be shown as the 4th order PDE:

3in close collaboration with Dr. Dehao Liu, Binghamton University New York

66

Figure 4.1: Top: PINN-learned solution of 1D Cahn-Hilliard. Bottom: Exact phase-field solution
of 1D CH. The L2 error is approx. 3%.

F (c,∇c) =
1

4
βc4 − 1

2
αc2 +

1

2
κ|∇c|2 (4.19)

∂c

∂t
= ∇M · ∇∂F

∂c
(4.20)

which is generally solvable via Fourier spectral methods[18]. IN this work, we seek to solve

the 2D CH equations using PINNs, specifically a Mesoscale Multi-Physics Constrained Neural

Network. There are a few varities of MM-PCNN attempted here and the results are still in progress.

The snapshots shown haere are examples of training runs of the MC-PCNN for instances in which

only training data are utulized, i.e. data from the evolution is used to train a neural network that

predicts a microstructure at a specified time. The other example is the MM-PCNN trained on the

same data, but with the physics included in the model. A thorough understanding of Multiscale

67

Modeling via PINNs, as well as phase field methods, will also be able to assist in fracture modeling,

such as modeling the dynamics shown in [74] and [75].

Figure 4.2: left: MM-PCNN-learned solution of 2D Cahn-Hilliard without physics of the model
included. right: Exact phase-field solution of 2D CH.

Figure 4.3: left: MM-PCNN-learned solution of 2D Cahn-Hilliard with physics of the model
included. right: Exact phase-field solution of 2D CH.

68

5. SUMMARY AND CONCLUSIONS

In this work, we discussed applications and advancements of scientific machine learning - from

machine learning with physics applications leading into PINNs, related software, and ongoing

applications in various fields of science and technology.

In the section I, we described a technique to blend microstructural image data into with descrip-

tive statistics to better perform regression of target parameters, in this case the atomic and phsae

compositions. We showed that by incorporating the physics of the model, along with the image

data, we could effectively regress the parameters better than the descriptive or image data alone.

In section II, we described a new training paradigm for PINNs called the Self-Adaptive PINN

(SA-PINN). The algorithm enhances PINN training by targeting the training points where the loss

is the highest, and forcing the neural network function approximator to decrease the loss at those

points faster than the rest. This process drastically improves training and increases the overall

L2 error convergence of the PINN forward approximation on various benchmark systems. We

consistently show that the SA-PINN increases convergence over the baseline, as well as many of

the emerging weighting schemes in current literature. We also analyze utilizing a Gaussian process

weight generating function, which enables SGD training of the SA-PINN and conclude with NTK

analysis to provide a theoretical justification of the improved SA-PINN training.

In section III, we introduce TensorDiffEq, a software suite designed to solve systems of PDEs

using multi-GPU training of PINNs. The software is designed such that a user can input their

system of PDEs into the solver in a human-readable fashion and call a simple model.fitmethod

to train their system. Numerous BCs types are included, and training in a multi-GPU environment

can be enabled with a simple boolean flag, with no change to the underlying code.

In section IV, we introduce emerging research in the PINNs space, including modification to

the PINN algorithm to accommodate hyperbolic systems, wherein we can effectively model a

shock front, as well as radiative transfer equations, where we demonstrate that PINNs can capture

incredibly complex physical dynamics of a supernovae explosion.

69

5.1 Challenges

Physics-Informed Neural Networks present extremely unique challenges in their training, ac-

curacy, and computational complexity. Active research is going in to improving all those factors

but the fact remains that, in most instances, the traditional numerical solvers that have been used

leading up to this point are, in fact, faster and generally more accurate. However, there is a strong

motivation for the modeling characteristics that PINNS can bring, specifically in inverse modeling

and in digital twins [76, 77], that traditional numerical methods simply cannot provide due to their

nature. It is for this reason that, despite their challenges and current drawbacks, PINNs have gained

an incredible amount of traction in the last 5 years as an emerging and disruptive technology, with

the original Raissi PINNs paper series [78] gaining almost 3000 citations since 2017.

5.2 Further Study

Further study in the field of PINNs is truly unlimited. Arguably, the PINN paradigm is one of

the most disruptive applied mathematical and computational endeavors in the last 5 years. The field

is still emerging, and massive strides are made every week. The volume of information is quickly

becoming overwhelming, and new PINN papers are released almost daily. Further study, from

a high level, will likely entail using PINNs for application specific inverse modelling, as well as

moving into the more applied domain via digital twin modelling. Both of these applications move

PINNs out of the novelty space and into the impact space, where PINNs are actively contributing

to technology development and learning information from physical experiments. This was one of

the original intents of Raissi et. al when the seminole PINN paper was published, and a section

highlighted heavily in tohe original manuscript. It still rings true today that PINNs can be heavily

utilized in solving real-world problem, and account for real-world dynamics, which is what makes

the concept so compelling for academia.

In regards to specific, actionable next steps to research - a digital twins model for materials

design could be attainable with a good amount of effort and creativity, which will likely be the

author’s next academic focus. With a small amount of real sampled data, there is a potential for

70

massive insights in next generation design of materials, potentially for military applications or

otherwise, that could be fertile ground for future work.

71

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception ar-

chitecture for computer vision,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 2818–2826, 2016.

[4] D. Ramachandram and G. W. Taylor, “Deep multimodal learning: A survey on recent ad-

vances and trends,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 96–108, 2017.

[5] J. Gao, P. Li, Z. Chen, and J. Zhang, “A survey on deep learning for multimodal data fusion,”

Neural Computation, vol. 32, no. 5, pp. 829–864, 2020.

[6] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep learning,”

2011.

[7] N. Srivastava and R. R. Salakhutdinov, “Multimodal learning with deep boltzmann ma-

chines,” in Advances in neural information processing systems, pp. 2222–2230, 2012.

[8] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and

data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[9] S. Sun, H. Shi, and Y. Wu, “A survey of multi-source domain adaptation,” Information Fu-

sion, vol. 24, pp. 84–92, 2015.

[10] J. Lee, P. Sattigeri, and G. Wornell, “Learning new tricks from old dogs: Multi-source transfer

learning from pre-trained networks,” in Advances in Neural Information Processing Systems,

pp. 4372–4382, 2019.

72

[11] J. Li, W. Wu, D. Xue, and P. Gao, “Multi-source deep transfer neural network algorithm,”

Sensors, vol. 19, no. 18, p. 3992, 2019.

[12] Z. Xu and S. Sun, “Multi-source transfer learning with multi-view adaboost,” in International

conference on neural information processing, pp. 332–339, Springer, 2012.

[13] J. Guo, W. Che, D. Yarowsky, H. Wang, and T. Liu, “A representation learning framework for

multi-source transfer parsing,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[14] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud, “A comprehensive analysis of

deep regression,” IEEE transactions on pattern analysis and machine intelligence, 2019.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale

Hierarchical Image Database,” in CVPR09, 2009.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from overfitting,” The journal of machine learning

research, vol. 15, no. 1, pp. 1929–1958, 2014.

[17] I. Steinbach, “Phase-field model for microstructure evolution at the mesoscopic scale,” An-

nual Review of Materials Research, vol. 43, pp. 89–107, 2013.

[18] V. Attari, P. Honarmandi, T. Duong, D. J. Sauceda, D. Allaire, and R. Arroyave, “Uncertainty

propagation in a multiscale calphad-reinforced elastochemical phase-field model,” Acta Ma-

terialia, vol. 183, pp. 452–470, 2020.

[19] F. Chollet et al., “Keras.” https://keras.io, 2015.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[21] F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der

Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.

[22] A. Rosebrock, “Keras, regression, and cnns,” Jan 2019.

[23] A. Rosebrock, “Keras: Multiple inputs and mixed data,” Apr 2020.

73

https://keras.io

[24] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar, A. Pa-

tra, J. Sethian, S. Wild, K. Willcox, and S. Lee, “Workshop report on basic research needs for

scientific machine learning: Core technologies for artificial intelligence,” 2 2019.

[25] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[26] M. Raissi, “Forward-backward stochastic neural networks: Deep learning of high-

dimensional partial differential equations,” arXiv preprint arXiv:1804.07010, 2018.

[27] C. L. Wight and J. Zhao, “Solving allen-cahn and cahn-hilliard equations using the adaptive

physics informed neural networks,” arXiv preprint arXiv:2007.04542, 2020.

[28] S. Wang, X. Yu, and P. Perdikaris, “When and why pinns fail to train: A neural tangent kernel

perspective,” arXiv preprint arXiv:2007.14527, 2020.

[29] M. Dissanayake and N. Phan-Thien, “Neural-network-based approximations for solving par-

tial differential equations,” communications in Numerical Methods in Engineering, vol. 10,

no. 3, pp. 195–201, 1994.

[30] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al., “Tensorflow: A system for large-scale machine learning,” in 12th {USENIX}

symposium on operating systems design and implementation ({OSDI} 16), pp. 265–283,

2016.

[31] J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode automatic differentiation in julia,”

arXiv preprint arXiv:1607.07892, 2016.

[32] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation

in machine learning: a survey,” The Journal of Machine Learning Research, vol. 18, no. 1,

pp. 5595–5637, 2017.

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

74

[34] R. L. Burden and D. J. Faires, “Numerical analysis,” 1985.

[35] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gradient pathologies in

physics-informed neural networks,” arXiv preprint arXiv:2001.04536, 2020.

[36] N. Moelans, B. Blanpain, and P. Wollants, “An introduction to phase-field modeling of mi-

crostructure evolution,” Calphad, vol. 32, no. 2, pp. 268–294, 2008.

[37] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang, “Residual at-

tention network for image classification,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 3156–3164, 2017.

[38] Y. Pang, J. Xie, M. H. Khan, R. M. Anwer, F. S. Khan, and L. Shao, “Mask-guided atten-

tion network for occluded pedestrian detection,” in Proceedings of the IEEE International

Conference on Computer Vision, pp. 4967–4975, 2019.

[39] Y. Zhou, J. Yang, H. Zhang, Y. Liang, and V. Tarokh, “Sgd converges to global minimum in

deep learning via star-convex path,” arXiv preprint arXiv:1901.00451, 2019.

[40] D. G. Luenberger and Y. Ye, Linear and nonlinear programming. Springer, 3rd ed., 2008.

[41] W. E. Lillo, M. H. Loh, S. Hui, and S. H. Zak, “On solving constrained optimization problems

with neural networks: A penalty method approach,” IEEE Transactions on neural networks,

vol. 4, no. 6, pp. 931–940, 1993.

[42] V. M. Mladenov and N. Maratos, “Neural networks for solving constrained optimization

problems,” Proc. of CSCC’00, Athens, Greece,(N. Mastorakis, 2000.

[43] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimization,”

Mathematical programming, vol. 45, no. 1-3, pp. 503–528, 1989.

[44] L. D. McClenny, M. A. Haile, and U. M. Braga-Neto, “Tensordiffeq: Scalable multi-

gpu forward and inverse solvers for physics informed neural networks,” arXiv preprint

arXiv:2103.16034, 2021.

75

[45] J. Shen and X. Yang, “Numerical approximations of allen-cahn and cahn-hilliard equations,”

Discrete & Continuous Dynamical Systems-A, vol. 28, no. 4, p. 1669, 2010.

[46] C. Kunselman, V. Attari, L. McClenny, U. Braga-Neto, and R. Arroyave, “Semi-supervised

learning approaches to class assignment in ambiguous microstructures,” Acta Materialia,

vol. 188, pp. 49–62, 2020.

[47] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathematical

statistics, pp. 400–407, 1951.

[48] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[49] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-

batch training for deep learning: Generalization gap and sharp minima,” arXiv preprint

arXiv:1609.04836, 2016.

[50] S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: A neural tangent

kernel perspective,” Journal of Computational Physics, vol. 449, p. 110768, Jan. 2022.

[51] R. J. LeVeque et al., Finite volume methods for hyperbolic problems, vol. 31. Cambridge

university press, 2002.

[52] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary and

partial differential equations,” IEEE transactions on neural networks, vol. 9, no. 5, pp. 987–

1000, 1998.

[53] C. Rackauckas and Q. Nie, “Differentialequations.jl – a performant and feature-rich ecosys-

tem for solving differential equations in julia,” The Journal of Open Research Software, vol. 5,

no. 1, 2017. Exported from https://app.dimensions.ai on 2019/05/05.

[54] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “DeepXDE: A deep learning library for

solving differential equations,” SIAM Review, vol. 63, no. 1, pp. 208–228, 2021.

76

[55] O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali, M. Rietmann,

J. d. A. Ferrandis, W. Byeon, Z. Fang, and S. Choudhry, “Nvidia simnetˆ{TM}: an ai-

accelerated multi-physics simulation framework,” arXiv preprint arXiv:2012.07938, 2020.

[56] E. Haghighat and R. Juanes, “Sciann: A keras/tensorflow wrapper for scientific computations

and physics-informed deep learning using artificial neural networks,” Computer Methods in

Applied Mechanics and Engineering, vol. 373, p. 113552, 2021.

[57] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015.

Software available from tensorflow.org.

[58] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701,

2012.

[59] S. M. Allen and J. W. Cahn, “Ground state structures in ordered binary alloys with second

neighbor interactions,” Acta Metallurgica, vol. 20, no. 3, pp. 423–433, 1972.

[60] L. McClenny and U. Braga-Neto, “Self-adaptive physics-informed neural networks using a

soft attention mechanism,” arXiv preprint arXiv:2009.04544, 2020.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,”

Journal of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[62] L. Lu, P. Jin, and G. E. Karniadakis, “Deeponet: Learning nonlinear operators for identify-

ing differential equations based on the universal approximation theorem of operators,” arXiv

preprint arXiv:1910.03193, 2019.

77

[63] O. Fuks and H. A. Tchelepi, “Limitations of Physics Informed Machine Learning for Nonlin-

ear Two-Phase Transport in Porous Media,” Journal of Machine Learning for Modeling and

Computing, vol. 1, no. 1, 2020. Publisher: Begel House Inc.

[64] C. G. Fraces, A. Papaioannou, and H. Tchelepi, “Physics Informed Deep Learning for Trans-

port in Porous Media. Buckley Leverett Problem,” arXiv:2001.05172 [physics, stat], Jan.

2020. arXiv: 2001.05172.

[65] S. Buckley and M. Leverett, “Mechanism of Fluid Displacement in Sands,” Transactions of

the AIME, vol. 146, pp. 107–116, Dec. 1942.

[66] J. Reisner, J. Serencsa, and S. Shkoller, “A space–time smooth artificial viscosity method for

nonlinear conservation laws,” Journal of Computational Physics, vol. 235, pp. 912–933, Feb.

2013.

[67] C. G. Fraces and H. Tchelepi, “Physics Informed Deep Learning for Flow and Transport in

Porous Media,” arXiv:2104.02629 [physics], Apr. 2021. arXiv: 2104.02629.

[68] H. J. Welge, “A Simplified Method for Computing Oil Recovery by Gas or Water Drive,”

Journal of Petroleum Technology, vol. 4, pp. 91–98, Apr. 1952.

[69] E. J. R. Coutinho, M. Dall’Aqua, L. McClenny, M. Zhong, U. Braga-Neto, and E. Gildin,

“Physics-informed neural networks with adaptive localized artificial viscosity,” arXiv

preprint arXiv:2203.08802, 2022.

[70] S. Mishra and R. Molinaro, “Physics informed neural networks for simulating radiative trans-

fer,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 270, p. 107705, Aug

2021.

[71] J. I. Castor, “Radiative Transfer in Spherically Symmetric Flows,” , vol. 178, pp. 779–792,

Dec. 1972.

[72] R. Pereira, R. C. Thomas, G. Aldering, P. Antilogus, C. Baltay, S. Benitez-Herrera, S. Bon-

gard, C. Buton, A. Canto, F. Cellier-Holzem, J. Chen, M. Childress, N. Chotard, Y. Copin,

H. K. Fakhouri, M. Fink, D. Fouchez, E. Gangler, J. Guy, W. Hillebrandt, E. Y. Hsiao,

78

M. Kerschhaggl, M. Kowalski, M. Kromer, J. Nordin, P. Nugent, K. Paech, R. Pain, E. Pé-

contal, S. Perlmutter, D. Rabinowitz, M. Rigault, K. Runge, C. Saunders, G. Smadja, C. Tao,

S. Taubenberger, A. Tilquin, and C. Wu, “Spectrophotometric time series of SN 2011fe from

the Nearby Supernova Factory,” , vol. 554, p. A27, June 2013.

[73] L. McClenny, M. Haile, V. Attari, B. Sadler, U. Braga-Neto, and R. Arroyave, “Deep multi-

modal transfer-learned regression in data-poor domains,” arXiv preprint arXiv:2006.09310,

2020.

[74] L. D. McClenny, M. I. Butt, M. G. Abdoelatef, M. J. Pate, K. L. Yee, H. Rajendran, D. Perez-

Nunez, W. Jiang, L. H. Ortega, S. M. McDeavitt, et al., “Experimentally validated mul-

tiphysics modeling of fracture induced by thermal shocks in sintered uo2 pellets,” arXiv

preprint arXiv:2112.06645, 2021.

[75] W. Jiang, T. Hu, L. K. Aagesen, and Y. Zhang, “Three-dimensional phase-field modeling of

porosity dependent intergranular fracture in uo2,” Computational Materials Science, vol. 171,

p. 109269, 2020.

[76] Y. A. Yucesan and F. A. Viana, “A hybrid physics-informed neural network for main bearing

fatigue prognosis under grease quality variation,” Mechanical Systems and Signal Processing,

vol. 171, p. 108875, 2022.

[77] R. G. Nascimento, M. Corbetta, C. S. Kulkarni, and F. A. Viana, “Hybrid physics-informed

neural networks for lithium-ion battery modeling and prognosis,” Journal of Power Sources,

vol. 513, p. 230526, 2021.

[78] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, Feb. 2019.

79

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Deep Multimodal Regression in Data Poor Domains with Applications in Materials Informatics
	Related Work
	Development of the Model
	Training the Model
	Training Data
	Experimental Setup

	Results
	Model Fine-Tuning for CNN-Based Regression
	Single-Target DMTL Regression
	Multi-Target DMTL Regression

	Conclusion

	Self-Adaptive Physically-Informed Neural Networks
	Introduction
	Background
	Physics-Informed Neural Networks
	Related Work
	Nonadaptive Weighting
	Learning Rate Annealing
	Adaptive Resampling
	Stochastic Gradient Descent
	Time-Adaptive Approaches
	Neural Tangent Kernel (NTK) Weighting

	Self-Adaptive Physics-Informed Neural Networks
	Allen-Cahn Reaction-Diffusion PDE
	Average Weights with Time

	Self-Adaptive PINNs with Stochastic Gradient Descent
	Neural Tangent Kernel Training Dynamics Analysis
	SA-PINN NTK Analysis - 1D Advection PDE

	Additional Examples with SA-PINNs
	Burgers' Equation
	Helmholtz Equation

	Conclusion

	TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed Neural Networks
	Introduction
	Mathematical Underpinnings of PINNs
	Using TensorDiffEq for Forward Problems
	Define the Problem Domain
	Describe the Physics of the Model
	Define the ICs/BCs
	Define the Neural Network Architecture
	Select and Define The Solver
	Solve the PDE

	Solving Inverse Problems
	Conclusion
	Example - Solving a Nonlinear PDE in TensorDiffEq
	Example - Solving the Semi-linear Allen-Cahn PDE System in TensorDiffEq

	PINN Expansion and Adoption
	Solving Hyperbolic PDEs with PINNs
	PINNs with a Learnable Artificial Viscosity
	Parameterized Artificial Viscosity Map
	Residual-Based Artificial Viscosity Map

	PINNs for Radiative Transfer
	PINNs for Solving Cahn-Hilliard
	Solving 1D Cahn-Hilliard with PINNs
	Mesoscale Multi-Physics Constrained Neural Network

	SUMMARY AND CONCLUSIONS
	Challenges
	Further Study

	REFERENCES

