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ABSTRACT 

 

Coagulation and flocculation are common processes in conventional water treatment and 

the resulting floc size distributions, mean size, and fractal dimension are impacted by operational 

parameters, including mixing and coagulant dosing method. In this investigation, a novel, non-

intrusive methodology combining image analysis and particle image velocimetry was employed 

to characterize flocculation and reactor mixing from the same data. Image processing techniques 

were used to characterize flocculation following conventional FeCl3 chemical coagulation and iron 

electrocoagulation while particle image velocimetry was used to characterize reactor mixing using 

flocs as tracking particles. Local velocity gradients were compared with the global velocity 

gradient, G. Results suggest electrocoagulation produced larger and more compact flocs than flocs 

formed by conventional coagulation. Use of flocs as tracking particles was more reliable prior to 

steady-state conditions, when flocs were smaller and more numerous. Compared to local velocity 

gradients, G underestimated actual mixing near the mixing impeller by 40%.  
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NOMENCLATURE 

 

CC Chemical Coagulation 

D2  Two-Dimensional Fractal Dimension 

EC Electrocoagulation 

FFT Fast Fourier Transform 

G  Global Velocity Gradient 

PIV  Particle Image Velocimetry 

TKED  Turbulent Kinetic Energy Dissipation 
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1. INTRODUCTION 

Coagulation and flocculation are key processes in various water treatment applications 

including treatment of municipal, industrial, and produced water [1-3]. In untreated waters, 

electrostatic repulsion of particles causes particles to remain separated and suspended in solution 

instead of agglomerating and settling out of solution. To eliminate electrostatic repulsion and 

facilitate particle agglomeration, coagulants, such as aluminum or iron salts, are added in a process 

known as coagulation. After coagulant addition, the suspended particles agglomerate into flocs in 

a process known as flocculation. These flocs are then removed from the water in subsequent 

treatment steps such as gravity separation (i.e., sedimentation or dissolved air flotation) [4]. 

Flocculation characteristics of interest due to their impact on the efficacy of subsequent treatment 

steps include the steady state floc size distribution and the floc fractal dimension [5, 6]. The steady 

state floc size distribution for a set of given conditions (e.g., mixing speed, impeller shape, 

coagulation method, and coagulant dosage), reveals if the conditions induce the desired changes 

in floc size, with the ultimate goal of producing floc sizes ideal for gravity separation [4]. The 

average steady-state floc size provides key insights into floc strength, which relates to how flocs 

will respond to mixing shear stresses [7, 8]. The floc fractal dimension reveals if the flocs are 

highly branched structures, which are slower to settle than dense, spherical flocs [1]. These 

characteristics are commonly evaluated using small-scale testing (e.g., jar testing) to determine the 

optimal operational considerations for full-scale treatment facilities. 

Two key operational considerations that influence these flocculation characteristics include the 

coagulation method and mixing characteristics. Coagulants are typically introduced in the system 

by directly adding coagulants from a stock solution, referred to herein as conventional chemical 

coagulation (CC), or through in-situ coagulant generation via electrolytic oxidation of a sacrificial 
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anode of a selected metal, known as electrocoagulation (EC). CC is a common coagulant dosing 

method and extensive work has focused on flocculation characteristics using CC [6, 8-11]. In 

contrast, EC is less widely studied [12-16] but has particular advantages over CC that may increase 

its adoption and acceptance. Advantages to EC include reductions of hazardous chemical 

transportation and handling, due to the in-situ coagulant generation, which also lends itself to use 

of renewable energy sources [17]. Further, EC has a decreased impact on influent water quality 

parameters such as pH and alkalinity [17, 18] and increased pollutant removal efficiencies in 

certain applications [12]. In contrast to CC, EC generates coagulating metal ions by the application 

of a current to an electrochemical cell equipped with a cathode and a sacrificial anode of a 

particular metal [19]. These coagulating metal ions operate similarly to coagulants added via CC 

and facilitate aggregation during flocculation. Although CC and EC operate similarly, the two 

coagulation methods are known to generate flocs with different structural characteristics (e.g., 

compactness, size, strength), induce different changes in water chemistry (e.g., pH, dissolved 

oxygen concentration, alkalinity), and can result in different coagulating metal ions, depending on 

water chemistry [18-20].  

Another important operational consideration is mixing, which facilitates particle collisions 

resulting in floc growth but can also result in floc breakage depending on mixing speed and floc 

strength [7]. Beyond flocculation impacts, mixing also has important energy implications, as rapid 

mixing during coagulant addition was found to constitute the second highest energy user in a 

typical municipal water treatment plant [21]. In practice, water treatment facilities often employ 

turbulent flocculation, which is marked by a wide spectrum of velocity gradients, providing means 

for particle collision and floc growth [4]. The global velocity gradient, G, introduced by Camp and 

Stein [22] is used as a simple characterization of reactor mixing and represents a spatial-average 
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of the local velocity gradients present within the reactor. Despite significant criticism of G focused 

on both its accuracy as a mixing characterization and relevance to turbulent flocculation [2, 23, 

24], it a widely used water treatment design parameter. Several studies have evaluated G’s impact 

on flocculation efficacy [9, 25, 26], but these investigations do not consider deviations between G 

and the local velocity gradients, which can be substantial [2, 27]. As reactor mixing has significant 

impacts on flocculation efficiency, impacting a variety of flocculation characterizations of interest 

(e.g., growth rate, steady-state size distribution, floc strength, and fractal dimension) [28-30], a 

detailed understanding of reactor mixing is key in developing mixing operations that optimize 

flocculation.  

To develop a comprehensive understanding of how these coagulant dosing and reactor mixing 

impact flocculation, simultaneous observations of flocculation and reactor mixing using non-

intrusive, in-situ techniques are needed. However, past investigations into flocculation 

characterizations often utilize a microscope or particle counter and require transporting the flocs 

from the reactor for analysis, which can impact the floc structure [2, 5, 6, 30]. Further, reactor 

mixing characterization using intrusive measurement technologies, such as hot wire anemometry, 

can alter the surrounding flow field, and suffer from limited spatial resolution [31]. To avoid 

altering the experimental environment and to accurately characterize the entire system, in-situ, 

non-intrusive measurement techniques are critical.  

Despite the impact of reactor mixing on flocculation efficiency, studies combining flocculation 

and mixing characterization using in-situ techniques are lacking, resulting in a knowledge gap 

when considering the fundamental impacts of mixing on flocculation. New methodology is needed 

that enables simultaneous evaluations of these characteristics using non-intrusive techniques to 

ultimately inform flocculation reactor design and operation. In response to this need, the current 
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investigation implemented a novel methodology which combines image analysis techniques and 

particle image velocimetry (PIV) to collectively characterize flocculation and reactor mixing, 

providing a framework to enable a wide variety of comprehensive coagulation and flocculation 

investigations. This methodology relies solely on cross-sectional reactor imaging during 

flocculation, facilitating spatiotemporal evaluations of flocculation and reactor mixing using the 

same data collection instance and methodology, which enables fundamental comparisons. While 

traditional PIV analyses rely on water artificially seeded with tracer particles [32], this 

investigation leveraged flocs generated during the experiment to track fluid motion and inform 

turbulent mixing analyses. Because flocs were used to track the fluid motion, flocculation 

characterizations were uninfluenced by artificial tracer particle presence and both flocculation and 

reactor mixing were evaluated using the same data set. This novel methodology was applied in the 

current investigation to evaluate both CC and the lesser-studied EC in terms of flocculation and 

reactor mixing. Further, this methodology was used to develop pertinent turbulent mixing analyses 

required to evaluate the accuracy of G throughout the reactor cross section. 

The major research objectives of this investigation were to (1) evaluate flocculation 

characteristics using non-intrusive, in-situ techniques to observe floc growth, steady-state size 

distribution, and fractal geometry for both CC and EC using iron as the metal-ion coagulant; (2) 

evaluate reactor mixing characteristics using non-intrusive, in-situ techniques to measure the 

velocity field over a vertical reactor cross section and to develop pertinent turbulent flow analyses 

(e.g., turbulence intensity, turbulent kinetic energy dissipation rate, and turbulent length and time 

scales), using flocs as tracking particles for the PIV analysis; and (3) compare G with local velocity 

gradients to evaluate how well G characterizes actual reactor mixing.  
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1.1. Theoretical Background 

1.1.1. Fractal Dimension 

Although flocs are frequently considered as Euclidian shapes in flocculation modeling, 

their shape is better characterized as an irregular, fractal form marked by self-similarity (i.e., 

morphological characteristics are uniform across all sizes) [6, 33-35]. This fractal form arises from 

the floc agglomeration into increasingly larger flocs, which produces an irregular, non-Euclidian 

shaped floc (e.g., Figure 1) that does not follow the coalesced sphere assumption employed in 

fundamental flocculation modeling and has different hydrodynamic interactions due to floc 

porosity [4, 36]. A primary way to characterize these irregular fractal forms is through the fractal 

dimension, which relates the size properties of the floc to a particular length scale [37-39]. This 

fractal dimension provides important insights into properties that impact accuracy of flocculation 

modeling and settling rate such as porosity and density [34, 36, 40]. Flocculation models 

incorporating the flocs’ fractal nature reduce the modeling error associated with the coalesced 

sphere assumption and more accurately predict flocculation behavior [4, 41].  

 

Figure 1: Microscopic image of ferric hydroxide flocs produced by conventional chemical 

coagulation (left) and by electrocoagulation (right). Note, these images are presented as 

representative images for visual purposes only.  
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Three commonly used fractal dimensions include the three-dimensional fractal dimension 

(D3), which relates the floc volume to a characteristic floc length [4, 35]; the two-dimensional 

fractal dimension (D2), which relates the projected floc area to a characteristic floc length [4, 35, 

37, 38]; and the boundary fractal dimension (Db), which relates the projected floc area to the floc 

perimeter [35, 37, 38]. Various length properties have been used as the characteristic length in the 

derivation of D3 and D2 including the major axis length, diameter, and radius [35, 42, 43]. For the 

purposes of this investigation, D2 is used to characterize the flocs’ fractal nature through the 

following relationship:  

 𝐴 ∝  𝑙𝐷2  (1) 

where 𝐴 is the projected surface area, and 𝑙 is the major axis length. Based on this relationship, the 

floc’s projected surface area grows according to a power relationship with its major axis length. 

For Euclidean shapes, the area is always related to the square of the characteristic length (i.e., D2 

= 2). For fractal flocs, D2 varies from 2 for densely packed, spherical flocs, indicating a lower floc 

porosity and higher floc density and to lower D2 values for large, highly porous flocs with open 

structures, indicating a high water content and subsequently a low floc density [1, 6, 37]. Thus, the 

floc fractal dimension provides insights into floc characteristics that impact operational 

performance such as density and water content that further impact floc settling velocity.  

1.1.2.  Turbulent Flow Characterization 

Prior to characterizing turbulent flocculation, turbulent flow fundamentals must be 

established. At a fundamental level, turbulent flows for a particular point in space can be viewed 

as the summation of the mean and fluctuating velocity component, resulting from the Reynolds 

decomposition as shown in Equation 2 in tensor notation: 
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 𝑈𝑖 =  𝑈𝑖̅ + 𝑢𝑖 (2) 

where U represents the total instantaneous velocity, 𝑈̅ represents the mean velocity over time, and 

u represents the fluctuating velocity component at a particular time. The fluctuating velocity 

component has a zero mean but largely dictates the turbulent kinetic energy dissipation (TKED) 

rate, ε, which is used in the estimation of G, and is used to determine the turbulence intensity, 𝐼. 

For two-dimensional (2D) flow measurements, the 2D turbulence intensity (𝐼2𝐷) uses only two 

velocity components and is calculated as:  

  𝐼2𝐷 =  √𝑢𝑖
2̅̅ ̅̅ + 𝑢𝑗

2̅̅ ̅̅  (3) 

The TKED rate, ε,  represents the rate at which energy is transferred from the large energy-

containing scales of turbulent motion to the small energy-dissipating scales of turbulent motion 

[44]. Between these two scales of turbulent motion lies the inertial subrange, within which motions 

are completely dependent on the inertial effects rather than viscous effects, per Kolmogorov’s 

second hypothesis [44]. The rate at which energy is transferred from the energy-containing to the 

energy-dissipating range is equivalent to the dissipation and production rate. Thus, the TKED rate 

provides insights into the energy production rate within the system, which, in the case of turbulent 

flocculation, is a result of reactor mixing. The TKED rate is found through the turbulent energy 

budget as: 

 𝜀 = 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅   (4) 

where ν represents the kinematic viscosity of the fluid and sij represents the tensor notation of the 

fluctuating strain rate. This fluctuating strain rate can be expanded as [44]: 

 𝑠𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (5) 
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Thus, the TKED rate from Equation 4 can be rewritten as:  

 𝜀 =  
1

2
𝜈 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

2

 (6) 

which contains a total of 12 terms for 3-dimensional (3D) flow, including nine velocity gradients 

and three cross products. 2D PIV velocity measurements permit direct measurement for five terms 

(four velocity gradients and one cross product) and one term can easily be obtained by the 

continuity equation for incompressible flow. The remaining six terms (four velocity gradients and 

two cross products) must be estimated based on assumptions about the nature of turbulent flow in 

question [45]. TKED rate estimation using 2D PIV methodologies is common and there are several 

existing methods to estimate the missing terms in Equation 6. George and Hussein [46] derived a 

TKED rate estimation based on the assumption that the turbulent flow was locally axisymmetric, 

meaning that turbulence does not change around the preferred axis (Equation 7). Kimmoun and 

Branger [47] assumed that rate of change of velocity out-of-plane was small compared to the rate 

of change of velocity in-plane, and approximated out-of-plane velocity gradients using the in-plane 

velocity gradients (Equation 8). Luznik et al., [48] applied a modified version of the TKED rate 

estimate developed by Doron et al., [49] who applied the continuity equation and assumed lateral 

fluctuations are of similar magnitude (Equation 9), with modifications correcting for the 

appropriate isotropic limits. Cowen et al., [50] applied a central difference technique to the product 

of fluctuation strain rate and added an empirical coefficient (c1) to account for the missing terms 

(Equation 10), while Sharp and Adrian [51] assumed statistically isotropic turbulence for 

unmeasured velocity components (Equation 11). For the purposes of this experiment, TKED rate 

was evaluated by each of the aforementioned estimation methods and the average is reported to 

provide a general TKED rate estimation.  
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 𝜀𝐺𝑒𝑜𝑟𝑔𝑒 & 𝐻𝑢𝑠𝑠𝑒𝑖𝑛 = 𝜈 (− (
𝜕𝑢

𝜕𝑥
)

2

+ 2 (
𝜕𝑢

𝜕𝑧
)

2

+ 2 (
𝜕𝑤

𝜕𝑥
)

2

+ 8 (
𝜕𝑤

𝜕𝑧
)

2
)  (7) 

 𝜀𝐾𝑖𝑚𝑚𝑜𝑢𝑛 & 𝐵𝑟𝑎𝑛𝑔𝑒𝑟 =
1

3
𝜈 (7 (

𝜕𝑢

𝜕𝑥
)

2

+ 7 (
𝜕𝑤

𝜕𝑧
)

2

+ 4 (
𝜕𝑢

𝜕𝑧
)

2

+ 4 (
𝜕𝑤

𝜕𝑥
)

2

+  6 (
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
))  (8) 

 𝜀𝐿𝑢𝑧𝑛𝑖𝑘 𝑒𝑡 𝑎𝑙. = 𝜈 (4 (
𝜕𝑢

𝜕𝑥
)

2

+ 4 (
𝜕𝑤

𝜕𝑧
)

2

+ 3 (
𝜕𝑢

𝜕𝑧
)

2

+ 3 (
𝜕𝑤

𝜕𝑥
)

2

+  4 (
𝜕𝑢

𝜕𝑥

𝜕𝑤

𝜕𝑧
) + 6 (

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
))  (9) 

 𝜀𝐶𝑜𝑤𝑒𝑛 𝑒𝑡 𝑎𝑙. = 2𝜈𝑐1 ((
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑧
)

2

+
1

2
(

𝜕𝑢

𝜕𝑧
)

2

+
1

2
(

𝜕𝑤

𝜕𝑥
)

2

+  (
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
))  (10) 

 𝜀𝑆ℎ𝑎𝑟𝑝 & 𝐴𝑑𝑟𝑖𝑎𝑛 = 𝜈 (2 (
𝜕𝑢

𝜕𝑥
)

2

+ 2 (
𝜕𝑤

𝜕𝑧
)

2

+ 3 (
𝜕𝑢

𝜕𝑧
)

2

+ 3 (
𝜕𝑤

𝜕𝑥
)

2

+ 2 (
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
))  (11) 

When evaluating the TKED rate, the velocity resolution has a significant impact on the 

accuracy of the results [52, 53]. Given the PIV methodology, the information obtained 

experimentally represents the average velocity of all the particles within the smallest interrogation 

window, resulting in a spatial filtering within each interrogation window [11, 51, 53]. For large 

interrogation window sizes, the PIV methodology is unable to provide information on the small, 

energy dissipating scales, which are critical for accurate TKED rate estimation [31, 53]. The 

impact of the velocity data’s spatial resolution on the TKED rate is minimized when the spatial 

resolution is within a few multiples of the Kolmogorov length scale [31]. The Kolmogorov length 

scale, η is defined as:  

 𝜂 =  (
𝜈3

𝜀
)

0.25

 (12) 
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and represents the length scale of the energy-dissipating eddies. If the spatial resolution is higher 

than a few multiples of η, the frequencies of the velocity spectra responsible for dissipating the 

energy are not fully captured by the methodology and subsequent calculations poorly represent the 

turbulent flow [31]. An additional characteristic scale of turbulent flow is known as the 

Kolmogorov time scale, τ, defined as: 

 𝜏 =  (
𝜈

𝜀
)

0.5

 (13) 

which represents the highest frequency of the velocity time series spectra. Per the Nyquist criteria, 

the sampling frequency should be at least double the highest frequency of the data signal. 

Therefore, the sampling frequency should be at least double the inverse Kolmogorov time scale.  

In addition to the Kolmogorov’s length and time scales, the spectral analysis of turbulent 

motion also exhibits a characteristic trend known as the Kolmogorov -5/3 spectrum [44]. This 

spectrum characterizes how the energy is distributed among various eddies and, for turbulent 

flows, exhibits a characteristic -5/3 slope in the inertial subrange. The energy spectrum, 𝑆, for a 

velocity signal can be evaluated by converting the velocity signal into the frequency domain 

through a fast Fourier transform (FFT) and then calculating the energy spectrum per Equation 14.  

 𝑆 =
2

Δ𝑓
𝐹𝐹∗  (14) 

where F represents the FFT of the velocity signal, * denotes the complex conjugate, and Δ𝑓 is the 

frequency scale which is found by dividing the sampling frequency by the total number of samples. 

The presence of a turbulent flow regime can thus be verified by evaluating the energy spectrum 

and identifying if the Kolmogorov -5/3 spectrum is present.  
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1.1.3. Global Velocity Gradient, G 

The global velocity gradient, G, also known as the average velocity gradient [10], root-

mean-squared velocity gradient [22, 23] or the average characteristic velocity gradient [9], is a 

commonly used parameter in coagulation and flocculation design intended to characterize the 

degree of mixing intensity in turbulent flocculation. In their original introduction of G, Camp and 

Stein [22] defined G as:  

 Φ =  𝜇𝐺2 = [(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

2

]  (15) 

where Φ represents the total work done per unit volume for a unit time and 𝜇 represents the 

dynamic viscosity. They indicated this representation of G was valid in both laminar and turbulent 

flows and was a useful method of relating particle aggregation rate to energy dissipation and could 

be used to represent the velocity gradients responsible for particle collision in the Smoluchowski 

equation [54, 55]. The double equality in Equation 15 has been challenged since Φ is not equal to 

the right hand term [54] due to the missing diagonal terms in the 3D strain rate tensor [23]. While 

Camp and Stein [22] justified the omission of the diagonal terms by asserting that the maximum 

shear in the system could be determined by adjusting the frame of reference such that these 

diagonal terms vanish to zero, a tensorial approach by Clark [23] found this to be incorrect in 3D 

flows. Additionally, Cleasby [55] questioned G’s applicability for particles larger than the 

Kolmogorov length scale while Han and Lawler [24] fundamentally questioned the role of G in 

flocculation modeling when considering heterodisperse and curvilinear flocculation. G was also 

evaluated experimentally by Cheng et al., [27] and Park and Park [56], among others. Cheng et al., 

[27] used PIV methodologies to evaluate the spatial variation of the TKED rate and found the 

TKED rate to be highly variable and thus G would poorly characterize the mixing in different 
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reactor regions. Further, Park and Park [56] used PIV to evaluate the TKED rate for various shaped 

reactors and determined that G was unable to accurately represent the range of mixing velocities 

present within the reactor.  

Despite these criticisms, G remains a prevalent design parameter and can be calculated 

using mean flow characteristics by the following: 

 𝐺 =  (
Φ̅

𝜇
)

0.5

=  (
𝜀̅

𝜈
)

0.5

 (16) 

where Φ̅ represents the mean value of total work done per unit volume for a unit time and 𝜀 ̅

represents the spatially-averaged TKED rate. Additionally, following the assumption that the rate 

of energy dissipation equals the power supply, G can also be calculated as:  

 𝐺 =   (
𝑃

𝜇𝑉
)

0.5

 (17) 

where P represents the power input into the reactor and V represents the liquid volume of the 

reactor. While the determination of 𝜀 ̅requires knowledge of the local velocity gradients throughout 

the reactor that are not easily determined without detailed measuring equipment, macroscopic 

parameters P and V are easily determined, and are used to develop G-curves that relate G to the 

mixing speed for a particular reactor, impeller, and water temperature [57].  

Although G is commonly used in turbulent reactor design as a substitute for the velocity 

gradient range, it oversimplifies the actual velocity gradients in reactor mixing and in so doing, 

provides poor flocculation efficiency estimates. Improved understanding of how the velocity 

gradients vary spatiotemporally within the reactor in question, and if these same patterns are 

observed for different sized reactors are critical to effective turbulent flocculation reactor design.  
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2. METHODS 

2.1. Experimental Setup 

Experiments were performed in a square 2-liter Phipps and Bird B-KER2® Laboratory Jar 

reactor equipped with a 2-blade paddle mixer. The paddle mixer shaft was centrally located in the 

reactor, and the paddle was situated close to the bottom of the tank as shown in Figure 2. Mixing 

was supplied by a DC gear box motor and mixing speed was controlled through an Astron DC 

power supply with digital readout of amperage and voltage. The system was rapid-mixed at 100 

rpm for approximately 2.6 minutes during the coagulant addition (CC) or generation (EC) and 

initial mixing and then slow-mixed (flocculated) at 15 rpm for approximately 40 minutes.  

The reactors were filled to the 2-liter mark with distilled water, 5mM of sodium chloride was 

added, and the solution was buffered with 20 mM of sodium bicarbonate (NaHCO3) to maintain 

an approximate pH of 8.3 throughout the experiment, maintaining conditions suitable for Fe(OH)3 

floc precipitation. The reactor solutions were oxygen-saturated to approximately 8.3 mg/L prior to 

coagulant addition. A target coagulant dosage of 10 mg Fe/L was selected based on iteration to 

provide an optimal floc concentration. Dosages larger than 10 mg Fe/L resulted in the excess floc 

formation which clouded the image data and made floc border detection difficult. In contrast, 

dosages less than 10 mg Fe/L resulted in an insufficient floc precipitation for subsequent 

flocculation characterization. For CC experiments, a stock solution of 324 mM of Fe was prepared 

by dissolving 4.4 grams of FeCl3·6H2O into 50 mL of ultrapure water. Approximately 1.1 mL of 

this stock solution was added to the reactor, resulting in the target concentration of 10 mg Fe/L. 

For the EC experiments, the coagulant was produced through an annular electrode configuration 

comprised of a cylindrical sacrificial iron anode within a perforated cathode operated in constant 

current mode and located in the corner of the square reactor as shown in Figure 2. The anode was 
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Fe(0) with a 99.95% metal basis purity and an initial effective area of 35.9 cm2. The perforated 

cathode was dimensionally stable 316 stainless steel and the gap between the anode and cathode 

was 2 mm. The EC system was operated at a constant current of 0.5 A, resulting in a current density 

of 14 mA/cm2. The current was chosen to minimize electrolysis duration and avoid oxygen 

depletion and green rust formation [15]. The EC system was operated for approximately 138 

seconds to produce 10 mg Fe/L, matching the CC coagulant concentration. Bubbles were observed 

during the EC system operation but appeared to rise and leave the system during the rapid mixing 

period. The EC apparatus was removed from the reactor after the coagulant generation. 

For both the CC and EC experiments, a vertical cross section of the reactor was illuminated 

using a Millenia eV CW diode-pumped solid-state (DPSS) laser operated at 10W combined with 

optics to convert the concentrated laser beam into a light sheet approximately 2.3 mm thick and 

situated approximately 3 cm from the reactor wall as shown in Figure 2. Images were captured 

using a Phantom Miro M340 charged couple device (CCD) camera with a 25.6 mm by 16.0 mm 

12-bit complementary metal oxide semiconductor (CMOS) sensor with a maximum resolution of 

2,560 horizontal pixels by 1,600 vertical pixels. For this experiment, the output image size was 

selected as 1,600 horizontal pixels by 1,600 vertical pixels to capture a square cross section of the 

reactor. The camera was equipped with a 60 mm Nikon AF NIKKOR lens at an effective lens focal 

plane distance of 406 mm, resulting in 108 mm by 108 mm field of view, a resolution of 

approximately 67.6 μm per pixel and a 4 mm depth of field. The field of view dimensions were 

confirmed by imaging a ruler located within the focal plane and verifying the pixel resolution. The 

camera aperture was set to f/2.8 to enable maximum light capture with an exposure time of 200 μs 

set to freeze particle motion and reduce blurriness. The experiment was performed in a dark room 

to reduce background noise and enable sharp floc images illuminated by the laser sheet. The 
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experiment was performed on an optical table to eliminate vibrations that might interfere with the 

positioning of the laser light sheet and focal plane. 

 

Figure 2: Schematic of experimental setup including (a) plan view and (b) profile view. *Note: 

light sheet optics not shown 

The camera was operated an image capture rate of 100 fps. This rate was selected to provide 

sufficient images for flocculation and reactor mixing characterization while minimizing the total 

data quantity at each data collection instance. For larger data sets the data transfer duration is 

increased and is a limiting factor for the data collection rate. However, a robust data set is desired 

to obtain a general characterization of flocculation. Further, reactor mixing characterization is best 

informed by a lengthy data set that allows averaging of any periodic effects and fully characterizes 

the flow profile while also providing sufficiently high temporal resolution to maintain adequate 

correlation in the PIV analysis. Therefore, the image data set size was selected to provide enough 

(a) (b) 
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data for analysis while maintaining the desired data collection intervals. To enable synchronized 

data collection and comply with limited camera storage memory, the high-speed image recording 

was triggered by programmed analog signals sent from the NI USB-6259 device managed by 

LabVIEW programming. Images for flocculation characterization were collected at 1-minute 

intervals for 1 second, with an image capture rate of 100 fps, resulting in 100 images collected at 

each data collection instance. Images for reactor mixing characterization were collected at 3-

minute intervals for 30 seconds, with an image capture rate of 100 fps, resulting in 3000 images 

collected at each data collection instance. 

2.2. Image Processing and Flocculation Characterization 

Images collected for flocculation characterization were first imported into MATLAB (version 

R2020b) and then processed using standard image processing techniques including background 

removal, contrast enhancement, binarization, and basic morphological corrections prior to floc 

identification. Image processing steps were conducted using MATLAB’s Image Processing 

Toolbox. Although the camera used in this experiment is equipped with a 12-bit sensor, capable 

of capturing grayscale intensity values from 0 (black) to 4,096 (white), MATLAB software 

operates in 8-bit or 16-bit data formats. Therefore, to avoid resolution loss, images were first 

imported into MATLAB and then converted into a 16-bit format through linear pixel intensity 

rescaling. The result is a 16-bit image where the maximum intensity of the original image (4,096) 

is scaled to the maximum intensity of a 16-bit format (65,535). An example of the original image 

quality imported into MATLAB is provided in Figure 4(a). 

A primary step in the image processing is background noise removal from the raw image which 

is present despite best laboratory practices due to the data collection method [58, 59]. If the noise 

is not removed in the early stages of image processing, subsequent steps can magnify this noise, 
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resulting in erroneous floc identification or sizing [5]. Background removal is typically performed 

via one of two methods. One method designates the background noise the average [58] or modal 

[60] intensity of a series of images in an image capture sequence. A second method for background 

noise removal is to remove the lowest intensity found in each pixel over all images in the image 

capture sequence, effectively treating the lowest intensity as the background noise [61]. For this 

experiment, the average intensity for each pixel, averaged over the specific data collection instance 

of 100 images captured over 1 second, was designated as the background noise and was removed 

from each image, as shown in Figure 4(b).  

After background removal, the image contrast was enhanced to further distinguish the 

illuminated flocs from the background and reduce the fuzziness around the flocs which can result 

in an over-estimation of floc size [6]. The lighting setup clearly illuminates the portion of the floc 

in the laser sheet, but the floc borders are often less clear when flocs are transitioning through the 

focal plane and laser sheet, necessitating contrast enhancement. Although the image stores 

intensity data in a 16-bit format, the actual captured intensities do not occupy the full intensity 

spectrum; thus, there are “wasted’ intensity ranges. Since the illuminated flocs appear bright 

against the dark background, pixel intensity rescaling within a targeted range was stretched to the 

maximum intensity values, making full use of the available intensity scales and further 

distinguishing the bright floc from the dark background. Further, since there was a clear anticipated 

intensity difference between the bright white floc and the dark black background, a non-linear 

intensity rescaling was applied using a gamma correction [5]. MATLAB’s imadjust function, used 

for contrast enhancement provides for this gamma correction using a non-linear mapping 

parameter, gamma (γ). For gamma values greater than 1, pixel intensity remapping is weighted 

towards darker intensities. The result was a contrast-enhanced image that still displays the bright 
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white floc, but with a darker background. Based on a trial-and-error approach similar to that of 

Shen and Maa [5], three was selected as the gamma value and the bottom 25% of all intensities 

were selected to be rescaled using the non-linear intensity rescale to further reveal the illuminated 

flocs. An example of the impact of contrast enhancement is provided in Figure 4(c).  

In the next image processing step, the contrast-enhanced greyscale image is converted into a 

binary image for more effective image processing and floc identification [62]. Binarization is 

accomplished by establishing a threshold above which a pixel will map to 65,535 (white) and 

below which a pixel will map to 0 (black). The result is a binary image useful for floc identification. 

The selection of this binarization threshold is highly subjective and dependent on the experimental 

setup in question [60, 62]. In an experiment with multiple data collection instances, the likelihood 

of a single global threshold value being suitable for all images is unlikely and thus an adaptive 

thresholding method is typically employed [5]. Three threshold settings (two adaptive and one 

global) for this experiment were evaluated by the trial-and-error approach and the resulting floc 

number size distributions were compared to evaluate the threshold’s impact on the floc geometry 

results. Although the different thresholds resulted in slightly different floc distributions and total 

number, the normalized distribution was relatively similar among all the three thresholds (see 

Figure A-25 and Figure A-26). Since this investigation compares flocculation using both CC and 

EC and the raw imagery revealed significant differences in the temporal floc evolution, an adaptive 

threshold was employed to eliminate differences in the analysis that might arise solely from the 

use of different global thresholds. This adaptive threshold incorporated both the average and 

standard deviation of the averaged image and was applied to each image during the binarization 

process. Pixels intensities above this value were mapped to white (65,535) and pixels intensities 
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below this value were mapped to black (0), rendering a fully binary image, as shown in the example 

in Figure 4(d).  

After image binarization, the images were further processed to clearly distinguish floc edges 

and correct floc morphology. In the binary image, flocs appear as cluster of white pixels, bordered 

by a mix of white and black pixels at the floc edges. In this border region, the mix of white and 

black pixels represent the transition from floc to the background. To establish a clear floc 

boundary, the exact transition from floc to background must be determined. To facilitate this, the 

gradient magnitude in the border region of each floc was evaluated using the Sobel method, which 

highlights the region of gradient change from white pixels to black pixels and effectively outlines 

the floc’s estimated border. After the floc border is outlined, the interior is filled, resulting in a 

new floc that encompasses the border region and the original floc and ensures that any voids 

resulting from flocs aethereal nature are filled. While this step is necessary to clearly identify the 

transition from floc to background by eliminate stray white pixels at the floc edge, the process 

results in an overall increase in floc area that must be paired with a subsequent area decrease to 

ensure a good fit with the observable floc border. Erosion is commonly applied in binary image 

processing to remove white pixels along the edge of an identified object based on the shape of a 

structuring element. The structuring element should be of similar shape and size as the identified 

objects, to result in a morphological correction that aligns best with the original shape of the object. 

During erosion, the structuring element is iteratively applied over entire image. For a pixel to 

remain white, the structuring element must contain only white pixels. If any black pixels are 

contained within the structuring element, the border pixels within the structuring element are 

designated as black as shown in the example in Figure 3. Erosion is applied herein using a 4-pixel 

diamond as the structuring element to eliminate stray white pixels along the floc border, thus 
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facilitating a closer fit with the illuminated floc border, as shown in the example in Figure 4(e)(f). 

The size and shape of the structuring element were selected based on the anticipated size and shape 

of the smallest flocs during the experiment.  

 

Figure 3: Erosion of a 9 x 9 object with a 4-pixel diamond structuring element (left). Note, not all 

iterations of the erosion are shown to obtain the final eroded figure (right).  

Following the image processing steps, individual flocs are identified and labeled and then 

floc geometric properties are determined using MATLAB’s Image Processing Toolbox. Geometric 

properties utilized in this investigation include the floc area, equivalent diameter, and major and 

minor axes. Floc area is determined by the number of pixels identified as part of each floc. Based 

on this area, the floc equivalent diameter is calculated by assuming the floc shape is a perfect 

circle. Information on the floc’s major and minor axis lengths is obtained by determining the length 

of major and minor axes of ellipse with an equivalent normalized second central moment of inertia 

as the identified floc.  

After all flocs were identified and geometric properties were determined, a filter was 

applied to remove flocs too small for accurate size determination and to eliminate flocs not fully 
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captured by the field of view along the image border. Past investigations have taken several 

approaches to determine the smallest minimum floc size suitable for size and shape analysis. Shen 

and Maa [5] only considered objects with areas of at least four pixels and minor axis lengths at 

least two pixels while Mikkelsen et al., [63] utilized nine coherent pixels as the minimum criteria. 

For this study, a floc is considered reliable for subsequent analysis if the floc has a total area of at 

least four pixels and minor axis length of at least two pixels. Once the filtered floc data sets were 

available for each data collection instance, the data sets were averaged to provide a general floc 

geometric characterization to be used in subsequent analyses. Flocculation characterizations were 

not anticipated significantly change between the consecutive images due to the low time 

differential (0.01 seconds). Thus, to minimize data storage and processing time, only alternating 

images were analyzed and averaged, resulting in a flocculation characterization based on 50 

images collected over 1 second.  
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Figure 4: Summary of image processing steps: (a) raw image; (b) image with background removed; 

(c) contrast-enhanced image; (d) binary image; (e) image with morphological corrections; (f) raw 

image with floc border 

2.2.1. Two-Dimensional Fractal Dimension  

The length-based fractal dimension, D2 for the CC and EC floc distributions was obtained 

through a linear regression of the floc area against its major axis length on a log-log plot for the 

total number of flocs identified over the entire data collection instance and did not rely the data set 

average. By evaluating the fractal dimension with the complete data set, the linear regression is 

informed by a larger number of flocs to more accurately capture the trend between floc area and 

equivalent diameter. For each data collection instance, D2 is determined as the slope of the linear 

regression, per Equation 1 and shown in the example plot in Figure 5.  

(a) (b) (c) 

(d) (e) (f) 
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Figure 5: Example derivation of D2 for a hypothetical floc data set with known areas and 

characteristic lengths 

2.2.2. Flocculation Characterization Validation 

Although the in-situ image analysis methodology used herein is beneficial as it is a non-

disruptive measurement technique, several factors, including the position of the floc within the 

light sheet or focal plan, or selection of different image processing parameters can impact the 

accuracy of floc size determination. If a floc is partially within the light sheet or focal plane, part 

of the floc will appear clear and illuminated, while the other part will appear blurry and dark, 

impacting the measured floc size which is based on the illuminated portion only. In this 

investigation, the depth of field (4 mm) is larger than the light sheet thickness (2.3 mm), so the 

floc’s position within the light sheet is the limiting factor. To evaluate the impact of floc position 

within the light sheet, a simple Monte Carlo simulation was performed by randomly placing a 

hypothetical, spherical floc at various locations within the light sheet and determining the 

frequency at which the floc size was accurately measured based on the illuminated portion of the 

sphere. For each hypothetical floc size, the distribution of measured floc sizes was compared with 

Log(A) = 1.8Log(L) + 0.2L
o
g
(A

)

Log(L)

D2 ≈ 1.8 
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the actual size and plotted in terms of its probability of occurrence (Figure 6(a)). The probability 

of the measured to actual floc diameter ratio was evaluated for floc sizes ranging from 0.2 to 7 mm 

based on the expected equivalent floc diameter range in this investigation. To provide a generalized 

estimate of how frequently measured floc diameters would be near their actual diameter, Figure 

6(b) displays the measured floc diameter range for 75% of all random floc placements for a 

particular floc diameter. Two laser light sheet thicknesses were evaluated to determine the impact 

of the laser light sheet thickness on accurate floc size measurement. The laser light sheet thickness 

of 2.3 mm represents the laser light sheet used in this experiment, while the laser light sheet 

thickness of 4.0 mm is a hypothetical thickness used for comparison purposes. 

Based on the Monte Carlo simulation, larger particles had a higher probability of being 

incorrectly measured when compared to smaller particles. While this Monte Carlo simulation is 

performed assuming perfectly spherical flocs, flocs are best described as fractal shapes as 

discussed in Section 1. However, regardless of floc shape, measurement error due to location 

within the laser light sheet is expected to only underestimate floc size following the trends of this 

Monte Carlo simulation due to the nature of the floc illumination and measurement of the projected 

illuminated area. Particularly, floc size underestimation is expected to be more pronounced when 

smaller laser light sheet thicknesses are employed (Figure 6(b)). This Monte Carlo simulation is 

useful to generalize measurement error in due to the methodology but is not intended to provide a 

method for measurement error correction. Rather, results of this Monte Carlo simulation provide 

insights into methods to reduce anticipated measurement error, such as increasing the laser light 

sheet thickness, which results in a closer adherence of the measured to actual floc diameter as 

shown in Figure 6. 
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Figure 6: Monte Carlo simulation to determine the probability a spherical floc will be accurately 

measured based on location within the laser light sheet with two different light sheet thicknesses, 

w (w = 2.3 mm and w = 4.0 mm); (a) probability distribution of measured to actual floc sizes for 

an example 4 mm spherical floc; (b) range of 75% of all measured diameters for a given actual 

floc diameter  

2.3. Particle Image Velocimetry and Reactor Mixing Characterization 

2.3.1. Particle Image Velocimetry Analysis 

Velocity field estimation using PIV is typically accomplished by adding artificial particles 

to the fluid and then tracking their displacement. The particle characteristics (e.g., diameter, 

reflectance, density) are selected based on the experimental conditions (e.g., fluid velocity, field 

of view, lighting conditions, fluid properties) such that the particles follow the flow streamlines 

without impacting the flow itself [32, 56, 64]. To enable the simultaneous characterization of 

(a) (b) 

75% of 

measurements 

d = 4.0 mm 

w = 4.0 mm 75% of 

measurements 

d = 4.0 mm 

w = 2.3 mm 
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flocculation and reactor mixing, a PIV analysis using artificial particles is impractical as the 

particles would obscure clear floc imaging and measurement and would become enveloped in the 

floc throughout the experiment, ultimately impacting flocculation characterization. Therefore, 

flocs generated by CC and EC are used as tracking particles in this investigation since they are 

critical in the flocculation characterization and are expected to follow the fluid motion without 

impacting the flow, considering their density and porosity. To ensure quality correlations between 

image pairs, a minimum of 10 tracking particles is suggested [31] and a homogenous particle 

distribution is key to reduce bias in velocity results [64]. During flocculation, the flocs generated 

by CC and EC change in size distribution and number and thus use of flocs as tracking particles 

for PIV analyses may be more optimal at different stages in flocculation.  

The reactor mixing data sets were analyzed using a combination of two open-source 

particle image velocimetry software fully within the MATLAB platform: PIVLab [65] and MPIV 

[66]. By combining these two software, both the strong FFT cross-correlation core of PIVLab and 

the robust post-processing schemes of MPIV were leveraged in this analysis. The PIVLab FFT 

cross-correlation core is equipped with autocorrelation suppression, which suppresses the impact 

of image background noise on the cross-correlation process. The autocorrelation suppression 

facilitates detection of the correlation peak representing the actual particle displacement instead of 

background noise, which would have a zero displacement [65]. In preliminary trials, pre-

processing of the reactor mixing image data sets were determined to be unnecessary prior to PIV 

analysis and autocorrelation suppression was used to reduce impacts of background noise on the 

results.  

PIV analysis was performed using an iterative multi-pass algorithm for linear window 

deformation, starting with an interrogation window size of 64 by 64 pixels and ending with a 
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window size of 32 by 32 pixels in the second pass with a 50% overlap for both passes. The larger 

initial interrogation window was selected to capture large particle displacements. The smaller final 

interrogation window size was selected to maximize the resulting velocity grid resolution and thus 

capture the dissipative scales of turbulent motion while also maintaining an adequate number of 

particles for correlation between image pairs. Although a smaller final interrogation window size 

would increase the velocity field resolution, heightened spatial resolution without a sufficient 

number of tracking particles would result in high errors that would compound in subsequent 

turbulent analyses, yielding questionable results [27, 31, 45, 67]. Additionally, the average floc 

equivalent diameter was expected to be in the range of 5 to 7 pixels, with some flocs reaching 

much greater sizes; thus, the interrogation window size was selected to ensure several flocs could 

be viewed within the final interrogation window.  

3000 images were obtained during each velocity data collection instance (3000 images over 

30 seconds every three minutes), resulting in a time step of 0.01 seconds between each image pair. 

The mixing speed was such that the floc displacement calculated using the PIV analysis above was 

relatively small (< 3 pixels) for a majority of the vectors. Even with ideal experimental conditions, 

the total error cannot be fully eliminated and contributes approximately  0.1 pixels to the calculated 

particle displacement [64, 68]. For small displacements, this total error constitutes a significant 

portion of the displacement vector, leading to erroneous velocity estimates. Therefore, to reduce 

the influence of error on the final results, image pairs with sufficient time differentials to induce 

larger displacements should be analyzed. At the same time, the tracking particle displacement 

should be small enough that the PIV processing algorithm can effectively track the particle. If 

particles move too much between in an image pair, most particles could escape the current 

interrogation window and the PIV program will poorly correlate the particle displacement, 
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resulting in erroneous velocity estimates. The result is that image pairs should be selected such 

that there is sufficient time for the particles to travel an adequate distance to minimize the impact 

of total error on overall results but not so much time such that particles travel more than 25% of 

the smallest interrogation window size [51, 69]. For the present study, image pairs were selected 

with a time differential of 0.02 seconds by trial-and-error, resulting in a sample size of 1,500 image 

pairs over the data collection period of 30 seconds.  

Spurious vectors were removed through standard deviation and median filtering and the 

resulting displacement data was converted into velocity data using the known time differential 

(0.02 seconds) and the pixel length conversion (67.5 μm per pixel). The resulting velocity grid 

contained 9,801 horizontal and velocity vectors (99 by 99 grid), at a spatial resolution of 1.1 mm 

(16 pixels), each element containing 1,500 data points documenting the velocity variation over the 

30 second data collection period. The center region of each image and corresponding vector field 

was omitted from subsequent analyses due to the mixing shaft’s interference with the 

measurement. Additionally, noisy edge regions at the image border were not considered in 

subsequent analyses.  

2.3.2. Particle Image Velocimetry Control 

Reactor mixing characterization analyses were performed in duplicate for both CC and EC. 

In addition, a separate reactor mixing analysis using distilled water artificially seeded with 

polyamide particles (Danteck Dynamics, 50 μm mean particle size, 1.03 g/cm3) was performed as 

a control and was not performed in duplicate. These polyamide particles are commonly used in 

PIV measurement for determining fluid kinematics. Reactor mixing conditions and water 

temperatures were the same as the analysis performed using CC and EC flocs. For the artificially 
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seeded analysis, laser power was lowered to 5W as less light was required for clear illumination 

of the seeding particles with their relatively high reflecting nature. 

2.3.3. Turbulent Flow Detection  

The presence of turbulent flow was evaluated through a spectral analysis of the temporal 

velocity signal. Each velocity grid element contains a time series of 1,500 velocity data points over 

the 30 second data collection period, corresponding to the number of image pairs evaluated in the 

PIV analysis. Due to the removal of spurious vectors, certain velocity grid elements do not have 

velocity information for all 1,500 velocity data points. A spectral analysis was performed for grid 

element containing velocity information for at least 90% of the time series (i.e., velocity grid 

elements with 150 or more spurious vectors out of 1,500 were not evaluated). If at least 90% of 

the time series was available for analysis, missing velocity information was replaced using linear 

interpolation based on surrounding time series data. After mixing velocity information was 

replaced, the velocity signal for each grid element was converted into the frequency domain 

through the FFT and then the energy spectrum was calculated as per Equation 14. The energy 

spectrum was evaluated at the left top, left middle, and left bottom regions of the cross section for 

a 9 x 9 subset of velocity grid elements, which were then averaged to produce a characteristic 

spectrum for each data collection instance region.   
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3. RESULTS 

Based on the methodology described in Section 2, flocculation and reactor mixing 

characterization experiments were performed for CC and EC experiments, along with a control 

experiment for reactor mixing using artificial beads as tracking particles. A summary of the data 

sets and their roles are described in Table 1. Data set #1.b was used as both the data set for reactor 

mixing characterization and control as well as the duplicate test for flocculation characterization, 

highlighting the unique aspect of this methodology where both flocculation and reactor mixing can 

be characterized using the same data set.  

Table 1: Summary of Data Sets and Roles 

Data Set (DS) Role 

DS#1.a Flocculation Characterization (reported herein) 

DS#1.b 

Reactor Mixing Characterization (reported herein) 

Reactor Mixing Control (reported herein) 

Flocculation Characterization Duplicate (reported in Appendix B) 

DS#2 Reactor Mixing Characterization Duplicate (reported in Appendix C) 

 

3.1. Flocculation Characterizations 

Flocculation characteristics of interest in this investigation include the temporal evolution of 

the floc size distribution, the maximum floc size produced, and the fractal dimension. Each of 

these characterizations is informed by the image processing steps, floc identification, and filtering 

outlined in Section 2.  

3.1.1. Floc Size Distribution 

Floc size is characterized herein by the floc’s equivalent diameter based on the projected 

floc area, which is a commonly used characterization of floc size [25, 26, 70]. Although flocs are 

irregularly shaped and the floc equivalent diameter is unlikely to represent an actual floc length, 
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this method provides a means to quantify and observe temporal changes in floc size, facilitating 

comparisons among independent investigations. Floc size distributions presented herein represent 

the size distribution captured in the single cross section (10.8 cm by 10.8 cm) with a depth of 

approximately 2.3 mm based on the laser light sheet thickness, resulting in a total analyzed volume 

of approximately 26.8 mL. Therefore, these distributions reveal how floc size distribution and 

number evolve, with the understanding that the total floc quantity within the reactor is much 

greater. Additionally, based on the image resolution (67.6 μm per pixel) and the size criteria 

established for minimum detectable flocs (area greater than 4 pixels), the minimum detectable floc 

equivalent diameter in this investigation is approximately 153 μm. Since flocs smaller than 4 pixels 

are undoubtedly present especially during early flocculation stages the actual floc quantity is likely 

higher than represented in these results.  

Floc cumulative counts and size distributions are presented in Figure 7 at different times 

during flocculation for CC and EC. Floc generation exhibits a more rapid initial growth phase for 

CC, as shown by a higher cumulative particle count early during flocculation (Figure 7(a)), 

reaching approximately 1,400 flocs (~52 flocs/mL) at 2 minutes compared to 225 flocs (8.4 

flocs/mL) for EC at the same time (Figure 7(b)). This rapid initial growth phase for CC is also 

observed in the floc size distributions (Figure 7(c)), which exhibit an earlier transition to lager floc 

sizes than EC (Figure 7(d)). In contrast to CC, flocs generated using EC exhibit a slower initial 

growth phase, but ultimately reach a higher total floc count later in flocculation, with a maximum 

floc count of 1,750 flocs (65 flocs/mL) at 23 minutes. The floc count for CC reaches its maximum 

value much earlier, with approximately 1,400 flocs (~52 flocs/mL) present at 2 minutes. This 

slower initial growth phase is observed in the EC’s floc size distribution evolution, which depicts 

a slower transition from smaller to larger floc sizes.  
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Although the CC floc size distribution initially exhibits a more rapid shift to larger floc 

sizes, as flocculation proceeds, the floc size distribution shifts to a higher frequency of smaller 

flocs paired with an increase in flocs larger than 2,400 μm. During this phase, the overall 

cumulative count decreases from its maximum value, likely due to the flocculation of smaller flocs 

into larger flocs. During the latter half of flocculation, the total floc count oscillates between 600 

(22 flocs/mL) and 1,000 (37 flocs/mL) and the maximum floc size fluctuates between 3,000 and 

4,000 μm. In this stage, the floc size distribution remains relatively stable, indicating the CC 

experiment reached a pseudo steady-state condition. Such oscillations were not observed in the 

temporal evolution of the floc size distribution for EC. Rather, as flocculation proceeded, EC 

exhibited a gradual shift towards larger flocs as shown in Figure 7(d) with the cumulative particle 

count increasing up to approximately 24 minutes of flocculation and then steadily decreasing to 

the end of data collection (Figure 7(b)). In contrast to CC, EC produced fewer flocs larger than 

2,400 μm and instead maintained a larger frequency of medium sized flocs between 1,000 and 

2,000 μm towards the end of the experiment. The floc size distribution for EC exhibits a slight 

shift to larger particle sizes between 27 and 37 minutes and although the rate of change in size 

distribution and cumulative particle count appears to slow towards the end of data collection, the 

EC experiment does not appear to reach the same pseudo steady-state condition as CC. Similar 

trends are observed in the duplicate test for CC and EC and the results are presented in Figure B-

39.  
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Figure 7: Temporal evolution of floc size for DS#1.a including: (a) cumulative floc count for CC; 

(b) cumulative floc count for EC; (c) floc size distribution for CC; (d) floc size distribution for EC. 

Note: Floc size distributions were obtained by accumulating the total number of flocs for size 

intervals of 200 μm and are represented by a data point at the maximum of the size interval.  

3.1.2. Mean Floc Size 

While the floc size distributions reveal shifts in the entire floc size range over time, 

examination of the trends and maximum and mean floc size also provides insights into the different 

flocculation characteristics of CC and EC. The top 10% mean floc size is determined as the mean 

of the top 10% of flocs ranked by their equivalent diameter. The total mean floc size is determined 

as the mean of all flocs identified in the cross section. Figure 8 displays the temporal evolution of 

these mean values for both CC and EC flocs. While CC exhibits an initial increase in the mean 

(a) (b) 

(c) (d) 
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floc size during the first 11 minutes, afterwards decreasing slowly and reaching a pseudo steady-

state at around 20 minutes, the mean floc size for EC exhibits a monotonically increasing trend 

after 2 minutes and does not obtain a steady-state during the experiment. The top 10% mean floc 

size follows a similar trend as the mean floc size for both CC and EC. The top 10% mean floc size 

for CC increases until approximately 15 minutes, after which it fluctuates but averages to 

approximately 1,750 μm for the remainder of flocculation. In contrast, the top 10% mean floc size 

for EC increases throughout flocculation, increasing rapidly after approximately 10 minutes and 

until 31 minutes, where it increases at a slower rate. Given the resolution limitations, the mean 

total floc size presented here likely overestimates the actual total mean floc size as flocs with 

equivalent diameters less than 153 μm are not included in the floc identification. This impact is 

expected to be more pronounced earlier in flocculation where smaller flocs generally constitute a 

larger portion of the total floc number. Similar trends are observed in the duplicate test for CC and 

EC (Figure B-40) as shown in the parity plots for both the top 10% mean and the total mean in 

Figure 9 and Figure 10.  
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Figure 8: Temporal evolution of floc mean size for CC and EC in terms of the total mean and the 

top 10% mean for DS#1.a.  

 

Figure 9: Parity plot of the overall mean equivalent diameter for CC and EC experiments for 

duplicate tests (DS#1.a and DS#1.b). The dashed line represents complete agreeance of the two 

data sets. The solid lines represent +/- 10% off the values of the dashed line. 
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Figure 10: Parity plot of the top 10% mean equivalent diameter for CC and EC experiments for 

duplicate tests (DS#1.a and DS#1.b). The dashed line represents complete agreeance of the two 

data sets. The solid lines represent +/- 10% off the values of the dashed line. 

3.1.3. Two-Dimensional Fractal Dimension 

The 2D fractal dimension, D2, is presented in Figure 11 for CC and EC. The fractal 

dimension for flocs produced using CC exhibited an initial rapid increase until approximately 4 

minutes followed by a slight decrease before achieving steady state at approximately 20 minutes. 

Flocs produced using EC exhibit a lower initial fractal dimension than CC which increases slowly 

until 11 minutes, after which the fractal dimension rises rapidly until 20 minutes. After this period 

of rapid increase, the fractal dimension rises slowly, ultimately reaching a higher fractal dimension 

than CC by the end of flocculation. These temporal patterns are consistent with both the floc size 

distributions and mean size characterizations. Temporal fractal dimension variations for both CC 

and EC exhibit a trend towards a higher 2D fractal dimension, indicating a shift towards a more 

spherical, and compact, and less porous floc throughout flocculation [1, 6, 35]. Similar trends were 
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observed in the duplicate test results, included as Figure B-41 and as shown in the parity plot in 

Figure 12.  

 

Figure 11: Temporal evolution of the 2D fractal dimension for CC and EC experiments of 

DS#1.a 
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Figure 12: Parity plot of the 2D fractal dimension data for CC and EC experiments for the duplicate 

tests (DS#1.a and DS#1.b). The dashed line represents complete agreeance of the two data sets. 

The solid lines represent +/- 1% off the values of the dashed line.  

3.2. Reactor Mixing Characterizations 

In this section, reactor mixing is characterized using the velocity information obtained using 

PIV. First, the velocity field is evaluated to determine its suitability for turbulent flow analyses by 

evaluating the percentage of rejected, spurious vectors and through a spectral analysis of the time-

series velocity data. Secondly, the 2D turbulence intensity, I2D, is evaluated as a basic indicator of 

the turbulence level within the reactor. The local TKED rates within the reactor are then evaluated 

and compared with the average TKED rate for the entire cross section. As a final reactor mixing 

characterization, the time and length scales of turbulent motion are determined based on the 

average and range of the TKED rate. Comparative results are presented for a subset of data 

comparing reactor mixing characterizations from velocity information obtained using both flocs 

generated in-situ (CC and EC) and artificial beads as tracking particles. The reactor mixing 
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experiments were performed in duplicate and comparisons between the data reported herein 

(DS#1.b) and the duplicate test (DS#2, reported in Appendix C), are provided both herein and in 

Appendix D.  

3.2.1.  Flow Field Evaluation 

Each data set was first evaluated to determine the percentage of spurious vectors. Vector 

fields with higher than 5% rejection were not evaluated. Secondly, each dataset was then evaluated 

to determine if it exhibits the Kolmogorov -5/3 spectrum when viewed in the frequency domain, 

indicating turbulent flow [44]. The flow fields measured using CC flocs exhibited a low vector 

rejection rate throughout the entire duration, never exceeding the 5% vector rejection threshold as 

shown in Figure 13. Additionally, the spectral analysis of the flow fields measured using CC flocs 

exhibited a clear adherence to the Kolmogorov -5/3 spectrum from the first data collection instance 

(2 minutes) until approximately 23 minutes, after which the energy spectrum deviated from the 

Kolmogorov -5/3 spectrum. In contrast, the flow fields measured using EC flocs were marked by 

insufficient correlations and poor adherence to the Kolmogorov -5/3 early in flocculation (prior to 

14 minutes) with vector rejection rates exceeding the 5% vector rejection threshold between 5 and 

11 minutes (Figure 13), indicating the velocity data was unreliable during this period. By 14 

minutes, the flow field measured using EC flocs achieved sufficient correlations and exhibited 

close adherence to the Kolmogorov -5/3 spectrum until approximately 29 minutes. The artificially 

seeded experiment exhibited a low vector rejection rate (<1%) and adherence to the Kolmogorov 

-5/3 spectrum. Results reported herein are based solely on data sets that maintained less than a 5% 

vector rejection rate and exhibit the Kolmogorov -5/3 spectrum when viewed in the frequency 

domain.  
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Figure 13: Vector rejection percentage for CC and EC experiments of DS#1.b. 

The spectral analysis results for the left center of the cross section are presented in Figure 

14 for both CC and EC, respectively. Analysis was performed for both the horizontal (U) and 

vertical (W) component of the velocity time series data. Significant differences were not observed 

between the results for horizontal and vertical time series data. Complete results documenting the 

horizontal (U) and vertical (W) components of the velocity time series at the beginning (2 minutes), 

middle (17 minutes), and end (38 minutes) of flocculation are provided in Figure A-27 and Figure 

A-28 for CC and EC, respectively. The artificially seeded system was not impacted by flocculation 

time thus a single time instance is reported in Figure A-29. 
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Figure 14: Energy spectrum for the: (a) horizontal (U) velocity components and (b) vertical (W) 

velocity components for CC at 11 minutes and EC at 20 minutes of DS#1.b for the left center of 

the field of view (x = 2.7 cm, z =5.4 cm). 

The duplicate test results (Appendix C) indicate a wider range of data suitable for turbulent 

analyses, but also exhibit similar trends in terms of vector rejection rates (Figure C-42), where the 

EC experiment has a high vector rejection rate early in flocculation  The spectral analysis results 

for the left center of the cross section are presented in Figure C-43 and Figure C-44. Based on the 

vector rejection rates and the spectral analysis results, data sets from 14 minutes to 38 minutes for 

the EC experiment and from 2 minutes to 38 minutes for CC were suitable for turbulent flow 

analyses. 

The Reynold’s numbers for the experiment was evaluated based on the reactor diameter as 

the characteristic length and a characteristic velocity derived using the mixing speed and diameter 

of the mixing impeller. Based on this evaluation, the Reynold’s numbers for slow and rapid mixing 

phases are 6,030 and 40,200, respectively, both of which are in the turbulent flow regime. Although 

(a) (b) 
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some data sets were rejected for not meeting the vector rejection criteria or the Kolmogorov -5/3 

spectrum criteria, these rejected data sets were subjected to the same mixing conditions and likely 

were within the turbulent flow regime as the data sets deemed suitable for further turbulent 

analyses. Therefore, these data sets were rejected, not because they were captured non-turbulent 

flow, but rather because the velocity information obtained was insufficient or too noisy to 

accurately portray the turbulent flow within in the reactor.  

3.2.2. Turbulence Intensity 

The average 2D turbulence intensity (I2D) for the turbulent flows of the CC, EC, and 

artificially seeded experiments are presented in Figure 15, Figure 16, and Figure 17 respectively. 

For each experiment, the I2D is highest at the bottom of the cross section directly above the paddle 

mixer. Additionally, for each experiment, the I2D exhibits an asymmetry in the horizontal 

distribution, skewing to higher I2D values in the direction of the mean velocity (U̅). A similar trend 

of horizontal asymmetries in the mean flow direction was observed in the duplicate test (Figure C-

45 and Figure C-46) which had a mean velocity in the opposite direction.  
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Figure 15: Average 2D turbulence intensity for the CC experiment of DS#1.b. Average mean 

velocities in the horizontal and vertical directions are 0.81 cm/sec and 0.02 cm/sec, where positive 

values velocities in the positive x (horizontal) and z (vertical) direction as shown.  
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Figure 16: Average 2D turbulence intensity for the EC experiment of DS#1.b. Average mean 

velocities in the horizontal and vertical directions are 0.82 cm/sec and 0.02 cm/sec, where 

positive values velocities in the positive x (horizontal) and z (vertical) direction as shown. 



45 

 

 

Figure 17: Average 2D turbulence intensity for the artificially seeded experiment of DS#1.b. 

Average mean velocities in the horizontal and vertical directions are 0.86 cm/sec and 0.01 cm/sec, 

where positive values velocities in the positive x (horizontal) and z (vertical) direction as shown. 

In addition to the visual comparison between the CC, EC, and artificially seeded systems, 

and between the two duplicate tests, I2D was also compared among each of the different valid flow 

data sets, as shown in Table 2. As each of the individual experiments were performed at the same 

mixing speed, I2D was expected to be similar. To quantitively evaluate difference between the 

individual data sets, the ratios of the mean I2D were compared amongst the two floc-seeded 
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experiments (CC and EC) for both of the duplicate tests (DS#1.b and DS#2), as shown in Figure 

A-30 and Figure C-47 and across the duplicate tests (e.g., DS#1.b vs. DS#2), as shown in Figure 

D-54 and Figure D-55. Comparisons within each of the duplicate test data sets indicate a similar 

result for reactor mixing characterization by the floc-seeded experiments, as shown by a mean 

ratio value of approximately one in Table 2. When the two duplicate tests were compared, DS#1.b 

had a higher I2D on average than DS#2 for both the CC and EC experiments, as shown by a mean 

ratio value greater than one in Table 2.   

Table 2: 2D turbulence intensity data comparison between CC, EC, DS#1.b and DS#2 

Data Source DS#1.b DS#2 CC EC 

Comparison CC:EC CC:EC DS#1.b:DS#2 DS#1.b:DS#2 

Mean Ratio 1.01 1.00 1.14 1.13 

Standard 

Deviation 
0.07 0.07 0.16 0.17 

 

Additionally, the relative difference was evaluated between the floc-seeded experiment for 

DS#1.b and the artificially-seeded experiment, which acts as the control and is assumed as the 

more accurate experiment.  Results from the relative comparison between indicate the CC and EC 

floc-seeded experiments had an average percent relative difference compared to the artificially-

seeded experiment of approximately 7.7% and 8.0%, respectively. The absolute values of the 

relative difference are provided visually in Figure A-31 and Figure A-32. 

3.2.3. Turbulent Kinetic Energy Dissipation Rate 

The TKED rate was evaluated using the five equations presented in Section 2 for all 

velocity data sets suitable for turbulent flow analysis as shown by the vertical TKED rate 

distributions at various horizontal locations included as Figure A-33, Figure A-34, and Figure A-
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35. The resulting TKED rate data maintains the same resolution as the velocity grid, resulting in a 

99 by 99 grid of TKED rate information, representing the TKED rate at various points in the cross 

section. Similar to the velocity grid data, the center region of the data grid influenced by the paddle 

mixer shaft and the noisy edge areas are not included in this analysis. During flocculation, the 

mixing speed was constant and significant temporal variations in the spatially averaged TKED rate 

are not observed, as shown in Figure 18 and in Figure D-53. The spatially averaged TKED results 

for the CC and EC experiments are similar, but together, they are slightly higher than the spatially 

averaged TKED rate of 0.169 cm2 sec-3 for the artificially seeded experiment (Table 4).  

 

Figure 18: Mean TKED rate over time for CC and EC for DS#1.b. 

Representative local TKED rates for the CC, EC, and artificially seeded experiments were 

obtained by averaging the spatially distributed TKED rate over time, incorporating the data from 

each turbulent flow data sets to produce a representative spatially-distributed TKED rate and are 

provided in Figure 19, Figure 20, and Figure 21 for the CC, EC, and artificially seeded 

experiments, respectively. Similar to the I2D, the TKED rate is greater at the bottom of the cross 
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section, which is closest to the paddle mixer and increases radially outward from the mixing shaft, 

with the greatest dissipation rates near the edges of the cross section. The TKED rate is asymmetric 

in the horizontal direction, skewing to higher TKED rates in the direction of the mean velocity. 

The average TKED rate for CC, EC, and artificially seeded experiments are 0.223 cm2 sec-3, 0.214 

cm2 sec-3, and 0.169 cm2 sec-3 as shown in Table 4. The duplicate test showed similar trends and 

results are included in Figure C-48 and Figure C-49.  

 

Figure 19: Average local TKED rate for the CC experiment of DS#1.b. 
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Figure 20: Average local TKED rate for the EC experiment of DS#1.b. 
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Figure 21: Average local TKED rate for artificially seeded experiment for DS#1.b 

The local TKED rates for the two floc-seeded experiments (CC and EC) for both duplicate 

tests (DS#1.b and DS#2) were compared with each other, as shown in Figure A-36 and Figure C-

50 and across the duplicate tests (e.g., DS#1.b vs DS#2), as shown in Figure D-56 and Figure D-

57. Again, as each of the individual experiments were performed at the same mixing speed, the 

local TKED rates were expected to be similar across all experiments. Comparisons within each of 

the duplicate test data sets indicate a similar result for the TKED rates derived using CC and EC 

flocs, as marked by a mean ratio close to one and a small standard deviation in Table 3. When the 
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two duplicate tests were compared, DS#1.b yielded higher TKED rates than DS#2 as shown by a 

mean ratio greater than 1 and a large standard deviation, as shown in Table 3.  

Table 3: TKED rate data comparison between CC, EC, Seeded, DS#1.b and DS#2 

Data Source DS#1.b DS#2 CC EC 

Comparison CC:EC CC:EC DS#1.b:DS#2 DS#1.b:DS#2 

Mean Ratio 1.00 0.85 1.55 1.34 

Standard 

Deviation 
0.10 0.14 0.35 0.38 

 

Additionally, the relative difference was evaluated between the TKED rate derived from 

the floc-seeded experiments and the artificially seeded experiment for DS#1.b, which acts as the 

control and is assumed as the more accurate experiment. Results from the relative comparison of 

the TKED rate between indicate the CC and EC floc-seeded experiments had an average percent 

relative difference in TKED rate compared to the artificially-seeded experiment of approximately 

45% and 40% respectively. Absolute relative difference values are provided visually in Figure A-

37 and Figure A-38, which display a variability between the local TKED rates derived from flocs 

vs. artificial beads as tracking particles. 

3.2.4. Kolmogorov Length and Time Scales 

Based on the mean TKED rates and the associated range for the flow fields measured with 

the CC and EC flocs, the Kolmogorov length (η) and time (τ) scales are presented in Table 4. 

Given the spatial resolution is approximately 1.1 mm, the velocity resolution is approximately two 

times the average Kolmogorov length scale, indicating the smallest scales of turbulent motion will 

not be fully captured; however, the velocity resolution is within a few multiples of η and thus will 

likely provide useful results. Based on the Nyquist criteria, the sampling frequency of 100 images 
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per second is many multiples more than the inverse of the Kolmogorov time scale, indicating the 

image capture rate is sufficient.  

Table 4: Summary of the average TKED rate and the Kolmogorov length and time scales for CC, 

EC, and seeded water experiments and based on the G-Curve produced by Cornwell and Bishop 

[57] for DS#1.b. 

Parameter CC Flocs EC Flocs 
Seeded 

Water 
G-Curve 

𝜀 ̅

(𝜀𝑟𝑎𝑛𝑔𝑒) 
(cm2 sec-3) 

0.223 ± 0.018 

(0.088-0.657) 

0.214 ± 0.033 

(0.090-0.614) 

0.169 ± 0.016 

(0.061-0.530) 
0.729* 

𝜂̅ 

(𝜂𝑟𝑎𝑛𝑔𝑒) 
(mm) 

0.507 

(0.387-0.639) 

0.516 

(0.394-0.636) 

0.543 

(0.408-0.700) 
0.377 

𝜏̅ 

(𝜏𝑟𝑎𝑛𝑔𝑒) 
(sec) 

0.226 

(0.132-0.359) 

0.230 

(0.136-0.356) 

0.259 

(0.147-0.430) 
0.125 

*𝜀 ̅ determined using Equation 16 and the value of G from the G-calibration curve. 

3.3. Global Velocity Gradient Evaluation 

As discussed in Section 2, the global velocity gradient, G, is evaluated by different methods 

depending on the available data. In this section, G is evaluated through the spatially-averaged 

TKED rate (𝜀)̅, and through an established G-calibration curve relating mixing speed to G for a 

square 2-liter jar test reactor equipped with a Phipps and Bird paddle mixer [57]. Additionally, this 

section provides a comparison between the local and global velocity gradients to identify regions 

where G accurately characterizes local velocity gradients. 

3.3.1. Global Velocity Gradient Estimations 

Based on the turbulent flow analyses for the flow fields evaluated using CC and EC flocs, 

𝜀 ̅is approximately 0.219 cm2 sec-3 for all turbulent data sets, corresponding to an average G of 

4.38 sec-1 per Equation 16 and as shown in Table 5. In comparison, the 𝜀 ̅determined using an 

artificially seeded water is approximately 0.169 cm2 sec-3, corresponding to an average G of 3.85 
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sec-1. Per the established G-curve, a mixing speed of 15 rpm and a water temperature of 15°C, G 

is determined as approximate 8 sec-1. The three estimations of G are all within the same order of 

magnitude, and the G value determined from the G-curve is the highest estimation.  

Table 5: Spatially-averaged TKED rate (𝜀 ̅) and the global velocity gradient (G), for flow field 

measurements using flocs, seeded water, and the G-curve from DS#1.b. 

 Floc Average Seeded Water G-Curve 

𝜀 ̅ (cm2 sec-3) 0.219 0.169 0.729* 

G (sec-1) 4.38 3.85 8 

*𝜀 ̅ determined using Equation 16 and the value of G from the G-calibration curve. 

3.3.2. Local Velocity Gradients vs. G 

While G is determined using the spatial average of the local TKED rate, the local velocity 

gradients are also evaluated herein to identify regions where G accurately characterizes the local 

velocity gradients. In Figure 22, Figure 23, and Figure 24 the average ratio of the local velocity 

gradient to G is displayed spatially across the reactor cross section for CC, EC, and seeded 

experiments, respectively. For all experiments, G underestimated the velocity gradients near the 

paddle mixer at the bottom of the cross section and overestimated the velocity gradients near the 

water surface at the top of the cross section. Additionally, similar to the trends observed in the 

TKED rate and the I2D, the ratio of the local velocity gradient to G is asymmetric in the horizontal 

direction, skewing to higher TKED rates in the direction of the mean velocity. Duplicate results 

(Figure C-51 and Figure C-52) showed similar trends but the asymmetry was not as pronounced.  
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Figure 22: Contours of the average ratio of the local velocity gradients to the global velocity 

gradient, G, as determined by the spatially averaged TKED rate for the CC experiment of DS#1.b. 
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Figure 23: Contours of the average ratio of the local velocity gradients to the global velocity 

gradient, G, as determined by the spatially averaged TKED rate for the EC experiment of DS#1.b. 
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Figure 24: Contours of the average ratio of the local velocity gradients to the global velocity 

gradient, G, as determined by the spatially averaged TKED rate for the artificially seeded 

experiment of DS#1.b. 
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4. DISCUSSION 

4.1. Flocculation Characterization 

Temporal trends during flocculation for CC and EC experiments exhibited distinct differences 

including the rapidity with which smaller flocs agglomerated into larger flocs (Figure 7(c)(d)), the 

maximum floc size and floc number attained through flocculation (Figure 7(a)(b)) and in the trends 

of maximum floc size and fractal dimension (Figure 8 and Figure 11). These differences may be 

due to fundamental differences between CC and EC, including the speciation of the iron coagulant. 

Iron electrolysis first produces soluble Fe(II) that oxidizes to insoluble Fe(III), the kinetics of 

which depend on the dissolved oxygen concentration and pH. In contrast, FeCl3 salts are added in 

the CC experiments directly resulting in Fe(III) in the solution. Although both CC and EC 

experimental systems were saturated with dissolved oxygen and buffered to maintain a pH of 8.3 

resulting in rapid oxidation of Fe(II) to Fe(III) for the EC experiment, the initial difference in the 

coagulant form remains a fundamental difference between the CC and EC experiments. 

While some of the temporal trend differences may be due to fundamental differences between 

CC and EC, the coagulant dosing timeline is also an important consideration. In CC, the coagulant 

is introduced into the system in a discrete method, with all the chemical added at one time, similar 

to full-scale water treatment plants. In contrast, for EC, the coagulant is generated within the 

system over the electrocoagulation duration. In this investigation, the coagulant addition began at 

the same time for both CC and EC. Given that EC required approximately 138 seconds to reach 

the target concentration, the target concentration was present during the CC experiment for 

approximately 138 seconds before the target concentration was present in the EC experiment. 

Therefore, while conditions for CC flocculation were present immediately upon coagulant 

addition, the EC experiment reached flocculation conditions only at the end of the 
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electrocoagulation process. Once each experiment reached flocculation conditions, miniscule flocs 

form first, which are not detectable given the image resolution (67.6 μm per pixel). These 

miniscule flocs then flocculate and begin to grown in size, ultimately reaching detectable sizes. 

Since CC flocculation began earlier, flocs had a longer time to grow into detectable sizes before 

data collection began during the slow mixing flocculation phase. This difference is evident in the 

cumulative floc count for CC and EC in Figure 7(a)(b). The maximum cumulative count is 

observed at the first data collection instances (2 minutes) for the CC experiment, with no 

observable transition from a few detectable flocs to many detectable flocs as observed for the EC 

experiment. By the start of the slow mixing flocculation phase for CC, the flocs had likely grown 

to detectable sizes, whereas that transition likely occurred throughout the beginning of the slow 

mixing flocculation phase for EC.  

The impact of the different timelines for flocculation conditions between CC and EC is 

compounded by the fact that the coagulants were added/generated during the rapid mixing phase 

of the experiment, which lasted approximately 2.6 minutes. During rapid mixing, the increased 

energy input into the system likely resulted in higher floc collision frequencies, which increased 

the initial floc growth rate. Given that the CC experiment had approximately 138 seconds more 

than the EC experiment at flocculation conditions during the rapid mixing phase, the initial CC 

floc growth rate is different than that of EC, resulting in different initial trends that persisted during 

the slow mixing flocculation phase. These differing trends are particularly evident in Figure 8 and 

Figure 11, which depict trends in mean floc size and floc fractal dimension. In these figures, initial 

EC mean floc size and fractal dimension differ from CC, but reach similar values towards the end 

of data collection. Since the initial growth phase is different and initiates different trends for floc 

growth during flocculation, results cannot be simply shifted by 138 seconds to correct for the extra 
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flocculation time and enable a temporal comparison of the floc growth profiles. Instead, for 

comparative characterizations of flocculation between CC and EC, coagulant addition for CC 

should be added over a similar time span as the EC generation to ensure similar initial precipitation 

and flocculation conditions.  

While comparative conclusions between CC and EC flocs are limited by the different initial 

conditions, the trends observed for each coagulant dosing method allow for individual 

observations. The oscillations observed in both the floc size distributions and the top 10% mean 

floc size for CC suggest floc breakage and regrowth, reaching a pseudo steady-state at 

approximately 15 minutes. The top 10% mean floc size for CC was larger than EC during the 

flocculation time measured, consistent with work produced by Lee and Gagnon [18]; however, a 

clear steady-state for EC flocs is not observed and thus EC may eventually produce flocs with a 

top 10% mean size equal to or greater than the CC experiment. While the absence of a steady state 

condition for EC is in contrast to the work of Lee and Gagnon [18], wherein both EC and CC 

experiments obtained steady state conditions by 10 minutes of flocculation at a pH of 8.3 at a 

mixing speed of 200 rpm, the flocculation mixing speed employed for this investigation was 15 

rpm and thus results are not directly comparable.  A steady state fractal dimension is attained 

earlier in the CC experiment, similar to results of Zhu et al., [35], who found that flocs exposed to 

a higher shear rate reached steady state earlier.  

As an additional observation, the reversion back to a higher small floc frequency over time 

observed for the CC experiment is coupled with an increase in the large floc frequency, with flocs 

larger than 2,400 μm constituting approximately 3.2% at 37 minutes (Figure 7(c)). This increased 

large floc frequency and the decreased medium floc frequency is explained by the agglomeration 

of these medium sized flocs into larger flocs. The relatively high small (<400 μm) floc frequency 
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throughout flocculation for both EC and CC is similar to that of Kilander et al., [2], who used a 

similar flocculation characterization method. While small flocs may actually be present within the 

system, throughout flocculation, these small flocs are expected to agglomerate into larger flocs. 

Therefore, their continued presence in the floc size distribution throughout the experiment may 

possibly be due to the floc imaging and identification methodology used herein. This methodology 

is based on 2D floc images illuminated by a 2.3 mm light sheet, which results in limitations 

surrounding 3D characterizations of floc size and geometry, as discussed in Section 2. During the 

data collection, flocs may not be not completely within the laser light sheet, either because the floc 

size exceeds the light sheet thickness or because the floc is moving into or out of the light sheet. 

In these cases, the illuminated floc portion represents cross-sectional view of the floc within the 

light sheet and constitutes an area less than or equal to the largest cross section of the actual floc. 

Given the irregular floc shape, there is a higher probability that equivalent diameter for the actual 

floc is undersized because as the floc passes into and out of the light sheet, smaller cross sections 

are more frequently represented. The result is that the measured floc sizes tend to produce a greater 

frequency of small flocs, which may inaccurately characterize the actual floc size distribution. For 

this reason, changes in the frequency of medium and large floc sizes are more reliable as a means 

of describing changes in the floc size evolution.  

4.2. Reactor Mixing Characterization 

Reactor mixing characterization results agree qualitatively with results from past mixing 

analyses, with higher dissipation rates occurring near the paddle mixer, where the shear rate is 

stronger [27, 71]. Additionally, similar to results found by Cheng et al., [27], the TKED rate is 

higher near the edges of the cross section, likely due to interaction between the turbulent flow and 

the wall. Based on the estimated TKED rate for both CC and EC experiments, the velocity spatial 
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resolution is within a few multiples of the Kolmogorov length scale, and thus the velocity 

information is sufficiently resolved to inform turbulent flow analyses.  

 The use of flocs as tracking particles yielded higher TKED rates than that of the artificially 

seeded analysis, particularly in regions far from the mixing impeller when comparing valid 

turbulent data sets (Figure A-37 and Figure A-38). Visually, the flocs appear to faithfully follow 

the fluid motion without impacting the motion itself; however, a quantitative evaluation of the 

presence of floc on fluid motion is not within the scope of this investigation and is not apparent 

based on the data collected herein. Given the physical characteristics of flocs (e.g., high porosity, 

low density), flocs are not expected to impact the flow motion and the resulting discrepancy in the 

TKED results are more likely due to application of the PIV methodology using flocs as tracking 

particles. The region far from the impeller is marked by smaller velocity gradients and smaller 

particle displacements. Therefore, reactor mixing characterization in this region may be more 

impacted by the total error in the PIV methodology. Further, even in the most optimal data 

collection instances, floc number density was significantly less than that of the artificially seeded 

water, likely resulting in poorer correlations in the PIV analysis than for a traditional artificially 

seeded PIV analysis. The compound effect of both the smaller displacement away from the 

impeller region and the lower tracking particle density than that of the artificially seeded water, 

likely results in this discrepancy between the floc seeded and artificially seeded reactor mixing 

characterization.  

Due to high vector rejection rates and/or poor adherence to the Kolmogorov -5/3 spectrum, 

several data collection instances using CC and EC flocs as tracking particles were unsuitable for 

turbulent flow mixing analyses. Since the same mixing rate was applied through the entire 

flocculation period in this investigation, a characteristic reactor mixing profile was developed by 
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selecting the most optimal data sets. However, for investigations where a variable mixing rate is 

applied and several characteristic reactor mixing profiles are needed throughout flocculation, floc 

size and number should be carefully evaluated to determine if the flocculation conditions are 

suitable to inform the PIV analysis. Otherwise, a traditional PIV analysis using artificially seeded 

water may be required.  

A notable asymmetry was observed throughout the turbulent analyses, with higher I2D, TKED 

rates, and local velocity gradients observed in the direction of the mean flow. One possibility for 

this asymmetry is a slight offset of the paddle mixer. If the paddle mixer was located slightly off-

center within the reactor, the turbulent flow properties would be expected to be asymmetric as the 

energy is introduced to the system unevenly. In future experiments, restricting the paddle mixer 

and shaft oscillation and ensuring the paddle mixer is located in the exact center of the reactor will 

be crucial to eliminate the uneven energy distribution in the system and the resulting impacts on 

turbulent flow analyses. The fact that the asymmetry was significantly less in the duplicate 

experiment, may be due to repositioning of the paddle mixer shaft between experiments.  

4.3. Global Velocity Gradient Evaluation 

The global velocity gradient informed by the spatially averaged TKED rate calculated from 

the flow fields from CC and EC flocs as well as that of the seeded water are of the same order of 

magnitude as the G determined from the G-curve. However, when the local velocity gradients were 

compared with G, G was found to deviate by more 40% from the actual local velocity gradients. 

Given the spatial dependency of certain flocculation outcomes, particularly in regions close to the 

impeller, G’s use to characterize reactor mixing will not provide the depth of information required 

to understand and predict flocculation. While G is generally within the same order of magnitude 

as the local velocity gradients, similar to the results of Cheng et al., [27], differences in reactor 
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shape and size, the presences of baffles, and use of different mixing impellers can create even 

greater variations in the local velocity gradients that can impact flocculation efficiency. Thus, 

while G is useful as a general estimation of the degree of reactor mixing, its use should be limited 

and closer attention should be paid to local velocity gradients [23].  
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5. CONCLUSIONS 

The combined use of image processing techniques and PIV analysis is a useful tool to non-

intrusively evaluate the impact of different operating parameters (e.g., coagulant dosing method, 

mixing intensity) on the resulting flocculation performance (e.g., steady-state floc size distribution, 

mean floc size, floc fractal dimension). This methodology is fundamental for evaluating 

spatiotemporal differences in flocculation performance and relating these differences to the local 

reactor mixing conditions, both of which are useful inputs for modeling full-scale water treatment 

plant reactors. These relations are enabled by evaluating flocculation and reactor mixing through 

the same data set, which is made possible by using flocs generated in-situ as the tracking particles 

for the PIV analysis. Through this novel methodology, this investigation characterized flocculation 

and reactor mixing for two coagulant dosing methods (CC and EC) and resulting in the following 

general conclusions that are strictly applicable to our experimental conditions: 

• Flocculation for the CC experiment reached a steady state at approximately 20 minutes 

into flocculation and reached a relatively high fractal dimension, indicating a more 

compact, spherical floc shape. Flocculation for the EC experiment did not reach steady 

state during the experiment, but flocculation changes were observably smaller at the end 

of the experiment. The EC experiment reached a higher total mean floc size and fractal 

dimension than CC at the end of flocculation.  

• The turbulence intensity (I2D) the turbulent kinetic energy dissipation rate (ε), and the 

global velocity gradient (G) were all higher in regions closest to the paddle mixer and 

increased radially outward from the mixing shaft.  
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• Global velocity gradient (G) estimations using the spatially averaged total kinetic energy 

dissipation rate (𝜀)̅ and the G-curve informed by the input power yield similar results of 

the same order of magnitude.  

• The spatially-averaged global velocity gradient (G) mischaracterizes the local velocity 

gradient within the reactor and underestimates the actual velocity gradients by more than 

40% near the paddle mixer.  

• The use of flocs as seeding particles for the PIV analysis was more suitable during select 

stages of flocculation, where a sufficient number of smaller flocs were detectable by the 

PIV cross-correlation core. In early and later stages of flocculation, use of flocs as seeding 

particles for the PIV analysis was less reliable, likely due to an insufficient number of 

small detectable flocs.  

• TKED rates determined using CC and EC flocs were similar to TKED rates determined 

using artificial beads for regions close to the mixing impeller. However, as the vertical 

distance from the mixing impeller increased, the TKED rates determined using CC and 

EC flocs was higher than that of the TKED rate determined using artificial beads, reaching 

almost double the value in some regions.  

Based on this initial methodology implementation described herein, the combined usage of 

image analysis and PIV can be leveraged to explore impacts of a variety of operational parameters 

in terms of flocculation and reactor mixing characterization, provided experimental conditions are 

suitable. For example, a single impeller was used to provide mixing in an unbaffled square mixing 

reactor. Comparative studies of different impeller shapes, sizes, and speeds, of various baffle 

configurations, and of different reactor shapes and sizes can quantitively reveal how these different 

characteristics impact reactor mixing and in so doing, how they impact flocculation. Additionally, 
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further studies are necessary to evaluate the impact of coagulant addition timeline on flocculation 

characterization to determine if the dosing timeline differences between CC (discrete) EC (over 

time) impacts the ability for temporal comparisons of flocculation characterizations.  

This methodology provides opportunity for modification based on the particular experimental 

conditions, which make this methodology useful to study a wide range of operational conditions. 

For different mixing speeds, the field of view (i.e., the cross-sectional area imaged in the study) 

can be adjusted to optimize floc clarity while providing sufficient PIV conditions. In slower mixing 

conditions, particle displacement is smaller and a large field of view is unnecessary to capture floc 

movement. In this scenario, the field of view could be decreased without hindering the PIV 

analysis, resulting in a higher pixel resolution (i.e., a smaller area per pixel) and a more detailed 

flocculation characterization since smaller particles could be captured. Additionally, the laser 

slight sheet thickness and camera aperture can be adjusted to optimize the illuminated region of 

the focal plane based on the anticipated maximum floc size, reducing floc size bias associated with 

flocs traveling into and out of the laser light sheet and focal plane. Finally, measurement conditions 

can be tailored to the specific flocculation period in question, to obtain the most useful results. 

Future investigations should carefully consider the target flocculation and reactor mixing 

characteristics and tailor the methodology described herein to the specific experimental conditions, 

taking into account the impact of image resolution and light sheet thickness on flocculation 

characterization and the impact of floc density and movement on reactor mixing characterizations 

using PIV.  
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APPENDIX A 

Auxiliary information for experimental analysis and results for the results reported in the 

manuscript (DS#1.a and DS#1.b). 

 

 

 

 

 

Figure A-25: Mean particle count based on different binary threshold methods at (a) 7 minutes; 

(b) 22 minutes; (c) 27 minutes; and (d) 36 minutes for CC, DS#1.a.  (“Binary_T=0.5” represents 

a global threshold of 0.5. “Binary_T = Bkg x 1, Std. x 4” represents an adaptive threshold based 

on the background intensity plus four times the standard deviation. “Binary_T = Bkg x 2” 

represents an adaptive threshold based on two times the background intensity) 

(a) (b) 

(c) (d) 
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Figure A-26: Mean particle count based on different binary threshold methods at (a) 7 minutes; 

(b) 22 minutes; (c) 27 minutes; and (d) 36 minutes for EC, DS#1.a. (“Binary_T=0.5” represents a 

global threshold of 0.5. “Binary_T = Bkg x 1, Std. x 4” represents an adaptive threshold based on 

the background intensity plus four times the standard deviation. “Binary_T = Bkg x 2” represents 

an adaptive threshold based on two times the background intensity.) 

 

(a) (b) 

(c) (d) 
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Figure A-27: Energy spectrum at the left upper, left middle, and left bottom region for horizontal 

(U) and vertical (W) velocity components for CC at (a) 2 minutes; (b) 17 minutes and (c) 38 

minutes for DS#1.b 

(a) 

(b) 

(c) 
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Figure A-28: Energy spectrum at the left upper, left middle, and left bottom region for horizontal 

(U) and vertical (W) velocity components for EC at (a) 2 minutes; (b) 17 minutes and (c) 38 

minutes for DS#1.b 

(a) 

(b) 

(c) 
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Figure A-29: Energy spectrum at the left upper, left middle, and left bottom region for horizontal 

(U) and vertical (W) velocity components for the artificially seeded system for DS#1.b. Note, the 

artificially seeded system was not impacted by flocculation time thus a single time instance is 

reported herein.  
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Figure A-30: Ratio of turbulence intensity values measured in the CC and EC experiments for 

DS#1.b.  
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Figure A-31: Relative turbulence intensity deviation when comparing the turbulence intensity 

measurements between the CC and Seeded experiments for DS#1.b. 
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Figure A-32: Relative turbulence intensity deviation when comparing the turbulence intensity 

measurements between the EC and Seeded experiments for DS#1.b.  
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Figure A-33: Vertical variation of the TKED rate at 1 cm, 2.7 cm, 7 cm, and 9 cm along the 

horizontal axis by method and method average for the CC experiment for DS#1.b 
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Figure A-34: Vertical variation of the TKED rate at 1 cm, 2.7 cm, 7 cm, and 9 cm along the 

horizontal axis by method and method average for the EC experiment for DS#1.b 
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Figure A-35: Vertical variation of the TKED rate at 1 cm, 2.7 cm, 3 cm, and 3.9 cm along the 

horizontal axis by method and method average for the artificially seeded experiment for DS#1.b 
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Figure A-36: Ratio of TKED rate from the CC and EC experiments for DS#1.b 
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Figure A-37: Relative TKED rate deviation when comparing the TKED rate data from the CC 

and Seeded experiments for DS#1.b 
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Figure A-38: Relative TKED rate deviation when comparing the TKED rate data from the EC 

and Seeded experiments for DS#1.b 
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APPENDIX B 

Flocculation characterization duplicate (Data Set #1.b) experimental results and analysis.  

 

 

 

  

  
Figure B-39: Temporal evolution of floc size for DS#1.b (a) cumulative floc count for CC; (b) cumulative 

floc count for EC; (c) floc size distribution for CC; (d) floc size evolution for EC. Note: Floc size 

distributions were obtained by accumulating the total number of flocs for size intervals of 200 μm and are 

represented by a data point at the maximum of the size interval. 

 

(a) (b) 

(c) (d) 
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Figure B-40: Floc mean size evolution for CC and EC for DS#1.b 

 

 

 

 

Figure B-41: 2D fractal dimension for CC and EC for DS#1.b 
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APPENDIX C 

Experimental analysis results for duplicate test for reactor mixing characterization (DS#2) 

 

For DS#2, the camera was equipped with a 65 mm Nikon AF NIKKOR lens at an effective lens 

focal plane distance of 237 mm, resulting in 108 mm by 108 mm field of view, a resolution of 

approximately 67.6 μm per pixel and a 3.2 mm depth of field. The field of view dimensions were 

confirmed by imaging a ruler located within the focal plane and verifying the pixel resolution. The 

camera aperture was set to f/2 to enable maximum light capture with an exposure time of 20 μs. 

 

 

 

Figure C-42: Vector rejection percentage for the CC and EC experiments for DS#2 
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Figure C-43: Energy spectrum at the left upper, left middle, and left bottom region for horizontal 

(U) and vertical (W) velocity components for CC, DS#2 at (a) 2 minutes; (b) 17 minutes and (c) 

38 minutes for DS#2 

(a) 

(b) 

(c) 
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Figure C-44: Energy spectrum at the left upper, left middle, and left bottom region for horizontal 

(U) and vertical (W) velocity components for EC, DS#2 at (a) 2 minutes; (b) 17 minutes and (c) 

38 minutes for DS#2 

(a) 

(b) 

(c) 
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Figure C-45: Average 2D turbulence intensity for the CC experiment for DS#2. Average mean 

velocities in the horizontal and vertical directions are -0.77 cm/sec and 0.17 cm/sec, where positive 

values velocities in the positive x (horizontal) and z (vertical) direction as shown. 
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Figure C-46: Average 2D turbulence intensity for the EC experiment for DS#2. Average mean 

velocities in the horizontal and vertical directions are -0.80 cm/sec and 0.12 cm/sec, where positive 

values velocities in the positive x (horizontal) and z (vertical) direction as shown. 
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Figure C-47:  Ratio of turbulence intensity values measured in the CC and EC experiments for 

DS#2.  
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Figure C-48 Average local TKED rate for the CC experiment for DS#2 
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Figure C-49: Average local TKED rate for the EC experiment for DS#2 
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Figure C-50: Ratio of TKED rate from the CC and EC experiments for DS#2 
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Figure C-51: Contours of the average ratio of the local velocity gradients to the global velocity 

gradient, G, as determined by the spatially averaged TKED rate for the CC experiment for DS#2 
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Figure C-52: Contours of the average ratio of the local velocity gradients to the global velocity 

gradient, G, as determined by the spatially averaged TKED rate for the EC experiment for DS#2 
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APPENDIX D 

Duplicate reactor mixing characterization comparisons between DS#1.b (reported in the 

manuscript) and DS#2 (reported in Appendix C). 

 

 

 

 

 

 

 

 

 

 

Figure D-53: Mean TKED rate over time for CC and EC for DS#1.b and DS#2. 
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Figure D-54: Ratio of turbulence intensity results between DS#1.b to DS#2 for the CC 

experiment 
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Figure D-55: Ratio of turbulence intensity results between DS#1.b to DS#2 for the EC 

experiment 



105 

 

 

Figure D-56: Ratio of CC experimental results of TKED rate between DS#1.b to DS#2 
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Figure D-57: Ratio of EC experimental results of TKED rate between DS#1.b to DS#2 

 


