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ABSTRACT

This work presents vision-based stair detection and environment classification algorithms

for mobile robots capable of traversing staircases and different types of terrains. These algorithms

are developed for a specific hardware platform, called α-WaLTR, which is equipped with wheel-

and-leg transformable mechanism enabling multi-terrain locomotion. The design of the hardware

platform is optimized to allow for climbing over irregular terrains and continuous obstacles, such as

staircases. It is equipped with Jetson TX2 as the main processing board, an Inertial Measurement

Unit (IMU) and a Global Positioning System (GPS) for odometry, and a Light Detection And

Ranging (LiDAR) device and an RGB-Depth (RGB-D) camera. The stair detection algorithm

takes the color and depth image feed from the RGB-D camera and uses it to identify straight line

patterns that could constitute a stairway. To further embed the robot with the terrain classification

capability, the color images are segmented into traversable and non-traversable regions, thereby

making urban environments more accessible. Taking the computational limitations into account,

it is explored how these schemes can be integrated into the robot navigation stack using Robot

Operating System (ROS).
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NOMENCLATURE

UGV Unmanned Ground Vehicle

RGB-D Combination of RGB (Red-Green-Blue) and Depth channels
image or camera

LiDAR Light Detection and Ranging - the acronym used for a type
of range sensor

GPU Graphics Processing Unit

SVM Support Vector Machine

GSCNN Gated-shape Convolutional Neural Network

CNN Convolutional Neural Network

HPRC Texas A&M High Performance Research Computing Facility

ROS Robot Operating System

IMU Inertial Measurement Unit

GNSS Global Navigation Satellite System

GPS Global Positioning System - a subset of GNSS

RADAR Radio Detection and Ranging

WLAN Wireless Local Area Network
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1. INTRODUCTION

This chapter first provides an overview of the research area – vision-based algorithms for au-

tonomous navigation in unmanned ground vehicles (UGVs) and mobile robotic platforms – and

summarizes the existing work. The following sections detail the technical scope of work and re-

search objectives.

1.1 Background

Research in the field of robotics, in particular ground mobile robots, has seen a marked rise

over the past two decades. This has ushered in an inclination to adopt robotic systems to assist

humans in numerous tasks. Simultaneously, the degree of autonomy (or the complexity of tasks

that a robot can be trusted with) has also progressively increased. The subclass of UGVs has been

following a trend analogous to Moore’s Law – becoming cheaper to build and more compact, as

their capabilities expand – and are being employed in a variety of applications. Such vehicles make

use of a few different modes of locomotion, common among which are wheels [1] [2] [3], legs [4]

[5], and tracks [6] [7]. With the increased need for versatility, hybrid locomotion modes have also

been proposed, with both active and passive transformable wheel-leg-track designs being popular

[8] [9] [10] [11].

The development of control algorithms for such robots is subject to the mode of locomotion.

For instance, wheeled robots are generally limited to level terrains with a small degree of rugged-

ness. Robots equipped with legs can not only traverse more rugged terrains but can also nego-

tiate complex obstacles present in their path like staircases. However, this comes at a cost. The

more advanced the capabilities, the higher the required degree of intelligence. The problem to be

solved in such cases is two-fold: 1) creating a scheme that enables efficient locomotion [12] (i.e.

synchronization of actuators and the like); and 2) developing algorithms that sense the vehicle’s

surroundings and act based on the presence and type of environmental features. While the overall
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objectives of the project this thesis research is associated with encompass both aspects, the subject

of this thesis focuses on the second type of perception algorithms that can be employed in intelli-

gent decision-making schemes.

1.2 Scope of Work

This work is targeted towards developing vision algorithms for stair detection and terrain clas-

sification that can be implemented to a new small-size UGV platform, named α-WaLTR. It is

a scaled-up and optimized design of the Wheel-and-Leg Reconfigurable mechanism (WheeLeR)

prototype presented in [8]. This UGV has a modular design that can be equipped with four n-leg

transformable wheels (n = 3, 4, 6), and therefore, combines the simplicity of the wheeled loco-

motion control with the enhanced locomotion capabilities enabled by wheel-leg transformation. In

addition, it retains the passive-actuation capability of the WheeLeR design, wherein the transfor-

mation between the two modes of locomotion does not require another active actuator. α-WaLTR’s

embedded sensor suite make it suitable for search and rescue, exploration, and reconnaissance ap-

plications in urban (and suburban) environments. The design and capabilities of this platform are

further detailed in Chapter 3.

To supplement the enhanced physical capability of climbing over discrete and continuous ob-

stacles, a robust scheme for employing the feed from the sensor suite to ascertain the presence of

such environmental features is necessary. One such feature, omnipresent in indoor and outdoor ur-

ban environments, is staircases that connect multiple levels in buildings and other structures. These

also serve the purpose of being a contingency plan for evacuation and exploration. Therefore, the

first defined challenge is to develop an algorithm that is capable of detecting staircases and thereby

enable traversal of the same.

For a platform equipped with hybrid modes of locomotion, there is also a need for optimal path

selection. The most popular open-source vision-based navigation algorithm for wheeled robots

makes use of binary obstacle classification [13]. Such schemes may not always account for en-

hanced locomotion capabilities of multi-terrain UGVs. For optimal operation, it is desired that the

2



robot’s mode of operation is adaptive with respect to the terrain conditions. Therefore, another

defined challenge is to classify the robot’s operating environment to correspond to the improved

capabilities.

α-WaLTR’s software architecture is based on Robot Operating System (ROS) [14], employ-

ing open-source (e.g. the move-base Navigation stack [13]) and custom-designed libraries for

autonomous operation. Therefore, there is a need to integrate such algorithms within the existing

navigation stack while being modular and allowing for improvements in the future.

1.3 Research Objectives

The primary technical objectives of this research include the following:

1. Develop a scheme to detect ascending stair-like structures in the environment using RGB-

depth (RGB-D) data.

2. Develop an algorithm for identifying (and adapting to) varying environmental features as

traversable or otherwise using RGB data.

3. Test and benchmark the performance of proposed algorithms.
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2. STAIR DETECTION AND TERRAIN CLASSIFICATION ALGORITHMS

This chapter details the proposed vision algorithms for staircase detection and terrain classifi-

cation, alongside summarizing the related works of literature.

2.1 Staircase Detection

Staircases or stairways are one of the most commonly present features of urban and suburban

environments. The presence of these structures has been rising with the number of multi-story

buildings. Present both outdoors and indoors, they form an essential part of our infrastructure,

owing to their use as a means of access and emergency egress. Therein lies their importance in

search-and-rescue and related missions. In [15], a framework for autonomous detection and navi-

gation of stairs was presented, involving three major phases: detecting the presence of a staircase

in the frame and approaching it; aligning the body; and traversing. The focus here is on the first

phase, which has been accomplished in a few different ways.

2.1.1 Related work

Because of the ubiquitous nature of these structures, several research domains have focused on

attempting to solve this problem efficiently. One avenue of work in which this features heavily is

in the development of human-assistive technologies. To alleviate the challenges individuals face

with visual impairment, sensory augmentation is a popular route. Some existing works involve

a wearable device with an inertial measurement unit (IMU) and a depth sensor capable of stair

detection [16] and assistive canes equipped with Ultrasonic sensors [17] [18]. Monocular cameras

have also been employed to detect staircase patterns using simultaneous spatial and frequency

domain analysis [19] [20] and morphological spatial operations [21]. In [22], a novel sensor-

fusion scheme for RGB-D image data was put forward that labeled input frames as containing a

staircase (either ascending or descending) or otherwise using a Support Vector Machine (SVM)

classifier.
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When it comes to ground robots, such approaches for detecting complex stair-like features

have made use of laser range finders, where the robots were tele-operable and full autonomy in

navigation was not the goal [23] [24]. However, as the robots’ effectors evolved and became ca-

pable of navigating complex scenarios, more robust sensing capabilities were deemed necessary.

This was also accompanied by importance of on-board processing capabilities, meaning computa-

tionally intensive autonomous decision-making algorithms could be developed. The use of inputs

from multiple sensors in conjunction has been profitably employed in stairway detection. Stereo-

vision has been used to detect stair edges and fit planes to the stairway [25] [26] [27]. Detecting

surfaces and analyzing the distance between parallel planes corresponding to stairs has also been

accomplished with the use of RGB-D cameras [28] [29]. Effective techniques for stair detection

from 2D image features have also been proposed. Some of these include simple image filtering

and edge detection based on a priori inputs [30], frequency domain Gabor Filters [31], employing

the Viola-Jones object detection framework [32], and using a YOLO deep-learning approach [33].

2.1.2 Machine learning based stair detection

In this thesis, a stairway detection scheme is based on and extended from the existing work

presented in [22]. α-WaLTR is equipped with two RGB-D cameras on its front and back, and

therefore it can make use of the two synchronous RGB-D image streams to make conclusive deci-

sions about the presence or absence of stairways in the frames of view of the robot. The proposed

method consists of 1) a pre-processing phase - where the RGB image is converted to grayscale

and filtered to eliminate unnecessary features/artifacts; 2) a detection phase - where the edges and

lines corresponding to the edges are detected and grouped based on location; and 3) a conclusion

phase - where the depth values corresponding to the groupings are extracted and passed through

a pre-trained classifier to determine if a staircase is present or not. Fig. 2.1 shows a schematic of

this process in a flow chart. All image processing operations are performed using built-in OpenCV

functions and libraries [34].
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Figure 2.1: A schematic of the Staircase Detection approach.

Pre-processing phase

The color image frame is obtained as a 3-channel RGB image. Processing multi-channel data

simultaneously is cumbersome and computationally inefficient. Therefore, the input image is con-

verted to single channel grayscale image for ease of further processing. This is accomplished

using OpenCV’s cv::cvtColor() function. This color space conversion is achieved by calculating

the weighted average of the three disparate bands. The individual channel weights are based on

their wavelengths, and correct the image to account or human perception. At a pixel location (x, y),

the grayscale intensity value Ig(x, y) is computed using the following relationship [34]:

Ig(x, y) = 0.299 ∗ IR(x, y) + 0.587 ∗ IG(x, y) + 0.114 ∗ IB(x, y) (2.1)

where, IR, IG, and IG are the intensities of the Red, Blue, and Green channels respectively.

In order to further optimize computation and to eliminate unnecessary artifacts, the image is

subject to morphological dilation using the cv::dilate() function. This process makes use of a

structuring element (or Kernel) to expand shapes or elements present in the image. An elliptical

kernel with a major axis of 20 pixels and eccentricity of
√

3/2 was employed for the application in

question. Centering the Kernel at each pixel location, the intensity of all superimposed pixels of the
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base image are set to the maximum value of the set. At pixel location (x, y), this is mathematically

expressed as:

dst(x, y) = max
(x′,y′):element(x′,y′)6=0

src(x+ x′, y + y′) (2.2)

where src and dst are the Input and Output images respectively, and element is the structuring

element used for dilation.

This result of this is an image with strong edges enhanced and weak edges diminished, or in

other words, it makes the lines pertaining to staircases stand out. The edges are then extracted

by a process called the Canny Edge Detector (cv::Canny()). The Canny Detector functions as a

multi-stage process. The first step is to reduce noise by filtering the image using a 5x5 Gaussian

kernel. Following this, the intensity gradient of the image is computed using the Sobel operator.

This is a 2D differentiation operation that produces the first derivative in the horizontal (x) and

vertical (y) directions. An example of a typical 3x3 Sobel kernel is as follows:

Sx =


−1 0 +1

−2 0 +2

−1 0 +1

 ; Sy =


+1 +2 +1

0 0 0

−1 −2 −1

 ; (2.3)

By convolving the Sobel operators with the filtered image, the horizontal (Gx) and vertical (Gy)

gradients are obtained. Using these, the edge gradient (G) and the gradient angle (θ) are calculated

as:

G =
√
G2
x +G2

y; θ = atan

(
Gy

Gx

)
(2.4)

Depending on the gradient magnitude and direction, only the pixels that conform to a local maxima

are retained. This ensures that pixels that do not constitute the edge are suppressed. The final step

in edge detection is hysteresis thresholding, which makes use of an upper (’sure-edge’) and a lower

(’not-edge’) intensity limit values to label and discard edges respectively. The pixels lying between

the two are subjectively labeled based on their connectivity to other edges. An optimal choice of

threshold values results in long and connected edges, and discards short and disjoint lines. The
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results of this phase are indicated by the red bounded box in Fig. 2.1. An example is presented in

Fig. 2.2, with lines representing the stairway and other features in the frame.

Figure 2.2: Pre-processing the RGB image ([L] to [R] sequence).

Detection phase

The derived edges are transformed to a 2-parameter space termed the Hough space, where

straight lines are extracted by a voting procedure [34]. For a point represented in Cartesian space as

(x, y), every line passing through it can be expressed in Polar co-ordinates as: rθ = xcosθ+ysinθ,

or in other words, the plot the family of lines passing through a point yields a Sinusoid in the r− θ

space. Extending this operation to more than one point, an intersection in the r − θ space implies

that both points lie on a line that can be represented by the parameters r and θ of the point of

intersection. This procedure of analyzing the number of intersections between curves is termed the

Hough Line Transform. By this method, lines are extracted from the input image by computing

the features that have above a set threshold of intersections in the Hough space. An optimized

approach to this is the Probabilistic Hough Line Transform (PHLT) that only considers a subset of

edges which are more likely to constitute a line.

In the chosen application, the PHLT is applied to the output of the Canny detector. The result

of this is a vector of lines that are converted back to Cartesian space, i.e. represented by end points

(x1, y1) and (x2, y2). The extracted lines are then grouped for further analysis. This grouping is
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based on the assumption that staircase edges would consist of parallel lines stacked vertically. The

heuristic employed for this grouping made use of the slope (m) and Cartesian locations of their

midpoints (X̄):

m =
y2 − y1
x2 − x1

, X̄ =
x1 + x2

2
(2.5)

Rejecting steep vertical and short lines and considering groupings of more than 2, candidate

groupings are generated. The result of the PHLT being grouped into vectors of parallel lines is

illustrated in Fig. 2.3. The criteria for the lines to be accepted is that their midpoints should lie

within a set rectangular region and they must be roughly parallel. Here, sets 3 and 6 (without the

final line) are considered an acceptable grouping. 1 is rejected for being a set of fewer than 3, sets 2

and 5 are rejected for having high slope values, and set 4 is rejected for its constituents not having

similar slope despite their proximity. The blue bounded box in Fig. 2.1 represents this intermediate

phase of processing. In Fig. 2.4, the midpoints extracted from the candidate are marked on the

corresponding grayscale image.

Figure 2.3: Illustration of Straight Line grouping.
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Figure 2.4: Detection of Candidates.

Conclusion phase

To detect a staircase among other structures within the image that contain a parallel grouping

of lines, the contextual depth information is used to classify structures as stair-like or otherwise.

This classification (as seen in the green bounded box in Fig. 2.1) adopts a Support Vector Machine

(SVM) classifier that is trained in advance and can be employed in real-time. This supervised learn-

ing technique involves dividing classes of labeled data using hyperplanes (a plane in x-dimensional

space), i.e. a mathematical grouping of the labeled data is accomplished. The nature of such a

mathematical problem is one of optimization. The goal is to fit the best hyperplane for the given

data such that maximum accuracy of classification is achieved. An illustration of this problem is

seen in Fig. 2.5. In this 2-dimensional example, there are two classes of data, represented by knots

and crosses. Multiple hyperplanes can be generated for a given set of training data (represented

by the blue lines). However, the optimal hyperplane (shown in red) is the one that maximizes the

width of the separation (termed Margin) between the two classes.
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Figure 2.5: Illustration of Hyperplanes [Reproduced from [34]].

The mathematical formulation of the SVM problem is as follows [34]. In an n-dimensional

space, a hyperplane is represented as:

f(x) = β0 + βTx (2.6)

where β0 is called the Bias, β is the Weight Vector, and x represents the training data or support

vectors. These values can be scaled to generate an infinite number of representations of the same

hyperplane. But the conventionally employed representation, known as the Canonical Form is:

|β0 + βTx| = 1 (2.7)

The distance (d) between a point x and the hyperplane (β, β0) can be expressed using the Euclidean

relationship. Factoring in the canonical form of the hyperplane:

d =
|β0 + βTx|
||β||

=
1

||β||
(2.8)
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For the optimal hyperplane, the gap or the margin (M ) is twice the distance between the point x

and the hyperplane. Therefore,

M = 2 ∗ d =
2

||β||
(2.9)

In other words, the problem of obtaining the optimal hyperplane which is equivalent to maximizing

M , can be expressed as a problem of minimizing a function L(β):

min
β,β0

L(β) =
1

2
||β||2 s.t. yi(β

Txi + β0) ≥ 1 ∀i (2.10)

where yi represents the label of the ith class of the training data.

The pre-trained SVM classifier is based on the work presented by Munoz et al. [22] while

the implementation has been handled differently. The researchers created a dataset constituted by

images of staircases, escalators, and non-stair scenes is used to create a multi-class classifier. A

vertical line is drawn through the middle of the image captured by the camera and the values of

depth are extracted at every pixel, resulting in an x-dimensional classification space (where x is the

height of the image employed). The assumption here is that the camera (that is handheld) would

be located in front of the staircase, and the angle formed by the steps and the vertical line would

be close to 0 degree.

For the mobile robots and small-size UGVs, however, it is necessary to recognize the presence

of a stairway from acute-angled points of view and from low vantage points. It is anticipated

that many other structures would be present in the image frame. Therefore, for the training and

testing of the classifier, the location from which the depth information is extracted becomes crucial.

From each grouping of the previous phase, the raw depth value is extracted at the midpoint of

the line - this is in essence the distance of that point from the camera in the field of view of

the robot. This is scaled with respect to the maximum value (a threshold set arbitrarily, beyond

which reliable depth information cannot be obtained) and stored as a vector of depth data. In this

context, a vector refers to an array of scaled values that has passed the criteria for being grouped

as a potential staircase candidate. The upper limit on the size of this array was set arbitrarily at
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eight, with the reasoning that this would contain sufficient information to validate the presence of

a stairway; any addition would only increase the dimensionality of the SVM space and not add

much value to the classification. A number of depth vectors were extracted from training images

constituting stairways and other indoor and outdoor structures, and were used to train two binary

SVM classifiers employing the LIBSVM library [35]. The classifiers were based in 8-dimensional

space, and the dividing hyperplanes were generated based on the pattern of variation in the depth

data.

The first model was trained using a labeled dataset of positives, i.e. depth vectors extracted

from image of staircases, and the second using a dataset of negatives, i.e. depth vectors not per-

taining to staircases. From the output of the Detection phase, the locations of the midpoints of the

lines constituting each grouping is used to extract the raw depth value from the depth image. This

was possible owing to the fact that the images employed were of identical dimensions and aspect

ratio. The raw values of depth are sorted by location of the midpoints and scaled, before being fed

as an input to the pre-trained models. If the output of the classification from both are in agreement,

the candidate grouping is labeled a staircase. This can be seen in Fig. 2.6, where only the grouping

representing the stairway is present (shown in black). The algorithm was implemented using the

roscpp wrapper which is available under Appendix B.1.

Figure 2.6: [L] Depth Image, [R] labeled result.
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2.2 Semantic Segmentation and Scene Parsing for Terrain Classification

In addition to the stair detection capability, extended capability of subjective understanding of

the robot’s surroundings is desired to fully supplement α-WaLTR’s hybrid locomotion capabilities.

In other words, there is a need to classify the robot’s operating terrain into more complex group-

ings that will account for the nature of the terrain and the mode of locomotion of the robot. The

objective of this part of the research is to employ a scheme that produces a segmented output of the

environment seen by the robot. It is noted that the algorithm should aim to classify a minimal, but

sufficient, number of terrain classes for optimal embedded applications. This can then be applied

for path planning and obstacle avoidance and traversal routines.

2.2.1 Related work

Work in the domains of navigation and terrain identification has been a facet of autonomous

vehicle vision system research. Many varied techniques have been proposed, including employing

visual odometry in the absence of GNSS localization [36], detecting the vanishing point to identify

the roadway [37], and employing morphological processing to identify unstructured pathways from

2D images [38]. However, with the advancement in sensor hardware and processing techniques,

a much more popular route in both autonomous vehicles and ground robot research has been to

employ computer vision to semantically segment the operating environment. This is an avenue of

research that is both established and expanding, as it aims to group features in the environment in

known clusters, thereby making it viable for navigation planning.

A simpler problem was explored to segment the operating environment into lanes employing

the edges and vanishing points [39]. A Deep Learning technique was also proposed to detect pedes-

trian lanes especially when unmarked, by segment the environment into lanes and backgrounds

[40]. Urban semantic segmentation has also been explored using only data from a Monocular

camera to identify drivable lanes [41]. With the goal of reducing vehicular casualties, a CNN-

based architecture was developed to assist drivers on the roads [42]. A novel approach to the
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problem of semantic mapping in mobile robots attached visual cues to a ConvNet model, thereby

enabling the robot to make subjective decisions [43]. Another popular CNN framework is PSPNet

that has been been employed in off-road and unstructured environments [44]. A promising new

framework GANav for unstructured outdoor environments was presented and validated in [45]. As

with most technological advances, this has also been used in accessibility enhancement. Semantic

segmentation has been employed in developing a device to assist the visually-impaired in walking

outdoors [46]. Semantic mapping has been used with non-image data as well. The use of the

Mask-RCNN architecture has been applied to segment point clouds and connect the results with a

real-time SLAM algorithm for indoor mobile robots [47]. In a similar vein, the RFNet architecture

has been adopted to segment multimodal RGB-D data in an outdoor environment [48].

2.2.2 Gated-shape CNN

The RGB data from the RELLIS-3D dataset [49] was chosen as the benchmark as it presents

a balance between structured and unstructured environments that α-WaLTR can be expected to

operate in. Although it is presented as targeting off-road autonomous driving applications, the

focus on multi-modal data collection makes it of interest for our work as well. The RGB image

data consists of five sequences recorded on the RELLIS campus of Texas A&M University, College

Station, Texas. The corresponding ground truth images are pixel-wise annotated, and the labels

include 20 different visual classes.

To benchmark the data, two state-of-the-art deep learning architectures were adopted: a) High-

Resolution Network with Object Contextual Representation (HRNet [50] + OCR [51]) and b)

Gated-shape Convolutional Neural Networks (GSCNN) [52]. For this thesis the latter is chosen

as the model to further improve upon. This choice is based on qualitative measures of accuracy

in preliminary tests involving the two. As the performance of the GSCNN model was observed

to be better with images outside of the presented dataset, it was selected for further work. The

GSCNN architecture consists of a two stream network [52]. The conventional approach to im-

age segmentation is to process all the data from the image together in one neural network. The

GSCNN architecture processes the information about the shape extracted from the raw image in a
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separate stream, whilst simultaneously making use of a feed-forward CNN as a classical stream.

The outputs of the two (dense pixel features and semantic boundaries) are fused so that the contex-

tual information is preserved. The final output merges the boundary information with the region

features, so that a refined semantically segmented image is obtained. This is represented in Fig.

2.7. An illustration of how the GSCNN model trained on the RELLIS-3D dataset works is shown

in Fig. 2.8.

Figure 2.7: GSCNN Architecture. [Reprinted from [52]]
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Figure 2.8: Illustration of scene segmentation: [L] Input frame, [R] Segmented image. [Color
scheme adapted with permission from [49]]

2.2.3 Class merging approach

While semantic segmentation and scene parsing for visual images may involve many classes

for general understanding of the environment and surroundings for various applications, this level

of detailed classification is neither necessary nor computationally suitable for many embedded

robotics applications. In particular, if the purpose of the classification is the autonomous naviga-

tion, the robot needs to classify traversable and non-traversable terrains while moving towards the

target location.

Considering the capabilities of α-WaLTR, a scheme to merge the classes into a smaller number

of classes is proposed. For instance, the concrete and asphalt classes both represent traversable

terrains, and the pole and fence classes both represent obstacles for the robot. In addition, it

is expected that class merging would make it possible to have a more computationally efficient

approach. With these factors in mind, the following merged classes are proposed:
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(1) Level terrain that can be traversed by the platform: Dirt, Grass, Asphalt, Mud, Concrete

(2) Obstacles that should be re-routed around - Vehicle, Object, Pole, Log, Person, Barrier,

Puddle, Bush

(3) Larger obstructions that cannot be traversed or re-routed around - Building, Rubble, Fence,

Water, Tree

(4) Sky - cannot be grouped under any other category

(5) Void - if a region cannot be labeled as any of the above
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3. CONFIGURATION OF THE MOBILE ROBOT PLATFORM

This chapter delves into detail about the α-WaLTR platform’s hardware and software architec-

ture.

3.1 Description of Hardware Platform

α-WaLTR is the hardware testbed platform, capable of multi-terrain navigation. It is equipped

with four wheel-leg transformable mechanisms to support enhanced locomotion on rough sur-

faces, low obstacles, as well as staircases. This locomotion mechanism design is based on the

early WheeLeR proof-of-concept proposed in [8]. This prototype, pictured in Fig. 3.1, was ap-

proximately 17× 12× 3cm3 in size, and weighing about 500g.

Figure 3.1: WheeLeR prototype [Reprinted from [8]].

3.1.1 Hardware overview

In order to employ this mechanism in a significantly larger ground robot, with dimensions on

par with commercially available platforms like the AION-R1 [53], many improvements were nec-

essary. The hardware platform was redesigned by a team of researchers in the ART lab at Texas

A&M University under the support of DARPA Contract No. HR00112020037. This work involved

multiple phases - a) scaling up the wheel-leg transformable mechanism and optimizing the design
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variables to account for environmental factors like friction; b) modifying the chassis dimensions

to be capable of carrying a significant payload; c) optimizing the layout of the constituent compo-

nents thereby enabling the platform to undergo changes in orientation in a stable manner. Further

discussion of the aforementioned phase of work is beyond the scope of this thesis. Following this,

work on constructing and testing the α-WaLTR platform for locomotion capabilities began.

The scaled-up UGV platform (shown in Fig. 3.2) is constructed using a carbon fiber base

plate, with 3D-printed (PLA) walls. The assembly is completed by a lightweight acrylic cover. It

can be equipped with n-legged wheels, thereby exhibiting a modular design (n = 3, 4, 6). The

wheels themselves are furnished with shock reducing suspension systems. Compared to the initial

prototype, α-WaLTR weighs around 12 kg, and measures 63× 47× 20cm3.

Figure 3.2: α-WaLTR platform.

20



α-WaLTR is capable of navigating across varied classes of challenging terrains. Equipped with

wheels that can transform into legs, it retains the simplicity of wheeled navigation with fewer

restrictions. The potential applications of this platform lie in urban military operations, such as

search and reconnaissance. It is expected that platforms like these can be used to gain unmanned

access to possibly hostile and/or inaccessible multi-storey environments, thereby enabling remote

surveillance and rescue efforts.

3.1.2 Sensors employed

Figure 3.3: Layout of Sensors on α-WaLTR.

The α-WaLTR platform is designed to operate with a level of partial to complete autonomy.

With the only user input being a global instruction, the robot is expected to negotiate obstacles

and other environmental variations, by generating local instructions. This necessitates the need for

sophisticated robotic perception. The platform is therefore equipped with a variety of sensors and

high performance processing units to enable this. An Nvidia Jetson TX2 module is used as the
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main processor for all on-board computation. It is an embedded system equipped with a multi-

core CPU and GPU which are capable of multi-threading. With 8GB of memory and 32GB of

storage, this processor is central to autonomous operation. The embedded processor and sensor

components are shown in Fig. 3.3.

The platform’s vision system consists of two disparate sensors. The Intel Realsense RGB-D

cameras are capable of streaming two channels (RGB/color and depth) of images in a variety of

resolutions. They are stereo-depth cameras - consisting of two sensors that are placed a small

distance apart. By comparing the inputs from the two, the camera’s in-built software provides the

user with depth information reliable upto 10m. They also contain an infrared projector, thereby not

being dependent on external light sources [54]. These cameras also contain an inbuilt IMU, that

can enable sensor fusion to eliminate external sources of noise. With one mounted on the front,

and one on the rear end of the platform, these facilitate operation while moving in either direction

(simultaneously or otherwise). The other vision sensor is a 360◦ lidar. This can be employed to

obtain planar laser scans upto a reliable range of 12m. It allows for customization of the sampling

rate and the resolution. In conjunction, the two sensors can be optimally employed to build a map

of the operating environment and visualize the same in point cloud form.

The final component involved is an integrated IMU-GPS-GNSS flight controller termed the

Orange Cube. Consisting of 3 sets of IMUs and an internal data filtering firmware, this can be

employed reliably for inertial measurements. The GPS/GNSS Here3 module consists of a compass

and magnetometer allowing for efficient localization. Compatible with various communication

protocols (e.g. I2C, UART, CAN), it can be employed to communicate directly with the motion

controllers for ground and aerial vehicles [55].

3.2 Software architecture

The software on the α-WaLTR platform is based completely on ROS [14] or ROS 1 to be pre-

cise. Although termed so, it is not an OS rather an open-source software framework that functions

like one. It supports multi-node networking, has packages specifically written for it, and employs
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specific messages and communication methods. While it is designed to run on Unix-based OS, a

limited number of operations (clients) can run on Windows.

The ROS architecture typically consists of two major components - the Master, and Nodes.

Nodes are nothing but different processes running on the same network, tied together by the Master

that references all the other nodes and enables communication between them. Typically, the Master

is run on the Robot, but this can be changed at startup to a different computer on the same network.

Nodes communicate by means of ROS Messages - these are data structures with certain defined

fields comprising of commonly used datatypes. Each node sends out messages with a unique name

termed as a Topic. A topic can be subscribed to (received) or published (sent out) by any node

on the same network. These topics are not directed at any node in particular, rather they are sent

into the metaphorical ether of the ROS network. Nodes can be user-defined or system-inherent,

but they are in general modular, and responsible for a low-level task. A ROS network can be setup

over any conventionally employed protocol, including wired or wireless Ethernet.

Every ROS node is setup or written using what is called a Client Library. These wrappers

enable programmers to write scripts capable of creating new nodes and working with other nodes

on the network. The two most common ones are the C++ and Python wrappers for ROS: roscpp

and rospy. Scripts written employing these client libraries follow an object-oriented structure. The

execution of a ROS node consists of two functions: init() which initializes the node and topics

written by and to it; and spin(), which loops between function calls for continuous operation.

The ROS nodes employed on the α-WaLTR platform are centered around the navigation stack.

As the primary goal is to achieve autonomous navigation based on a high-level user input, the

move_base package was employed and it further explored in this thesis. This package, suitable for

mobile ground robots, makes use of a global goal and attempts to reach it. It ties in various inputs

from different layers and sends a movement command to the lower-level component in the system.

An overview of the ROS Navigation Stack using move_base is illustrated in Fig. 3.4 [13].
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Figure 3.4: Illustration of ROS Navigation Stack architecture [Reproduced from [13]].

3.2.1 Planners

The Global and Local Planners work based on costmaps, which are occupancy grids repre-

senting the operating environment. For the α-WaLTR, the costmap_2d::Costmap2DROS object is

used to maintain information about the state of the robot in real-time. The occupancy values are

mapped from the inputs of the vision system which update as changes occur. The cost for each cell

in the grid can take an integer value from 0 to 255. An occupied cell is assigned values above 128.

The exact value is calculated based on how the obstacles present would interfere with the robot’s

footprint. Moving further from this cell, the occupancy value is determined using a discretized

exponential decay. Based on an “inflation radius", a user-modifiable value for a buffer zone around

the robot, the rate of this decay is determined. This process of propagating cost values based on

distance from an obstacle is termed Inflation. In essence, what happens here is that the cells further

away from the obstacle get assigned lower values. For cells beyond the inflation radius, a value of

0 (Freespace) is assigned. However, for cells about which there is no information (i.e. beyond the

range of the sensors), an "Unknown" cost is assigned.
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Fig. 3.5 shows an example of a scenario where three obstacles are placed around the robot

growing increasingly distant. RViz is a visualization tool used to both subscribe to and publish

topics pertaining to sensors. Here, the white box is the Local Costmap, where it is noted that

there’s an obstacle ahead of the robot and to the left. The other obstacles are out of the range for

this local costmap. In addition, the inflation radius for the local costmap is significantly low that

the cells away from the obstacle are quickly labeled as unoccupied. The green layer on which the

local costmap is superimposed is the global costmap. Here we can see that the space occupied by

the first and second closest obstacles are marked to indicate the same, however the third object is

significantly far away to not be spotted by the sensors.

Figure 3.5: Costmap assignment vs. obstacle position. [L]: Gazebo simulation, [R]: RViz
Costmap.

The global planner employed for the α-WaLTR is navfn/NavfnROS, that adheres to the interface

settings under nav_core::BaseGlobalPlanner. Given a global position input, Navfn uses Dijkstra’s

Algorithm to search through the operating area to figure out the most optimal path. This starts

from the Robot’s origin (or position where the robot is located at the time when the goal position is

input. The algorithm itself works by assigning a cost/distance value to the path between two cells.
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By radiating outwards, each possible path is given a total cost (calculated using a cumulative sum

of a quadratic approximation of the distance), with the one with the smallest cost labeled the actual

path.

The output of the global plan is a path that the local planner can now employ. base_local_planner:

:TrajectoryPlannerROS used here serves to connect the path generated using Dijkstra’s algorithm

to the robot’s kinematics. It makes use of a technique called Dynamic Window Approach (DWA)

to determine a value for all the cells around the robot. The algorithm simulates a trajectory by

sampling discrete values of (dẋ, dẏ, dθ̇) in the vicinity. It determines the robot’s state if this veloc-

ity is applied for the simulation time dt. The result of this is a number of trajectories equal to the

number of simulations. Each trajectory is evaluated based on its proximity to the global path, how

far away from obstacles it is, and how close to the goal it would be. The one with the highest score

(a weighted metric based on the above-mentioned parameters) is chosen as the "local path", and

sent to the lower-level controller. The cost is negative if it that trajectory would result in a collision

with an obstacle. This Local Trajectory Planner then sends the velocity values (dẋ, dẏ, dθ̇) to the

base-controller, thereby advancing to the next state. This iterative process continues until the robot

reaches the desired global goal, or if a trajectory cannot be found owing to special circumstances.

In Fig. 3.6, an example can be seen on RViz of how the paths generated change depending on

the actual position. These were captured 1.5s (in terms of simulation time) apart. As illustrated,

both the global and local paths are updated as the map updates. Another setting employed is to

make the local costmap non-static i.e. it moves with the robot centered at its origin.
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Figure 3.6: Global (Red) and Local (Green) trajectories at two different times.

3.2.2 Recovery Behaviors

One condition where the move_base fails to generate a local trajectory is when the robot is

unable to extricate itself when it is perceived to be stuck between obstacles. These manuevers are

termed Recovery Behaviors, and when enabled, the sequence adopted is as follows.

1. The robot is unable to proceed with generating a local trajectory - labeled stuck. Step 2.

2. Obstacles outside of a set zone are cleared from costmap. Still stuck? Step 3.

3. The robot uses the rotate_recovery::RotateRecovery object and rotates to clear out obstacles

from the costmap. Still stuck? Step 4.

4. All obstaces outside of rotation footprint are cleared, and rotate recovery is re-attempted.

Still stuck? Goal is infeasible.

These cases usually occur when there are unusually challenging dynamic obstacles present in the

operating environment, or if the set tolerance to achieve the goal is too tight.

3.2.3 Miscellaneous

Another requirement for the move_base package to work are the sensor transforms and odom-

etry (denoted by the topic /tf ). The /tf topic is vital to transform the sensor inputs from their
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coordinate systems of reference to map information. This is the topic published by the tf pack-

age that keeps track of changing coordinate frames and makes the link between trajectories and

the output command velocities. Usually, the velocity to the base controller is sent in the form of

a /cmd_vel topic, which is a data structure containing the X, Y, and rotational velocities for the

robot’s base. The tf package can also be used to publish the odometry information for the robot,

this is employed by the Extended Kalman Filter (EKF) in localization and dead-reckoning. Other

packages employed are specific to the sensors present on the robot. Some of them are created by

the manufacturer and provide algorithms to filter the raw data, to modify sensor configuration, etc.
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4. ALGORITHM EVALUATION AND IMPLEMENTATION

This chapter discusses the results of evaluating the algorithms and proposes schemes for inte-

grating them on the α-WaLTR platform.

4.1 Evaluation of Staircase Detection

4.1.1 Methodology and results

The proposed staircase detection algorithm was trained on two separate datasets to generate

two distinct SVM classifiers. The first one was trained using images employed by Munoz et al.

[22], and other RGB-D datasets. This training set consisted exclusively of image frames obtained

from a human eye point of view. i.e. shot with a camera held at chest height. The second classifier

was trained employing images shot on-campus by ART (Adaptive Robotics and Technology) Lab

members and obtained from publicly available datasets (as detailed in Appendix A). This included

images from a robot’s eye view. The difference between the two is illustrated in Fig. 4.1.

Figure 4.1: Illustration of difference between models. [L]: Model 1, [R]: Model 2

An example of the two different vantage points employed is shown in Fig. 4.2. The major

difference observed is in the pattern of variation of the depth values extracted from the images. For
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the likes of the image on the left, the pattern follows a parabolic trend, whereas for the image on

the right, it is linear in nature. A total of around 250 support vectors were generated in both cases.

Figure 4.2: Images shot from [L]: Human eye view, [R]: Robot eye view

The test set was compiled from pictures shot on-campus and images available online, which

were not included in the training. The results of this are summed up in Table 4.1. The results are

reported using the specificity (proportion of images labeled true negatives among the total negative

images) and sensitivity (proportion of images labeled true positives amongst the positive frames)

metrics. These are preferred to the base accuracy metric (ratio of positive classifications to the total

number of frames), as it paints a better picture of how effective the classification is.

Frames Present
Sensitivity (%) Specificity (%)

Model 1 Model 2 Model 1 Model 2

Test set 1 [22] 177 92.05 98.68 68.42 47.37

Test set 2 [56] 133 93.94 98.11 53.13 41.67

Test set 3 (TAMU Campus) 50 100 100 63.64 33.33

Table 4.1: Accuracy of staircase detection algorithm.
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The model trained on the second training set (i.e., from the robot’s eye view) showed a higher

sensitivity than the other model while its specificity is lower. The trend was consistent among

all three datasets. Model 2 could detect staircases better than Model 1 but was not as good at

labeling non-stair images. In practice, this can be improved by having a balance of positive and

negative images in training. As the non-stair class of images are quite similar in appearance, there

might be a tendency to be biased in favor of the positives (staircases having a lot of variability

in appearance). In addition, the data quality can be varied by changing the lighting conditions or

image resolution.

The processing speed of this algorithm was about 4-5 frames per second (fps) on average when

running on-board the α-WaLTR platform (i.e., on the Jetson TX2). Some outliers in the processing

time were observed – the first few frames seemingly taking up initialization time. The majority

of the computational load was down to the two feature-detection operations – the Canny Detector

and the Hough line transform. Based on the observed performance, the input frame rate was set in

order not to miss frames in real-time. The ROS package was configured to store incoming images

in a buffer to enable FiFo frame processing. In comparison, the algorithm proposed by Munoz et

al. [22] was capable of running at 2 fps, albeit on a 2.9GHz processor without GPU acceleration.

The work presented in [33] employed YOLO and reported a faster processing rate, at around

20-25 fps on an Nvidia Jetson TX1. When tested on an i7 dual-core computer, a disparity-based

depth processing algorithm [27] was able to process at around 15 fps. The interpretation is that

better performance is observed from higher capacity processors (as expected). However, all the

tests run on the α-WaLTR platform were done in conjunction with other ROS nodes running. In

other words, the performance observed here can be expected in real-time operation and not just

in laboratory conditions (tested separately). In terms of accuracy, Munoz et al. [22] reported a

96% sensitivity (on par with the proposed algorithm) and a 93% specificity (much higher than

observed here). In contrast, the deep-learning model [33] performed much poorer, with a reported

78% sensitivity. This is likely related to the relatively small dataset, being insufficient for training

a reliable model using a deep-learning based method.
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4.1.2 Potential improvements

The supervised learning technique of SVM is a popular Machine Learning tool that can be

applied to a variety of vision-based applications. It supports large dimensional spaces and can be

trained and employed in classifying multiple data categories. Another application it supports is

regression analysis, i.e., to find trends in data. However, one downside of this is that the increase

in dimensionality makes the classifier more abstract and hard to visualize. Therefore the objective

in improving this particular application is to identify a method of processing the depth data such

that it can be represented in n-dimensional space (n ≤ 3). This would mean that the model is

trained not on actual depth extracted from the image, but rather on inferred data. Other supervised

learning techniques involving Deep Learning can also be explored. This approach may result in

higher accuracy, while the resulting models would be computationally heavy to deploy with an

even lower ability to visualize. SVMs avoid the “black box" nature of other supervised learning

techniques and can be employed profitably if the data is processed appropriately. The choice of

employing SVM was down mainly to two reasons: a) it can be implemented in real-time on board

processing (as evidenced by the comparable performance with other algorithms); b) retraining is

fairly easy and can be implemented reasonably quickly.

4.2 Evaluation of Semantic Scene Segmentation

4.2.1 Network tests

For efficient real-time implementation, two strategies were considered: 1) processing the im-

ages on-board, and 2) transmitting the images to an off-board hub and sending the processed in-

formation back to the robot. A set of extensive experiments were conducted to evaluate these two

approaches. The first was to compare the processing speed on-board and off-board. The time to

process the image frames was the metric used for comparison. The images were input at different

resolutions to identify the optimal quality of images that could be employed.

The results of the experiment are summarized in Table 4.2, with four time measurements re-
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ported for each size range. When a series of frames is input to the model, the behavior observed

was a steady decrease in processing time from the first frame resulting in a stabilization around

the 30-40% mark of the sample size. This is labeled as ‘Stable’ in Table 4.2. This higher time

at the start is accounted for by the initialization of the model and the variables associated with it.

The subsequent frames exhibit lower processing times as re-initialization of certain variables is

unnecessary. Three size ranges were employed for this experiment - this labeling and selection of

sizes is based on the maximum frame size that can be processed by the on-board processor (Jetson

TX2). It was observed that an image frame greater than 1500 × 1500 pixels cannot be processed.

So this was set as the maximum possible frame size. The first range (high resolution) consisted

of images ranging between frames sizes of 1000-1500 pixels along both dimensions; the second

range (medium resolution) - 500-1000 pixels; and the third (low resolution) - below 500 pixels.

In summary, the semantic segmentation is more efficient on the higher performance computing

device as expected.

High Resolution Medium Resolution Low Resolution
Frame 1 2 5 Stable 1 2 5 Stable 1 2 5 Stable
Off-board
PC

44.9 34 17.3 8.4 16.0 11.8 5.5 2.2 12.0 8.6 3.4 1.5

On-board
Jetson TX2

75.7 47.4 29.9 41.3 29.8 17.9 10.5 7.0 13.9 8.0 4.5 2.8

Table 4.2: Average time (in seconds) to process a frame.

As off-board processing was observed to be more efficient, the next experiment focused on

quantifying how expensive the image transmission over a network would be. The ROS wrapper

of the Realsense camera API supports image compression for this very purpose. Rather than

sending and receiving a large image file (which could dominate the communication over a weak

network), a compressed image topic consists of the relatively lightly encoded matrix. This can be

decoded at the receiving node, as the standard JPEG compression protocol is followed. Therefore,

raw and compressed images were sent to another node (a PC) on the same ROS network. The
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configuration employed to send the real-time image stream over the ROS network, consisted of

three chief elements: the robot (moving), and a network router, and the PC for receiving images

(both fixed with respect to the robot). The commercially available TP-Link AX6000 router was

chosen for this purpose. It enables high-speed wireless communication over both 2.4GHz and 5

GHz frequency bands. Employing the router, a wireless Local Area Network (WLAN) was setup.

With the robot (assigned as the ROS Master) and the PC connected to it, this also served as the

local ROS network. Measurements were made at regular intervals of distance. To the best possible

extent, environmental disturbances were maintained as they would be during field exercises.

Figure 4.3: Data reception vs. Distance.

Fig. 4.3 presents the trend in data reception as the distance of the robot (x-axis in meter) from

the router varies. For a 20s period, 120 images were ‘published’ (or sent) from the robot’s camera.

Almost all compressed images were received successfully until the 60m mark. After this point, a

significant number of frames were lost in transmission. The raw image frames peak at a maximum

of around 74% and steadily decrease with distance, and also show a significant drop after 60m.
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Figure 4.4: The trend observed in time lag for data reception.

Fig. 4.4 shows that the average lag in the reception of the compressed or raw images ranges

between 0.1 and 1.5s. This is relatively low compared to the difference in processing time between

the on-board and off-board options. Therefore, from these experiments, it was concluded that

the off-board processing scheme is a feasible alternative to running the algorithm on-board. In

addition, this would result in an effective results without interfering with other processes on the

robot.

As a final check on quality of the images (as JPEG is a lossy compression), the compressed

and raw images frames obtained from the robot at the same instant were processed with the seg-

mentation model. The resulting images (Fig. 4.5) were observed to be similar. Significant portions

of this section of research were conducted with the advanced computing resources provided by

Texas A&M High Performance Research Computing. The ROS client employed for this section is

available for reference under Appendix B.2.
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Figure 4.5: Comparison of segmentation in raw and compressed images: [L] Input RGB image,
[C] Segmentation of Raw image, [R] Segmentation of compressed image.

4.2.2 Results of class merging

The retraining of the GSCNN model was done employing the training set of RGB images in

the RELLIS-3D dataset [49]. As mentioned in Chapter 2, the class merging involved going from

20 terrain classes to 5 that were applicable to the α-WaLTR platform. This is illustrated in Fig.

4.6.

(a) Terrain classes in RELLIS-3D [Adapted with permission from [49]]. (b) Merged classes.

Figure 4.6: Semantic Segmentation Color Scheme.

Following this, various images were used to compile a test set to validate the re-training of the

GSCNN. Sample results of the merged class test are as shown in Figs. 4.7, 4.8, 4.9.
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Figure 4.7: [L] Input RGB image, [C] Original Segmentation, [R] Merged Segmentation.

Figure 4.8: [L] Input RGB image, [C] Original Segmentation, [R] Merged Segmentation.

Figure 4.9: [L] Input RGB image, [C] Original Segmentation, [R] Merged Segmentation.

These test images were evaluated subjectively, as comparing them to the original ground truths

provided with the dataset would not be beneficial. In Fig. 4.7, the lack of contextual depth in-

formation in the model is evident. Obstacles closer are labeled correctly, however, some further

away become part of background large obstruction class. Similarly, in Fig. 4.8, the trees in the
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foreground and background are labeled different. In Fig. 4.9, the labeling is more accurate than

the original segmentation. The raised area around the tree is labeled as an obstruction in the latter,

but as a mix of classes in the former. One other thing that stands out from all the three is how level

terrain is detected much more clearly than before and labeled so. The primary objective of this

exercise was to identify negotiable terrain the robot’s environment. This has been accomplished

to a considerable extent. Further work on this can involve adding contextual depth to improve the

accuracy of classification and conversion from a 2D image to an input to the navigation stack.

4.3 Adaptive Path Planning

To integrate the image segmentation and the navigation stack of the robot, a decision-making

scheme is presented to supplement α-WaLTR’s multi-modal capabilities. As illustrated in Fig.

3.4, the navigation stack consists of a global and a local trajectory planner that generates paths for

the robot to follow. By default, the behavior of these planners is not subject to terrain type and

conditions. This is ideal for mobile robots that are expected to operate in environments without

much variability. However, to take advantage of α-WaLTR’s enhanced locomotion abilities, it

would be beneficial if the robot were to adapt not just mechanically, but also from a software

side, to its operational environment. The goal of this phase of work is to modify the existing path

planning framework to make it sensitive to changes in the terrain.

4.3.1 Reconfigurable parameter setting

The navigation stack operates on a set of modifiable configuration settings for each layer, with

parameters input in the form of YAML (.yaml) files. The structure of these files supports the

nesting and communication of all the common data types. The configuration is imported by the

ROS node at start-up and is generally associated with a launch file. Because of the nature of

this, the configuration is generally static and not modifiable in operation. For this purpose, a

separate ROS package dynamic_reconfigure is employed. As with most other ROS packages, it is

compatible with roscpp and rospy clients, and supports external reconfiguration of a subset of the
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node’s parameters at runtime without necessitating a restart. It can be executed from the command

line using the following syntax:

$ rosrun dynamic_reconfigure dynparam <COMMAND>

The user can generate a list of configurable nodes, pull up the current configuration, modify pa-

rameters, save/load to file, etc. For this work, a Python script (Appendix B.4) was employed to

switch between a pre-determined set of parameters, depending on sensor input.

To validate the hypothesis that an adaptive path planning scheme would be advantageous, ex-

periments were run in simulation. The parameters of interest here pertain to the smoothness (or

vice versa, Granularity) of the local path planning. As explained in Chapter 3, the number of

trajectories simulated by the local path planner is determined by a set of discrete increments. By

increasing the granularity settings, the size of each discrete step is increased. Therefore, the num-

ber of steps required to completely simulate the robot’s vicinity is decreased. In other words, higher

the granularity, less the time and computational effort in navigation. A coarser path (as explained

in Fig. 4.10) would be ideal for negotiating terrains that are relatively obstacle-free, and make use

of less computational resources. When the presence of challenging terrain is detected (say, from

the segmented images), the path planning would be modified in real-time to account for this.

Figure 4.10: Illustration of proposed Adaptive path planning scheme.
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Experiments were performed on Gazebo employing a simulated robot that mimicked the soft-

ware architecture of α-WaLTR. Although the simulated model does not replicate the physics of the

platform, this is seen as being representative of the real robot. In addition, exercises in simulations

are less expensive and low-risk compared to the real world. It also allows for a variety of scenarios

that cannot be replicated. Three sets of environments were used for these experiments: A) with ob-

stacles placed randomly around the robot (Fig. 4.11), B) with obstacles around the robot sparsely

distributed following a circular pattern (Fig. 4.12), and C) with a densely crowded set of obstacles

around the robot following a circular pattern (Fig. 4.13).

Each environment had three levels of granularity: 1) Coarse (0.85 linear, 0.75 angular), 2)

Fine (0.25 linear, 0.2 angular), 3) Hybrid (switching between Coarse and Fine). The criteria to

switch between High and Low levels was based on a simulated sensor input. To retain simplicity,

the LaserScan data from the Lidar was employed for this. Whenever an obstacle was within an

arbitrary 1.5m radius of the robot, it would switch to Low, and once the proximity increased, it

would switch back to High. The values of granularity were not chosen arbitrarily, rather initial

trials were made to check how varying the linear granularity affected the angular value. In each

environment, 8 trials were performed by varying the robot’s heading angle by 45◦ from 0◦ to 360◦.

The robot was started off at (0, 0) and set a target of (15, 15) each time. In the respective figures,

the robot is located at the starting position, and the target is denoted by a red star in each case.

4.3.2 Results of simulation

Two metrics were used to evaluate the performance of the navigation modes. The first one was

the time it took to move from start to finish. The second metric was the length of the path traversed

by the robot. The local trajectory consists of straight-line segments generated as the robot moves

toward each local goal. Therefore, measuring the path length consisted of making a cumulative

sum of the length of each line segment (Appendix B.3).

The results of the simulation are shown in Fig. 4.14 and Fig. 4.15. Both graphs are skewed

to start at a threshold above zero to highlight the differences between them. The performance in
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Figure 4.11: Environment A: Random pattern of obstacles.

Figure 4.12: Environment B: Sparse circular pattern of obstacles.
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Figure 4.13: Environment C: Dense circular pattern of obstacles.

terms of both metrics in environment C (with densely populated obstacles) was similar for all three

modes. This is supported by the fact that in the presence of densely located obstacles, the Hybrid

mode performs in a similar manner to the Fine mode. The Coarse mode also exhibits similar

behavior because the robot is forced to follow a roughly similar path irrespective of the mode to

the goal. Therefore, in this case, it can be inferred that the additional computational effort does not

translate to direct advantages. However in the cases of A and C, the Fine setting for Granularity

showed a significant impact on the path length and the time to reach the goal. The path length and

time in the environment A were significantly higher than the other two because of the presence of

a different type of obstacle in the robot’s operating zone. Negotiating it adds to the path length and

time. In this case, the Hybrid mode resulted in the shortest path while the Coarse mode resulted in

the shorted time to reach the target. However, the results for the Coarse and Hybrid settings were

similar to each other. In both the environments, the difference in the time taken between the two

modes is around 1s, and the path length difference is around 0.15m.
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Figure 4.14: Simulation Result: Path length.

Figure 4.15: Simulation Result: Time for traversal.

The experiments and results here are preliminary. In these limited experiments, the potential

benefits of the Hybrid mode over the Coarse mode are not clearly demonstrated. However, if the
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environment involves both crowded and open areas with diverse obstacles, the hybrid mode is

expected to outperform the other two in terms of travel time and distance. Further simulations

may be performed to confirm this. By having a preset number of modes the robot could switch

between them based on external stimuli. In a real-world application, this would involve testing

and bench-marking the performance of a robot platform in different terrains or around different

classes of obstacles to determine the optimal set of parameters for each terrain. The switching

between them can be accomplished by any sensory input. Computationally, this would not affect

the performance of the other processes, as it runs as a separate node on the same network.

44



5. SUMMARY AND CONCLUSIONS

With the continuing advances in vision systems, ground robots will continue to become more

sophisticated and autonomous. Making vision-based decision making algorithms more determin-

istic (as opposed to the current machine learning and deep learning schemes) is a possible avenue

of research. This would make them more reproducible and adaptable to varied applications.

The use of supervised learning tools as part of this research was seen as a step toward making a

more complex objective decision framework. While at present, unmanned robots cannot be imbued

with complex subjective decision-making capabilities, a system of interlocking AI algorithms goes

a long way towards achieving this. Advances in electro-mechanical interfaces are soon to follow,

thereby increasing the complexity of navigation instructions.

Work in the future would involve integrating the varied software packages in one – with al-

gorithms for stairway detection and semantic scene parsing being part of a single yet modular

‘vision’ algorithm. In theory, this would be an optimal consumption of computational resources

compared to disconnected ones operating in parallel. In addition, while on-board processing and

decision-making is desired of all autonomous robots, off-board computation is an efficient alterna-

tive, as evidenced in this work. Robots in the field, especially ones involved in reconnaissance and

search & rescue operations, cannot be expected to communicate effectively over conventionally

used LAN protocols, making efficient computational resource consumption higher on the list of

priorities.
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APPENDIX A

DATASETS

Sensor Type
/

Type of Data Frames Recorded Sequences Point clouds

RGB-D Camera [57], [22], [56], [58] [59] [60]
Stereo Camera [61] [62]

Lidar [63] [61], [49], [62]
Monocular Camera [49], [64] [65], [63]

RADAR [63]

Table A.1: A summarized list of datasets comprising urban and unstructured environments for
computer vision.
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APPENDIX B

IMPLEMENTED CODE

B.1 ROS Package for staircase detection

1 #include <iostream>

2 #include <ros/ros.h>

3 #include <ros/package.h>

4 #include <image_transport/image_transport.h>

5 #include <cv_bridge/cv_bridge.h>

6 #include <sensor_msgs/image_encodings.h>

7 #include <opencv2/opencv.hpp>

8 #include "opencv2/imgproc.hpp"

9 #include "opencv2/imgcodecs.hpp"

10 #include "opencv2/highgui.hpp"

11 #include <fstream>

12 #include "svm.h"

13 #include <stdlib.h>

14 #include <time.h>

15

16 static const std::string OPENCV_WINDOW_1 = "Image window Color";

17 static const std::string OPENCV_WINDOW_2 = "Image window Depth";

18

19 float lLength(cv::Vec4i line);

20 float slope(cv::Vec4i line);

21 void SortStair(std::vector<cv::Vec4i> Lines, std::vector<cv::Vec4i> *Sorted);

22

23 class StairDetector

24 {

25 private:

26 ros::NodeHandle nh_;
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27 image_transport::ImageTransport it_;

28 image_transport::Subscriber color_image_sub;

29 image_transport::Subscriber depth_image_sub;

30 image_transport::Publisher stair_pub, cand_pub, all_pub;

31

32 cv::Mat image_RGB, imageD;

33 int frame, positive;

34

35 std::string rgb_topic = "/camera/color/image_raw";

36 std::string depth_topic = "/camera/depth/image_rect_raw";

37 int update_rate;

38

39 ros::Rate* _loop_rate;

40

41 public:

42 void run();

43 void rgb_callback(const sensor_msgs::ImageConstPtr& msg);

44 void depth_callback(const sensor_msgs::ImageConstPtr& msg);

45 void depth_process(cv::Mat *imageRGB, cv::Mat *candidates, cv::Mat imageD,

std::vector<std::vector<cv::Vec4i>> *StairLines, int *f, int *f2);

46 void rgb_pre_process(cv::Mat imageRGB, cv::Mat *all, std::vector<std::

vector<cv::Vec4i>> *StairLines, int x);

47

48 StairDetector(ros::NodeHandle _nh);

49 ~StairDetector();

50 };

51

52 StairDetector::StairDetector(ros::NodeHandle _nh):nh_(_nh),it_(_nh)

53 {

54 this->update_rate = 5;

55 this->frame = 0;

56 this->positive = 0;

57 std::cout << "\nColor Sub";
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58 this->color_image_sub = this->it_.subscribe(this->rgb_topic, 15, &

StairDetector::rgb_callback, this);

59 std::cout << "\nDepth Sub";

60 this->depth_image_sub = this->it_.subscribe(this->depth_topic, 15, &

StairDetector::depth_callback, this);

61 this->_loop_rate = new ros::Rate(this->update_rate);

62 this->stair_pub = this->it_.advertise("/camera/color/stair_case_roi", 1);

63 this->cand_pub = this->it_.advertise("/camera/color/stair_case_candidates

", 1);

64 this->all_pub = this->it_.advertise("/camera/color/stair_case_all", 1);

65 std::cout << "\nConstructor Done";

66 }

67

68 StairDetector::~StairDetector()

69 {

70 delete this->_loop_rate;

71 }

72

73 void StairDetector::rgb_callback(const sensor_msgs::ImageConstPtr& msg) {

74 std::cout << "\nStarting RGB write";

75 cv::Mat cv_ptr;

76 cv_ptr = cv_bridge::toCvShare(msg, sensor_msgs::image_encodings::BGR8)->

image;

77

78 this->image_RGB = cv_ptr.clone();

79 if (this->image_RGB.empty())

80 std::cout << "\nEmpty RGB";

81 }

82

83 void StairDetector::depth_callback(const sensor_msgs::ImageConstPtr& msg) {

84 std::cout << "\nStarting Depth write";

85 cv_bridge::CvImagePtr cv_ptr;

86 cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::TYPE_8UC1
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);

87 if (cv_ptr->image.empty())

88 std::cout << "\nEmpty Depth";

89 this->imageD = cv_ptr->image;

90 }

91

92 void StairDetector::rgb_pre_process(cv::Mat imageRGB, cv::Mat *imshow1, std::

vector<std::vector<cv::Vec4i>> *StairLines, int frameC)

93 {

94

95 std::cout << "\nStarting RGB Processing:";

96 int cannyLT = 25, cannyUT = 40, houghTh = 75;

97 cv::Mat RGBGray, RGBflt, RGBflt2, dltdRGB;

98 *imshow1 = imageRGB.clone();

99

100 cv::cvtColor(imageRGB, RGBGray, cv::COLOR_RGB2GRAY);

101 cv::Mat element = getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(20, 10),

cv::Point(-1, -1));

102 cv::dilate(RGBGray, dltdRGB, element);

103 cv::Canny(dltdRGB, RGBflt2, cannyLT, cannyUT, 3);

104 std::vector<cv::Vec4i> linesP, Stairs;

105 cv::HoughLinesP(RGBflt2, linesP, 1, 3 * CV_PI / 180, houghTh, 40, 5);

106

107 /*Loop 1 - to reject short and steep lines*/

108 for (size_t k = 0; k < linesP.size(); k++)

109 {

110 cv::Vec4i l = linesP[k];

111 float len = lLength(l);

112 if (slope(l) < 80){

113 Stairs.push_back(l);

114 cv::line(*imshow1, cv::Point(l[0], l[1]), cv::Point(l[2], l

[3]), cv::Scalar(255, 0, 0), 2, cv::LINE_AA);

115 }
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116 }

117 std::cout << "\nStairs extracted:";

118 cv::imshow("All lines", *imshow1);

119

120 /*Loop 2 - to reject overlapping lines*/

121 for (size_t k = 0; k < Stairs.size(); k++)

122 {

123 for (size_t j = k + 1; j < Stairs.size(); j++)

124 {

125 cv::Vec4i l = Stairs[k];

126 float x = (l[0] + l[2]) / 2;

127 float y = (l[1] + l[3]) / 2;

128

129 cv::Vec4i l2 = Stairs[j];

130 float x2 = (l2[0] + l2[2]) / 2;

131 float y2 = (l2[1] + l2[3]) / 2;

132

133 if (((abs(x2 - x) < 5) && (abs(y2 - y) < 20)) || ((abs(x2 - x)

< 20) && (abs(y2 - y) < 5))) {

134 if (lLength(l) > lLength(l2))

135 Stairs.erase(Stairs.begin() + j);

136 else

137 Stairs.erase(Stairs.begin() + k);

138 }

139 }

140 }

141

142 std::cout << "\nSorting Stairs:";

143 /*Loop 3 - nested - to group lines by slope and position*/

144 for (size_t k = 0; k < Stairs.size(); k++)

145 {

146 std::vector<cv::Vec4i> SimSlope, SortedSimSlope;

147 for (size_t j = k + 1; j < Stairs.size(); j++)
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148 {

149 cv::Vec4i l = Stairs[k];

150 float x = (l[0] + l[2]) / 2;

151 float y = (l[1] + l[3]) / 2;

152

153 cv::Vec4i l2 = Stairs[j];

154 float x2 = (l2[0] + l2[2]) / 2;

155 float y2 = (l2[1] + l2[3]) / 2;

156

157 if ((abs(y2 - y) < 85) && (abs(slope(l) - slope(l2)) < 1.5)) {

158 SimSlope.push_back(l2);

159 }

160 }

161

162 if (SimSlope.size() > 0) {

163 SimSlope.push_back(Stairs[k]);

164 SortStair(SimSlope, &SortedSimSlope);

165 StairLines->push_back(SortedSimSlope);

166 std::cout << "Sorted";

167 }

168 }

169

170 std::cout << "\nRGB Processing done";

171 cv::waitKey(1);

172 }

173

174 void StairDetector::depth_process(cv::Mat *imageRGB, cv::Mat *candidates, cv::

Mat imageD, std::vector<std::vector<cv::Vec4i>> *StairLines, int *

frameCount, int *framePositive) {

175 *candidates = imageRGB->clone();

176 std::ofstream file;

177 file.open("Train_Depth.txt", std::ofstream::app);

178 file << "\n\nFrame: "<< *frameCount << "\n";
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179

180 std::cout << "\nStarting Depth Processing:";

181

182 std::string ppath = ros::package::getPath("staircase_det");

183 std::cout << ppath;

184

185 //Trained models located in src under package

186 std::string mfile1 = ppath + ’/’ + "src/StairModel";

187 std::string mfile2 = ppath + ’/’ + "src/nonStairModel";

188 const char* MODEL_FILE = mfile1.c_str();

189 const char* MODEL_FILE2 = mfile2.c_str();

190 struct svm_model* SVMModel;

191 struct svm_model* SVMModel2;

192 if (((SVMModel = svm_load_model(MODEL_FILE)) == 0) || ((SVMModel2 =

svm_load_model(MODEL_FILE2)) == 0)) {

193 fprintf(stderr, "Can’t load SVM model %s", MODEL_FILE);

194 }

195 struct svm_node* svmVec = new svm_node();

196 std::cout << "\nSVM Model loaded";

197 std::cout << "\nInitialization";

198

199 double *predictions = new double;

200 double *predictions2 = new double;

201 std::cout << "Extracting Depth values from image:";

202 std::vector<std::vector<cv::Vec4i>> Stairs = *StairLines;

203

204 for (int i = 0; i < StairLines->size(); i++) {

205 std::vector<cv::Vec4i> Stair = Stairs[i];

206 std::vector<float> depths;

207 std::vector<float> xl, yl;

208 bool depth_flag = true;

209 for (int j = 0; j < Stair.size(); j++) {

210 cv::Vec4i l = Stair[j];
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211 xl.push_back((l[0] + l[2]) / 2);

212 yl.push_back((l[1] + l[3]) / 2);

213 }

214 for (int j = 0; j < yl.size(); j++) {

215 float Dist = 0.001*imageD.at<u_int16_t>(yl[j], xl[j]);

216

217 /*Scale Depth here as needed*/

218 //Dist = -0.012*Dist + 3.5; //TAMU Grayscale set

219 //Dist = -0.01875*Dist + 4.375; //TAMU Redscale set

220 depths.push_back(Dist / 10.0);

221 if (Dist > 10.0) //Ignoring depths further than reliable range of 10m

222 depth_flag = false;

223 }

224

225 svmVec = (struct svm_node*)malloc(8 * sizeof(struct svm_node));

226 int v;

227 int rgb[3];

228 for(size_t i = 0; i<3; i++){

229 rgb[i] = rand() % 256; //To randomly generate a color for one set of

candidates

230 }

231 if ((depths.size() <= 8) && (depth_flag)) {//Using only candidate sets of

size 8

232 for (size_t x = 0; x < Stair.size(); x++){

233 cv::Vec4i l = Stair[x];

234 cv::line(*candidates, cv::Point(l[0], l[1]), cv::Point(l[2], l[3]), cv

::Scalar(rgb[0], rgb[1], rgb[2]), 2, cv::LINE_AA);

235 }

236 for (v = 0; v < 8; v++) {

237 if (v < depths.size()) {

238 svmVec[v].index = v + 1;//SV Index

239 svmVec[v].value = depths[v];//SV Value

240 }

61



241 else {//If candidate is of size < 8, 0.0 is assigned to remaining

index positions

242 svmVec[v].index = v + 1;

243 svmVec[v].value = 0.0;

244 }

245 }

246 svmVec[v].index = -1; //To denote end of depth vector

247

248 file << "\t Candidate: "<< i << "\t [" << rgb[0] << "," << rgb[1] << ","

<< rgb[2] << "] \t";

249 for (size_t u = 0; u < depths.size(); u++){

250 file << u+1 << ":" << depths[u] << "\t";

251 }

252 file << "\n";

253

254 predictions[0] = svm_predict(SVMModel, svmVec);//LIBSVM function

svm_predict()

255 predictions2[0] = svm_predict(SVMModel2, svmVec);

256

257 std::cout << "\nStarting Classification:";

258 //Either Model1 - Positive (Presence of Stair)

259 //or Model2 - Negative (Absence of non-Stair)

260 if ((*predictions == 1.0) || (*predictions2 == -1.0)){

261 std::cout << "\n Positive classification";

262 if (Stair.size() > 2) {

263 ++(*framePositive);

264 for (size_t i = 0; i < Stair.size(); i++) {

265 cv::Vec4i l = Stair[i];

266 cv::line(*imageRGB, cv::Point(l[0], l[1]), cv::Point(l[2], l[3]),

cv::Scalar(0, 0, 255), 2, cv::LINE_AA);

267 }

268 break;//break here to stop testing once the first positive candidate

is found
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269 }

270 }

271 }

272 }

273 char txt3[100];

274 snprintf(txt3, 100, "Frame : %d; Positive: %d", *frameCount, *framePositive)

;

275 int w = imageRGB->rows, h = imageRGB->cols;

276 std::cout << "Showing final RGB Image";

277 cv::putText(*imageRGB, txt3, cv::Point(w/8, h/8), cv::FONT_HERSHEY_SIMPLEX

, 0.6, cv::Scalar(255, 255, 255), 2);

278 cv::Mat imshow3 = imageRGB->clone();

279 cv::imshow("Final Stair", imshow3);

280 cv::imshow(OPENCV_WINDOW_2, imageD);

281 cv::waitKey(1);

282 std::cout << "\nDepth Processing Done";

283 file.close();

284

285 }

286

287 void StairDetector::run(){

288 std::cout << "\nBegin RunFn";

289

290 while (ros::ok()){

291 srand(time(NULL));

292 ros::Time Stamp = ros::Time::now();

293 std::cout << "\nInitialize variables";

294 cv::Mat *RGBImage = &(this->image_RGB), RGBFin;

295 cv::Mat *cand = new cv::Mat;

296 cv::Mat *all = new cv::Mat;

297 std::vector<std::vector<cv::Vec4i>> *StairLines = new std::vector<std::

vector<cv::Vec4i>>;

298 int *frameC = &(this->frame);
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299 int *frameP = &(this->positive);

300 std::cout << "\n Empty?: " << this->image_RGB.empty();

301 if (this->image_RGB.empty() || this->imageD.empty()) {

302 std::cout << "\nNo Image written";

303 }

304 else {

305 ++(this->frame);

306 std::cout << "\nImage processing:";

307 this->rgb_pre_process(this->image_RGB, all, StairLines, this->frame);

308 std::cout << "\nFrom run(): RGB Processing done";

309 this->depth_process(RGBImage, cand, this->imageD, StairLines, frameC,

frameP);

310 std::cout << "\nFrom run(): Depth Processing done:";

311 std::string det = std::string("Det") + std::to_string(this->frame) + std

::string(".jpg");

312 std::string can = std::string("Cand") + std::to_string(this->frame) +

std::string(".jpg");

313 cv::imwrite(det, *RGBImage);

314 cv::imwrite(can, *cand);

315 }

316 std::cout << "\n Proceeding to Spin";

317 ros::spinOnce();

318 this->_loop_rate->sleep();

319 }

320 }

321

322 float lLength(cv::Vec4i line)

323 {

324 return sqrt((line[2] - line[0]) ^ 2 + (line[3] - line[1]) ^ 2);

325 }

326

327 float slope(cv::Vec4i line)

328 {
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329 float slope = abs(atan2((line[3] - line[1]), (line[2] - line[0])) * 180 /

CV_PI);

330 if (slope > 90)

331 {

332 if (slope > 180)

333 {

334 if (slope > 270)

335 slope = slope - 180.00;

336 else

337 slope = 360.00 - slope;

338 }

339 else

340 slope = 180.00 - slope;

341 }

342 return slope;

343 }

344

345 void SortStair(std::vector<cv::Vec4i> Lines, std::vector<cv::Vec4i> *Sorted){

346 std::vector<float> MidX;

347 for (int i = 0; i < Lines.size(); i++) {

348 cv::Vec4i l = Lines[i];

349 float mX = (l[1] + l[3]) / 2;

350 MidX.push_back(mX);

351 }

352 while (MidX.size() > 0) {

353 int p = distance(MidX.begin(), min_element(MidX.begin(), MidX.end()));

354 Sorted->push_back(Lines[p]);

355 MidX.erase(MidX.begin() + p);

356 Lines.erase(Lines.begin() + p);

357 }

358 }

359

360 int main(int argc, char** argv)
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361 {

362 ros::init(argc, argv, "staircase_detection");

363 ros::NodeHandle nh;

364 StairDetector ic(nh);

365 std::cout << "\nBegin Run";

366 ic.run();

367 return 0;

368 }
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B.2 ROS Client for logging images

1 #!/usr/bin/env python

2

3 import base64

4 import logging

5 import time

6 import numpy as np

7 from PIL import Image

8 import cv2

9 from io import BytesIO

10

11 from cv_bridge import CvBridge

12

13 import roslibpy

14

15 class imgCompressTest:

16 def __init__(self):

17 # Configure logging

18 fmt = ’%(asctime)s %(levelname)8s: %(message)s’

19 logging.basicConfig(format=fmt, level=logging.INFO)

20 self.log = logging.getLogger(__name__)

21 self.client = roslibpy.Ros(host=’localhost’, port=9090)

22 #Raw Image ROS Topic

23 self.subscriber2 = roslibpy.Topic(self.client, ’/camera/color/

image_raw’, ’sensor_msgs/Image’)

24 #Compressed Image ROS Topic

25 self.subscriber = roslibpy.Topic(self.client, ’/camera/color/

image_raw/compressed’, ’sensor_msgs/CompressedImage’)

26

27 def receive_image(self, msg):

28 self.log.info(’Received image seq=%d’, msg[’header’][’seq’])

29 base64_bytes = msg[’data’].encode(’ascii’)
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30 image_bytes = base64.b64decode(base64_bytes)

31 time_pas = msg[’header’][’stamp’][’secs’]

32 msg_time = time.strftime("%H:%M:%S", time.localtime(time_pas))

33 format = msg[’format’].split()

34 with open(’CompF_{}.{}’.format(str(msg_time)+’:’+str(msg[’header’][’

stamp’][’nsecs’]), format[1]) , ’wb’) as image_file:

35 image_file.write(image_bytes)

36

37

38 def main():

39 imgC = imgCompressTest()

40 imgC.subscriber.subscribe(imgC.receive_image)

41 imgC.client.run_forever() #Until stopped

42

43 if __name__ == ’__main__’:

44 main()
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B.3 ROS Client for path length and time calculation

1 #!/usr/bin/env python

2

3 import math

4 import rospy

5 from nav_msgs.msg import Path

6

7 class path_length(object):

8 def path(self, msg):

9 self.data.append(msg.poses[0])

10 i = len(self.data) - 1

11 self.sum_len += math.sqrt(pow((self.data[i].pose.position.x - self.data[i

-1].pose.position.x), 2) + pow((self.data[i].pose.position.y - self.data[i

-1].pose.position.y), 2))

12 rospy.loginfo(self.sum_len)

13

14 def __init__(self):

15 self.sub = rospy.Subscriber(’/move_base/TrajectoryPlannerROS/local_plan’,

Path, self.path)

16 self.sum_len = 0.0

17 self.data = []

18 self.r = rospy.Rate(0.5)

19

20 def start_pthlen(self):

21 while not rospy.is_shutdown():

22 self.r.sleep()

23

24 if __name__ == "__main__":

25 rospy.init_node("path_length")

26 myObj = path_length()

27 myObj.start_pthlen()
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B.4 ROS Client for parameter reconfiguration in runtime

1 #!/usr/bin/env python

2

3 import rospy

4 import dynamic_reconfigure.client

5 from sensor_msgs.msg import LaserScan

6

7

8 class dyn_rec_mb(object):

9 def laser_val(self, msg):

10 initB = self.b

11 if (min(msg.ranges) < 1.5):

12 self.b = True

13 else:

14 self.b = False

15

16 if (self.b == initB):

17 self.StateChange = False

18 else:

19 self.StateChange = True

20 rospy.loginfo("State Change - reconfig now!")

21

22 if self.StateChange:

23 rospy.loginfo("Changing params!")

24 if self.b:

25 self.client.update_configuration({’sim_granularity’:0.25, ’

angular_sim_granularity’:0.2})

26 else:

27 self.client.update_configuration({’sim_granularity’:0.85, ’

angular_sim_granularity’:0.75})

28

29 def callback(self, config):
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30 rospy.loginfo("Config set to {sim_granularity}".format(**config))

31

32 def __init__(self):

33 self.client = dynamic_reconfigure.client.Client("move_base/

TrajectoryPlannerROS", config_callback=self.callback)

34 self.sub = rospy.Subscriber(’/scan’, LaserScan, self.laser_val)

35 self.b = False

36 self.StateChange = False

37 self.r = rospy.Rate(0.5)

38

39 def start_dyn(self):

40 while not rospy.is_shutdown():

41 self.r.sleep()

42

43 if __name__ == "__main__":

44 rospy.init_node("dynamic_client")

45 myObj = dyn_rec_mb()

46 myObj.start_dyn()
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