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ABSTRACT 

 

Driving crashes are a leading cause of death and injuries worldwide. Automated 

vehicles are expected to reduce these crashes and provide safety benefits. However, the 

safety of partially automated vehicles is limited by the driver ability to takeover when 

automation fails. Understanding factors that influence takeover performance is a critical 

first step in designing safer systems. Additional steps are required to integrate these factors 

into a design process. One method of integration is through simulation frameworks that 

join technology with driver models and produce safety-related predictions. Despite the 

considerable amount of modeling work during manual emergencies, models of automated 

vehicle takeover behavior are rare. This research addresses this gap by investigating the 

influential factors and their impacts on takeover performance, identifying promising driver 

models that accurately capture the impact of influential factors, and developing a 

comprehensive modeling framework that provides accurate predictions of driver behavior. 

This work collected data from a driving simulator experiment to investigate the 

impact of automation design issues (e.g., silent failure) on driver performance across 

various transitions of control. Drivers’ takeover time and quality are explored using 

Bayesian regression models and a significant impact of silent failures on takeover safety, 

especially in critical events, is found. To capture the effects of each factor, the drivers’ 

reaction and control maneuver are modeled using visual looming-based models. An 

evidence accumulation and a piecewise linear model are proposed to predict the drivers’ 

braking behavior. The steering avoidance is modeled by a looming-based open-loop 



 

iii 

 

Gaussian model followed by a closed-loop two-point visual control model for stabilization 

steering. The developed braking and steering models are leveraged and a holistic 

algorithm is proposed that ties two parallel evidence accumulators to the developed 

models to account for the onset of each decision alternative as well as the drivers’ response 

behavior.  

The development of a comprehensive and realistic model that closely matches real-

life driver behaviors is vital to assess the safety-related effectiveness of automated systems 

following a takeover. These evaluations can guide the design of automated technologies 

and reduce the consequences of failures. 
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1. INTRODUCTION  

 

Driving crashes have a significant impact on the world economy (Blincoe et al., 

2015) and are a leading cause of death and injuries worldwide (World Health 

Organization, 2015) causing over 1.2 million deaths and 50 million injuries each year 

(Road safety facts, 2019). One promising method of reducing these costs is the 

introduction of advanced automated vehicle technologies such as forward collision 

warning and automated emergency braking (Fildes et al., 2015). Forward collision 

warning and automated emergency braking have been associated with a reduction in read-

end crashes of 27% (Cicchino, 2017a) and between 38% and 43% (Fildes et al., 2015), 

respectively. Additionally, advanced automated technologies such as automated vehicles 

are expected to provide even greater safety benefits (Blanco et al., 2016; Eriksson et al., 

2017). Moreover, the advent of these vehicles promised a number of socio-economic 

advantages including an increase in shared mobility, a reduction in fuel consumption, and 

an improvement in traffic flow (Casner et al., 2016; Fagnant & Kockelman, 2015). 

But despite impressive demonstrations and technical advances of automated 

vehicles, many obstacles remain on the road to achieve the expected safety outcomes. 

Depending on the scheme of function allocation between the driver and the automation, 

automated vehicle can encompass several varieties. Forming an incorrect mental model 

of the function allocation can lead to various human factors-related issues (Casner et al., 

2016; Inagaki & Sheridan, 2018). Understanding the responsibilities of the automation 

and human driver across the new automation technologies can facilitate these issues. To 
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classify these technologies, the Society of Automotive Engineers (SAE) has introduced a 

levels of vehicle automation framework (SAE International, 2021). The levels of this 

framework define the responsibilities for controlling the vehicle (i.e., steering, 

acceleration, and braking), monitoring the driving environment, and serving as a fallback 

when the automation hits operational domain limits. Table 1.1 shows the narrative 

descriptions of different levels of automation as defined by SAE International (2021). 

 

Table 1.1 SAE Levels of Automation and Their Definition 
SAE Level of 
Automation 

SAE Name Description 

0 No Automation The driver performs all aspects of the driving task 
1 Driver Assistance Automated vehicle performs either steering or 

acceleration/braking, while the driver monitors the 
driving environment 

2 Partial Automation Automated vehicle performs both steering and 
acceleration/braking, while the driver monitors the 
driving environment 

3 Conditional 
Automation 

Automated vehicle performs both steering and 
acceleration/braking as well as monitoring the driving 
environment in some circumstances, while expecting 
the driver to takeover the vehicle control and respond 
appropriately to automation failures 

4 High Automation Automated vehicle performs both steering and 
acceleration/braking as well as monitoring the driving 
environment in some circumstances and does not 
require the driver to takeover the vehicle control 

5 Full Automation Automated vehicle performs all aspects of the driving 
task 

Note. The grey highlighted rows indicate the area of focus for this dissertation. 

 

Although automated vehicles promise to offer several benefits, some safety issues 

remain in the interaction between human drivers and automation, in particular, with the 

transition from driver assistance systems (SAE Level 1) to partially automated vehicles 
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(SAE Level 2) or higher levels of automation. Previous research on human-automation 

interaction shows that a high level of automation takes the operator out of the control loop, 

leads to mental underload (as a result of reduced workload from driving task) and overload 

issues (as a result of automation failure), and causes loss of situation awareness, skill 

degradation, and under and over trust and reliance on the automation (Bainbridge, 1983; 

Endsley & Kiris, 1995; Hancock et al., 2013; Kaber & Endsley, 2004; J. Lee & See, 2004; 

Parasuraman & Riley, 1997; Sarter & Woods, 2000). Similar challenges have been found 

in automated vehicle driving (Banks et al., 2017, 2018; de Winter et al., 2014; B. Seppelt 

& Victor, 2016; Young & Stanton, 2002). 

Driving technologies at higher levels of automation shift monitoring and the 

execution of steering and braking to the automation. This shift has been shown to increase 

the drivers’ inclination to perform non-driving-related tasks (Carsten et al., 2012; de 

Winter et al., 2014; Jamson et al., 2013), which could impede their ability to avoid a crash 

when an intervention is required (Louw & Merat, 2017). Thus, the safety of automated 

vehicles is limited by the ability of the automation and human driver to perform their 

responsibilities, their ability to transfer control to and from one another, and their ability 

to conduct appropriate interactions with the transportation network (Banks & Stanton, 

2015; Brown, 2017; J. D. Lee, 2018; Lu & de Winter, 2015). As a result, the transition of 

control from automation to driver is perhaps the most critical aspect of the safety limits in 

design considerations of automated driving systems.  

An automated vehicle takeover is a process in which an automated vehicle fails in 

its control responsibility or faces an operational limit, and the driver has to resume control 
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from the automation. A takeover can be initiated by the driver or the automation (Lu et 

al., 2016) and is usually prompted by a precipitating event such as a cut-in maneuver from 

a passing vehicle or an object in the road (e.g., Gold, Körber, Lechner, & Bengler, 2016; 

Li, Blythe, Guo, & Namdeo, 2018). Takeovers consist of completing visual, cognitive, 

and physical readiness processes (SAE International, 2016; Wintersberger et al., 2017; 

Zeeb et al., 2015) along with performing a mitigating action to avoid crashes. The safety 

of a takeover is limited by the time taken for the drivers to complete the takeover process 

and the effectiveness of the executed action. This is equivalent to the notion of speed-

accuracy tradeoff, in which decisions can be made faster, sacrificing accuracy, or more 

accurate, sacrificing speed (Ratcliff et al., 2016). Therefore, the negative impacts of the 

visual, cognitive, and physical readiness processes on takeover time (i.e., the time between 

the precipitating event and the first demonstration of an evasive maneuver from the 

driver), even if not tremendous, can be carried over to the quality of the mitigating action 

resulting in a more aggressive behavior (Alambeigi & McDonald, 2021b; Zeeb et al., 

2016). This emphasizes that the takeover time alone does not guarantee a safe evasive 

maneuver and the post-takeover control aspect should also be taken into account. If drivers 

perform all components of a takeover within the time budget (i.e., time to collide at the 

precipitating event onset), and execute an avoidance maneuver, the takeover is deemed 

safe and a crash is avoided. Understanding factors that influence takeover time and action 

quality is a critical first step in designing safer systems; however, additional steps are 

required to integrate the effects of these factors into the design process.  
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One method of integration is through simulation frameworks. Simulation 

frameworks capture bounds on human physical and cognitive performance and provide 

realistic predictions of human behavior. Within these frameworks, driver models, pre-

crash kinematic driving data (from driving simulation or naturalistic studies), and 

automated vehicle algorithms are integrated to produce safety-related predictions. The 

driver model is a significant component of this process, as poor model selection may 

undermine the accuracy of the safety-related predictions (Bärgman et al., 2017; Roesener 

et al., 2017). Over the past decade, there has been a considerable amount of work in the 

modeling of driver behavior during manual driving (Markkula et al., 2012; Saifuzzaman 

& Zheng, 2014); however, studies are rare in the automated vehicle takeover context. In 

particular, there is no holistic model of driver behavior following an automated vehicle 

takeover, that can capture all components of a takeover process (e.g., action selection or 

action execution) and perform under various traffic or environmental conditions. Different 

components of a takeover process can be translated into models of driver behavior (e.g., 

decision-making, steering and/or braking) to assess the effectiveness of a takeover 

performance within the limits of driver-related factors, vehicle kinematics, and traffic or 

environmental context.  

 

1.1. Research Objectives 

Developing effective driver takeover models that capture the underlying 

influential factors is contingent on investigating how humans behave under various traffic 

and environmental conditions and how the effects of those conditions can be integrated 
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into the models. Such knowledge can then be used to develop models of takeover behavior 

and assess the degree to which the models can replicate observed driver behavior. Thus, 

the objectives of my dissertation are to answer the following questions: 

 

1. To what degree does the system design influence the takeover time and post-takeover 

performance during automated vehicle driving? 

One of the most prevalent issues with the automated vehicles’ design is a silent failure, 

where the automation fails or encounters an operational limit without a preceding 

takeover request (e.g., due to sensor limitations). In this situation, the system implicitly 

relies on the driver to perceive the failure and resume the control from the automation. 

Although it is expected that it elongates the takeover time, the exact impact on 

takeover performance is not known. Another issue is the takeover time budget related 

to the time that the system disengages when a failure happens. Time budget refers to 

the time to collision (TTC) or time to lane crossing (TLC) at the time of the takeover 

request or the event onset in case of a silent failure. Investigating and quantifying the 

impacts of these factors and their interaction across different environmental and traffic 

situations (e.g., an unexpected braking lead vehicle) is important to design a safer 

system. 

2. To what degree do contemporary models of manual driving capture the drivers’ 

braking and steering behavior after automated transitions of control? 

Prior work on models of drivers’ braking and steering behavior in manual emergencies 

showed that TTC plays an important role in determining drivers’ decision to initiate 
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the brake (Kiefer et al., 2006; D. Lee, 1976). Drivers have direct access to a visual 

estimate of inverse TTC (i.e., visual looming) and react to this stimulus only when the 

accumulated evidence exceeds a threshold. This is aligned with the finding in 

automated vehicle driving, which showed TTC at the time of the failure is one of the 

principal determinants of a takeover performance (McDonald et al., 2019), suggesting 

that existing models of manual driving can be extended to automated vehicle 

takeovers; however, there is a need for more detailed driver braking reaction and 

control models, and for formal model validation processes that assess the degree to 

which driver models replicate observed driver behavior. Effective models of post-

takeover control steering must include both the initial avoidance maneuver and the 

subsequent stabilization steering given that it may take drivers up to 40 s following a 

takeover to fully return to normal steering behavior (Merat et al., 2014)., these models 

have not been validated against drivers’ post-takeover steering avoidance and 

stabilization behavior.   

3. Does integrating individual decision-making, braking, and steering models capture 

drivers’ comprehensive takeover behavior? 

Several independent models have been developed that predict driver behavior in 

different phases of a takeover process. However, there has not been a holistic modeling 

framework of drivers’ perceptual decision-making and control response after a 

takeover process. In particular, models of the takeover have been focused on an 

avoidance strategy by either braking or steering alone, while in real life, drivers 

perform steering and braking with close temporal proximity, if not at the same time. 



 

8 

 

The concept of parallel information processing follows the leaky competing 

accumulator models, in which the human brain can accumulate two sets of evidence 

in parallel, rather than having a single accumulator with different thresholds, allowing 

them to have different choice alternatives (Usher & McClelland, 2001). Developing 

and validating such a comprehensive model can be used as a guideline to improve the 

design of advanced automated vehicle-related technologies.  

 

1.2. Dissertation Overview 

This dissertation has seven chapters including this chapter. Figure 1.1 maps these 

chapters onto a takeover event. Chapter 2 provides background information on current 

automated vehicle technologies, elaborates on findings from a comprehensive literature 

review about automated vehicle takeovers, as well as models of driver behavior, and 

identifies several research gaps in the current literature. Chapter 3 through 6 address the 

research questions discussed in section 1.1. All four chapters use the data from the driving 

simulator experiment collected in response to the first research question.  

Chapter 3 addresses the first question of the dissertation regarding the impacts of 

system design issues (silent failures and time budgets) on takeover performance. To 

answer this question, a driving simulator experiment with two takeover scenarios was 

conducted. Simulator experiment was selected as it provides a controllable, cost-effective, 

and safe environment to investigate the driving performance (Eriksson et al., 2017; Risto 

& Martens, 2014) and driver behavior models have been successfully developed from the 

data collected in simulator studies (Piccinini et al., 2019; Xue et al., 2018). To quantify 
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the impacts, Bayesian multilevel regression models were used comparing silent and 

alerted failures across different time budgets. The Bayesian approach provides the 

distribution of takeover performance variables for a given parameter, which is more 

informative for safety. The driving performance data set from the experiment is published 

on the Virginia Tech Transportation Institute data repository (Alambeigi & McDonald, 

2021a). 

 

 

Figure 1.1 An illustration of this dissertation chapters mapped on a takeover 
process 

 

Chapter 4 answers the second research question regarding the models of post-

takeover braking behavior. To address this question, a baseline comparison model was 

developed and the fit results were compared with a promising model identified in the 

literature review (i.e., the visual looming-based models, in particular, evidence 
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accumulation). The driver braking reaction was modeled by an evidence accumulation. In 

this model, drivers receive various pieces of evidence such as the changes in the visual 

looming of the lead vehicle (i.e., the ratio of the angular size of the forward vehicle and 

its rate of change; D. N. Lee, 1976) and respond with braking when the mismatch between 

their expected looming and actual looming exceeds a threshold. To evaluate the 

performance of this model in capturing the effects of the presence of an alert and time 

budget, it was compared with a simple reaction time distribution. The simulated brake 

reaction times were fed to a piecewise linear function to model the driver’s braking control 

behavior.  

Chapter 5 provides answers to the question regarding the models of post-takeover 

steering behavior. The steering maneuvers were modeled using a two-part visual-based 

avoidance and stabilization model. The two-part model contained an open-loop avoidance 

and a closed-loop stabilization component. The open-loop avoidance component followed 

a visual looming-based Gaussian function and the stabilization steering modeled based on 

a visual-based optimal control process to minimize the angles between the vehicle’s 

heading and near and far anchor points. The open- and closed-loop models were then 

compared with a baseline closed-loop model fitted to the entire post-takeover control.  

Chapter 6 addresses the last question regarding the holistic model of a takeover 

process using two evidence accumulation models that work in parallel to simulate the 

drivers’ decision-making, braking, and steering behavior across the investigated system 

design and environmental factors. The basic accumulator model was modified to better 

account for the drivers’ perceptual decision-making and response time process (e.g., 
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memory decay or multiple responses at a single time). The basic piecewise linear and 

open-loop avoidance models were extended to capture the urgency of the events. An 

Approximate Bayesian Computation (ABC) approach was used to fit the entire model to 

the collected data. This approach was employed as it explores the parameter space and 

replaces the likelihood ratio computation with simulations of the model (Turner & Van 

Zandt, 2012). The output of this model is summary statistics of the parameters that can be 

used to simulate the drivers’ decision-making, takeover time, and braking and steering 

control maneuvers.  

Chapter 7 presents the conclusion of this dissertation. It summarizes the key 

findings, practical implications and theoretical contributions to the body of literature, 

limitations, and future work. 

 



 

12 

 

2. LITERATURE REVIEW* 

 

The prior chapter established that investigating factors that influence takeover 

performance and identifying models of driver behavior during takeovers are critical 

elements of automated vehicles’ safety. This chapter briefly introduces the current state 

of the art in automated vehicles and then reviews the literature on automated vehicle 

takeovers and models of driver behavior. 

 

2.1. Current Automated Vehicle Technologies 

Advanced safety technologies such as forward collision warnings, blind spot 

monitoring, and automated emergency braking have reduced crashes and crash severity 

(Cicchino, 2017a, 2017b; Fildes et al., 2015; Isaksson-Hellman & Lindman, 2016). 

Automated vehicle technologies—such as the “Tesla Autopilot” (Tesla Motors, 2018), 

“IntelliSafe Autopilot” (Volvo Cars, 2018), “GM Cruise” (General Motors, 2018), and 

Waymo’s self-driving car (Waymo, 2018) may continue this trend and provide even 

greater comfort and safety benefits (Blanco et al., 2016; Eriksson et al., 2017). The safety 

impact (i.e., the reduction in crashes resulting in injuries or deaths) of these automated 

vehicle technologies will be limited by the ability of the automation and human to perform 

their responsibilities, their ability to transfer control to and from one another, their ability 

 

* Parts of this chapter are reprinted with permission from “McDonald, A. D., Alambeigi, H., Engström, J., 
Markkula, G., Vogelpohl, T., Dunne, J., & Yuma, N. (2019). Toward Computational Simulations of 
Behavior During Automated Driving Takeovers: A Review of the Empirical and Modeling Literatures. 
Human Factors, 61(4), 642–688.” 
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to conduct appropriate interactions with the transportation network, and appropriate levels 

of trust and reliance of the human driver on the automation (Banks & Stanton, 2015; 

Brown, 2017; J. D. Lee, 2018; J. Lee & Kolodge, 2018; Lu & de Winter, 2015; McDonald 

et al., 2019; B. Seppelt & Victor, 2016).  

The human factors and driving safety research communities have primarily 

focused on transitions of control (Lu et al., 2016; McDonald et al., 2019) although some 

efforts have been made to analyze interactions between vehicles in automated mode and 

the transportation network (Brown, 2017; Brown & Laurier, 2017). In parallel with these 

efforts, companies have continued to pursue the development and testing of automated 

vehicle technologies on public roadways. In the state of California, USA, these tests must 

be documented in two reports documenting automation disengagements and crashes (State 

of California Department of Motor Vehicles, 2014). The disengagement reports document 

the number and nature of transitions of control for each company and the crash reports 

contain a set of required fields along with an unstructured narrative report. The databases 

containing these reports offer a unique opportunity to augment the findings from 

controlled laboratory and on road studies.  

 Prior research has used these databases to compare automated and manual vehicle 

safety (Blanco et al., 2016; Schoettle & Sivak, 2015; Teoh & Kidd, 2017), analyze 

transitions of control (Dixit et al., 2016; Favarò et al., 2017, 2019), and identify trends in 

collision types and crash dynamics (Favarò et al., 2017). These studies have found that 

automated vehicles tend to be safer than manually driven vehicles, although there are open 

issues regarding the impact of transitions of control on safety (Teoh & Kidd, 2017). 



 

14 

 

Analyses of the crash database have found that the majority of crashes occur when the 

vehicle in automated mode is stopped, that approximately 20% of the crashes occur 

following a manual transition, and that no crashes have been reported during an automated 

initiated transition of control to the driver (Favarò et al., 2017, 2019). The findings have 

been derived primarily from frequency analyses of the fields in the crash database and 

manual reviews of crash narratives. These findings are aligned with those of Alambeigi et 

al. (2019) that showed in addition to rear-end collisions at intersections, crashes associated 

with manual transitions, and crashes involving a side-swipe during overtake are prominent 

themes in the automated vehicle crash database. This illustrates the need for investigations 

of silent automation failures in which the automation fails to detect an imminent crash and 

requires driver input in different situations (e.g., an overtake or a rear-end situation).  

 

2.2.  Automated Vehicle Takeovers 

Given the importance of transitions of control in current automated vehicle 

technology safety, a substantial amount of recent research has focused on identifying and 

quantifying characteristics of the driver, environment, and transition mechanism that 

correlate with safe transfers of control (Eriksson & Stanton, 2017b; Lu et al., 2016; 

McDonald et al., 2019; Zhang et al., 2019). Automated vehicle takeovers are either driver-

initiated or automation-initiated. In case of the automation-initiated, humans are expected 

to assume control of the vehicle with or without a preceding alert. If the precipitating event 

is recognized by the automation, an alert will be provided to the driver; otherwise, in cases 

where the automation fails to detect the precipitating event or unexpectedly disengages, 
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the driver will not receive a takeover request (i.e., silent failures). Takeovers consist of 

visual, cognitive, and physical components. The visual component comprises redirecting 

eyes from non-driving related tasks to the driving scene and scanning the roadway to 

assess action alternatives. The cognitive component involves situation perception, action 

selection, and evaluation of the action. The physical component consists of motor 

readiness and steering or braking action execution. Drivers establish motor readiness by 

repositioning their hands to the steering wheel and their feet to the pedals. The cognitive 

perception and physical readiness components might be executed parallel to each other 

(Zeeb et al., 2015). At the end of a takeover, drivers perform their selected action, evaluate 

it, and they modify and update their action if it is necessary. Figure 2.1 shows a conceptual 

model of the physical, visual, and cognitive components of the takeover process. In this 

figure, the durations of motor, gaze, and cognitive readiness, and action selection 

represent one possible scenario; in practice, any readiness component could have 

maximum latency (McDonald et al., 2019). For instance, if the driver is engaged with a 

handheld secondary task (e.g., holding a cell phone or a tablet in hands), in an emergency 

situation, he/she might need to select an action before initiating the hand movements to 

place the device in a safe position and take the steering wheel. In this case, motor readiness 

takes longer times than cognitive readiness. To ensure safe takeovers, it is important to 

examine the factors and environments that impact these components and undermine 

takeover performance. 
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Figure 2.1 A conceptual model of the physical, visual, and cognitive components of 
the takeover process. Reprinted with permission from McDonald et al. (2019). 

 
 

2.2.1. Takeover Performance Metrics 

From the safety perspective, the time taken for the drivers to complete all 

components of a takeover process and the quality of the executed action are both 

important. Thus, the remainder of this section covers the metrics used in the literature for 

both time and quality of a takeover process.  

 

2.2.1.1. Takeover Time 

While a variety of temporal measures have been used to assess takeover 

performance, the takeover time is most often measured as the time between the takeover 

request, or event presentation for silent failures, and the first evidence of demonstrable 

braking or steering input. Demonstrable input is typically defined by the first exceedance 

of control input thresholds. The most common thresholds are 2 degrees for steering and a 

threshold of 10 % actuation from braking (Gold et al., 2017; Louw, Markkula, et al., 2017; 
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Zeeb et al., 2015). Other temporal measures of takeover performance include the time 

between the warning (or failure) and the redirection of the driver’s gaze (Eriksson et al., 

2019), repositioning of the hands or feet to the controls (Petermeijer, Bazilinskyy, et al., 

2017; Petermeijer, Cieler, et al., 2017; Petermeijer, Doubek, et al., 2017), automation 

deactivation (Dogan et al., 2017; Vogelpohl, Kühn, Hummel, Gehlert, et al., 2018), or the 

initiation of the last evasive action (Louw, Markkula, et al., 2017). Table 2.1 summarizes 

these measures and their link to driver behaviors.  

 
Table 2.1 Temporal Measures of Takeovers and Related Driver Actions Following 
a Precipitating Event. Reprinted With Permission From McDonald et al. (2019). 

Takeover Temporal 
Measure 

Driver Action  Example Reference 

Gaze reaction time Driver redirects gaze to the forward 
roadway 

(Eriksson et al., 2019) 

Feet-on reaction time Driver repositions feet to the pedals (Petermeijer, 
Bazilinskyy, et al., 2017)  

Hands-on reaction time Driver repositions hands to the steering 
wheel 

(Petermeijer, 
Bazilinskyy, et al., 2017) 

Side mirror gaze time Driver redirects gaze to the side mirror  (Vogelpohl, Kühn, 
Hummel, Gehlert, et al., 
2018) 

Speedometer gaze time Driver redirects gaze to the instrument panel (Vogelpohl, Kühn, 
Hummel, Gehlert, et al., 
2018) 

Indicator time Driver activates turn signal (or indicator 
light) 

(S. Li et al., 2018)  

Automation 
deactivation time 

Driver deactivates the automation by 
braking/steering action or pressing a button 

(Dogan et al., 2017) 

Takeover time Driver depresses brake pedal more than 
10% or turns the steering wheel more than 2 
degrees 

(Gold et al., 2017) 
 

Action time Driver initiates the final evasive action (Louw, Markkula, et al., 
2017) 
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Many of these measures are situation dependent—for example, drivers may 

already have their hands on the steering wheel at the time of a takeover request and thus 

would not have a measurable “hands-on reaction time.” From a modeling perspective, 

these measures present opportunities for model validation. For example, if a model’s 

structure includes an eye glance component, one can partially validate the model based on 

the predicted time to return a driver’s glance to the forward roadway.  

 

2.2.1.2. Takeover Quality 

Takeover quality, or post-takeover control, comprises a broad range of metrics 

intended to measure the takeover performance. Metrics explored in the literature include 

lateral and longitudinal acceleration (or their combined magnitude), time to collision 

statistics (TTC), inverse TTC, time to lane crossing (TLC), time headway to the lead 

vehicle, distance headway to the lead vehicle, lane position statistics, frequency of 

collision occurrence, time to complete an evasive maneuver, steering wheel angle based 

metrics, maximum derivative of the control input that drivers used to avoid the collision, 

speed statistics, and lane change error rates (Eriksson & Stanton, 2017b; Feldhütter et al., 

2017; Körber et al., 2016; Merat et al., 2014; Naujoks et al., 2017; Schmidt et al., 2017; 

Wandtner et al., 2018a; Zeeb et al., 2016, 2017). The complete set of metrics used to 

measure takeover quality in the reviewed studies is shown in Table 2.2. The diverse 

definitions of takeover quality make summative analysis difficult and thus there is a 

significant need for a convergence of measures in future studies. From a modeling 

perspective, these metrics provide a similar opportunity for validation, but also provide 
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insight into the impact of various factors on lateral (i.e., steering) and longitudinal control. 

Such impacts can be used to guide model selection for braking (longitudinal) and steering 

(lateral) control models. In the following sections, we separate the impacts of each factor 

on lateral and longitudinal control in order to align with this model selection process.  

 

Table 2.2 Summary of Takeover Quality Metrics Used in the Reviewed Studies. 
Reprinted With Permission From McDonald et al. (2019). 

Takeover Quality Metric Unit Example Studies Employing the Metric 
Max, min, mean lateral 
acceleration 

[m/s2] (Gold et al., 2016; Gonçalves et al., 2016; Kreuzmair & 
Meyer, 2017; Lorenz et al., 2014) 

Max, min, mean 
longitudinal acceleration 

[m/s2] (Feldhütter et al., 2017; Gold et al., 2015; Gold, Damböck, 
Bengler, et al., 2013) 

Max resultant acceleration [m/s2] (Gold, Damböck, Bengler, et al., 2013; Hergeth et al., 
2017; Kerschbaum et al., 2015; S. Li et al., 2018) 

Brake input rate Count (Eriksson et al., 2019) 
Min, mean, inverse time to 
collision  

[s] (Gold et al., 2015; Hergeth et al., 2017; Körber et al., 
2018) 

Min time to lane crossing  [s] (Zeeb et al., 2017) 
Min time headway  [s] (Schmidt et al., 2017; Strand et al., 2014; Zeeb et al., 2017) 
Min distance headway  [m] (Louw, Kountouriotis, et al., 2015; Schmidt et al., 2017) 
Max, mean, standard 
deviation of lane position 

[m] or  
[ft] 

(Vogelpohl, Kühn, Hummel, Gehlert, et al., 2018; 
Wiedemann et al., 2018) 

Crash rate Count (Körber et al., 2016; Radlmayr et al., 2014)  
Time to complete a lane 
change 

[s] (Bueno et al., 2016; Louw, Merat, et al., 2015) 

Lane change error rate Count (Mok, Sirkin, et al., 2015; Wandtner et al., 2018a) 
Max, standard deviation of 
steering wheel angle 

[rad] or 
[deg] 

(Bueno et al., 2016; Clark & Feng, 2017; Eriksson & 
Stanton, 2017a; Shen & Neyens, 2014)  

Max steering wheel velocity [rad/s] (Wiedemann et al., 2018) 
High frequency steering 
control input 

Count (Merat et al., 2014) 

Min, max, mean, standard 
deviation of velocity 

[m/s] or 
[km/h] 

(Brandenburg & Skottke, 2014; Clark & Feng, 2017; 
Merat et al., 2014; Naujoks et al., 2017) 

Max derivative of the 
control input  

[deg] or 
[rad/s] 

(Louw, Markkula, et al., 2017) 
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2.2.2. Influential Factors on Takeover Performance 

The topic of transfers of control between humans and automation has been 

extensively explored by human factors researchers (Bainbridge, 1983; Dekker & Woods, 

2002; Endsley & Kaber, 1999; Endsley & Kiris, 1995; Hancock, 2007; Kaber & Endsley, 

2004; Sarter & Woods, 2000). However, transitions of automated vehicle control present 

several new and complex challenges (B. Seppelt & Victor, 2016). A significant amount 

of research has been dedicated to exploring these nuances and identifying factors that 

influence takeover performance. These factors, their definitions, and example studies are 

summarized in Table 2.3. 

 
Table 2.3 Factors and Definitions for Key Terms Associated with Automated Vehicle 
Takeovers. Reprinted With Permission From McDonald et al. (2019). 

Measure Definition Example Reference 

Time budget The time-to-collision (or time to line crossing) at 
first presentation of a precipitating event 

(Gold, Damböck, Lorenz, 
et al., 2013) 

Secondary task A non-driving task performed by the driver at the 
time of the precipitating event (e.g., interacting 
with in-vehicle technology) 

(Radlmayr et al., 2014; 
Zeeb et al., 2016)  

Takeover 
request modality 

The modality (e.g., auditory, visual, vibrotactile) 
of the takeover request 

(Naujoks et al., 2014) 

Driving 
environment 

The weather conditions and road type during a 
takeover, traffic density in vehicles per 
kilometer, or the available escape paths  

(Gold et al., 2016; 
Radlmayr et al., 2014)  
 

Presence of 
takeover request 

Whether the takeover was preceded by a request (Strand et al., 2014)  

Level of 
automation 

SAE automation level 0 to level 4 (Madigan et al., 2018; 
Radlmayr et al., 2018)  

Driver factors Driver specific factors such as fatigue or alcohol 
impairment 

(Vogelpohl, Kühn, 
Hummel, & Vollrath, 
2018; Wiedemann et al., 
2018)  
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As this table shows the factors that have been found to influence takeover 

performance include time budget, secondary task engagement, the presence and modality 

of a takeover request, the external driving environment, level of automation, and driver 

factors (e.g., age or trust). This section reviews these factors, and provides a summary of 

their impacts, and consolidates the findings into requirements for driver models. 

 

2.2.2.1. Time Budget 

 Time budget refers to the TTC or TLC at the time of the takeover request or onset 

of the precipitating event for silent failures. A broad range of takeover time budgets have 

been explored in the literature, where the most common time is 7 s (Eriksson et al., 2017; 

Eriksson & Stanton, 2017b). While nearly all the reviewed studies included a time budget 

for control transitions, several specifically evaluated the effects of varying time budgets 

on take-over time and post-take-over control. Time budget has been shown to significantly 

increase the takeover time with an approximately 0.3 s increase per a 1 s increase in time 

budget (Gold et al., 2017; McDonald et al., 2019). In addition, time budget significantly 

impacts lateral and longitudinal aspects of the post-takeover control by decreasing the 

minimum TTC and increasing the maximum lateral and longitudinal accelerations. Choice 

of maneuver is also affected by this factor, where lower time budgets lead to more braking 

responses. Collectively these results align with findings from analyses of manual driving 

(Markkula et al., 2016), which suggests that models used for manual driving may be 

translated to automated vehicle takeovers. 
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2.2.2.2. Secondary Task 

Secondary tasks refer to any non-driving related activity that drivers perform 

during automated driving. Studies have explored visual, cognitive, and motoric task 

modalities (McDonald et al., 2019). A wide range of secondary tasks have been explored 

in the literature including both artificial, defined as highly controlled and validated 

interactions, and naturalistic tasks, defined as any real-life activity or interaction with in-

vehicle technology even if it is not partially controlled. Table 2.4 shows a comprehensive 

summary of the secondary tasks explored in the takeover literature. The impact of 

secondary tasks on takeover time is strongly related to the manual load of the task. These 

tasks can be performed on a handheld or a mounted device where handheld secondary 

tasks in particular, significantly increase takeover time (Zhang et al., 2019). This 

additional time is composed of increases in both visual and physical readiness time 

(Dogan In addition, secondary tasks significantly impact post-takeover control and the 

choice of maneuver. Drivers are more likely to brake if engaged in a secondary task 

(Louw, Merat, et al., 2015; Naujoks et al., 2017). However, there is a confound between 

the increases in takeover time and the resulting post-takeover control, wherein the source 

of post-takeover control decrements is unclear. This confound may be resolved through 

driver modeling analyses.  
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Table 2.4 Summary of Secondary Tasks Used in the Reviewed Studies. Reprinted 
With Permission From McDonald et al. (2019). 

Type of 
task 

Modality Secondary 
task 

Description Example References 

Artificial Visual 
Motoric 

Surrogate 
reference 
task (SuRT) 

Presentation of targets 
that have to be identified 
by their columns  

(Feldhütter et al., 2017; 
Gold, Damböck, Lorenz, 
et al., 2013) 

Visual Rapid serial 
visual 
presentation 
(RSVP) 

Serial presentation of 
targets and distractors, 
targets have to be reacted 
to by pressing a button 

(Wiedemann et al., 2018) 

Cognitive Twenty-
question task  

20 yes/no verbal 
questions 

(Merat et al., 2012) 

Cognitive n-back Serial presentation of 
targets and distractors, 
target n steps before 
current stimulus has to be 
recalled 

(Gold et al., 2015; Louw, 
Markkula, et al., 2017; 
Radlmayr et al., 2014) 

Cognitive 
Motoric 

Manual 
shape 
identification 

Fitting different shapes 
through the holes in a bag  

(Gold et al., 2015) 

Cognitive 
Motoric 

Oddball task Presentation of a series of 
auditory stimuli and 
distractors, target stimuli 
have to be reacted to by 
pressing a button 

(Körber et al., 2015) 

Visual 
Cognitive 

Heads-up 
display 
interaction 

Projection of a series of 
IQ test questions on a 
heads-up display 
requiring verbal answers 

(Louw, Madigan, et al., 
2017; Louw, Markkula, et 
al., 2017) 

Visual 
Cognitive 
Motoric 

Visual 
adaptation of 
the Remote 
Association 
Test 

Finding the target word 
that links three presented 
images among the mixed 
letters 

(Bueno et al., 2016) 

Naturalistic Visual 
Cognitive 
Motoric 

Composing 
text  

Writing an 
email, 
completing a 
missing 
word or 
transcribing 
a given 
sentence 

Handheld 
device 

(Wandtner et al., 2018a, 
2018b) 

Visual 
Cognitive 
Motoric 

Mounted 
device 

(Zeeb et al., 2015, 2016) 
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Table 2.5 Continued Summary of Secondary Tasks Used in the Reviewed Studies. 
Reprinted With Permission From McDonald et al. (2019). 

Type of 
task 

Modality Secondary 
task 

Description Example References 

 Visual 
Cognitive 
Motoric 

Reading text Reading a 
magazine, 
newspaper, 
article, book 
or a given 
sentence 

Handheld 
device 

(Eriksson & Stanton, 
2017b; Wan & Wu, 2018; 
Wandtner et al., 2018a; 
Zeeb et al., 2017) 

Visual 
Cognitive 

Mounted 
device 

(Louw, Merat, et al., 
2015; Zeeb et al., 2016) 

Visual 
Cognitive 
Motoric 

Proofreading 
text 

Reading the 
mistakes of a 
given 
sentence 
aloud 

Handheld 
device 

(Zeeb et al., 2017) 

Visual 
Cognitive 

Mounted 
device 

(Zeeb et al., 2017) 

Visual 
Cognitive 
Motoric 

Watching a 
video 

Watching 
video stream 
w/wo 
instruction to 
answer 
questions 

Handheld 
device 

(Miller et al., 2015; Mok, 
Johns, et al., 2015; Wan 
& Wu, 2018) 

Visual 
Cognitive 

Mounted 
device 

(Petermeijer, Doubek, et 
al., 2017; Walch et al., 
2015) 

Visual 
Cognitive 
Motoric 

Playing a 
game 

Playing a 
game (e.g., 
quiz game or 
Tetris) 

Handheld 
device 

(Melcher et al., 2015) 

Visual 
Cognitive 
Motoric 

Mounted 
device 

(Eriksson et al., 2019; van 
den Beukel & van der 
Voort, 2013) 

Visual 
Cognitive 
Motoric 

Device 
interaction 

Internet 
search or 
retrieving 
information 
from an 
application 

Handheld 
device 

(Dogan et al., 2017; 
Zhang et al., 2017) 

Visual 
Cognitive 
Motoric 

Mounted 
device 

(Naujoks et al., 2017; 
Zeeb et al., 2015) 

Cognitive Hearing text 
and 
repeating 

Hearing a sentence and 
repeating 

(Wandtner et al., 2018a) 

Visual 
Cognitive 

Sleeping Taking a nap (Wan & Wu, 2018) 

Visual 
Cognitive 
Motoric 

Free choice 
of tasks 

Free choice by participant 
(e.g., listening to music)  

(Clark & Feng, 2017; 
Jamson et al., 2013) 
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2.2.2.3. Takeover Request Modality 

Takeover request modality is the modality of alert that is used to warn the driver 

about a takeover request. The takeover request could be a generic alert involving auditory 

feedback, visual feedback, vibrotactile feedback, or a combination. Ecological alerts, 

which provide a description or an instruction to the driver, have also been explored. 

Studies have found that multimodal alerts lead to shorter takeover times compared to 

unimodal alerts (Petermeijer, Bazilinskyy, et al., 2017). The impact of ecological alerts 

on takeover time is strongly dependent on conciseness of the alert design (Forster et al., 

2017; Lorenz et al., 2014). Further research is needed to clarify the impact of ecological 

alerts and multimodal takeover requests on post-takeover control. Although preliminary 

findings suggest that multimodal alerts may be a promising future design direction for 

automated vehicle manufacturers.  

 

2.2.2.4. Driving Environment 

Traffic situations, road elements, and weather conditions surrounding the takeover 

are considered as driving environments. Among these environmental factors, traffic 

density, available escape paths, weather conditions, and road types (e.g., city roads, 

highways, curved roads, marked and unmarked lanes) have significantly impact takeover 

time and post-takeover performance. Traffic density is defined as the average number of 

vehicles occupying a distance of the roadway (e.g., per kilometer, per mile), whereas 

escape paths refer to paths of travel that the driver can take without being involved in a 

crash. Traffic density has been explored through several studies as increases or decreases 
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in the number of vehicles per mile (Dogan et al., 2017; Gold et al., 2016, 2017). The range 

of traffic densities explored in the literature includes 0-30 vehicles per mile. High traffic 

density (representing the level of service D in traffic flow categories; Margiotta & 

Washburn, 2017), fewer escape paths, driving in highway environments, and adverse 

weather conditions delay the takeover time and deteriorate post-takeover control (Gold et 

al., 2016; Körber et al., 2016; S. Li et al., 2018). However, further work is needed to clarify 

the findings of the studies here, particularly those on weather conditions and road type. In 

general, driver models must be robust to the various driving environments where 

takeovers occur. 

 

2.2.2.5. Presence of a Takeover Request  

 Presence of a takeover request refers to presence or absence of a warning, notifying 

the driver about the need to resume control where the automation fails or encounters an 

operational limit. The absence of an alert is typically referred to as a silent failure. In such 

conditions, the system implicitly relies on the driver to perceive the failure and resume 

control. Few current studies have addressed the impacts of silent failures directly, 

especially compared to manual driving (Blommer et al., 2017; Piccinini et al., 2019). 

These studies showed that silent failure increased the brake reaction time and the takeover 

time compared to manual driving and resulted in higher standard deviation of lane position 

and more high-frequency steering corrections; however, no significant differences were 

found between silent and alerted failure. The conflicting findings across these studies and 



 

27 

 

the limited analyses of the impact of silent failures on post-transition control highlight the 

need for additional studies. 

 

2.2.2.6. Level of Automation 

Most studies have explored level of automation (see Table 1.1) effects through a 

comparison between automated driving and a manual emergency baseline. In these cases, 

automation has been shown to significantly increase takeover time (Gold, Damböck, 

Lorenz, et al., 2013; Happee et al., 2017) and decrease post-takeover performance (Dogan 

et al., 2017; Madigan et al., 2018) relative to the manual baseline. Few studies were 

identified that directly compared levels of automation. These studies have shown 

conflicting findings between the higher levels of automation. Some studies have shown 

that an increase in the level of automation has been associated with increase in takeover 

time (Neubauer et al., 2014) and decrease in min TTC (Strand et al., 2014) while Madigan 

et al. (2018) found a decrease in reaction time and increase in time headway with higher 

levels of automation during non-critical transitions of control. Further research is needed 

to clarify the specific impact of higher levels of automation (level 1 to level 4) on takeover 

performance. 

 

2.2.2.7. Driver Factors 

In addition to the primary factors mentioned above, prior work has explored the 

effects of various driver factors on takeover performance. Driver factors found in the 

literature include repeated exposure to takeovers, training, prior real-world automation 
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experience, trust in automation, age, fatigue, and alcohol consumption. Of these factors 

repeated exposure has the strongest impact on takeover time and post-takeover control, 

where it decreases the takeover time, maximum accelerations, and crash rate and increases 

the minimum TTC (Gold et al., 2017; Payre et al., 2016). Task-related fatigue and 

drowsiness (Feldhütter et al., 2017; Vogelpohl, Kühn, Hummel, & Vollrath, 2018), and 

alcohol (Wiedemann et al., 2018) may influence takeover time and performance, however, 

significant future work is needed to confirm the findings of preliminary studies. The 

findings on age (Clark & Feng, 2017; Gold et al., 2017) and trust (Körber et al., 2018; 

Payre et al., 2016) are inconclusive. Consistency in measurement techniques and 

statistical analyses may clarify these findings.  

Table 2.6 presents the specific impacts of factors on takeover time and post-

takeover lateral and longitudinal control that have been found in the literature. The grey 

areas show the factors with limited number of studies as well as inconclusive findings. 

The findings suggest that time budget, handheld secondary task, presence and modality of 

takeover request, driving environment, levels of automation, and driver factors including 

repeated exposure to takeovers, alcohol consumption, and trust in automation influence 

the takeover time. With respect to the post-takeover control, the results show that with 

longer time budget, engagement in a handheld secondary task, increase in traffic density, 

decrease in escape paths, adverse weather conditions, alcohol consumption, and less 

exposure to takeover, the increase in takeover time led to the deterioration of post-takeover 

performance as measured by TTC or lateral and longitudinal accelerations.  
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Table 2.6 The Impacts of Factors on Takeover Performance. Reprinted With 
Permission From McDonald et al. (2019). 

Factor Levels or 
direction of 
change 

Impact on 
takeover time 

Impact on 
lateral control 

Impact on 
longitudinal 
control 

Time budget Increasing Increasing Decrease in 
max lateral 
acceleration 

Decrease in max 
longitudinal 
acceleration 

Decrease in 
SD of lane 
position 

Decrease in 
collision rates 
 

Decrease in 
SD of SWA 

Increase in 
min TTC 

Secondary task Handheld 
 

Increasing Increase in SD 
of lane 
position 

Decrease in Min 
TTC 

Decrease in 
min TLC 

Decrease in time 
headway 

Non-
handheld 

No to minor 
increase 

Increase in 
max/mean 
lateral 
acceleration 

Decrease in 
min TTC 

Increase in SD 
of lane 
position 

Increase in 
collision rates 

Increase in 
max SWA 
Increase in 
TLC 
Increase in 
lane change 
error rates 

Presence of a takeover 
request 

Absent 
(silent 
failure) 

Increasing 
compared to 
manual, 
Insufficient 
evidence 
compared to 
presence of a 
request 

Increase in 
high-freq. 
steering 
corrections 

Insufficient 
evidence 

Increase in SD 
of lane 
position 

Levels of automation Increasing Insufficient 
evidence 

Insufficient 
evidence 

Insufficient 
evidence 
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Table 2.7 Continued The Impacts of Factors on Takeover Performance. Reprinted 
With Permission From McDonald et al. (2019). 

Factor Levels or 
direction of 
change 

Impact on 
takeover time 

Impact on 
lateral control 

Impact on 
longitudinal 
control 

Takeover request modality Multimodal  Decreasing Decrease in 
SD of lane 
position 

Insufficient 
evidence 

Decrease in 
max lateral 
acceleration 

Driving environment Traffic 
density 

Increasing 
 

Increase in 
max lateral 
acceleration  

Increase in 
mean/max 
longitudinal 
acceleration 

Increase in SD 
of SWA 

Increase in brake 
application 
frequency 

Escape path Decreasing Increase in 
collision rates 
Decrease in  
min/mean TTC 

Weather 
condition 

Adverse Decrease in  
min distance 
headway 

Driver 
factors 

Repeated 
exposure to 
takeovers 

Increasing Decreasing Decrease in  
max lateral 
acceleration 

Increase in min 
TTC 
Decrease in 
Collision rates 

Alcohol 
consumption 

Increasing Increasing Increase in SD 
of lane 
position 

Increase in 
longitudinal 
acceleration 

Trust in 
automation 

Increasing Increasing Insufficient 
evidence 

Insufficient 
evidence 

Age Increasing Insufficient 
evidence 

Insufficient 
evidence 

Insufficient 
evidence 

Fatigue Increasing Insufficient 
evidence 

Increase in 
max lateral 
acceleration 

Insufficient 
evidence 

Note. TTC: time to collision; TLC: time to lane crossing; SD: standard deviation; SWA: steering wheel 
angle; Max: maximum; Min: minimum. The grey highlighted rows indicate the factors with insufficient 
evidence of impact on takeover time or post-takeover control. 
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In addition to identifying these factors, few empirical studies have investigated the 

interaction effects between the factors presented in Table 2.6. Table 2.8 summarizes these 

findings. Few prior studies have explored the interaction effects between the factors 

identified in this review. Significant interaction effects on takeover time have been 

observed for age and time budget (Clark & Feng, 2017), age and weather condition (S. Li 

et al., 2018), and repeated exposure and takeover request modality (Forster et al., 2017). 

The findings suggest that older drivers had lower takeover times with longer time budgets 

than younger drivers. Also, adverse weather condition (e.g., snow or fog) delayed the 

younger drivers’ reaction time. The drivers who received a multimodal takeover request 

had a lower takeover time in the first exposure to takeover compared to the drivers who 

received a unimodal takeover request. Regarding the post-takeover control, significant 

interactions have been found for time budget and secondary task (Wan & Wu, 2018) and 

traffic density and age (Körber et al., 2016). The findings of Wan and Wu (2018) showed 

that lower time budgets led to lower minimum TTC when drivers were engaged in tasks 

that disengaged them from the driving environment (e.g., sleeping, watching a movie, or 

typing) as compared to tasks such as monitoring the roadway or reading. Körber et al. 

(2016) observed that younger drivers braked less than older drivers at low traffic densities. 

Beyond this finding, further work is needed to understand the interaction between specific 

factors. 
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Table 2.8 Summary of the Findings in Interaction Effects for Takeover Time and 
Post-takeover Control. Reprinted With Permission From McDonald et al. (2019). 

Factor Interactive Factor Findings 
Time budget 
 

Secondary task 
(handheld and non-
handheld) 

Minimum TTC was higher for lower time 
budgets and tasks where drivers were 
disengaged from the forward roadway 

Age Older drivers had lower hands-on and feet-on 
reaction times with longer time budgets  

Secondary 
task  

Non-
handheld 

Request modality No significant findings 

Non-
handheld 

Driving 
environment 
(Traffic density) 

No significant findings 
 

Age No significant findings 
Non-
handheld 

Task-related fatigue No significant findings 

Non-
handheld 

Level of automation 
(L0 vs. L3) 

No significant findings 

Driving 
environment 

Traffic 
density 

Repeated exposure No significant findings 
Age Younger drivers brake less than older drivers 

at low traffic densities (0 and 10 
vehicles/km) 

Weather 
condition 

Age Younger drivers’ reaction time increased in 
poor weather conditions (rain, snow, fog) 

Level of automation 
(L0 vs. L2) 

Difference in maximum longitudinal 
acceleration between manual and automated 
vehicle was greater in light fog condition 
compared to heavy fog 

Repeated exposure 
 

Age No significant findings 
Request modality Drivers who received multimodal alert had a 

lower automation deactivation time and 
hands-on time in the first exposure to 
takeover compared to the drivers who 
received a unimodal takeover request 

Level of automation 
(L0 vs. L2) 

Maximum lateral acceleration has been 
reduced with repeated exposure to takeovers 
for drivers in L2 of automation 

Fatigue Level of automation 
(L0 vs. L3) 

No significant findings 

Note. TTC = Time to collision; L = Level of automation 
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2.2.3. Automated Vehicle Takeover Insights 

The findings of automated vehicle takeover literature highlight the need to 

investigate the impact of factors that are not well studied and their interaction with other 

driver- or environmental-related factors. Specifically, more evidence is needed for a 

rigorous conclusion on the impacts of absence of a takeover request (i.e., silent failure), 

modality of a takeover request, age, trust, fatigue, and levels of automation on takeover 

performance. In addition, the findings suggest that process models of human takeover 

behavior should capture the negative impacts of low time budget, handheld secondary 

tasks, uncertainty in the driving environment, and driver factors (e.g., alcohol) on takeover 

time and post-takeover control. The takeover empirical literature provides a clear 

guidance on the link between these factors and post-takeover driving behavior, e.g., 

models of a takeover process should predict higher deceleration (i.e., more intense 

braking) with lower time budgets. In addition, considering the increase in takeover time, 

models should predict a delay between manual and automated driving, although the 

decision-making component in models of automated vehicle takeovers should be similar 

to those in manual driving emergencies (Lu et al., 2016). The exact mechanisms by which 

models capture the influence of these factors remains unclear. 

 

2.3. Models of Driver Behavior 

One approach to assess the safety-related effectiveness of automated systems is to 

use simulation frameworks which join predicted human behavior with technology 

(Bärgman et al., 2017; Roesener et al., 2017). Designing simulation frameworks requires 
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a combination of three different components including a driving environment data, an 

automated vehicle algorithm, and a model of driver behavior (Anund et al., 2013; 

Bärgman et al., 2017). The driving environment data describes pre-crash kinematic 

driving data such as speed or acceleration, and is necessary to describe the driving 

scenario. In addition, the algorithm behind automated vehicle technologies such as 

autonomous emergency braking should be entered as an input to the simulation 

framework. Driver model, which is the third component in the simulation framework, can 

be used to guide the design process and calibrate design parameters. Markkula (2013) 

classified the driver models into three types: conceptual, statistical, and process models. 

Conceptual models provide a description of driver behavior without quantifying the 

specific factors (e.g., Banks & Stanton, 2019). In contrast, statistical models give a 

quantitative description such as probability distribution of driver behavior (e.g., Gold, 

Happee, & Bengler, 2017). Among the three types, process models are able to 

mathematically describe and predict driver behavior based on theories of driver control 

and can be applied to a simulation framework (Bärgman et al., 2017).  

One potential outcome of this framework is the assessment of crash risk (e.g., crash 

percentage variations) resulted from the combination of inputs. To improve the design of 

automated technologies different driver models will be entered into the framework and 

their impacts on crash risk will be compared. Figure 2.2 presents the integration of the 

essential components in a simulation framework. It has been shown that the validity of a 

simulation framework is reasonably dependent on the model’s accuracy (Markkula et al., 
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2012). Thus, it is vital to design accurate and realistic models that closely match with real-

life human driver behaviors.  

 

 

Figure 2.2 An example of a simulation framework for using driver behavior models 
to improve safety. Reprinted with permission from McDonald et al. (2019). 
 

Models of driving behavior have a rich history in the human factors and vehicle 

dynamics literatures (Markkula et al., 2012; Michon, 1985; Plöchl & Edelmann, 2007; 

Saifuzzaman & Zheng, 2014). The models developed in the literature seek to describe 

driver acceleration, braking, or decision-making. Often models focus on 

acceleration/braking or steering in a specific context, for example, car-following 

situations (Markkula et al., 2012; Saifuzzaman & Zheng, 2014). While most of these 

models are designed to depict manual driving behavior, the prior section suggests that 

there is significant overlap between manual emergency avoidance behavior and automated 

vehicle takeover behavior. By extension, models of manual driving behavior may be 

useful for modeling automated vehicle takeovers. As illustrated in Figure 2.1, a takeover 

process consists of a readiness and decision-making process and executing an action. The 
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actions available to drivers include braking, steering, or a combination of braking and 

steering. A complete model of a takeover would therefore, include components to predict 

drivers’ recognition of the need to takeover, decision-making, and braking and steering 

behavior. Studies that model all of these behaviors are rare, therefore the remainder of this 

chapter reviews the driver behavior models that fall into these categories, individually.       

 

2.3.1. Recognizing the Need to Takeover 

Prior studies suggest that the timing and the quality of driver reactions in 

unexpected emergency situations (e.g., rear-end) is to a large extent determined by 

situation kinematics (Kiefer et al., 2006; D. Lee, 1976; B. D. Seppelt, 2009). This 

statement is aligned with the literature on automated vehicle takeovers that revealed that 

the driver’s reaction time to an emergency situation is highly dependent to the parameters 

such as TTC (Gold et al., 2017; McDonald et al., 2019; Zhang et al., 2019). Kiefer et al. 

suggested that driver’s ability to perceive the lead vehicle’s relative motion is based on an 

inverse TTC threshold that decreases linearly with driver speed. In this study the inverse 

TTC was calculated as the difference in speed between the lead and following vehicles 

divided by the distance between the two vehicles (Kiefer et al., 2005).  

Studies in manual and automated driving introduced the concept of response 

threshold models and showed that rather than relative distance and speed, drivers have 

access to a visual estimate of TTC and their reactions to a precipitating event are 

significantly driven by perceptual cues (Engström, 2010; Engström et al., 2018; Markkula 

et al., 2016; Pekkanen et al., 2018; B. Seppelt & Lee, 2015; Xue et al., 2018). One 
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representation of these perceptual cues is visual looming, which is the perceived optical 

expansion of the closing object on driver’s retina and can be described by inverse tau 

(Engström, 2010). Inverse tau is a visual-based estimate of inverse TTC (D. Lee, 1976) 

and is calculated as follows: 

 

𝝉!𝟏 = �̇�/𝜽                                       Equation 2.1 
 

In this equation, θ is visual angle and is defined as the projected angle of the visual 

object (e.g., lead vehicle) on driver’s retina, and θ̇ is defined as the visual angle expansion 

rate. Visual angle and expansion rate can be calculated as the following formulas (D. Lee, 

1976). 

 

				𝜽 = 𝟐𝒂𝒓𝒄𝒕𝒂𝒏 - 𝒘
𝟐𝑫
.                                 Equation 2.2 

 

        �̇� = 𝑾|𝒗𝒇!𝒗𝒍|
𝑫𝟐)𝟒𝒘𝟐

                                        Equation 2.3 
 

In these equations, W is the width of the object, D is the distance from the driver’s 

eyes to the object, and |𝑣+ − 𝑣,| is the relative speed of the driver’s vehicle to the object. 

Figure 2.3 visualizes the visual angle of a lead vehicle at the following vehicle driver’s 

eyes in which θ, W, and D indicate the driver’s visual angle of the lead vehicle, width of 

the lead vehicle, and distance to the lead vehicle, respectively. As the driver gets closer to 

the potential collision, inverse tau increases.  
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Figure 2.3 Visual angle of a lead vehicle at the following vehicle driver’s eyes 
 

In a lead vehicle braking scenario, Xue et al. showed that the visual looming 

threshold model always captured the brake reaction times better that expansion rate as 

measured by AIC values. However, they showed that the threshold models of visual 

looming could not capture the variability of observed brake response timing (Xue et al., 

2018). This implies that the perception behind drivers’ brake onset is more likely based 

on evidence accumulation than a particular threshold (Jin et al., 2011; Y. Li et al., 2016; 

Markkula et al., 2016; Svärd et al., 2017; Xue et al., 2018).  

Visual evidence accumulation models work based off of the perceived looming 

rather than looming per se. In these models, drivers receive various pieces of evidence 

such as the red brake light of the leading vehicle or changes in the visual looming of the 

lead vehicle. This evidence encourages or discourages the driver to perform a control 

action, where the action is taken if sufficient evidence is accumulated (Markkula, Boer, et 

al., 2018). The evidence accumulation models in emergency situations are strongly 

correlated with the process of situation awareness recovery (Goncalves et al., 2019) and 

were introduced by a dynamic and interactive notion of predictive processing (Engström 

et al., 2018). Predictive processing model suggests that the driver’s recognition of the need 

to initiate a response is likely driven by the difference between actual and expected 
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looming (Engström et al., 2018; Xue et al., 2018); For instance, in a situation where the 

driver is following a lead vehicle, if there is a fixed gap between the two vehicles then the 

driver predicts that there should be no visual expansion of the lead vehicle. The issue 

arises when the lead vehicle starts slowing down and makes a mismatch between driver’s 

predicted and actual looming (Victor et al., 2018). The looming prediction error, which 

drives initiation of avoidance actions (Engström et al., 2018), is defined as: 

 

𝜺(𝒕) = 𝝉𝒂𝒄𝒕𝒖𝒂𝒍!𝟏 − 𝝉𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅!𝟏                             Equation 2.4  
 

In equation 4, 𝜏789:7,!;  is the actual and 𝜏<=>?@89>?!;  is the predicted looming. The 

following equation shows the accumulative part of a basic evidence accumulation model: 

 

𝒅𝑨
𝒅𝒕
= 𝒌𝜺(𝒕) −𝑴+ 𝒗(𝒕)                             Equation 2.5 

 

In which, 𝜀(𝑡) is the looming prediction error, 𝑣(𝑡) is a zero-mean Gaussian white 

noise with standard deviation of sigma (𝜎). 𝜎, 𝑘, and 𝑀 are free model parameters. Brake 

adjustment will be executed if 𝐴	exceeds a threshold. Studies have estimated the reaction 

times—particularly the brake reaction times—by fitting the model to a set of data and 

optimizing the free parameters (Piccinini et al., 2019; Svärd et al., 2020). Piccinini et al. 

(2019) applied this model to a lead vehicle braking scenario and captured the effect of 

fatigue, that arises due to using the automation, on driver’s braking time. Markkula et al. 

(2016) proposed that drivers’ braking initiation are based on the accumulation of various 

stimuli such as visual looming, brake lights, or warnings. They showed that evidence 
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accumulation models can perfectly explain the variability of brake timing. Engström et al. 

(2017) extended this model by including a cognitive distraction on drivers’ reactions to a 

braking lead vehicle situation. In this study they compared the accumulation models of 

cognitively-distracted drivers with non-distracted drivers. The results showed that the 

non-distracted braking responses reached the response threshold earlier than cognitively-

distracted responses. They showed that the response of cognitively-distracted drivers were 

driven by looming, while, the other group’s responses were additionally driven by brake 

light. Xue et al. (2018) compared a looming-only accumulator model with a looming 

accumulator that includes the brake light and included that the latter model was fit best on 

a simulator-based braking lead vehicle data. Collectively, these results show that the 

evidence accumulation models can effectively capture the reaction time. 

 

2.3.2. Decision-making Models 

Drivers’ avoidance strategies could be categorized into four different responses 

including braking, steering, both braking and steering, and no action. Prior research has 

shown that few models have been developed to predict drivers’ avoidance maneuver 

selection. Gold et al. (2017) modeled the brake application by using a logistic regression 

model. They found time budget, traffic density, age, and repeated exposure to takeovers 

as significant predictors of braking. Kaplan and Prato (2012) used a mixed logit model to 

show that road and vehicle characteristics, driver attributes (e.g., fatigue or alcohol 

consumption), type of precipitating event, and environmental conditions affect the 

selection of avoidance maneuver. For example, they showed that drivers are more inclined 
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to brake when entering an intersection and steer when encountering an object or an animal 

in the road. Another study by Hu et al. (2017) predicts braking or steering maneuvers 

using a decision-tree model in cut-in scenarios. They showed that driving kinematics such 

as TTC and distance to the cut-in vehicle as well as driver attributes such as neuroticism 

and extraversion affect the drivers’ avoidance strategies. The choice of steering maneuver 

was adopted by a minority of the drivers that were in low-risk driving conditions, male, 

and young.  

In addition to these studies, a few studies have used the perceptual cues to model 

the driver’s decision-making behavior. A study by Venkatraman et al. (2016) used logistic 

regression models to predict drivers’ braking or steering maneuver in response to a lead 

vehicle braking scenario. They analyzed different perceptual variables including visual 

angle of the lead vehicle, expansion rate, and visual looming as well as timing and 

modality of the warning that the driver received. They showed that only a combination of 

visual angle and visual looming is the best predictor of choice of response as compared to 

the other predictors and their combinations. For example, with a unit increase in visual 

angle or tau, drivers are more likely to brake rather than steer into the adjacent lane. In 

another study by Markkula et al., they developed a simulation-ready model in which a 

driver makes an action decision based on a couple of perceptual decisions. These 

perceptual decisions are evidence accumulators that could be activated by sensory inputs 

(e.g., visual looming). In this model, the driver responds to the visual looming cues that 

build up in the evolving event. Driver’s gaze determines what sensory inputs should be 

fed into the model. For example, if the driver’s gaze is on the road, the visual looming of 
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the lead vehicle will be compared to a threshold and could lead to an avoidance maneuver. 

The decision to brake functions when the increase in brake pedal position of the lead 

vehicle makes a discrepancy between the actual and predicted looming and that 

accumulates to a threshold. The decision to steer arises when the driver is catching up to 

the lead vehicle (integration of looming over time is more than a threshold) or when the 

driver’s braking does not solve the conflict (Markkula, Romano, et al., 2018). 

 

2.3.3. Braking Models 

Models of braking behavior were by far the most extensively explored area in the 

literature. These models were originally known with the concept of car-following in which 

the driver’s braking behavior was modeled in reaction to a lead vehicle (Brackstone & 

McDonald, 1999; Gazis et al., 1961; Gipps, 1981; Pipes, 1953). These models were mostly 

based off of the distance headway and relative velocity to the lead vehicle. One of the 

leading studies in this regard is a model in Gazis, Herman, and Rothey (GHR; 1961) in 

which the driver’s braking depended on the relative velocity to the lead vehicle along with 

a time lag. Several researchers tried to modify the GHR model by adding various 

parameters to the model. Sultan, Brackstone, and McDonald (2004) added an acceleration 

term to GHR to make a more realistic model that can perceive the lead vehicle’s 

deceleration/acceleration. Yang and Peng (2010) extended the GHR model by taking into 

account error-inducing behaviors, as well as unpredictability of driver behavior but they 

still used the distance and velocity to the lead vehicle as the main elements of their model. 

In a model developed by Gipps, the maximum braking depends on the speed and headway 
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distance, in a way that the speed should not pass the driver’s desired threshold (Gipps, 

1981). The distribution of desired velocity, the reaction time of the driver, the ratio of 

mean braking rate to driver’s estimates of the mean braking rate, distributions of 

acceleration and braking, and length of the vehicle are the parameters that are included in 

this model. van Winsum argued that in a car-following situation the distance that the driver 

attempts to maintain from the lead vehicle is based on a time headway that is constant in 

given similar circumstances, thus, the difference between the actual and such a desired 

time headway is the key element in the model (van Winsum, 1999). Based on this model, 

if distance to the lead vehicle is larger than a threshold, there is no safety-related reason 

for the driver to brake. However, if distance to the lead vehicle is smaller than this 

threshold, the driver initiates the deceleration which is a function of TTC. A model by 

Hamdar et al. (2008) took into account the stochastic character of the cognitive processes 

used by the drivers in a car-following model. They proposed a model that reflects the 

psychological and cognitive aspects of driving and captures risk-taking behavior under 

uncertainty. Based on their model, the driver first estimates the probability of a rear-end 

collision. Afterwards, the driver enters the evaluation process where a prospect theory is 

adapted for modeling this process. With the understanding that human drivers are limited 

in perception of absolute kinematics of other vehicles (Boer, 1999) as opposed to 

estimating the visual cues (Gray & Regan, 1998), we can argue that these models cannot 

effectively capture the drivers’ braking responses.  

Using evidence accumulation models, Svärd et al. showed that the brake is applied 

by the driver to minimize accumulated looming prediction error in a braking lead vehicle 
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situation. This model then separated the braking response into two categories of brake 

onset and brake control. In this model the driver receives evidence for the brake onset by 

accumulating looming. The braking action is taken when the accumulated evidence 

exceeds a certain threshold. When taking the braking action, the driver estimates how the 

looming will gradually decay as a result of the braking. This estimation is then compared 

to the actual looming and this process is continued until either the situation is resolved, 

maximum braking is achieved, or a collision occurs (Svärd et al., 2020). Prior studies fed 

the brake reaction time—estimated from the evidence accumulation model—to a 

piecewise linear model and showed that this model can be successfully fit to a braking 

control maneuver in rear-end emergencies (Markkula et al., 2016; Svärd et al., 2020). 

These studies showed that the rate at which drivers increased their deceleration was highly 

dependent on urgency of the situation.  

 

2.3.4. Steering Models 

Steering or lane changing behavior has not been studied as much as the braking 

models, however, these models have a long history in human behavior and traffic safety 

domains (Michon, 1985). The steering models are typically based on a control theory 

description of path-following tasks and needs a predefined desired path containing lateral 

road position as an input to the model (Jurgensohn, 2007; Markkula et al., 2012). Steering 

models can be divided into two major categories of closed-loop and open-loop. In a 

closed-loop model, the driver is considered as an active controller that minimizes the error 

between the desired and predicted values of certain parameters such as position and 
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velocity. In contrast, in an open-loop model, the driver reacts based on a set of pre-learned 

control inputs without receiving any feedback.  

 A closed-loop model by McAdam (2003) gets the steering wheel angle as an input 

to minimize the predicted lateral deviation from a desired path by minimizing the expected 

value of the total mean square error. Similar to McAdam’s model, Sharp et al. (2000) uses 

the steering wheel angle as a control input; however, they proposed the idea of multi point 

preview for steering modeling. The driver experiences deviations between a set of points 

on an optical lever and corresponding points on the desired path. Steering wheel angle is 

then calculated as the weighted sum of all the previewed path deviations, in which the 

weights are free parameters. Salvucci and Gray (2004) proposed a similar model by 

leveraging only two points. The distinction is using the rate of change in the steering wheel 

angle as a control input instead of using the steering wheel angle itself. All these models 

try to minimize the deviation from a desired path; thus, they could be considered as an 

optimization effort. This model has been validated in a study by Markkula et al. that 

showed the effectiveness of a closed-loop two-point model in capturing the post-event 

stabilization steering (Markkula et al., 2014). Breuer (1998) proposed an open-loop model 

that applied steering wheel angle as an input during a limited time interval until reaching 

a certain steering wheel angle. Markkula et al. (2012) tested five variations of this model. 

In these variations, the amplitude of the steering wheel angle was determined based on 

different factors such as looming.  

The automated vehicle takeover literature suggests that a steering maneuver can 

include a crash avoidance maneuver and a subsequent stabilization maneuver (Eriksson 
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& Stanton, 2017a; Merat et al., 2014; Russell et al., 2016). As defined in Markkula et al. 

(2014), an avoidance maneuver begins when the lead vehicle starts decelerating and ends 

when the driver rotates the steering wheel more than a threshold and the stabilization 

maneuver begins with the steering wheel rotation and ends either 250 m after passing the 

lead vehicle, or when the driver’s vehicle falls below 10 km/h, whichever happens first. 

Markkula et al. (2014) compared different aforementioned closed-loop and open-loop 

steering models in predicting the avoidance and stabilization steering. Based on the results 

of this comparison, the open-loop models provided the best fit for the avoidance 

maneuver, while, the closed-loop models better explained the stabilization maneuver.  

Prior research has found few studies that have investigated steering models in an 

evidence accumulation context (Markkula, Boer, et al., 2018). This study developed a 

steering model that integrates evidence accumulator, kinematic motor primitives, and 

prediction of motor actions. This framework works based on the assumption that a 

calculated estimate of currently needed control adjustment is compared to a prediction of 

the consequences of actions. This comparison yields a prediction error that will be entered 

into an evidence accumulation model (with a gain) where it is integrated over time to a 

threshold of ±1 to execute the patterns of behavior based on the input.  

 

2.3.5. Models of Driver Behavior Insights 

 The evidence from the empirical review of automated takeovers suggests that there 

is a strong link between TTC and driver responses. Extrapolating similar results from 

manual driving suggests that drivers may make decisions based on visual quantities such 



 

47 

 

as visual looming, which by extension suggests that models based on such visual 

quantities may be preferred to relative velocity- and distance-based models. Furthermore, 

the finding that visual quantities cannot explain the variability in the reaction time 

suggests that evidence accumulation models should be preferred to simpler stimulus-

response visual angle models. These models were also successful in capturing the drivers’ 

braking control maneuver when combined with a piecewise linear model. Evidence 

accumulation models can also, in theory, capture the difference between silent and alerted 

failures, by integrating warning as a source of evidence for the need of an action. 

 The literature on automated vehicle takeovers suggests that drivers tend to use 

steering in response to emergency takeovers with long time budgets (Gold et al., 2017). 

The pattern of steering avoidance follows an anticipatory and compensatory process 

where drivers provide a large initial steering input followed by a series of smaller 

corrective inputs. The anticipatory and compensatory process can be captured in the open-

loop and closed-loop models.  

 The literature on models of driver decision-making is notably lighter than that of 

the steering and braking models. A notable trait of the models reviewed here is the link 

between visual parameters and driver decision-making (Venkatraman et al., 2016). This 

link facilitates a connection between models of decision-making, steering, and braking 

reviewed earlier that are also driven by looming (e.g., Markkula, 2014; Markkula, Boer, 

et al., 2018).  
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2.4. Gap Analysis 

The prior sections illustrate the need to investigate the impact of factors that are 

not well studied (e.g., silent failure) and their interaction with other driver-related or 

environmental factors on takeover performance. In addition, the findings showed that 

commonalities exist across models that may explain driver behaviors across various 

aspects of takeovers; however, there has not been an extensively validated modeling 

framework in this context. As illustrated in Figure 2.1, such a model would have to capture 

the driver’s perception of the need for a takeover, the loop of decisions to steer or brake, 

and braking and/or steering action execution under various factors. The lack of a thorough 

understanding of the effect size of driver, system, and environmental factors on takeover 

performance and models of driver behavior that can capture these impacts, prompt the 

following research questions: 

 

1. To what degree system’s design (silent failure and time budget) influence the 

takeover time and post-takeover performance during automated vehicle driving? 

2. To what degree do contemporary models of manual driving capture the drivers’ 

braking and steering behavior after automated transitions of control? 

3. Does integrating individual decision-making, braking, and steering models capture 

drivers’ comprehensive takeover behavior? 

 

The goal of this dissertation is to address these questions over one empirical and 

three modeling studies. The questions generate four corresponding chapters of my 



 

49 

 

research including a driving simulation study of automated vehicle takeover behavior, 

modeling the driver’s braking behavior, modeling the driver’s steering behavior, and a 

holistic model of driver takeover behavior. The remainder of this dissertation will discuss 

the data collection process, provide methodologies, results, and discussions for all studies, 

and conclude with theoretical and practical implications of these results for transportation 

safety research and the field of Human Factors.  
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3. SIMULATOR STUDY OF TAKEOVER BEHAVIOR* 

 

The findings of previous chapter highlight that developing models of takeover 

requires an investigation of the impacts of various factors (e.g., silent failure) on takeover 

behavior. The goal of the current chapter is to investigate the degree to which silent failure 

and time budget influence the takeover time and post-takeover performance during 

automated vehicle driving. To accomplish this goal, a driving simulator experiment is 

conducted. Simulator experiment has been selected, as driver behavior models have been 

successfully developed from the data collected in driving simulation studies (Piccinini et 

al., 2019; Xue et al., 2018). The driving simulators provide a high level of relative validity 

and a controllable, cost-effective, and safe environment to investigate the driving 

performance (Eriksson et al., 2017; Risto & Martens, 2014), while, given the safety-

critical nature of automated vehicle takeovers, a naturalist setting may expose the drivers 

to greater risks.  

 

3.1. Methods 

The driving simulator experiment used a 2×2×2	factorial design including a 

between-subjects factor of takeover request presence (silent vs. alerted) and within-

subjects factors of scenario criticality (critical vs. non-critical) and takeover scenario 

 

* Reprinted with permission from “Alambeigi, H., & McDonald, A. D. (2021). A Bayesian Regression 
Analysis of the Effects of Alert Presence and Scenario Criticality on Automated Vehicle Takeover 
Performance. Human Factors.” 
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(obstacle reveal and unexpected braking). The takeover scenarios were chosen based on 

the findings of an automated vehicle crash database analysis that sideswipe crashes during 

left-side overtakes and rear-end collisions were among the most common automated 

vehicle crashes (Alambeigi et al., 2019). In both scenarios, participants drove the middle 

vehicle of a three-vehicle platoon. This setup created the possibility of a collision with the 

rear of the participant’s vehicle, which is the most commonly observed automated vehicle 

collision type (Biever et al., 2020; Favarò et al., 2017). This study complied with the 

American Psychological Association Code of Ethics and was approved by the Texas 

A&M University Institutional Review Board (IRB2018-1362D). Informed consent was 

obtained from each participant. 

 

3.1.1. Participants 

Sixty-four participants (32 male, 32 female) between 19 and 65 years old with the 

mean age of 41.44 (SD = 15.14) years were recruited to participate in this study. 

Recruitment was conducted over email from participants who had previously participated 

in a research study with the Texas A&M Transportation Institute (TTI), as well as students 

and employees of Texas A&M University. All participants were English-speakers, 

reported normal or corrected-to-normal visual acuity and normal color vision, held a valid 

driver’s license, reported driving experience of at least 1.5 years (M = 25.36, SD=16.26), 

were not taking any medications that may have affected the operation of a moving vehicle, 

had not previously participated in an experiment involving automated vehicles, and had 
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no prior experience driving automation-enabled vehicles (e.g., Tesla autopilot). 

Participants were compensated $50 for their participation. 

 

3.1.2. Apparatus 

The study was conducted in the TTI driving simulation lab. The lab consists of a 

Realtime Technologies Inc. (RTI) quarter-cab driving simulator with three screens that 

provide 165° horizontal and 35° vertical fields of view, a speaker system to provide 

ambient roadway noise, and a physiological and eye-tracking data collection suite. The 

simulator collects continuous steering wheel position, accelerator and brake pedal 

positions, velocity, time to lane crossing, time headway to an upstream object, and lane 

position at a 60 Hz sampling rate. The glance behavior and physiological data collection 

suite consisted of a dashboard-mounted FOVIO eye-tracking system (Seeing Machines, 

Canberra, Australia), a Zephyr BioHarness 3.0 (Zephyr Technology, Annapolis, MD, 

USA), and a Shimmer3 wireless Galvanic Skin Response (GSR) sensor (Shimmer, 

Dublin, Ireland). The glance behavior and physiological data have been analyzed in a 

different study to predict the driver error following the failures using machine learning 

algorithms (Alambeigi, McDonald, Manser, et al., 2022; Alambeigi, McDonald, Shipp, et 

al., 2022). The complete lab setup including the driver seat and the three forward view 

screens is illustrated in Figure 3.1. The eye-tracking system is positioned on top of the 

dashboard. 
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Figure 3.1 The driving simulation lab setup. Reprinted with permission from 
Alambeigi & McDonald (2021b). 
 

3.1.3. Automation 

The simulator’s automated driving system provided lateral and longitudinal 

control on highway roads and could be activated with a button on a touch screen display 

located to the right of the steering wheel. Figure 3.2 shows the center console with the 

automation touch screen including an activation/deactivation button. When the system 

encountered a failure or an operational limit, the vehicle’s lateral and longitudinal control 

was disabled. The driver could manually deactivate the automation either by braking or 

pressing the activation button on the touch screen display. The status of the automation, 

if engaged, was indicated by two green icons (iconic lane markings and steering wheel) 

in the instrument cluster. Figure 3.3 illustrates the instrument cluster with a graphical 

representation of the system state. The left and right figures show the cluster when the 

automation is off and on, respectively.  
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Figure 3.2 The center console with the automation activation/deactivation screen. 
Reprinted with permission from Alambeigi & McDonald (2021b). 

 

 

Figure 3.3 Instrument cluster when the automation is off (left) and is on (right). 
Reprinted with permission from Alambeigi & McDonald (2021b). 
 

3.1.4. Study Process 

Participants were consented and then completed a pre-experiment questionnaire. 

This questionnaire consisted of demographic and technology acceptance (Ghazizadeh et 

al., 2012) questions. Participants then received information (through a document) about 

the simulator and the automated system’s capabilities and limitations. The information 
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indicated that the automation was not capable of driving on all types of roadways, that 

there were some driving situations where the automation reached an operational limit, and 

that the automation would transition control back to the driver when it hit an operational 

limit. In addition, participants were instructed to keep at least one hand on the steering 

wheel while the automation was enabled. After receiving training on the automation, the 

participants toured the simulator. The tour consisted of a demonstration of the automation 

controls by the experimenter while the participant sat in the driver’s seat of the simulator. 

When the participant indicated they were comfortable with the controls, they completed 

two practice drives and four experimental drives. Finally, the participant was asked to 

complete a post-experiment questionnaire including simulator realism and technology 

acceptance questions. 

 

3.1.5. Simulator Scenario 

The simulator scenario consisted of two practice (manual and automated) and four 

experimental drives separated by two-minute breaks. Each drive took place on a four-lane 

straight highway with two lanes in each direction and a posted speed limit of 65 mph 

(104.6 kph). The drives had natural surroundings (woods, farms, buildings) and ambient 

traffic of approximately 10 cars per mile (approximately 6 cars per km) on the oncoming 

traffic lanes (representing the level of service A in traffic flow categories; Margiotta & 

Washburn, 2017). During all six drives, the participants drove in a three-vehicle platoon 

with a 1 s time headway in which the speed of all vehicles where kept constant at 65 mph. 

In the manual practice drive, the participants were instructed to maintain the 1 s time 
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headway and the 65-mph constant speed, while in the automated drives, the system was 

capable of maintaining the time headway and the constant speed.  

The manual and automated practice drives were approximately 5 minutes long. 

The goals of these drives were to screen for simulator sickness and allow participants to 

familiarize themselves with the simulator controls. In the drives, participants practiced 

controlling the simulator, driving in the platoon, and engaging and disengaging the 

automation. In the automated practice drive, the lead vehicle in the platoon exited the 

highway approximately 5 miles into the drive and a visual and auditory takeover request 

was issued to the driver. Participants were permitted to repeat either of the practice drives 

until they felt comfortable driving and operating the automation (3 participants requested 

to repeat the drives, post hoc analyses suggested that there were no substantial differences 

between the performance of these participants and the others).  

The four experimental drives were conducted on a 10 mi (16 km) section of the 

highway. After approximately 7 miles of driving, an event that required a takeover 

happened. The event differed by the takeover scenario (see Figure 3.4). In both scenarios, 

the distance headway to the lead vehicle at the event onset was approximately 29 m which 

corresponded to the 1 s time headway with 65 mph. In the obstacle reveal scenario, the 

lead vehicle suddenly changed lanes to avoid an obstacle in the participant’s lane. The 

obstacle was a stationary vehicle with brake lights and the participant had 5 or 10 s to 

respond at the time of the failure depending on the scenario criticality. In the braking 

scenario, the lead vehicle suddenly braked due to approaching a construction zone on the 

road shoulder while the participant’s vehicle maintained speed. In this event, the criticality 



of the scenario was manipulated using the deceleration rates of the lead vehicle where the 

constant deceleration rate of 2 m/s2 represented the non-critical and 5 m/s2 represented 

the critical scenario. Figure 3.4 shows both takeover scenarios from the driver’s view. The 

left figure represents the unexpected braking scenario with the construction zone on the 

road shoulder and the right figure shows the obstacle reveal scenario after the lead vehicle 

changed lanes, exposing the stalled vehicle in the driver’s lane. 

Figure 3.4 Takeover scenarios from the driver’s view with left and right figures 
representing the unexpected braking and obstacle reveal scenarios, respectively. 
Reprinted with permission from Alambeigi & McDonald (2021b). 
 

Regardless of the scenario and criticality, the participants in the silent failure group 

did not receive any indication of the automation failure. The participants in the alerted 

group received an auditory and visual alert. The auditory alert consisted of a loud beep, 

and the visual alert consisted of a change of color on the instrument cluster and an 

automation activation screen (as shown in Figure 3.3). All participants in both groups 

drove all four combinations of scenario criticality and scenario type. The order of these 

drives was counterbalanced across participants using a Latin square technique (Allen, 
57 

3.1.6. Dependent Variables 
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2018). All 64 drivers completed the four experimental drives producing 256 completed 

driving datasets. 

The takeover performance was assessed with takeover time, crash frequency, 

minimum TTC, and maximum longitudinal and lateral accelerations. These metrics were 

selected because they were direct or indirect indicators of safety (Driver Metrics 

Performance Behaviors and States Committee, 2015). In particular, minimum TTC is an 

established surrogate safety metric for longitudinal vehicle control that has been used in 

several prior studies to evaluate the effects of the criticality of the scenario and other 

factors on post-takeover control (McDonald et al., 2019). Table 3.1 provides a list of the 

dependent variables used to analyze the takeover performance in the study along with a 

description of their calculation. 

 

Table 3.1 Overview of the Dependent Measures Used to Analyze the Takeover 
Performance. Reprinted With Permission From Alambeigi & McDonald (2021b). 

Dependent Variable Unit Description 
Takeover time  [s] Time elapsed between the event onset and start of 

maneuver greater than a threshold (2 ° steering wheel 
angle and 10% brake pedal actuation) 

Minimum time to collision [s] Minimum time to collision to the lead vehicle/obstacle 
between the takeover time and 35 s after the event 
onset 

Maximum longitudinal 
accelerations 

[m/s²] Maximum longitudinal acceleration between the 
takeover time and 35 s after the braking event onset 

Maximum lateral accelerations [m/s²] Maximum lateral acceleration between the takeover 
time and 35 s after the obstacle-reveal event onset 

Crash frequency [n] Frequency of crashes 
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The minimum TTC and maximum accelerations were calculated between the 

event onset and 35 s after the event or when the participant’s vehicle exited the initial lane. 

The threshold of 35 s was chosen based on findings in the literature that drivers need as 

much as 35-40 s to stabilize the control of the vehicle after a transition (Merat et al., 2014). 

The takeover time was defined as the time between the event onset and the start of the 

maneuver. The thresholds for the start of the maneuver were 2 degrees for steering wheel 

angle rotation and 10% for brake pedal position and were selected based on a review of 

the literature (McDonald et al., 2019).  

 

3.1.7. Data Analysis 

Separate statistical analyses were conducted for the takeover scenarios (obstacle 

reveal and unexpected braking) as initial observations suggested that the scenarios 

produced qualitatively different responses. The count data from crashes were analyzed 

with a two-sided Fisher’s exact test. Fisher’s exact test was used as it can deal with small 

sample sizes (Bower, 2003). The continuous dependent measures were analyzed with 

separate Bayesian multilevel regression models fitted using the “brms” package in R 4.0.0 

(Bürkner, 2018). In contrast to the frequentist null-hypothesis testing approach which 

relies on the mean or median values for model fitting, the Bayesian approach focuses on 

the distribution of response variables for a given parameter, which may be more 

informative for safety (Eriksson & Stanton, 2017b). The Bayesian multilevel (i.e., mixed-

effects) model applied in this study incorporated both population-level and group-level 

effects (also referred to as fixed and random effects in frequentist vocabulary; Bürkner, 
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2018; Nalborczyk, Batailler, Lœvenbruck, Vilain, & Bürkner, 2019). The population-level 

effects were assumed to be constant across observations and in this study included the 

scenario criticality, alert type, and their interaction. The group-level effects accounted for 

the variability of the individual-specific estimates that were associated with the repeated 

measures from the same participant. The order of the scenario was not included in the 

analysis as it was accounted for with the counterbalanced design and post hoc graphical 

analysis suggested that there were no substantial differences in dependent measures 

associated with the order. The models for maximum accelerations were fit in one direction 

for each scenario type—longitudinal for the braking scenario and lateral for the obstacle 

reveal scenario—because most driver responses included only one evasive maneuver (i.e., 

steering or braking).  

The models were estimated using the Markov chain Monte Carlo (MCMC) 

algorithm in the brms package (Bürkner, 2017). Posterior distributions were estimated 

using 4 MCMC chains and 2,000 samples per chain. The first 1,000 samples were used to 

tune the parameters of the sampling algorithm and were not included in the analysis. For 

each model, the mean, standard deviation, lower and upper bounds of 95% credible 

interval of the posterior distribution were estimated from the remaining 4,000 samples 

(1,000 per chain). The credible interval can be understood as the region where there is a 

95% probability that the true mean falls within the lower and upper bounds (Kruschke & 

Liddell, 2018). All models were fit with uninformative priors. The selection of 

uninformative priors was guided by prior analyses of automated vehicle studies 

(DinparastDjadid et al., 2019; Pipkorn et al., 2021). In addition, this decision allowed for 
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more direct comparisons with the prior Ordinary Least Squares linear regression analyses 

(Elster & Wübbeler, 2015) of silent failures and is consistent with the conflicting 

findings observed across previous studies. 

 

3.2. Results 

3.2.1. Takeover Time 

Figure 3.5 shows the takeover time data and boxplots for the obstacle reveal and 

unexpected braking events, critical and non-critical scenarios, and alerted and silent 

failures. The results of the Bayesian regressions are summarized in Table 3.2 including 

the mean (estimate), standard deviation (estimated error), and the two-sided 95% credible 

interval for the fitted posterior distribution. Each row of the table illustrates the estimated 

change in takeover time attributable to the level of a factor compared to its alternative, 

e.g., the scenario criticality coefficient (𝛽B) indicates the estimated change in takeover 

time attributable to non-critical scenarios compared to critical scenarios. The interaction 

term (𝛽BC) indicates the estimated change in takeover time when the scenario is non-

critical given the alert type.  

In the unexpected braking scenario, the estimate of the scenario criticality predicts 

a mean increase of 0.76 s for the non-critical scenario, and the credible interval shows a 

95% probability that the non-critical scenario increases the takeover time between 0.40 

and 1.12 s. The alert type regression coefficient estimates a mean takeover time increase 

of 0.16 s with a credible interval from -0.17 to 0.50 s for silent failures. 
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Figure 3.5 Boxplot of takeover time under criticality of the event and alert type for 
the unexpected braking (top) and obstacle reveal (bottom) events. Reprinted with 
permission from Alambeigi & McDonald (2021b). 
 

Figure 3.6 shows the posterior density of regression coefficient of silent failure 

and the interaction between non-critical event and silent failure on takeover time across 

the two events. The circle represents the estimated mean takeover time and the dark and 

light shaded areas indicate the estimated takeover times greater than and lower than zero, 

respectively. The posterior density of the alert type shows silent failures increase the 

takeover time for 84% of participants (see Figure 3.6 top left plot). Similarly, the estimated 

posterior distribution of the interaction between alert type and scenario criticality has a 

mean of 0.19 s and a credible interval from -0.37 to 0.63. Figure 3.6 (the top right plot) 

shows that there is a 70% probability that the takeover time increases between critical and 

non-critical events for silent failures. 
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In the obstacle reveal scenario, the scenario criticality regression coefficient 

predicts a mean increase of 1.05 s for the non-critical scenario. The credible interval shows 

a 95% probability that this mean value lies within the 0.40 to 1.72 s interval. The estimate 

of the alert type shows a mean of 0.19 s increase in takeover time with the range from -

0.45 to 0.84 s credible interval as a result of the silent failure. Figure 3.6 shows a 72% 

probability of an increase in takeover time with silent failure. Similarly, the interaction 

between alert type and scenario criticality 0.41 s increases the mean takeover time with a 

credible interval that ranges from -0.53 to 1.33. Figure 3.6 (the bottom right plot) shows 

that there is an 82% probability that the takeover time increases when the scenario 

criticality changes from critical to non-critical and when the alert is not present.  

 

 
Figure 3.6 Posterior density of regression coefficient of silent failure and the 
interaction effects on takeover time across the unexpected braking (top) and obstacle 
reveal (bottom) events. Reprinted with permission from Alambeigi & McDonald 
(2021b). 
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Table 3.2 Summary of the Posterior Coefficients for the Takeover Time Across the 
Obstacle Reveal and Unexpected Braking Events. Reprinted With Permission From 
Alambeigi & McDonald (2021b). 

Scenario Model Parameter Independent 
measure  
(effect) 

Estimate 
(s) 

Est. 
Error 

Lower 
95%-
CI 

Upper 
95%-
CI 

Unexpected 
braking 

Population-level  𝜷𝟎 Intercept 1.50 0.12 1.26 1.74 
𝜷𝑪 Scenario 

criticality 
(non-
critical) 

0.76 0.18 0.40 1.12 

𝛽# Alert type  
(silent) 

0.16 0.17 -0.17 0.50 

𝛽$# Scenario 
criticality 
(non-critical) 
x alert type 
(silent) 

0.19 0.25 -0.37 0.63 

Group-level  𝜎% sd (Intercept) 0.25 0.12 0.02 0.48 
Family-specific  𝜎& error 0.53 0.09 0.37 0.71 

Obstacle 
reveal  

Population-level  𝜷𝟎 Intercept 1.95 0.23 1.48 2.39 
𝜷𝑪 Scenario 

criticality 
(non-
critical) 

1.05 0.33 0.40 1.72 

𝛽# Alert type 
(silent) 

0.19 0.32 -0.45 0.84 

𝛽$# Scenario 
criticality 
(non-critical) 
x alert type 
(silent) 

0.41 0.47 -0.53 1.33 

Group-level  𝜎% sd (Intercept) 0.23 0.16 0.01 0.60 
Family-specific  𝜎& error 1.15 0.13 0.87 1.40 

Note. Text in bold refers to the estimated credible intervals at population-level that do not include 0. 
𝜎% at the group-level effect denotes the standard deviation of the individuals varying intercept and 𝜎& 
at the family-specific effect indicates the standard deviation of the residuals. 
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3.2.2. Post-takeover Control 

3.2.2.1. Crash Frequency 

From the 256 drives, 11 drives resulted in crashes (Table 3.3). The majority of 

crashes (8/11) occurred in the obstacle reveal scenario. The crashes included rear-end 

collisions (2), a side-swipe with the trailing vehicle while executing a lane change (1), a 

rear-end collision with the following vehicle after the execution of lane change (6), and 

single-car run off-road incidents to the right and left (2). No crashes occurred in the non-

critical scenarios. Fisher's exact test showed a significant difference between the critical 

and non-critical scenarios in the obstacle reveal event (p<0.001). The effect of the alert 

type was not significant. 

 

Table 3.3 Number of Crashes Occurred During the Experiment by Condition. 
Reprinted With Permission From Alambeigi & McDonald (2021b). 

Takeover request type Unexpected braking  Obstacle avoidance 
Critical Non-critical Critical Non-critical 

Silent 2 0 3 0 
Alerted 1 0 5 0 

 

3.2.2.2. Time to Collision 

Figure 3.7 shows the minimum TTC following the obstacle reveal and unexpected 

braking events for critical and non-critical scenarios and under alerted and silent failures 

overlaid on a boxplot. Table 3.4 contains the posterior summaries of coefficients including 

the mean, standard deviation, and the two-sided 95% credible interval for minimum TTC. 

In the unexpected braking scenario, the scenario criticality coefficient indicates a mean 

difference of 1.49 s with 95% most credible values between 0.89 and 2.11 s in minimum 
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TTC associated with non-critical scenario compared to critical. The results show a 

decrease of 0.45 s TTC for silent failures with a 95% credible interval of -1.11 – 0.18 s. 

Figure 3.8 shows the posterior density of regression coefficient of silent failure and the 

interaction between non-critical event and silent failure on minimum TTC in the 

unexpected braking (top) and the obstacle reveal (bottom) scenarios. The circle represents 

the estimated mean of minimum TTC and the dark and light shaded areas indicate the 

estimated minimum TTC greater than and lower than zero, respectively. This figure shows 

that 92% of drivers would be expected to have a lower minimum post-takeover TTC in 

the silent failure case. The interaction between silent failure and non-critical scenario 

indicates the estimated mean of 0.56 s with a 95% credible interval of -0.15 and 1.29 s.  

 

 

Figure 3.7 Boxplot of minimum TTC under criticality of the event and alert type for 
obstacle reveal and unexpected braking events. Reprinted with permission from 
Alambeigi & McDonald (2021b). 
 

Critical Non−critical

U
nexpected braking

O
bstacle reveal

Alerted Silent Alerted Silent

0

3

6

9

0

3

6

9

Alert type

Ti
m

e 
to

 c
ol

lis
io

n 
(s

)



 

67 

 

Table 3.4 Summary of the Posterior Coefficients for the Minimum TTC Across the 
Obstacle Reveal and Unexpected Braking Events. Reprinted With Permission From 
Alambeigi & McDonald (2021b). 

Scenario Model Parameter Independent 
measure 
(effect) 

Estimate Est. 
Error 

Lower 
95%-
CI 

Upper 
95%-
CI 

Unexpected 
braking 

Population-level  𝜷𝟎 Intercept 2.49 0.24 2.02 2.96 
𝜷𝑪 Scenario 

criticality 
(non-
critical) 

1.49 0.31 0.89 2.11 

𝛽# Alert type 
(silent) 

-0.45 0.33 -1.11 0.18 

𝛽$# Scenario 
criticality 
(non-critical) 
x alert type 
(silent) 

0.56 0.36 -0.15 1.29 

Group-level  𝜎% sd (Intercept) 0.72 0.17 0.37 1.03 
Family-specific  𝜎& error 0.80 0.12 0.55 1.10 

Obstacle 
reveal  

Population-level  𝜷𝟎 Intercept 1.51 0.23 1.05 1.95 
𝜷𝑪 Scenario 

criticality 
(non-
critical) 

2.73 0.33 2.10 3.35 

𝛽# Alert type 
(silent) 

-0.35 0.31 -0.95 0.26 

𝛽$# Scenario 
criticality 
(non-critical) 
x alert type 
(silent) 

0.05 0.45 -0.82 0.92 

Group-level  𝜎% sd (Intercept) 0.33 0.20 0.02 0.75 
Family-specific  𝜎& error 1.08 0.14 0.80 1.34 

Note. Text in bold refers to the estimated credible intervals at population-level that do not include 0. 
𝜎% at the group-level effect denotes the standard deviation of the individuals varying intercept and 𝜎& 
at the family-specific effect indicates the standard deviation of the residuals. 
 
 
 In the obstacle reveal scenario, the estimate of the scenario criticality predicts a 

mean increase of 2.73 s for the non-critical event with a 95% probability that the mean of 
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minimum TTC falls between 2.10 to 3.35 s. The alert type regression coefficient shows a 

mean decrease of 0.35 s in minimum TTC as a result of the silent failure with a 95% 

credible interval of -0.95 to 0.26 s. Similar to the unexpected braking event, analysis of 

the posterior density on the alert type shows that with 88% probability the silent failure 

decreases the minimum TTC (see Figure 3.8). Similarly, the interaction between alert type 

and scenario criticality reveals a 0.05 s increase in the mean takeover time with a credible 

interval that ranges from -0.82 to 0.92. Posterior distribution of this parameter (see the 

bottom right plot in Figure 3.8) shows that there is a 55% probability that the minimum 

TTC increases when the scenario criticality changes from critical to non-critical and alert 

is not present.  

 

 

Figure 3.8 Posterior density of regression coefficient of silent failure and the 
interaction effects on minimum TTC in the unexpected braking (top) and obstacle 
reveal (bottom) events. Reprinted with permission from Alambeigi & McDonald 
(2021b). 
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3.2.2.3. Longitudinal and Lateral Acceleration 

Figure 3.9 shows the boxplot of maximum longitudinal acceleration following the 

unexpected braking event for critical and non-critical scenarios and under alerted and 

silent failures. The posterior summaries of coefficients including the mean, standard 

deviation, and the two-sided 95% credible interval for maximum longitudinal acceleration 

corresponding to the unexpected braking scenario is presented in Table 3.5. Note that 

lower (i.e., more negative) values of acceleration imply more aggressive braking 

maneuver while higher (i.e., more positive) values suggest more gradual braking. At the 

population level, the parameter coefficient of scenario criticality indicates a mean change 

in maximum longitudinal acceleration of 2.7 m/s2 (95% credible interval 1.92-3.48 m/s2) 

for the non-critical compared to the critical event. The alert type coefficient predicts 0.70 

m/s2 higher longitudinal acceleration intensity for silent failure.  

Although the 95% credible interval includes zero, Figure 3.10 shows the posterior 

density of regression coefficient of silent failure and the interaction between non-critical 

event and silent failure on maximum longitudinal acceleration in the unexpected braking 

scenario. The circle represents the estimated mean of maximum longitudinal acceleration 

and the dark and light shaded areas indicate the estimated maximum longitudinal 

accelerations greater than and lower than zero, respectively. This figure shows that 91% 

of the posterior distribution for this parameter is below zero meaning an increase in 

braking. The 𝛽BC indicates the estimated mean of 0.59 m/s2 for the interaction between 

silent failure and non-critical scenario with a 95% credible interval of -0.52 and 1.68 s.  
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Figure 3.9 Boxplot of maximum longitudinal acceleration under criticality of the 
event and alert type for unexpected braking event. Reprinted with permission from 
Alambeigi & McDonald (2021b). 
 

 

Figure 3.10 Posterior density of regression coefficient of silent failure and the 
interaction effects on maximum longitudinal acceleration in the unexpected braking 
event. Reprinted with permission from Alambeigi & McDonald (2021b). 
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Table 3.5 Summary of the Posterior Coefficients for the Maximum Longitudinal 
Acceleration in Unexpected Braking Event. Reprinted With Permission From 
Alambeigi & McDonald (2021b). 

Scenario Model Parameter Independent 
measure 
(effect) 

Estimate Est. 
Error 

Lower 
95%-
CI 

Upper 
95%-
CI 

Unexpected 
braking 

Population-level  𝜷𝟎 Intercept -7.11 0.35 -7.79 -6.43 
𝜷𝑪 Scenario 

criticality 
(non-
critical) 

2.70 0.40 1.92 3.48 

𝛽# Alert type 
(silent) 

-0.70 0.51 -1.70 0.29 

𝛽$# Scenario 
criticality 
(non-critical) 
x alert type 
(silent) 

0.59 0.56 -0.52 1.68 

Group-level  𝜎% sd (Intercept) 1.16 0.25 0.61 1.63 
Family-specific  𝜎& error 1.59 0.16 1.32 1.95 

Note. Text in bold refers to the estimated credible intervals at population-level that do not include 0. 
𝜎% at the group-level effect denotes the standard deviation of the individuals varying intercept and 𝜎& 
at the family-specific effect indicates the standard deviation of the residuals. 

 

Figure 3.11 shows the boxplot of maximum lateral acceleration following the 

obstacle reveal event across scenario criticality and alert type. The posterior summary of 

coefficients for this independent measure is shown in Table 3.6. The estimate of the 

scenario criticality predicts a mean change of 0.89 m/s2 with the 95% credible interval of 

0.50 to 1.28 m/s2 for the non-critical compared to critical event. The alert type regression 

coefficient shows 0.11 m/s2 more severe maximum lateral acceleration as a result of the 

silent failure. The credible interval includes a range from -0.53 to 0.34 m/s2. Similar to the 

unexpected braking event, analysis of the posterior density on the alert type shows that 

with a 70% probability the silent failure increases the severity of the lateral acceleration 
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(see Figure 3.12). Similarly, the interaction between alert type and scenario criticality 

shows a 0.08 m/s2 increase in the mean lateral acceleration with a credible interval that 

ranges from -0.67 to 0.46. Figure 3.12 (right plot) shows that there is 85% probability that 

the maximum lateral acceleration decreases with a non-critical silent failure.  

 

 

Figure 3.11 Boxplot of maximum lateral acceleration under criticality of the event 
and alert type for obstacle reveal event. Reprinted with permission from Alambeigi 
& McDonald (2021b). 
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Figure 3.12 Posterior density of regression coefficient of silent failure and the 
interaction effects on maximum lateral acceleration in the obstacle reveal event. 
Reprinted with permission from Alambeigi & McDonald (2021b). 
 

Table 3.6 Summary of the Posterior Coefficients for the Maximum Lateral 
Acceleration in the Obstacle Reveal Event. Reprinted With Permission From 
Alambeigi & McDonald (2021b). 

Scenario Model Parameter Independent 
measure 
(effect) 

Estimate Est. 
Error 

Lower 
95%-
CI 

Upper 
95%-
CI 

Obstacle 
reveal 

Population-level  𝜷𝟎 Intercept -1.37 0.15 -1.67 -1.07 
𝜷𝑪 Scenario 

criticality 
(non-critical) 

0.89 0.20 0.50 1.28 

𝛽# Alert type 
(silent) 

-0.11 0.22 -0.53 0.34 

𝛽$# Scenario 
criticality (non-
critical) x alert 
type (silent) 

-0.08 0.28 -0.67 0.46 

Group-level  𝜎% sd (Intercept) 0.22 0.13 0.01 0.46 
Family-specific  𝜎& error 0.74 0.06 0.63 0.86 

Note. Text in bold refers to the estimated credible intervals at population-level that do not include 0. 
𝜎% at the group-level effect denotes the standard deviation of the individuals varying intercept and 𝜎& 
at the family-specific effect indicates the standard deviation of the residuals.  
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3.3. Discussion 

The Bayesian regression modeling analyses show a consistent and substantial 

effect of scenario criticality on takeover time, crashes, and post-takeover control metrics. 

The effect of silent failures was comparably less across all measures, although the 

regressions predicted that most drivers would have increased takeover times (84% for 

unexpected braking and 72% for obstacle reveal), lower post-takeover TTC (92% and 

88%), and higher post-takeover maximum acceleration (91% and 70%). While the 

predicted average impact of silent failures on takeover time (0.16 s for unexpected braking 

and 0.19 s for obstacle reveal) may have a minimal practical impact, the effects on 

minimum TTC (-0.45 s and -0.35 s) and maximum acceleration (-0.7 m/s2 and -0.1 m/s2) 

could be a safety concern. Although it is challenging to ground the magnitude of this 

change in actual avoided crashes, recent counterfactual analyses have shown that even a 

0.5 m/s2 change in maximum acceleration could increase crash likelihood (Bärgman et al., 

2017). Collectively, these results partially confirm our first hypothesis and suggest that 

silent failures could result in more aggressive post-takeover maneuvers ultimately greater 

risk of crashes and near-crashes. The effect of the scenario criticality and alert type 

interaction on takeover time was smaller than that of silent failure in the unexpected 

braking scenario; however, this interaction effect was larger than the effect of silent 

failures in the obstacle reveal scenario. The estimated mean takeover time shows that the 

impact of alert depends on scenario criticality, specifically in a non-critical silent failure, 

drivers use up to 0.6 s additional time to take over compared to the drivers in non-critical 

alerted failures. However, the difference in mean response times for drivers in critical 
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silent and alerted failures was less—drivers required approximately 0.2 s additional time 

to takeover in critical silent condition compared to the alerted. The effect of silent failures 

on post-takeover control was higher for critical scenarios compared to non-critical. 

Overall, these results also partially confirm our second hypothesis and suggest that longer 

time budgets may alleviate the impact of silent failure on takeover performance. 

 The findings on scenario criticality are aligned with those of prior studies 

investigating the impact of deceleration rates and time budget on takeover performance 

(Bianchi Piccinini et al., 2020; Gold et al., 2017; Mole et al., 2020; Zhang et al., 2019). 

The predicted increase in takeover time (0.76 s) for the unexpected braking scenario (5 

m/s2 vs. 2 m/s2) matches the findings of Bianchi Piccinini et al. (Bianchi Piccinini et al., 

2020) who observed 0.80 s increase in braking reaction time for lower (2.5 m/s2) compared 

to higher (4.5 m/s2) deceleration rates. The takeover time increase for the obstacle reveal 

scenario is similar to the 1.35 s calculated in the meta-analysis in Zhang et al. (2019) for 

larger time budgets (>15 s) compared to smaller time budgets (<8 s). In addition, the 1.05 

s increase in takeover time for the non-critical obstacle reveal scenario compared to the 

critical approximately aligns with the results of the meta-analyses in Gold et al. (2017) 

and McDonald et al. (2019) who found a 1.65 s and 1.35 s increase in takeover time for 5 

s increase in time budget, respectively. The predicted increase in TTC (0.55 s) for the 

obstacle reveal  scenario also follows the findings of the meta-analysis by Gold et al. 

(2017) who attributed an impact of 0.50 s increase in TTC for each second increase in 

takeover time budget. Contrary to the findings in Gold et. al (2017), the time budget in 

this study showed a significant impact on crash risk. The predicted impact of time budget 
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on longitudinal acceleration in the unexpected braking (2.7 m/s2 less intense acceleration 

in non-critical) and lateral acceleration in the obstacle reveal scenario (0.9 m/s2 less 

intense acceleration in non-critical) are novel findings of this study.  

 The predicted 0.16 s and 0.19 s increase in takeover time associated with silent 

failures is consistent with the results of Blommer et al. (Blommer et al., 2017) who 

observed a 0.10 s increase in mean takeover time attributable to silent failures. This 

predicted increase is notably less than the meta-analysis in Zhang et al. (2019) which 

attributed an average increase of 0.58 s to silent failures. This difference is likely 

associated with the fact that the meta-analytic model averaged over multiple other factors 

known to influence takeover time including the alert modality, surrounding environment, 

and driver impairment (McDonald et al., 2019). The findings on post-takeover control are 

novel and show that silent failures are associated with more extreme post-takeover 

maneuvers. The regression models suggest that on average a 0.5 s reduction (and up to a 

2.5 s reduction) in minimum TTC is associated with silent failures. Moreover, silent 

failure resulted in higher post-takeover longitudinal and lateral accelerations.  The more 

intense maximum accelerations after silent failures represent an abrupt and aggressive 

braking or lane change maneuver. The interaction effects in the fitted models suggest that 

during non-critical silent failures it takes longer for drivers to accumulate sufficient visual 

looming evidence of the need to initiate an avoidance maneuver which makes their 

responses different from drivers that receive an alert. The effect of the interaction was less 

prominent for the unexpected braking compared to the obstacle reveal scenario. One 

possible reason might be that the unexpected appearance of the lead vehicle’s brake light 
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(after a prolonged period of non-braking) may have accelerated the accumulation of non-

looming evidence and led to the initiation of braking.  

Although the findings are consistent with those of prior work, the findings showed 

a less-than-expected decremental effect of silent failures on takeover performance. There 

might be several possible explanations associated with that. First, the experiment 

represented a “best-case scenario”, in which, the drivers’ cognitive state (e.g., drowsiness, 

emotion, distraction) was not taken into account. For example, the drivers did not perform 

any non-driving tasks (e.g., text reading) while driving, which could have softened the 

negative impacts associated with them. In line with multiple resource theory, it should be 

noted that such conditions might have a selective impact on a single component of a 

takeover process rather than all, depending on the required processing resources 

(Wickens, 1984; Zeeb et al., 2016). In addition, drivers were, specifically, instructed to 

keep their hands on the steering wheel and informed that it was their responsibility to 

monitor the automation and the driving environment. While there is some evidence that 

hands-on-wheel requirements alone do not substantially affect takeover performance 

(Pipkorn et al., 2021; Victor et al., 2018), our instructions may have led the drivers to be 

more engaged than might otherwise be expected, especially for longer drives (Merat et 

al., 2014). Second, the takeover event in this study occurred after approximately 6 minutes 

of automated driving, which may have been insufficient to induce significant vigilance 

decrements. For example, Feldhütter, Gold, Schneider, and Bengler (2017) observed 

takeover performance decrements after 20 minutes but not after 5 minutes, and in a 

comparison of 10-minute increments from 10 to 40 minutes, Greenlee, DeLucia, and 
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Newton (2018) observed the largest performance decrement between 10 and 20 minutes. 

A third explanation is that the drivers under—or appropriately—trusted the automation. 

If drivers calibrated their trust to an expectation that the automation would fail, they may 

have been motivated to stay engaged and quicker to respond. This explanation is supported 

by comments from several participants during the study indicating that they did not trust 

automated vehicles as well as analyzing the technology acceptance questionnaires.  

Future work should investigate these findings with specific protocols to address 

the driver’s cognitive state, such as distraction by having the driver to engage in a non-

driving-related task, vigilance by investigating a longer drive, and trust by providing 

information to the driver. Transparent information on automated vehicle capabilities and 

limitations can alleviate the negative sentiment towards these technologies and impact 

their future acceptance and adoption (Alambeigi et al., 2021; J. Lee & Kolodge, 2018).  

 

3.3.1. Requirements on Models of Driver Behavior 

The findings suggest that the takeover time budget—or TTC at the time of the 

failure—is one of the principal determinants of the takeover performance. As the findings 

of chapter 2 on driver behavior modeling literature showed, this finding is aligned with 

prior work on models of driver braking behavior in manual emergencies (Markkula et al., 

2016). These models showed that TTC plays an important role in determining drivers’ 

decision to initiate an action in response to a threat (Kiefer et al., 2006; D. Lee, 1976). 

Studies have shown that drivers have direct access to a visual estimate of inverse TTC 

(i.e., visual looming), where as a potential collision gets closer, the visual looming gets 
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higher (Markkula et al., 2016). To capture the impact of time budget, the process models 

of automated vehicle takeovers that take into account the scenario kinematics and urgency 

(using a visual looming-based term) should be preferred. In addition to the impacts of time 

budgets, the models should be designed to capture the impacts of silent failures. Receiving 

a takeover request increases the urgency of the scenario for the driver and might impact 

the driver’s decision-making process. Thus, the received alert can be considered as an 

environmental cue for the need to initiate an action. By virtue of having the non-looming 

evidence term in the looming-based evidence accumulation models, the impact of 

presence/absence of an alert can be explained by this model.  

Collectively, the visual looming-based models, in particular evidence 

accumulation models, seem to be a promising direction for capturing the impacts of 

presence of an alert and time budget on takeover performance. The next chapters use this 

model to estimate the drivers’ post-takeover behavior.  
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4. MODELS OF POST-TAKEOVER BRAKING BEHAVIOR 

 

The findings of chapter 2 show that the process models of manual driving can be 

extended to automated vehicle transitions of control with similar efficacy. In addition, a 

considerable amount of work was found in the modeling of driver braking behavior 

(Markkula et al., 2012; McDonald et al., 2019). Aligned with the findings of chapter 3, 

these studies have highlighted the visual looming-based models and the evidence 

accumulation framework as a promising direction for driver behavior modeling 

(McDonald et al., 2019). Despite the wealth of research on evidence accumulation models 

in manual driving rear-end emergencies, the models on post-takeover performance are 

rare. Thus, the goal of the current chapter is to develop and analyze a visual looming-

based evidence accumulation model that accounts for the driver’s braking reaction time 

as well as a piecewise linear model that predicts the driver’s post-takeover braking control. 

To accomplish this goal, we have used the collected data from the unexpected braking 

event explained in chapter 3. 

 

4.1. Methods 

From the total number of 128 unexpected braking drives, 3 drives resulted in 

crashes and 19 drives did not include braking. The data from these drives were excluded 

from the analysis resulting in a total of 106 complete drives. The critical events including 

the event onset to the time that the driver stopped braking were extracted from the data 
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for further analysis. An example of the brake pedal position across the two scenario 

criticalities is shown in Figure 4.1.   

 

 

Figure 4.1 An example of brake pedal position for the critical and non-critical 
unexpected braking events 
 

To increase the generalizability of the models, the drivers’ original kinematics 

have been substituted by counterfactual kinematics. To this end, it is assumed that the 

drivers did not decelerate and continued with the same speed as the time of the event until 

they crash. Figure 4.2 represents an example of the original and counterfactual speed 

following the event onset. In this figure, the blue and black solid lines represent the 

participant’s and the lead vehicle’s speed. The black and red dashed lines show the event 

onset and brake reaction time, respectively.  
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Figure 4.2 An example of the original and counterfactual speed following the event 
onset 
 

4.1.1. Braking Reaction Model  

The drivers brake reaction times were modeled by an evidence accumulation 

(Equation 4.1) model in which 𝜎, 𝑘,	and 𝑀 were free model parameters.  

 

𝒅𝑨
𝒅𝒕
= 𝒌𝜺(𝒕) −𝑴+ 𝒗(𝒕)                          Equation 4.1 

 

In this equation, 𝜀(𝑡) is the looming prediction error and 𝑣(𝑡) is a zero-mean 

Gaussian white noise with standard deviation of 𝜎. Brake adjustment will be executed if 

𝐴	exceeds a threshold. The accumulation threshold for braking, A, was set to 1 following 

the work in Svärd et al. (2020). The evidence accumulation braking model was compared 

with a reaction time distribution model. This model was created through sampling from 
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the lognormal model of observed braking reaction times presented by the experiment 

using the “fitdistrplus” package in R (Delignette-Muller & Dutang, 2015).  

 

4.1.2. Braking Control Model 

The brake control was modeled with a piecewise linear function assuming an 

initial constant deceleration of 𝑎D, then a constant deceleration rate of 𝑗 (the jerk), and a 

final constant deceleration of 𝑎;. The transition between the first two phases was governed 

by 𝑡E, which we defined based on the braking onset model prediction. Figure 4.3 shows 

the parameters of this model on an example deceleration. 

 

 

Figure 4.3 Piecewise linear model of braking 

 

4.1.3. Model Fitting and Evaluation Process 

The braking model parameters were optimized through a grid search across a set 

of fixed values for 𝑘, 𝑀, and 𝜎 for evidence accumulation in brake reaction time model 
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and for 𝑎D , 𝑗 and 𝑎; in the braking control model—the range of the search is given in 

Table 4.1. The model was run for each combination of the parameters and for the two 

kinematic urgencies of the scenarios, resulted in a distribution of brake reaction times per 

scenario. The best combination of parameters for the brake reaction time model was 

selected based on the smallest difference—measured by a two sample Kolmogorov–

Smirnov (KS)—between the observed braking reaction times and predicted reaction times 

from the model. The two models were compared with both the KS statistics and Kullback–

Leibler (KL) divergence. The best combination of parameters for the brake control model 

was selected based on the root mean square error (RMSE).   

 

Table 4.1 Parameters Search Range for Braking Models 
Model Parameter Searched Range 
Braking Onset k [1, 6] 

M [-0.1, 0.1] 
𝜎 [0.1, 0.4] 

Braking Control 𝑎' [-2, 0] 
𝑗 [-10, 0] 
𝑎( [-8, 0] 

 

4.2. Results 

4.2.1. Simulated Braking Reaction  

For the braking onset model, the results of the KS test across the search values of 

𝑘, 𝑀, and 𝜎 suggested that 𝑘 = 7.7,	𝑀 = −0.3, and 𝜎 = 0.5 led to the best model fit. The 

KL divergence measure showed that the evidence accumulation model (0.06) had a 

smaller divergence from the experimental data compared to the lognormal distribution 

model (0.15). Figure 4.4 represents the cumulative density function with a histogram of 



 

85 

 

the models compared to the experimental data. The figure highlights that while both 

models qualitatively replicate the data, the evidence accumulation model is a closer 

approximation.    

 

 

Figure 4.4 Cumulative density function (top plots) and histograms (bottom plots) of 
the accumulation model, lognormal, and experimental data distributions 
 

4.2.2. Simulated Braking Control Behavior 

For the braking control model, 𝑎D = −0.4, 𝑗 = −4.25, 𝑎; = −7.4 resulted in the 

best model fit for critical and 𝑎D = −0.4, 𝑗 = −2.5, 𝑎; = −2.8 resulted in the best model 

fit for the non-critical scenario. Figure 4.5 represents examples of the braking control 

model results, where the black and gray lines indicate the predicted braking profiles and 
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the observed data, respectively. The braking control models showed similar results to the 

brake onset models although the fit differed substantially between the critical (left two 

plots in Figure 4.5) and non-critical (right two plots in Figure 4.5) scenarios. In the critical 

scenario, the mean root mean square error (RMSE) was 1.23 (SD = 0.66) and the mean 

R2 was 0.90 (0.11), whereas in the non-critical scenario the mean RMSE was 1.25 (0.65) 

and the mean R2 was 0.50 (0.30).  

 

 

Figure 4.5 Examples of braking control maneuvers for the experiment and fitted 
model 
 

4.3. Discussion 

The results of the braking reaction analysis showed that the KL divergence 

measure for the evidence accumulation model (0.06) had a smaller divergence from the 

experimental data compared to the lognormal distribution model (0.15). This is consistent 

with the findings of prior work that showed looming-based evidence accumulation models 

can accurately predict the brake reaction times (Piccinini et al., 2019; Xue et al., 2018). 

The results of the braking control analysis showed a lower RMSE and a higher R2 (1.23 

and 90%, respectively) for the critical scenario compared to the non-critical (1.25 and 

R2 = 1

RMSE = 0.32

−6

−4

−2

0

0 1 2 3
Time(s)

Lo
ng

itu
di

na
l d

ec
el

er
at

io
n 

(m
s2 )

R2 = 0.95

RMSE = 0.82

−6

−4

−2

0

0 1 2 3 4
Time(s)

R2 = 0.48

RMSE = 0.96

−5

−4

−3

−2

−1

0

0 2 4 6 8
Time(s)

R2 = 0.32

RMSE = 1.24
−4

−3

−2

−1

0

0.0 2.5 5.0 7.5
Time(s)



 

87 

 

50%, respectively). One explanation for these results is that drivers in the non-critical 

scenario typically braked multiple times and therefore the piecewise linear braking pattern 

was a poor approximation of their behavior (note the right half of the rightmost plot in 

Figure 4.5). The results of the critical scenario are aligned with those in Markkula et al. 

(2016) during manual rear-end emergencies in which they showed for most cases the 

observed deceleration were closely estimated by the piecewise linear model (R2>70%). In 

addition, a large difference was found for the deceleration rate (jerk) as well as the 

maximum deceleration level (a1) in critical (-4.25 m/s3 and -7.4 m/s2, respectively) in 

comparison with non-critical scenario (-2.5 m/s3 and -2.8 m/s2, respectively). This is also 

aligned with prior work that showed the rate at which drivers increased their deceleration 

(towards a maximum) was highly dependent on urgency (Markkula et al., 2016; Svärd et 

al., 2017).  

Overall, the results highlight that visual looming-based evidence accumulation 

models can effectively capture the brake onset time and the piecewise linear models can 

replicate the braking control behavior in critical events; however, it is limited in predicting 

the braking control in non-critical events, where several braking adjustments occur 

sequentially. Future research should capture these multiple braking adjustments by 

modifying the piecewise model to include a visual looming input.  

 

 

 



 

 

5. MODELS OF POST-TAKEOVER STEERING BEHAVIOR* 

 

The previous chapter focused on post-takeover braking behavior. While extensive 

work has been done with the braking models, steering models have received less attention. 

Steering maneuvers can be further partitioned into avoidance steering—initiation of an 

evasive maneuver—and stabilization steering—a series of corrective actions following the 

initial maneuver (Markkula et al., 2014). Evasive steering for manual emergencies has 

been modeled with open-loop, closed-loop, and hybrid models (Markkula et al., 2012; 

McDonald et al., 2019). Open-loop models represent the anticipatory behavior of the 

driver’s response to an error in a series of preprogrammed control patterns (i.e., motor 

primitives) and closed-loop models represent the compensatory behavior of the driver in 

correcting a deviated situation. Prior studies showed that open-loop models best replicate 

manual emergency avoidance steering and that the closed-loop two-point visual control 

models best replicates stabilization steering. In this chapter, we extend the prior models to 

post-takeover steering control and fit a looming-based open-loop Gaussian model to the 

post-takeover avoidance steering. In addition, we fit a closed-loop two-point control 

model to drivers’ subsequent post-takeover control maneuver (i.e., stabilization steering). 

To accomplish this goal, we have used the collected data from the obstacle reveal event 

explained in chapter 3.  

 

* Parts of this chapter are reprinted with permission from “Alambeigi, H., & McDonald, A. (2020). Modeling 
Post-takeover Avoidance and Stabilization Steering Control in Automated Vehicles. Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting, 64(1), 1999–2000.” 
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5.1. Methods 

From the total number of 128 obstacle reveal drives, 8 drives resulted in crashes. 

The data from these crashes was removed from the dataset because it did not include both 

avoidance and stabilization steering, resulting in a total of 120 complete datasets. Figure 

5.1 illustrates these responses arranged by scenario criticality and the alert presence. The 

bottom and top dashed lines represent the center of the initial and the left adjacent lane. 

 

 

Figure 5.1 Lane changing vehicles’ trajectories categorized by kinematic urgency of 
the event and presence or absence of the takeover request 
 

The steering maneuvers were divided into three phases: takeover, avoidance 

steering, and stabilization steering. The takeover—defined by the time between the 

obstacle reveal (precipitating event onset) and the first evidence of avoidance steering was 

excluded from the modeling. The avoidance steering phase started after the steering 
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takeover time and ended at the last point of leftward steering wheel rotation. The 

stabilization steering phase was defined as the time between the end of avoidance phase 

and 35 seconds after the event onset. The threshold of 35 seconds for the corrective action 

was chosen from the literature where it has been shown that it takes 35-40 seconds for the 

drivers to stabilize their lateral control of the vehicle after the transition (Merat et al., 

2014).  

 

 

Figure 5.2 Illustration of avoidance and stabilization steering phases across the event 
criticality 

 

Figure 5.2 illustrates a typical steering wheel angle rotation for the avoidance and 

stabilization phases across the criticality of the scenarios with the event onset set at time 

zero and the takeover time delineated by the second vertical dashed line. Top plot shows 

a critical scenario and bottom plot shows a non-critical scenario. The first and second 

shaded parts represent a typical range of the avoidance and stabilization maneuver in the 

collected data, respectively. The post-takeover steering maneuvers were modeled using a 
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baseline closed-loop steering model (Salvucci & Gray, 2004) and a two-part avoidance 

and stabilization model based on the findings in (Markkula et al., 2014). The two-part 

model contained an open-loop avoidance steering component and a closed-loop 

stabilization component—also based on Salvucci & Gray (2004). 

 

5.1.1. Steering Avoidance Model 

The avoidance steering maneuver comprises of a series of discrete open-loop 

corrections which suggests a predetermined amplitude at the maneuver onset (Markkula, 

2014). Breuer (1998) showed that in an evasive maneuver the amplitude of steering wheel 

angle and maximum rate of the steering angle are linearly correlated which suggests a 

constant duration of steering corrections (Markkula, 2014). The steering wheel angle rates 

in open loop avoidance models have been shown to follow a Gaussian distribution 

function (Markkula et al., 2014) as shown in Figure 5.3 and is defined by Equation 5.1. 

 

 
Figure 5.3  Steering wheel angle rate generated by an open-loop avoidance model 

 

�̇�(𝒕) = 𝑨𝒆!(
(𝒕&𝝁)𝟐

𝟐𝝈𝟐
)                                  Equation 5.1 
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In this Equation, �̇� denotes the changes in the steering wheel angle, 𝐴 is the 

amplitude of the pulse based on a constant variable 𝑘 and maximum visual looming after 

the event onset and prior to the avoidance maneuver initiation, 𝜇 is the mean of the model 

input and was set to the time 𝑇H + 𝑇C where 𝑇H is the time when the steering input reaches 

half of its maximum value, and 𝜎 is the standard deviation of the model and was a function 

of time duration (𝑇I). Following the work in Markkula et al. (2014), 𝑘, 𝑇C, and 𝑇I are 

considered as free parameters. By fitting this model to the experimental data, the free 

parameters will be adjusted for the two scenarios. To determine the relationship between 

the maximum steering wheel angle and maximum steering rate a linear regression model 

was fit to the experimental data. Figure 5.4 shows the linear correlation for the two 

kinematic urgencies after initiation of the steering avoidance maneuver. The coefficient 

of determination in both events justifies the use of Gaussian models.  

 

 

Figure 5.4 Correlation between max steering wheel angle and maximum steering 
wheel angle rate 
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5.1.2. Steering Stabilization Model 

The stabilization steering component and baseline model used in this study is based 

on a two-point closed-loop stabilization model defined in Equation 5.2, initially proposed 

in Salvucci & Gray (2004). The model assumes that driver steering behavior is based on 

optimal control process to minimize the angles between the vehicle’s heading and near 

and far anchor points.  

 

�̇� = 𝒌𝒏�̇�𝒏 + 𝒌𝒇�̇�𝒇 + 𝒌𝑰𝜽𝒏	                              Equation 5.2        

              

In this equation, 𝜑 is the steering wheel angle, 𝜃M is the near point sight angle, and 

�̇�M and �̇�+ are the changes in the near and far point angles, respectively. 𝑘M, 𝑘+, and 𝑘@ are 

gain parameters. The distances between the vehicle and the near and far points are also 

typically free parameters. This equation imposes three constraints: a stable near point 

(�̇�M ≈ 0), a stable far point  (�̇�+ ≈ 0), and a near point at the center of the lane (𝜃M ≈ 0). 

The gain parameters determine the weights of these constraints. Fitting the model to a new 

scenario consists of identifying the values of 𝑘M, 𝑘+, and 𝑘N and the near and far point 

distances that minimize errors between observed behavior and model predictions. The near 

and far points were positioned on the center of the road way, although, any salient stable 

visual points could be used for the far point. To simplify the computational modeling 

efforts, a discrete form of equation 5.2 was used. To minimize the number of free 

parameters, the near point distance was fixed at 16 meters and the far point distance was 

fixed at 123 meters for this analysis. These values were selected based on the 
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comprehensive analysis in Markkula et al. (2014). Given the position and heading of the 

vehicle compared to the center lanes, the near and far points were either anchored at the 

current lane to account for the steering corrections within a lane or at the destination lane 

to capture the lane changing behavior. Figure 5.5 shows a schematic illustration of the 

two-point stabilization steering by Salvucci & Gray (2004) representing the end of the 

overtake maneuver in a straight road. The gray vehicle represents the stationary obstacle 

and Df and Dn express the far and near point angles, respectively. The difference between 

the baseline and closed-loop stabilization models is that the baseline model was fit to the 

entire post-takeover steering whereas the closed-loop stabilization model was fit to only 

the stabilization phase of steering, starting after the avoidance steering and ending after 

the vehicle had stabilized in the original lane. 

 

 

Figure 5.5 A schematic illustration of the two-point stabilization steering 
representing the end of the overtake maneuver in a straight road 
 

5.1.3. Model Fitting and Evaluation Process 

The parameters in each model were optimized by partitioning the experiment data 

into training and testing datasets conducting a grid search over a range of parameters (see 
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Table 5.1). The participants were randomly divided into two groups. For the first half, the 

model was trained on the critical drive and was tested on the non-critical drive. For the 

second group, the model was trained on the non-critical drive and tested on the critical 

drive. Each combination of parameters was evaluated based on the minimum RMSE 

between the model predictions and the observed training data and the best set of 

parameters was chosen for each participant. Following the model fitting, the results were 

validated against the test dataset. R2 values were also calculated against the test data to 

allow for comparison with the results of other works. 

 

Table 5.1 Parameter Search Range for Steering Models 
Steering Model Parameter Searched Range 
Avoidance 
 

𝑇) [0.1, 1] 
𝑇# [-0.5, 0.5] 
𝑘 [0, 100] 

Stabilization 
 

𝑘* [0, 100] 
𝑘+ [0, 50] 
𝑘, [0, 10] 

Baseline 𝑘* [0, 100] 
𝑘+ [0, 50] 
𝑘, [0, 10] 

 

5.2. Results 

5.2.1. Simulated Steering Avoidance Behavior 

The optimization results suggest that values of 𝑘 = [20, 70], 𝑇I = [0.2, 0.6], 𝑇C =

[−0.5, 0.5] for the open-loop avoidance models correspond to more accurate models. 

Within the best regions, the model is not sensitive to the gain parameter settings. Table 

5.2 presents the validation results against the test data. As this table shows, the open-loop 
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avoidance model generally replicates the trend in avoidance steering better than the 

closed-loop baseline model. Figure 5.6 provides examples of the avoidance steering 

profiles for the fitted model to the experimental data. In this figure, the black and grey 

lines represent the model and experiment, respectively. The first two examples represent 

good fits and the second two examples represent relatively poor fits. 

 

Table 5.2 Model Fitting Results for the Post-takeover Avoidance Steering Models 
 Avoidance: Open-loop  Avoidance: Baseline 
RMSE 0.07 (0.065) 0.13 (0.33) 
R2 0.77 (0.29) 0.69 (0.27) 

 

 

Figure 5.6 Examples of avoidance steering maneuvers for the experiment and fitted 
model 
 

5.2.2. Simulated Steering Stabilization Behavior 

The optimization results for the stabilization model suggest that values the lower 

values of 𝑘+, 𝑘M, and 𝑘N, in particular, 𝑘+ = [0, 25], 𝑘M = [0, 15], and 𝑘@ = [0, 2], 

correspond to more accurate models. The stabilization modeling results, presented in 

Table 5.3, show similar R2 values across the models, but a slightly better RMSE in the 

closed-loop model fit specifically to stabilization steering. Figure 5.7 provides examples 
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of the stabilization steering profiles for the fitted model to the experimental data. The black 

and grey lines represent the model and experiment, respectively. The first two examples 

represent good fits and the second two examples represent relatively poor fits. 

 

Table 5.3 Model Fitting Results for the Post-takeover Stabilization Steering Models 
 Stabilization: Closed-loop  Stabilization: Baseline 
RMSE 0.12 (0.13) 0.12 (0.14) 
R2 0.32 (0.10) 0.31 (0.10) 

 

 

Figure 5.7 Examples of stabilization steering maneuvers for the experiment and 
fitted closed-loop stabilization model 
 

5.3. Discussion 

The validation results against the test data showed that the two-part model of visual 

looming-based open-loop avoidance and closed-loop stabilization are effective for 

predicting driver post-takeover performance. In particular, the results showed that the 

open-loop avoidance model generally replicated avoidance steering better than the closed-

loop baseline model. The lower value of RMSE and higher value of R2 for the open-loop 

model compared to the closed-loop baseline model (R2: 77% vs. 69%) suggests that the 

drivers maximum looming prior to the takeover might determine the pattern of driver’s 
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avoidance maneuver. The results are similar to that of Markkula et al. (2014), which 

showed an average R2 of 71% for a manual driving emergency. The stabilization modeling 

results show similar RMSE values across the models, but a slightly better R2 in the closed- 

loop model fit specifically to the stabilization steering (32% vs. 31%). In addition, the 

results showed that the stabilization part of the model is capable of capturing both lane 

changing behavior and steering corrections within a lane by switching the anchor points 

to the destination lane.  

Overall, this model can effectively replicate the trends, although it has 

substantially less entropy than the observed data. While the analysis provides a promising 

replication of steering behavior, it is limited in determining the severe and quick 

corrections. In addition, regardless of the number of pulses in the avoidance steering rate 

profiles, only one Gaussian function was fit to the whole maneuver which can make the 

model less reliable for the data with more steering corrections. Despite these limitations, 

the findings suggest that open-loop looming-based Gaussian models accurately replicate 

post-takeover avoidance steering and that closed-loop models accurately replicate post-

takeover stabilization steering. Future work should explore expansions to capture 

additional variability in avoidance steering and validate these models on real-world 

driving data or naturalistic steering dataset given the potential for differences in behavior 

between simulator and real-world scenarios. 
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6. HOLISTIC MODEL OF TAKEOVER BEHAVIOR 

 

The analyses of the previous chapters highlight the need for a holistic model of 

driver behavior following an automation failure. So far, several models have been 

developed to predict separate components of a takeover process. In particular, the 

developed models have been focused on an avoidance strategy by either braking or 

steering alone, while in an on-road driving, drivers perform steering and braking with 

close temporal proximity, if not at the same time. The concept of parallel information 

processing follows the leaky competing accumulator models, in which the human brain 

can accumulate two sets of evidence simultaneously, rather than having a single 

accumulator with different thresholds, allowing them to have different choice alternatives 

(Usher & McClelland, 2001). 

The current chapter addresses this gap by developing a holistic model of the 

drivers’ perceptual decision-making and control response that integrates multiple 

responses and provides realistic predictions of human performance. The output of this 

model is the drivers’ decision to steer or brake, takeover time, and control behavior. To 

evaluate the performance of the model, it was fit to the collected dataset—discussed in 

chapter 3. Developing such a comprehensive model can be used as a guideline to improve 

the design of advanced automated vehicle-related technologies. The rest of this chapter 

starts with a discussion on the model description, model formulation, and parameter fitting 
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and evaluation process, and ends with a presentation of the simulated decision-making, 

takeover time, and braking and steering control responses.  

 

6.1. Model Description 

 Evidence accumulation models have been one of the most successful frameworks 

of perceptual decision-making within cognitive psychology over the last 50 years (Evans 

& Wagenmakers, 2020). The underlying assumption of these models is that the brain 

accumulates noisy evidence over time and a decision is made once enough evidence is 

extracted. Evidence accumulation models provide predictions for the decision being made 

and the time takes to make that decision, making them a good candidate for driver behavior 

modeling where rapid decision-making is required. In particular, these models decompose 

the response times into the underlying latent variables of decision-making process such as 

the drift rate and the decision threshold. The drift rate is the rate at which the evidence is 

integrated over time and the decision threshold is a boundary on the required evidence for 

triggering a response (Evans & Wagenmakers, 2020). Depending on the characteristics of 

these variables (e.g., constant or time-varying drift rate, stochastic or deterministic 

evidence), the evidence accumulation model has several variants such as the drift-

diffusion or leaky competing accumulator model (Ratcliff, 1978; Usher & McClelland, 

2001). The leaky accumulation model suggest that the evidence that has been collected 

over time may be subject to decay and has been shown to better explain the time-accuracy 

tradeoffs (Usher & McClelland, 2001). In addition, this model allows for lateral inhibition 

(i.e., simultaneous account for the choice response) of evidence through multiple 
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accumulators (one for each decision alternative). The inhibition among the accumulators 

reflects the relative-evidence decision criterion, in which the amount of information 

collected at each accumulator impacts every other accumulator. Upon stimulus 

presentation, the response is triggered by the accumulator with the strongest input.  

The holistic framework follows the leaky competing evidence accumulation model 

and assumes that the driver is simultaneously accumulating evidence for steer and brake 

and that as the evidence builds up in favor of one decision choice it sends inhibition to the 

other. This model also assumes that the decision to steer or brake is guided by the predicted 

error in the drivers’ visual looming of the lead vehicle and that the drivers are continuously 

accumulating this looming signal over time by looking at the forward roadway (zero gaze 

eccentricity). Following the decision-making process, the associated maneuver is 

activated and further adjusted if required. 

 

6.2. Model Formulation 

The evidence accumulator in this chapter modifies the basic accumulators, 

introduced in chapter 2, and adds parameters to better account for the human’s perceptual 

decision-making and response time process. Figure 6.1 illustrates a schematic 

representation of the fundamentals of this model. In this figure, the dashed box indicates 

the driver’s internal perceptual process and includes two parallel accumulators to account 

for the onset of each alternative response (i.e., steering and braking). The input to this 

perceptual process is environmental stimulus that the driver receives and the output is a 
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braking and/or steering control. Equation 6.1 shows the formulation of the evidence 

accumulation model. 

 

𝒅(𝑨𝒊)
𝒅𝒕

= 𝒌𝒊𝜺(𝒕) + 𝒗(𝒕) − 𝑪𝑨𝒊						𝒊 = {𝒃𝒓𝒂𝒌𝒆, 𝒔𝒕𝒆𝒆𝒓}												Equation 6.1 

 

 

Figure 6.1 Schematic representation of the fundamentals of the holistic modelling 
framework including an accumulator for each alternative action and control action 
modules 
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In this Equation, 𝐴 is the accumulator activity for braking or steering response, 

𝜀(𝑡) is the looming prediction error and is equivalent to (𝜏!;(𝑡) − 𝜏<!;(𝑡)), where 𝜏!;(𝑡) 

is the perceptual quantity (i.e., looming signal in our model) that represents evidence for 

the need of an action and 𝜏<!;(𝑡) is the prediction of sensory consequences of control 

actions, 𝑣(𝑡) is the accumulator noise from a normal distribution with mean 0 and standard 

deviation 𝜎.	𝐶 is the leakage term corresponding to the decay in evidence accumulation 

over time (Usher & McClelland, 2001). The inclusion of the leakage term has the effect 

of a smoothing low-pass filter with a time constant equal to 1/𝐶 and can avoid an early 

detection of a response in slow looming conditions (Svärd et al., 2020). 

𝑘 is the gain parameter or the proportion of the support for braking or steering 

determining the impact of looming prediction error and is defined as a function of sum of 

all looming and non-looming evidence (i.e., 𝑚) for or against the need for an evasive 

action. Traditionally, 𝑘 was defined as a constant variable (McDonald et al., 2021; 

Piccinini et al., 2019; Svärd et al., 2020); however, following the work in a naturalistic 

setting that showed a substantially better fit for a visual looming with an exponential gain 

compared to a constant gain (although with a different goal), this model also uses an 

exponential gain for braking and steering (Sarkar, Alambeigi, et al., 2021). To reflect the 

inhibitory behavior of the leaky evidence accumulation model, the gain is set up in a way 

that as the support for braking increases the support for steering decreases, and vice versa, 

so that the overall looming gain will always add up to 1 (Equation 6.2). This allows the 

model to account for multiple responses at a single time unit. 
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𝒌𝒃𝒓𝒂𝒌𝒆 = 𝟏 − 𝒌𝒔𝒕𝒆𝒆𝒓                                Equation 6.2 

 

 Figure 6.2 shows the effect of non-looming evidence (𝑚) on the braking and 

steering gain parameters. As this figure shows, positive 𝑚 values represent the non-

looming evidence in favor of the steering decision, meaning that with very high visual 

looming and in the presence of a non-looming evidence, such as an empty adjacent lane, 

the driver accumulates more evidence in favor of changing lanes. The existence of other 

anticipatory perceptual cues such as the lead vehicle’s brake lights can also provide 

evidence for the possible need to initiate the deceleration, if accompanied with other 

stimulus (Markkula et al., 2016). A negative value of 𝑚 in this model can be an indicative 

of such an anticipatory cue, where it might increase the driver’s tendency to brake if 

combined with sufficient visual looming evidence, as a brake light onset in itself is not 

enough to trigger a braking response (Markkula et al., 2016; Xue et al., 2018). 

 

 

Figure 6.2 Visual representation of the braking and steering gain parameters  
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Another parameter that is missing in this model, is the effect of warning that the 

drivers received. It is expected that with the presence of a takeover request, it takes less 

time for the drivers to accumulate sufficient visual looming evidence to resume the vehicle 

control. Therefore, a constant variable, indicating the driver’s initial readiness (𝑟), is also 

added to the drift rate. Given the input of the model (𝜏!;), drivers’ choice of response is 

depended on the visual looming signal and how it evolves over time. If the visual evidence 

crosses the accumulator threshold (i.e., 𝑇 in Figure 6.1), the driver initiates the response. 

The drivers’ takeover time is then calculated as the minimum of braking and steering 

takeover times. In this model, 𝜎, 𝑚, and 𝑟 are considered as free parameters. 

In the next step, the drivers’ predicted decision and the takeover time is fed to the 

control part of the model. Based on the chosen response, drivers’ control model was 

activated resulting in a braking control and/or steering avoidance behavior. After each 

control adjustment, the driver predicts how the looming will decay as a result, thus a new 

looming prediction (𝜏<!;) is fed back to the accumulator (the feedback in Figure 6.1).  

For the brake control model, a modified version of the piecewise linear model 

discussed in chapter 4 (see Figure 4.3) was used. In contrast to the original piecewise 

model, in this model, the jerk was considered as a function of the visual looming signal. 

To this end, a linear regression model was fit to find the relationship between the 

deceleration rate and maximum visual looming prior to the maneuver. The analysis of the 

original piecewise model found a constant value of -0.4 for the initial deceleration (𝑎D) 

across all conditions. Therefore, this parameter was kept constant, while the final 

maximum deceleration (𝑎;) for each brake adjustment, and the jerk (𝑗)—in the form of 
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𝑗D—were considered as free parameters. Equation 6.3 shows the relationship between jerk, 

visual looming, and the associated free parameter (𝑗D).  

 

𝒋 = 𝒂𝝉!𝟏 + 𝒃 + 𝒋𝟎                                Equation 6.3 

 

The avoidance steering model was fit using an extended version of the visual 

looming-based Gaussian model discussed in chapter 5 (see Figure 5.3). This model 

indicates that the drivers’ steering wheel rate shows a normal bell-shaped pattern (also 

called a steering primitive) to adjust the steering wheel. The current avoidance model was 

modified to account for the number of steering primitives in the avoidance steering rate 

profiles. The input to this model is the maximum visual looming after the event onset and 

prior to the avoidance maneuver initiation, (𝜏S7T!; ). The mean of the steering input and 

was set to the time 𝑇𝑆+𝑇𝐴 where 𝑇𝑆 is the time when the steering input reaches half of its 

maximum value. The standard deviation of the model and was a function of time duration 

(𝑇H). In this model, the amplitude of the pulse, k, 𝑇𝐴, and 𝑇H were considered as free 

parameters. 

 

6.3. Methods 

6.3.1. Takeover Response Analysis 

To provide context for drivers’ decision-making process, the observed responses 

from the experiment were analyzed based on their initial and aggregated avoidance 

strategies. The initial strategy refers to the drivers’ first reaction following the automation 
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failure and the aggregated strategy includes any subsequent maneuver to their initial 

reaction. The drivers’ avoidance strategies can be categorized into four different responses 

including braking, lane changing, both braking and lane changing, and no action. If the 

driver’s initial response (e.g., braking) was followed by a second maneuver (e.g., lane 

changing), the aggregated response type included both braking and lane changing. Overall, 

out of 256 drives, 11 resulted in crashes (see section 3.2.2.1 for more details), out of which, 

in 2 cases the drivers did not initiate their maneuvers until after the crash occurred. Both 

of which were rear-end collisions with the lead vehicle. For the purpose of the response 

type analysis, these 2 drives were excluded. The count data from driver responses were 

analyzed with a two-sided Fisher’s exact test as it works well with small sample sizes 

(Bower, 2003).  

 

6.3.2. Model Fitting and Evaluation Process 

The holistic model was fit to the automated vehicle takeover data collected from 

the simulator study, explained in chapter 3, using R (R Core Team, 2018). A good 

candidate for estimating the parameters of the evidence accumulation model is a Bayesian 

statistical inference approach as it naturally incorporates the perceptual uncertainty 

associated with the human behavior (Bitzer et al., 2014; Markkula et al., 2021). The 

Bayesian statistical approach has become significantly prominent in a variety of contexts 

across human decision-making and cognitive science as well as other behavioral research 

disciplines (M. D. Lee, 2008; van de Schoot et al., 2017). From the human cognition 

perspective, the perceptual representations of the environment are inferred from very 
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limited sensory inputs enforcing decisions to be made under uncertainty (Chater & 

Oaksford, 2008). This lack of certainty, highlights the importance of Bayesian statistical 

inference in simulating models of human cognition (Chater & Oaksford, 2008; M. D. Lee, 

2011).  

The Bayesian approach implements Bayes theorem and provides a comprehensive 

framework for making inferences by using prior beliefs (distributions) regarding the 

model parameters and making predictions using the probability of the parameters given 

the observed data and model. The prior distribution can be acquired from different sources 

including our prior understanding of likely values or experimental and theoretical studies 

(van de Schoot et al., 2017). In case of lack of knowledge or empirical evidence, an 

uninformative prior can be used. Whether the prior is informative or not, it gets updated 

after observing the data leading to an updated posterior distribution. This updated 

distribution then serves as the prior for future estimations (Turner & Van Zandt, 2012). A 

drawback of using a Bayesian approach is the computation of the model likelihood, which 

can be computationally expensive and intractable due to the large sample size, high 

number of parameters, or functional complexity (Karabatsos & Leisen, 2018).	

Alternatively, an approximate Bayesian Computation (ABC) can be employed when the 

data and parameter dimension is large.  

ABC is a likelihood-free inference that follows the general steps of Bayesian 

inference by formulating a model with parameter values drawn from a prior distribution, 

estimating the model parameters by fitting the model to the observed data, comparing the 

simulation outputs to the data, and improving the model by checking its posterior 
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predictions (Csilléry et al., 2010; Jabot et al., 2013). Figure 6.3 represents a conceptual 

overview of the ABC. 

 

 

Figure 6.3 A conceptual overview of the Approximate Bayesian Computation (ABC) 
method 

 

This approach explores the parameter space and replaces the likelihood ratio 

computation with simulations of the model and eventually provides the summary statistics 

of the parameters (Sunnåker et al., 2013). For the purpose of the analysis, the parameters 

for the reaction and control components of the model are estimated using a modified ABC-

MCMC algorithm proposed in Marjoram et al. (2003). MCMC is a method that can 

simulate samples from the posterior distribution of the model parameters. ABC-MCMC 

uses the Metropolis–Hastings algorithm and explores the parameter space iteratively using 

the distance between the simulated and the observed summary statistics to update the 
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current parameter values (Csilléry et al., 2010; Marjoram et al., 2003). Marjoram et al.’s 

modified algorithm was selected as it proposed several improvements compared to their 

original algorithm including performing a calibration step so that the algorithm can 

automatically determines the tolerance threshold, the scaling of the summary statistics and 

the scaling of the jumps in the parameter space during the MCMC (Jabot et al., 2015).  

ABC estimation process included 2,000 iterations of simulations for each 254 

observations. Each iteration of the algorithm draws a random sample from a prior 

distribution for each parameter and predicts the mean effect from the simulated model 

using the sampled values (Vasishth, 2020). The number of simulations during the 

calibration step was set to 10,000. A uniform distribution was used for all free parameters 

of the model as shown in Table 6.1. For the jerk parameter in the brake control model only 

negative values were selected as the deceleration makes a linearly decreasing line over 

time. Similarly, for the final deceleration of this model only negative values were 

considered. Following the prior pioneering work, the accumulator threshold and the 

leakage term were set to 1 and 0.25, respectively (Svärd et al., 2020).  

The simulations reported summary statistics of the parameters as the output of the 

model. A further step was needed to simulate the takeover response using the accepted 

range of the free parameters. To this end, random samples were drawn from the posterior 

distributions of the free parameters and were fed to the model to simulate the takeover 

times. The model evaluation phase included a comparison of the model to the observed 

takeover response, in terms of both the control choice and the posterior distribution of the 

takeover time.  
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In the braking and steering control models, the deceleration input and the steering 

wheel angle were estimated, and the accepted range of the parameter were provided. 

Drawing samples from the posterior distributions, the braking and steering inputs were 

simulated. Using RMSE, the performance of these models across all observations were 

compared with the performance of the basic braking and steering models, developed in 

previous chapters.  

 

Table 6.1 Prior Distributions Used in the Holistic Model 
Model Parameter Searched Range 
Takeover response m Unif [-1,1] 

r Unif [0,1] 
𝜎 Unif [0,1] 

Braking control 𝑗 Unif [-10,0] 
𝑎( Unif [-8,0] 

Steering control k Unif [0,100] 
𝑇𝐴 Unif [-0.5,0.5] 
𝑇H	 Unif [0,1] 

 

6.3.2.1. Data Range 

The end point of the experimental data, that was used for the model fitting, was 

the end of the avoidance maneuver—or the beginning of stabilization maneuver—for the 

steering control and the end of braking maneuver for the braking control. For each braking 

adjustment the minimum TTC + 0.5 s were considered, as the drivers generally maintain 

acceleration for that long (Markkula et al., 2016). If 95% of the minimum acceleration 

was not reached at minimum TTC + 0.5 s, the endpoint was set at the subsequent point in 

time when the acceleration reached 0.95% of the minimum acceleration, for the first time 

(Svärd et al., 2020). 
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6.4. Results 

To investigate the underlying assumptions of the model on drivers’ perceptual 

decision-making, this section starts with an overview of the observed takeover responses 

from the experiment. The rest of the sections present the simulated results for different 

phases of a takeover starting from decision-making and takeover times followed by 

braking and steering control behavior. The last section illustrates the relationship between 

these models from the holistic perspective.  

6.4.1. Observed Takeover Behavior 

Drivers’ initial response is illustrated in Figure 6.4. In the unexpected braking 

scenario, the majority of drivers responded to the event by braking (116/126), while only 

a few performed lane-changing maneuver (10/126). The Fisher's Exact test showed 

significant differences in responses associated with scenario criticality (p = 0.03) in the 

unexpected braking scenario. Steering was significantly more common in critical 

scenarios compared to non-critical. In the obstacle reveal scenario, the most common 

response was steering to other lanes (112/128 events) followed by braking (16/128). All 

of the drivers included at least some steering response. Fisher’s Exact test showed no 

significant effect of scenario criticality or alert type on driver responses in the obstacle 

reveal scenario.  
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Figure 6.4 Drivers’ takeover initial response (brake vs. steer) categorized by 
criticality, takeover request presence, and event type 

 

Figure 6.5 shows the density plots of takeover times across all combinations of 

takeover request, criticality, and scenario types. Note that in this figure the groups with 

fewer than two data points have been dropped. The distributions were further categorized 

with respect to the drivers’ initial response type after the failure. The blue and green 

distributions represent the brake and steer takeover times, respectively. The overall 

takeover times was defined as the minimum of brake and steer takeover times. Note that 

due to the lack of (or limited) observations in some cases only one of the braking or 

steering distributions are plotted (second and forth plots from top in the right panel of 

Figure 6.5). As this figure shows, in most cases the brake takeover times are shorter than 

steer takeover times. In addition, the width of distributions in critical scenarios represents 

a small range of observed values compared to the non-critical. With regards to the takeover 
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request type, there is a slight difference in the mean of alerted versus silent failure, where 

silent failures increased the takeover times compared to the alerted conditions.  

Figure 6.5 Density plots of takeover time categorized by the brake and steer response 
across criticality, takeover request presence, and event type 

In addition to the initial maneuver, the drivers’ aggregated response was analyzed. 

The aggregated response included subsequent maneuvers following the initial maneuver. 

This analysis is important from the modeling perspective as the driver’s braking and 
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steering adjustments following the initial response can be an indicative of discrepancy 

between the real and predicted visual evidence (Markkula, Romano, et al., 2018). For 

example, the decision to steer to the adjacent lane following a braking might show that the 

attempted braking is not solving the conflict. This decision is mostly guided by the relative 

visual looming of vehicle in front.  

Figure 6.6 shows the temporal illustration of braking and steering takeover times 

across criticality and scenario types, where the rows correspond to each individual’s 

responses. Note that 4 outliers, that were beyond 10 s, were removed to improve 

readability. Due to the design of experiment, not all the participants experienced the 

alerted and silent failures; therefore, the takeover request type is not shown in this figure 

to allow for direct comparison of response types for each participant. In general, braking 

and steering takeovers happened with close proximity. Critical scenarios included more 

combination of braking and steering compared to non-critical scenarios with the 

occurrence of braking before steering. During emergency conflicts, braking only (i.e., 

without steering) has been found to be the most initial responses for most drivers 

(Markkula et al., 2012). Subsequently, steering was mostly observed in the situations 

where the driver may perceive that braking is insufficient to avoid the conflict (e.g., crash 

occurrence). This perception typically arises from high visual looming (low TTC), 

however, even in less critical situations with low visual looming, the drivers might still 

choose to respond with steering. This decision is normally motivated by an early detection 

of catching up with the lead vehicle and/or having sufficient time to plan a more confident 

maneuver. These findings were further supported by the cumulative distributions of the 
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takeovers. Figure 6.7 shows the cumulative density functions for the brake and steer 

takeover times aggregated with respect to the participants and scenarios. Overall, except 

a few early lane changing maneuvers, drivers’ braking precedes the steering regardless of 

the criticality. Looking closely at the overlapping responses shows that in most cases as 

the evidence to execute a maneuver (e.g., steering) gets higher, the evidence for the other 

maneuver (e.g., braking) gets lower.  

Figure 6.6 Temporal illustration of braking and steering takeover times across 
criticality and event types for each participant 
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Figure 6.7 Cumulative density function associated with the braking and steering 
takeover times across the event criticality 

Figure 6.8 represents two examples of the overlapping longitudinal deceleration 

and the steering wheel angle, representing the braking and steering behavior, respectively. 

In this figure, the black, blue, and green dashed lines show the failure onset, braking, and 

steering takeover times, respectively. Note that the steering input is scaled for the 

illustration purpose. The figure shows the close proximity of the control responses, in 

which the drivers initiated a braking maneuver followed by a lane change with a few 

seconds apart. The fact that drivers do not wait until the end of braking to initiate their 

steering responses is aligned with the idea of competing accumulator models, in which 

human brain can accumulate two sets of evidence in parallel (Usher & McClelland, 2001). 

Collectively, the results of the response type analysis support the assumptions of 

the model regarding the braking and steering gain parameters, the association of visual 



looming with the choice of response maneuver, as well as including two accumulators to 

account for each response. 

Figure 6.8 Examples of the steering and braking overlapping responses 

Figure 6.9 shows the posterior distributions of the non-looming evidence, 𝑚, 

driver’s initial readiness, 𝑟, and standard deviation of the noise, 𝜎. The drivers’ takeover 

responses were estimated by drawing random samples from the posterior distributions of 

the parameters. Examining the parameter combinations across all conditions, the model 

predicted the choice of response (brake and steer) with 92% accuracy. Figure 6.10 shows 

the boxplots of the choice of response across the free parameters and the event type. 

Parameter 𝜎 and to a lesser extent 𝑟 did not show substantial variability in terms of the 

response across different scenario types. Regardless of the scenario, parameter 𝑚 resulted 

in more braking around the negative values and more steering around the positive values. 
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6.4.2. Simulated Decision-making and Takeover Time 
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Similar to the observed experimental responses (see Figure 6.4), the model resulted in 

more braking in the unexpected braking and more steering in the obstacle reveal events. 

Although it is notable that the overall estimated braking decisions are higher.  

 

 

Figure 6.9 Posterior distributions of the takeover model parameters 
 

 

Figure 6.10 Boxplots of the parameters’ posterior distributions across takeover 
response and event type 
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Figure 6.11 shows the distributions and cumulative densities of the simulated and 

observed takeover times across all the factors. As the figure shows, the model’s estimation 

seems to capture the observed mean. Takeover time distributions were further explored 

across the experimental factors (i.e., takeover request presence, scenario criticality, and 

event type). Figure 6.12 illustrates these distributions. Overall, the critical scenarios 

showed a better fit than the non-critical scenarios, in which, the model estimates are mostly 

shorter than the observed data (note the left skewness in the right plots), in particular, in 

the unexpected braking event.   

 

 

Figure 6.11 Simulated and experimental takeover time distributions 
 

A correlation analysis has been performed to find the relationship between the 

posterior distributions of the free parameters. The correlation coefficient values were 

calculated based on the Pearson correlation method, a test statistic used to measure the 

statistical relationship or association between two continuous variables. The analysis 
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shows a slight positive correlation between the non-looming evidence and the drivers’ 

takeover time and a slight negative correlation between the takeover time and the drivers’ 

initial readiness and as well as the variability in the noise. However, we should be cautious 

in interpreting this figure as the correlations were not statistically significant.  

 

 

Figure 6.12 Simulated and experimental takeover time distributions across takeover 
request presence, event criticality, and event type 
 

The correlations between the posterior distributions of the parameters revealed 

significant results among which the negative correlation between the driver’s initial 
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readiness and non-looming evidence (𝑟 = −0.6) is interesting. It suggests that as the 

driver’s readiness gets higher, for example by receiving an alert, drivers accumulate more 

evidence in favor of braking. This finding is consistent with the simulated response types 

that showed a slightly more braking with an increase in readiness. Figure 6.13 further 

supports these findings by showing the joint posterior distributions of the model 

parameters. Lighter and darker areas correspond to regions of higher and lower density. 

 

 

Figure 6.13 Joint posterior distributions of the model parameters 
 

6.4.3. Simulated Control Behavior 

 Following the response choice and takeover time estimation, the predicted 

responses were fed to the control modules of the holistic framework. The rest of this 

section represents the simulated braking and steering responses.  

 

6.4.3.1. Braking Control Behavior 

The braking control model extends the basic piecewise linear model, developed in 

chapter 4 (see Figure 4.3), to directly include the perceptual cues into the model and 

capture the braking adjustments. Figure 6.14 shows an example of the multiple braking 
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applications, where each application is associated with a separate piecewise linear model. 

The first and second vertical dotted lines show the event onset and the onset of second 

brake adjustment. The dashed lines represent the release of the brake pedal. The first 

maneuver starts at the time of the brake takeover time and each subsequent adjustments 

uses the simulated data from the previous brake actuation plus a new reaction time for the 

starting point of each maneuver. Similar to the brake takeover time for the first braking 

maneuver, that was estimated in the previous section, this reaction time is estimated using 

an evidence accumulation model (see Equation 6.1). However, the parameters of the 

model are modified to only include braking. For example, the parameter 𝑚,  the non-

looming evidence in favor of steering, was held constant at -1, as the driver was already 

braking. So, setting the 𝑚 value to -1 implies the accumulation of evidence in favor of 

braking. Similarly, the initial readiness was fixed at zero, as the drivers in the alerted 

condition received the warning only once. In addition, if we associate the initial readiness 

to the drivers’ situation awareness as a result of receiving a warning, we don’t expect to 

see any difference after the first takeover request. The variability in the noise was 

simulated iteratively with the range of [0:1] and eventually was set to 0.5. Following the 

initial reaction, the accumulator threshold was reset to 0.7, to reflect an increased brake 

readiness after the first brake application (Markkula, Romano, et al., 2018). In total, out 

of 254 observations, 108 drives didn’t include any braking maneuvers. To pursue further 

evaluation of the model against the experimental data, these drives were excluded.  
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Figure 6.14 An example of multiple brake applications with the red and blue lines 
representing the expected fit to the experimental data 
 

A strong relationship between the visual looming at the time of the brake and the 

jerk (rate of the deceleration) have been found (Bärgman et al., 2017; Markkula et al., 

2016). To quantify this relationship, the jerk values were extracted from fitting a basic 

piecewise linear model to the experimental data for each brake adjustment. None of the 

drivers had more than two major brakes, made us to focus on the first two brakes following 

the takeover. Out of 146 observations that were initially braked, 39 continued braking. 

The evidence accumulation used to simulate the brake reaction times for these subsequent 

maneuvers successfully captured all 39 brakes. Interestingly, none of the ones who didn’t 

feel the necessity to continue braking had accumulated evidence greater than the threshold. 

Figure 6.15 shows the jerk as a function of the visual looming signal for the initial (left 

plot) and the subsequent brake application (right plot). Next, a linear regression model 

was fit to the extracted values. Equation 6.3 and 6.4 show the fitted models.  
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Figure 6.15 Model of jerk as a function of inverse tau at the start of the initial (left) 
and subsequent (right) braking maneuvers 
 

𝒋𝒊 = −𝟏. 𝟓𝝉𝒕𝒊
!𝟏 − 𝟐. 𝟑𝟔                                Equation 6.4 

 

𝒋𝒔 = −𝟏𝝉𝒕𝒔
!𝟏 − 𝟏. 𝟔𝟎				                                Equation 6.5                          

 

 Figure 6.16 shows the posterior distributions of the model parameters, in which 

𝑎;@, 𝑎;U, and 𝑗D refer to the maximum deceleration of the initial braking maneuver, 

maximum deceleration of the subsequent braking maneuver, and the intercept of 

deceleration rate (jerk), respectively. The intercept of the jerk parameter (𝑗D) shows a 

relatively normal distribution, while both maximum decelerations (𝑎;) show a multimodal 

pattern, where the values are lower for the subsequent braking compared to the initial 

braking. One explanation for these lower values is the criticality of the events. Around 

95% (37/39) of subsequent braking observations happened when the event was non-

critical, while in the initial braking it was more evenly distributed (53% for critical vs. 
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47% for non-critical). This also justifies having two modes in the 𝑎;@ distribution, in which 

the cluster with the absolute larger values is associated with the critical events and the one 

with the absolute lower values is related to the non-critical events.   

 

 

Figure 6.16 Posterior distributions of the brake control model parameters 
 

Pearson correlation analysis showed significant positive correlations between 

intercept of jerk and both maximum decelerations (𝑟 = 0.13 for initial maximum 

deceleration and 𝑟 = 0.28 for subsequent maximum deceleration). An increase in the 

intercept of jerk leads to an increase in the jerk (deceleration rate) itself and as the 

deceleration rate of the brake applications get higher, greater maximum decelerations are 

achieved showing some abrupt and full applications as well as some gradual and partial 

applications. Figure 6.17 shows the density of the joint posterior distributions, where 

lighter and darker areas correspond to regions of higher and lower density. Looking at the 

joint density plot of maximum decelerations (left plot) reveals three patterns of brake 

applications: A soft brake followed by a hard brake, two relatively even brakes, and a hard 
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brake followed by a soft with the focus being on the latter. The two right plots are mostly 

centered around higher jerk and maximum decelerations. 

 

 

Figure 6.17 Joint posterior distributions of the braking model parameters 
 

To simulate the brake maneuvers, for each observation random samples were 

drawn from the accepted range of posterior distributions. The outputs of model then were 

evaluated against the experimental data. Figure 6.18 shows the effect of 𝑗D on the 

simulated decelerations within the range of its posterior distribution, while the maximum 

deceleration was held constant. In this figure, the red line shows the observed braking 

maneuver from the experiment. As expected, with increasing the 𝑗D values, the 

deceleration rate gets higher, representing an acute deceleration. Figure 6.19 shows 

examples of the simulated (solid lines) and observed decelerations categorized by event 

criticality and presence or absence of the takeover request. Red dashed lines show the 

predicted brake takeover times. Overall, the model shows a good fit to the data. Simulating 

the decelerations for each observation resulted in a mean RMSE of 0.66 (0.19) between 

the model and observed braking inputs across the entire dataset.  
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Figure 6.18 The effects of varying intercept of jerk on the simulated decelerations 
 

 

Figure 6.19 Examples of the simulated and observed brake maneuvers across 
criticality and takeover request types 
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6.4.3.2. Steering Control Behavior 

The steering control model extends the open-loop avoidance model, developed in 

chapter 5 (see Figure 5.3 and Equation 5.1). Although most of the steering behaviors 

during the collision avoidance phase included a single steering primitive, a few avoidance 

maneuvers were composed of multiple peaks. To capture these multiple rotations, 

Gaussian function were applied to each peak. In total, out of 254 observations, 108 drives 

didn’t include any steering maneuvers. For the purpose of the model evaluation against 

the experimental data, these drives were excluded. The avoidance steering phase, defined 

as the time between the steer takeover time and the last point of leftward steering wheel 

rotation (see Figure 5.2 for an illustration of the avoidance steering), were extracted from 

the entire steering profiles for further analysis. Figure 6.20 shows the relationship between 

the drivers’ maximum steering wheel angle and maximum steering wheel angle rate in the 

avoidance phase. This figure indicates that the higher amplitudes of the steering rotations 

are associated with faster movements, in particular during the critical events. Also, there 

seems to be a very high inter-individual variations in the steering behavior. In most cases 

the maximum steering wheel rotation occurred while the driver was changing lanes. 

Pearson analysis shows a high correlation coefficient (𝑟V = 0.81) across all conditions, 

making the Gaussian model a good candidate for the open-loop avoidance maneuver.  
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Figure 6.20 Maximum steering wheel as a function of maximum steering wheel 
angle rate 
 

Figure 6.21 shows the posterior distributions of the model parameters, in which 𝑘, 

refers to the amplitude of the pulse, specifically the gain of the maximum visual looming 

after the event onset and prior to the avoidance maneuver initiation, 𝑇C refers to the 

proportion of the time until driver’s avoidance steering reaches its maximum value, and 

𝑇I is the pulse duration. All three posterior distributions are skewed mostly towards the 

lower values. The distribution of 𝑘 and 𝑇C	are both aligned with the high intra variability 

in the maximum of the steering wheel rotation, that we observed in Figure 6.20. 𝑇I shows 

a multimodal distribution, which perhaps is associated with the criticality of the event. 

When the event is non-critical, the steering rotations are smoother and more gradual, while 

in urgent events the steering wheel rotation happens in a short period of time. Figure 6.22 
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shows the joint posterior distributions of the model parameters, where lighter and darker 

areas correspond to regions of higher and lower density. The correlation analysis revealed 

significant correlations between all three parameters, where 𝑇C showed negative 

correlations with the other two parameters while 𝑇I and 𝑘 are positively correlated.  

 

 

Figure 6.21 Posterior distributions of the steering control model parameters 
 

 

Figure 6.22 Joint posterior distributions of the steering model parameters 
 

Drawing random samples from the posterior distributions, the steering wheel 

inputs were simulated. The outputs of model then were evaluated against the experimental 

data. Simulating the avoidance steering for each observation resulted in a mean RMSE of 



 

132 

 

2.91 (2.12) degrees between the model and the observed steering wheel angle across the 

entire dataset. Figure 6.23 shows examples of the simulated steering avoidance (solid 

lines) against the observed data across criticality and takeover request types. The red lines 

in this figure represent the steering takeover time. Figure 6.24 shows the effect of varying 

the free parameters on the simulated steering within the range of its posterior distribution. 

The red dots show the observed steering wheel angles from the experiment.  

 

 

Figure 6.23 Examples of the simulated and observed steering maneuver across 
criticality and takeover request types during the avoidance phase 
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Figure 6.24 The effects of varying the model parameters on the simulated steering 
 

6.4.3.3. Holistic View of The Takeover 

After validating the individual models of decision-making, braking, and steering, 

the ability of the holistic model to predict the entire takeover behavior was assessed. Figure 
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6.25 shows an example of the simulated takeover response and control maneuvers from 

the holistic model.  

 

 

Figure 6.25 Takeover response and control behavior simulated from the holistic 
model 
 

Following the automation failure, the evidence accumulation model started 

collecting evidence in favor of braking and/or steering. This model used visual looming 

of the drivers as an input and accumulated evidence up to a certain threshold (1 in our 
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case). Upon reaching to the desired threshold, a decision was triggered (the first 

accumulators reached to 1 in the top plot). In this example the steering accumulator 

dominated the braking, resulted in a faster reaction time for the steering rotation compared 

to the braking input; however, within a few seconds a braking deceleration was also 

applied. As the figure shows, the model can follow the observed driver behavior in both 

steering rotation and braking application. 

 

6.5. Discussion 

There have been several independent models that predict driver behavior in 

different phases of a takeover. However, a holistic modeling framework of drivers’ 

perceptual decision-making and control response after a failure was missing. The 

perceptual decision-making process is typically described by evidence accumulation 

models, in which humans continuously collect perceptual cues for the decision alternatives 

and an action is triggered once this integration reaches a certain threshold. The holistic 

framework employed an evidence accumulation model with two accumulators associated 

with each decision alternative to collect the looming prediction error. The output of this 

model was the drivers’ decision choice as well as the takeover times. The choice of 

response then activated the related control part of the framework and resulted in a braking 

and/or steering maneuver.  

While, overall, the estimated takeover times showed a good fit to the observed 

data, in non-critical events the model predicted faster takeover times. One explanation for 

these shorter takeover times, is the drivers’ glance location, in particular, towards the off-
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road. Although the drivers can accumulate evidence using peripheral vision even when 

looking away from the roadway, the drift rate or the amount of evidence that the drivers 

accumulate during the off-road glances are less than those of looking directly at the 

forward roadway (Sarkar, Alambeigi, et al., 2021; Sarkar, Hickman, et al., 2021). 

Therefore, there is a time delay in the drivers’ decision-making process compared to the 

simulations that the model did not capture. This is in line with our assumption that the 

model estimates the takeover times, given the drivers look directly at the forward roadway. 

Off-road glances reduce the visual looming subtending on the drivers’ eyes leading to 

longer times to get to the required threshold. This speculation was confirmed by the videos 

of the drivers’ glance location, that was collected using an eye-tracking device in the 

experimental data collection. However, the videos do not provide the drivers’ specific gaze 

angles, that are typically used in modeling the drivers’ glance direction (Sarkar, 

Alambeigi, et al., 2021), making it impractical to implement in the model. The next 

direction of this model can be extending the current evidence accumulation model to 

account for various gaze eccentricities. For example, yaw angle of the drivers’ gaze from 

the forward roadway can be included as a gain to the visual looming signal. 

The braking control model extended the basic piecewise linear function to capture 

multiple braking applications. In addition, the model was modified to associate the visual 

looming to the deceleration rate. The posterior distributions of the model showed that as 

the deceleration rate of the brake applications got higher, greater maximum decelerations 

were achieved, which shows that the braking inputs are either abrupt and full or more 

gradual and partial. This is consistent with prior work that showed the rate at which drivers 
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increased their deceleration (towards a maximum) was highly dependent on urgency 

(Markkula et al., 2016; Svärd et al., 2017). Simulating the brake input for each observation 

using the posterior distributions, showed an average RMSE of 0.66 (0.19) across the entire 

dataset, which highlights the improvement of the extended model compared to the basic 

piecewise linear model, developed in chapter 4 (Figure 4.5), with RMSE of 1.23 (0.66). 

 The steering control model modified the basic open-loop Gaussian model to 

account for multiple steering pulses during the takeover avoidance maneuver. Similar to 

the braking input, simulating the steering wheel angle rotation revealed the strength of the 

extended model compared to the basic open-loop model (Figure 5.6), developed in chapter 

5. Posterior distribution of the parameters showed that in non-critical events, the steering 

rotations are smoother and more gradual, while in urgent events the steering wheel 

rotations are more oscillatory as they perhaps happen in a short period of time. The results 

of the RMSE for this model showed an average of 2.91 (2.12) degrees across the entire 

dataset, while this value was 4 (3.72) degree for the basic open-loop model (Alambeigi & 

McDonald, 2020). 

The holistic model integrated different components and showed it can follow the 

observed driver behavior in predicting takeover time, steering rotation, and braking 

application. In comparison to the prior cognitive decision-making models, that predicted 

the drivers’ braking and steering responses consecutive (Markkula, Romano, et al., 2018), 

this model is able to predict the steering and braking response, in parallel. In addition, it 

integrates the time and decision predictions with a control response. However, it should 

be noted that this model may suffer from error propagation after predicting the reaction 
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time. The evidence accumulation models for decision-making are driven by latent 

variables including the drift rate and the decision threshold. Using Bayesian approaches 

such as ABC do not provide direct access to the latent variables and rely on the input and 

output of the model to make inferences. Therefore, additional steps might be needed to 

constrain the accumulation process in order to achieve a more reliable prediction. In 

addition, using the common definition of takeover time (i.e., steering and braking input 

greater than a threshold) in the holistic model, might increase the rate of the mentioned 

error. The reaction time as a first demonstrable braking or steering input is a better 

substitute in the developed model. However, this metric should be constrained to avoid 

including unwanted reactions.   
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7. CONCLUSIONS 

 

The advancement of automated vehicle technologies, in particular, automated 

vehicles, promises several socio-economic and safety advantages, (Casner et al., 2016; 

Fagnant & Kockelman, 2015). However, despite the benefits, many obstacles remain on 

the road to achieving the expected outcomes, in particular, for higher levels of automation. 

Driving technologies at higher levels of automation shift the allocation of function (e.g., 

monitoring the driving environment and executing an action) to automation. This shift can 

move the drivers out of the control loop and impede their ability to avoid a crash when the 

automation hits operational domain limits and an intervention from the driver is required 

(Louw & Merat, 2017). Therefore, the safety of automated vehicles is partially limited by 

the ability of the human driver to take over the control from automation (Brown, 2017; Lu 

& de Winter, 2015; McDonald et al., 2019), making it one of the most critical aspects in 

design considerations of automated driving systems. 

During a takeover, the driver falls into completing a cognitive, physical, and visual 

perception-action loop to establish readiness, execute an action, evaluate, and modify it 

(McDonald et al., 2019). Understanding the driver’s mental model of automation during 

this process is an essential first step in designing safer systems; however, additional steps 

are required to integrate these factors into the design process. Simulations represent 

integrative frameworks that capture bounds on human physical and cognitive performance 

for quantitative assessments of automated vehicle technologies (Page et al., 2015; 

Roesener et al., 2017). The basis for a simulation assessment can be derived from realistic 
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pre-crash scenarios integrated with mathematical models of driver behavior employing a 

particular system design. Driver model is a significant component of this process, as a 

poor model selection may undermine the accuracy of the safety benefit estimation 

(Bärgman et al., 2017; Roesener et al., 2017).  

Reviewing the studies on automated vehicle takeovers as well as the models of 

driver behavior (chapter 2) revealed several gaps in the literature concerning the 

environmental, driver, or system-related factors and their impact on automated vehicle 

takeovers. In addition, the literature found a need for translating the existing model of 

driver behavior models during manual emergencies into models of automated vehicle 

takeovers. Chapter 3 to 6 of this dissertation addresses these gaps in an empirical study of 

takeovers and three studies of computational modeling using the data from a simulator 

experiment. 

 

7.1. Theoretical Contributions 

The first theoretical contribution of this dissertation is a comprehensive literature 

review on the automated vehicle takeovers as well as the driver behavior modeling 

(McDonald et al., 2019). The second contribution lies in investigating the effect of system 

design issues, including the criticality of the precipitating events (manipulated through 

takeover time budget) and silent failures (i.e., a failure to receive a takeover request) across 

various environmental conditions in a simulator experiment (Alambeigi & McDonald, 

2021b). Finding silent failure as one of the prevalent causes of current on-road automated 

vehicle crashes highlights the theoretical contribution of exploring its effects on the 
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takeover performance (Alambeigi et al., 2019). A common approach to explore these 

effects is the frequentist null-hypothesis testing, which relies on the mean or median values 

for model fitting and might underestimate the safety consequences of extremes 

(DinparastDjadid et al., 2019; Eriksson & Stanton, 2017b). The experimental study, 

however, applied Bayesian multilevel regression models to this data to focus on the entire 

distribution of each safety metric and showed up to 84% probability of an increase in 

takeover time and 91% deterioration in post-takeover control associated with silent 

failures. This finding indicates that, even in the best case, silent failures present a risk of 

lower safety margins and more extreme post-takeover responses compared to alerted 

failures.  

Further, by analyzing the posterior distributions, this study found that the 

minimal—yet negative—impact of the predicted takeover delays associated with silent 

failures, was carried over to the drivers’ post-takeover behavior resulted in more 

aggressive responses. In line with the concept of the speed-accuracy tradeoff in decision-

making processing, this finding implies that a short takeover time alone does not guarantee 

a safe evasive maneuver. In addition, the time given to a driver to respond to a transition 

of control (time budget) significantly impacts the quality of the post-takeover control and 

subsequent crash occurrence. These findings generate recommendations in automation 

system design explained later. 

The next theoretical contribution of this dissertation is filling the gap in the 

automated vehicles’ driver behavior modeling literature by developing computational 

models of a takeover process within the limits of system design and environmental 
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conditions. Different components of a takeover process were translated into models of 

driver behavior to assess the impacts of silent failures and event criticalities on drivers’ 

performance across different precipitating events. Reviewing the literature on models of 

driver behavior showed in driver behavior during manual emergencies with that of 

automated vehicle transitions of control, making those validated models the first candidate 

for automated vehicle takeovers. One promising direction of these models was the use of 

visual looming-based models.  

Taking the looming-based models into consideration, this dissertation extended the 

current braking models of manual emergencies to predict the driver’s brake reaction time 

and control using an evidence accumulation model followed by a piecewise linear model 

(McDonald et al., 2021). The kinematic urgency of the scenario was captured by the 

driver’s visual looming and the received alert was considered as an environmental cue for 

the need to initiate an action, therefore, captured by the non-looming evidence in the 

model. In addition to capturing the impacts of influential factors, the novelty of this model 

was feeding the brake reaction time to the control model to estimate the entire braking 

profile and evaluating the model on the collected experimental data.  

The findings of the literature review highlighted that an effective steering model 

of a post-takeover control must represent both the initial avoidance maneuver and the 

subsequent stabilization steering. Therefore, we employed a visual-looming based open-

loop Gaussian, to account for the anticipatory behavior, followed by a visual-based closed-

loop model, to account for the compensatory behavior, and fitted those to the avoidance 

and stabilization steering profiles (Alambeigi & McDonald, 2020). One contribution of 
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this work is the comparison between the open-closed loop with a solely closed-loop model, 

where the open-closed loop model showed a better fit. The stabilization component of this 

model showed the capability of capturing both lane-changing behavior and steering 

corrections (i.e., lane-keeping) by switching the visual points. In addition, this study found 

that the maximum looming prior to the takeover determines the pattern of the drivers’ 

avoidance maneuver. 

The last theoretical contribution of this dissertation concerns the gap in the 

literature regarding the lack of a holistic model on an entire process of a takeover. We 

developed a comprehensive framework that can explain the underlying processes behind 

the drivers’ decision-making and control behavior. In contrast to the prior works that 

modeled braking and steering responses separately, this model used two evidence 

accumulators and predicted the driver’s action choice (i.e., braking and steering responses) 

and takeover times in parallel. The basic evidence accumulators, used in chapter 4, were 

modified to make the brake and steer gain parameters complementary. In addition, another 

novelty of this model was to include an additional parameter to the drift rate of the model. 

This parameter concerned the initial readiness of the driver in the decision-making process 

with the goal of capturing the impacts of the alert. Another novelty of this framework lies 

in the braking and steering control modules. The braking control model extended the basic 

piecewise linear function to account for multiple braking applications.  

 

 

 



 

144 

 

7.2. Practical Implications 

Given the presented findings, one of the practical implications of this dissertation 

is in designing the human-machine interfaces (HMI). In automated driving systems, HMI 

should be designed to communicate the real-time system limitations and capabilities (i.e., 

automation state), proactively inform drivers about sensor degradation that could lead to 

system failures, and use cues or reminders to keep drivers engaged. To keep the drivers in 

the loop, tiered warnings, providing dynamic feedback, and technologies such as a switch 

device—that aims to engage the driver by continuously pressing a switch and warn the 

driver if there is no input—might be effective (May & Baldwin, 2009; B. Seppelt & Lee, 

2019). Systems solutions that engage automated emergency braking or forward collision 

warnings following an automation disengagement rather than at safety-critical thresholds 

may help mitigate the effects of transitions during time-limited and critical conditions. 

Finally, strict operational domain limitations and geofencing should be explored.  

Computational models, once validated, can be integrated into transportation safety 

simulation systems to encounter a variety of real traffic operational behaviors (Bärgman 

et al., 2017; Markkula, Romano, et al., 2018). This enables the evaluation of automated 

vehicle impacts on traffic safety and facilitates the subsequent potential design 

optimizations. The comprehensive framework developed here can serve as a baseline in 

these systems extending the existing driver models for virtual testing and leading to an 

enhancement in the design of automated vehicle technologies, an improvement in the 

human-automation interactions, and potentially a decrease in the consequences of 

automation failures. 
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7.3. Limitations and Future work 

The studies discussed in this dissertation were conducted under a variety of 

constraints that might have limited their scope in multiple ways. First, the experiment 

represented a “best-case scenario”, in which, the drivers’ cognitive state (e.g., drowsiness, 

emotion, distraction) was not taken into account. For example, the drivers did not perform 

any non-driving tasks (e.g., text reading) while driving. Future work should investigate 

these findings with specific protocols to address the driver’s cognitive state, such as 

distraction by having the driver to engage in a non-driving-related task.  

In addition, the drivers received a generic auditory and visual warning, presented 

by a basic loud beep and a change in the color of the system icons at the time of the failure. 

Future work should investigate the impacts of ecological alerts that describe the features 

of the situation or provide some instruction to the driver. Some examples of these alerts 

include a verbal expression of “take over”, a visual representation of resuming control 

such as hands on the steering wheel icon, or receiving a lane change suggestion presented 

on the forward roadway. A well-designed and timely ecological alert may decrease the 

takeover time (McDonald et al., 2019).  

Given the controlled experimental setting of the experiment, we should be cautious 

in generalizing our findings to other, in particular, real-world driving conditions. Although 

providing a relative validity, driving in a simulator can bias the results in several ways. 

First, the impact of simulator realism, indicating how closely the simulator resembles an 

actual vehicle. While practice drivers were designed for participants to familiarize 

themselves with the simulator, a different feeling of the simulator’s brake pedal (as an 
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example) from the one they used to can lead to a harsh deceleration. Next, the impact of 

expectancy, associating with the driver’s mental model of the situation. In contrast to the 

real-world, the drivers’ expectation of an event can impact the underlying processing 

times. Future studies should be conducted in on-road settings to validate the findings. 

The models of driver behavior developed in this dissertation should also be the 

subject of future work. In order to capture the lane-changing and corrective steering, the 

stabilization steering model, used the crossing lane to switch the near and far visual points. 

This might result in a sudden drop in the model if the heading and the destination lane are 

not aligned. Including gaze locations in the model can guide the choice of visual points 

and smoothen the stabilization patterns. An explanation for the faster-predicted takeover 

times, found in the holistic model, particularly, in the non-critical events, is the driver’s 

glance towards the off-road. Although the drivers can accumulate evidence using 

peripheral vision even when looking away from the roadway, the drift rate or the amount 

of information that the drivers collect during off-road glances are less than those of looking 

directly at the forward roadway (Sarkar, Alambeigi, et al., 2021; Sarkar, Hickman, et al., 

2021). Therefore, the next step can be extending the current model to account for various 

gaze eccentricities. 

While the models developed in this dissertation provide a promising direction in 

understanding the drivers’ internal perceptual processing and control behavior, these 

models should incorporate the impacts of other system-, driver-, and environment-related 

factors and their interactions with the explored conditions to develop more generic models. 
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