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ABSTRACT

Humans are good at using multimodal information to perceive and to interact with the world.

Such information includes visual, auditory, kinesthetic, etc. Despite the advancement in deep

learning using single modality in the past decade, there are relatively fewer works focused on

multimodal learning. Even with existing multimodal deep learning works, most of them focus on

a small number of modalities. This dissertation will investigate various distinct forms of multi-

modal learning: multiple visual modalities as input, audio-visual multimodal input, and visual and

proprioceptive (kinesthetic) multimodal input. Specifically, in the first project we investigate syn-

thesizing light fields from a single image and estimated depth. In the second project, we investigate

face recognition for unconstrained videos with audio-visual multimodal inputs. Finally, we inves-

tigate learning to construct and use tools with visual, proprioceptive and kinesthetic multimodal

inputs.

In the first task, we investigate synthesizing light fields with a single RGB image and its esti-

mated depth. Synthesizing novel views (light fields) from a single image is very challenging since

the depth information is lost, and depth information is crucial for view synthesis. We propose to

use a pre-trained model to estimate the depth, and then fuse the depth information together with

the RGB image to generate the light fields. Our experiments showed that multimodal input (RGB

image and depth) significantly improved the performance over the single image input.

In the second task, we focus on learning face recognition for low quality videos. For low quality

videos such as low-resolution online videos and surveillance videos, recognizing faces based on

video frames alone is very challenging. We propose to use audio information in the video clip

to aid in the face recognition task. To achieve this goal, we propose Audio-Visual Aggregation

Network (AVAN) to aggregate audio features and visual features using an attention mechanism.

Empirical results show that our approach using both visual and audio information significantly

improves the face recognition accuracy on unconstrained videos.

Finally, in the third task, we propose to use visual, proprioceptive and kinesthetic inputs to
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learn to construct and use tools. The use of tools in animals indicates high levels of cognitive

capability, and, aside from humans, it is observed only in a small number of higher mammals

and avian species, and constructing novel tools is an even more challenging task. Learning this

task with only visual input is challenging, therefore, we propose to use visual and proprioceptive

(kinesthetic) inputs to accelerate the learning. We build a physically simulated environment for

tool construction task. We also introduce a hierarchical reinforcement learning approach to learn

to construct tools and reach the target, without any prior knowledge.

The main contribution of this dissertation is in the investigation of multiple scenarios where

multimodal processing leads to enhanced performance. We expect the specific methods developed

in this work, such as the extraction of hidden modalities (depth), use of attention, and hierarchical

rewards, to help us better understand multimodal processing in deep learning.

iii



DEDICATION

To my family:

My wife Anqi Bao

My parents

iv



ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor, Professor Yoonsuck

Choe. I have been working with and supervised by Dr. Choe when I was a Master student since

the beginning of 2014. Dr. Choe always gave us enough freedom to work on the research we

are enthusiastic about, and encouraged us to try different kinds of approaches, so that we not only

built up our domain knowledge but also became more independent researchers. But when I was

blocked by obstacles and not able to move forward, Dr. Choe always brought insightful advise and

guidance with his board knowledge in Artificial Intelligence. It is my honor to work with Dr. Choe

and I will be always grateful of his guidance.

I would also like to express my gratitude to my committee members, Professor Hangue Park,

Professor Guni Sharon, Professor Xia Hu for their continuous support. They brought insightful

suggestions and opinions on all of my research works, so that I am able to continue improve on my

research and my dissertation.

Specially, I would like to thank Professor Hye-Chung Kum and Professor Nima Kalantari for

guiding and supervising me during the first two year in my Ph.D. study when Dr. Choe was

temporarily on leave from Texas A&M University. Dr. Kum guided me in the first two years

working on privacy preserved interactive record linkage. I still remember those days when we

discussed in the meeting, ran the user study, attended the conference at San Antonio, and so on.

When I decided to pursue the research that I am more enthusiastic about, Dr. Kum gave me full

support. In my second year, Dr. Kalantari guided me to work on light field synthesis research for

one year. Even though the time is not very long, I learnt a lot from Dr. Kalantari, and the solid

work helped me to get my first Research Internship opportunity. I cannot imagine myself achieving

all these without Dr. Kum’s and Dr. Kalantari’s help. In addition, thank you Professor Sheng-Jen

Hsieh for being my co-advisor in my Master study.

In addition, I would like to thank my labmates and friends: Jaewook Yoo, Han Wang, Khuong

N. Nguyen, Qing Wan, Xilong Zhou, Avinash Paliwal, and so on. We had a lot of discussions on

v



research and they gave me many insightful suggestions. I wish we could have more years working

on research together.

Finally, I would like to thank my parents and my wife Anqi Bao for their love and continuous

support, not only during my Ph.D. study but also in my life. I will love you forever.

Funding Sources

This work was funded in part by a TAMU T3 grant 246451, and by the DGIST R&D Program

funded by the Korean Ministry of Science and ICT (21-IT-02).

vi



NOMENCLATURE

MPI Multi-plane Image

VMPI Variable Multi-plane Image

AVAN Audio-Visual Aggregation Network

CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network

RNN Recurrent Neural Network

LF Light Field

PSNR Peak Signal-to-noise Ratio

SSIM The structural Similarity Index Measure

AVFR Audio-Visual Face Recognition

RL Reinforcement Learning

DRL Deep Reinforcement Learning

PPO Proximal Policy Optimization

TRPO Trust region policy optimization

EPI Epipolar Plane Image

LSTM Long Short-term Memory

MFCC Mel-frequency Cepstral Coefficients

TAR True Acceptance Rate

FAR False Acceptance Rate

HAM Hierarchical Abstract Machines

MDP Markov Decision Process

SMDP Semi-Markov Decision Process

vii



HRL Hierarchical Reinforcement Learning

MFCC Mel Frequency Cepstral Coefficients

LPC Linear Prediction Coefficients

PLP Perceptual Linear Prediction

viii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. SINGLE IMAGE AND DEPTH-BASED MULTIMODAL LIGHT FIELD SYNTHESIS . 4

2.1 Background and Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Light Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Novel View Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Monocular Depth Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Multi-Image View synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Single-Image View synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Single Image Depth Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Variable Multiplane Image Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Two-Network Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Quantitative Comparison to Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Qualitative Comparison to Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Comparison to Other Methods on Refocusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



3. AUDIO-VISUAL MULTIMODAL FACE RECOGNITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Image face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Video face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Audio-visual face tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.4 Speaker identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Existing Datasets and Their Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Image-based face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Video-based face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Multimodal person identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.4 Limitations of existing datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Proposed audio-visual dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Collection of the AVFR Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Embedding: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 Audio and Visual Embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.4 Audio-Visual Attention Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. VISUAL, PROPRIOCEPTIVE AND KINESTHETIC MULTIMODAL CONTROL FOR
TOOL CONSTRUCTION AND USE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1.1 Reinforcement Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.1.2 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Tool construction and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2.1 Emergence of Tool Use In an Articulated Limb Controlled by

Evolved Neural Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2.2 Other Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Multimodal Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



LIST OF FIGURES

FIGURE Page

2.1 We use our learning-based techniques to synthesize an 8×8 light field from an input
image, captured with a standard Canon camera. One of our synthesized corner
views along with all the corner views for two insets are shown on the left. On the
right, we use our synthesized light field to generate two refocused images. The
image is courtesy of Wang et al. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The 4D light field representation [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 An example of refocusing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 The image on the left shows an illustration of camera array to capture light field.
The image on the right shows commercial Lytro light field camera. . . . . . . . . . . . . . . . . . . . 7

2.5 Our system consists of two CNNs for handling the visible and occluded regions.
Our networks take a single image along with its corresponding depth (estimated
using Wang et al.’s approach [3]) as the input and estimate our proposed VMPI
scene representation. The two VMPI representations are then used to reconstruct
two images, which are then combined through a soft visibility mask to generate the
final image. The visibility mask is calculated using the transparency layers of the
visible network’s VMPI (see Eq. 2.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 The depth generated by the pre-trained single image depth estimation network. . . . . . . 13

2.7 To explain the problem of MPI, we use a simple scene that contains three objects as
an example. When the object locates in the middle of two plane, the network will
assign this object to these two plane, and thus generating blurriness and ghosting
artifacts. Therefore, we propose to extend the original MPI representation to have
layers with scene-dependent disparities. The main advantage of our representation
is that we can use fewer planes, but place them more accurately throughout the
scene and avoid ghosting and blurring artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Comparison of our approach with MPI and our proposed VMPI representations.
MPI with a large number of planes produces results with blurriness, while MPI
with a small number of planes produces ghosting artifacts. Our VMPI representa-
tion with a small number of planes can accurately represent the scene and produce
high-quality results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xi



2.9 Our single visible CNN (first column) is not able to properly reconstruct the oc-
cluded regions, producing results with ghosting artifacts as indicated by the red ar-
rows. Our system with two parallel networks (second column) significantly reduces
these artifacts. For each scene, we also show the maskMq (third column), obtained
through Eq. 2.7, as well as the occluded image. Note that for better visualization,
we combine the occluded image with an all white image, i.e., Mq1+ (1−Mq)Io,q. . 18

2.10 Our training mechanism allows us to generate 15× 15 light fields from only 8× 8
training data.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.11 We introduce a new light field dataset containing over 2,000 unique scenes cover-
ing a wide range of objects, nine of which are shown here. We capture our dataset
using a Lytro Illum camera from various locations and under different lighting con-
ditions. The epipolar images shown on the right and below each image demonstrate
the depth complexity of our scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12 Comparison against other approaches on six challenging scenes. The red bars are
of the same length and show the distance between a foreground and background
object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 We compare our disparity at the novel view against Srinivasan et al.’s disparity and
Wang et al.’s estimated depth at the center view on two scenes from Fig. 2.12. . . . . . . . 29

2.14 Comparison against Niklaus et al.’s method for synthesizing 15× 15 light fields on
two challenging scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.15 Comparison against other approaches on images captured with standard cameras.
We show insets of two synthesized corner views for each image. The red lines for
each method have the same length and are used to better show the distance between
a foreground and a background object in the two views. Our method correctly syn-
thesizes both the foreground and background regions without objectionable artifacts. 31

2.16 Comparison against other approaches on three challenging scenes. For each inset,
we also show the absolute difference between the synthesized result and ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.17 Comparison of our refocusing results against the other methods. Our method pro-
duces results that are closer to the ground truth than the other methods. . . . . . . . . . . . . . . . 34

2.18 Here, the input depth by Wang et al. [3] is inaccurate. Our method improves upon
this input depth, but still cannot correctly estimate the disparity of the wooden
bench. See supplementary video for the synthesized views and comparison to the
other methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xii



2.19 On the left, we show a corner view of our synthesized light field frame from an
input 2D video. On the right, we show an inset of all our synthesized corner views
and compare them against Wang et al.’s approach [1]. Note that, the approach by
Wang et al. uses an additional light field video with a low frame rate as the input.
Despite that, we produce light field frames with comparable quality. However, our
light field video shows slight flickering as we synthesize each frame independently
(see supplementary video). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 The Audio-Visual Aggregation Network (AVAN) uses both the visual information
and the audio information to generate a feature embedding for the subject, to be
compared to that of others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 We selected some examples from our AVFR dataset. Each column shows three
videos from the same subject. As it is can be seen, the intra-class variance is
very large. The variance comes from lighting, head pose, age, occlusion, makeup,
watermark, and so on. Our dataset also covers videos with different quality. The
low quality videos are due to low resolution, or the camera being far from the subject. 45

3.3 This figure shows the overall architecture of our approach. We use both the video
frames and audio as input to generate the embedding for the subject. We use pre-
trained CNNs to calculate visual embeddings from video frames and audio em-
beddings from audio clips. We then use attention module to aggregate the visual
embeddings and audio embeddings. The attention module is a recurrent neural
network followed by fully connected layers. The attention module of the visual
embeddings and audio embeddings share the same architecture. The aggregated
visual embedding and audio embedding are then fused into the final embedding. . . . . 48

3.4 The procedure for calculating MFCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 This figure shows a qualitative evaluation of our visual attention module. As it
is can be seen, our model assigns high weights (tall red bars) for the high quality
frames, and low weights for the low quality frames due to the undesired head pose,
occlusion, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 A qualitative evaluation of our audio attention module. In the first example, the
video begins with background music. In the second example, there is background
noise such as an applause and laughter from the audience, interleaved with the
subject’s speech. Our attention module assigns low weights when the quality of
the audio is low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 The loop between the agent and the environment in reinforcement learning . . . . . . . . . . 58

4.2 The framework of our previous work “Emergence of tool use in an articulated limb
controlled by evolved neural circuit”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



4.3 Example task conditions. The environment consists of two degree-of-freedom ar-
ticulated limb, a target object, and a tool. all on a 2D plane. Note that the tool’s
initial location are variable. The two half-circles indicate the original reach (inner)
and the reach with tool use (outer).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Examples of evolved neural circuits. (a) Evolved neural circuit with fitness cri-
terion S2T (speed square and tool pick-up frequency). (b) Evolved neural circuit
with fitness criterion DS (distance and speed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Time-lapse images of representative limb movements. The three images in the top
row show examples of successful movements. In the movements of (a) and (b), the
limbs (blue and red lines) first move towards the tool (green horizontal line) to pick
it up, and then move towards the target. In the movement of (c), the limb moves
directly toward the target without picking up the tool. The trajectories of the end
effectors are shown as black curves, and parts of the trajectories that may be hard
to keep track of are annotated with orange arrow. The three images in the bottom
row sow examples of unsuccessful movements, where the limbs failed to reach the
target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Fitness over generations and network size, with or without recurrent connections.
S2T with (blue line) and without recurrent connections (red line) are compared.
Top-left: max fitness scores through the generations. Top-right: average fitness
scores. Bottom-left: number of total neurons. Bottom-right: number of total de-
grees (number of connections) in the neural circuits through the generations.. . . . . . . . . 70

4.7 Correlations between the number of recurrent connections (self loop + 2 hops + 3
hops) and success rates. The data points (blue “x”), the linear regression lines, and
correlation coefficients (r) are plotted, for the six fitness criteria. For each fitness
criteria, the 120 best neural circuits for each generation (generation 1 to 120) were
analyzed to see the correlation between the number of recurrent connections and
success rates (average of 1,000 trials each). The total number of cycles (number
of loops) is found to be positively correlated with success rate. Note that the cor-
relation is even higher for those that included T (tool pick-up frequency) in the
fitness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Average success rates of controUers based on different fitness criteria. Four sets
of experiments (evolution of the neural circuit controller followed by testing) were
ran for each fitness criterion. In general, fitness criteria that included T (tool pick-
up frequency) did significantly better than those that did not include T (t-test, n =
4, P < 0.01). Results with S2T were similar (data not reported here). Note that the
target was placed within the limb’s reach only 50% of the time during the trials.
See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Internal dynamics of fifteen hidden neurons, their correlations, and matching limb
movements. See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiv



4.10 The tool construction environment build with PyBullet and following the OpenAI
gym protocol. The environment is surrounded by a rectangle arena (black). There
are two robot arms (blue), two tools (green), and one target (red). The joints marked
as yellow are special joints that can be connected together upon contact. The goal
for the agent is to move the object to the bottom of the environment. . . . . . . . . . . . . . . . . . 75

4.11 The overall architecture of our approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.12 The overall network architecture of the workers. This figure only shows the actor
network of the workers. The critic network shares the same network architecture
with the actor network, except the the last output layer only has 1-dimensional output. 78

4.13 The smoothed reward for each sub-tasks. The Y-axis stands for the reward and the
X-axis stands for epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.14 Controlling two jointed arms to construct a “T”-shaped tool for dragging an object
(red cube) to the bottom of the screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.15 (a) Successful trial using multimodal input. It takes 1700 steps to complete the
task for this trial. (b) Successful trial using vision input only. It takes 3400 steps to
complete the task for this trial. (c) Failed trial using multimodal input. The agent
accidentally pushed the target away when constructing “T” shape tool, making the
task unsolvable. (d) Failed trial using vision input only. The agent struggle to
construct the “T” shape tool without proprioceptive and kinesthetic input. . . . . . . . . . . . . 82

xv



LIST OF TABLES

TABLE Page

2.1 Our network architecture. Here, k is the kernel size, s is the stride, and d is the
kernel dilation. Moreover, “channels” refers to the number of input and output
channels at each layer and ’+’ indicates concatenation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Comparison of our approach against two state-of-the-art view synthesis methods,
as well as a version of their approach with the depth estimated by Wang et al. [3]
as the input. We evaluate synthesized 8×8 and 15×15 light fields on three datasets
in terms of PSNR and SSIM (higher is better in both cases). The best results are
shown in bold. Note that, all the results are generated by training our method and
both versions of Srinivasan et al.’s approach on the training set of Stanford/Ours
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 We compare of our approach with VMPI using two-network fusion against our
method with a single network as well as our technique with MPI representation
with different numbers of planes. We evaluate synthesized 8×8 and 15 × 15 light
fields in terms of PSNR and SSIM (higher is better in both cases). The best results
are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 This table shows the result between our approach without the single image depth
prediction module and our approach with the single image depth prediction mod-
ule. We evaluated on the combination of the Stanford dataset and our dataset. The
result shows that, our approach with depth information significantly outperforms
the one without depth information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Example of some speaker identification datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 This table shows the comparison of different face recognition dataset. AVFR is
the dataset we collected for this study. Note that the video-based data sets are
significantly smaller in size than the image-based ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 We compare our approach with ArcFace [4] and DeepSpeaker [5] on standard face
verification task. We report the best accuracy and TAR when FAR = 0.1 and 0.01.
We ran all experiments for 5 times and report the average value and std. As it can
be seen, our approach (AVAN) outperforms other approaches significantly. . . . . . . . . . . . 53

4.1 Comparison of success rate between using vision input only and using vision, pro-
prioceptive, and kinesthetic input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xvi



4.2 Comparison of number of steps needed to achieve the goal between using vision
input only and using vision, proprioceptive, and kinesthetic input. . . . . . . . . . . . . . . . . . . . . 81

xvii



1. INTRODUCTION

Humans are good at using multimodal information to perceive and interact with the world.

This information includes visual, auditory, kinesthetic, etc. Despite of the large advancement of

deep learning using single modality in the past decades, there are relatively fewer works focus on

multimodal learning. Even with existing multimodal deep learning works, most of them focus on

a small number of modalities. This dissertation will investigate various distinct forms of multi-

modal learning: multiple visual modalities as inputs, audio-visual multimodal inputs, and visual,

proprioceptive (kinesthetic) multimodal inputs. Specifically, in the first project we investigate syn-

thesizing light fields from a single image and estimated depth. In the second project, we investigate

face recognition for unconstrained videos with audio-visual multimodal inputs. Finally, we inves-

tigate learning to construct and use tools with visual, proprioception and kinesthetic multimodal

inputs.

In the first task, we investigate synthesizing light fields with single RGB image and estimated

depth. The goal of novel view synthesis is to synthesize an image from arbitrary target camera

pose given a source image. Light field synthesis is a special problem in novel view synthesis that it

focus on synthesizing small baseline novel views. A 4D light field describes light ray in 2D spacial

coordinates (x, y) and 2D angular coordinates (u, v). Different from single RGB image, light field

enables appealing effects such as viewpoint change, synthetic aperture, and refocusing. In the first

project, we focus on synthesizing 4D light field from a single RGB image. This is a severely ill-

posed problem, since the depth information is lost for a single RGB image, and depth information

is crucial for view synthesis. Human can easily hallucinate novel views of a scene because human

have two eyes to perceive parallax and hence can estimate the depth of the scene. Therefore we

propose to use a pre-trained CNN to estimate depth of the input image, and then fuse the estimated

depth with the RGB image to the view synthesis network. Experiments show that using the visual

multimodal inputs consistently perform better than using only the single RGB input. In addition,

we notice that using a single CNN to synthesize the novel view usually generate artifacts, because
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the CNN has to learn to synthesize the novel views and hallucinate the occluded views at the same

time. Therefore, we further introduce VMPI representation and two network fusion architecture to

reduce the artifacts.

In the second project, we investigate face recognition for unconstrained videos. While face

recognition has been well addressed for high quality images and videos, there are still many open

issues for unconstrained videos. For example, in some videos such as surveillance videos, the

target is far away from the camera, and in some video there are a lot of motion blur because the

camera is not stable. We propose to use audio information in the video to aid in the face recogni-

tion task with mixed quality inputs. In order to achieve this goal, we introduce an Audio-Visual

Aggregation Network (AVAN) to aggregate multiple facial and voice information to improve face

recognition performance. To effectively train and evaluate our approach, we constructed an Audio-

Visual Face Recognition (AVFR) dataset from unconstrained YouTube videos. Our AVFR dataset

contains around 5.5K unconstrained videos of 1K subjects. Empirical results show that our ap-

proach with audio-visual multimodal inputs significantly improves the face recognition accuracy

on unconstrained videos. The qualitative evaluation shows that, our model successfully learned to

assign high weight to high quality visual frames and clear audio clips, and assign low weights to

low quality visual frames and noisy audio clips.

In the last project, we focus on learning to construct tools with raw pixel input and propri-

oceptive (kinesthetic) input. The tool construction and use challenge requires many skills and

knowledge, including sensorimotor skills, knowledge of basic physics, logic and planning capa-

bilities, problem posing and problem solving skills, representation of sequential and hierarchical

concepts, and so on. Learning this task with only raw pixel inputs is very challenging. To accel-

erate the training, we propose to use raw pixel image, as well as the proprioceptive and internal

kinesthetic information as input. Different from previous works that only using simple 2D envi-

ronment without physical simulation, we created a physical simulated environment using OpenAI

gym and PyBullet. The environment includes two three-joint robot arm, two tools and one target.

The goal is to reach the target object and pull it to the bottom of the environment. Because the
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target is beyond the range of the arm, to successfully reach the goal, the agent must learn to con-

struct a “T” shape tool or a “L” shape tool to pull the target to desired area. In addition, because

the exploration space is very large and the reward is sparse, simply using reinforcement learning

approach such as PPO [6] cannot solve the problem effectively. Therefore, we propose to use hier-

archical reinforcement learning with curiosity reward. Specifically, if the agent reach a new state

that it has not seen previously, then there will be some reward to encourage exploration.

The proposal is organized as follows: we investigate synthesizing light fields with single image

and estimated depth in Chapter 2; in Chapter 3, we investigate face recognition for unconstrained

videos; we focus on learning to construct tools with raw pixel input and proprioceptive (kinesthetic)

input in Chapter 4; finally, conclusions and discussions are presented in Chapter 5.
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2. SINGLE IMAGE AND DEPTH-BASED MULTIMODAL LIGHT FIELD SYNTHESIS

We propose a learning-based approach to synthesize a light field with a small baseline from a

single image. This is a severely ill-posed problem since the depth information is lost, and depth

information is crucial for view synthesis. We propose to use a pre-trained model to estimate the

depth, and then fuse the depth information together with the RGB image to CNN to generate light

field. The CNN promotes the input image into a layered representation of the scene. The layered

representation is multiplane image (MPI) proposed by Zhou et al.[7] We extend the multiplane

image (MPI) representation by allowing the disparity of the layers to be inferred from the input

image. We show that, compared to the original MPI representation, our representation models

the scenes more accurately. Moreover, we propose to handle the visible and occluded regions

separately through two parallel networks. The synthesized images using these two networks are

then combined through a soft visibility mask to generate the final results. To effectively train the

networks, we introduce a large-scale light field dataset of over 2,000 unique scenes containing a

wide range of objects. Our experiments showed that the multimodal input significantly improved

Our novel view Corner views Ours focused on foreground Ours focused on background

Figure 2.1: We use our learning-based techniques to synthesize an 8 × 8 light field from an input
image, captured with a standard Canon camera. One of our synthesized corner views along with
all the corner views for two insets are shown on the left. On the right, we use our synthesized light
field to generate two refocused images. The image is courtesy of Wang et al. [1].

Part of this chapter is reprinted from the following paper: c© 2020 ACM. Reprinted, with permission, from Qinbo
Li and Nima Khademi Kalantari. “Synthesizing light field from a single image with variable MPI and two network
fusion.” In 2020 ACM Transactions on Graphics, Volume 39, Issue 6, Article No.: 229, pp 1-10.
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Figure 2.2: The 4D light field representation [2]

the performance over the single image input. We also demonstrate that our approach synthesizes

high-quality light fields on a variety of scenes, better than the state-of-the-art methods.

2.1 Background and Introduction

2.1.1 Light Field

The standard digital camera can only captures 2D RGB images. In comparison, light field

contains the spatial and angular information of all the light rays passing all the points in the space.

Adelson et al. [8] propose a plenoptic function to describe light field as follows:

P = P (θ, φ, λ, t, Vx, Vy, Vz) (2.1)

where Vx, Vy, and Vz describe all the possible points in the space, θ and φ describe all the possible

angle, and λ, t stand for wavelength and time respectively. Because the 7-dimensional plenop-

tic function is complicate and difficult to capture and record, McMillan and Bishop introduce a

5-dimensional function to represent light field. Later, Levoy and Hanrahan [2] discuss a 4D repre-

sentation of light field, as illustrated in fig. 2.2.

Because 4D light fields capture both the intensity and direction of light, it enables appealing

effects such as viewpoint change, synthetic aperture, and refocusing. By selecting light rays in

different angular resolution, we can generate an animation of different viewpoint of an object, just

5



Figure 2.3: An example of refocusing.

like moving our eyes up and down, left and right to observe the object. It is also possible to change

the position of the focal plane to focus on different part of the scene, which is known as refocusing.

Fig. 2.3 shows an example of refocusing.

However, capturing a light field is difficult as it requires taking a set of images from different

views at the same time. One way to capture light field is using a camera array [9], as shown in

fig. 2.4-a. In recent years, there are commercial cameras such as Lytro (shows in fig. 2.4-b) and

RayTrix to capture light fields, but they are still not as widespread as standard digital and cellphone

cameras. Therefore, to make light fields widespread, our goal in this work is to synthesize 4D light

fields from a single 2D RGB image.

2.1.2 Novel View Synthesis

With the rise of deep learning in recent years, the problem of single image view synthesis has

received considerable attention [10, 11, 12, 13]. However, these approaches are not designed to

generate structured 4D light fields with small baselines. Specifically, they are not able to resolve the

ambiguity in the scale of the scene’s depth, often producing light fields with incorrect scale. The

only exceptions are the approaches by Srinivasan et al. [14] and Cun et al. [15]. These methods

first estimate the scene geometry at the new view and use it to warp the input and reconstruct

the novel view image. Unfortunately, because of the per view estimation of the scene geometry,

when trained on general scenes, these methods typically produce results with incorrect depth and
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Figure 2.4: The image on the left shows an illustration of camera array to capture light field. The
image on the right shows commercial Lytro light field camera.

inconsistent parallax.

2.1.3 Overview

To address these problems, we build upon multiplane image (MPI) representation [7] that de-

scribes a scene through a series of RGBα images at fixed depths. Once this representation is

estimated for a scene, novel view images can simply be reconstructed through alpha composition

of the re-projected RGB images at different layers. Although MPI has been successfully used for

multi-image view synthesis [7, 16, 17], it produces sub-optimal results in our application of single

image view synthesis with small baselines (See Fig. 2.8). Therefore, we propose to extend this

representation by allowing the disparity1 of each layer to be inferred from the scene. Our represen-

tation, called variable multiplane image (VMPI), is able to better describe a scene as the disparity

of the layers are set according to the distribution of the depth of the objects in the scene.

Moreover, we observe that reconstructing the visible and occluded regions from a single image

requires two different processes. The content of the visible regions exist in the input image, but the

occluded areas need to be hallucinated. Therefore, we propose to handle these two types of areas

1Disparity and depth are closely related in a structured light field and, thus, we use them interchangeably.
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through two parallel convolutional neural networks (CNN). In our system, one network handles the

visible areas, while the other is responsible for reconstructing the occluded areas. Specifically, the

networks estimate two sets of VMPIs using a single image and its corresponding depth, obtained

with a pre-trained network. These VMPIs are then used to reconstruct two novel view images

which are in turn fused using a soft visibility mask to generate the final image. We train the visible

network with an L1 loss, but use a perceptual loss to train the occluded network to hallucinate

visually pleasing content in the occluded regions.

To effectively train our networks on general scenes, we introduce a new light field dataset

of 2,000 unique scenes containing a variety of objects such as building, bicycle, car, and flower.

Although all of our training light fields have an angular resolution of 8×8, we propose a training

strategy to supervise our network for generating 15×15 light fields. Using light fields with a fixed

baseline as our training data, our system learns to infer the scale of the scene’s depth from the input

data. We demonstrate that our approach is able to produce high-quality light fields that match the

ground truth better than the state-of-the-art methods. Overall, our main contributions are:

• We present an extension of MPI scene representation and demonstrate its advantage over the

original MPI for single image view synthesis with small baseline (Sec. 2.3.2).

• We propose to handle the visible and occluded regions through two parallel networks (Sec. 2.3.3).

• We introduce a new large-scale light field dataset containing over 2,000 unique scenes (Sec.2.3.4).

2.2 Related Work

One key component of our approach is the pre-trained depth prediction network. In this section,

we first give an introduction of recent development on monocular depth prediction. Then, we

discuss some related works in novel view synthesis. The problem of synthesizing novel views

from one or more images has been studied for several decades. Here, we provide a brief overview

of the previous approaches by classifying them into two general categories: multi-image view

synthesis and single-image view synthesis.
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2.2.1 Monocular Depth Prediction

In the early years, most of the approaches relies on hand crafted features for depth estimation

[18, 19]. Recently, almost all state-of-the-art approaches rely on deep networks. Eigen et al. [20]

proposed a deep architecture with two CNNs to estimate depth: one estimates coarse depth globally

and the other one refines locally. Laina et al. proposed an approach using residual network and

reverse Huber loss. Wang et al. proposed to use a Hierarchical CRF to refine the depth estimated

by CNN. In [21], the CRF is integrated into the CNN and their architecture can be trained in

a end-to-end manner. Then they further extend their approach by using attention mechanism to

integrate multi-scale features [22]. Some of the approaches use a multi-task architecture, because

depth estimation is highly correlated with other tasks, including semantic labels, surface normals,

intrinsics, ego-motion, and so on. Because the training data for depth estimation is difficult to

acquire, There are also other methods using unsupervised or semi-supervised settings.

However, almost all the approaches above are trained on specific dataset such as NYU V2 and

KITTI. NYU V2 dataset contains indoor images of shelves, table, and so on, while the KITTI

dataset only contains street views, thus the methods only trained on these datasets are not able to

generalize well to other scenes without training on extra data. Chen et al. [23] introduced a dataset

called DIW (Depth in the wild). The DIW dataset contains 495k images collected from Filckr, each

of which is labeled with a pair of point about relative depth. They proposed a relative depth loss

and their method generalize well to all kinds of scenes. Xian et al. [24] further extend this direction

to use web stereo images. Similarly, Li et al. [25] introduced another dataset called MegeDepth,

using multi-view Internet photo collections. Want et al. [3] proposed another dataset captured by

the dual-lens camera, and their approach shows better performance than the MegeDepth. We used

the pre-trained model from Wang et al. to predict depth from single image, because their approach

works well on different natural scenes. Then we fuse the depth with the raw image input, which

will be discussed in detail later.

9



2.2.2 Multi-Image View synthesis

View synthesis approaches typically leverage the scene geometry [26, 27, 28, 29] to utilize the

content of the input views and properly synthesize the novel view image. In recent years and with

the emergence of deep learning, many approaches based on convolutional neural networks (CNN)

have been proposed. [30] estimate the color and depth using two CNNs and synthesize the novel

view using these estimates. [31] propose to estimate depth probability volume to reconstruct an

initial image and then refine it to produce the final image. Zhou et al. [7] propose to magnify the

baseline of a pair of images with small baselines by introducing multiplane image (MPI) scene

representation. [16] use MPI for extreme view extrapolation, while [17] and [32] utilize it for large

baseline view synthesis. We build upon the MPI representation, but use a single image as the input

and tackle the specific problem of synthesizing structured light field images.

Several approaches have been specifically designed to synthesize light fields from a sparse set

of input views. [33] propose to reconstruct a light field from the four corner images by breaking

the problem into disparity and appearance estimations. To handle scenes with non-Lambertian

effects, [34] propose to increase the angular resolution of a light field by operating on epipolar-

plane images (EPI). [35] propose a similar approach, but use 3D CNN and 2D strided convolutions

on stacked EPIs to avoid the pre- and post-processing steps of Wu et al.’s approach. These methods

require at least four images to reconstruct a light field and are not able to work on a single image.

2.2.3 Single-Image View synthesis

A large number of methods have proposed to use CNNs to estimate novel views from a single

image [36, 37, 38, 10, 39, 40], but they are only applicable to a specific object or scene. [41]

propose to synthesize novel views by first predicting a flow and then using it to warp the input im-

age. [12] estimate layered depth image representation of a scene using view synthesis as a proxy

task. [11] estimate a set of homography transformations and masks and use them to reconstruct

the novel view. [42] use a conditional generative adversarial network to estimate novel views by

breaking the scene into foreground and background layers. To generate 3D Ken Burn effects from
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a single image, [13] use their estimated depth to map the input image to a point cloud and use

a network to fill in the missing areas. Evain and Guillemot [43] introduce a lightweight neural

network and train it on a set of stereo images. Using an input RGB-D image, [44] reconstruct a

3D photograph through layer depth image representation. [45] introduce a point cloud based view

synthesis approach from a single image without needing 3D ground truth information for supervis-

ing the network during training. While these approaches work well for their intended applications,

because of the scale ambiguity of the depth, they cannot properly reconstruct structured light fields

with small baselines.

A couple of approaches propose to synthesize structured light field images from a single image.

[14] use two sequential networks to perform disparity estimation and image refinement. The first

network estimates a set of disparities at all the novel views. These disparities are then used to warp

the input image to the novel view and they in turn are refined through the second network. Their

approach generate each novel view independently, so that the results are inconsistent. [15] propose

to estimate a flow from the input image, depth, and the position of novel view. The flow is then

used to warp the input image and reconstruct the novel view image. These approaches estimate the

scene geometry independently for each view and, thus, produce results with inconsistent parallax

and inaccurate depth, when trained on general scenes. In contrast, we use a unified representation

of the scene geometry to reconstruct all the views and are able to produce results with high quality.

Finally, the concurrent work by [46] also propose an MPI-based approach for single image

novel view synthesis. However, they mostly perform large baseline view synthesis and only

demonstrate their results for small baseline light fields on the dataset of Srinivasan et al. [14],

which is limited to flowers. In contrast, our goal is to develop a practical system for small baseline

view synthesis with the ability to handle general scenes.

2.3 Approach

Given a single image I and the position of the novel view q (in u and v directions), our goal

is to synthesize the novel view image Iq. Our system consists of two parallel networks that are

responsible for generating results in the visible and occluded areas. To do this, each network

11



Visible CNN

Occluded CNN

Image + Depth

VMPI representations

Novel view image

Blend (Eq. 3)

Rendered images

Figure 2.5: Our system consists of two CNNs for handling the visible and occluded regions. Our
networks take a single image along with its corresponding depth (estimated using Wang et al.’s
approach [3]) as the input and estimate our proposed VMPI scene representation. The two VMPI
representations are then used to reconstruct two images, which are then combined through a soft
visibility mask to generate the final image. The visibility mask is calculated using the transparency
layers of the visible network’s VMPI (see Eq. 2.7).

estimates a novel layered representation of the scene from the input image and its corresponding

depth. These representations are then used to render two images, which are in turn combined using

a soft visibility mask to generate the final image.

In the following sections, we will discuss different components of our system, including the

pre-trained depth prediction network, variable multiplane image representation, and two network

fusion. The overview of our approach is given in Fig. 2.5.

2.3.1 Single Image Depth Prediction

To estimate the layered scene representation, our system needs to understand the geometry of

the scene. In multi-image view synthesis where several images from different views are provided

as the input to the system, the depth can be easily inferred through correspondences between the

input images. However, in our application, only a single image is provided to the system and, thus,

the geometry needs to be inferred through contextual information. Unfortunately, it is difficult to

train a network to do so using limited light field training data. Therefore, we use the pre-trained

single image depth estimation network by Wang et al. [3] to estimate the depth and use it along

with the image as the input to our system. Figure 2.6 shows some examples of the generated depth.
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Input image Depth from the pre-trained network

Figure 2.6: The depth generated by the pre-trained single image depth estimation network

We note that the input depth is relative as there is an inherent ambiguity in the scale of the

estimated depth from a single image. However, by training our system on light fields with fixed

baselines, our network can infer this scale from the input image. This is in contrast to the large

baseline view synthesis approaches like the one by Niklaus et al. [13], where the estimated depth

is directly used to reconstruct the novel view images. Because of this, as shown in Section 2.4,

Niklaus et al.’s method produces novel view and refocused images that do not match the ground

truth. To prove the effectiveness of the multimodal information for synthesizing light fields, we

show the numerical evaluation with and without the single image depth prediction module in Sec-

tion 2.4.
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2.3.2 Variable Multiplane Image Representation

Our method builds upon multiplane image (MPI) scene representation, proposed by Zhou et

al. [7]. MPI represents a scene at the input coordinate frame through a set of N fronto-parallel

planes at fixed disparities D = {d1, · · · , dN}. Each plane Li consists of an RGB color image Ci

and a transparency map αi, i.e., Li = {Ci, αi}. To reconstruct the image at novel view Îq, we

first translate the planes to the coordinate frame of the novel view based on their corresponding

disparity as follows:

Li,q(p) = Li(p+ diq) (2.2)

where p is the pixel position in x and y directions, while q is the novel view position in u and

v directions. The final novel view image can then be reconstructed by alpha blending the color

images at each layer from back to front through standard over operator [47]. This can be formally

written using the following recursive function:

Ii,q = (1− αi,q) Ii−1,q + αi,q Ci,q, where I1,q = C1,q. (2.3)

where IN,q is the estimated novel view image Îq. Note that, the transparency of the background

layer α1 is always 1 to ensure there are not any holes in the final image.

To utilize this representation in our single image view synthesis application, we can simply

use a CNN to estimate the MPI of a scene from an input image and its corresponding depth. This

network can be trained by minimizing the L1 or L2 loss between the rendered and ground truth

novel view images. However, such a system is not able to produce satisfactory results, as shown in

Fig. 2.8. When using a large number of planes (N = 32), the network tends to repeat the content

over multiple planes and produce a blurry rendered image. This is mainly because the L1 loss does

not sufficiently penalize blurriness to force the network to place the content on a single plane with

the correct depth. On the other hand, with fewer layers (N = 8) the depth planes are sufficiently

separated and the network can properly place the content on the correct planes. However, in cases
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Figure 2.7: To explain the problem of MPI, we use a simple scene that contains three objects as an
example. When the object locates in the middle of two plane, the network will assign this object
to these two plane, and thus generating blurriness and ghosting artifacts. Therefore, we propose to
extend the original MPI representation to have layers with scene-dependent disparities. The main
advantage of our representation is that we can use fewer planes, but place them more accurately
throughout the scene and avoid ghosting and blurring artifacts.

where an object falls in between two planes, the network places the object on multiple planes to

simulate the correct depth, producing results with ghosting artifacts. Note that, as discussed at the

end of this section, this problem is specific to the use of MPI in our application of single image

view synthesis with small baselines.

We address this problem by extending the original MPI representation to have layers with

scene-dependent disparities. In our representation, called variable multiplane image (VMPI), the

disparity of each layer is inferred from the input. The main advantage of our representation is

that we can use fewer planes (N = 8), but place them more accurately throughout the scene and

avoid ghosting and blurring artifacts, as shown in Fig. 2.8. Fig. 2.7 shows the problem of MPI

representation and the benefits of our VMPI representation.

To estimate the VMPI representation, we need to estimate the disparity di (scalar) at each layer,

in addition to the color image Ci and the transparency map αi. To do this, our network estimates

a 5-channel output for each layer; three channels for RGB, one channel for α, and one channel

for disparity. The final disparity of each layer is then computed by averaging the pixel values

in the disparity channel of the corresponding layer. We use the estimated disparity at each layer
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(instead of the fixed ones) to perform the warping in Eq. 2.2 and then blend the warped images

through Eq. 2.3 to reconstruct novel view images. Note that since the estimated disparities could

potentially be out of order, we first sort them before using Eq. 2.3 to blend the planes. Alternatively,

we can force the network to estimate the disparities in order by introducing a penalty for out of

order estimations during training.

We also experimented with estimating the disparity of each layer using a set of fully connected

layers, but this strategy produced results with lower quality than our approach. This is mainly

because the network needs to know the disparity of each VMPI layer to be able to appropriately

estimate their RGBα values. However, in this case, the disparities are estimated by a separate fully

connected branch and the main branch is unaware of the estimated disparities.

Discussion It is worth noting that existing MPI-based techniques do not face the blurriness

problem, discussed in this section. This is mainly because all of these approaches use a perceptual

VGG-based loss [7] between the rendered and ground truth novel view images to train their net-

work. The VGG-based loss enforces the network to assign the content to one of the MPI layers,

as blurriness is heavily penalized by this loss. This is even the case when using a small number of

planes, as the VGG-based loss function favors slight misalignment over blurriness.

Unfortunately, when using the VGG-based loss in our application, the network tends to estimate

the input image for all the novel views, i.e., Iq = I ∀q. This is mainly because the VGG-based

loss is robust to slight misalignment and favors sharpness. Since our baseline is small, the input

and other novel views are relatively close. Therefore, the sharp and high-quality input image with

slight misalignment produces lower error than what the network can potentially reconstruct from a

single image.

2.3.3 Two-Network Fusion

The network trained with L1 loss to estimate VMPI representation, as discussed in the previous

section, is able to produce reasonable results, but has difficulty reconstructing the object bound-

aries, as shown in Fig. 2.9 (Visible). In these regions, which are occluded in the input view, the

CNN simply replicates the visible content, producing results with ghosting artifacts. Our main
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Our novel view

MPI 8MPI 32 VMPI 8MPI 16 GT

Figure 2.8: Comparison of our approach with MPI and our proposed VMPI representations. MPI
with a large number of planes produces results with blurriness, while MPI with a small number of
planes produces ghosting artifacts. Our VMPI representation with a small number of planes can
accurately represent the scene and produce high-quality results.
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Visible Fusion Mask Occluded Visible Fusion Mask Occluded

Figure 2.9: Our single visible CNN (first column) is not able to properly reconstruct the occluded
regions, producing results with ghosting artifacts as indicated by the red arrows. Our system with
two parallel networks (second column) significantly reduces these artifacts. For each scene, we
also show the mask Mq (third column), obtained through Eq. 2.7, as well as the occluded image.
Note that for better visualization, we combine the occluded image with an all white image, i.e.,
Mq1+ (1−Mq)Io,q.

observation is that the process of reconstructing these two areas is different. The content of the

visible regions is available in the input image, but the occluded areas need to be hallucinated.

Therefore, we propose to handle these areas separately through two parallel networks (see

Fig. 2.5). The visible and occluded networks first estimate two sets of VMPI representations. These

VMPIs are then used to reconstruct the visible and occluded images. We then fuse reconstructed

images using a soft visibility mask to generate the final novel view image. This can be formally

written as:

Îq =Mq Iv,q + (1−Mq) Io,q, (2.4)

where Iv,q and Io,q are the reconstructed images using the output of the visible and occluded net-

works, respectively. Moreover, Mq is a soft mask representing the visible regions, i.e., one in the
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fully visible regions and zero in the completely occluded areas. This mask basically identifies the

regions where the visible network has difficulty reconstructing high-quality results, since they are

occluded in the input image.

We propose to compute the mask using the transparency maps of the VMPI representation,

estimated by the visible network. Our high level idea is that the occluded regions are reconstructed

using areas of the VMPI layers that are not visible in the input image. To compute the visibility of

each VMPI layer, we first rewrite Eq. 2.3 in explicit form as follows [32]:

I =
N∑
i=1

βiCi where βi = αi
∏
j>i

(1− αj). (2.5)

Note that, this equation is written in the input coordinate frame, and I is the reconstructed input

image using the VMPI representation. Here, βi basically indicates how much each color image Ci

is visible in the input image. To measure the visibility in the novel view, we first warp βi to the

coordinate frame of the novel view:

βi,q(p) = βi(p+ dq). (2.6)

The soft visibility mask Mq can then be computed as follows:

Mq = min(
N∑
i=1

βi,q, 1), (2.7)

where the min operation ensures that the mask is clamped to one. In the occluded regions, all the

βi’s are close to zero and, consequently, Mq has a value around zero. On the other hand, in the

visible areas, βi of at least one layer is close to one. Therefore, the visibility mask in the visible

areas is roughly one.

Our network architecture is similar to that of Zhou et al. [7], but with smaller number of filters

in each layer (see Table 2.1). We use the same architecture for both visible and occluded networks.

All the layers with the exception of the last layer are followed by a ReLU activation function and

batch normalization [48]. The last layer has a tanh activation function and outputs a tensor with 40
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Table 2.1: Our network architecture. Here, k is the kernel size, s is the stride, and d is the kernel
dilation. Moreover, “channels” refers to the number of input and output channels at each layer and
’+’ indicates concatenation.

Layer k s d channels input
conv1_1 3 1 1 4/32 input + depth
conv1_2 3 2 1 32/64 conv1_1
conv2_1 3 1 1 64/64 conv1_2
conv2_2 3 2 1 64/128 conv2_1
conv3_1 3 1 1 128/128 conv2_2
conv3_2 3 1 1 128/128 conv3_1
conv3_3 3 2 1 128/256 conv3_2
conv4_1 3 1 2 256/256 conv3_3
conv4_2 3 1 2 256/256 conv4_1
conv4_3 3 1 2 256/256 conv4_2
conv5_1 4 .5 1 512/128 conv4_3 + conv3_3
conv5_2 3 1 1 128/128 conv5_1
conv5_3 3 1 1 128/128 conv5_2
conv6_1 4 .5 1 256/64 conv5_3 + conv2_2
conv6_2 3 1 1 64/64 conv6_1
conv7_1 4 .5 1 128/64 conv6_2 + conv1_2
conv7_2 3 1 1 64/64 conv7_1
conv7_3 3 1 1 64/40 conv7_2

channels (8 VMPI layers each consisting of 5 channels for RGBα and disparity).

As discussed, we use L1 distance between the estimated and ground truth novel view images to

train the visible network. However, we train the occluded network using the VGG-based perceptual

loss [7], as implemented by Koltun and Chen [49], to produce visually pleasing results in the

occluded regions.

Note that, Mildenhall et al. [17] also propose a fusion strategy, but they fuse rendered images

from different views. In contrast, our approach works on a single input image and the fusion is

performed between the rendered images of the same view.

2.3.4 Dataset

To effectively train our system, we collect over 2,000 light fields (See Fig. 2.11) using a Lytro

Illum camera from various indoor and outdoor scenes. Our indoor scenes contain a variety of
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objects such as tables, chairs, shelves, and mugs, while the outdoor scenes include objects like

flowers, trees, signs, bicycles, cars, and buildings. We set the focal length as 35 mm for all the

light fields, but choose the other camera parameters, such as shutter speed and ISO, manually

based on the lighting condition for best quality.

We split this dataset into a set of 1950 scenes for training and 50 scenes for testing. We also

use the Stanford Multiview Light Field dataset [50] for training and testing. This dataset has a set

of 850 unique scenes each containing 3 to 5 light fields from different views. We use a set of 766

scenes for training containing roughly 3800 light fields. From the rest of the 84 scenes, containing

around 400 light fields, we select 100 light fields for test. In summary, combining the Stanford and

our dataset, we have a total of 1950 + 3800 light fields for training and 50 + 100 for testing.

The angular resolution of Lytro Illum light fields is 14×14, but we only use the center 8 × 8

views as the corner views are outside the aperture. To train our network, we randomly select one of

the 4 corner sub-aperture images as the input. We then randomly select one of the remaining views

as ground truth. With this simple strategy, we are able to supervise our system for generating light

fields with angular resolution of 15× 15 from only 8× 8 views. Note that, this is not possible with

Srinivasan et al.’s approach as their network estimates the entire 8 × 8 light field in a single pass.

Figure 2.10 illustrates the training mechanism of our approach.

We use the approach by HaCohen et al. [51] to match the color of raw light fields to their

processed version. We train our system on randomly cropped patches of size 192 × 192. We

apply a series of data augmentations including randomly adjusting the gamma, saturation, hue,

and contrast, as well as swapping the color channels to reduce the chance of overfitting.

2.3.5 Training

Training both networks by directly minimizing the loss in one stage is difficult. Therefore,

we perform the training in two separate steps. In the first stage, we train the visible network by

minimizing the l1 loss between the reconstructed Iv,q and ground truth Iq novel view images. At

the end of this stage, the visible network is able to produce high-quality results in the visible areas,

but produces ghosting artifacts in the occluded areas, as shown in Fig. 2.9. We use the output of
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Figure 2.10: Our training mechanism allows us to generate 15 × 15 light fields from only 8 × 8
training data.
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Figure 2.11: We introduce a new light field dataset containing over 2,000 unique scenes covering
a wide range of objects, nine of which are shown here. We capture our dataset using a Lytro Illum
camera from various locations and under different lighting conditions. The epipolar images shown
on the right and below each image demonstrate the depth complexity of our scenes.
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Table 2.2: Comparison of our approach against two state-of-the-art view synthesis methods, as
well as a version of their approach with the depth estimated by Wang et al. [3] as the input. We
evaluate synthesized 8×8 and 15 × 15 light fields on three datasets in terms of PSNR and SSIM
(higher is better in both cases). The best results are shown in bold. Note that, all the results are
generated by training our method and both versions of Srinivasan et al.’s approach on the training
set of Stanford/Ours dataset.

8×8 LF 15×15 LF
Algorithm PSNR↑ SSIM↑ PSNR↑ SSIM↑

St
an

fo
rd

/O
ur

s Srinivasan 29.92 0.9177 NA NA
Srinivasan + Wang 30.03 0.9215 NA NA
Niklaus 24.00 0.7616 20.04 0.5835
Niklaus + Wang 23.88 0.7864 21.02 0.6456
Ours 30.53 0.9306 28.52 0.9033

Sr
in

iv
as

an

Srinivasan 24.94 0.7935 NA NA
Srinivasan + Wang 25.75 0.8182 NA NA
Niklaus 25.00 0.7639 22.06 0.6532
Niklaus + Wang 26.38 0.8188 24.32 0.7409
Ours 26.78 0.8547 25.56 0.7990

K
al

an
ta

ri

Srinivasan 26.96 0.8638 NA NA
Srinivasan + Wang 27.60 0.8829 NA NA
Niklaus 24.18 0.7948 22.04 0.6886
Niklaus + Wang 24.94 0.8219 24.26 0.7791
Ours 29.03 0.9188 27.36 0.8841

this network to estimate the soft visibility mask, identifying the problematic occluded regions.

In the second stage, we freeze the weights of the visible network and only train the occluded

network by minimizing the VGG-based perceptual loss between the final reconstructed Îq and

ground truth Iq images. Note that, we compute the loss using the final fused image instead of the

reconstructed image by the occluded network Io,q. By doing so, we ensure that the synthesized

content in the occluded regions blends with the reconstructed image in the visible areas in a coher-

ent and visually pleasing manner. Fine-tuning both networks did not improve the results and, thus,

we use the trained networks after the second stage to produce all the results.

2.4 Results

We implement our approach in PyTorch [52] and train our networks using Adam [53] with the

default parameters (β1 = 0.9, β2 = 0.999, ε = 1e-8). We use a learning rate of 2 × 10−4 and a
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batch size of 8 throughout the training. We perform both training and testing on a machine with

an Nvidia GTX 1080Ti GPU with 11 GB of memory. Throughout this section, we compare our

approach against the following state-of-the-art single image view synthesis approaches:

Srinivasan et al. [14] This approach uses a network to estimate the disparity at the novel view

using the input image. The disparity is then used to backward warp the input image. Finally, this

warped image is passed to a second network for refinement. In the original approach both networks

are trained in an end-to-end fashion on a training set containing light fields of flowers. To ensure

fairness, we retrain their networks on our training dataset, described in Sec. 2.3.4. We use the code

provided by the authors for all the comparisons.

Srinivasan et al. [14] + Wang et al. [3] The only difference here is that in addition to the

input image, we also provide the depth, estimated using the method of Wang et al. as the input to

Srinivasan et al.’s disparity estimation network. By doing so, we decouple the effect of depth on

the quality of the results since our approach uses the same depth as the input.

Niklaus et al. [13] This method first uses a network to estimate the depth given an input image.

The depth is then used to forward warp the input image into the novel view. Note that, since the

depth is computed on the input image, backward warping is not possible. The last stage of this

approach is to use another network to inpaint the potential holes in the warped image. Again, we

use the source code provided by the authors for all the comparisons.

Niklaus et al. [13] + Wang et al. [3] Here, we use Wang et al.’s depth instead of the depth

estimated by Niklaus et al.’s depth estimation network. Again, this comparison will decouple the

effect of the depth from the quality of the results.

To ensure fairness, we train both versions of Srinivasan et al.’s approach on our training set.

However, since the main component of Niklaus et al.’s approach (forward warping) is non-learning

we use their provided source code for comparisons.

2.4.1 Quantitative Comparison to Other Approaches

In Table 2.2, we compare our approach against the other methods for generating 8 × 8 and

15 × 15 light fields in terms of PSNR and SSIM [54]. The PSNR stands for peak signal-to-noise
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Our corner view

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Our corner view

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Our corner view Our corner view

Srinivasan Niklaus Ours GT Srinivasan Niklaus Ours GT

Our corner view Our corner view

Figure 2.12: Comparison against other approaches on six challenging scenes. The red bars are of
the same length and show the distance between a foreground and background object.
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Table 2.3: We compare of our approach with VMPI using two-network fusion against our method
with a single network as well as our technique with MPI representation with different numbers of
planes. We evaluate synthesized 8×8 and 15× 15 light fields in terms of PSNR and SSIM (higher
is better in both cases). The best results are shown in bold.

8×8 LF 15×15 LF
Algorithm PSNR↑ SSIM↑ PSNR↑ SSIM↑
MPI 8 29.57 0.9137 27.89 0.8856
MPI 16 29.39 0.9198 26.87 0.8856
MPI 32 29.28 0.9149 26.68 0.8626
VMPI 8 (Single) 30.53 0.9305 28.51 0.9033
VMPI 8 (ours) 30.53 0.9306 28.52 0.9033

Table 2.4: This table shows the result between our approach without the single image depth pre-
diction module and our approach with the single image depth prediction module. We evaluated on
the combination of the Stanford dataset and our dataset. The result shows that, our approach with
depth information significantly outperforms the one without depth information.

Dataset Algorithm PSNR↑ SSIM↑

Stanford/Ours Ours (without depth) 29.83 0.9125
Ours (with depth) 35.53 0.9306

ratio, which is used to measure the quality between compressed image and the original image.

Here we use it to compare the quality between the generated novel view image and the ground

truth novel view image. The following equations describe how to calculate PSNR:

MSE =

∑
M,N [I1(m,n)− I2(m,n)]2

M ∗N
(2.8)

PSNR = 10 log10 (
R2

MSE
) (2.9)

The SSIM stands for structural similarity index. It is a perceptual metric to compare the quality

between a reference image and a processed image. Here the reference image is the ground truth

novel view image and we compare it with the synthesized novel view image. We refer to Wang

et al.’s paper [54] for the process of calculating SSIM.

Note that, since the views in Srinivasan et al.’s approach [14] are hard-coded, this method can
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only generate 8 × 8 light fields. Since the test light fields are all 8 × 8, we perform the numerical

evaluation for 15× 15 light fields by using each one of the four corner views of an 8× 8 light field

as the input and reconstructing the rest of the views.

We perform the comparisons on three different tests sets. Specifically, Stanford/Ours, Srini-

vasan et al., and Kalantari et al. [33], containing 150, 100, and 30 light fields, respectively. Com-

pared to the other approaches, our method produces significantly better results both in terms of

PSNR and SSIM. Since both approaches by Srinivasan et al. and Niklaus et al. perform better

using Wang et al.’s depth in almost all cases, we use this variant of their approaches for the rest of

the comparisons in the paper. However, we refer to them as Srinivasan and Niklaus for simplicity.

We also compare our approach with VMPI representation (8 planes), against ours with MPI

representation using 8, 16, and 32 planes in Table 2.3. Our VMPI representation with 8 planes

produces better results than all the MPI variations. The gap in quality is even larger for synthesized

15× 15 light fields. See Fig. 2.8 for visual comparison of VMPI and MPI representations.

Moreover, we compare our approach against our method with just the single visible network.

As can be seen, quantitatively, the differences are minor as the occluded areas are typically only

small regions around occlusion boundaries. However, as shown in Fig. 2.9, our approach with the

two networks significantly improves the the results qualitatively.

In Table 2.4, we show the comparison result between our approach without the single image

depth prediction module and our approach with the single image depth prediction module. The goal

of this ablation study is to show the effectiveness of our single image depth prediction module. We

evaluated on the combination of the Stanford dataset and our dataset. The result shows that, our

approach with depth information significantly outperforms the one without depth information.

2.4.2 Qualitative Comparison to Other Approaches

Here, we compare our approach against other methods on a variety of scenes. We first show

comparisons on 8 × 8 light fields because of the restriction of Srinivasan et al.’s approach. In

Fig. 2.12, we show comparison on six complex scenes captured with a Lytro Illum camera selected

from the three datasets, discussed in the previous section. Here, we use the center view of a light
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Deeplens depth (center) Srinivasan’s disparity (top-left) Our disparity (top-left)Input

Figure 2.13: We compare our disparity at the novel view against Srinivasan et al.’s disparity and
Wang et al.’s estimated depth at the center view on two scenes from Fig. 2.12.
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Figure 2.14: Comparison against Niklaus et al.’s method for synthesizing 15 × 15 light fields on
two challenging scenes.
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field as the input to synthesize the full light field.

Srinivasan et al.’s approach is not able to properly estimate the disparity at the novel view even

with the depth as the input, creating results with incorrect parallax, as indicated with the red bars.

Niklaus et al. directly use the input depth to forward warp the input image. However, this depth

is relative and, thus, this approach still generates incorrect parallax in most cases, as indicated by

the red bars. Moreover, it cannot properly handle the object boundaries in some cases, as shown

by the arrows. Furthermore, their forward warping scheme slightly overblurs the results in some

cases (see supplementary video). In contrast, our approach generates high-quality results that are

reasonably close to the ground truth.

In Fig. 2.13, we compare our estimated disparity against Srinivasan et al. and Wang et al.’s

depth for two scenes from Fig. 2.12 (the bottom two on the right column). As seen, our disparity

computed on the VMPI layers is overall sharper than the input depth by Wang et al. [3]. This

is in part the reason for Niklaus et al.’s problem around occlusion boundaries. Note that, we

also generated Niklaus et al.’s results with their depth estimator, but those were of lower quality.

Moreover, although both our approach and Srinivasan et al. use Wang et al.’s depth as the input

in this case, our disparity is considerably better than theirs. This is mainly because their network

is trained to generate a disparity map for each view by maximizing the quality of that particular

view. Therefore, each novel view image during the training process, provides a supervision for

only the corresponding disparity map. In contrast, we use the same representation to generate all

the novel view images. So each novel view image during training, provides a supervision for the

same representation.

Furthermore, we compare our approach with Niklaus et al.’s method on synthesized 15 × 15

light fields, in the Fig. 2.14. As seen, unlike the result of Niklaus et al., ours do not suffer from

the objectionable artifacts around occlusion boundaries. We also compare our approach against the

other methods on two images captured with standard cameras in Fig. 2.15. Note that in these cases,

ground truth novel view images are not available. Srinivasan et al. is not able to reconstruct the top

scene with proper parallax. Moreover, in their results for the scene in the bottom row, the texture
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Figure 2.15: Comparison against other approaches on images captured with standard cameras. We
show insets of two synthesized corner views for each image. The red lines for each method have
the same length and are used to better show the distance between a foreground and a background
object in the two views. Our method correctly synthesizes both the foreground and background
regions without objectionable artifacts.
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Figure 2.16: Comparison against other approaches on three challenging scenes. For each inset, we
also show the absolute difference between the synthesized result and ground truth.

on the sign moves between the two views because of inaccurate disparity. Furthermore, the results

of Niklaus et al.’s approach for both scenes contain ghosting artifacts around the boundaries. Our

method is able to produce reasonable results in both cases.

2.4.3 Comparison to Other Methods on Refocusing

Our synthesized light fields can be used to generate refocused images, as shown in Fig. 2.18.

Here, we demonstrate the ability of our approach to focus on different areas of the scene by show-

ing two refocused images for each scene. Although Srinivasan et al. handles the foreground re-
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gions, their two refocused images in the background areas have the same blurriness. This is mainly

because their estimated disparity in the background areas is often inaccurate, as seen in Fig. 2.13

(see discussion in Sec. 2.4.2). Niklaus et al. produce results with incorrect defocus in both cases as

they directly use the input depth which is relative and does not match the disparity of the ground

truth. Our method produces considerably better results that are similar to the ground truth.

2.5 Limitations and Future Work

Single image light field reconstruction is challenging and underconstrained and, thus, our re-

sults do not perfectly match with ground truth in all cases. Despite that, our synthesized light fields

are visually pleasing and contain fewer objectionable artifacts than the other approaches. More-

over, in some cases the estimated depth map by Wang et al.’s approach is inaccurate and, thus, our

approach is not able to synthesized high-quality novel views. However, as shown in Fig. 2.13, our

VMPI still improves upon the input depth.

Finally, our system can be used to synthesize a light field video from a standard video. This can

be done by using our networks to synthesize a light field image for each frame of the video. While

our synthesized light field frames are of high-quality (see Fig. 2.19), the video is not temporally

coherent (see supplementary video). In the future, we would like to improve the quality of the

synthesized videos, by enforcing the network to synthesize temporally coherent frames through a

specially designed loss function.

2.6 Conclusion

We present a learning-based approach for synthesizing a light field from a single 2D image.

We do this by introducing a new layered scene representation, called variable multiplane image

(VMPI), where the disparity of each layer is inferred from the input image. Moreover, we propose

to handle the visible and occluded regions separately, through the two parallel networks, to reduce

ghosting artifacts in the occluded areas. In our system, each network synthesizes a novel view

image and the two images are fused using a soft visibility mask to produce the final image. We

introduce a light field dataset containing over 2,000 unique scenes for training. We show through
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Figure 2.17: Comparison of our refocusing results against the other methods. Our method produces
results that are closer to the ground truth than the other methods.
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Input Wang et al.’s depth Our depth

Figure 2.18: Here, the input depth by Wang et al. [3] is inaccurate. Our method improves upon
this input depth, but still cannot correctly estimate the disparity of the wooden bench. See supple-
mentary video for the synthesized views and comparison to the other methods.

Our result on light �eld video

O
urs

W
ang et al.

Figure 2.19: On the left, we show a corner view of our synthesized light field frame from an input
2D video. On the right, we show an inset of all our synthesized corner views and compare them
against Wang et al.’s approach [1]. Note that, the approach by Wang et al. uses an additional light
field video with a low frame rate as the input. Despite that, we produce light field frames with
comparable quality. However, our light field video shows slight flickering as we synthesize each
frame independently (see supplementary video).
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extensive experiments that our approach produces better results than the other methods on view

synthesis and refocusing.
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3. AUDIO-VISUAL MULTIMODAL FACE RECOGNITION

With the continuing improvement in deep learning methods in recent years, face recogni-

tion performance is starting to surpass human performance. However, current state-of-the-art

approaches are usually trained on high quality still images and do not work well in unconstrained

video face recognition. We propose to use audio information in the video to aid in the face recogni-

tion task with mixed quality inputs. We introduce an Audio-Visual Aggregation Network (AVAN)

to aggregate multiple facial and voice information to improve face recognition performance. To

effectively train and evaluate our approach, we constructed an Audio-Visual Face Recognition

dataset. Empirical results show that our approach significantly improves the face recognition ac-

curacy on unconstrained videos.

3.1 Introduction

Face recognition has received considerable attention in the past decades. With the rise of

Deep Convolutional Neural Network (DCNN) and large scale face recognition datasets such as

MS-Celeb-1M [55] and MegaFace [56], face recognition performance has started to exceed hu-

man performance. Recently, video face recognition has attracted increasing attention. Potential

applications of video face recognition include content analysis of online videos, and human iden-

tification in surveillance videos.

However, directly using the representations learned from still images does not work well on

unconstrained videos. This is because unconstrained videos often contain a lot of low-quality

videos, due to the bandwidth limitation of online videos and hardware constraints in surveillance

videos. In addition, the view angle and head pose variance is often very large. The noisy frames

due to transition and motion blur could further undermine the performance.

Part of this chapter is reprinted from the following paper: c© 2021 Springer. Reprinted, with permission, from
Qinbo Li, Qing Wan, Sang-Heon Lee, Yoonsuck Choe. “Video Face Recognition with Audio-Visual Aggregation
Network.” In 2021 International Conference on Neural Information Processing, volume 13111, pages 150-161.
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AVAN

AVAN

subject embedding

subject embedding

Figure 3.1: The Audio-Visual Aggregation Network (AVAN) uses both the visual information and
the audio information to generate a feature embedding for the subject, to be compared to that of
others.

In this paper, we propose to utilize the audio information from the video to aid in the face

recognition task, as describes in figure 3.1. Our motivation is that we can use the audio information

to increase the face recognition performance when the subject is speaking in the video where the

video quality is low. We found that there are a large amount of such videos online. Modern

surveillance cameras nowadays also support audio.

We collected and curated a large dataset of unconstrained videos where the subject is actively

speaking. To the best of our knowledge, this is the first dataset of this kind. We also propose an

Audio-Visual Aggregation Network (AVAN) to aggregate visual embeddings and audio embed-

dings to improve video face recognition performance.

We first use CNNs pre-trained on large-scale image face recognition datasets to learn the visual

embedding, and CNN pre-trained on large-scale speaker recognition datasets to learn the audio

embedding. The AVAN then uses LSTMs and fully connected layers to calculate attention weights
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to aggregate the visual embeddings and audio embeddings.

While it is not new to use attention module to aggregate visual embeddings, we believe that we

are the first to introduce the use of attention to aggregate speaker embeddings. AVAN then learns to

aggregate the fused visual embedding and fused audio embedding to generate the final embedding

for the subject. Experiments show that our approach improves the face recognition performance

significantly.

Overall, our contributions are as follows:

• We propose an approach to aggregate visual embeddings and audio embeddings respectively,

and aggregate the resulting embeddings into the final embedding.

• To effectively train and evaluate our approach, we constructed a large speech-video-matched

audio-visual person recognition dataset, which is a first of its kind.

• Experiments show that our approach significantly improves the person recognition accuracy.

3.2 Related Works

In this section, we will first discuss various works related to face recognition. The face recogni-

tion works is classified by image-based face recognition, video face recognition, and audio-visual

face recognition. Then, we will briefly discuss recent advancements in speaker identification.

3.2.1 Image face recognition

Recent advances in deep convolutional neural networks (CNN), such as Inception [57] or

ResNet [58], bring discriminative power in face recognition and significantly improve its per-

formance. For image classification tasks, softmax-based cross entropy loss, being widely used, is

very effective in CNN’s feature extraction.

However, large intra-class variations existing in face recognition reduce the effectiveness of

softmax. To tackle this limitation, later, many novel losses are proposed in order to enlarge the

inter-class difference and reduce intra-class fluctuation for better face recognition. L-Softmax [59]

is the first one to encourage intra-class compactness and inter-class separability. FaceNet [60] and
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Triplet Network [61] use the triplet loss, a variant mutated from a contrastive learning perspective

[62], to impose Euclidean margin in discriminating features.

SphereFace [63] and Additive Margin [64] proposed a training loss based on trigonometric

functions to learn angle dis/similarities existing in the face features. These angular-based loss

functions were further improved in CosFace [65] and ArcFace [4] to enhance the CNN’s ability in

learning geometric attributes from face images. Besides, adding an exclusive regularization term

[66] could also extend angular distance and facilitate telling apart differences in the identities.

3.2.2 Video face recognition

Major categories of methods on video face recognition task can be classified into geometry-

based methods and deep-learning-based methods. Conventionally, geometry-based methods in-

clude learning on a Euclidean metric [67, 68] or learning on a Riemannian metric [69, 70].

Both of these methods try to form a mapping that projects an image from the input space

to a feature space, which aims at making the image features more geometrically separable. The

differences between the two are largely due to the space where the metrics are defined. In the

Euclidean metric, the distance is defined across the input space itself. However, in the Riemannian

metric, the distance is defined on a manifold embedded in the input space. This way, Riemannian

metric can more easily represent the geometric structure inherent in the data.

Deep learning methods [71, 72, 73, 74] intend to distill an embedding by aggregating frames

from a video sequence, with the knowledge acquired from trainable convolutional kernels, so that

they are more discriminable. Applying attention algorithms could efficiently improve a CNN’s

performance on a video [75]. Other deep learning models like RNNs also have been found to be

experimentally effective in video face recognition [76].

3.2.3 Audio-visual face tasks

There are several papers on combined audio-video face recognition from the conventional ma-

chine learning perspective [77, 78, 79]. However, few studies [80] explore this area using deep

learning methods. One of the potential reasons might be the lack of a comprehensive audio- and
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video-labeled dataset.

Audio-visual resources related to different tasks are abundant (i.e., not addressing face recog-

nition). These include a lip reading dataset [81] that decodes text from a video frames containing

a speaker’s mouth movement, audio-video fusion dataset [82] that presents a deep learning ap-

proach to connect audio with the face in unstructured video to better identify multiple speakers,

and speech separation [83] that proposes an audio-visual model to isolate a single speech signal

from a mixture of sounds.

3.2.4 Speaker identification

The overall procedure of speaker identification includes data collection, data preprocessing,

feature extraction, and classification.

The performance of speaker identification heavily dependent on the quality of the dataset.

Godfrey et al. [84] introduced a dataset called SWITCHBOARD, which contains 2,430 data from

543 speakers. Panayotov et al.[85] proposed the LibriSpeech dataset that has been widely used

in speaker identification. VoxCeleb is another large scale (153,516 data from 1,251 speakers)

dataset proposed by Nagrani et al. [86]. Then, an augmented dataset VoxCeleb2 is proposed by

Chung et al.[87]. There are also speaker identification datasets in languages other than English, for

example, XiaoDu [5] and THCHS30 [88] in Chinese, CENSREC-4 [89] in Japanese, SIVA [90] in

Italian, and so on. Table 3.1 summarizes the information of these datasets. Note that this is only

a partial list of the speaker identification datasets. We refer to Jahangir et al.’s survey [91] for a

more comprehensive list.

The data preprocessing includes silence removal, framing, endpoint detection, dimension re-

duction, and so on. Silence removal is usually the first step in data preprocessing. The speech

signal is likely to contain silence at the beginning, in the middle, and at the end of the speech.

Removing these silence duration can not only reduce computation complexity but also improve

generated features in the following steps. Framing is to segment the continuous audio signal into

discrete segments. The segmentation may contain overlap in order to generate better features.

Endpoint detection is to detect when the signal ends and separate the signal from the background
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Dataset Size Speakers Language
Switchboard 2,430 543 EN
LibriSpeech 11,373 251 EN
VoxCeleb 153,516 1,251 EN
XiaoDu 89,227 11,558 ZH

THCHS30 13,389 40 ZH
CENSREC-4 8,440 110 JA

SIVA >2,000 671 IT

Table 3.1: Example of some speaker identification datasets.

noise. Assume the background noise to be white noise and it follows the normal distribution:

p(x) =
1√
2πσ

exp(−1

2
(
x− µ
σ

)2) (3.1)

Then, if any audio signal satisfy (|x − µ|)/σ <= 3, they should be background noise and we

can remove them from the speech signal.

In feature extraction, spectral features are widely used as the first step. In our approach, we

chose Mel Frequency Cepstral Coefficients (MFCC) as the spectral feature. Other spectral fea-

tures include Linear Prediction Coefficients (LPC) and Perceptual Linear Prediction (PLP), etc.

Because of recent break-through in deep learning, many state-of-the-art approaches use deep net-

works to extract features for speaker identification. Convolutional Neural Network (CNN) based

approaches include Lukic et al. [92], Li et al. [5], Imran et al. [93], Dhakal et al. [94], and An

et al. [95], etc. Recurrent Neural Network (RNN) based approaches include Larsson et al. [96]

and Jung et al. [97]. Other deep learning based speaker identification approaches include Re-

stricted Boltzmann Machine (Ghahabi and Hernando [98]) and Deep Audoencoder (Tirumala and

Shahamiri [99]).
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3.3 Existing Datasets and Their Limitations

3.3.1 Image-based face recognition

The problem of image-based face recognition has been well studied. The success of image-

based face recognition is largely because of large-scale face recognition datasets. Examples include

the Labeled Faces in the Wild (LFW) [100], AgeDB [101], CASIA-WebFace [102], MS-Celeb-1M

[55], MegaFace [56], etc. The LFW dataset focuses on an unconstrained face recognition task. It

contains 13,233 images of 5,749 people. AgeDB manually collected images in the wild annotated

with accurate age. The CASIA-WebFace dataset semi-automatically collected 500K images of

10K celebrities from the Internet. The MS-Celeb-1M is one of the largest datasets that contains

about 10M images from 100K people (now discontinued due to concerns). The MegaFace dataset

collected 1M images of 690K subjects from Flickr.

3.3.2 Video-based face recognition

Compared with the image face recognition datasets, video face recognition datasets are difficult

to collect and hence smaller in terms of the size. The YouTube Face dataset (YTF) [103] contains

3,425 videos of 1,595 subjects collected from Youtube. The Point and Shoot Face Recognition

dataset (PaSC) [104] collected a variety of videos with respect to the distance to the camera, al-

ternative sensors, frontal versus not-frontal views, and varying location. UMD Face dataset [105]

consists of still images as well as video frames. In terms of the video frames, UMD Face dataset

is one of the largest video face recognition dataset. However, it is currently unavailable. IJB-C

dataset [106] contains 11k videos from 3,531 subjects. However, the faces in the video frames of

IJB-C dataset are not labeled.

3.3.3 Multimodal person identification

The iQIYI-VID dataset [107] is a multi-modal person identification dataset. The videos in this

dataset contains face, full body, and audio. However, it does not guarantee that there is an active

speaker in the video, or that the subject is the main speaker.
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3.3.4 Limitations of existing datasets

Our goal is to collect a video face recognition dataset where the subject is actively speaking, and

use the audio information to improve the face recognition accuracy. The YTF, PaSC, and UMD

Face datasets only contain video frames without the audio. The IJB-C and iQIYI-VID datasets

contain audio, however, they do not label the audio such that there is an active speaker or the active

speaker is the subject. The VoxCeleb dataset and our AVFR dataset are the only two dataset with

correlated audio and visual information. However, the VoxCeleb dataset is not suitable to be used

as low-quality video face recognition task. This is because the VoxCeleb dataset is collected in a

fully automatic way, that one key step is to use CNN to detect celebrity faces. Compared with the

VoxCeleb dataset, our AVFR dataset is collected in the semi-automatic manner, so that our AVFR

dataset contains a lot of low-quality videos, for example, the video on column 2 row 3 in Figure

3.2. A relevant dataset is the AV Speech dataset. Instead of face recognition, it is proposed for

isolating a single speech signal from a mixture of sounds. It contains around 300K video clips

with labeled face, and there is an active speaker in each video clip. However, all the video clips

for one subject comes from the same video, therefore, there is not enough intra-class variance for

each class.

3.3.5 Proposed audio-visual dataset

To overcome these shortcomings, we collected and curated a large video face recognition

dataset, the Audio-Visual Face Recognition dataset (AVFR), to address the shortcomings in the

existing data. Section 3.4.1 provides details of our data collection and curation methods. Table 1

summarizes the related face recognition datasets in comparison to our AVFR dataset.

3.4 Approach

In this section, we will describe our data collection method and the audio-visual embedding

with attention.
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Image datasets #Identity #Images
Labeled

face
Labeled

audio
LFW 5,749 13,233 Yes NA
AgeDB 568 16,488 Yes NA
CASIA 10k 500k Yes NA
MS1MV2 85K 5.8M Yes NA
MegaFace 690K 1M Yes NA

Video datasets #Identity #Videos
Labeled

face
Labeled

audio
YTF 1,595 3,425 Yes No
PaSC 2,802 265 Yes No
UMD 3,107 22,075 Yes No
iQIYI-VID 4,934 172,835 No No
IJB-C 3,531 11,779 No No
VoxCeleb 7,363 172,976 Yes Yes
AVFR 1,000 5,534 Yes Yes

Table 3.2: This table shows the comparison of different face recognition dataset. AVFR is the
dataset we collected for this study. Note that the video-based data sets are significantly smaller in
size than the image-based ones.

Figure 3.2: We selected some examples from our AVFR dataset. Each column shows three videos
from the same subject. As it is can be seen, the intra-class variance is very large. The variance
comes from lighting, head pose, age, occlusion, makeup, watermark, and so on. Our dataset also
covers videos with different quality. The low quality videos are due to low resolution, or the camera
being far from the subject.
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3.4.1 Collection of the AVFR Dataset

Our AVFR dataset contains around 5.5K unconstrained videos of 1K subjects. In the following

“subject” means the main speaker in the videos. Our goal is to collect a large video dataset, where

each subject has multiple videos and the subject is the main speaker in each of the video. We started

by creating a list of 2,801 celebrities, covering different ages, gender, occupations, nationality, and

so on. Then, we searched and downloaded 40 videos from YouTube for each subject. In this step,

we downloaded 58,270 videos of the 2,801 subjects in total.

We added the search terms “speech” and “interview” in addition to the subject’s name to search

for the videos, however, this did not guarantee that the results satisfy our requirements. There were

a lot of videos in which the subject is not speaking or is not the main speaker, or even the subject is

not in the video. Therefore, in the next step we selected the video clips where the subject is present

and actively speaking.

To aid in this labelling process, we extracted MFCC with a sampling rate of 2 seconds, and

generated audio embeddings for each audio clip. We used k-means to cluster the audio clips into

two categories: one is the audio of the subject and the other is not. We then manually selected the

audio clips that belong to the subject. In this step, we selected 5,534 videos from 1,000 subjects.

Note that even when the subject is the main speaker in the video, there still could be other

subjects in the video. We also labeled the face for the subject in the video. We used a facial

landmark detection approach, MTCNN [108], to detect faces from the videos. We detected faces

one frame per second, and then manually labeled the face belonging to the target subject. The

detected face image was then resized to 112×112. In total, we detected 230,718 face images.

To summarize, the data collection flow was as follows:

1. Collect list of celebrity names (the “subject”): 2,801

2. Search for name + (“speech” or “interview”): 58,270 videos found

3. Reject samples where the main speaker in the video clip is not the subject:
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• Extract the MFCC of the audio track, and use k-means clustering to group the videos

into “main speaker” vs. “not main speaker”. Promptly reject large number of videos

based on this.

4. Reject samples where there are people other than the subject in the video clip:

• Use MTCNN to detect faces in the video, and reject those with multiple faces.

5. Manually curate the rest: Final dataset contains 5,534 videos of 1,000 subjects.

Figure 3.2 shows some examples from our AVFR dataset. We will release our AVFR dataset upon

publication of this paper.

3.4.2 Embedding: Overview

Given a video where the target subject is actively speaking in the video, our goal is to generate

a feature embedding for use in identity recognition. Our approach first generates visual feature

embeddings for each video frame, and audio feature embeddings for each audio clip. Then, we

use attention module to aggregate the visual embeddings and audio embeddings respectively. The

attention module for the visual embeddings and audio embeddings share the same architecture, but

do not share the weights. Finally, we add a fully connected layer to fuse the visual embedding and

audio embedding. Figure 2.5 illustrates our overall system architecture.

3.4.3 Audio and Visual Embeddings

We use pre-trained CNNs to generate audio embeddings from audio clips and visual embed-

dings from video frames. These CNNs are trained on large-scale image face recognition dataset

and speaker recognition dataset. These datasets are usually much larger than video face recognition

dataset.

To generate visual embeddings, we first use MTCNN [108] to detect face from the video frame,

and then use the similarity transformation using the facial landmarks generated by the MTCNN.

The face images are then resized into 112×112. The visual embedding CNN is trained on the
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Figure 3.3: This figure shows the overall architecture of our approach. We use both the video
frames and audio as input to generate the embedding for the subject. We use pre-trained CNNs to
calculate visual embeddings from video frames and audio embeddings from audio clips. We then
use attention module to aggregate the visual embeddings and audio embeddings. The attention
module is a recurrent neural network followed by fully connected layers. The attention module of
the visual embeddings and audio embeddings share the same architecture. The aggregated visual
embedding and audio embedding are then fused into the final embedding.

MS1MV2 dataset with the ArcFace loss. The visual embedding network will generate visual

embeddings VF = {vf1, vf2, ..., vfN}, where N is the number of frames.

We use the pre-trained DeepSpeaker [5] model to generate the audio embeddings. The DeepS-

peaker model is trained on LibriSpeech dataset with Triplet loss. The raw audio is firstly converted

into MFCC with a sampling interval of 2 seconds. The procedure for calculating MFCC includes

frame blocking, windowing, discrete Fourier transform (DFT), Mel-scale filter band, logarithm

of magnitude, discrete cosine transform (DCT), and Mel-frequency Cepstral Coefficients. Fig.

3.4 illustrates the overall procedure of calculating MFCC. Then, the audio embedding network

will generate audio embeddings AF = {af1, af2, ..., afM}, where M equals to the length of the

2-second audio clips.
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Figure 3.4: The procedure for calculating MFCC.

3.4.4 Audio-Visual Attention Module

From the previous step, we generated the visual embeddings from video frames and audio

embeddings from audio clips. To calculate the final embedding from the visual embeddings and

final embedding from the audio embeddings, simply using mean pooling does not work well. For

the visual embeddings, there are a lot of noisy frames due to the motion blur, occlusion, undesired

head pose, and so on. For the audio embeddings, there also exists noisy intervals from the audio,

such as applause, acclamation, and other background noise. Even when there is no noise from the

audio, we believe that there is certain interval of the audio can better represent the subject.

Therefore, we propose to use an attention module to generate weights to aggregate the visual

embeddings and the audio embeddings. Similar to Gong et al.’s [76] method, we use RNN to

generate the attention weights to aggregate embeddings. While it is not new to use attention mech-

anism to aggregate facial embeddings, to the best of our knowledge, we are the first to introduce

using attention mechanism to aggregate speaker embeddings.

The architecture of the attention module is shown in figure 3.3. Both of the attention modules

share the same architecture, so we use the audio embedding attention module as an example to

describe the attention module. We use the feature embeddings AF = {af1, af2, ..., afM} generated

from DeepSpeaker as input to the attention module. The input is processed by a bidirectional

LSTM. The output from the LSTM layer is followed by fully connected layers to generate value

scores V = {v1, v2, ..., vm}, where vi represents the importance value for the ith audio clip. The

fully connected layers for each time frame share the architecture as well as the weights. Finally,
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the value scores V are normalized by a softmax layer to generate the weight w. The final audio

embedding of the subject is then calculated as:

ea =
M∑
i

wi · afi. (3.2)

Algorithm 1 describes our audio attention module. The visual attention module is very similar

to the audio attention module, so it is not repeated here (the only difference is that MFCC feature

is not used, and instead of DeepSpeaker, ArcFace is used for the embedding of individual images).

We use the triplet loss to train the attention module:

L =
N∑
i

(‖eai − e
p
i ‖2 − ‖eai − eni ‖2 +m), (3.3)

where eai is the embedding of anchor sample, epi is the embedding of the positive sample, and eni is

the embedding of the negative sample. The parameter m represents the margin penalty, and in our

experiment we set it to be 3.

After the visual embeddings and the audio embeddings are aggregated, we can concatenate the

embeddings to represent the subject. For the face verification task, we further add fully connected

layers to generate weights to concatenate the embeddings E:

E = w · ev + (1− w) · ea. (3.4)

Different from the attention module that takes a single subject’s embeddings as input, this fully

connected layer takes embeddings of a pair of subject as input, and the generated weight is shared

by the two subjects. Our intuition is that, using visual embeddings only has a higher performance

than using audio embeddings only, because speaker recognition is generally a more challenging

task than face recognition.

However, when the image quality of the video is very low, the audio information is more

reliable than the visual information. Therefore, the final fully connected layers can adjust the
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weights for the visual embeddings and the audio embeddings. However, our experiment shows

that the last fully connected layer does not improve the performance, which we will discuss in

section 5.

Algorithm 1: Pseudo-code of audio attention
Input: The extracted audio track from the video
mfcc =extract_mfcc(audio)
embeddings =DeepSpeaker(mfcc)
hidden =initialize_hidden(batch_size)
lstm_outs, hidden =lstm(embeddings, hidden)
v = []
for lstm_output in lstm_outs :
v_i =fc(lstm_output)
v.append(v_i)

w =softmax(v)
output =sum(w × embeddings, dim = 1)
Output: The aggregated audio embedding

3.5 Experiments and Results

In this section, we describe in detail our experimental setup and the results.

3.5.1 Experiments

We implemented our approach in pyTorch [52]. The DCNN for visual embeddings outputs

512-D embeddings, and the DeepSpeaker model also outputs 512-D embeddings. For the attention

module, we used the single layer bi-LSTM with 128 hidden units, followed by a single fully

connected layer to output the value score, and then a softmax layer. The attention module for

visual embedding and audio embedding share the same architecture. To train our model, we used

the Adam optimizer [53] with default parameters. We set the learning rate as 2 × 10−4 and batch

size as 32.

The network is trained with an Nvidia GTX 1080Ti GPU with 11 GB of memory. We randomly

split our AVFR dataset into 90% of data for the training set and 10% of data for the test set.
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Figure 3.5: This figure shows a qualitative evaluation of our visual attention module. As it is can
be seen, our model assigns high weights (tall red bars) for the high quality frames, and low weights
for the low quality frames due to the undesired head pose, occlusion, etc.

3.5.2 Results

We evaluated our approach with the standard face verification task, and compared our approach

with three baseline methods as described below:

• ArcFace [4] only uses the video frames to generate feature embedding for the video. It is a

pre-trained ResNet-50 network, trained on MS1MV2 dataset with ArcFace loss. It generates

a 512 dimensional embedding for each video frame. Then, we use mean fusion on all the

video frames to get the final embedding for the video.

• DeepSpeaker [5] only uses the audio to generate feature embedding for the video. It is

a pre-trained DCNN trained on LibriSpeech dataset with triplet loss. It generates a 512

dimensional embedding for each audio clip. Then, we use mean fusion on all the audio clips

to get the final embedding for the video.

• ArcFace+DeepSpeaker uses the ArcFace to generate a 512-D embedding from the video

frames, and uses the DeepSpeaker to generate a 512-D embedding from the audio. Then, it

simply concatenates these two embedding into a 1024-D embedding for the video.

• Ours-Visual (ArcFace + Attention) uses the ArcFace to generate 512-D embedding for

each video frame. Then, it uses attention module discussed in section 4 to fuse the embed-

dings to generate the final embedding for the video.
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• Ours-Audio (DeepSpeaker + Attention) uses the DeepSpeaker to generate 512-D embed-

ding for each audio clip. Then, it uses attention module discussed in section 4 to fuse the

embeddings.

• AVAN is our approach as discussed in section 4.

We run the experiments with 10-fold cross validation and report the True Acceptance Rate

(TAR) when False Acceptance Rate (FAR) equals to 0.1 and 0.01, and the best accuracy. Table 2

shows the quantitative evaluation on our approach and other baseline approaches. As it is can be

seen, our approach outperform the baseline methods significantly. When using the video frames

as input only, our attention module improves the accuracy from 94.89% to 95.63%. When using

the audio information only, our attention module improves the accuracy from 87.47% to 88.12%.

Approaches using the video frames as input only has a higher performance than using the audio

as input only. When using both the video frames and the audio as input, our AVAN achieves an

accuracy of 96.99% on the testing set. As for ablation study, Table 2 also shows that using both

visual and audio inputs outperforms using visual inputs only and using audio inputs only.

Method Input Type TAR@FAR= 0.1 TAR@FAR= 0.01 Accuracy
ArcFace [4] Image 95.53± 0.68 90.76± 0.87 94.89± 0.64
DeepSpeaker [5] Audio 86.23± 0.77 56.29± 5.54 87.47± 0.42
ArcFace+DeepSpk. Image+Audio 97.79± 0.77 93.02± 1.17 95.97± 0.43
Ours-Visual Image 95.93± 0.94 92.47± 0.63 95.63± 0.47
Ours-Audio Audio 86.83± 0.94 46.85± 5.19 88.12± 0.51
AVAN (Full model) Image+Audio 98.90 ± 0.40 95.12 ± 0.98 96.99 ± 0.29

Table 3.3: We compare our approach with ArcFace [4] and DeepSpeaker [5] on standard face
verification task. We report the best accuracy and TAR when FAR = 0.1 and 0.01. We ran all
experiments for 5 times and report the average value and std. As it can be seen, our approach
(AVAN) outperforms other approaches significantly.

Figure 3.5 illustrates the qualitative evaluation of our visual attention module. The height of

the histogram is proportional to the weights assigned by our model. The color of the histogram
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also represents the weight: red represents high weight while blue represents low weights. It can be

seen that our model assigns low weights for the low-quality frames.

For example, in the first row of figure 3.5, the head pose of the subject in the beginning frames

and ending frames are not facing the camera, therefore, our attention module assigns low weights

to these frames. In the second row, the head pose in the beginning frames are also not desirable,

and there are occlusions in these frames. Our attention module also assigns low weight to these

frames.

Another finding is that the attention module usually assigns high weights for some high quality

frames, instead of distributing the weights to all the high quality frames. We think it is easier for

the model to learn to identify some of the highest quality frames, instead of finding all of them and

assigning average weights for them.

Figure 3.6 shows a qualitative evaluation of our audio attention module. The meaning of the

histogram is the same as in figure 3.5. It is noteworthy that audio is the only input at this stage. The

reason that we include the video frames with the audio in the figure is to better explain the content

of the audio. In the top row of figure 3.6, the video begins with background music, followed by

the speech given by the subject. Our model assigns very low weights to the beginning of part of

the audio.

In the second example, the video starts with the subject’s speech, and then the audience start

to applaud. Then the subject speak for 2 second and the audience start to laugh while the subject

is speaking. The video ends with the subject’s speech without noise. Our model assigns very high

weight for the beginning of the audio, and then low weights for the middle of the audio, and lastly

some weights for the end of the audio.

For the face verification task, we further add fully connected layers to fuse the visual embedding

and audio embedding aggregated by the attention modules, as described in section 4. Our intuition

is that the model can learn to adjust the weight base on the quality of the video frames to further

improve the accuracy. However, our experiments show that it does not improve the performance:

the model simply assign 0.5 to both the visual embedding and the audio embedding. We think that
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background mucis + speaking speaking

speaking applause speakingspeaking+laughing

Figure 3.6: A qualitative evaluation of our audio attention module. In the first example, the video
begins with background music. In the second example, there is background noise such as an
applause and laughter from the audience, interleaved with the subject’s speech. Our attention
module assigns low weights when the quality of the audio is low.

this is because our dataset is not large enough to enable the model to learn such knowledge. We

leave this as one of our future works.

3.6 Discussion and Conclusion

Our approach assumes that in the input video, the subject is the main speaker. To make our

approach applicable to the general videos, one of the future works is to add another module to

identify the active speaker in the video. This can be learned from the lip movement and facial

expression in the video frames together with the audio.

Our AVFR dataset is the first audio-visual person recognition dataset, but it is not as large as

some other video face recognition datasets such as the UMD Face dataset. Therefore, another
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further work is to increase the size of the AVFR dataset.

Our approach may be ideal for applications such as few-shot learning in a noisy environments

(e.g. in an automobile). Modern high-end automobiles may include driver identification based on

face recognition, but the lighting condition and other environmental factors may introduce a lot

of noise. The combined use of video (not just an image) and audio, as we demonstrated in this

paper, can greatly improve the robustness in scenarios like this. The embeddings learned from our

method can easily be applied in few-shot learning algorithms.

In summary, the main contributions of this work are two-fold: (1) we collected and curated

a matched-video-speech audio-visual data set for video face recognition, which can serve as a

valuable resource for the research community, and (2) we showed that attention-based fusion for

each visual and audio embeddings, followed by an audio-visual fusion, again using attention, leads

to superior performance compared to recognition based on vision or audio separately and without

attention.
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4. VISUAL, PROPRIOCEPTIVE AND KINESTHETIC MULTIMODAL CONTROL FOR

TOOL CONSTRUCTION AND USE

The use of tools in animals indicates high levels of cognitive capability, and, aside from hu-

mans, is observed only in a small number of higher mammals and avian species. Constructing

novel tools is an even more challenging task. Constructing and using tools requires detailed un-

derstanding of the causal physical properties of the environment, curiosity, planning, and learning

through trial-and-error. In this chapter, we investigate learning to construct tools with deep rein-

forcement learning in physical simulated environment. We propose to solve the task using mul-

timodal input: the RGB image of the environment, proprioception input, and kinesthesia input.

The rest of this chapter is organized as follows: in section 4.1, we introduce some background

knowledge of reinforcement learning, and some previous works related with learning to use tools,

including one of our previous work “Emergence of Tool Use In an Articulated Limb Controlled by

Evolved Neural Circuits”; we then introduce our proposed approach in section 4.2; we show our

experiments and results in section 4.3, and discuss the future works and conclusion in section 4.4.

4.1 Background and Related Works

4.1.1 Reinforcement Learning

Reinforcement learning is an area in machine learning where the agent takes actions to max-

imize cumulative reward. There are a lot of real world problems can be solved by reinforcement

learning. For example, controlling robot’s body, learning autonomous driving, playing strategy

games such as Go, and so on.

Two key components in reinforcement learning are the agent and the environment. The agent

generates an action to interact in the environment, and the environment provides an reward and the

next observation to the agent, so that the agent can generate its next action. Fig. 4.1 illustrates the

loop between the agent and the environment. Generally, reinforcement learning is formalized as

Markov Decision Process (MDP), including states, actions, transitions, and rewards:
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Figure 4.1: The loop between the agent and the environment in reinforcement learning

• The states S of the environment is a set s1, ..., sN that represent the state of the environment.

• Actions A are used by the agent to interact with the environment.

• The transition probability P (St+1|st, at) describes the transition between states.

• The reward function R defines the reward for the agent when reach some states.

Given an MDP, a policy π is a function that maps the state S to an action A for the agent to

interact in the environment. The goal of reinforcement learning is to find the best policy π that

maximize the cumulative reward of the agent. Generally, we use the discounted reward to define

the cumulative reward:

R = E[
∞∑
t=0

γtrt]. (4.1)

In order to link the policy to the optimal reward, the value function V π(s) under policy π is

defined to describe the expected reward when being in state s and follow the policy π in the future.

Similarly, we can define the value of a state-action pair Qπ(s, a). Let π∗ denote the optimal policy,

then it can be proved that the optimal solution V ∗(s) satisfy:
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V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]. (4.2)

Then, the optimal policy π∗ can be formulated as:

π∗(s) = argmax
a

∑
s∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]. (4.3)

To solve the Markov Decision Process, there are generally two types of methods: model-based

methods and model-free methods. The purpose of this section is to introduce background knowl-

edge to understand the rest of this chapter, therefore, we mainly focus on model-free methods. In

the rest of this section, we will introduce policy gradient method, actor-critic method, and Proximal

Policy Optimization (PPO).

4.1.1.1 Reinforcement Learning Algorithms

There are a lot of reinforcement learning algorithms, which can be classified by tabular solution

methods or approximate solution methods, model-based methods or model-free methods, designed

for discrete space problems or continuous space problems or both, etc. Here we only review some

reinforcement learning algorithms that are suitable to our tool construct and use task, including

policy gradient, actor-critic, trust region policy optimization, and proximal policy optimization.

There are a lot of reinforcement learning algorithms try to learn the values of actions to se-

lect actions. Policy gradient algorithms try to learn the policy directly without learning the value

function. Some policy gradient algorithms may still learn the value function, but the action se-

lection is not based on the value function. As a result, policy gradient methods are ideal for the

problems where the state and action space are continuous. We use π(a|s, θ) to represent the policy

parameterized by θ, and J(θ) denotes the performance function:

J(θ) =
∑
s∈S

dπ(s)V π(s). (4.4)

where dπ(s) is the stationary distribution under policy π. Then, policy gradient methods update
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the parameters with:

θt+1 = θt + α ̂∇J(θt). (4.5)

It is not straightforward to calculate the gradient because it dependents on both the policy

and the stationary distribution of the policy. The policy gradient theorem simplify the calculation

because it allow us avoid calculating the partial derivatives of the stationary distribution:

∇J(θ) =
∑
s

µπ(s)
∑
a

qπ(s, a)∇θπ(a|s, θ) (4.6)

Algorithm 2: Monte-Carlo Policy-Gradient method (REINFORCE)
Input: parameterized policy, action space, state space, parameter space
Generate an episode followed by the policy
For each step in the episode:

G = return from step t
θ = θ + αγtG∇θ lnπ(At|St, θ)

Algorithm 2 describes the Monte-Carlo Policy-Gradient (REINFORCE) method, which is one

of the policy gradient methods.

To reduce the variance of the vanilla policy gradient method, Actor-Critic method learns a

value function and use it to assist the policy update. There are two roles in Actor-Critic method:

the actor, whose role is to maintain and update the policy to select an action; the critic, whose role

is to estimate a value function with respect to the policy. Algorithm 3 describes the Actor-Critic

algorithm [109].

Schulman et al. [110] propose TRPO (Trust region policy optimization) and demonstrate its ro-

bust performance. TRPO updates parameters by taking large steps, and at the same time it enforces

a KL divergence constraint to avoid performance collapse. PPO (Proximal Policy optimization) [6]

has the same intuition as TRPO while being less complicate by using a surrogate objective. Both
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Algorithm 3: Actor-Critic algorithm
Input: policy parameter θ,state-value parameter w, action space, state space
Repeat :
S = environment.reset()
I = 1, done = False
while !done :
A ∼ π
S ′, R, done = environment.step(A)
δ = R + γv̂(S ′, w)− v̂(S,w)
w = w + βδ∇wv̂(S,w)
θ = θ + αIδ∇θlogπ(A|S, θ)
I = γI
S = S ′

End

TRPO and PPO are on-policy algorithm and can be used in discrete space problems and continu-

ous space problems. Algorithm 4 describes the proximal policy optimization algorithm. Because

of the state-of-the-art performance, we use PPO to train the agent, which will be elaborated in the

following section.

Algorithm 4: Proximal Policy Optimization (PPO) algorithm
Input: policy parameter θ, value function parameter φ
For k in 0,1,2...:

Collect trajectories Dk using policy π
Collect rewards Rt

Compute advantage estimates Ât
θk+1 = argmaxθ

1
|Dk|T

∑
τ∈Dk

∑T
t=0min( πθ(at|st)

πθk (at|st)
Aπθk (st, at), g(ε, A

πθk (st, at)))

φk+1 = argminφ
1

|Dk|T
∑

τ∈Dk

∑T
t=0(Vφ(st)− R̂t)

2

End

4.1.1.2 Hierarchical Reinforcement Learning

Many real-world tasks are very challenging, requiring multiple steps of decision making, while

the reward are sparse. Learning to construct and use tools is one of these challenging problems.

61



Hierarchical reinforcement learning decompose the task into different level of abstraction. In the

past decade, the realm of hierarchical reinforcement learning has advanced profoundly. Here we

briefly discuss recent advancement in hierarchical reinforcement learning.

One of the most well-known formulation of hierarchical reinforcement is option introduced by

Sutton et al. [111]. An option consists of a triplet < I, π, β >, where π is a policy, β is a terminal

condition, and I is an input set I ⊆ S. An option can be seen as an action at the higher level. The

implementation of options is simple and it can increase the convergence speed of training. Parr

and Russell [112] proposed an approach called hierarchical abstract machines (HAM). Similar to

option, HAM investigates the theory of Semi-Markov Decision Process (SMDP). However, HAM

are complex to implement and thus does not have many applications. MAXQ value function de-

composition is another hierarchical reinforcement learning algorithm proposed by Dietterich [113].

MAXQ decomposes the value function into two components: one is the total expected reward of

the action-state pair, and the other is the total reward expected parent task. Compared to option,

MAXQ directly decompose the task into sub-tasks and the policy for the sub-tasks can be reused.

However, the learned hierarchical policy is not guaranteed to be optimal. Dayan and Hinton [114]

proposed a framework called Feudal Reinforcement Learning. In feudal reinforcement learning,

there is a manager to assign subtask to lower-level workers, and the works learn to execute these

subtasks. The manager observes the state of the environment at a higher level, while the workers

focus on a subgoal and observe in the original state space.

In our tool construction and use task, the agent need to learn a sequence of steps to achieve the

goal, for example, pick up the tools, construct the tool parts into a novel tool, use the novel tool

to achieve the goal. Each of the steps can be seen as a subtask. Therefore, we use the feudal rein-

forcement learning approach to train the agent. Here we continue discuss some recent approaches

under the feudal reinforcement framework.

Kulkarni et al. [115] propose to use two Deep Q Network (DQN) [116] for the manager and

worker. Learning policies in multiple levels at the same time leads to non-stationary training.

To address this issue, Nachum et al. [117] proposed Hierarchical Reinforcement Learning with
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Off-policy Correction (HIRO). Levy et al. [118] proposed Hierarchical Actor-Critic (HAC) and

claimed that HAC is more efficient than HIRO when learning multiple levels of policies. Vezh-

nevets et al. [119] proposed a end-to-end differentiable model called FeUdal Networks (FuNs)

that use dilated LSTM for the manager. Their experiments showed that FuNs improved long-term

credit assignment in ATARI games and some memory tasks.

In addition to hierarchical reinforcement learning, we use curiosity reward to encourage explo-

ration. As one of the related works, Burda et al. [120] propose random network distillation to add

an exploration bonus, where the bonus is the error of a neural network predicting the future states

of the environment. They show that random network distillation achieves outstanding performance

on hard exploration Atari games.

4.1.2 Tool construction and use

Tool construction ans use require but not limited to the following abilities and skills: sensori-

motor skills, logic and planning abilities, curiosity, problem posing and problem solving skills, etc.

Apart from human, only a small number of animals exhibit the tool use behavior. For example,

Capuchin monkey can use stone as a tool to crack nuts [121], and crows can use sticks to reach

targets beyond their reach [122]. Constructing novel tools is a more challenging task than using a

simple tool. Previously, it is believed that such behavior belongs to human only. However, recently

scientists observed that crows can construct tools from multiple objects [123]. In this study, crows

need to use stick to reach food far from their reach, but there are no long sticks to achieve this goal.

The crows then figured out to build a long tool with provided combinable elements to reach the

food without any help.

4.1.2.1 Emergence of Tool Use In an Articulated Limb Controlled by Evolved Neural Circuits

One of our previous work [124] investigates how the capability to use tools can spontaneously

emerge in an evolved neural circuit controller for a two degree-of-freedom articulated limb. The

goals of the study were to find minimal and indirect fitness criteria for the emergence of tool use,

and to analyze the properties of evolved neural circuits that permit tool use.
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The task was to reach a target object that may or may not be within reach of the limb, with

or without the tool. We evolved the neural circuit controller by gradually augmenting the network

topology, illustrated on the left side of figure 4.2. The neural evolution algorithm is called “Neu-

roEvolution of Augmenting Topologies” (NEAT) proposed by Stanley and Miikkulainen [125]).

NEAT is based on the idea of complexification, where behavioral complexity is achieved through

complexifying neural circuit topology. NEAT has been used in various learning environment such

as games and has been shown to be effective in evolving complex, non-trivial behavior [126, 127].

In NEAT, the chromosome encodes neurons and their connections separately, as well as the con-

nection weights. Neurons and connections can be added or removed to change the network topol-

ogy, thus the chromosome has a variable length. Mating of chromosomes with different network

topology is achieved through the use of a quantity called “innovation number” that indicates the

evolutionary origin of a particular gene. Innovation numbers allow only compatible genes to mate

(i.e., genes that have the same ancestral origin). Another unique mechanism of NEAT is “specia-

tion” that helps freshly changed topology to be preserved despite the initial plunge in fitness. The

rest of the algorithm is similar to other neuroevolution or evolutionary algorithms: (1) instantia-

tion of phenotype from genotype, (2) testing in the task environment, (3) calculating fitness, (4)

selection and reproduction.

Our aim in selecting the fitness criteria was to find measures that do not directly dictate the

evolved tool-use behavior (i.e., minimal and indirect). We used three basic fitness criteria and

tested different combinations of them to evolve the neural circuit controller for the limb. For

each controller, by the end of 100 trials, the following quantities were calculated: (1) D: distance

between the end effector and the target; (2) S: steps taken to reach the target; and (3) T: tool pick-up

frequency. Different combinations of the fitness criteria elements were tested: D, S, DS, DT, ST,

and DST. Multiplication (“×”) was used when combining the fitness criteria elements (e.g., DS

means D × S). In addition, neural circuits evolved with and without recurrent connections were

compared (SST = S2T and SSTnoRecur = S2TnoRecur).

Each two degree-of-freedom articulated limb was given 100 trials to perform the target reaching

64



Figure 4.2: The framework of our previous work “Emergence of tool use in an articulated limb
controlled by evolved neural circuit”

task. In each trial, the limb was allowed to move up to 500 time steps (maximum time step). For

each trial, the target and the tool were placed at random locations. The distance of the target could

be either within the reach of the limb or not (the tool was always within the reach of the limb; see

Fig. 4.3). In the latter case, the limb must use the tool to reach the target (otherwise it will fail).

If the limb successfully reached the target, the current trial ended and the number of time steps

taken was recorded. If the agent failed to reach the target, the distance from the end effector to

the target was recorded. We evolved the the neural circuit (the limb controller) for 120 generations

with a population size of 100. To evaluate the performance, after the 120 generations were done,

we picked the best limb controller and repeated 10 times a set of 100 test trials (total 1,000 trials).

With this, we compared the performance and the trends throughout the generations, as well as the

network topology characteristics. For all experiments, the within-reach and out-of-reach conditions

were balanced (50% each).

Fig. 4.4 shows the network topology of evolved circuits under different fitness criteria. The

one that included tool pickup frequency (T) in its fitness showed a much simpler network while

maintaining the same level of performance. In Fig. 4.5, limb movements are shown as time-lapse

images. Time is encoded as the pixel intensity, where darker means more recent state. The three
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Figure 4.3: Example task conditions. The environment consists of two degree-of-freedom articu-
lated limb, a target object, and a tool. all on a 2D plane. Note that the tool’s initial location are
variable. The two half-circles indicate the original reach (inner) and the reach with tool use (outer).

images in the top row show examples of successful movements. Starting position is marked as “s”,

tool pick up event as “t”, and ending position as “e”. Target location is marked as black square. The

limbs (blue and red lines) in the three images first move towards the tool (green line with a circle

at the handle) to pick it up, and then the extended limb moves towards the target. The trajectories

of the end effectors are shown as black solid curves. In the bottom row, the three images show

examples of unsuccessful movements, where the three movements of the limb could not reach the

target.

When measuring the performance of the different fitness criteria, comparing the raw fitness

scores is not fair because different fitness criteria produce different fitness score scales. Therefore,

we used success rate to compare the performance between different criteria. Success rates are the

percentage of successful target reach events during the 1,000 test trials. For each fitness criterion,

we selected the best neural circuit from the last generation and then ran 1,000 trials. The entire

process of evolution and testing was repeated four times (n = 4).

In general, DT, ST,and DST showed superior success rates than their counterparts that did

not use the tool pickup frequency criterion T (D, S, and DS). Within the same group (within

DT, ST, DST or within D, S, DS), the success rates were similar (t-test, n = 4, p > 0.1 in all

cases). However, differences across the two groups were statistically significant (t-test, n = 4, p

< 0.01 for all cases). The fitness criteria only using D (distance) or S (number of steps) did not
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Figure 4.4: Examples of evolved neural circuits. (a) Evolved neural circuit with fitness criterion
S2T (speed square and tool pick-up frequency). (b) Evolved neural circuit with fitness criterion
DS (distance and speed).

67



Figure 4.5: Time-lapse images of representative limb movements. The three images in the top row
show examples of successful movements. In the movements of (a) and (b), the limbs (blue and red
lines) first move towards the tool (green horizontal line) to pick it up, and then move towards the
target. In the movement of (c), the limb moves directly toward the target without picking up the
tool. The trajectories of the end effectors are shown as black curves, and parts of the trajectories
that may be hard to keep track of are annotated with orange arrow. The three images in the bottom
row sow examples of unsuccessful movements, where the limbs failed to reach the target.
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show good performance (around 50%), neither did the combination DS. However, combining with

T (tool pick-up frequency) boosted the performance (DT, ST, around 70%). This indicates that

giving reward for simply picking up the tool, even without any further implications given, could

lead to the emergence of adaptive tool use. Related observation was reported in an experimental

study. Amant and Wood [128] noted that in the experiment in Visalberghi and Limongelli [129],

capuchin monkeys frequently achieved tasks requiring tool-using ability, by quickly trying many

inappropriate strategies with tools (e.g., pick up something and wield it without a clear plan). In

most cases, the fitness criterion S (number of steps) seems to be useful (since high S fitness also

means target has been reached, early). The limbs evolved with S (such as ST and DST) reached the

target directly without picking up the tool, if the distance to the target is within the limb’s reach.

For the fitness criteria without S but with T (such as DT), we observed that the limb mostly tried

to get to the tool first even when the target is within reach. As mentioned above, about 50% of

the trials were within reach condition and the other 50note that even in cases where the success

rates are around 50%, the tool was used to reach out-of-reach targets. That means performance of

about 50was used successfully to reach out-of-reach targets, and cases where within-reach targets

were not reached. For example, the success rates for the beyond-reach trials were D (17.78%), S

(31.66%), and DS (28.65%) for the fitness conditions lacking T; and DT (93.70%), ST(90.47%),

DST(94.07%) for the conditions with T. In sum, D/S/DS conditions did utilize the tool, although

less frequently than DT/ST/DST.

We compared neural circuits evolved with and without recurrent connections. The S2T fit-

ness criterion was used to evolve the neural circuit. In the first case recurrent connections were

allowed (S2T ), and in the second case only feedforward connections were allowed (S2TnoRecur).

First, we compared the success rates of the best chromosomes for the two conditions (S2T : mean

= 80.68%; S2TnoRecur: mean = 52.58%). The difference was statistically significant (t-test, n=4,

p < 0.01). Next, we compared the maximum fitness scores, average fitness scores, the number of

total neurons, and the total degrees (the total number of connections) throughout the generations.

In Fig. 4.6, top-left and top-right panels show the maximum fitness scores and the average fit-
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Figure 4.6: Fitness over generations and network size, with or without recurrent connections. S2T
with (blue line) and without recurrent connections (red line) are compared. Top-left: max fitness
scores through the generations. Top-right: average fitness scores. Bottom-left: number of total
neurons. Bottom-right: number of total degrees (number of connections) in the neural circuits
through the generations.

ness scores throughout the generations when evolving the neural circuits. The one with recurrent

connections shows better performances throughout. However, interestingly, the number of neurons

and connections in the neural circuits shows the opposite trend, as shown in the bottom-left and the

bottom-right panel. The neural circuit without recurrent connections has more neurons and more

connections even though the controller (neural circuit) shows significantly lower performance than

the one with recurrent connections. This observation emphasizes the importance of recurrent con-

nections in evolving neural circuit controllers with continuous action and feedback loop. Recurrent

connections in neural networks can provide memory of the past. Also, recurrent connections can

provide the ability to predict future internal dynamics, which is an important ability for neural

circuit controllers, especially for challenging control tasks [130].
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Figure 4.7: Correlations between the number of recurrent connections (self loop + 2 hops + 3
hops) and success rates. The data points (blue “x”), the linear regression lines, and correlation
coefficients (r) are plotted, for the six fitness criteria. For each fitness criteria, the 120 best neural
circuits for each generation (generation 1 to 120) were analyzed to see the correlation between the
number of recurrent connections and success rates (average of 1,000 trials each). The total number
of cycles (number of loops) is found to be positively correlated with success rate. Note that the
correlation is even higher for those that included T (tool pick-up frequency) in the fitness.

Also, we analyzed the correlation between (1) the number of recurrent connections and (2)

success rates under different fitness conditions (Fig. 4.7). Self loop, 2-hop, and 3-hop loops were

counted as recurrent connections. The six fitness criteria compared earlier were analyzed (D, S,

DS, DT, ST, and DST). For each fitness criterion, the best neural circuits from each generation

(total of 120 per condition, generation 1 to generation 120) were analyzed to see the correlation

between the number of recurrent connections and success rates (same as before). The correlation

plots show a trend that the fitness criteria with comparably high correlation coefficients (such

as DT, ST, and DST, the ones with T [tool pick-up frequency]) have high success rates in Fig.

4.8. This indicates that the recurrent connections affect positively the performance of the evolved

neural circuits (or vice versa). However, the number of recurrent connections themselves may not

be critical for the performance as long as recurrence is allowed. Instead, how they are connected

could be more important: recurrent connections that are able to predict future internal dynamics

could result in neural circuits with higher success rates.
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Figure 4.8: Average success rates of controUers based on different fitness criteria. Four sets of
experiments (evolution of the neural circuit controller followed by testing) were ran for each fitness
criterion. In general, fitness criteria that included T (tool pick-up frequency) did significantly better
than those that did not include T (t-test, n = 4, P < 0.01). Results with S2T were similar (data not
reported here). Note that the target was placed within the limb’s reach only 50% of the time during
the trials. See text for details.

Fig. 4.9 shows time series values of the fifteen hidden neurons of an evolved neural circuit. In

the time series correlation matrix (Fig. 4.9 (b)), we can observe four groups of neurons that are

highly correlated. The four clusters are cluster 1 (hid14415511, hid14416983, hid14420563), clus-

ter 2 (hid14417371, hid14422164), cluster 3 (hid14415634, hid14415631), and cluster 4 (hid14418199,

hid 14422660). As we can see in Fig. 4.9 (c) and (d), the groups of neurons respond (change activ-

ity) to the behavioral events (1), (2), (3), and (4). At the event (1), the limb changes the movement

towards the tool, and at (3), it changes towards the target. Tool pickup happens at the event (2),

and the limb reaches the target at (4). Cluster 3 responds to (1) and (3), while cluster 4 to (2) and

(4). There are single neurons that also exhibit interesting behavior, e.g., hid14416298 (third row

from the bottom of Fig. 4.9 d showing rapid oscillation between events (2) and (3)).

In summary, our results indicate that simple, indirect criteria such as distance to target, number

of steps to reach target, and if the tool was fetched was enough to give rise to tool using behavior.

Quantification of recurrent loops in the neural circuit topology showed that better controllers have
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Figure 4.9: Internal dynamics of fifteen hidden neurons, their correlations, and matching limb
movements. See text for details.

73



more such loops. Furthermore, if recurrent loops are prohibited, the task performance greatly

degraded and the evolved circuit had much more neurons than their recurrent circuit counterpart.

4.1.2.2 Other Related Works

Following our work “Emergence of Tool Use In an Articulated Limb Controlled by Evolved

Neural Circuits”, Wang et al. [131] investigated the dynamics of the recurrent neural network

evolved by the NEAT algorithm. They analyzed the behavior and the neuronal activation of the

RNN, and showed the correlation between the behavior of the limb and the internal dynamics of the

RNN. They claim that the successful and fail trails can be explained by the existence of fixed points

and limit cycles . Then, Reams and Choe [132] investigated the emergence of tool construction in

the reaching task under similar environment. They showed tool construction and use behavior can

be evolved by Neural Evolution algorithm with board fitness criteria. Nguyen et al. [133] created

a physical simulated environment to investigate the emergence of tool use, and proposed to use

proprioceptive and kinesthetic inputs to accelerate the training.

4.2 Approach

Similar to Nguyen et al. [133], we created a physical simulated environment using OpenAI

gym and PyBullet, illustrated in Figure 4.10. The environment includes two robot arms, two tools

and one target. Formally, we define the robot arm as the three-joint arm that directly belongs to the

robot’s body, and we define the tool as the stick that can be picked up by the robot to achieve some

goals. To simply the problem, we add special joints (yellow joints showed in fig. 4.10) to the robot

hand and the tool. The special joints can be connected to each other upon contact. The goal of the

agent is to move the target to the bottom of the environment.

4.2.1 Multimodal Input

Instead of using only raw pixel image as input, we use the image and proprioceptive/kinesthetic

feedback as input, similar to Nguyen et al.’s method [133]. To be specific, we use the following

input:

• Vision input: RGB image of the entire environment
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Figure 4.10: The tool construction environment build with PyBullet and following the OpenAI
gym protocol. The environment is surrounded by a rectangle arena (black). There are two robot
arms (blue), two tools (green), and one target (red). The joints marked as yellow are special joints
that can be connected together upon contact. The goal for the agent is to move the object to the
bottom of the environment.

• Proprioception input: the position of all the agent’s joints

• Kinesthesia input: the velocities of all the agent’s joints

4.2.2 Hierarchical Reinforcement Learning

In order to achieve the goal, the agent need to complete a sequence of non-trivial sub-tasks, for

example, pick up the tool on the left using the left hand, pick the tool on the right using the right

hand, construct a “T” shape tool by connecting one end of a tool to the middle of another tool,

drag the target to the desired area. Nguyen et al. investigated simply using tools to drag the target

with one arm, and they used manually engineered multi-step reward function. To avoid using the

complicate manually designed reward function, directly using reinforcement learning algorithms

cannot solve the problem effectively, because the exploration space is very large and the reward is

sparse.

We propose to use hierarchical reinforcement learning with curiosity reward. Specifically, our

model consists of a manager and many workers. The manager learns to plan the “macro steps” such

as “pick up the two-joint tool”, “pick up the three-joint tool”, etc. The workers learn to execute the

macro steps generated by the manager. If the macro step lead to a new state that the agent has not
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Figure 4.11: The overall architecture of our approach.

seen previously, then there will be some reward for the manager. Finally, there will also be a reward

for the manager if the goal is reached. As for the macro step, if we define them manually, we have

to enumerate all the possible steps. In addition, if we were given a novel task, we might have to

re-define the macro steps. Therefore, we define the macro step in a more general way: we define

the macro step as minimizing the distance between two salient objects, where the salient objects

in our environment are the joints (yellow sphere shown in figure 4.10) and the target. Because the

final goal is to move the target to the bottom of the environment, reducing the distance between

the target and the bottom is another macro step. In addition, we add two macro steps that both the

robot hands can release the tools they holding.

The action space for the manager is all the pairs between all the salient objects, and the action

space for the worker is the control of the two three-joint robot arm. We use DQN [134] to train

the manager and PPO [6] to train the worker. Algorithm 5 describes the details of training the

manager with DQN. In Algorithm 5, for each macro step generated by the manager, a worker will

be trained with PPO (Algorithm 4) to try to accomplish the macro step. Fig 4.11 illustrates the

overall architecture of our approach.

There is one issue to be addressed for the macro step: what should be the initial environment

state for the macro step? For the first macro step, the initial state is the environment’s initial state.

But what is the initial state for the following macro step? For example, if the first macro step is

“pick up the tool on the left side” and the second macro step is “connect the end of one tool to the
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middle of another tool”, then what should be the initial state of the second macro step? We can

save all the states of the environment (all positions of the objects, joint’s velocity, joint’s connection

status, etc.) at the end of the previous step and use it to be the initial environment state to train the

next macro step. However, the initial state from the previous macro step is not fixed. For example,

if the previous macro step is “pick up the tool on the left side”, then in the initial state of the next

macro step, the left hand should holding the tool, but it could be at any position. Therefore, we

run the previous macro step for k times and save all the environment’s state. When training the

next macro step, we randomly pick one environment’s state to resume as the initial state. In our

experiment, we set k = 5.

Algorithm 5: Pseudo-code of training the manager
Input: Raw pixel of the environment and the internal kinesthetic inputs
manager = DQN(observation,action_space)
target_manager = DQN(observation_space, action_space)
state = env.reset()
for i in (1, number_of_iterations) :
action = manager.act(state)
next_state, reward, done, info = env.step(action)
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
if done :
state = env.reset()
if len(replay_buffer) > batch_size :
loss = compute_td_loss(batch_size)
if i%100 == 0 :
update_target_model(manager, target_manager)

4.2.3 Neural Network Architecture

We trained the manager using DDQN (Double DQN) algorithm. The neural network structure

for the manager is three fully connected layers with a hidden size of 128 for each layer. A Relu

activation layer is followed by each layer except for the last layer. The input to the manager is the

connection status of all the joint in the environment, for example, whether the left hand is holding
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Figure 4.12: The overall network architecture of the workers. This figure only shows the actor
network of the workers. The critic network shares the same network architecture with the actor
network, except the the last output layer only has 1-dimensional output.

a tool, whether two tools are connected to each other, and so on. The output of the manager is two

joints to be connected, for example, the right hand of the agent and the tool on the right hand side,

the middle joint of one tool and the left joint of another tool, etc.

We trained the workers using Proximal Policy Optimization (PPO) algorithm. In PPO, we

use the same network architecture for the actor and the critic. The overall network structure of

the workers is illustrated in fig. 4.12. We use the 2D RGB image as well as the 1D proprio-

ceptive/kinesthetic feedback as input. We first use three convolutional layers to process the RGB

image of the environment. The first convolutional layer consists of 32 kernels with kernel size

of 8 and stride of 4. The second convolutional layer consists of 64 kernels with kernel size of

4 and stride of 2. The third convolutional layer consists of 64 kernels with kernel size of 3 and

stride of 1. Each of the convolutional layer is followed by a Relu activation function. Then, we
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flatten the feature into 1-dimensional vector and concatenate it with the 1-dimensional propriocep-

tive/kinesthetic input. The concatenated feature is then fed to two fully connected layers with a

hidden unit size of 512. A Relu activation layer is followed by the first fully connect layer. Both

the actor and the critic share the same network architecture and parameters. The only difference

is that the output dimension for the actor is 6 representing the control signal for the robot joints,

while the output dimension for the critic is 1 representing the value. Fig. 4.12 shows the details of

the actor network and the critic network.

4.3 Results

We implemented our approach in PyTorch [52]. We use the DDQN algorithm to train the

manager and use Adam optimizer [53] with default parameters (β1 = 0.9, β2 = 0.999, ε = 1e-8).

The replay buffer size is set to 1000 and the batch size is set to 4. For every 100 iterations the target

model is synchronized with the current model.

We use the PPO algorithm to train the workers. The resolution of the image of the environment

is (200, 360). We resize the image to (84, 84) and stack 4 consecutive frames before feeding to the

neural network. The maximum steps for each episode is 4,000. We set the gamma to be 0.99, and

use the Adam optimizer with default parameters.

We also evaluated using RGB image as input only. The network structure is the same as fig.

4.12, except that the feature vector from the last layer of CNN does not concatenate with the

proprioceptive and kinesthetic input.

We ran all the training and evaluation on a machine with a NVIDIA GeForce RTX 2080 Ti

GPU with 11G memory.

The manager successfully learnt a sequence of sub-tasks to solve the task: (1) pick up the tool

on the right; (2) pick up the tool on the left; (3) connect the two-joint-tool with the middle joint of

the three-joint-tool to construct a “T” shape tool; (4) use the “T” shape tool to drag the target to

the bottom. Fig. 4.13 shows the smoothed reward for each sub-tasks. The overall success rate of

our approach is 48%, while the success rate when using RGB image as input is only 20%. Table

4.1 describes the success rate of the agent to finish each of the sub-task. As it is can be seen from
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Figure 4.13: The smoothed reward for each sub-tasks. The Y-axis stands for the reward and the
X-axis stands for epochs.

Task vision only vision/proprioceptive/kinesthetic
sub-task 1 76% 99%
sub-task 2 90.8% 94.9%
sub-task 3 82.6% 92.6%
sub-task 4 35.1% 55.2%

Overall 20% 48%

Table 4.1: Comparison of success rate between using vision input only and using vision, proprio-
ceptive, and kinesthetic input.

the table, the success rate using vision/proprioceptive/kinesthetic input is much higher than the

success rate using vision input only. Table 4.2 also shows the number of steps taken by the agent

to achieve each of the sub-task. Similarly, the agent when using vision/proprioceptive/kinesthetic

input use less steps to achieve the sub-tasks, except for the last sub-task which they use similar

number of steps.

Fig. 4.14 illustrates one of the successful trials of constructing tool and reach the target. As can

be seen from the figure, without given any predefined knowledge, the agent learned to construct a

novel tool to drag the object. The agent first reaches the tool on the right side with its right arm

(frame 3), and then reaches the tool on the left side with its left arm (frame 4), and then constructs

a “T” shape tool (frame 6), and finally uses this tool to drag the object to the bottom (frame 7-8).

Fig. 4.15 shows more results.
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Vision only full input
Task steps std steps std
Sub-task 1 53 113.6 21.3 1.5
Sub-task 2 166.6 171.3 32 17.2
Sub-task 3 245.3 197.5 145.5 138.5
Sub-task 4 234.1 129 257.6 136.4
Overall 2923.2 2090.1 1488.5 1176.2

Table 4.2: Comparison of number of steps needed to achieve the goal between using vision input
only and using vision, proprioceptive, and kinesthetic input.

Figure 4.14: Controlling two jointed arms to construct a “T”-shaped tool for dragging an object
(red cube) to the bottom of the screen.

4.4 Discussion & Conclusion

The limitation of this work is that there are some simplification, assumptions and restrictions of

the environment we made to simplify the problem, which might not be very realistic. For example,

we simplify the robot’s hand to be a joint; we assume the joint can be connected upon contact; and

we initialize the target at a certain range of location. Therefore, one of the future work is to release

these assumptions and restrictions of the environment. Although our environment is built in a 3D

world, it is still a 2D environment. Another future work is to extend the environment to be a full

3D environment, similar to the IKEA Furniture Assembly environment [135].

As conclusion, we introduced a physical simulated environment for tool construction ans use.

We proposed an approach to use raw pixel input as well as proprioceptive/kinesthetic input to

learn to construct and use novel tools. Different from the previous works [133], we do not use
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Figure 4.15: (a) Successful trial using multimodal input. It takes 1700 steps to complete the task
for this trial. (b) Successful trial using vision input only. It takes 3400 steps to complete the task
for this trial. (c) Failed trial using multimodal input. The agent accidentally pushed the target away
when constructing “T” shape tool, making the task unsolvable. (d) Failed trial using vision input
only. The agent struggle to construct the “T” shape tool without proprioceptive and kinesthetic
input.
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manually designed reward function. We propose to use hierarchical reinforcement learning with

curiosity reward to accelerate the training. In our approach, the manager proposes and assigns

sub-goals to workers and the workers then learn to achieve the sub-goals. We design the sub-goals

as minimizing the distance between some salient objects to encourage behaviors such as picking

up tools, connecting two tools to build a new tool, and so on. Generally, the definition of the

sub-goals allows us to explore the environment at a higher level: to reach and grab some objects

and to construct novel objects. We believe that this strategy to design sub-goals to encourage

certain behaviors and accelerate exploration can also be applied in other Reinforcement Learning

problems. Our experiments show that the agent can successfully learn a sequence of sub-tasks to

construct a novel tool to achieve the goal. In addition, adding proprioceptive/kinesthetic input can

accelerate the training and lead to a better performance.
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5. CONCLUSION

In this project, we investigated three different problems with multimodal deep learning.

The first problem is learning to synthesize 4D light field from a single image. In this task,

our key contributions include: (1) we found that using pre-trained depth prediction network to

generate estimated depth and fusing the estimated depth with the 2D image input can significantly

improved the light field synthesis performance, (2) we extended the MPI scene representation

and demonstrated its advantage over the original MPI for single image view synthesis with small

baseline, (3) we proposed a two parallel network architecture to handle the visible and occluded

regions to reduce artifacts, (4) we introduced a new large-scale light field dataset containing over

2,000 unique scenes.

In the second task, we focused on face recognition for unconstrained videos. We proposed

to use audio information in the video to aid in the recognition of low quality videos. In order to

achieve this goal, we introduced an Audio-Visual Aggregation Network (AVAN) to aggregate mul-

tiple facial and voice information to improve face recognition performance. To effectively train

and evaluate our approach, we constructed an Audio-Visual Face Recognition dataset. Overall, the

key contributions are: (1) proposing an approach to aggregate visual embeddings and audio em-

beddings for unconstrained video face recognition, (2) a large speech-video-matched audio-visual

person recognition dataset, which is a first of its kind, (3) experiments show that our approach

significantly improves the person recognition accuracy.

Finally, we investigated learning to construct and use tools with deep reinforcement learning.

We proposed to use raw pixel image as visual input, as well as proprioceptive and kinesthetic in-

puts to accelerate the training. In addition, because the exploration space is very large and the

reward is sparse, we proposed to use hierarchical reinforcement learning with curiosity reward.

Our experiments showed that our approach can successfully achieve the goal with the multimodal

input. The contributions for this research includes: (1) proposing an approach to use visual, pro-

prioceptive (kinesthetic) multimodal inputs to construct and use novel tools, (2) using hierarchical
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reinforcement learning with curiosity reward to accelerate training, (3) introducing a physically

simulated environment for novel tool construction and use research.

In summary, we investigated different approaches, strategies, and architectures to improve the

performance by using multimodal input in three different scenarios. We expect the specific meth-

ods developed in this work to help us better understand multimodal processing in deep learning.

85



REFERENCES

[1] T.-C. Wang, J.-Y. Zhu, N. K. Kalantari, A. A. Efros, and R. Ramamoorthi, “Light field video

capture using a learning-based hybrid imaging system,” ACM Transactions on Graphics

(TOG), vol. 36, no. 4, p. 133, 2017.

[2] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual con-

ference on Computer graphics and interactive techniques, pp. 31–42, 1996.

[3] L. Wang, X. Shen, J. Zhang, O. Wang, Z. Lin, C.-Y. Hsieh, S. Kong, and H. Lu, “Deeplens:

Shallow depth of field from a single image,” ACM Transactions on Graphics (TOG), vol. 37,

pp. 245:1–245:11, Dec. 2018.

[4] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep

face recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 4690–4699, 2019.

[5] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan, and Z. Zhu,

“Deep speaker: an end-to-end neural speaker embedding system,” arXiv preprint

arXiv:1705.02304, vol. 650, 2017.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-

mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[7] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, “Stereo magnification: Learning

view synthesis using multiplane images,” ACM Transactions on Graphics (TOG), vol. 37,

pp. 65:1–65:12, July 2018.

[8] E. H. Adelson, J. R. Bergen, et al., The plenoptic function and the elements of early vision,

vol. 2. Vision and Modeling Group, Media Laboratory, Massachusetts Institute of . . . , 1991.

[9] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz,

and M. Levoy, “High performance imaging using large camera arrays,” in ACM SIGGRAPH

86



2005 Papers, pp. 765–776, 2005.

[10] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg, “Transformation-grounded image

generation network for novel 3d view synthesis,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3500–3509, 2017.

[11] M. Liu, X. He, and M. Salzmann, “Geometry-aware deep network for single-image novel

view synthesis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 4616–4624, 2018.

[12] S. Tulsiani, R. Tucker, and N. Snavely, “Layer-structured 3d scene inference via view syn-

thesis,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 302–

317, 2018.

[13] S. Niklaus, L. Mai, J. Yang, and F. Liu, “3d ken burns effect from a single image,” ACM

Transactions on Graphics (TOG), vol. 38, Nov. 2019.

[14] P. P. Srinivasan, T. Wang, A. Sreelal, R. Ramamoorthi, and R. Ng, “Learning to synthe-

size a 4d rgbd light field from a single image,” in Proceedings of the IEEE International

Conference on Computer Vision, pp. 2243–2251, 2017.

[15] X. Cun, F. Xu, C. Pun, and H. Gao, “Depth-assisted full resolution network for single

image-based view synthesis,” IEEE Computer Graphics and Applications, vol. 39, pp. 52–

64, March 2019.

[16] P. P. Srinivasan, R. Tucker, J. T. Barron, R. Ramamoorthi, R. Ng, and N. Snavely, “Pushing

the boundaries of view extrapolation with multiplane images,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 175–184, 2019.

[17] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi, R. Ng,

and A. Kar, “Local light field fusion: Practical view synthesis with prescriptive sampling

guidelines,” ACM Transactions on Graphics (TOG), vol. 38, pp. 29:1–29:14, July 2019.

87



[18] K. Karsch, C. Liu, and S. B. Kang, “Depth transfer: Depth extraction from video using non-

parametric sampling,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 36, no. 11, pp. 2144–2158, 2014.

[19] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of perspective,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 89–96, 2014.

[20] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image using a

multi-scale deep network,” in Proceedings of the 27th International Conference on Neural

Information Processing Systems - Volume 2, NIPS’14, (Cambridge, MA, USA), pp. 2366–

2374, MIT Press, 2014.

[21] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, “Multi-scale continuous crfs as sequen-

tial deep networks for monocular depth estimation,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 5354–5362, 2017.

[22] D. Xu, W. Wang, H. Tang, H. Liu, N. Sebe, and E. Ricci, “Structured attention guided

convolutional neural fields for monocular depth estimation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 3917–3925, 2018.

[23] W. Chen, Z. Fu, D. Yang, and J. Deng, “Single-image depth perception in the wild,” in

Advances in Neural Information Processing Systems, pp. 730–738, 2016.

[24] K. Xian, C. Shen, Z. Cao, H. Lu, Y. Xiao, R. Li, and Z. Luo, “Monocular relative depth

perception with web stereo data supervision,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 311–320, 2018.

[25] Z. Li and N. Snavely, “Megadepth: Learning single-view depth prediction from internet

photos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 2041–2050, 2018.

[26] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis, “Depth synthesis and

local warps for plausible image-based navigation,” ACM Transactions on Graphics (TOG),

vol. 32, no. 3, pp. 1–12, 2013.

88



[27] P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf, “Casual 3d photography,” ACM Transac-

tions on Graphics (TOG), vol. 36, no. 6, pp. 1–15, 2017.

[28] P. Hedman and J. Kopf, “Instant 3d photography,” ACM Transactions on Graphics (TOG),

vol. 37, no. 4, pp. 1–12, 2018.

[29] E. Penner and L. Zhang, “Soft 3d reconstruction for view synthesis,” ACM Transactions on

Graphics (TOG), vol. 36, no. 6, p. 235, 2017.

[30] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, “Deepstereo: Learning to predict new

views from the world’s imagery,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 5515–5524, 2016.

[31] I. Choi, O. Gallo, A. Troccoli, M. H. Kim, and J. Kautz, “Extreme view synthesis,” in

Proceedings of the IEEE International Conference on Computer Vision, pp. 7781–7790,

2019.

[32] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck, N. Snavely, and

R. Tucker, “Deepview: View synthesis with learned gradient descent,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 2367–2376, 2019.

[33] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi, “Learning-based view synthesis for light

field cameras,” ACM Transactions on Graphics (TOG), vol. 35, no. 6, p. 193, 2016.

[34] G. Wu, M. Zhao, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field reconstruction using

deep convolutional network on epi,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 6319–6327, 2017.

[35] Y. Wang, F. Liu, Z. Wang, G. Hou, Z. Sun, and T. Tan, “End-to-end view synthesis for light

field imaging with pseudo 4dcnn,” in Proceedings of the European Conference on Computer

Vision (ECCV), pp. 333–348, 2018.

[36] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Single-view to multi-view: Reconstructing

unseen views with a convolutional network,” CoRR, vol. abs/1511.06702, 2015.

89



[37] J. Yang, S. E. Reed, M.-H. Yang, and H. Lee, “Weakly-supervised disentangling with recur-

rent transformations for 3d view synthesis,” in Advances in Neural Information Processing

Systems, pp. 1099–1107, 2015.

[38] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee, “Perspective transformer nets: Learning

single-view 3d object reconstruction without 3d supervision,” in Advances in Neural Infor-

mation Processing Systems, pp. 1696–1704, 2016.

[39] K. Rematas, C. H. Nguyen, T. Ritschel, M. Fritz, and T. Tuytelaars, “Novel views of objects

from a single image,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 39, no. 8, pp. 1576–1590, 2016.

[40] K. Olszewski, S. Tulyakov, O. Woodford, H. Li, and L. Luo, “Transformable bottleneck

networks,” arXiv preprint arXiv:1904.06458, 2019.

[41] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis by appearance

flow,” in European Conference on Computer Vision, pp. 286–301, Springer, 2016.

[42] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari, “Peeking behind objects: Layered

depth prediction from a single image,” Pattern Recognition Letters, vol. 125, pp. 333–340,

2019.

[43] S. Evain and C. Guillemot, “A lightweight neural network for monocular view generation

with occlusion handling,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp. 1–14, 2019.

[44] M.-L. Shih, S.-Y. Su, J. Kopf, and J.-B. Huang, “3d photography using context-aware lay-

ered depth inpainting,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 8028–8038, 2020.

[45] O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson, “Synsin: End-to-end view synthesis

from a single image,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 7467–7477, 2020.

90



[46] R. Tucker and N. Snavely, “Single-view view synthesis with multiplane images,” in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 551–560, 2020.

[47] T. Porter and T. Duff, “Compositing digital images,” in ACM Siggraph Computer Graphics,

vol. 18, pp. 253–259, ACM, 1984.

[48] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[49] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded refinement networks,”

in Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1520,

2017.

[50] D. G. Dansereau, B. Girod, and G. Wetzstein, “LiFF: Light field features in scale and depth,”

in Computer Vision and Pattern Recognition (CVPR), IEEE, June 2019.

[51] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski, “Non-rigid dense correspon-

dence with applications for image enhancement,” ACM Transactions on Graphics (TOG),

vol. 30, no. 4, p. 70, 2011.

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems, pp. 8024–8035,

2019.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International

Conference on Learning Representations (ICLR), 2015.

[54] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from

error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13,

no. 4, pp. 600–612, 2004.

91



[55] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset and benchmark

for large-scale face recognition,” in European conference on computer vision, pp. 87–102,

Springer, 2016.

[56] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard, “The megaface bench-

mark: 1 million faces for recognition at scale,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 4873–4882, 2016.

[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 1–9, 2015.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[59] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convolutional neural

networks.,” in ICML, vol. 2, p. 7, 2016.

[60] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recogni-

tion and clustering,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 815–823, 2015.

[61] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in International Work-

shop on Similarity-Based Pattern Recognition, pp. 84–92, Springer, 2015.

[62] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, with

application to face verification,” in 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 539–546, IEEE, 2005.

[63] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere embed-

ding for face recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 212–220, 2017.

92



[64] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for face verification,”

IEEE Signal Processing Letters, vol. 25, no. 7, pp. 926–930, 2018.

[65] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large

margin cosine loss for deep face recognition,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5265–5274, 2018.

[66] K. Zhao, J. Xu, and M.-M. Cheng, “Regularface: Deep face recognition via exclusive regu-

larization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pp. 1136–1144, 2019.

[67] J. Goldberger, G. E. Hinton, S. Roweis, and R. R. Salakhutdinov, “Neighbourhood compo-

nents analysis,” Advances in neural information processing systems, vol. 17, pp. 513–520,

2004.

[68] N. Quadrianto and C. H. Lampert, “Learning multi-view neighborhood preserving projec-

tions,” in ICML, 2011.

[69] O. Tuzel, F. Porikli, and P. Meer, “Pedestrian detection via classification on riemannian

manifolds,” IEEE transactions on pattern analysis and machine intelligence, vol. 30, no. 10,

pp. 1713–1727, 2008.

[70] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Statistical computations on

grassmann and stiefel manifolds for image and video-based recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2273–2286, 2011.

[71] C. Herrmann, D. Willersinn, and J. Beyerer, “Low-resolution convolutional neural networks

for video face recognition,” in 2016 13th IEEE International Conference on Advanced Video

and Signal Based Surveillance (AVSS), pp. 221–227, IEEE, 2016.

[72] K. Sohn, S. Liu, G. Zhong, X. Yu, M.-H. Yang, and M. Chandraker, “Unsupervised domain

adaptation for face recognition in unlabeled videos,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 3210–3218, 2017.

93



[73] Y. Rao, J. Lin, J. Lu, and J. Zhou, “Learning discriminative aggregation network for video-

based face recognition,” in Proceedings of the IEEE international conference on computer

vision, pp. 3781–3790, 2017.

[74] J. Zheng, R. Ranjan, C.-H. Chen, J.-C. Chen, C. D. Castillo, and R. Chellappa, “An auto-

matic system for unconstrained video-based face recognition,” IEEE Transactions on Bio-

metrics, Behavior, and Identity Science, vol. 2, no. 3, pp. 194–209, 2020.

[75] J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and G. Hua, “Neural aggregation network

for video face recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 4362–4371, 2017.

[76] S. Gong, Y. Shi, and A. K. Jain, “Recurrent embedding aggregation network for video face

recognition,” arXiv preprint arXiv:1904.12019, 2019.

[77] T. Choudhury, B. Clarkson, T. Jebara, and A. Pentland, “Multimodal person recognition

using unconstrained audio and video,” in Proceedings, International Conference on Audio-

and Video-Based Person Authentication, pp. 176–181, Citeseer, 1999.

[78] A. Albiol, L. Torres, and E. J. Delp, “Fully automatic face recognition system using a

combined audio-visual approach,” IEE Proceedings-Vision, Image and Signal Processing,

vol. 152, no. 3, pp. 318–326, 2005.

[79] X. Tang and Z. Li, “Audio-guided video-based face recognition,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 19, no. 7, pp. 955–964, 2009.

[80] G. Sell, K. Duh, D. Snyder, D. Etter, and D. Garcia-Romero, “Audio-visual person recogni-

tion in multimedia data from the iarpa janus program,” in 2018 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 3031–3035, IEEE, 2018.

[81] Y. M. Assael, B. Shillingford, S. Whiteson, and N. De Freitas, “Lipnet: End-to-end

sentence-level lipreading,” arXiv preprint arXiv:1611.01599, 2016.

94



[82] K. Hoover, S. Chaudhuri, C. Pantofaru, M. Slaney, and I. Sturdy, “Putting a face to the

voice: Fusing audio and visual signals across a video to determine speakers,” arXiv preprint

arXiv:1706.00079, 2017.

[83] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W. T. Freeman, and

M. Rubinstein, “Looking to listen at the cocktail party: A speaker-independent audio-visual

model for speech separation,” arXiv preprint arXiv:1804.03619, 2018.

[84] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: Telephone speech corpus

for research and development,” in Acoustics, Speech, and Signal Processing, IEEE Interna-

tional Conference on, vol. 1, pp. 517–520, IEEE Computer Society, 1992.

[85] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr corpus based on

public domain audio books,” in 2015 IEEE international conference on acoustics, speech

and signal processing (ICASSP), pp. 5206–5210, IEEE, 2015.

[86] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale speaker identification

dataset,” arXiv preprint arXiv:1706.08612, 2017.

[87] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recognition,” arXiv

preprint arXiv:1806.05622, 2018.

[88] D. Wang and X. Zhang, “Thchs-30: A free chinese speech corpus,” arXiv preprint

arXiv:1512.01882, 2015.

[89] M. Nakayama, T. Nishiura, Y. Denda, N. Kitaoka, K. Yamamoto, T. Yamada, S. Tsuge,

C. Miyajima, M. Fujimoto, T. Takiguchi, et al., “Censrec-4: Development of evaluation

framework for distant-talking speech recognition under reverberant environments,” in Ninth

Annual Conference of the International Speech Communication Association, 2008.

[90] M. Falcone and A. Gallo, “The" siva" speech database for speaker verification: Description

and evaluation,” in Proceeding of Fourth International Conference on Spoken Language

Processing. ICSLP’96, vol. 3, pp. 1902–1905, IEEE, 1996.

95



[91] R. Jahangir, Y. W. Teh, H. F. Nweke, G. Mujtaba, M. A. Al-Garadi, and I. Ali, “Speaker

identification through artificial intelligence techniques: A comprehensive review and re-

search challenges,” Expert Systems with Applications, vol. 171, p. 114591, 2021.

[92] Y. Lukic, C. Vogt, O. Dürr, and T. Stadelmann, “Speaker identification and clustering us-

ing convolutional neural networks,” in 2016 IEEE 26th international workshop on machine

learning for signal processing (MLSP), pp. 1–6, IEEE, 2016.

[93] A. S. Imran, V. Haflan, A. S. Shahrebabaki, N. Olfati, and T. K. Svendsen, “Evaluating

acoustic feature maps in 2d-cnn for speaker identification,” in Proceedings of the 2019 11th

International Conference on Machine Learning and Computing, pp. 211–216, 2019.

[94] P. Dhakal, P. Damacharla, A. Y. Javaid, and V. Devabhaktuni, “A near real-time automatic

speaker recognition architecture for voice-based user interface,” Machine Learning and

Knowledge Extraction, vol. 1, no. 1, pp. 504–520, 2019.

[95] N. N. An, N. Q. Thanh, and Y. Liu, “Deep cnns with self-attention for speaker identifica-

tion,” IEEE Access, vol. 7, pp. 85327–85337, 2019.

[96] J. Larsson, “Optimizing text-independent speaker recognition using an lstm neural net-

work,” 2014.

[97] J.-W. Jung, H.-S. Heo, I.-H. Yang, H.-J. Shim, and H.-J. Yu, “Avoiding speaker overfitting in

end-to-end dnns using raw waveform for text-independent speaker verification,” extraction,

vol. 8, no. 12, pp. 23–24, 2018.

[98] O. Ghahabi and J. Hernando, “Restricted boltzmann machines for vector representation of

speech in speaker recognition,” Computer Speech & Language, vol. 47, pp. 16–29, 2018.

[99] S. S. Tirumala and S. R. Shahamiri, “A deep autoencoder approach for speaker identifica-

tion,” in Proceedings of the 9th International Conference on Signal Processing Systems,

pp. 175–179, 2017.

[100] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A

database forstudying face recognition in unconstrained environments,” 2008.

96



[101] S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and S. Zafeiriou, “Agedb:

the first manually collected, in-the-wild age database,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition Workshops, pp. 51–59, 2017.

[102] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” arXiv

preprint arXiv:1411.7923, 2014.

[103] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained videos with matched

background similarity,” in CVPR 2011, pp. 529–534, IEEE, 2011.

[104] J. R. Beveridge, P. J. Phillips, D. S. Bolme, B. A. Draper, G. H. Givens, Y. M. Lui, M. N.

Teli, H. Zhang, W. T. Scruggs, K. W. Bowyer, et al., “The challenge of face recognition

from digital point-and-shoot cameras,” in 2013 IEEE Sixth International Conference on

Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8, IEEE, 2013.

[105] A. Bansal, A. Nanduri, C. D. Castillo, R. Ranjan, and R. Chellappa, “Umdfaces: An anno-

tated face dataset for training deep networks,” in 2017 IEEE International Joint Conference

on Biometrics (IJCB), pp. 464–473, IEEE, 2017.

[106] B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto, A. K. Jain, W. T. Niggel,

J. Anderson, J. Cheney, et al., “Iarpa janus benchmark-c: Face dataset and protocol,” in

2018 International Conference on Biometrics (ICB), pp. 158–165, IEEE, 2018.

[107] Y. Liu, B. Peng, P. Shi, H. Yan, Y. Zhou, B. Han, Y. Zheng, C. Lin, J. Jiang, Y. Fan,

et al., “iqiyi-vid: A large dataset for multi-modal person identification,” arXiv preprint

arXiv:1811.07548, 2018.

[108] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using mul-

titask cascaded convolutional networks,” IEEE Signal Processing Letters, vol. 23, no. 10,

pp. 1499–1503, 2016.

[109] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[110] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimiza-

tion,” in International conference on machine learning, pp. 1889–1897, PMLR, 2015.

97



[111] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A framework for

temporal abstraction in reinforcement learning,” Artificial intelligence, vol. 112, no. 1-2,

pp. 181–211, 1999.

[112] R. Parr and S. Russell, “Reinforcement learning with hierarchies of machines,” Advances in

neural information processing systems, pp. 1043–1049, 1998.

[113] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq value function decom-

position,” Journal of artificial intelligence research, vol. 13, pp. 227–303, 2000.

[114] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Advances in Neural In-

formation Processing Systems (S. Hanson, J. Cowan, and C. Giles, eds.), vol. 5, Morgan-

Kaufmann, 1993.

[115] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep rein-

forcement learning: Integrating temporal abstraction and intrinsic motivation,” Advances in

neural information processing systems, vol. 29, pp. 3675–3683, 2016.

[116] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep

reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[117] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical reinforcement learn-

ing,” arXiv preprint arXiv:1805.08296, 2018.

[118] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learning multi-level hierarchies with hind-

sight,” arXiv preprint arXiv:1712.00948, 2017.

[119] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu, “Feudal networks for hierarchical reinforcement learning,” in Interna-

tional Conference on Machine Learning, pp. 3540–3549, PMLR, 2017.

[120] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random network distil-

lation,” arXiv preprint arXiv:1810.12894, 2018.

98



[121] E. B. Ottoni and P. Izar, “Capuchin monkey tool use: overview and implications,” Evo-

lutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, vol. 17,

no. 4, pp. 171–178, 2008.

[122] A. H. Taylor, B. Knaebe, and R. D. Gray, “An end to insight? new caledonian crows can

spontaneously solve problems without planning their actions,” Proceedings of the Royal

Society B: Biological Sciences, vol. 279, no. 1749, pp. 4977–4981, 2012.

[123] A. M. P. von Bayern, S. Danel, A. Auersperg, B. Mioduszewska, and A. Kacelnik, “Com-

pound tool construction by new caledonian crows,” Scientific reports, vol. 8, no. 1, pp. 1–8,

2018.

[124] Q. Li, J. Yoo, and Y. Choe, “Emergence of tool use in an articulated limb controlled

by evolved neural circuits,” in 2015 International Joint Conference on Neural Networks

(IJCNN), pp. 1–8, IEEE, 2015.

[125] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topolo-

gies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[126] K. O. Stanley, B. D. Bryant, I. Karpov, R. Miikkulainen, et al., “Real-time evolution of

neural networks in the nero video game,” in AAAI, vol. 6, pp. 1671–1674, 2006.

[127] J. Gauci, K. O. Stanley, et al., “A case study on the critical role of geometric regularity in

machine learning.,” in AAAI, pp. 628–633, 2008.

[128] R. S. Amant and A. B. Wood, “Tool use for autonomous agents.,” in AAAI, pp. 184–189,

2005.

[129] E. Visalberghi and L. Limongelli, “Acting and understanding: Tool use revisited through the

minds of capuchin monkeys.,” 1996.

[130] J. Kwon and Y. Choe, “Predictive internal neural dynamics for delay compensation,” in 2010

Second World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 443–

448, IEEE, 2010.

99



[131] H. Wang, Q. Li, J. Yoo, and Y. Choe, “Dynamical analysis of recurrent neural circuits in

articulated limb controllers for tool use,” in 2016 International Joint Conference on Neural

Networks (IJCNN), pp. 4339–4345, IEEE, 2016.

[132] R. Reams and Y. Choe, “Emergence of tool construction in an articulated limb controlled

by evolved neural circuits,” in 2017 International Joint Conference on Neural Networks

(IJCNN), pp. 642–649, IEEE, 2017.

[133] K. N. Nguyen, J. Yoo, and Y. Choe, “Speeding up affordance learning for tool use, using

proprioceptive and kinesthetic inputs,” in 2019 International Joint Conference on Neural

Networks (IJCNN), pp. 1–8, IEEE, 2019.

[134] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,

2013.

[135] Y. Lee, E. S. Hu, and J. J. Lim, “IKEA furniture assembly environment for long-horizon

complex manipulation tasks,” in IEEE International Conference on Robotics and Automa-

tion (ICRA), 2021.

100


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	SINGLE IMAGE AND DEPTH-BASED MULTIMODAL LIGHT FIELD SYNTHESIS
	Background and Introduction
	Light Field
	Novel View Synthesis
	Overview

	Related Work
	Monocular Depth Prediction
	Multi-Image View synthesis
	Single-Image View synthesis

	Approach
	Single Image Depth Prediction
	Variable Multiplane Image Representation
	Two-Network Fusion
	Dataset
	Training

	Results
	Quantitative Comparison to Other Approaches
	Qualitative Comparison to Other Approaches
	Comparison to Other Methods on Refocusing

	Limitations and Future Work
	Conclusion

	AUDIO-VISUAL MULTIMODAL FACE RECOGNITION
	Introduction
	Related Works
	Image face recognition
	Video face recognition
	Audio-visual face tasks
	Speaker identification

	Existing Datasets and Their Limitations
	Image-based face recognition
	Video-based face recognition
	Multimodal person identification
	Limitations of existing datasets
	Proposed audio-visual dataset

	Approach
	Collection of the AVFR Dataset
	Embedding: Overview
	Audio and Visual Embeddings
	Audio-Visual Attention Module

	Experiments and Results
	Experiments
	Results

	Discussion and Conclusion

	VISUAL, PROPRIOCEPTIVE AND KINESTHETIC MULTIMODAL CONTROL FOR TOOL CONSTRUCTION AND USE
	Background and Related Works
	Reinforcement Learning
	Reinforcement Learning Algorithms
	Hierarchical Reinforcement Learning

	Tool construction and use
	Emergence of Tool Use In an Articulated Limb Controlled by Evolved Neural Circuits
	Other Related Works


	Approach
	Multimodal Input
	Hierarchical Reinforcement Learning
	Neural Network Architecture

	Results
	Discussion & Conclusion

	CONCLUSION
	REFERENCES

