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ABSTRACT

Quantum graphs are an operator space generalization of classical graphs that have appeared in

different branches of mathematics including operator systems theory, non-commutative topology

and quantum information theory. In this work, we develop a notion of quantum coloring for quan-

tum graphs using a non-local game with quantum inputs & classical outputs that generalizes the

coloring game for classical graphs.

Using this game, we define chromatic numbers for quantum graphs in the various (quantum)

models and show that they are a analogue of D.Stahlke’s [53] entanglement assisted chromatic

numbers and that the classical model is equivalent to Kim & Mehta’s [37] strong chromatic num-

bers for non-commutative graphs. We demonstrate explicit quantum colorings of all quantum

complete graphs and prove that every quantum graph has a finite quantum chromatic number (but

not necessarily classical chromatic number). We also show that every quantum graph is 4-colorable

in the algebraic model.

Further, we obtain five lower bounds for the classical and quantum chromatic number of quan-

tum graphs using the spectrum of the quantum adjacency operator. These bounds are achieved by

applying a combinatorial characterization of quantum graph coloring obtained from the winning

strategies of the quantum-to-classical nonlocal coloring game. We generalize all the spectral esti-

mates of Elphick & Wocjan [19] to the quantum graph setting and in particular, prove a quantum

generalization of the Hoffman’s bound. We also demonstrate the tightness of our bounds in the

case of quantum complete graphs.
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NOTATIONS AND NOMENCLATURE

[n] discrete set {1, 2, . . . , n}

|·〉 a column vector

〈·| (conjugate transpose) row vector

←→ one-to-one correspondence

Mn set of all n× n complex matrices

Dn set of all diagonal n× n complex matrices

ei unit vector whose ith entry is 1 and all other entries are 0

eij matrix unit whose ith row, jth column has entry 1 and all
other entries are 0

Tr natural trace, given by summing all diagonal terms of a
matrix

B(H) algebra of bounded linear operators on a Hilbert spaceH

σ(A) spectrum of an operator A

G a classical graph

G a quantum graph

Kc classical complete graph on c vertices

χ classical chromatic number

χq quantum chromatic number

POVM Positive operator valued measure

PVM Projection valued measure

UCP Unital completely positive

CPTP Completely positive and trace preserving
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1. Introduction

Graph coloring has been well-studied in mathematics since the eighteenth century, with widespread

applications in day-to-day life, including scheduling problems, register allocation, radio frequency

assignments and sudoku solutions [46]. Traditionally, the coloring of a graph refers to an assign-

ment of labels (called colors) to the vertices of a graph such that no two adjacent vertices share the

same color. The chromatic number of a graph is defined to be the minimum number of colors for

which such an assignment is possible.

More recently, a quantum generalization of the chromatic number was introduced within the

framework of non-local games in quantum information theory [7]. The quantum chromatic number

of a graph is defined as the minimal number of colors necessary in a quantum protocol in which

two separated players, who cannot communicate with each other but share an entangled quantum

state, try to convince an interrogator with certainty that they have a coloring for the given graph.

There are known examples of classical graphs whose quantum chromatic number is strictly smaller

than its classical chromatic number [7, 41], thus exhibiting the power of quantum entanglement.

Quantum coloring games of classical graphs have close connections to Tsirelson’s conjecture and

the Connes embedding problem and have been extensively studied in the past decade [41, 47, 48,

52]. Motivated by coloring problems and non-local games, we investigate the notion of quantum

coloring for quantum graphs in this dissertation.

Quantum graphs are a non-commutative generalization of classical graphs that have attracted

significant attention in recent years due to their intriguing connections to several areas of math-

ematics, physics and computer science. Within information theory, quantum graphs appear quite

naturally in the theory of zero-error communication in the form of confusability graphs of quan-

tum channels. If the channel at hand is a noisy classical channel, the confusability graph is a finite

simple graph on the input alphabet whose edges indicate which letters can be confused after pass-

ing through the channel. If the communication channel is genuinely quantum, then the role of the
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confusability graph is played by a more general structure [14], namely a quantum graph.

The idea of a quantum graph first appeared in [20], and has thereafter emerged independently

in other disguises. In information theory, quantum graphs were introduced as a quantum analogue

of the confusability graph of classical channels [14]. A more general definition was proposed in the

context of quantum relations [58], which describes a quantum graph as a reflexive and symmetric

quantum relation on a finite dimensional von-Neumann algebra. In [43], an equivalent perspective

on quantum graphs was developed in a categorical framework (of quantum sets & quantum func-

tions) using a quantum adjacency matrix. This idea was further generalized to the non-tracial set-

ting in [4]. In recent years, research in quantum graph theory has undergone vast developments and

quantum graphs have been explored in the context of zero-error quantum information theory, quan-

tum error correction, operator algebras, non-local games, quantum symmetries, non-commutative

topology and other fields [6, 8, 17, 25, 35, 42, 57]. There have also been multiple studies on the

coloring of quantum graphs [37, 44, 53, 54], leading to different variants of the chromatic number

of a quantum graph, in both the classical and quantum sense.

Our goal is to study the quantum coloring of quantum graphs and develop a double quantization

of the chromatic number, namely the quantum chromatic number of a quantum graph. We achieve

this by introducing a quantum-to-classical non-local game that extends the notion of coloring and

chromatic numbers from classical graphs to quantum graphs. We adopt this approach as non-local

games provide a convenient framework in which one can exhibit the advantages of using quantum

entanglement as a resource to accomplish certain tasks. The general setup of a (classical input,

classical output) two player non-local game is given in terms of a tuple (I, O, λ), where I and O

are finite sets and λ : O×O× I× I → {0, 1} is a predicate function which determines the rules of

the game. The game is played by two cooperating players, Alice and Bob, and a verifier (Referee).

Each round proceeds by the verifier (randomly) selecting a pair of questions (x, y) ∈ I × I and

sending x to Alice and y to Bob. Alice and Bob then respond with answers (a, b) ∈ O × O. The

verifier declares the round won if λ(a, b, x, y) = 1 and declares it lost if λ(a, b, x, y) = 0. The

term non-local refers to the fact that during each round, Alice and Bob are spatially separated
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and are unable to communicate; neither Alice nor Bob knows which questions/answers the other

received/returned. This non-locality makes winning each round of the game (with high probability)

generally very difficult. It is in these scenarios that “quantum strategies” (which make use of some

shared entangled resource between Alice and Bob) can allow the players to drastically improve

their performance by better correlating their behaviors.

Within mathematics, the theory of non-local games has led to some spectacular develop-

ments in the field of operator algebras. Most notable here is the work of Junge-Navascues-

Palazuelos-Perez-Garcia-Scholz-Werner [33], T. Fritz [22] and N. Ozawa [45] connecting the

Connes-Kirchberg conjecture to Tsirelson’s correlation sets in quantum information. Very re-

cently, Ji-Natarajan-Vidick-Wright-Yuen [32] used non-local games to provide a counterexample

to the Connes-Kirchberg conjecture. Another recent and quite remarkable application of non-local

games in mathematics is the work of Mančinska-Roberson [40] which uses a non-local game,

called the graph isomorphism game, to provide a quantum interpretation of pairs of graphs that

admit the same number of homomorphisms from planar graphs. In particular, the graph coloring

game, which is an example of a synchronous non-local game, has led to many developments in the

operator algebraic aspects of non-local games. Winning strategies for synchronous games turn out

to be completely described in terms of traces on a certain ∗-algebra associated to the game [30],

bringing to bear many powerful operator algebraic techniques in the theory of non-local games.

In the present work, we introduce a quantum input-classical output non-local game [definition

4.1.4] that captures the coloring problem for quantum graphs. The inputs for our quantum graph

coloring game are elements from a suitably chosen basis for the operator space of the quantum

graph. These inputs are quantum in the sense that they are tensor products, where one player

receives the left leg of the tensor and the other receives the right leg. The players respond individu-

ally with classical outputs, namely color assignments. They win the round if their responses jointly

satisfy a synchronicity condition and respect the adjacency structure of the quantum graph. This

game generalizes the non-local coloring game for classical graphs and leads to chromatic numbers

for quantum graphs in different mathematical models: loc, q, qs, qa, qc, C∗, hered, alg. We show
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that the winning strategies of this quantum-to-classical nonlocal coloring game also give rise to a

neat combinatorial characterization of quantum graph coloring [theorem 4.1.7].

The chromatic numbers introduced in our framework connect nicely with other versions of

chromatic numbers in the literature. In particular, we prove that it is a special case of Stahlke’s

[53] entanglement-assisted chromatic number for non-commutative graphs [theorem 4.1.7] and

that they agree with Kim & Mehta’s [37] strong chromatic numbers in the classical case [theorem

4.1.9]. We demonstrate explicit quantum colorings of all quantum complete graphs using unitary

error basis tools [theorem 4.2.4]. Specifically, we deduce that every quantum graph has a finite

quantum chromatic number, while its classical chromatic number is infinite, unless the graph itself

is classical [theorem 4.2.9]. We also show interesting extensions of classical results in this frame-

work. In particular, we show that the game algebra of the 4-coloring game for a quantum graph

is always non-trivial, and hence every quantum graph is four-colorable in the algebraic model

[theorem 4.2.10].

It is useful to estimate the chromatic numbers of quantum graphs as they are closely related

to the zero-error capacity of quantum channels [14]. However, computing the chromatic number

of a general graph is an NP-hard problem. In classical graph theory, inequalities involving the

eigenvalues of the adjacency matrix are often used to estimate the chromatic number. We adapt

a similar idea and obtain five lower bounds for the classical and quantum chromatic numbers of

quantum graphs. We achieve this by associating a spectrum [definition 5.1.1] to the quantum graph

using the quantum adjacency operator and applying the combinatorial characterization of quantum

coloring. Using techniques from Elphick & Wocjan [19], we show that several well-known clas-

sical bounds on the chromatic number also hold true in the quantum graph setting. Notably, we

generalize the Hoffman’s bound to quantum graphs [theorem 5.2.2]. We also introduce quantum

analogues for the edge number, Laplacian and signless Laplacian along the way [definition 5.3.4],

and demonstrate the tightness of our bounds in the case of quantum complete graphs [5.7].
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This dissertation is organized as follows:

Chapter 2 provides the necessary background on quantum graphs and the connections between

different definitions. This is largely based on literature from the articles [4, 43, 56, 58].

Chapter 3 develops the general theory of non-local games with quantum inputs and classical

outputs, which is required for chapter 4. We study the associated correlations, the various quantum

models which give rise to it and discuss a generalization of synchronous correlations in this setting.

Chapter 4 introduces the coloring game for quantum graphs using the framework of quantum-

to-classical non-local games. We study the corresponding winning strategies, game *-algebra and

the chromatic numbers arising in this context. We also present the colorings of quantum complete

graphs and results on algebraic colorings here.

In Chapter 5, we obtain the spectral lower bounds for the chromatic numbers of quantum

graphs, followed by an illustration of the bounds for quantum complete graphs.

Chapter 6 contains concluding remarks and directions for future research.
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2. Quantum graphs

Quantum graphs can be defined in different ways, as mentioned in the introduction. In this

chapter, we review some definitions and relevant results on quantum graphs. Specifically, we look

at the connection between different perspectives to quantum graphs and develop a dictionary (table)

that allows for translation of graph properties between the diverse formalisms.

2.1 Quantum graphs as operator spaces

One way to describe quantum graphs is as operator spaces satisfying a certain bimodule prop-

erty [58]. This is a direct generalization of the non-commutative graphs considered by R. Duan,

S. Severini and A. Winter in [14], and D. Stahlke in [53]. This approach is most convenient for

studying quantum coloring problems as it generalizes the edge structure of a classical graph. We

describe this formalism first:

Definition 2.1.1. Let H be a complex Hilbert space andM ⊆ B(H) be a (non-degenerate) von

Neumann algebra. Let M′ := {x ∈ B(H) | ax = xa for all a ∈ M} denote the commutant

of M. A quantum graph on M is an operator space S ⊆ B(H) that is closed under adjoint

and is a bimodule over M′, that is M′SM′ ⊆ S. We denote this quantum graph by the tuple

G = (S,M, B(H)).

The intuition is that S contains operators that represent edges in the graph, as illustrated by the

following example.

Example 2.1.2. Let G be a classical graph on n vertices. One can identify the vertex set of G with

the algebra of diagonal matrices Dn ⊆ Mn, by identifying each vertex i with the diagonal matrix

eii ∈ Dn. Then, SG = span{eij : (i, j) is an edge in G} ⊆Mn is a quantum graph over Dn.

Remark 2.1.3. Indeed, an operator space S ⊆Mn is of the form S = SG for some classical graph

G if and only S is a bimodule over the diagonal algebra Dn [58]. Also, two reflexive classical
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graphs G1, G2 are isomorphic if and only if their corresponding operator systems SG1 , SG2 are

unitally completely order isomorphic [44].

A “purely quantum" example is the following one:

Example 2.1.4. Let M = M2 and S =


a b

c a

 : a, b, c ∈ C

. Then (S,M2, B(C2)) is a

quantum graph on M2 that doesn’t arise from any classical graph.

Remark 2.1.5. It can be shown that the operator space S associated to a quantum graph (S,M, B(H))

is essentially independent of the representation ofM [56].

Motivated by confusability graphs in information theory, quantum graphs are generally as-

sumed to be reflexive (I ∈ S) and hence, S is an operator system in B(H). But for the purposes

of graph coloring, it is also common to consider irreflexive quantum graphs, that is quantum ana-

logues of graphs without loops.

Definition 2.1.6. A quantum graph (S,M, B(H)) is said to be irreflexive if S ⊆ (M′)⊥.

In particular, an irreflexive quantum graph on Mn (with the standard representation Mn =

B(Cn)) is simply a self-adjoint traceless operator subspace in Mn. This is sometimes used as the

definition of non-commutative graphs in the literature [53].

2.2 Quantum graphs with a quantum adjacency matrix

In chapter 5, we will take advantage of an alternate (but equivalent) definition of a quantum

graph, which involves quantizing the vertex set and the adjacency matrix. This formalism was

first introduced in [43] using the language of special symmetric dagger Frobenius algebras, and

was later generalized to the non-tracial case in [4, 42]. In this perspective, the non-commutative

analogue of a vertex set is played by a C*-algebra, which also carries the structure of a Hilbert

space. It is defined as follows:

Definition 2.2.1 (Quantum set). A quantum set is a pair (M, ψ), whereM is a finite dimensional

C*-algebra and ψ :M→ C is a faithful state.
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Using ψ, one can view M as a Hilbert space L2(M) = L2(M, ψ) obtained from the GNS

representation ofM with respect to ψ. That is, L2(M) is the vector spaceM equipped with the

inner product 〈x, y〉 = ψ(y∗x).

Notation 1. Let m :M⊗M →M denote the multiplication map and m∗ denote the adjoint of

m when viewed as a linear operator from L2(M) ⊗ L2(M) → L2(M). Further, we denote the

unit ofM by 1 and let η : C →M be the unit map λ 7→ λ1. The adjoint of η (as an operator on

Hilbert spaces) is denoted by η∗ and is equal to ψ.

While there are many choices for a faithful state ψ on M, we will restrict our attention to

δ-forms, as done in [4].

Definition 2.2.2. For δ > 0, a state ψ :M→ C is called a δ-form if mm∗ = δ2I .

Example 2.2.3. LetX be a finite set andM = C(X) be the algebra of continuous complex valued

functions on X . Then the uniform measure ψ(f) = 1
|X|
∑

x∈X f(x) is a δ-form on C(X) with

δ2 = |X|. In this case, m∗ is given by ei 7→ |X|(ei ⊗ ei), where ei is the characteristic function on

the set {i} ⊆ X .

Example 2.2.4. Let M be Mn equipped with the canonical normalized trace ψ = 1
n

Tr. Then

m∗(eij) = n
∑n

k=1 eik ⊗ ekj , and ψ is an n-form on Mn.

The δ-forms in the above examples are tracial, that is ψ(xy) = ψ(yx) for all x, y ∈ M. A

tracial δ-form on a finite dimensional C*-algebra is unique and has a nice form, which will be used

in later sections. We recall this now:

Proposition 2.2.5. LetM be a finite dimensional C*-algebra, decomposed asM ∼=
⊕N

i=1Mni
,

where N, n1, n2, . . . , nN are some positive integers. Then, there exists a unique tracial δ-form on

M given by

ψ =
1

dim(M)

N⊕
i=1

ni Tr(·) (2.2.0.1)

In this case, δ2 = dim(M) and the state ψ is called the Plancheral trace. Moreover, ψ =

1
dim(M)

Tr |M , where Tr : B(L2(M))→ C is the canonical trace.
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A quantum set endowed with an additional structure of a quantum adjacency matrix yields a

quantum graph.

Definition 2.2.6 ([4]). Let M be a finite dimensional C*-algebra equipped with a δ-form ψ. A

self-adjoint linear map A : L2(M) → L2(M) is called a quantum adjacency matrix if it satisfies

the following conditions:

1. m(A⊗ A)m∗ = δ2A,

2. (I ⊗ η∗m)(I ⊗ A⊗ I)(m∗η ⊗ I) = A.

The tuple G = (M, ψ, A) is called an (undirected) quantum graph.

The quantum graph (M, ψ, A) is said to be reflexive if it further satisfies the condition m(A⊗

I)m∗ = δ2I or is said to be irreflexive if it satisfies the condition m(A⊗ I)m∗ = 0.

The motivation for the above definition comes from the commutative setting whereM = C(X)

and ψ is the uniform measure on X . In this case, the quantum adjacency matrix A : L2(M) →

L2(M) can be identified with a matrix inM|X|(C), and the operation δ−2m(P⊗Q)m∗ is simply the

schur product of the matrices P and Q, given by entrywise multiplication. So, the first condition

in definition 2.2.6 says that A must be an idempotent with respect to Schur multiplication, which

is equivalent to saying that A has entries in {0, 1}. The second condition says A = AT . If we drop

the second condition in definition 2.2.6, it is called a directed quantum graph [6].

Remark 2.2.7. The self-adjointness of A along with condition (2) in definition 2.2.6 implies that

A is also *-preserving [42], that is Ax∗ = (Ax)∗ for all x ∈M.

Every quantum set can be easily equipped with an adjacency operator to obtain a quantum

graph. An example is the quantum complete graph.

Definition 2.2.8. Let (M, ψ) be a quantum set. A reflexive quantum complete graph on M is

defined by A = δ2ψ(·)1. In the classical case, this gives the all 1s matrix and corresponds to the

reflexive complete graph on dim(M) vertices.

An irreflexive quantum complete graph on (M, ψ) is defined by A = δ2ψ(·)1− I .
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There are several non-trivial examples of quantum graphs. In particular, [42] gives a concrete

classification of all undirected reflexive quantum graphs on M2, and [25] gives an example of a

quantum graph, which is not quantum isomorphic to any classical graph.

2.3 Connection between different approaches to quantum graphs

While the two definitions of quantum graphs given in 2.1.1 and 2.2.6 emerged independently

and offer unique insights into the structure of a quantum graph, these perspectives can be shown

to be equivalent [43, section 7]. The goal of this section is to review this connection, so that

one can take advantage of both the perspectives. In particular, we will be adopting the operator

space formalism (definition 2.1.1) in chapter 4 to develop the coloring game and then utilizing the

quantum adjacency matrix formalism (definition 2.2.6) in chapter 5 to achieve the spectral bounds.

Notation 2. Let Mop denote the opposite algebra of M and M′CBM′(B(L2(M))) denote the

set of completely bounded maps P on B(L2(M)) with the property P (axb) = aP (x)b, for all

x ∈ B(L2(M)), a, b ∈M′.

The translation between the definitions 2.1.1 and 2.2.6 can be achieved using the following two

correspondences. A detailed algebraic proof for these correspondences may be found in [39].

(1) There is a well known *-isomorphism between M ⊗Mop and M′CBM′(B(L2(M))) in

finite dimensions [16] given by

M⊗Mop ∼= M′CBM′(B(L2(M))) (2.3.0.1)

x⊗ yop ←→ x(·)y. (2.3.0.2)

(2) There is a bijective correspondence between linear operators A ∈ B(L2(M, ψ)) and ele-

ments p ∈M⊗Mop, given by

A(x) := δ2(ψ ⊗ I)p(x⊗ 1), p := δ−2(I ⊗ A)m∗(1) (2.3.0.3)
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Combining (1) and (2), we get a bijective correspondence between B(L2(M)),M⊗Mop and

M′CBM′(B(L2(M))), which allows us to translate between the different perspectives to quantum

graphs.

B(L2(M)) ←→ M⊗Mop ←→ M′CBM′(B(L2(M)))

A ←→ p ←→ P

We summarize this connection now.

Proposition 2.3.1. LetM be a finite dimensional C*-algebra, equipped with its tracial δ-form ψ.

1. Given a quantum graph (M, ψ, A), define P : B(L2(M))→ B(L2(M)) as

P (X) = δ−2m(A⊗X)m∗. (2.3.0.4)

Then, range(P ) is a self-adjoint operator subspace in B(L2(M)) that is a bimodule over

M′.

2. Given a quantum graph (S,M, B(L2(M))), let P : B(L2(M)) → B(L2(M)) denote a

self-adjointM′ −M′ bimodule projection with range(P ) = S.

That is, P (axb) = aP (x)b, for all x ∈ B(L2(M)), a, b ∈ M′ and P 2 = P = P ∗, where

the adjoint is taken with respect to the trace inner product on B(L2(M)). (Such a P always

exists and is unique for the given S [56].)

Then, A : L2(M)→ L2(M) defined by

A(x) = δ2(ψ ⊗ I)P (x⊗ 1) (2.3.0.5)

is a quantum adjacency matrix on (M, ψ). Here, P is interpreted as an element ofM⊗Mop

using (2.3.0.2).

The expressions (2.3.0.4) and (2.3.0.5) are inverses of each other.
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We note here that the correspondence between S and linear operator A is not one-to-one in

general since there are several differentM′−M′ bimodule idempotents P with the same range S.

However, there is a unique self-adjoint linear operator A for a given S, which corresponds to the

unique orthogonal bimodule projection onto S. In this case, A is also completely positive, which

was used as an alternate definition of quantum adjacency matrix in [8].

Remark 2.3.2. To get anM′ −M′ bimodule map P̃ with range S, one can use the standard trick

of averaging over the unitary group. Begin with a linear map P = P 2 with range S and define

P̃ =

∫∫
U(M′)×U(M′)

a−1P (axb)b−1 da db,

where U(M′) is the set of unitaries inM′ and da db represents integration with respect to the Haar

measure on the compact unitary group U(M′). Then, P̃ is aM′ −M′ bimodule map with range

S. If we need P̃ to be self-adjoint, then we begin with a self-adjoint P .

Summary: We conclude this chapter with a table translating the properties of a quantum graph in

the different perspectives. LetM denote a finite dimensional C*-algebra with its tracial δ-form ψ.

A quantum graph on (M, ψ) can be described in three main ways:

1. As an operator space S ⊆ B(L2(M)) that is a bimodule over the commutant ofM,

(or alternately as anM′ −M′ bimodule projection P with range S),

2. As an idempotent element p inM⊗Mop,

3. As a “Schur idempotent" linear operator A : L2(M)→ L2(M).

It follows from the table that for undirected quantum graphs:

P 2 = P = P ∗ ⇐⇒ p2 = p = p∗

⇐⇒ A is Schur-idempotent and real

⇐⇒ A is Schur-idempotent and self-adjoint.
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Notation 3. In the following table:

• p =
∑t

i=1 ai ⊗ bi ∈M⊗Mop and σ denotes the swap map onM⊗Mop,

• m denotes the multiplication map onM⊗M and η : C→M denotes the unit map 1 7→ 1

• T ∈ B(L2(M)), ξ ∈ L2(M) and x, y ∈M′.

Table 2.1: Different approaches to a quantum graph on (M, ψ)

PROPERTY

(CLASSICAL

GRAPH)

AS AN

OPERATOR

SPACE

AS A

BIMODULE MAP

AS A

PROJECTION

AS A QUANTUM

ADJACENCY

MATRIX

G = (V,E,A) (M,M′SM′) (M, P ) (M, p) (M, A)

S ⊆ B(L2(M)) P ∈M′CBM′ (B(L2(M))) p ∈M⊗Mop A ∈ B(L2(M))

Bimodule
structure
E ⊆ V × V

M′SM′ ⊆ S P (xTy) = xP (T )y
∑

i ai(xTy)bi =
x(
∑

i aiTbi)y
m(A⊗ xTy)m∗ =
x(m(A⊗ T )m∗)y

Schur
idempotent
A ∈Mn({0, 1})

A ∈ S P 2 = P p2 = p m(A⊗A)m∗ = δ2A

Reflexive
Aii = 1, ∀i

M′ ⊆ S P (I) = I m(p) = 1 m(A⊗ I)m∗ = δ2I

Irreflexive
Aii = 0, ∀i

M′ ⊥ S P (I) = 0 m(p) = 0 m(A⊗ I)m∗ = 0

Undirected
A = AT

S = S∗ P ∗(T ) = P (T ∗)∗ σ(p) = p (I⊗η∗m)(I⊗A⊗I)
(m∗η ⊗ I) = A
Alternatively,
A(ξ∗) = [A∗(ξ)]∗

Self adjoint
A = A∗

P (T ∗) = P (T )∗ σ(p) = p∗ A(ξ) = A∗(ξ)

Real (A = A) P ∗(T ) = P (T ) p∗ = p A(ξ∗) = (A(ξ))∗

Positivity
(A is completely
positive)

P is positive
(P = G∗G)

p is positive
(p = g∗g)

A is completely
positive
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3. Nonlocal games with quantum inputs and classical outputs

In recent years, the theory of non-local games has risen to a level of great prominence in

quantum information theory and related parts of physics and mathematics. In this project, we are

mainly interested in a non-local game called the graph coloring game and certain extensions of it.

Before concentrating on the quantum graph coloring game, we first develop some general theory

on non-local games with quantum questions and classical answers, which will be needed for our

discussion. Such games have already been used in the two-output context of quantum XOR games

[27, 51].

3.1 Quantum input - classical output correlations

This section develops the general theory of quantum input - classical output correlations and the

various quantum models which give rise to such correlations.

Recall that in a two player non-local game on n-classical inputs and c-classical outputs, the

main objects of study are the bipartite correlation sets C(n, c) ⊆ Rn
2×c2 which model the players’

behavior. The elements of the correlation sets are conditional probabilities [p(a, b|x, y)], namely

the probability that the players Alice and Bob return answers a and b (respectively), given that they

received questions x and y (respectively).

X = [p(a, b|x, y)]1≤a,b≤c,1≤x,y≤n ∈ C(n, c) ⊆ (Dn ⊗Dn)c
2

. (3.1.0.1)

The correlations (behaviors) X ∈ C(n, c) that are physically relevant are those which can be

realized using a (quantum) strategy. That is, by Alice and Bob performing joint measurements

on a quantum mechanical system prepared in some initial state. Mathematically, a quantum strat-

egy involves two (finite-dimensional) Hilbert spaces HA,HB, family of positive operator-valued

measure (POVMs) {px1 , px2 , . . . pxn} ⊆ B(HA) corresponding to each input x, similarly POVMs

{qy1 , q
y
2 , . . . q

y
n} ⊆ B(HB) for each input y and a state χ ∈ HA ⊗HB. From this data, one obtains
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a correlation X ∈ C(n, c) via the formula

p(a, b|x, y) = 〈pxa ⊗ q
y
bχ, χ〉 . (3.1.0.2)

The subset of all correlations obtainable from quantum strategies as above is denoted by

Cq(n, c). In a similar manner, one can define other classes of correlations Ct(n, c) (t = local,

quantum spatial, quantum approximate, quantum commuting) that are built from the correspond-

ing classes of strategies. A review of all of these models may be found in [36].

To expand this framework and allow for quantum questions, we replace the question set [n]×[n]

with the set of quantum states on the bipartite system Cn ⊗ Cn. Our idea of a quantum input -

classical output game is as follows: the inputs are quantum inputs, in the sense that the referee

initializes the state space Cn ⊗ Cn, where Alice has access to the left copy and Bob has access to

the right copy of Cn. Alice and Bob are allowed to share a(n entanglement) resource space H in

some prepared state χ. After receiving the input ϕ on Cn ⊗ Cn, they can perform measurements

on the triple tensor product Cn ⊗H ⊗ Cn, and respond to the referee with classical outputs based

on their measurements.

Our goal now is to develop the analogous notion of the correlation set C(n, c) and its various

subclasses arising from quantum strategies. In the following, our approach is somewhat backwards,

in that we first define the different strategies and afterwards consider the associated correlations.

Definition 3.1.1. We define the different strategies associated to a two-player game with quantum

questions on Cn ⊗ Cn and classical answers in {1, 2, ..., c} as follows:

1. A quantum strategy, or a q-strategy, is given by two finite-dimensional Hilbert spacesHA

andHB, a POVM {P1, ..., Pc} on Cn ⊗HA, a POVM {Q1, ..., Qc} onHB ⊗ Cn, and a state

χ ∈ HA ⊗HB.

2. A quantum spatial strategy, or a qs-strategy, is given in the same way as a q-strategy,

except that we no longer assume thatHA andHB are finite-dimensional.
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3. A quantum commuting strategy, or a qc-strategy, is given by a single Hilbert space H, a

POVM {P1, ..., Pc} on Cn ⊗H, a POVM {Q1, ..., Qc} on H⊗ Cn, and a state χ ∈ H, with

the property that (Pa ⊗ In)(In ⊗Qb) = (In ⊗Qb)(Pa ⊗ In) for all a, b.

4. A local strategy, or a classical strategy, is a quantum commuting strategy with the property

that the set of operators Pa,ij and Qb,k` generate a commutative C∗-algebra, where Pa =

(Pa,ij) ∈Mn(B(H)) with Pa,ij ∈ B(H) and Qb = (Qb,k`) ∈Mn(B(H)) with Qb,k` ∈ B(H),

for 1 ≤ a, b ≤ c and 1 ≤ i, j ≤ n.

Remark 3.1.2. When viewed as block matrices, the commutation relation (Pa ⊗ In)(In ⊗ Qb) =

(In⊗Qb)(Pa⊗ In) is easily seen to be equivalent to the requirement that [Pa,ij, Qb,kl] = 0 ∈ B(H)

for each a, b, i, j, k, l. (See, e.g., [9] and [28].)

Suppose now that the referee initializes Cn ⊗ Cn in the state ϕ. For a quantum strategy, the

probability that Alice outputs a and Bob outputs b is given by

p(a, b|ϕ) = 〈(Pa ⊗Qb)(ϕ� χ), ϕ� χ〉, (3.1.0.3)

where ϕ� χ represents the (permuted) state in Cn ⊗ (HA ⊗HB)⊗ Cn rather than on Cn ⊗ Cn ⊗

(HA⊗HB). For a quantum commuting strategy, we simply replaceHA⊗HB withH and (Pa⊗Qb)

with (Pa ⊗ In)(In ⊗ Qb). We note that this definition of the probability of outputs can easily be

extended to other (e.g. mixed) states in Cn ⊗ Cn that may not be included in the definition of the

game. This is because the probabilities corresponding to Alice and Bob’s strategy are encoded

entirely in the correlation associated to their strategy.

Also, it is useful to note that for a non-local game with classical inputs, the associated family
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of POVMs may be consolidated as a single operator (corresponding to each output) as follows:

Pa :=



px1a 0 . . . 0

0 px2a . . . 0

... 0
. . . 0

0 . . . 0 pxna


∈ Dn ⊗B(HA). (3.1.0.4)

While in the case of quantum inputs, we have:

Pa :=



Pa,11 Pa,12 . . . Pa,1n

Pa,21 Pa,22 . . . Pa,2n
... . . . ...

Pa,n1 Pa,n2 . . . Pa,nn


∈Mn ⊗B(HA). (3.1.0.5)

Example 3.1.3. Let us look at some special cases of 〈Pa ⊗Qb(ϕ� χ), (ϕ� χ)〉 below:

1. When ϕ = ei ⊗ ej:

p(a, b|ϕ) = 〈Pa ⊗Qb(ϕ� χ), (ϕ� χ)〉 = 〈Pa,ii ⊗Qb,jjχ, χ〉 .

This may be interpreted as p(a, b|i, j) of the classical input-classical output game corre-

sponding to input (i, j).

2. When ϕ = (ei ⊗ ej) + (ek ⊗ el):

p(a, b|ϕ) = 〈Pa,ii ⊗Qb,jjχ, χ〉+〈Pa,kk ⊗Qb,llχ, χ〉+〈Pa,ik ⊗Qb,jlχ, χ〉+〈Pa,ki ⊗Qb,ljχ, χ〉 .

So, when we have entangled input states, the off-diagonal entries of P andQ come into play.

3. If the bra and ket vectors are different:

〈Pa ⊗Qb(ek ⊗ el ⊗ χ), (ei ⊗ ej ⊗ χ)〉 = 〈Pa,ik ⊗Qb,jlχ, χ〉
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Definition 3.1.4. The correlation associated to the strategy (P1, ..., Pc, Q1, ..., Qc, χ) with n-dimensional

quantum inputs and c classical outputs is given by the tuple

X := (X
(a,b)
(i,j),(k,`)) = ((〈(Pa,ij ⊗Qb,k`)χ, χ〉)i,j,k,`)a,b ∈ (Mn ⊗Mn)c

2

, (3.1.0.6)

in the case when the entanglement resource space for Alice and Bob is of the form HA ⊗ HB.

In the case when their resource space is a single Hilbert space H, we replace Pa,ij ⊗ Qb,k` with

Pa,ijQb,k`.

For t ∈ {loc, q, qs, qa, qc}, we let Ct(n, c) denote the set of correlations with classical inputs

and classical outputs in the t-model. Now, we defineQt(n, c), the corresponding set of all correla-

tions with quantum inputs and classical outputs in the t-model.

Definition 3.1.5. Keeping the analogy with the sets Ct(n, k), let

1. Qq(n, c) be the set of all quantum correlations.

Qq(n, c) = {(〈(Pa,ij ⊗Qb,k`)χ, χ〉)1≤i,j,k,`≤n,
1≤a,b≤c

} ⊆ (Mn ⊗Mn)c
2

, (3.1.0.7)

whereHA andHB are finite-dimensional Hilbert spaces,

Pa,ij ∈ B(HA) are such that Pa = (Pa,ij) ∈Mn(B(HA)) are positive with
∑c

a=1 Pa = I ,

Qb,k` ∈ B(HB) are such that Qb = (Qb,k`) ∈Mn(B(HB)) are positive with
∑c

b=1Qb = I ,

and χ ∈ HA ⊗HB is a state.

2. Qqa(n, c) be the closure of Qq(n, c) in the norm topology.

3. Qqs(n, c) be the set of all quantum spatial correlations, whereHA andHB may not be finite-

dimensional.

4. Qqc(n, c) be the set of all quantum commuting correlations of the above form, where we

replace the tensor product space HA ⊗HB with a single Hilbert space H, and Pa,ij ⊗ Qb,k`

with Pa,ijQb,k`.
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5. Qloc(n, c) be the set of all quantum commuting correlations where C∗({Pa,ij, Qb,k` : 1 ≤

a, b ≤ c, 1 ≤ i, j, k, ` ≤ n}) is a commutative C∗-algebra.

The sets Ct(n, c) embed into Qt(n, c) in a natural way, as shown below.

Proposition 3.1.6. Let t ∈ {loc, q, qs, qa, qc}. Then Ct(n, c) is affinely isomorphic to

{X ∈ Qt(n, c) : X
(a,b)
(i,j),(k,`) = 0 if i 6= j or k 6= `} ⊆ Qt(n, c).

Moreover, the compression map

X 7→ (δijδk`X
(a,b)
(i,j),(k,`)) : Qt(n, c)→ Ct(n, c)

is a continuous affine map.

Proof. The claims follow from the observations that if {Ea,x} is a collection of positive operators

such that {Ea,x}ca=1 is a POVM in B(H) for each 1 ≤ x ≤ n, then the operators Pa :=
⊕n

x=1Ea,x

define a POVM in Mn(B(H)). Similarly, if {Qa}ca=1 is a POVM in Mn(B(H)), then setting

Fa,x = Qa,xx ∈ B(H), we see that {Fa,x}ca=1 is a POVM in B(H) for each 1 ≤ x ≤ n.

We end this section by noting some properties of the correlation sets:

• Qt(n, c) is convex for all t ∈ {loc, q, qs, qa, qc}.

• Qloc(n, c),Qqa(n, c),Qqc(n, c) is closed in (Mn ⊗ Mn)c
2 and Qqa(n, c) = Qqs(n, c) =

Qq(n, c).

• We have the following chain of inclusions:

Qloc(n, c) ⊆ Qq(n, c) ⊆ Qqs(n, c) ⊆ Qqa(n, c) ⊆ Qqc(n, c).

We further note that all these containments are strict in general:
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– Qloc(2, 2) 6= Qq(2, 2) by the CHSH game [60, Chapter 3].

– Qq(5, 3) 6= Qqs(5, 3) by a theorem of A. Coladangelo and J. Stark [10].

– Qqs(5, 2) 6= Qqa(5, 2) by a theorem of K. Dykema, V.I. Paulsen and J. Prakash [15].

– Qqa(n, c) 6= Qqc(n, c) for some (likely very large) values of n and c due to the negative

resolution to Connes’ embedding problem [32].

3.2 Quantum-to-classical disambiguation theorems

In this section, we discuss a quantum-to-classical version of the disambiguation theorems. That

is, we show that all correlations in Qt(n, c) can be achieved using projection-valued measures

(PVMs) instead of the more general notion of POVMs.

We first show that POVMs in our context can be dilated to PVMs entry-wise.

Lemma 3.2.1. Let H be a Hilbert space, and let {Qa}ca=1 be a POVM in B(H). Then there is

a PVM {Pa}ca=1 in Mc+1(B(H)) such that, if E11 is the first diagonal matrix unit in Mc+1, then

(E11 ⊗ IH)Pa(E11 ⊗ IH) = E11 ⊗Qa for all 1 ≤ a ≤ c.

Proof. We define V =


Q

1
2
1

...

Q
1
2
c

 ∈Mc,1(B(H)). Then V is an isometry, so

U =

V √
I − V V ∗

0 −V ∗

 ∈Mc+1(B(H))

is a unitary. Define Pa = U∗(Eaa⊗IH)U for 1 ≤ a ≤ c−1, and define Pc = U∗((Ecc+Ec+1,c+1)⊗

IH)U . Then {Pa}ca=1 is a PVM in Mc+1(B(H)). Write U = (Uk`)
c+1
k,`=1 where each Uk` ∈ B(H).

The (1, 1) entry of Pa is given by

(Pa)11 = U∗a1Ua1 = (Q
1
2
a )(Q

1
2
a ) = Qa,

as desired.
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As a result of Proposition 3.2.1, we obtain the desired dilation property for POVMs over

Mn(B(H)).

Proposition 3.2.2. Let H be a Hilbert space, and let qa,ij ∈ B(H) for 1 ≤ i, j ≤ n and 1 ≤

a ≤ c be such that {Qa}ca=1 is a POVM in Mn(B(H)), where Qa = (qa,ij). Let V : H →

H(c+1) be the isometry sending H to the first direct summand of H(c+1). Then there are operators

pa,ij ∈ Mc+1(B(H)) such that {Pa}ca=1 is a PVM in Mn(Mc+1(B(H))), where Pa = (pa,ij), and

V ∗pa,ijV = qa,ij for all 1 ≤ i, j ≤ n and 1 ≤ a ≤ c.

Proof. We can regard {Qa}ca=1 as a POVM in Mn(B(H)). By Proposition 3.2.1, there is a PVM

{Sa}ca=1 in Mc+1(Mn(B(H))) such that the (1, 1) entry of Sa is Qa. Performing a canonical

shuffle Mc+1(Mn(B(H))) ' Mn(Mc+1(B(H))) [49, p. 97] on each Sa, we obtain operators

pa,ij ∈Mc+1(B(H)) such that the (1, 1)-entry of pa,ij is qa,ij , and Pa = (pa,ij) ∈Mn(Mc+1(B(H)))

are projections with
∑c

a=1 Pa = I , completing the proof.

Remark 3.2.3. In the case of classical inputs and outputs, one would consider n POVMs in B(H)

with c outputs each. It is a standard fact that such systems of POVMs can be dilated to a system of

n PVMs with c outputs on a larger Hilbert space, which remains finite-dimensional wheneverH is

finite-dimensional.

Alternatively, one can consider n POVMs {pxa}ca=1 for 1 ≤ x ≤ n on H as a single POVM on

Cn ⊗ H by setting Qa = px1a ⊕ · · · ⊕ pxna , as in (3.1.0.4). Then one applies Proposition 3.2.2 to

obtain a single PVM in Mn(H⊗Cc+1); however, the projections may no longer be block-diagonal,

so they may not induce a family of n PVMs in B(H⊗Cc+1). In the case that n = 1, one can dilate a

POVM with c outputs in B(H) to a PVM with c outputs in B(H⊗Cc), which is more optimal than

Proposition 3.2.2. On the other hand, as soon as n ≥ 2, the dilation of Proposition 3.2.2 will be

more optimal, since the general dilation of n POVMs to n PVMs requires an inductive argument.

To prove our disambiguation results, instead of working with definition (3.1.0.6) directly, we

will use a characterization of the correlation sets using states on some associated algebras and

operator systems.
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Definition 3.2.4. We first define some universal objects that encode the correlation sets:

1. Let Qn,c be the universal operator system generated by c sets of n2 entries qa,ij with the

property that the matrix Qa = (qa,ij) is positive in Mn(Qn,c) for each 1 ≤ a ≤ c and∑c
a=1Qa = In.

2. Let Pn,c be the universal unital C∗-algebra generated by c sets of n2 entries pa,ij such that

Pa = (pa,ij) is an orthogonal projection in Mn(Pn,c) for each 1 ≤ a ≤ c and
∑c

a=1 Pa = In.

The correlations Qt(n, c) are directly related to states on certain operator system tensor prod-

ucts of Qn,c.

Notation 4. Let ⊗min,⊗max,⊗c denote the minimal tensor product, maximal tensor product and

commuting tensor product respectively.

We first show the connection between Qn,c and Pn,c. In the following, we let C∗env(S) be the

C∗-envelope of an operator system S, first shown to exist by M. Hamana [26].

Proposition 3.2.5. Let n, c ∈ N. Then, C∗env(Qn,c) is canonically ∗-isomorphic to the universal

C∗-algebra Pn,c.

Proof. Let pa,ij be the canonical generators of Pn,c, for 1 ≤ i, j ≤ n and 1 ≤ a ≤ c. Since

Pa = (pa,ij) is a projection in Mn(Pn,c), it is positive. Since
∑c

a=1 Pa = In, there is a UCP

map ϕ : Qn,c → Pn,c such that ϕ(qa,ij) = pa,ij . If we represent Qn,c ⊆ B(H) for some Hilbert

space H, then by Proposition 3.2.2, there is a unital ∗-homomorphism π : Pn,c → Mc+1(B(H))

such that compressing to the first coordinate yields the map pa,ij → qa,ij . Hence, ϕ is a complete

order isomorphism. This shows that Pn,c is a C∗-cover for Qn,c, in the sense that there is a unital

complete order embedding of Qn,c into Pn,c, whose range generates Pn,c as a C∗-algebra.

By the universal property of the C∗-envelope [26], there is a unique, surjective unital ∗-

homomorphism ρ : Pn,c → C∗env(Qn,c) such that ρ(pa,ij) = qa,ij for all 1 ≤ i, j ≤ n and

1 ≤ a ≤ c. As each Pa is a projection in Pn,c, the matrix Qa = (qa,ij) ∈ Mn(C∗env(Qn,c)) is

a projection as well. We will show that ρ is injective by constructing an inverse. We assume
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that Pn,c is faithfully represented as a C∗-algebra of operators on a Hilbert space K. Then the

map ϕ : Qn,c → Pn,c above extends to a UCP map σ : C∗env(Qn,c) → B(K) by Arveson’s ex-

tension theorem [2]. We let σ = V ∗β(·)V be a minimal Stinespring representation of σ, where

V : K → L is an isometry and β : C∗env(Qn,c)→ B(L) is a unital ∗-homomorphism. With respect

to the decomposition L = K ⊕K⊥, one has

β(qa,ij) =

ϕ(qa,ij) ∗

∗ ∗

 =

pa,ij ∗
∗ ∗

 .

Thus, after a shuffle, one may write β(n)(Qa) = (β(qa,ij)) as

ϕ(n)(Qa) ∗

∗ ∗

 =

Pa ∗
∗ ∗

 .

As Qa is a projection in Mn(C∗env(Qn,c)), so is β(n)(Qa) in Mn(B(L)). But Pa is a projection as

well, so the off-diagonal blocks must be 0. Therefore, reversing the shuffle yields

β(qa,ij) =

pa,ij 0

0 ∗

 .

Considering β(q∗a,ijqa,ij) and β(qa,ijq
∗
a,ij), it follows that the multiplicative domain of σ contains

qa,ij for each 1 ≤ i, j ≤ n and 1 ≤ a ≤ c; as these elements generate C∗env(Qn,c), σ must be

a ∗-homomorphism. Since ρ and σ are mutual inverses on the generators, they must be mutual

inverses on the whole algebras. Hence, ρ is injective, so that C∗env(Qn,c) ' Pn,c.

To prove our disambiguation results, we will use the following facts about Pn,c. See [5, section

1] for more details.

1. Pn,c has the lifting property. That is, whenever B is a C∗-algebra, J is an ideal in B, and

ϕ : Pn,c → B/J is a contractive completely positive map, then there exists a contractive

completely positive lift ϕ̃ : Pn,c → B of ϕ.
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2. Pn,c is residually finite-dimensional (RFD). That is, for any x ∈ Pn,c\{0}, there exists k ∈ N

and a finite-dimensional representation π : Pn,c →Mk with π(x) 6= 0.

3. Pn,c ⊗min Pn,c is RFD as minimal tensor products of RFD C∗-algebras remain RFD.

4. The map pa,ij 7→ popa,ji extends to a unital ∗-isomorphism π : Pn,c → Popn,c.

We first prove the fact that quantum commuting correlations with a finite-dimensional entan-

glement space must belong to Qq(n, c).

Lemma 3.2.6. Suppose thatX = (X
(a,b)
(i,j),(k,`)) ∈ Qqc(n, c) can be written asX = (〈Pa,ijQb,k`χ, χ〉),

where Pa = (Pa,ij) and Qb = (Qb,k`) are positive in Mn(B(H)),
∑c

a=1 Pa =
∑c

a=1Qa = In,

[Pa,ij, Qb,k`] = 0 for all i, j, k, `, a, b and χ ∈ H is a unit vector. If H is finite-dimensional, then

X ∈ Qq(n, c).

Proof. Let A be the C∗-algebra generated by the set {Pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n} and let

B be the C∗-algebra generated by the set {Qb,k` : 1 ≤ b ≤ c, 1 ≤ k, ` ≤ n}. Then A and B are

unital C∗-subalgebras of B(H), and every element of A commutes with every element of B. By

a theorem of Tsirelson [55], there are finite-dimensional Hilbert spaces HA and HB, an isometry

V : H → HA ⊗ HB, and unital ∗-homomorphisms π : A → B(HA) and ρ : B → B(HB)

such that V ∗(π(Pa,ij) ⊗ ρ(Qb,k`))V = Pa,ijQb,k` for all a, b, i, j, k, `. Defining the unit vector

ξ = V χ ∈ HA ⊗HB, we see that

X
(a,b)
(i,j),(k,`) = 〈(π(Pa,ij)⊗ ρ(Qb,k`))ξ, ξ〉.

Therefore, X ∈ Qq(n, c).

Now, we can prove the disambiguation theorems for Qt(n, c).

Remark 3.2.7. By Proposition 3.2.2, any element of Qq(n, c) can be represented using a finite-

dimensional tensor product frameworkHA⊗HB and PVMs {Pa}ca=1 onHA and {Qb}cb=1 onHB,

respectively. This fact holds because, given a POVM {Qb}cb=1 in B(H), the dilation in Proposition
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3.2.2 is in Mc+1(B(H)) ' B(H(c+1)); in particular, the Hilbert space remains finite-dimensional if

H is finite-dimensional. Similarly, it is easy to see that all elements ofQqs(n, c) can be represented

using PVMs.

Next, we show that every elementQqa(n, c) can be represented by PVMs, which arise from the

minimal tensor product of Pn,c.

Theorem 3.2.8. Let X = (X
(a,b)
(i,j),(k,`)) ∈ (Mn ⊗Mn)c

2
. The following are equivalent:

1. X belongs to Qqa(n, c).

2. There is a state s : Pn,c ⊗min Pn,c → C satisfying s(pa,ij ⊗ pb,k`) = X
(a,b)
(i,j),(k,`) for all

1 ≤ a, b ≤ c and 1 ≤ i, j, k, ` ≤ n.

3. There is a state s : Qn,c ⊗min Qn,c → C satisfying s(qa,ij ⊗ qb,k`) = X
(a,b)
(i,j),(k,`) for all

1 ≤ a, b ≤ c and 1 ≤ i, j, k, ` ≤ n.

Proof. We recall that the minimal tensor product of operator spaces (in particular, operator sys-

tems) is injective [34]. Since Qn,c ⊆ Pn,c via the mapping qa,ij 7→ pa,ij , injectivity of the minimal

tensor product shows thatQn,c⊗minQn,c ⊆ Pn,c⊗minPn,c completely order isomorphically. Using

the Hahn-Banach theorem, it then follows that (2) and (3) are equivalent.

If (1) holds, then X is in Qqa(n, c), so it is a pointwise limit of elements of Qq(n, c). Since

elements of Qq(n, c) can be represented by PVMs, X is a limit of elements which correspond

to finite-dimensional tensor product representations of Pn,c ⊗min Pn,c, which are automatically

continuous. Hence, (1) implies (2). Lastly, suppose that (2) holds. Since Pn,c ⊗min Pn,c is RFD, a

theorem of R. Exel and T.A. Loring [21] shows that s is a w∗-limit of states sλ on Pn,c ⊗min Pn,c

whose GNS representations are finite-dimensional. Applying Lemma 3.2.6, each sλ applied to the

generators pa,ij⊗pb,k` of Pn,c⊗minPn,c yields an elementXλ ofQq(n, c); moreover, limλXλ = X

pointwise. This shows that X ∈ Qq(n, c) = Qqa(n, c), which shows that (2) implies (1).

To establish the same disambiguation theorem for qc-correlations, we will show that the com-

muting tensor product Qn,c ⊗c Qn,c is completely order isomorphic to the copy of Qn,c ⊗ Qn,c
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inside of Pn,c ⊗max Pn,c. We recall that, if S and T are operator systems, then an element Y in

Mn(S ⊗c T ) is defined as positive in the commuting tensor product provided that Y = Y ∗ and,

whenever ϕ : S → B(H) and ψ : T → B(H) are UCP maps with commuting ranges, then

(ϕ · ψ)(n)(Y ) is positive in Mn(B(H)), where ϕ · ψ : S ⊗ T → B(H) is the linear map defined by

(ϕ · ψ)(x⊗ y) = ϕ(x)ψ(y) for all x ∈ S and y ∈ T .

The next lemma is an adaptation of [29, Proposition 4.6].

Lemma 3.2.9. Let S be an operator system. Then the canonical mapQn,c⊗c S → Pn,c⊗max S is

a complete order embedding.

Proof. Since Pn,c is a unital C∗-algebra, we have Pn,c⊗cS = Pn,c⊗maxS [34, Theorem 6.7]. The

canonical map Qn,c ⊗c S → Pn,c ⊗c S is a tensor product of canonical inclusion maps, which are

UCP. By functoriality of the commuting tensor product [34], the inclusionQn,c⊗c S → Pn,c⊗c S

is UCP. Hence, it suffices to show that this map is a complete order embedding.

To this end, suppose that Y = Y ∗ ∈ Mm(Qn,c ⊗ S) is a positive element of Mm(Pn,c ⊗c S).

Let ϕ : Qn,c → B(H) and ψ : S → B(H) be UCP maps with commuting ranges; we will show

that (ϕ · ψ)(m)(Y ) is positive in Mm(B(H)). For convenience, we define Qa,ij = ϕ(qa,ij). By

Proposition 3.2.2, there is a unital ∗-homomorphism π : Pn,c → Mc+1(B(H)) such that the (1, 1)

corner of π(pa,ij) is Qa,ij for all 1 ≤ a ≤ c and 1 ≤ i, j ≤ n. Moreover, for each x ∈ Pn,c,

each block of π(x) in B(H) belongs to the C∗-algebra generated by the set {Qa,ij : 1 ≤ a ≤

c, 1 ≤ i, j ≤ n}. We extend ϕ to a UCP map on Pn,c by defining ϕ(·) = (π(·))11. Define

ψ̃ : S → Mc+1(B(H)) by ψ̃(s) = Ic+1 ⊗ ψ(s). Since ψ(s) commutes with the range of ϕ, ψ(s)

must commute with theC∗-algebra generated by the range of ϕ. Hence, ψ(s) commutes with every

block of π(pa,ij), for all a, i, j. By the multiplicativity of π, ψ(s) commutes with the range of π.

By definition of the commuting tensor product, this means that π · ψ̃ : Pn,c ⊗c S → Mc+1(B(H))

is UCP; moreover, the (1, 1) block of π · ψ̃ is ϕ · ψ. This means that ϕ · ψ is UCP on Pn,c ⊗c S.

Restricting to the copy of the algebraic tensor product Qn,c ⊗ S, it follows that (ϕ · ψ)(m)(Y ) is

positive, making the canonical map Qn,c ⊗c S → Pn,c ⊗c S a complete order embedding.
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Theorem 3.2.10. Let X = (X
(a,b)
(i,j),(k,`)) ∈ (Mn ⊗Mn)c

2
. The following are equivalent.

1. X belongs to Qqc(n, c).

2. There is a state s : Pn,c ⊗max Pn,c → C satisfying s(pa,ij ⊗ pb,k`) = X
(a,b)
(i,j),(k,`) for all

1 ≤ a, b ≤ c and 1 ≤ i, j, k, ` ≤ n.

3. There is a state s : Qn,c⊗cQn,c → C satisfying s(qa,ij⊗qb,k`) = X
(a,b)
(i,j),(k,`) for all 1 ≤ a, b ≤ c

and 1 ≤ i, j, k, ` ≤ n.

Proof. Since Qqc(n, c) is defined in terms of POVMs where Alice’s entries commute with Bob’s,

we see that (1) is equivalent to (3). Based on two applications of Lemma 3.2.9, we see thatQn,c⊗c

Qn,c is completely order isomorphic to the image ofQn,c⊗Qn,c in Pn,c⊗max Pn,c. Hence, (2) and

(3) are equivalent.

When considering the quantum-to-classical graph coloring game, the local model will be of

interest because of its link to the usual notion of a (classical) coloring of a quantum graph. It is

helpful to note that all strategies inQloc(n, c) can be obtained using PVMs instead of just POVMs.

A standard argument shows that limits of convex combinations of elements of Qloc(n, c) repre-

sented by PVMs from abelian algebras can still be represented by PVMs from abelian algebras.

With this fact in hand, we can prove the disambiguation theorem for Qloc(n, c).

Theorem 3.2.11. Let X = (X
(a,b)
(i,j),(k,`)) ∈ (Mn ⊗Mn)c

2
. The following are equivalent:

1. X belongs to Qloc(n, c);

2. There is a commutativeC∗-algebraA, a state s onA and POVMs {P1, ..., Pc}, {Q1, ..., Qc} ⊆

Mn(A) such that

X
(a,b)
(i,j),(k,`) = s(Pa,ijQb,k`);

3. There is a commutativeC∗-algebraA, a state s onA, and PVMs {P1, ..., Pc}, {Q1, ..., Qc} ⊆

Mn(A) such that

X
(a,b)
(i,j),(k,`) = s(Pa,ijQb,k`).
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Proof. Clearly (1) and (2) are equivalent by the definition of Qloc(n, c). Since every PVM is a

POVM, (3) implies (2). Hence, we need only show that (2) implies (3). Suppose that

X
(a,b)
(i,j),(k,`) = s(Pa,ijQb,k`)

for a state s on a commutative C∗-algebra A and a POVMs P1, ..., Pc and Q1, ..., Qc in Mn(A).

Then A ' C(Y ) for a compact Hausdorff space Y . The extreme points of the state space of

Y are simply evaluation functionals δy for y ∈ Y , which are multiplicative. Hence, δ(n)y (Qa) ∈

Mn(C) defines a POVM with c outputs in Mn(C), where δ(n)y = idn ⊗ δy. Recall that the extreme

points of the set of positive contractions in a von Neumann algebra are precisely the projections

in the von Neumann algebra. An easy application of this argument shows that the extreme points

of the set of POVMs with c outputs in a von Neumann algebra are precisely the PVMs with c

outputs. Hence, {δ(n)y (Q1), ..., δ
(n)
y (Qc)} lies in the closed convex hull of the set of PVMs in

Mn(C) with c outputs. Applying a similar argument to {δ(n)y (P1), ..., δ
(n)
y (Pc)}, it follows that the

correlation (δy(Pa,ijQb,k`)) is a convex combination of elements ofQloc(n, c) obtained by tensoring

projections from Mn(C). Taking the closed convex hull, we obtain the original correlation X . In

this way, we can write X using projection-valued measures, which shows that (2) implies (3).

In the next section, we look at the analogous class of synchronous correlations in our new

framework.

3.3 Synchronous quantum input–classical output correlations

Recall that a correlation P = (p(a, b|x, y)) ∈ C(n, k) is called synchronous if p(a, b|x, x) = 0

whenever a 6= b [30]. In this section, we introduce a generalization of synchronous correlations to

our quantum framework and characterize these synchronous correlations in terms of tracial states

on C∗-algebras.

In the following considerations, we fix once and for all an orthonormal basis {e1, ..., en} for

Cn, but the results also hold for other bases using unitary transformations.

Definition 3.3.1. Let S ⊆ [n]. We define the maximally entangled Bell state corresponding to
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S as the vector

ϕS =
1√
|S|

∑
j∈S

ej ⊗ ej.

Definition 3.3.2. Let X ∈ Qt(n, c) be a correlation in n-dimensional quantum inputs and c classi-

cal outputs, where t ∈ {loc, q, qs, qa, qc}. We say that X is synchronous provided that there is a

partition S1∪̇ · · · ∪̇S` of [n] with the property that, if a 6= b, then

p(a, b|ϕSr) = 0 for all 1 ≤ r ≤ `.

We define the subset

Qst(n, c) = {X ∈ Qt(n, c) : X is synchronous}.

The following proposition gives a very useful description of synchronicity in terms of the

entries of the matrices involved in the correlation.

Proposition 3.3.3. Let X = (X
(a,b)
(i,j),(k,`)) ∈ Qt(n, c) for t ∈ {loc, q, qs, qa, qc}. The following are

equivalent:

X ∈ Qst(n, c) ⇐⇒
1

n

c∑
a=1

n∑
i,j=1

X
(a,a)
(i,j),(i,j) = 1 ⇐⇒

n∑
i,j=1

X
(a,b)
(i,j),(i,j) = 0 for a 6= b. (3.3.0.1)

Proof. Suppose that X can be represented using the PVMs {Pa}ca=1 in B(Cn⊗H) and {Qb}cb=1 in

B(H⊗ Cn) and the state χ ∈ H. We observe that, if S ⊆ [n], then

p(a, b|ϕS) =
1

|S|
∑
i,j∈S

〈(Pa ⊗ In)(In ⊗Qb)(ej ⊗ χ⊗ ej), ei ⊗ χ⊗ ei〉

=
1

|S|
∑
i,j∈S

〈Pa,ijQb,ijχ, χ〉

=
1

|S|
∑
i,j∈S

X
(a,b)
(i,j),(i,j).
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Suppose that X is synchronous, and let S1, ..., S` be a partition of [n] for which p(a, b|ϕSr) = 0

whenever a 6= b and 1 ≤ r ≤ `. Then the above calculation shows that
∑

i,j∈Sr
X

(a,b)
(i,j),(i,j) = 0 for

all r. Summing over all r, it follows that
∑n

i,j=1X
(a,b)
(i,j),(i,j) = 0 whenever a 6= b. Hence, (1) implies

(3).

Next, we show that (3) implies (2). Notice that, for any X ∈ Qqc(n, c),

c∑
a,b=1

n∑
i,j=1

X
(a,b)
(i,j),(i,j) =

c∑
a,b=1

n∑
i,j=1

〈Pa,ijQb,ijχ, χ〉

=
n∑

i,j=1

〈(
c∑

a=1

Pa,ij

)(
c∑
b=1

Qb,ij

)
χ, χ

〉

=
n∑
i=1

〈χ, χ〉 = n,

where we have used the fact that
∑c

a=1 Pa =
∑c

b=1Qb = In implies that
∑c

a=1 Pa,ij =
∑c

b=1Qb,ij

is I when i = j and 0 otherwise. Therefore,

1

n

n∑
i,j=1

X
(a,b)
(i,j),(i,j) = 1,

which shows that (2) holds.

Lastly, if (2) holds, then (1) immediately follows using the single-set partition S = [n].

Remark 3.3.4. In the case of a correlation p(a, b|x, y) ∈ Ct(n, c) with n classical inputs and c

classical outputs, using the [n] = {1} ∪ {2} ∪ · · · ∪ {n}, we see that any synchronous correlation

in Ct(n, c) is a synchronous correlation in the sense of the definition above. In this way, we see

that

Cs
t (n, c) ⊆ Qst(n, c).

We now prove an analogue of [47, Theorem 5.5], namely that synchronous correlations with

n-dimensional inputs and c outputs arise from tracial states on the algebra generated by Alice’s

operators (respectively, Bob’s operators). We will also see that, in any realization of a synchronous

correlation, Bob’s operators can be described naturally in terms of Alice’s operators.
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By a realization ofX ∈ Qqc(n, c), we simply mean a 4-tuple ({Pa}ca=1, {Qb}cb=1,H, ψ), where

{Pa}ca=1 is a PVM on Cn⊗H, {Qb}cb=1 is a PVM onH⊗Cn, ψ is a state inH, and [Pa⊗ In, In⊗

Qb] = 0 for all a, b.

Theorem 3.3.5. Let X = (X
(a,b)
(i,j),(k,`)) ∈ Qsqc(n, c). Let ({Pa}ca=1, {Qb}cb=1,H, ψ) be a realization

of X . Then:

1. Qa,ijψ = P ∗a,ijψ for all 1 ≤ a ≤ c and 1 ≤ i, j ≤ n.

2. The state ρ = 〈(·)ψ, ψ〉 is a tracial state on the C∗-algebra A generated by {Pa,ij : 1 ≤ a ≤

c, 1 ≤ i, j ≤ n}, and on the C∗-algebra B generated by {Qb,k` : 1 ≤ b ≤ c, 1 ≤ k, ` ≤ n}.

Conversely, if Pa,ij are operators in a tracial C∗-algebra A with a trace τ , such that the operators

Pa = (Pa,ij) ∈ Mn(A) form a PVM with c outputs, then (τ(Pa,ijP
∗
b,k`)) defines an element of

Qsqc(n, c).

Proof. Suppose X ∈ Qsqc(n, c), with realization ({Pa}ca=1, {Qb}cb=1,H, ψ). By Proposition 3.3.3,
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we have

1 =
1

n

c∑
a=1

n∑
i,j=1

X
(a,a)
(i,j),(i,j) (3.3.0.2)

=
1

n

c∑
a=1

n∑
i,j=1

〈Pa,ijQa,ijψ, ψ〉

≤ 1

n

c∑
a=1

n∑
i,j=1

|〈Pa,ijQa,ijψ, ψ〉| (3.3.0.3)

=
1

n

c∑
a=1

n∑
i,j=1

|〈Qa,ijψ, P
∗
a,ijψ〉|

≤ 1

n

c∑
a=1

n∑
i,j=1

‖Qa,ijψ‖‖P ∗a,ijψ‖ (3.3.0.4)

≤ 1

n

(
c∑

a=1

n∑
i,j=1

‖Qa,ijψ‖2
) 1

2
(

c∑
a=1

n∑
i,j=1

‖P ∗a,ijψ‖2
) 1

2

(3.3.0.5)

=
1

n

(
c∑

a=1

n∑
i,j=1

〈Q∗a,ijQa,ijψ, ψ〉

) 1
2
(

c∑
a=1

n∑
i,j=1

〈Pa,ijP ∗a,ijψ, ψ〉

) 1
2

=
1

n

(
c∑

a=1

n∑
i,j=1

〈Qa,jiQa,ijψ, ψ〉

) 1
2
(

c∑
a=1

n∑
i,j=1

〈Pa,ijPa,jiψ, ψ〉

) 1
2

Since Pa and Qa are projections, the last line is equal to

1

n

(
c∑

a=1

n∑
j=1

〈Qa,jjψ, ψ〉

) 1
2
(

c∑
a=1

n∑
i=1

〈Pa,iiψ, ψ〉

) 1
2

=
1

n

(
n∑
j=1

〈IHψ, ψ〉

) 1
2
(

n∑
i=1

〈IHψ, ψ〉

) 1
2

=
1

n
·
√
n ·
√
n

= 1.

Therefore, all of these inequalities are equalities. Then (3.3.0.3) implies that

X
(a,a)
(i,j),(i,j) ≥ 0 for all 1 ≤ a ≤ c, 1 ≤ i, j ≤ n.
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The equality case of (3.3.0.4) shows that

Qa,ijψ = αa,ijP
∗
a,ijψ for some αa,ij ∈ T. (3.3.0.6)

Then equation (3.3.0.6) yields

X
(a,a)
(i,j),(i,j) = αa,ij〈Pa,ijP ∗a,ijψ, ψ〉 = αa,ij‖P ∗a,ijψ‖2.

Since X(a,a)
(i,j),(i,j) ≥ 0 and ‖P ∗a,ijψ‖2 ≥ 0, we either have P ∗a,ijψ = 0 or αa,ij = 1. In either case, we

obtain

Qa,ijψ = P ∗a,ijψ,

as desired.

To prove (2), it suffices to show that it holds for A = C∗({Pa,ij}a,i,j); a similar argument

works for B = C∗({Qb,k`}b,k,`). Let ρ : A → C be the state given by ρ(X) = 〈Xψ,ψ〉. Let W =

Pm1
a1,i1j1

· · ·Pmk
ak,ikjk

be a word in {Pa,ij, P ∗a,ij}a,i,j , where we denote by P−1a`,i`j`
the operator P ∗a`,i`j`

and let m` ∈ {−1, 1}. We will first show that Wψ = Q−mk
ak,ikjk

· · ·Q−m1
a1,i1j1

ψ, where Q−1a`,i`j` :=

Q∗a`,i`j` . Using the fact that Pa,ij and Qb,k` ∗-commute for each a, b, i, j, k, `, we obtain

Wψ = Pm1
a1,i1j1

· · ·Pmk
ak,ikjk

ψ

= Pm1
a1,i1j1

· · ·Pmk−1

ak−1,ik−1jk−1
Q−mk
ak,ikjk

ψ

= Q−mk
ak,ikjk

(Pm1
a1,i1j1

· · ·Pmk−1

ak−1,ik−1jk−1
)ψ,

and the desired equality easily follows by induction on k.
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For 1 ≤ a ≤ c and 1 ≤ i, j ≤ n,

ρ(Pa,ijW ) = 〈Pa,ijWψ,ψ〉

= 〈Pa,ij(Qm1
a1,i1j1

· · ·Qmk
ak,ikjk

)∗ψ, ψ〉

= 〈(Qm1
a1,i1j1

· · ·Qmk
ak,ikjk

)∗Pa,ijψ, ψ〉

= 〈Pa,ijψ,Qm1
a1,i1j1

· · ·Qmk
ak,ikjk

ψ〉

= 〈Pa,ijψ, (Pm1
a1,i1j1

· · ·Pmk
ak,ikjk

)∗ψ〉

= 〈Pa,ijψ,W ∗ψ〉

= 〈WPa,ijψ, ψ〉 = ρ(WPa,ij).

In the same way, ρ(Pa,ijPb,k`W ) = ρ(WPa,ijPb,k`). It follows by induction, linearity and continu-

ity that ρ is tracial on A, as desired.

For the converse direction, we recall the standard fact that, if A is a unital C∗-algebra and τ

is a trace on A, then there is a state s : A ⊗max Aop → C satisfying s(x ⊗ yop) = τ(xy) for all

x, y ∈ A. Thus, if P1, ..., Pc ∈Mn(A) is a projection-valued measure, then

s(Pa,ij ⊗ P op
b,k`) = τ(Pa,ijPb,k`)∀1 ≤ a, b ≤ c, 1 ≤ i, j, k, ` ≤ n.

Applying the universal property of Pn,c, we obtain a state γ : Pn,c ⊗max Popn,c → C satisfying

γ(pa,ij ⊗ popb,k`) = τ(Pa,ijPb,k`).

The map pa,ij ⊗ pb,k` 7→ τ(Pa,ijPb,`k) = τ(Pa,ijP
∗
b,k`) defines a state on Pn,c ⊗max Pn,c, and hence

X := τ(Pa,ijP
∗
b,k`) defines an element of Qqc(n, c). If a 6= b, then

n∑
i,j=1

X
(a,b)
(i,j),(i,j) =

n∑
i,j=1

τ(Pa,ijP
∗
b,ij)

= Tr⊗τ(PaPb) = 0,
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since PaPb = 0. By Proposition 3.3.3, X = (X
(a,b)
(i,j),(k,`)) ∈ Qsqc(n, c).

In light of Theorem 3.3.5, we may refer to a synchronous t-strategy ({Pa}ca=1, χ) when refer-

ring to a t-strategy ({Pa}ca=1, {Qb}cb=1, χ) where the associated correlation is synchronous.

Corollary 3.3.6. Let (X
(a,b)
(i,j),(k,`)) ∈ Qst(n, c) where t ∈ {loc, q, qs, qa, qc}. Then:

1. X(a,b)
(i,i),(j,j) ≥ 0 for all 1 ≤ a, b ≤ c and 1 ≤ i, j ≤ n.

2. X(a,b)
(i,j),(k,`) = X

(a,b)
(j,i),(`,k).

3. For any 1 ≤ a 6= b ≤ c and 1 ≤ i, j ≤ n, we have

n∑
k=1

X
(a,b)
(i,k),(j,k) =

n∑
k=1

X
(a,b)
(k,i),(k,j) = 0.

4. For any 1 ≤ i, j ≤ n, we have

c∑
a=1

n∑
k=1

X
(a,a)
(i,k),(j,k) =

c∑
a=1

n∑
k=1

X
(a,a)
(k,i),(k,j) = δij.

Proof. By Theorem 3.3.5, we may choose projections P1, ..., Pc ∈Mn(A), for a unital C∗-algebra

A, along with a tracial state τ on A such that

X
(a,b)
(i,j),(k,`) = τ(Pa,ijP

∗
b,k`) for all 1 ≤ a, b ≤ c, 1 ≤ i, j, k, ` ≤ n.

Since Pa is a projection, it defines a positive element of Mn(A). Compressing to any diagonal

block preserves positivity, which implies that Pa,ii ∈ A+ for any i. Since τ is a trace, it follows

that τ(Pa,iiPb,jj) ≥ 0 for any i, j, a, b. Hence, (1) follows.

We note that (2) follows easily from the fact that τ is a trace and that, since τ is a state, one has

τ(Y ∗) = τ(Y ) for all Y ∈ A.
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To show (3), we observe that

n∑
k=1

X
(a,b)
(i,k),(j,k) =

n∑
k=1

τ(Pa,ikP
∗
b,jk)

=
n∑
k=1

τ(Pa,ikPb,kj)

= τ

(
n∑
k=1

Pa,ikPb,kj

)

= τ((PaPb)ij) = 0,

since PaPb = 0. Similarly,
∑n

k=1X
(a,b)
(k,i),(k,j) = 0 when a 6= b.

A similar argument establishes (4). Indeed, we have

c∑
a=1

n∑
k=1

X
(a,a)
(i,k),(j,k) =

c∑
a=1

n∑
k=1

τ(Pa,ikPa,kj) = τ

(
c∑

a=1

Pa,ij

)
,

and this latter sum is δij , since
∑c

a=1 Pa = I . The other equation in (4) follows similarly.

Remark 3.3.7. It makes sense to discuss synchronicity of a strategy with respect to a different

orthonormal basis v = {v1, ..., vn} of Cn. In this case, a qc-strategy ({Pa}ca=1, {Qb}cb=1, χ) is said

to be synchronous with respect to {v1, ..., vn} if there is a partition S1 ∪ · · · ∪ Ss of [n] such that

for each r and ϕSr,v := 1√
|Sr|

∑
j∈Sr

vj ⊗ vj , we have

p(a, b|ϕSr,v) = 0 if a 6= b.

One can then write down an analogue of Theorem 3.3.5 in this context. Alternatively, one can

simply let P̃a = U∗PaU and Q̃b = U∗QbU , where U is the unitary satisfying Uei = vi for all

i. Then applying Theorem 3.3.5 relates the entries of Q̃a to the entries of P̃a, while showing that

the state 〈(·)χ, χ〉 is a trace on the algebra generated by the entries of the operators Q̃a (respec-

tively, P̃a). Since Pa = UP̃aU
∗ and Qb = UQ̃bU

∗, the entries of Pa (respectively, Qb) are linear

combinations of the entries of P̃a (respectively, Q̃b), so it follows that the algebra generated by the
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entries of the operators Pa (respectively, Qb) is the same as the algebra generated by the entries of

P̃a (respectively, Q̃b).

It is helpful to describe the simplest ways to realize synchronous correlations. To that end, we

spend the rest of this section describing the simplest realizations for t ∈ {loc, q, qs, qa}. We start

with the case of Qsloc(n, c).

Corollary 3.3.8. Let X ∈ (Mn ⊗Mn)c
2
. Then X belongs to Qsloc(n, c) if and only if there is a

unital, commutative C∗-algebra A, a projection-valued measure {Pa}ca=1 ⊆ Mn(A) for 1 ≤ a ≤

c, and a faithful state ψ ∈ S(A) such that, for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ` ≤ n,

X
(a,b)
(i,j),(k,`) = ψ(Pa,ijP

∗
b,k`).

Moreover, if X is an extreme point in Qsloc(n, c), then we may take A = C.

Proof. If X ∈ Qsloc(n, c), then by definition of loc-correlations, X can be written using projection-

valued measures {Pa}ca=1 and {Qb}cb=1 inMn(B(H)), along with a state χ ∈ H, such thatX(a,b)
(i,j),(k,`) =

〈Pa,ijQb,k`χ, χ〉 and the C∗-algebra A generated by the set of all entries Pa,ij and Qb,` is a com-

mutative C∗-algebra. Applying Theorem 3.3.5, we can write X(a,b)
(i,j),(k,`) = ψ(Pa,ijP

∗
b,k`), where

ψ(·) = 〈(·)χ, χ〉. As this state is tracial, by replacing A with its quotient by the kernel of the GNS

representation of ψ if necessary, we may assume without loss of generality that ψ is faithful, which

establishes the forward direction. The converse follows by the converse of Theorem 3.3.5 and the

definition of Qloc(n, c).

To establish the claim about extreme points, we note that every element of Qloc(n, c) is a

limit of convex combinations of correlations arising from PVMs in Mn(C). Evidently the set of

elements of Qloc(n, c) that have realizations using PVMs in Mn(C) is a closed set. As Qloc(n, c)

is compact and convex, the converse of the Krein-Milman theorem shows that extreme points in

Qloc(n, c) must have a realization using PVMs in Mn(C). Now, the proof of the forward direction

of Theorem 3.3.5 shows that 1
n

∑c
a=1

∑n
i,j=1 Y

(a,b)
(i,j),(i,j) ≤ 1 for any Y ∈ Qqc(n, c). Moreover, this

inequality is an equality if and only if Y is synchronous, by Proposition 3.3.3. Hence, Qsloc(n, c)
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is a face in Qloc(n, c), so extreme points in Qsloc(n, c) are also extreme points in Qloc(n, c). This

shows that X has a realization using the algebra A = C.

Corollary 3.3.9. Let X ∈ (Mn ⊗ Mn)c
2
. Then X belongs to Qsq(n, c) if and only if there is a

finite-dimensional C∗-algebra A, a projection-valued measure {Pa}ca=1 ⊆ Mn(A) for 1 ≤ a ≤ c,

and a faithful tracial state ψ ∈ S(A) such that, for all 1 ≤ a, b ≤ c and 1 ≤ i, j, k, ` ≤ n,

X
(a,b)
(i,j),(k,`) = ψ(Pa,ijP

∗
b,k`).

Moreover, if X is an extreme point in Qsq(n, c), then we may take A = Md for some d, and hence

ψ = Trd, where Trd is the normalized trace on Md.

Proof. If X belongs to Qsq(n, c), then one can write X = (〈(Pa,ij ⊗ Qb,k`)χ, χ〉) for projection-

valued measures {Pa}ca=1 ⊆ Mn(B(HA)) and {Qb}cb=1 ⊆ Mn(B(HB)) on finite-dimensional

Hilbert spaces HA and HB, along with a unit vector χ ∈ HA ⊗ HB. By Theorem 3.3.5, we may

write X = ψ(Pa,ijP
∗
b,k`) where ψ is the (necessarily faithful) tracial state on the finite-dimensional

C∗-algebra A generated by the set {Pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n}.

Conversely, if X can be written as X = (ψ(Pa,ijP
∗
b,k`)) for a projection-valued measure

{Pa}ca=1 ⊆ Mn(A), where A is a finite-dimensional C∗-algebra with a faithful trace ψ on A, then

the proof of Theorem 3.3.5 yields a finite-dimensional realization of X as an element ofQsqc(n, c).

By Lemma 3.2.6, we must have X ∈ Qsq(n, c).

Now, assume that X is extreme in Qsq(n, c). Since A is finite-dimensional, it is ∗-isomorphic

to
⊕m

r=1Mkr for some r and numbers k1, ..., kr ∈ N. Since ψ is a trace on A, there must be

t1, ..., tm ≥ 0 such that
∑m

r=1 tr = 1 and ψ(·) =
∑m

r=1 tr Trkr(·), where Trkr is the normalized

trace onMkr . Writing Pa,ij =
⊕m

r=1 P
(r)
a,ij for each 1 ≤ a ≤ c and 1 ≤ i, j ≤ n, where P (r)

a,ij ∈Mkr ,

we have

X
(a,b)
(i,j),(k,`) =

m∑
r=1

tr Trkr(P
(r)
a,ij(P

(r)
b,k`)

∗).

Since P (r)
a = (P

(r)
a,ij) ∈Mn(Mkr) must define an orthogonal projection and

∑c
a=1 P

(r)
a = In ⊗ Ikr ,
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it follows that X(a,b)
r,(i,j),(k,`) = Trkr(P

(r)
a,ij(P

(r)
b,k`)

∗) ∈ Qsq(n, c), and
∑m

r=1 trX
(a,b)
r,(i,j),(k,`) = X

(a,b)
(i,j),(k,`).

Therefore, X(a,b)
r,(i,j),(k,`) = X

(a,b)
(i,j),(k,`) for each r. This shows that we may take A to be a matrix

algebra, completing the proof.

Next, we prove that Qsqs(n, c) = Qsq(n, c), using a similar approach to [36].

Theorem 3.3.10. For each n, c ∈ N, we have Qsqs(n, c) = Qsq(n, c).

Proof. Let X = (X
(a,b)
(i,j),(k,`)) ∈ Qsqs(n, c), and write

X
(a,b)
(i,j),(k,`) = 〈(Pa,ij ⊗Qb,k`)ψ, ψ〉,

where Pa = (Pa,ij) is a projection in Cn ⊗ HA for each 1 ≤ a ≤ c, Qb = (Qb,ij) is a projection

in HB ⊗ Cn for each 1 ≤ b ≤ c,
∑c

a=1 Pa = ICn⊗HA
,
∑c

b=1Qb = IHB⊗Cn , and ψ ∈ HA ⊗ HB

is a state. We can arrange to have dim(HA) = dim(HB). For example, if dim(HA) < dim(HB),

then we choose a Hilbert space HC with dim(HA ⊕HC) = dim(HB), and extend Pa by defining

P̃a,ij = Pa,ij ⊕ δijIHC
. Then

〈(P̃a,ij ⊗Qb,k`)ψ, ψ〉 = 〈(Pa,ij ⊗Qb,k`)ψ, ψ〉 = X
(a,b)
(i,j),(k,`).

In this way, we may assume without loss of generality that dim(HA) = dim(HB).

We write down a Schmidt decomposition

ψ =
∞∑
p=1

αpep ⊗ fp,

where {ep}∞p=1 ⊆ HA and {fp}∞p=1 ⊆ HB are orthonormal, and α1 ≥ α2 ≥ ... ≥ 0 are such

that
∑∞

p=1 α
2
p = 1. If one extends these orthonormal sets to orthonormal bases for HA and HB

respectively, and defines additional αp’s to be 0, then after direct summing a Hilbert space on one

side if necessary, we may assume that dim(HA) = dim(HB) and that {er}r∈I is an orthonormal

basis forHA, and {fs}s∈I is an orthonormal basis forHB.
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We rewrite the (at most) countable set {αq : αq 6= 0} = {βv : v ∈ V }, where V = {1, 2, ...}

and βv > βv+1 for all v ∈ V . We defineKv = {eq : αq = βv} and Lv = {fq : αq = βv}, and define

subspacesKv = span(Kv) and Lv = span(Lv) ofHA andHB, respectively. Since
∑∞

q=1 |αq|2 = 1,

it follows that each Kv and Lv must be finite, so that Kv and Lv are finite-dimensional. We will

show that each Kv is invariant for the operators {Pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n}, and that

each Lv is invariant for the operators {Qb,k` : 1 ≤ b ≤ c, 1 ≤ k, ` ≤ n}. To this end, let ω be

a primitive c-th root of unity, and define order c unitaries U =
∑c

a=1 ω
aPa ∈ B(Cn ⊗ HA) and

V =
∑c

b=1 ω
−bQb ∈ B(HA ⊗ Cn). Since X is synchronous, by Theorem 3.3.5, we know that

(IHA
⊗Q∗a,ij)ψ = (Pa,ij ⊗ IHB

)ψ and (IHA
⊗Qa,ijQ

∗
b,ij)ψ = (Pb,ijP

∗
a,ij ⊗ IHB

)ψ.

Since UijU∗ij =
∑c

a,b=1 ω
a−bPa,ijP

∗
b,ij and VijV ∗ij =

∑c
a,b=1 ω

b−aQa,ijQ
∗
b,ij , it follows that

(IHA
⊗ V ∗ij)ψ = (Uij ⊗ IHB

)ψ and (IHA
⊗ VijV ∗ij)ψ = (UijU

∗
ij ⊗ IHB

)ψ.

Using this fact and the decomposition of ψ,

αq〈Uijeq, ep〉 = 〈(Uij ⊗ IHB
)ψ, ep ⊗ fq〉 = 〈(IHA

⊗ V ∗ij)ψ, ep ⊗ fq〉 = αp〈V ∗ijfp, fq〉.

Since U and V are unitary, it follows that, for all p,

n∑
i,j=1

‖U∗ijep‖2 =
n∑

i,j=1

〈UijU∗ijep, ep〉 = n and
n∑

i,j=1

‖Uijep‖2 =
n∑

i,j=1

〈U∗ijUijep, ep〉 = n.

Similarly,
∑n

i,j=1 ‖V ∗ijfq‖2 =
∑n

i,j=1 ‖Vijfq‖2 = n. Suppose that q is such that eq ∈ K1. Then
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using the fact that αq = α1 and that αp ≤ α1 for all p yields

n|α1|2 =
n∑

i,j=1

|α1|2‖V ∗ijfq‖2

≥
n∑

i,j=1

∞∑
p=1

|αp|2|〈V ∗ijfp, fq〉|2

=
n∑

i,j=1

∞∑
p=1

|αq|2|〈Uijeq, ep〉|2

= |α1|2
n∑

i,j=1

∞∑
p=1

|〈Uijeq, ep〉|2

= |α1|2
n∑

i,j=1

∞∑
p=1

|〈U∗ijep, eq〉|2

= |α1|2
n∑

i,j=1

‖U∗ijeq‖2

= n|α1|2.

Therefore, we must have equality at all lines. If p is such that ep 6∈ K1, then since αp < α1, we

must have 0 =
∑n

i,j=1 |αp|2|〈V ∗ijfp, fq〉|2 =
∑n

i,j=1 |αq|2|〈Uijeq, ep〉|2. Therefore, 〈Uijeq, ep〉 = 0

for each such p, which shows that Uijeq ⊥ ep for all p with ep 6∈ K1. Since this happens whenever

αq = α1, the subspaceK1 must be invariant for every Uij . By the same argument as above with the

quantity
∑n

i=1 |α1|2‖Vijfq‖2, it follows thatK1 is invariant for every U∗ij . Therefore,K1 is reducing

for the operators Uij , for all 1 ≤ i, j ≤ n. A similar argument proves that L1 is reducing for the

operators Vk`, for all 1 ≤ k, ` ≤ n.

Now, choose q such that eq ∈ K2 and fq ∈ L2. If αp > αq, then αp = α1, so that ep ∈ K1

and fp ∈ K1. The above shows that 〈Uijeq, ep〉 = 0 and 〈U∗ijeq, ep〉 = 0, so that Uijeq ⊥ K1 and

U∗ijeq ⊥ K2. Similarly, Vk`fq ⊥ L1 and V ∗k`fq ⊥ L1. Then using a similar string of inequalities

as before, one obtains Uijeq ⊥ ep whenever p is such that ep 6∈ K2 and q is such that eq ∈ K2.

Therefore, one finds thatK2 is invariant for each Uij . A similar argument shows thatK2 is invariant

for U∗ij , so that K2 is reducing for {Uij : 1 ≤ i, j ≤ n}. The same argument shows that {Vk` : 1 ≤

41



k, ` ≤ n} reduces K2.

It follows by induction that Kv is reducing for {Uij : 1 ≤ i, j ≤ n} for all v and that Lv is

reducing for {Vk` : 1 ≤ k, ` ≤ n} for all v. By construction of the unitaries U and V , we know

that

Pa =
1

c

c∑
d=1

ω−adUd and Qb =
1

c

c∑
d=1

ωbdV d.

Therefore, Kv is reducing for each Pa,ij , and Lv is reducing for each Qb,k`, as desired.

Finally, we will exhibit X = (X
(a,b)
(i,j),(k,`)) as a countable convex combination of elements of

Qsq(n, c). One can regard elements of Qsq(n, c) as elements of Cn4×c2 , or as elements of R2(n4c2).

Then by a countably infinite version of Carathéodory’s Theorem [11], this will show thatX belongs

toQsq(n, c), which will complete the proof. (As mentioned in [36], this result from [11] holds even

with non-closed convex sets, of which Qsq(n, c) is an example.)

For each v ∈ V , we let dv = dim(Kv) = dim(Lv) = |Kv| = |Lv|, which is finite. Define the

state

ψv =
1√
dv

∑
p:ep∈Kv

ep ⊗ fp,

and define

Pv,a,ij = Pa,ij|Kv and Qv,b,k` = Qb,k`|Lv .

Since Kv is reducing for Pa,ij , and since Pa is a projection, the operator Pv,a = (Pv,a,ij)
n
i,j=1 is a

projection on Cn ⊗ Kv. Similarly, Qv,b = (Qv,b,k`)
n
k,`=1 is a projection on Lv ⊗ Cn. Moreover,∑c

a=1 Pv,a = ICn ⊗ IKv and
∑c

b=1Qv,b = ILv ⊗ ICn . Therefore, the correlation

Xv = (X
(a,b)
v,(i,j),(k,`)) = (〈(Pv,a,ij ⊗Qv,b,k`)ψv, ψv〉)

belongs to Qq(n, c) for each v. Set tv = β2
vdv. Then tv ≥ 0 and

∑
v≥1 tv =

∑∞
p=1 |αp|2 = 1.
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Finally, for each 1 ≤ a, b ≤ c and 1 ≤ i, j ≤ n, we compute

X
(a,b)
(i,j),(k,`) = 〈(Pa,ij ⊗Qb,k`)ψ, ψ〉

=
∑
v

∑
p,q:ep,eq∈Kv

β2
v〈(Pa,ij ⊗Qb,k`)(ep ⊗ fp), eq ⊗ fq〉

=
∑
v

β2
vdv〈(Pv,a,ij ⊗Qv,b,k`)ψv, ψv〉

=
∑
v

tvX
(a,b)
v,(i,j),(k,`).

It follows that X =
∑

v tvXv. Since each Xv ∈ Qq(n, c), it follows that X ∈ Qq(n, c). Since X is

also synchronous, we obtain X ∈ Qsq(n, c), completing the proof.

For completeness, we close this section by stating that elements ofQsqa(n, c) can be represented

using the trace on RU and projection-valued measures with c outputs in Mn(RU), where RU

denotes an ultrapower of the hyperfinite II1-factor R by a free ultrafilter U on N. The proof can

be found in [5, section 3].

Theorem 3.3.11. Let X = (X
(a,b)
(i,j),(k,`)) be an element of (Mn ⊗Mn)c

2
. The following statements

are equivalent:

1. X belongs to Qsqa(n, c);

2. X belongs to Qsq(n, c);

3. There is a separable unital C∗-algebra A, a PVM {P1, ..., Pc} in Mn(A), and an amenable

trace τ on A such that, for all 1 ≤ i, j, k, ` ≤ n and 1 ≤ a, b ≤ c,

X
(a,b)
(i,j),(k,`) = τ(Pa,ijP

∗
b,k`);

4. There are elements qa,ij in RU such that qa = (qa,ij) are projections in Mn(RU) with∑c
a=1 qa = In and

X
(a,b)
(i,j),(k,`) = TrRU (qa,ijq

∗
b,k`).
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4. Quantum graph coloring game and chromatic numbers

The non-local classical graph coloring game on c colors is described by a finite simple graph

G, with input set I = V (G) (the vertex set of G) and output set O = {1, 2, . . . , c}. The goal of

Alice and Bob in this game is to convince the referee that there exists a coloring of G with c colors.

In particular, the rules of the game are determined by the following two requirements:

1. Alice and Bob’s answers must be synchronous, meaning that if they receive the same vertex

x ∈ V (G), then they must return the color a ∈ O.

2. If the referee supplies an edge (x, y) ∈ E(G) to Alice and Bob, then they must respond with

different colors a and b (a 6= b).

In this section, we aim to extend this coloring game to the setting of quantum graphs.

4.1 The quantum-to-classical graph coloring game

Throughout our discussion, we use the bimodule perspective of quantum graphs [definition

2.1.1] considered by N. Weaver. For our purposes, we refer to a quantum graph as a triple

(S,M,Mn), where

• M is a (non-degenerate) von Neumann algebra andM⊆Mn;

• S ⊆Mn is an operator system; and

• S is anM′-M′-bimodule with respect to matrix multiplication.

In our discussion below, one can just as well use the “traceless" version of quantum graphs

along the lines of D. Stahlke [53]; i.e., one replaces the second condition with the condition that

S is a self-adjoint subspace of Mn with Tr(X) = 0 for every X ∈ S . This condition, combined

with the bimodule property, would force S ⊆ (M′)⊥. Our use of the operator system approach

is generally cosmetic: one can easily adapt the quantum-classical game to traceless self-adjoint

operator spaces that areM′-M′-bimodules with respect to matrix multiplication.
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We begin by exhibiting a certain orthonormal basis for S with respect to the (unnormalized)

trace on Mn. It is from this (preferred) basis for S that we will extract our input states for the

coloring game.

Proposition 4.1.1. Let K1, ...,Km be non-zero subspaces of Cn with K1 ⊕ · · · ⊕ Km = Cn, such

thatM acts irreducibly on each Kr. Let Er be the orthogonal projection of Cn onto Kr, for each

1 ≤ r ≤ m. Then there exists an orthonormal basisF of S ⊆Mn with respect to the unnormalized

trace, such that

• 1√
dim(Kr)

Er ∈ F for each 1 ≤ r ≤ m;

• F contains an orthonormal basis forM′; and

• For each Y ∈ F , there are unique r, s with ErY Es = Y .

Proof. SinceM acts irreducibly on Kr, it follows that Er ∈ M′. Let X be an element of S. As

S is an M′-M′-bimodule, it follows that ErXEs ∈ S for all 1 ≤ r, s ≤ m. Moreover, since∑m
r=1Er = 1, we have X =

∑m
r,s=1ErXEs. Given X, Y ∈ S , we have 〈ErXEs, EpY Eq〉 = 0

whenever r 6= p or s 6= q, where 〈·, ·〉 is the inner product with respect to the unnormalized trace on

Mn. We choose an orthonormal basis Fr,s for ErSEs with respect to this inner product as follows.

We start with an orthonormal basis for ErM′Es; if r = s, then we arrange for this orthonormal

basis to contain 1√
dim(Kr)

Er. Then we extend the orthonormal basis forErM′Es to an orthonormal

basis for ErSEs. Also, if X ∈ S ∩ (M′)⊥ and Y ∈M′, then

〈ErXEs, Y 〉 = Tr(Y ∗ErXEs) = Tr(XEsY
∗Er) = 〈X,ErY Es〉 = 0,

which shows that Er(S ∩ (M′)⊥)Es ⊥ M′. Then F =
⋃
r,sFr,s is an orthonormal basis for S,

which evidently satisfies all three properties.

Definition 4.1.2. We call a basis for S satisfying Proposition 4.1.1 as a quantum edge basis for

(S,M,Mn).

45



Alternatively, one could arrange for a quantum edge basis for S to also contain a normalized

system of matrix units forM′, since a quantum edge basis must already contain the normalized

diagonal matrix units. We will see in Theorem 4.1.7 that the game is independent of the quantum

edge basis chosen.

Once an orthonormal basis for Cn has been fixed, one can define the inputs for the game using

the following well-known correspondence between vectors in Cn ⊗ Cn and matrices in Mn. With

respect to a basis {v1, ..., vn}, this correspondence is given by the assignment vi ⊗ vj 7→ viv
∗
j ,

where viv∗j is the rank-one operator in Mn such that viv∗j (x) = 〈x, vj〉vi for all x ∈ Cn.

Proposition 4.1.3. Let (S,M,Mn) be a quantum graph with quantum edge basisF . Let {v1, ..., vn}

be an orthonormal basis for Cn that can be partitioned into bases for the subspaces K1, ...,Km.

For each Yα ∈ F , write Yα =
∑

p,q yα,pq vpv
∗
q for yα,pq ∈ C. Then the set

{∑
p,q

yα,pq vp ⊗ vq

}
α

⊆ Cn ⊗ Cn

is orthonormal.

Proof. This result immediately follows from the fact that the correspondence vi ⊗ vj 7→ viv
∗
j pre-

serves inner products, when using the canonical inner product on Cn ⊗ Cn and the (unnormalized)

Hilbert-Schmidt inner product on Mn.

With the notion of quantum edge bases in hand, we now define the coloring game for the

quantum graph (S,M,Mn) with c classical colors.

Definition 4.1.4. Let (S,M,Mn) be a quantum graph, and let {v1, ..., vn} be a basis for Cn that can

be partitioned into bases for the subspaces K1, ...,Kr. The quantum-to-classical graph coloring

game on c-colors, with respect to the basis {v1, ..., vn} and the quantum edge basis F , is defined

as follows:

1. INPUTS: The inputs are of the form
∑

p,q yα,pq vp ⊗ vq, where Yα :=
∑

p,q yα,pq vpv
∗
q is an

element of F .
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2. OUTPUTS: The outputs are colors a, b ∈ {1, ..., c}.

3. There are two rules to the game:

• Adjacency rule: If Yα ⊥ M′, then Alice and Bob must respond with different colors;

i.e., a 6= b.

• Same vertex rule: If Yα ∈ M′, then Alice and Bob must respond with the same color;

i.e., a = b.

Notice that the second rule will include a synchronicity condition: the inputs corresponding to

1√
dim(Kr)

Er will arise in the second rule. We will see that the rule applied to these inputs will force

Bob’s projections to arise from Alice’s projections; the rule applied to the other basis elements of

M′ will be what forces the projections to live inM⊗B(H), rather than Mn ⊗ B(H).

While the above definition of the game seems heavily basis-dependent, we will see that the

existence of winning strategies in the various models is independent of the basis {v1, ..., vn}, and

independent of the quantum edge basis F chosen for (S,M,Mn). This will be a direct conse-

quence of Theorem 4.1.7.

The players may adopt different types of strategies {loc, q, qs, qa, qc} to win this game. We

would now like to obtain a combinatorial characterization of quantum graph coloring using the

winning strategies for the coloring game. For this, we first review Kraus operators in the infinite-

dimensional case. Recall that a von Neumann algebra N is finite if every isometry in N is a

unitary; i.e., v∗v = 1 implies vv∗ = 1 inN . We choose to work with finite von Neumann algebras

since they are always equipped with a normal tracial state. We will be dealing with the case when

N is a finite von Neumann algebra equipped with a faithful normal trace τ . One may always

choose a faithful normal representationN ⊆ B(H) such that τ(·) = 〈(·)χ, χ〉 for some unit vector

χ ∈ H.

Suppose that L ⊆ B(K) is another von Neumann algebra with faithful normal trace ρ. If

Φ : L → N is a normal UCP map, then Φ∗ : N∗ → L∗ is a CPTP map. In our context, L

will be a finite-dimensional von Neumann algebra, so a UCP map Φ : L → N is automatically
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normal. One may choose K to be finite-dimensional and extend Φ to a UCP map from B(K) to

B(H), which is still (automatically) normal. Then one may choose Kraus operators Fi such that

Φ(·) =
∑m

i=1 F
∗
i (·)Fi, where m is either finite or countably infinite. In the latter case, the sum

converges in the SOT∗-topology. Then Φ∗ : N∗ → L∗ = L can be written as

Φ∗(·) =
m∑
i=1

Fi(·)F ∗i .

The interested reader can consult [12] (and the references therein) for more information on these

topics.

Now, we address some of the basis dependence of the game before the main theorem. The next

lemma shows that, up to a unitary conjugation, the basis for Cn in Definition 4.1.4 does not matter.

Lemma 4.1.5. Let (S,M,Mn) be a quantum graph, and write Cn = K1⊕· · ·⊕Km, whereM acts

irreducibly on each Kr. Let {v1, ..., vn} be an orthonormal basis for Cn that can be partitioned

into bases for the subspaces K1, ...,Km. Define U ∈ Mn to be the unitary such that Uei = vi for

all i, where {e1, ..., en} is another orthonormal basis for Cn. Suppose that X ∈ Qqc(n, c), and let

{Yα}α be a quantum edge basis for (S,M,Mn). Then X is a winning strategy for the coloring

game for ((S,M,Mn), Kc) with respect to {Yα}α if and only if Z := (U ⊗ U)∗X(U ⊗ U) is a

winning strategy for the coloring game for ((U∗SU,U∗MU,Mn), Kc) with respect to the quantum

edge basis {U∗YαU}α.

Proof. Suppose that we can write X = (〈(Pa ⊗ In)(In ⊗Qb)(ej ⊗ χ⊗ e`), ei ⊗ χ⊗ ek〉), where

({Pa}ca=1, {Qb}cb=1, χ) is a qc-strategy on a Hilbert spaceH. Then

〈(Pa⊗In)(In⊗Qb)(vj⊗χ⊗v`), vi⊗χ⊗vk〉 = 〈(U∗PaU⊗In)(In⊗U∗QbU)(ej⊗χ⊗e`), ei⊗χ⊗ek〉.

In other words, the element Z = (Z(a,b)) := ((U ⊗ U)∗X(a,b)(U ⊗ U)) is a qc-correlation with re-

spect to the basis {v1, ..., vn}. It is not hard to see that, ifF is a quantum edge basis for (S,M,Mn),

then U∗FU is a quantum edge basis for (U∗SU,U∗MU,Mn), since U∗M′U = (U∗MU)′ and
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the Hilbert-Schmidt inner product is invariant under unitary conjugation. Therefore, if Yα =∑
p,q yα,pqvpv

∗
q belongs to F , then its associated input vector is

∑
p,q yα,pqvp ⊗ vq. Then U∗YαU =∑

p,q yα,pqU
∗vpv

∗
qU has associated input vector

∑
p,q yα,pqU

∗vp ⊗ U∗vq =
∑

p,q yα,pqep ⊗ eq.

Therefore, the probability of Alice and Bob outputting (a, b) given the input vector
∑

p,q yα,pqvp⊗

vq, with respect to the correlation X , is the same as the probability of outputting (a, b) given the

input vector
∑

p,q yα,pqep ⊗ eq, with respect to the correlation Z. As this equality occurs for any

element of the quantum edge basis F , the desired result follows.

Remark 4.1.6. The previous remark, along with the adjacency rule, forces any winning strategy to

be synchronous with respect to the basis {v1, ..., vn}. Thus, in our main theorem, we may assume

that we are dealing with a synchronous t-strategy ({Pa}ca=1, χ), where {Pa}ca=1 is a PVM and χ is a

faithful normal tracial state on the von Neumann algebra generated by the entries of {Pa}ca=1. Note

that conjugating {Pa}ca=1 by a unitary in Mn does not change the von Neumann algebra generated

by the entries of the operators Pa.

Theorem 4.1.7. Let (S,M,Mn) be a quantum graph, c ∈ N, and let t ∈ {loc, q, qa, qc}. Let

N ⊆ B(H) be a (non-degenerate) finite von Neumann algebra, and χ ∈ H be a unit vector such

that τ = 〈(·)χ, χ〉 is a faithful (normal) trace on N . Let Dc be the set of all diagonal matrices in

Mc. The following are equivalent:

1. There is a winning strategy ({Pa}ca=1, χ) from N for the coloring game for (S,M,Mn) on

c colors with respect to any quantum edge basis.

2. There is a winning strategy ({Pa}ca=1, χ) from N for the coloring game for (S,M,Mn) on

c colors with respect to some quantum edge basis.

3. There is a PVM {Pa}ca=1 inM⊗N satisfying the following:

Pa((S ∩ (M′)⊥)⊗ 1)Pa = 0 for 1 ≤ a ≤ c. (4.1.0.1)
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4. There is a CPTP map Φ :M⊗N∗ → Dc of the form Φ(·) =
∑m

i=1 Fi(·)F ∗i such that

Fi((S ∩ (M′)⊥)⊗ 1N )F ∗j ⊆ (Dc)
⊥ for all i,j, (4.1.0.2)

and

Fi(M′ ⊗ 1N )F ∗j ⊆ Dc for all i, j. (4.1.0.3)

Proof. Clearly (1) implies (2). We will show that (2) =⇒ (3) =⇒ (4) =⇒ (1). Let

{v1, ..., vn} be an orthonormal basis for Cn. Let U be the unitary such that Uei = vi for all i.

Suppose that we can establish (3) for the PVM {(U ⊗ 1N )∗Pa(U ⊗ 1N )}ca=1 and the quantum

graph (U∗SU,U∗MU,Mn). Using the fact that (U∗MU)′ = U∗M′U , the condition in (3) can be

written as

(U ⊗ 1N )∗Pa(U ⊗ 1N )((U∗SU) ∩ (U∗M′U)⊥ ⊗ 1N )(U ⊗ 1N )∗Pb(U ⊗ 1N ) = 0 if a 6∼ b.

It is not hard to see that (U∗M′U)⊥ = U∗(M′)⊥U , so that the above reduces to

(U ⊗ 1N )∗Pa((S ∩ (M′)⊥)⊗ 1N )Pb(U ⊗ 1N ) = 0.

Since U is a unitary, we obtain the desired condition for {Pa}ca=1 with respect to the quantum graph

(S,M,Mn). Hence, we may assume without loss of generality that vi = ei for all i.

Then, given a matrix Y =
∑

p,q ypqvpv
∗
q with associated unit vector y =

∑
p,q ypqvp ⊗ vq, the

probability of Alice and Bob outputting a and b respectively, given y and using the synchronous
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strategy ({Pa}ca=1, χ), is

p(a, b|y) =

〈
(Pa,ijP

∗
b,k`)(i,j),(k,`)

(∑
p,q

ypqvp ⊗ χ⊗ vq

)
,
∑
r,s

yrsvr ⊗ χ⊗ vs

〉

=

〈∑
i,j,k,`

vi ⊗ Pa,ijyj`P ∗b,k`χ⊗ vk,
∑
r,s

yrsvr ⊗ χ⊗ vs

〉

=
∑
i,j,k,`

〈
Pa,ijyj`P

∗
b,k`yikχ, χ

〉
=
∑
i,j,k,`

τ(Pa,ijyj`Pb,`kyik)

= Tr⊗τ

(∑
j,`

Pa,ijyj`Pb,`k

)
i,k

(Y ∗ ⊗ 1N )


= Tr⊗τ(Pa(Y ⊗ 1N )Pb(Y

∗ ⊗ 1N ))

= Tr⊗τ(Pa(Y ⊗ 1N )Pb(Y
∗ ⊗ 1N )Pa), (4.1.0.4)

where we have used the fact that Pa is an orthogonal projection. Now, suppose that F = {Yα}α

is a quantum edge basis for (S,M,Mn), and suppose that ({Pa}ca=1, χ) is a winning strategy with

respect to this quantum edge basis. If Yα ∈M′, then Equation 4.1.0.4 and faithfulness of the trace

gives Pa(Yα ⊗ 1N )Pb = 0 whenever a 6= b. Then

Pa(Yα ⊗ 1N )Pa =
c∑
b=1

Pa(Yα ⊗ 1N )Pb = Pa(Yα ⊗ 1N )

(
c∑
b=1

Pb

)
= Pa(Yα ⊗ 1N ).

Similarly, Pa(Yα⊗1N )Pa = (Yα⊗1N )Pa. Hence, Pa commutes with Yα⊗1N whenever Yα ∈M′.

This shows that Pa ∈ (M′ ⊗ 1N )′ ∩ (Mn ⊗N ) =M⊗B(H) ∩ (Mn ⊗N ) =M⊗N .

Similarly, if Yα ⊥ M′, then the rules of the game and the faithfulness of the trace force

Pa(Yα ⊗ 1N )Pa = 0, which shows that (3) holds.

Now we show that (3) implies (4). If (3) holds, then there is a projection-valued measure

{Pa}ca=1 in M⊗ N such that Pa(Y ⊗ 1N )Pa = 0 for all Y ∈ S ∩ (M′)⊥ and all a. Then the

map Ψ : Dc → M⊗N given by Ψ(Ekk) = Pk is a unital ∗-homomorphism. Since Dc is finite-
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dimensional, Ψ is normal. Hence, we may find Kraus operators F1, F2, ... in B(Cn ⊗H,Cc) such

that

Ψ(·) =
m∑
i=1

F ∗i (·)Fi,

wherem is either finite or ℵ0. In the infinite case, these sums converge in the SOT∗-topology. Then

Ψ = Θ∗ for a CPTP map Θ :M∗ ⊗N∗ =M⊗N∗ → Dc given by

Θ(·) =
m∑
i=1

Fi(·)F ∗i .

Given Y ∈ S, we set Za,b,i,j = EaaFi(Y ⊗ 1N )F ∗j Ebb. Notice that

Za,b,i,jZ
∗
a,b,i,j = EaaFi(Y ⊗ 1N )F ∗j EbbFj(Y

∗ ⊗ 1N )F ∗i Eaa,

so summing over j (for fixed i, this sum will converge in the SOT*-topology) and using the fact

that
∑m

i=1 F
∗
j EbbFj = Ψ(Ebb) = Pb,

m∑
j=1

Za,b,i,jZ
∗
a,b,i,j = EaaFi(Y ⊗ 1N )Pb(Y

∗ ⊗ 1N )F ∗i Eaa.

Now set Wa,b,i = EaaFi(Y ⊗ 1N )Pb. Then
∑m

j=1 Za,b,i,jZ
∗
a,b,i,j = Wa,b,iW

∗
a,b,i, since Pb is a projec-

tion. On the other hand,

W ∗
a,b,iWa,b,i = Pb(Y

∗ ⊗ 1N )F ∗i EaaFi(Y ⊗ 1N )Pb,

so summing over i gives

m∑
i=1

W ∗
a,b,iWa,b,i = Pb(Y

∗ ⊗ 1N )Pa(Y ⊗ 1N )Pb = (Pa(Y ⊗ 1N )Pb)
∗(Pa(Y ⊗ 1N )Pb).

It follows that, if the latter quantity is zero, then Za,b,i,j = 0 for all i, j. By condition (3), if Y ∈

S ∩ (M′)⊥, then Pa(Y ⊗ 1N )Pa = 0. This immediately implies that EaaFi(Y ⊗ 1N )F ∗j Eaa = 0.
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Then

Fi(Y ⊗ 1N )F ∗j =
∑
a,b

EaaFi(Y ⊗ 1N )F ∗j Ebb =
∑
a

EaaFi(Y ⊗ 1N )F ∗j Eaa ∈ D⊥c .

Since each Pa belongs toM⊗N , Pa commutes withM′ ⊗ 1N . Therefore, Pa(Y ⊗ 1N )Pa = 0

for all a and Y ∈ M′. A consideration of the above equations, yields EaaFi(Y ⊗ 1N )F ∗j Eaa = 0

whenever Y ∈M′. In that case, we have

Fi(Y ⊗ 1N )F ∗j =
∑
a,b

EaaFi(Y ⊗ 1N )F ∗j Ebb =
∑
a

EaaFi(Y ⊗ 1N )F ∗j Eaa ∈ Dc,

which yields the second part of condition (4). Hence, (3) implies (4).

Lastly, suppose that (4) holds; we will obtain a winning strategy for the game. Suppose that

Φ :M∗⊗N∗ → Dc is a CPTP map of the form Φ(·) =
∑m

i=1Ri(·)R∗i , such that Ri(Y ⊗ 1N )R∗j ∈

D⊥c for all 1 ≤ i, j ≤ m and Y ∈ S ∩ (M′)⊥, and Ri(Y ⊗ 1N )R∗j ∈ Dc for all Y ∈ M′. Then

Φ∗(·) =
∑m

i=1R
∗
i (·)Ri defines a normal UCP map from Dc to M⊗ N . Let Pa = Φ∗(Eaa) =∑m

i=1R
∗
iEaaRi for each 1 ≤ a ≤ c. Since Φ∗ is UCP, {Pa}ca=1 is a POVM in M ⊗ N . By

considering the unitary U sending ei to vi for each i, along with the POVM {U∗PaU}ca=1, the

quantum graph (U∗SU,U∗MU,Mn) and the operators RiU if necessary, we may assume without

loss of generality that vi = ei for all i. We will show that X(a,b)
(i,j),(k,`) = (τ(Pa,ijP

∗
b,k`)) defines a

winning t-strategy for the quantum graph coloring game for ((S,M,Mn), Kc).

For 1 ≤ a, b ≤ c, 1 ≤ i, j ≤ m and Y ∈ S, we define Va,b,i,j = EaaRi(Y ⊗ 1N )R∗jEbb. Then

m∑
j=1

Va,b,i,jV
∗
a,b,i,j =

m∑
j=1

EaaRi(Y⊗1N )R∗jEbbRj(Y
∗⊗1N )R∗iEaa = EaaRi(Y⊗1N )Pb(Y

∗⊗1N )R∗iEaa,

since Pb = Φ∗(Ebb). Therefore,
∑m

j=1 Va,b,i,jV
∗
a,b,i,j = T ∗a,b,iTa,b,i where Ta,b,i = P

1
2
b (Y ∗⊗1N )R∗iEaa.
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Next, we examine the sum

m∑
i=1

Ta,b,iT
∗
a,b,i =

m∑
i=1

P
1
2
b (Y ∗ ⊗ 1N )R∗iEaaRi(Y ⊗ 1N )P

1
2
b = P

1
2
b (Y ∗ ⊗ 1N )Pa(Y ⊗ 1N )P

1
2
b .

In the case when Y ∈ M′, we have Va,b,i,j = 0 whenever a 6= b, which implies that P
1
2
b (Y ∗ ⊗

1N )Pa(Y ⊗ 1N )P
1
2
b = 0. It follows that P

1
2
a (Y ⊗ 1N )P

1
2
b = 0. Multiplying on the left by P

1
2
a and

on the right by P
1
2
b , we obtain Pa(Y ⊗ 1N )Pb = 0 whenever Y ∈ M′ and a 6= b. The case when

Y = 1M shows that PaPb = 0 for a 6= b. Combining this orthogonality with the fact that {Pa}ca=1

is a POVM, we conclude that {Pa}ca=1 is a PVM. Similarly, if Y ∈ S ∩ (M′)⊥, then by condition

(4), Va,a,i,j = 0 for all a ∈ [c]. The same calculation shows that Pa(Y ⊗ 1N )Pa = 0 in this case as

well.

Therefore, using Equation (4.1.0.4), if {Yα}α is a quantum edge basis for (S,M,Mn), Yα has

associated unit vector yα and Yα ⊥M′, then by equation (4.1.0.4),

p(a, a|yα) = 〈Pa(Yα ⊗ 1N )Pa, Yα〉 = 0. for all a.

If Yα belongs toM with associated unit vector yα, then p(a, b|yα) = 〈Pa(Y ⊗ 1N )Pb, Y ⊗ 1N 〉 =

0 as well. This shows that ({Pa}ca=1, χ) defines a winning strategy for the coloring game for

(S,M,Mn) on c colors with respect to any quantum edge basis, completing the proof.

Notation 5. In the following discussion, we write (S,M,Mn)
t−→ Kc to mean that there is a

winning t-strategy for the graph coloring game for (S,M,Mn) on c colors.

Here, Kc is used to denote a classical complete graph on c vertices, with the understanding

that coloring a graph with c classical colors is basically finding a graph homomorphism into the

classical complete graph (Kc) on c vertices.

Later, we will also see other algebraic models of coloring {C∗, hered, alg}, which we include

in the definition below, for convenience:

Definition 4.1.8. Let t ∈ {loc, q, qs, qa, qc, C∗, hered, alg}. Let (S,M,Mn) be a quantum graph.
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We define

χt((S,M,Mn)) = min{c ∈ N : (S,M,Mn)
t−→ Kc},

and we define χt((S,M,Mn)) =∞ if (S,M,Mn) 6 t−→ Kc for all c ∈ N.

We now show that our classical chromatic numbers for irreflexive non-commutative graphs

coincide with Kim-Mehta’s strong chromatic numbers [37].

Theorem 4.1.9. Let (S,Mn,Mn) be an irreflexive non-commutative graph (i.e. Tr(X) = 0 for

all X ∈ S). Then c = χloc((S,Mn,Mn)) if and only if there exists an orthonormal basis

{u1, u2, . . . un} of Cn that can be partitioned into c subsets S1, S2, . . . , Sc such that viv∗j ∈ S⊥

for all vi, vj ∈ Sl and 1 ≤ l ≤ c.

Proof. First, suppose {Pk}ck=1 ⊆ Mn is a c-coloring of (S,Mn,Mn) in our sense. Since Pk is an

orthogonal projection, there exists an orthonormal basis Vk for range(Pk) such that Pk =
∑
u∈Vk

uu∗.

Then for each X ∈ S, we have

0 = PkXPk =
∑
u,v∈Vk

uu∗Xvv∗ =
∑
u,v∈Vk

(u∗Xv)uv∗.

Since {uv∗}u,v∈Vk is a linearly independent subset, it follows that u∗Xv = 0. That is uv∗ ⊥ X ,

for all u, v ∈ Vk and X ∈ S. Hence, {Vk}ck=1 is a strong c-coloring of S. Here we use the fact that∑c
k=1 range(Pk) = Mn as

∑c
k=1 Pk = I .

Conversely, let Sk = {v1, v2, . . . , vt} ⊆ Cn be a subset of S such that viv∗j ⊥ S for all

vi, vj ∈ Sk. Define Pk =
∑t

i=1 viv
∗
i ∈Mn ⊗ C. Then

PkSPk =
t∑

i,j=1

viv
∗
i Svjv

∗
j =

t∑
i,j=1

(v∗i Svj)viv
∗
j = 0.

Hence, {Pk}ck=1 gives a c-coloring of S in the loc model. (Note thatM′ = In.)

Example 4.1.10. Let

S = span {I, Eij : i 6= j} ⊆Mn,
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which is a quantum graph on Mn. It is known [37] that χ((S,Mn,Mn)) = n. Here, we will show

that χqc((S,Mn)) = n as well, which shows that χt((S,Mn)) = n for any t ∈ {loc, q, qa, qc}.

Evidently the basis F = {I, Eij : i 6= j} is a quantum edge basis for (S,Mn,Mn). Now,

suppose that P1, ..., Pc are projections in Mn(B(H)) with Pa(Ek` ⊗ I)Pa = 0 for all 1 ≤ a ≤ c

and 1 ≤ k 6= ` ≤ n. A winning strategy in the qc-model for coloring (S,Mn) with c colors would

mean that there is a trace τ on the algebra generated by the Pa,ij’s and that

p(a, a|ei ⊗ ej) = 0 if i 6= j.

This implies that

τ(Pa,iiP
∗
a,jj) = 0 for all i 6= j.

By taking a quotient by the kernel of the GNS representation of the trace, we may assume that τ

is faithful. Then by faithfulness of τ and positivity of Pa,jj , we have Pa,iiPa,jj = 0 for all i 6= j.

Now, choose i 6= j. Notice that, for each i, the set {Pa,ii} is a POVM on H. Moreover, for any

a, b ∈ {1, ..., c},

p(a, b|ei ⊗ ej) = τ(Pa,iiP
∗
b,jj) = τ(Pa,iiPb,jj).

Thus, the only information relevant to Alice and Bob winning the game is the correlation (τ(Pa,iiPb,jj))a,b,i,j ∈

Cs
qc(n, c). By faithfulness, this forces each Pa,ii to be a projection. By the synchronous condition,

the previous equation and faithfulness of the trace, we obtain

Pa,iiPa,jj = 0 = Pa,iiPb,ii

whenever a 6= b and i 6= j. Therefore, (τ(Pa,iiPb,jj))a,b,i,j ∈ Cbs
qc(n, c); that is, the correlation is

bisynchronous in the sense of [50]. By [50], we must have c ≥ n. Therefore, χqc(S,Mn,Mn) ≥ n.

It follows that χt(S,Mn,Mn) = n for every t ∈ {loc, q, qa, qc}.

Next, we would like to relate winning strategies for the coloring game to the entanglement-

assisted coloring notion in the sense of D. Stahlke [53]. The following theorem will show that, in
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the loc model, condition (4) of Theorem 4.1.7 is an analogue of Stahlke’s notion of graph coloring

[53] for a non-commutative graph (i.e. a quantum graph withM = Mn), with an added assumption

on the commutant ofM. A similar analogue holds in the q-model, with natural generalizations to

the qa and qc models.

We observe that, if we start with a projection-valued measure {Pa}ca=1 whose block entries

are in a tracial von Neumann algebra (N , τ), where τ is faithful and normal, then either all four

conditions of Theorem 4.1.7 are satisfied by the PVM, or none of the four conditions are satisfied.

Notice that we needed to start with a PVM and a faithful trace for this to happen.

Using theorem 4.1.7 and the characterizations of synchronous correlations, we obtain the fol-

lowing theorem:

Theorem 4.1.11. Let (S,M,Mn) be a quantum graph and let Dc be the set of all diagonal matri-

ces in Mc.

1. (S,M,Mn)
loc−→ Kc if and only if there is a CPTP map Φ : M → Dc of the form Φ(·) =∑m

i=1 Fi(·)F ∗i such that

Fi(S ∩ (M′)⊥)F ∗j ⊆ (Dc)
⊥ for all i, j,

and

FiM′F ∗j ⊆ Dc for all i, j.

2. (S,M,Mn)
q−→ Kc if and only if there exists d ∈ N and a CPTP map Φ :M⊗Md → Dc of

the form Φ(·) =
∑m

i=1 Fi(·)F ∗i such that

Fi((S ∩ (M′)⊥)⊗ Id)F ∗j ⊆ (Dc)
⊥ for all i, j,

and

Fi(M′ ⊗ Id)F ∗j ⊆ Dc for all i, j.
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3. (S,M,Mn)
qa−→ Kc if and only if there is a CPTP map Φ : M⊗ (RU)∗ → Dc of the form

Φ(·) =
∑m

i=1 Fi(·)F ∗i such that

Fi((S ∩ (M′)⊥)⊗ 1RU )F ∗j ⊆ (Dc)
⊥ for all i, j,

and

Fi(M′ ⊗ 1RU )F ∗j ⊆ Dc for all i, j.

4. (S,M,Mn)
qc−→ Kc if and only if there is a von Neumann algebraN , a faithful normal trace

τ on N , and a CPTP map Φ :M⊗N∗ → Dc of the form Φ(·) =
∑m

i=1 Fi(·)F ∗i such that

Fi((S ∩ (M′)⊥)⊗ 1N )F ∗j ⊆ (Dc)
⊥ for all i, j,

and

Fi(M′ ⊗ 1N )F ∗j ⊆ Dc for all i, j.

Proof. We consider the case t = loc first. If (S,M,Mn)
loc−→ Kc, then there is a winning loc-

strategy for the coloring game on (S,M,Mn) with c colors. Since Qsloc(n, c) is convex and

non-empty, one may obtain an extreme point in Qsloc(n, c) that wins the game with probability

1. Applying Corollary 3.3.8, there is a realization of this correlation using a PVM {Pa}ca=1 in

M = M⊗ C. Then the result follows by condition (4) of Theorem 4.1.7 with N = C. The

converse of (1) holds by condition (3) of Theorem 4.1.7.

The argument is similar for t = q. Indeed, if there is a winning strategy for the homomorphism

game in the q-model, then an application of Corollary 3.3.9 shows that there is a winning q-strategy

using an extreme point in Qsq(n, c), which can be realized using projections whose entries are in

Md, for some d. Then condition (4) of Theorem 4.1.7 withN = Md yields the desired CPTP map.

The converse, as before, holds by condition (3) of Theorem 4.1.7.

We note that (3) holds because of Theorem 3.3.11. Condition (4) is achieved using the follow-

ing well-known trick: if A is a unital, separable C∗-algebra with tracial state τ , and if πτ : A →
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B(Hτ ) is the GNS representation of τ with cyclic vector ξ, then πτ (A)′′ is a finite von Neumann

algebra and 〈(·)ξ, ξ〉 is a faithful normal trace on πτ (A)′′. We leave the details to the reader.

Remark 4.1.12. Our notion of quantum graph coloring is a special case of Stahlke’s coloring [53]

in the sense that we use unital *-homomorphisms, while Stahlke’s notion uses more general UCP

maps. This leads to the additional pushforward condition on the commutant in our case.

For synchronous games with classical inputs and classical outputs, J.W. Helton, K.P. Meyer,

V.I. Paulsen and M. Satriano constructed a universal ∗-algebra for the game, generated by self-

adjoint idempotents whose products were 0 when the related pair of outputs was not allowed [30].

One can define a game ∗-algebra in our context as follows.

Definition 4.1.13. Let (S,M,Mn) be a quantum graph and let c ∈ N. The game ∗-algebra for

the coloring game for (S,M,Mn) on c colors, denotedA(Hom((S,M,Mn), Kc)), is the universal

∗-algebra generated by entries {pa,ij : 1 ≤ a ≤ c, 1 ≤ i, j ≤ n} subject to the relations

• pa = (pa,ij)i,j satisfies p2a = pa = p∗a and
∑c

a=1 pa = In, where In is the n × n identity

matrix;

• pa((S ∩ (M′)⊥)⊗ 1)pa = 0 for each a; and

• pa(M′ ⊗ 1)pb = 0 for each a 6= b.

We say that the algebra exists if 1 6= 0 in the algebra.

As one might expect, we obtain the following characterizations of the various flavors of win-

ning strategies for the coloring game in terms of ∗-homomorphisms of the game algebra. We

follow notation 5 to state this result.

Theorem 4.1.14. Let (S,M,Mn) be a quantum graph and let c ∈ N.

1. (S,M,Mn)
loc−→ Kc ⇐⇒ there is a unital ∗-homomorphismA(Hom((S,M,Mn), Kc))→

C.
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2. (S,M,Mn)
q−→ Kc if and only if there is a unital ∗-homomorphismA(Hom((S,M,Mn), Kc))→

Md for some d ∈ N.

3. (S,M,Mn)
qa−→ Kc if and only if there is a unital ∗-homomorphismA(Hom((S,M,Mn), Kc))→

RU .

4. (S,M,Mn)
qc−→ Kc if and only if there is a unital ∗-homomorphismA(Hom((S,M,Mn), Kc))→

C, where C is a tracial C∗-algebra.

One can also define algebraic coloring, C∗-coloring and hereditary coloring of quantum graphs.

Recall that a unital ∗-algebra A is said to be hereditary if, whenever x1, ..., xn ∈ A are such

that x∗1x1 + · · · + x∗nxn = 0, then x1 = x2 = · · · = xn = 0. If one defines A+ as the cone

generated by all elements of the form x∗x for x ∈ A, then A being hereditary is equivalent to

having A+ ∩ (−A+) = {0}. Every unital C∗-algebra is hereditary as a unital ∗-algebra.

Definition 4.1.15. Let (S,M,Mn) be a quantum graph and let c ∈ N. We write

1. (S,M,Mn)
alg−→ Kc provided A(Hom((S,M,Mn), Kc)) 6= 0.

(Note that the game algebra is non-trivial does not mean it has a non-trivial representation.)

2. (S,M,Mn)
C∗−→ Kc provided that there is a unital ∗-homomorphism

π : A(Hom((S,M,Mn), Kc))→ B(H),

for some Hilbert spaceH. (Equivalently, by the Gelfand-Naimark theorem, one may simply

require that the game algebra has a representation into some unital C∗-algebra.)

3. (S,M,Mn)
hered−−−→ Kc provided that there is a unital ∗-homomorphism fromA(Hom((S,M,Mn), Kc))

into a (non-zero) hereditary unital ∗-algebra.

With what we have established so far, we have the following sequence of implications for

different types of colorings on a quantum graph G := (S,M,Mn):
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G loc−→ Kc =⇒ G q−→ Kc =⇒ G qa−→ Kc =⇒ G qc−→ Kc (4.1.0.5)

=⇒ G C∗−→ Kc =⇒ G hered−→ Kc =⇒ G alg−→ Kc (4.1.0.6)

Due to the inclusions of the models, we always have

χloc((S,M,Mn)) ≥ χq((S,M,Mn)) ≥ χqa((S,M,Mn)) ≥ χqc((S,M,Mn))

≥ χC∗((S,M,Mn)) ≥ χhered((S,M,Mn)) ≥ χalg((S,M,Mn)).

It is known that some of the implications in (4.1.0.5) cannot be reversed:

- There are many examples of classical graphs G with χq(G) < χloc(G) [7, 41].

- Theorem 4.2.9 will show that χq((Mn,M,Mn)) = dim(M) but χloc((Mn,M,Mn)) =∞,

wheneverM is non-abelian.

- The separation between χq and χqa follows from an earlier work for Zhengfeng Ji.

- χalg(K5) = 4 but χhered(K5) 6= 4 [30]. This result will also be generalized to quantum

graphs later.

We conclude this section by showing that our notions of coloring reduce to the analogous types

of coloring for classical graphs in the case when (S,M,Mn) is a classical graph. Recall example

2.1.2 that, for a classical graphG on n vertices, the graph operator system SG (or classical quantum

graph) is defined as

SG = span ({Eii : 1 ≤ i ≤ n} ∪ {Eij : i ∼ j in G}).

Note that SG is naturally a quantum graph when viewed as a bimodule over the diagonal algebra

Dn = D′n ⊆Mn.
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Corollary 4.1.16. Let G be a classical graphs on n vertices and c ∈ N. Suppose that t ∈

{loc, q, qa, qc, C∗, hered, alg}. Then G t−→ Kc if and only if (SG, Dn,Mn)
t−→ Kc.

Proof. We will show that the algebra A(Hom(G,Kc)) from [30] is isomorphic to

A(Hom((SG, Dn,Mn), Kc)). The former algebra is the universal unital ∗-algebra generated by

self-adjoint idempotents ex,a such that
∑n

x=1 ex,a = 1, ex,aex,b = 0 if a 6= b, and ex,aey,b = 0 if

x ∼ y inG but a = b. Since Dn = D′n, the latter algebra is the universal unital ∗-algebra generated

by elements pa,ij such that pa = (pa,ij) ∈ Mn(A) is a self-adjoint idempotent with
∑c

a=1 pa = In,

pa((SG ∩ (Dn)⊥) ⊗ 1)pb = 0 whenever a = b, and pa(Dn ⊗ 1)pb = 0 whenever a 6= b. Since

Eii ∈ Dn, using the fact that pa(Dn ⊗ 1)pb = 0 for a 6= b, we obtain

pa(Eii ⊗ 1)pa =
c∑
b=1

pa(Eii ⊗ 1)pb = pa(Eii ⊗ 1).

Similarly, pa(Eii⊗ 1)pa = (Eii⊗ 1)pa, so that Eii⊗ 1 commutes with pa. It follows that pa,ij = 0

whenever i 6= j. Since p2a = pa = p∗a, we see that p2a,ii = pa,ii = p∗a,ii. For 1 ≤ a ≤ c and

1 ≤ x ≤ n, we define qx,a = pa,xx. Then qx,a is a self-adjoint idempotent and
∑c

a=1 qx,a = 1 for

all 1 ≤ x ≤ n. Note that, if x ∼ y in G but a = b, then

qx,aqy,b = pa,xxpb,yy = pa(Exy ⊗ 1)pb = 0,

since Exy ∈ SG ∩ (Dn)⊥ and a = b. Similarly, if a 6= b, then qx,aqx,b = pa(Exx ⊗ 1)pb = 0

since Exx ∈ Dn. By the universal property of A(Hom(G,Kc)), there is a unital ∗-homomorphism

π : A(Hom(G,Kc))→ A(Hom((SG, Dn,Mn), Kc)) such that π(ex,a) = qx,a for all x, a.

Conversely, inA(Hom(G,Kc)), one can construct the n×nmatrices fa = (fa,ij) with fa,ij = 0

for i 6= j and fa,ii = ea,i. Then evidently f 2
a = fa = f ∗a and

∑c
a=1 fa = In. Since ex,aex,b = 0

for a 6= b, we see that fa(Exx ⊗ 1)fb = 0 if a 6= b. Since Dn = span {Exx : 1 ≤ x ≤ n}, it

follows that fa(Dn ⊗ 1)fb = 0 for a 6= b. Similarly, it is not hard to see that fa(Exy ⊗ 1)fb = 0

whenever x ∼ y in G but a = b. By the universal property, there is a unital ∗-homomorphism

ρ : A(Hom((SG, Dn,Mn), Kc)) → A(Hom(G,Kc)) such that ρ(pa,ij) = fa,ij . Evidently ρ and

62



π are mutual inverses on the generators, so we conclude that the algebras are ∗-isomorphic. The

result follows.

Remark 4.1.17. As a consequence of Corollary 4.1.16, whenever G is a classical graph, we

have χt(G) = χt((SG, Dn,Mn)). This result is well known [48]. As χloc(G) is the (classi-

cal) chromatic number of a classical graph G, we sometimes use the notation χ((S,M,Mn))

for χloc((S,M,Mn)).

In the next section, we will show explicit computations for some of the quantum chromatic

numbers and also prove that every quantum graph has a finite quantum chromatic number, but not

necessarily classical chromatic number.

4.2 Quantum complete graphs and algebraic colorings

In this section, we consider quantum complete graphs; that is, graphs of the form (Mn,M,Mn),

whereM ⊆ Mn is a non-degenerate von Neumann algebra. We show that χt((Mn,M,Mn)) =

dim(M) for all t ∈ {q, qa, qc, C∗, hered}. In contrast, we will see that χloc((Mn,M,Mn)) is

finite if and only ifM is abelian; in the case whenM is abelian, we recover known results on col-

orings for the (classical) complete graph on dim(M) vertices. The algebraic model for colorings

is known to be very wild. At the end of this section, we will extend a surprising result of [30]: in

the algebraic model: that any quantum graph can be 4-colored.

We start with a simple proposition on unitary equivalence that we will use throughout this

section.

Proposition 4.2.1. LetM⊆Mn be a non-degenerate von Neumann algebra. Then there is a uni-

taryU ∈Mn such thatU∗MU =
⊕m

r=1 CInr⊗Mkr . Moreover, for any t ∈ {loc, q, qa, qs, qc, C∗, hered, alg},

we have

χt((Mn,M,Mn)) = χt

(
Mn,

m⊕
r=1

CInr ⊗Mkr ,Mn

)
.

Proof. The existence of the unitary U is a consequence of the theory of finite-dimensional C∗-

algebras. It is not hard to see that (U∗MU)′ = U∗M′U . Now, an element X ∈ Mn belongs
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to M′ if and only if Tr(XY ) = 0 for all Y ∈ M′. This statement is equivalent to having

Tr((U∗XU)(U∗Y U)) = 0 for all Y ∈ M′, since U is unitary. It follows that U∗(M′)⊥U =

(U∗M′U)⊥.

Now, suppose that {Pa}ca=1 ⊆ Mn ⊗ A is a collection of self-adjoint idempotents summing

to In ⊗ 1A, where A is a unital ∗-algebra. Then it is evident that Pa((M′)⊥ ⊗ 1A)Pa = 0 if

and only if P̃a((U∗M′U)⊥ ⊗ 1A)P̃a = 0, where P̃a = (U∗ ⊗ 1A)Pa(U ⊗ 1A). Similarly, if

a 6= b, then Pa(M′ ⊗ 1A)Pb = 0 if and only if P̃a((U∗M′U) ⊗ 1A)P̃b = 0. Thus, there is a

bijective correspondence between algebraic c-colorings of (Mn,M,Mn) and algebraic c-colorings

of (Mn,
⊕m

r=1 CInr ⊗Mkr ,Mn). This yields the equality of chromatic numbers for t = alg; the

other cases are similar.

The different chromatic numbers satisfy a certain monotonicity as well.

Proposition 4.2.2. If (S,M,Mn) and (T ,M,Mn) are quantum graphs with S ⊆ T , then

χt((S,M,Mn)) ≤ χt((T ,M,Mn)).

Proof. We deal with the t = alg case; all the other cases are similar. If (T ,M,Mn) has no

algebraic coloring, then χalg((T ,M,Mn)) = ∞, so the desired result holds. Otherwise, let A be

a (non-zero) unital ∗-algebra. Suppose that {Pa}ca=1 are self-adjoint idempotents in Mn(A) such

that
∑c

a=1 Pa = In, Pa((T ∩ (M′)⊥) ⊗ 1A)Pa = 0 for all a, and Pa(M′ ⊗ 1A)Pb = 0 for all

a 6= b. Then evidently Pa((S ∩ (M′)⊥)⊗ 1A)Pa = 0 as well, so the self-adjoint idempotents form

an algebraic c-coloring of (S,M,Mn). This shows that χalg((S,M,Mn)) ≤ χalg((T ,M,Mn)).

The proof for the other models is the same.

By Proposition 4.2.2, to establish that every quantum graph has a finite quantum coloring,

it suffices to consider quantum complete graphs. First, we look at (Mn,Mn,Mn), the quantum

complete graph. While we will have an alternative quantum coloring of this quantum graph from

Theorem 4.2.4, the protocol given in Theorem 4.2.3 is minimal for (Mn,Mn,Mn) in terms of the

dimension of the ancillary algebra. Moreover, it gives a foretaste of the protocol that we use for
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the quantum complete graph (Mn,M,Mn) whenM is not isomorphic to a matrix algebra. The

broad idea is to use unitary error basis and orthogonal projections associated with it.

Theorem 4.2.3. Let d, k ∈ N, and let n = dk. LetM = CId⊗Mk. Then χq((Mn,M,Mn)) ≤ k2.

Proof. We construct our projections from the canonical orthonormal basis for Ck⊗Ck that consists

of maximally entangled vectors; that is, the basis of the form

ϕa,b =
1√
k

k−1∑
p=0

exp

(
2πia(p+ b)

k

)
eb+p ⊗ ep,

where addition in the indices of the vectors is done modulo k. (See [24] for example.) We define

projections inM⊗M, for all 1 ≤ a, b ≤ n, by

P(a,b) =
1

k

k−1∑
p,q=0

exp

(
2πia(p− q)

k

)
Id ⊗ Eb+p,b+q ⊗ Id ⊗ Epq.

Since the set {ϕ(a,b)}na,b=1 is orthonormal, it is not hard to see that {P(a,b)}na,b=1 is a family of

mutually orthogonal projections. Moreover,
∑n

a,b=1 P(a,b) = Id⊗ Ik⊗ Id⊗ Ik. With respect to Mn,

(M′)⊥ is spanned by elements of the form Exy ⊗ Evw and Exy ⊗ (Evv − Eww) for 1 ≤ x, y ≤ d

and 1 ≤ v, w ≤ k with v 6= w. For Y = Exy ⊗ Evw ⊗ (Id ⊗ Ik), one computes P(a,b)Y P(a,b) and

obtains

1

k2

k−1∑
p,q,p′,q′=0

exp

(
2πia(p+ p′ − q − q′)

k

)
Exy ⊗ Eb+p,b+qEvwEb+p′,b+q′ ⊗ Id ⊗ EpqEp′q′ .

For a term in the above sum to be non-zero, one requires that b + q = v, w = b + p′, and q = p′.

Equivalently, a term in the sum is non-zero only when q = p′ and b+ q = v = w. Hence, if v 6= w,

then the above sum is 0. In the case when v = w, one obtains

1

k2

k−1∑
p,q′=0

exp

(
2πia(p− q′)

k

)
Exy ⊗ Eb+p,b+q′ ⊗ Id ⊗ Epq′ .
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The above expression does not depend on v, so we conclude that, for all 1 ≤ v, w ≤ k,

P(a,b)(Exy ⊗ Evv ⊗ Id ⊗ Ik)P(a,b) = P(a,b)(Exy ⊗ Eww ⊗ Id ⊗ Ik)P(a,b).

This shows that P(a,b)(X⊗Id⊗Ik)P(a,b) = 0 wheneverX = Exy⊗Evw orX = Exy⊗(Evv−Eww)

for v 6= w. As such elements span (M′)⊥, we see that

P(a,b)(X ⊗ Id ⊗ Ik)P(a,b) = 0∀X ∈ (M′)⊥.

Finally, we show that P(a,b)(M′ ⊗ Id ⊗ Ik)P(a′,b′) = 0 whenever (a, b) 6= (a′, b′). If Y ∈ M′,

then Y ⊗ (Id ⊗ Ik) commutes with each P(a,b), since P(a,b) ∈ M ⊗ (Id ⊗ Mk). Therefore, if

(a, b) 6= (a′, b′), we have

P(a,b)(Y ⊗ (Id ⊗ Ik))P(a′,b′) = P(a,b)P(a′,b′)(Y ⊗ (Id ⊗ Ik)) = 0.

Putting all of these equations together, we see that there is a representation of the game algebra

π : A(Hom((Mn,M,Mn), Kk2))→ CId⊗Mk ⊗Mk. Therefore, χq((Mn,M,Mn)) ≤ k2, which

yields the claimed result.

For a general complete quantum graph (Mn,M,Mn), we require a slightly different approach.

The protocol in the previous proof is used in the context of quantum teleportation, and essentially

arises from the use of a “shift and multiply" unitary error basis forMn [24,59]. To give a dim(M)-

coloring for (Mn,M,Mn) in the q-model, we will use what we refer to as a “global shift and local

multiply" framework.

Theorem 4.2.4. Let M be a non-degenerate von Neumann algebra in Mn. For the quantum

complete graph (Mn,M,Mn), we have χq((Mn,M,Mn)) ≤ dim(M).

Proof. Up to unitary equivalence in Mn, we may write M =
⊕m

r=1(CInr ⊗ Mkr), where n =∑m
r=1 nrkr. We will exhibit a PVM inM⊗Md, with d = lcm(k1, ..., km), satisfying the properties
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of a quantum coloring for (Mn,M,Mn). For notational convenience, we index our set of dim(M)

colors by the triples (s, a, b), where 1 ≤ s ≤ m and 0 ≤ a, b ≤ ks − 1. For 1 ≤ r ≤ m and

1 ≤ i ≤ kr, we define P(s,a,b) =
⊕m

r=1 Inr ⊗ P
(r,s)
(a,b) , where P (r,s)

(a,b) = (P
(r,s)
(a,b),(i,j))

kr−1
i,j=0 ∈ Mkr(Md) is

given by

P
(r,s)
(a,b),(i,j) =

δrs
kr
ω
(i−j)a
kr

Idr ⊗ Ei+b,j+b,

where ωkr is a primitive kr-th root of unity and dr = d
kr

. (Note that indices are computed modulo

kr.) By our choice of the operators P (r,s)
(a,b) , we see that each P(s,a,b) belongs toM⊗Md.

First, we show that
∑m

s=1

∑ks−1
a,b=0 P(s,a,b) = In⊗ Id. For each 1 ≤ r ≤ m and 0 ≤ i, j ≤ kr−1,

nr−1∑
a,b=0

P
(r,r)
(a,b),(i,j) =

1

kr

nr−1∑
a,b=0

ω
(i−j)a
kr

Idr ⊗ Ei+b,j+b.

If i 6= j, then the above sum over a is 0, for each value of b. If i = j, then the above sum simply

becomes
nr−1∑
b=0

Idr ⊗ Ei+b,i+b = Idr ⊗ Inr = Id.

Thus,
∑nr−1

a,b=0 P
(r,r)
(a,b) = Ikr ⊗ Id. Since P (r,s)

(a,b) = 0 if s 6= r, it follows that
∑m

s=1

∑ns−1
a,b=0 P

(r,s)
(a,b) =

Ikr⊗Id for each 1 ≤ r ≤ m. As P(s,a,b) =
⊕m

r=1 Inr⊗P
(r,s)
(a,b) , we must have

∑m
s=1

∑ns−1
a,b=0 P(s,a,b) =

In ⊗ Id.

Next, we check that each P(s,a,b) is an orthogonal projection. By definition, it is easy to see that

P ∗(s,a,b) = P(s,a,b) for all s, a, b. To compute P 2
(s,a,b), we note that

P 2
(s,a,b) =

m⊕
r=1

Inr ⊗ (P
(r,s)
(a,b) )

2,

so it suffices to show that each P (r,s)
(a,b) is an idempotent inMkr⊗Md. If r 6= s, then this is immediate.
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In the other case, we have

P
(r,r)
(a,b),(v,j)P

(r,r)
(a,b),(j,w) =

1

k2r
ω
(v−w)a
kr

Idr ⊗ Ev+b,j+bEj+b,w+b

=
1

k2r
ω
(v−w)a
kr

Idr ⊗ Ev+b,w+b

=
1

kr
P

(r,r)
(a,b),(v,w).

Since this happens for all 0 ≤ v, w ≤ kr−1, it follows that P (r,r)
(a,b),(v,w) =

∑kr−1
j=0 P

(r,r)
(a,b),(v,j)P

(r,r)
(a,b),(j,w).

Therefore, P (r,r)
(a,b) is idempotent in Mkr ⊗Md, so P(s,a,b) is an orthogonal projection.

Now, we show that P(s,a,b)((M′)⊥⊗ Id)P(s,a,b) = 0 for all a. We note thatM′ =
⊕m

r=1Mnr ⊗

CIkr . Hence, (M′)⊥ is spanned by the canonical matrix units that do not reside in M′, and

elements from eachMnr⊗Mkr of the formEij⊗Evw andEij⊗(Evv−Eww), where 1 ≤ i, j ≤ nr,

0 ≤ v, w ≤ kr − 1, and v 6= w. By a consideration of blocks, if a matrix unit Exy does not belong

to
⊕m

r=1Mnr ⊗Mkr , then in Mn ⊗Md, the element P(s,a,b)(Exy ⊗ Id)P(s,a,b) is a product of two

entries from P(s,a,b), at least one of which will be 0.

Next, we suppose that 0 ≤ v, w ≤ kr − 1 with v 6= w and 1 ≤ i, j ≤ nr, and consider the

matrix unit Eij ⊗ Evw ∈Mns ⊗Mks ⊂
⊕m

r=1Mnr ⊗Mkr . Since P(s,a,b) =
⊕m

r=1 Inr ⊗ P
(r,s)
(a,b) ,

P(s,a,b)(Eij ⊗ Evw ⊗ Id)P(s,a,b) = Eij ⊗
kr−1∑
k,`=0

P
(s,s)
(a,b),(k,v)P

(s,s)
(a,b),(w,`) = 0,

since P (s,s)
(a,b),(k,v)P

(s,s)
(a,b),(w,`) = 0 for all v 6= w in {0, ..., ns − 1}. For the last case, we look at the

element Eij ⊗ (Evv − Eww) in Mns ⊗Mks ⊂ (M′)⊥, where v 6= w. Multiplying on the left and

right by P(s,a,b) yields

P(s,a,b)(Eij⊗(Evv−Eww)⊗Id)P(s,a,b) = Eij⊗
kr−1∑
k,`=0

(P
(s)
(s,a,b),(k,v)P

(s)
(s,a,b),(v,`)−P

(s)
(s,a,b),(k,w)P

(s)
(s,a,b),(w,`)) = 0,

since P (s)
(s,a,b),(k,v)P

(s)
(s,a,b),(v,`) = 1

kr
P

(s)
(s,a,b),(k,`) for any 1 ≤ s ≤ m and 0 ≤ k, v, ` ≤ kr − 1. Putting

all of these facts together, we conclude that {P(s,a,b) : 1 ≤ s ≤ m, 0 ≤ a, b ≤ ns− 1} ⊂ M⊗Md
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is a quantum dim(M)-coloring of (Mn,M,Mn), as desired.

Remark 4.2.5. We suspect that the ancillary algebra in the previous proof is the minimal choice,

but are unable to prove this. In the case whenM = Mn, this is immediate, since having a PVM

with n2 outputs in Mn ⊗Mf , and with each projection non-zero, requires f ≥ n.

Next, we will show that χhered((Mn,M,Mn)) ≥ dim(M), which will show that, for every

t ∈ {q, qa, qc, C∗, hered}, we have χt((Mn,M,Mn)) = dim(M). Moreover, we will show that

dim(M)-colorings of (Mn,M,Mn) in the hereditary model must arise from trace-preserving ∗-

homomorphisms Ψ : Ddim(M) → M⊗A. More precisely, we equip Ddim(M) with its canonical

uniform trace ψDdim(M)
satisfying ψDdim(M)

(ea) = 1
dim(M)

for all 1 ≤ a ≤ dim(M). We also equip

the von Neumann algebraM'
⊕m

r=1 CInr ⊗Mkr with its canonical “Plancherel” trace given by

ψM =
m⊕
r=1

kr
nr dim(M)

Trnrkr(·).

Then we will show that the ∗-homomorphism Ψ satisfies the following trace covariance condition:

(ψM ⊗ id)Ψ(x) = ψDdim(M)
(x)1A (x ∈ Ddim(M)).

We thus establish that the hereditary coloring number for any complete quantum graph (Mn,M,Mn)

is dim(M), and moreover, the above trace-preserving condition shows that any minimal heredi-

tary coloring induces a quantum version of isomorphism between (Mn,M,Mn) and the complete

graph Kdim(M) on dim(M) vertices. Here, the notion of a “quantum isomorphism" means a quan-

tum isomorphism between quantum graphs in the sense of [4], when using an ancillary hereditary

unital ∗-algebra A. This result can be interpreted as a quantum analogue of the (classically obvi-

ous) fact that any minimal coloring of a complete graph Kc is automatically a graph isomorphism

Kc → Kc.

We consider the case whenM' CId ⊗Mk first.

Lemma 4.2.6. Let d, k ∈ N and let n = dk. Consider the quantum graph (Mn,M,Mn) with
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M = CId ⊗ Mk. Let A be a unital ∗-algebra, and let {P1, ..., Pc} ∈ M ⊗ A be a family of

mutually orthogonal projections such that
∑c

a=1 Pa = Idk ⊗ 1A and

Pa(X ⊗ 1A)Pa = 0 for all X ∈ (M′)⊥.

Then for each a, the element Ra = k
d dim(M)

(Trdk⊗idA)(Pa) is a self-adjoint idempotent inA, and∑c
a=1Ra = k21A.

Proof. SinceM = Id ⊗Mk, we haveM′ = Md ⊗ Ik and n = dk. Now, let 1 ≤ v, w ≤ k with

x 6= y, and let 1 ≤ i, j ≤ d. Then Eij ⊗ (Evv − Eww) belongs to (M′)⊥, so we must have

Pa(Eij ⊗ (Evv − Eww)⊗ 1A)Pa = 0∀1 ≤ a ≤ c.

Similarly, Eij ⊗ Evw is in (M′)⊥, so

Pa(Eij ⊗ Evw ⊗ 1A)Pa = 0∀1 ≤ a ≤ c.

Note that Pa ∈ M ⊗ A = Id ⊗Mk ⊗ A, so Pa =
∑k

p,q=1

∑d
x=1Exx ⊗ Epq ⊗ Pa,x,pq, with the

property that Pa,x,pq = Pa,y,pq for any 1 ≤ x, y ≤ d. For simplicity, we set Pa,pq = Pa,x,pq for any

1 ≤ x ≤ d. The quantity on the left of the above is exactly

k∑
p,q=1

Eij ⊗ Epq ⊗ Pa,pvPa,wq

so this says that Pa,pvPa,wq = 0 and Pa,pvPa,vq = Pa,pwPa,wq. Now, since Pa is a projection, we

have Pa,pq =
∑k

v=1 Pa,pvPa,vq = kPa,pvPa,vq for all p, q. In particular, Pa,vv = kP 2
a,vv. By scaling,

we see that kPa,vv is a self-adjoint idempotent. Similarly, since Pa,pvPa,wq = 0 if v 6= w, we see

that Pa,vvPa,ww = 0. Therefore, {kPa,vv}nv=1 is a collection of mutually orthogonal projections in

A.

Next, we set Ra =
∑k

v=1 kPa,vv for each 1 ≤ a ≤ c. Then Ra is a self-adjoint idempotent. We
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see that
c∑

a=1

Ra =
c∑

a=1

k∑
v=1

kPa,vv =
k∑
v=1

k1A = k21A,

which completes the proof.

Now, we deal with the case of a general quantum complete graph.

Theorem 4.2.7. Let (Mn,M,Mn) be a quantum complete graph. LetA be a hereditary ∗-algebra,

and let {Pa}ca=1 ⊆ M ⊗ A be a hereditary c-coloring of (Mn,M,Mn). Then c ≥ dim(M).

Moreover, if c = dim(M), then for each 1 ≤ a ≤ dim(M) we have

(ψM ⊗ idA)(Pa) =
1

dim(M)
1A.

Proof. Up to unitary equivalence, we may writeM =
⊕m

r=1 CInr ⊗Mkr . Then

M′ =
m⊕
r=1

Mnr ⊗ CIkr .

Define Er = 0 ⊕ · · · ⊕ Inr ⊗ Ikr ⊕ 0 ⊕ · · · ⊕ 0, which belongs toM′ ∩M. Then defining P̃a =

(Er⊗1A)Pa(Er⊗1A) ∈ (ErMEr)⊗A, we obtain a family of mutually orthogonal projections whose

sum is Er. Since Er is central inM, we see that (ErMEr)′ = ErM′Er, while ErMnEr = Mnrkr .

It is evident that X ∈ B(ErCn) ∩ (ErM′Er)⊥ if and only if X = ErXEr and X ⊥ M′ in Mn.

Therefore, for X ∈ B(ErCn) ∩ (ErM′Er)⊥ and 1 ≤ a ≤ c, one has

P̃a(X ⊗ 1A)P̃a = (Er ⊗ 1A)Pa(ErXEr ⊗ 1A)Pa(Er ⊗ 1A) = 0,

using the fact that ErXEr = X and X belongs toM′. Therefore, {P̃a}ca=1 is a hereditary coloring

of the quantum complete graph (Mnrkr , ErMEr,Mnrkr).

Since ErMEr = CInr ⊗Mkr , by Lemma 4.2.6, we see that R(r)
a := kr

nr
(Trnrkr ⊗idA)(P̃a) is a

self-adjoint idempotent in A for each 1 ≤ a ≤ c and 1 ≤ r ≤ m. Moreover,
∑c

a=1R
(r)
a = k2r1A.

Next, we claim that R(r)
a R

(s)
a = 0 if r 6= s. To show this orthogonality relation, it suffices
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to show that Pa,xxPa,yy = 0 whenever Pa,xx is a block from (ErMEr) ⊗ A and Pa,yy is a block

from (EsMEs) ⊗ A. If x and y are chosen in this way, then the matrix unit Exy in Mn satisfies

Er(Exy)Es = Exy and EpExyEq = 0 for all other pairs (p, q). It is not hard to see that Exy belongs

to (M′)⊥, so that Pa(Exy ⊗ 1A)Pa = 0. Considering the (x, y)-block of this equation gives

Pa,xxPa,yy = 0. It follows that R(r)
a R

(s)
a = 0 for r 6= s.

Since {R(r)
a }mr=1 is a collection of mutually orthogonal projections in A, the element Ra :=∑m

r=1R
(r)
a is a self-adjoint idempotent in A for each a. Considering blocks, it is not hard to see

that
c∑

a=1

Ra =
c∑

a=1

m∑
r=1

R(r)
a =

m∑
r=1

k2r1A = dim(M)1A.

Since Ra is a self-adjoint idempotent, so is 1A −Ra. Their sum is given by

c∑
a=1

(1A −Ra) = c1A −
c∑

a=1

Ra = (c− dim(M))1A.

It follows that c ≥ dim(M), since the sum above is a sum of positives and A is hereditary.

Now, if c = dim(M), then the above sum of positives inA is 0, which forces 1A−Ra = 0 for

all a. Hence, Ra = 1A. Since Ra =
∑m

r=1R
(r)
a and R(r)

a = kr
nr

(Trnrkr ⊗ idA)(Pa), we see that

m∑
r=1

kr
nr

(Trnrkr ⊗ idA)(Pa) = 1A.

Therefore,

(ψM ⊗ idA)(Pa) =
m∑
r=1

kr
dim(M)nr

(Trnrkr ⊗idA)(Pa) =
1

dim(M)
1A.

Remark 4.2.8. In essence, Theorem 4.2.7 proves that any q-coloring of (Mn,M,Mn) with dim(M)

colors induces a quantum isomorphism between the quantum graph (Mn,M,Mn) and the classi-

cal graph Kdim(M). This isomorphism occurs because any such coloring with ancillary algebra
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A yields a (necessarily injective) unital ∗-isomorphism π : Ddim(M) → M ⊗ A satisfying the

properties of a quantum graph homomorphism, with the additional property that (ψM⊗ idA)◦π =

π ◦ ψDdim(M)
.

In contrast to the case of q-colorings, the existence of a loc-coloring for a complete quantum

graph is equivalent to the von Neumann algebra being abelian. This is imposed by the trace pre-

serving property of the *-homomorphism.

Theorem 4.2.9. LetM⊆Mn be a non-degenerate von Neumann algebra. Then χloc((Mn,M,Mn))

is finite if and only ifM is abelian. In particular, ifM is non-abelian, then χ((Mn,M,Mn)) 6=

χq((Mn,M,Mn)).

Proof. Suppose that there is a c-coloring of (Mn,M,Mn) in the loc-model. Up to unitary equiv-

alence, we write M =
⊕m

r=1 CInr ⊗ Mkr . We may choose projections Pa ∈ M such that∑c
a=1 Pa = In and Pa((M′)⊥)Pa = 0 for all a. Let Ra =

∑m
r=1

kr
nr

Trnrkr(Pa) as in the proof

of the last theorem. Each Ra is an idempotent in C; hence, either Ra = 0 or Ra = 1. We know that∑c
a=1Ra = dim(M), so exactly dim(M) of the Ra’s are non-zero. Since Ra is given by a trace

onM which is faithful, having Ra = 0 implies that Pa = 0. Hence, by discarding any projections

Pa for which Ra = 0, we may assume without loss of generality that Ra = 1 for all a, and that

c = dim(M).

Let Er be the orthogonal projection onto the copy of CInr ⊗Mkr inside ofM =
⊕m

r=1 CInr ⊗

Mkr . Then, as before, the PVM {ErPaEr}dim(M)
a=1 yields a classical dim(M)-coloring for (Mnrkr ,CInr⊗

Mkr ,Mnrkr). We will show that kr = 1. By the same argument as above, by discarding values of

a for which kr
nr

Trnrkr(ErPaEr) = 0, we may assume that there are exactly k2r non-zero projections

ErPaEr that yield a k2r -classical coloring for (Mnrkr ,CInr ⊗Mkr ,Mnrkr). Set P̃a = ErPaEr. By

Theorem 4.2.7, for each a, we have kr
nr

Trnrkr(P̃a) = 1. Notice that krP̃a = Inr ⊗ krQa for some

projection krQa ∈ Mkr . Hence, Trkr(krQa) = 1. Let λ1, ..., λkr be the eigenvalues of krQa in

Mkr . Since each λi ∈ {0, 1} and
∑kr

i=1 λi = Trkr(krQa) = 1, there is exactly one λi that is non-

zero. Hence, Qa is rank one. The sum over all non-zero Qa gives Ikr , and each Qa is rank one.
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Hence, the number of a for which Qa is non-zero must be kr. Since we assumed that this number

is k2r , we must have kr = k2r . Since kr > 0, we have kr = 1. Since r was arbitrary, we see that

M =
⊕m

r=1 CInr ⊗Mkr =
⊕m

r=1 CInr is abelian.

Conversely, suppose that M is abelian. Then the proof of Theorem 4.2.7 yields projections

Pa ∈M⊗Md, where d = dim(M), such that
∑d

a=1 Pa = In⊗Id and Pa(X⊗Id)Pa = 0 whenever

X ∈ (M′)⊥. Moreover, the projections obtained in this case satisfy Pa,ijPb,k` = Pb,k`Pa,ij for all

1 ≤ a, b ≤ d and 1 ≤ i, j, k, ` ≤ n. Thus, the entries of the projections Pa must ∗-commute with

each other, so theC∗-algebra they generate is abelian. Since there is a d-coloring for (Mn,M,Mn)

with an abelian ancilla, this implies that χloc((Mn,M,Mn)) ≤ d.

Using the monotonicity of colorings and the results above on quantum complete graphs, we

see that every quantum graph has a finite quantum coloring. As a result, we obtain the following

algebraic four coloring theorem for quantum graphs, generalizing a result from [30]. The idea

is simple: we have shown that A(Hom((S,M,Mn), Kdim(M))) 6= 0 and it is known [30] that

A(Hom(Kdim(M), K4)) 6= 0. Composing these two, we get the desired result.

Theorem 4.2.10. Let (S,M,Mn) be any quantum graph. Then χalg((S,M,Mn)) ≤ 4.

Proof. Suppose that χalg(S,M,Mn) ≤ c for some c < ∞. Then A(Hom((S,M,Mn), Kc)) ex-

ists. We will let p1, ..., pc be the canonical self-adjoint idempotents in the matrix algebraMn(A(Hom((S,M,Mn), Kc)).

By [30], there is an algebraic homomorphism Kc → K4. Thus, there are self-adjoint idempotents

fa,v in A(Hom(Kc, K4)) for 1 ≤ a ≤ c and 1 ≤ v ≤ 4 such that
∑4

v=1 fa,v = 1 for all a and

fa,vfb,v = 0 whenever a 6= b. Define

qv,ij =
c∑

a=1

pa,ij ⊗ fa,v ∈ A(Hom((S,M,Mn), Kc))⊗A(Hom(Kc, K4)).
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Then

n∑
k=1

qv,ikqv,kj =
n∑
k=1

(
c∑

a=1

pa,ik ⊗ fa,v

)(
c∑
b=1

pb,kj ⊗ fb,v

)

=
n∑
k=1

c∑
a,b=1

pa,ikpb,kj ⊗ fa,vfb,v

=
c∑

a=1

n∑
k=1

pa,ikpa,kj ⊗ f 2
a,v

=
c∑

a=1

pa,ij ⊗ fa,v = qv,ij.

Therefore, qv = (qv,ij) is an idempotent for each v. Similarly, one can see that q∗v = qv (that is,

q∗v,ij = qv,ji) and
∑4

v=1 qv,ij is 0 if i 6= j and 1 if i = j. Let X = (xij) ∈Mn. Letting 1⊗ 1 denote

the unit in the tensor product of the game algebras,

qv(X ⊗ 1⊗ 1)qw =

(
n∑

k,`=1

qv,ikxk`qw,`j

)
i,j

=

(
n∑

k,`=1

c∑
a,b=1

pa,ikxk`pb,`j ⊗ fa,vfb,w

)
i,j

. (4.2.0.1)

If X ∈ (M′)⊥ and a = b, then the above sum becomes

qv(X ⊗ 1⊗ 1)qv =

(
n∑

k,`=1

c∑
a=1

pa,ikxk`pa,`j ⊗ fa,v

)
=

c∑
a=1

pa(X ⊗ 1)pa ⊗ fa,v = 0,

by definition of A(Hom((S,M,Mn), Kc)). If X ∈ M′ and a 6= b, then
∑n

k,`=1 pa,ikxk`pb,`j is the

(i, j) entry of pa(X ⊗ 1)pb = 0. Thus, if v 6= w, then Equation (4.2.0.1) reduces to

qv(X ⊗ 1⊗ 1)qw =

(
n∑

k,`=1

c∑
a=1

pa,ikxk`pa,`j ⊗ fa,vfa,w

)
i,j

= 0,

since fa,vfa,w = 0 for v 6= w. Therefore, letting rv,ij be the canonical generators ofA(Hom((S,M,Mn), K4)),
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we obtain a unital ∗-homomorphism

π : A(Hom((S,M,Mn), K4))→ A(Hom((S,M,Mn), Kc))⊗A(Hom(Kc, Kr)),

rv,ij 7→ qv,ij.

The latter algebra is non-zero, so A(Hom((S,M,Mn), K4)) 6= {0}. Thus,

χalg((S,M,Mn)) ≤ 4.
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5. Spectral bounds for the chromatic number of quantum graphs

Chromatic numbers of quantum graphs are closely related to the zero-error capacity of quantum

channels [14]. Hence, estimating these numbers can be useful for the development of zero-error

quantum communication. To this end, we obtain lower bounds for the classical and quantum

chromatic numbers of quantum graphs in this chapter.

Our approach uses the quantum adjacency operator, defined in [4, 43], to associate a spectrum

to the given quantum graph. We use this spectrum and techniques adapted from [19] to achieve

the bounds. The algebraic characterization of quantum coloring given by theorem 4.1.7 is very

convenient for these purposes. We begin by recalling it for an irreflexive quantum graph.

Definition 5.0.1. Let G = (S,M, B(H)) be an irreflexive quantum graph. We say that there is

a c-coloring of G if there exists a finite von-Neumann algebra N with a faithful normal trace and

projections {Pa}ca=1 ⊆M⊗N such that

1. P 2
a = Pa = P ∗a , for 1 ≤ a ≤ c,

2.
∑c

i=1 Pa = IM⊗N ,

satisfying the following condition:

Pa(X ⊗ IN )Pa = 0, ∀X ∈ S and 1 ≤ a ≤ c. (5.0.0.1)

• If dim(N ) = 1, we call it a classical (loc) coloring of G.

• If dim(N ) <∞, we call it a quantum (q) coloring of G.

• More generally, when N is a finite von-Neumann algebra (possibly infinite dimensional), it

is called a quantum commuting (qc) coloring of G.

The projections {Pa}ca=1 are obtained from the winning strategies of the non-local quantum
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graph coloring game. In particular, whenM = Dn, we recover the usual classical and quantum

coloring of classical graphs on n vertices.

Using this, we can get a combinatorial definition for the chromatic numbers of quantum graphs.

Definition 5.0.2. Let G = (S,M, B(H)) be an irreflexive quantum graph, with c-coloring in the

sense of definition 5.0.1.

• The classical chromatic number of G, χ(G), is defined to be the least c over all N with

dim(N ) = 1.

• The quantum chromatic number of G, χq(G), is defined to be the least c over all N with

dim(N ) <∞.

• The quantum commuting chromatic number of G, χqc(G), is defined to be the least c over all

finite von-Neumann algebra N .

While definition 2.1.1 was used in chapter 4 for developing chromatic number of quantum

graphs, definition 2.2.6 offers the advantage of associating a spectrum with the quantum graph,

which is useful for estimating these chromatic numbers.

Convention 1. For the remainder of this dissertation,M denotes a finite dimensional C*-algebra

equipped with its tracial δ-formψ, as given in 2.2.5. We assume that our quantum graph (S,M, B(L2(M, ψ)))

is irreflexive. Further, A always refers to the unique self-adjoint quantum adjacency matrix associ-

ated with S, as discussed in proposition 2.3.1. We denote this quantum graph by G = (M, ψ, A, S).

Our spectral bounds can be summarized as follows:

Theorem 5.0.3. Let G = (M, ψ, A, S) be an irreflexive quantum graph, and let χ(G), χq(G) and

χqc(G) denote the classical, quantum and quantum commuting chromatic numbers of G respec-

tively. Then,

1+max

{
λmax

|λmin|
,

dim(S)

dim(S)− dim(M)γmin

,
s±

s∓
,
n±

n∓
,

λmax

λmax − γmax + θmax

}
≤ χqc(G) ≤ χq(G) ≤ χ(G).

(5.0.0.2)
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Here, λmax, λmin denote the maximum and minimum eigenvalues of A; s+, s− denote the sum of

the squares of the positive and negative eigenvalues of A respectively; n+, n− are the number of

positive and negative eigenvalues of A including multiplicities; γmax, γmin denote the maximum

and minimum eigenvalues of the signless Laplacian operator (definition 5.3.4); and θmax denotes

the maximum eigenvalue of the Laplacian operator (definition 5.3.4).

The key ingredient in proving these bounds is lemma 5.1.2 and 5.1.3, which holds true across

the classical (loc), quantum (q) and quantum-commuting (qc) coloring models. With these, the

proof of the corresponding bounds for classical graphs can essentially be adapted to our setting. For

the sake of concreteness, we prove our results in the quantum coloring framework (dim(N ) <∞).

However, by using an infinite dimensional version of proposition 5.1.4 (dim(N ) = ∞), all the

bounds can be directly transferred to the quantum commuting chromatic numbers as well. Since

χqc(G) ≤ χq(G) ≤ χ(G), our estimates are also lower bounds for the classical chromatic number

of quantum graphs.

5.1 Use of quantum adjacency matrix in coloring

We begin by defining the spectrum of a quantum graph.

Definition 5.1.1. Let M be a finite dimensional C*-algebra equipped with its tracial δ-form ψ,

and let G = (S,M, B(L2(M, ψ))) be a (undirected) quantum graph on (M, ψ). The spectrum of

G is defined to be the spectrum of the quantum adjacency operator A, defined by

A = δ−2(ψ ⊗ I)PS(I ⊗ 1), (5.1.0.1)

where PS is the orthogonal bimodule projection onto S.

Note that A is self-adjoint and so, the spectrum of an undirected quantum graph is real.

We now show the connection between quantum adjacency matrix and quantum graph coloring by

generalizing some algebraic results in [19] to the quantum graph setting. The following lemma

proves that “pinching" operation annihilates the quantum adjacency matrix and leaves the commu-

tant of the quantum vertex set invariant. Throughout our discussion, we follow convention 1.
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Lemma 5.1.2. Let G = (M, ψ, A, S) be an irreflexive quantum graph. If {Pk}ck=1 ⊆ M⊗N is

an arbitrary c-coloring of G in the sense of definition 5.0.1, then

c∑
k=1

Pk(A⊗ IN )Pk = 0, (5.1.0.2)

c∑
k=1

Pk(E ⊗ IN )Pk = E ⊗ IN , ∀E ∈M′. (5.1.0.3)

Proof. We first show thatA ∈ S. Recall thatA is given by (5.1.0.1), using the orthogonal bimodule

projection onto S. Using the inverse relations (2.3.0.4) and (2.3.0.5), it can be shown that PS

must be of the form δ−2m(A ⊗ (·))m∗. In particular, PS(A) = δ−2m(A ⊗ A)m∗ = A by the

Schur idempotent property of A. So, A ∈ range(PS) = S. Now, by (5.0.0.1), we get that∑c
k=1 Pk(A⊗ IN )Pk = 0.

Equation (5.1.0.3) follows from the fact that the projections Pk ∈ M ⊗ N commute with

E ⊗ IN ∈M′ ⊗N ′, and
∑c

k=1 Pk = IM⊗N .

The next lemma is a corresponding result for the “twirling" operation.

Lemma 5.1.3. Suppose G = (M, ψ, A, S) is an irreflexive quantum graph and {Pk}ck=1 ⊆M⊗N

is a c-coloring of G in the sense of definition 5.0.1. Define U :=
∑c

l=1 ω
lPl, where ω = e2πi/c is a

cth root of unity. Then,

c∑
k=1

Pk(X ⊗ IN )Pk =
1

c

c∑
k=1

Uk(X ⊗ IN )(U∗)k, ∀ X ∈ B(L2(M)). (5.1.0.4)

In particular,
c∑

k=1

Uk(A⊗ IN )(U∗)k = 0, (5.1.0.5)

c∑
k=1

Uk(E ⊗ IN )(U∗)k = c (E ⊗ IN ), ∀E ∈M′. (5.1.0.6)

Proof. Note that U∗ =
∑c

l=1 ω
−lPl since {Pl}cl=1 are self-adjoint. Also, the kth power of U is
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given by

Uk =
c∑
l=1

ωlkPl

as the projections {Pl}cl=1 are mutually orthogonal, that is PiPj = 0 if i 6= j. Now, for X ∈

B(L2(M)), we obtain:

c∑
k=1

Uk(X ⊗ IN )(U∗)k =
c∑

k=1

c∑
l,l′=1

ω(l−l′)kPl(X ⊗ IN )Pl′

=
c∑

l,l′=1

(
c∑

k=1

ω(l−l′)k)Pl(X ⊗ IN )Pl′

=
c∑

l,l′=1

(c δl,l′)Pl(X ⊗ IN )Pl′ , where δl,l′ denotes the Krönecker delta

= c
c∑
l=1

Pl(X ⊗ IN )Pl

Hence, we get the result. The rest follows from lemma 5.1.2.

Next, we note some obvious properties of A⊗ IN for future reference.

Proposition 5.1.4. Suppose G = (M, ψ, A, S) is an irreflexive quantum graph and {Pk}ck=1 ⊆

M ⊗ N is an arbitrary c-quantum coloring of G in the sense of definition 5.0.1. Assume that

2 ≤ dim(M) <∞ and N ⊆ B(H) for some Hilbert spaceH, with dim(H) = d.

Define Ã = A⊗ IN . Then

1. Ã is self-adjoint and has real eigenvalues.

2. The spectrum of Ã has the same elements as the spectrum of A, but each with a multiplicity

of d. In particular, the largest and smallest eigenvalue of Ã coincide with the largest and

smallest eigenvalue of A, respectively.

3. Ã =
∑c

a,b=1 PaÃPb.
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4. Ã can be expressed as a block partitioned matrix



Â11 Â12 . . . Â1c

Â21 Â22 . . . Â2c

...
...

...
...

Âc1 Âc2 . . . Âcc


, such that Âii = 0

for all i ∈ [c]. In particular, Tr(A) =
1

d
Tr
(
Ã
)

= 0.

Proof. The first two statements are evident since A is self-adjoint and tensoring with identity only

produces more copies of the same eigenvalues. The third statement follows from the fact that∑c
k=1 Pk = IM⊗N .

To see the last statement, note that Ã can be interpreted as a giant matrix over complex numbers

asM andN are finite dimensional. Choose an orthonormal basis for L2(M)⊗H such that all the

projections Pk are represented as diagonal matrices. Identify Âab with the matrix PaÃPb. Then,

we get the desired block partition. From (5.1.0.2), it follows that Âii = 0 for 1 ≤ i ≤ c.

5.2 Hoffman’s bound

One of the well-known spectral bounds in graph theory is the Hoffman’s bound [31]. This is a

lower bound on the chromatic number of a graph using the largest and smallest eigenvalues of the

adjacency matrix. The classical bound is as follows: If G is an irreflexive classical graph whose

adjacency matrix A has eigenvalues λmax = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin, then

1 +
λmax

|λmin|
≤ χ(G). (5.2.0.1)

We can prove a quantum version of this bound using the following result from linear algebra.
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Lemma 5.2.1. Let A be a self-adjoint matrix, block partitioned as



A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

...
...

An1 An2 . . . Ann


. Then,

(n− 1)λmin(A) + λmax(A) ≤
n∑
i=1

λmax(Aii),

where λmax(·) and λmin(·) represent the maximum and minimum eigenvalues of that matrix.

Proof. We start with the case n = 2. Let x =

x1
x2

 be a normalized eigenvector (‖x1‖2 +‖x2‖2 =

1) corresponding to λmax(A). Define y =

 ‖x2‖
‖x1‖x1

−‖x1‖‖x2‖x2

. Then, we have

λmax(A)+λmin(A) ≤ 〈x|A |x〉+〈y|A |y〉 =
〈x1|A11 |x1〉
‖x1‖2

+
〈x2|A22 |x2〉
‖x2‖2

≤ λmax(A11)+λmax(A22).

The general case follows by induction on n.

The generalization of Hoffman’s bound to quantum graphs is as follows:

Theorem 5.2.2. Let G = (M, ψ, A, S) be an irreflexive quantum graph and λmax = λ1 ≥ λ2 ≥

. . . ≥ λdim(M) = λmin be all the eigenvalues of A. Then

1 +
λmax

|λmin|
≤ χq(G). (5.2.0.2)

Proof. Let {Pk}ck=1 ⊆ M⊗ N be a c-quantum coloring of G and Ã = A ⊗ IN . Partition Ã as

[Âab]
c
a,b=1, as in proposition 5.1.4. Applying lemma 5.2.1, we get

(c− 1)λmin(Ã) + λmax(Ã) ≤
c∑
i=1

λmax(Âii). (5.2.0.3)
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But Âii = 0 for all 1 ≤ i ≤ c. Hence equation (5.2.0.3) reduces to

(c− 1)λmin(Ã) + λmax(Ã) ≤ 0.

Recall that λmin(Ã) = λmin(A) and λmax(Ã) = λmax(A). So, we get (c−1)λmin(A)+λmax(A) ≤ 0.

On rearranging and taking minimum over all c, we get

1 +
λmax(A)

|λmin(A)|
≤ χq(G).

5.3 Lower bound using edge number

In this section, we prove a spectral lower bound on the quantum chromatic number using a

quantum analogue for the number of edges in the graph.

For a classical graph G with n vertices and m edges, it was shown [13] that

1 +
2m

2m− nγmin

≤ χ(G), (5.3.0.1)

where γmin is the minimum eigenvalue of the signless Laplacian of G. To prove a generalization

of this bound to arbitrary quantum graphs (M, ψ, A, S), we first introduce a quantum analogue for

m,n and γmin.

Recall that the degree matrix for classical graphs is a diagonal matrix obtained from the action

of the adjacency matrix on the all 1s vector. This can be extended to quantum graphs as follows:

Definition 5.3.1. Let G = (M, ψ, A, S) be a quantum graph and 1 denote the unit inM. Then the

quantum degree matrix of G is a linear operator D ∈ B(L2(M)) given by

D :M−→M as x 7→ x(A1),∀x ∈M.

In other words, D can be interpreted as A1 ∈ M viewed as an element of B(L2(M)) under the
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right regular representation.

Remark 5.3.2. The definition D = A1 was also used in [8] and [42]. The only difference in

our case is that we view D under the right regular representation, instead of the usual left regular

representation ofM. The advantage of using right regular representation is that D then belongs to

M′.

Our next goal is to define a quantum analogue for the “number of edges" in the graph. To do

that, we need the following result:

Proposition 5.3.3. LetM be a finite dimensional C*-algebra, equipped with its tracial δ-form ψ.

If (M, ψ, A, S) is a quantum graph with degree matrix D, then,

Tr(D) = δ2ψ(A1) = dim(S). (5.3.0.2)

Proof. Let PS : B(L2(M))→ B(L2(M)) denote the orthogonal bimodule projection onto S. We

can express PS as an element
∑t

i=1 xi⊗y
op
i ∈M⊗Mop, such that PS(a⊗b) =

∑t
i=1 xia⊗byi, for

all a, b ∈M using the correspondence mentioned in remark 2.3.0.1. Now,A = δ2(ψ⊗I)PS(I⊗η)

implies

A(1) = δ2(ψ ⊗ I)PS(1⊗ 1) = δ2(ψ ⊗ I)(
t∑
i=1

xi ⊗ yi) = δ2
t∑
i=1

ψ(xi)yi. (5.3.0.3)

Thus,
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ψ(A1) = ψ(δ2
t∑
i=1

ψ(xi)yi) = δ2
t∑
i=1

ψ(xi)ψ(yi)

= δ2
t∑
i=1

〈xi, 1〉 〈yi, 1〉

= δ2
t∑
i=1

〈xi ⊗ yi, 1⊗ 1〉 = δ2

〈
t∑
i=1

xi ⊗ yi, 1⊗ 1

〉
= δ2 〈PS, I〉 , when viewed as operators on B(L2(M))

= δ2
Tr(PS)

dim(B(L2(M)))

= dim(M)
dim(S)

dim(M)2
=

dim(S)

dim(M)

where we have used the fact that ψ is a tracial state and δ2 = dim(M). Also, the trace on

B(L2(M)) restricted toM (orM′ by symmetry) is just dim(M)ψ. So,

Tr(D) = dim(M) ψ(A1).

Hence, Tr(D) = dim(S).

We now define quantum analogues of some classical quantities:

Definition 5.3.4. Let G = (M, ψ, A, S) be an irreflexive quantum graph with degree matrix D.

1. The quantum vertex number for G is defined to be dim(M).

2. The quantum edge number for G is defined to be
Tr(D)

2
=

dim(S)

2
.

3. The Laplacian of G is the linear operator L = D − A ∈ B(L2(M)).

4. The signless Laplacian of G is the linear operator Q = D + A ∈ B(L2(M)).

For a classical irreflexive graph G = (V,E), these definitions clearly coincide with the usual

values. In particular, if G = (SG, D|V |,M|V |), then the quantum vertex number is |V | and the

quantum edge number is |E| since 2|E| =
∑

v∈V deg(v) = Tr(D).
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Remark 5.3.5. The quantum edge number need not be an integer in general. But for most pur-

poses, we will only need 2m = Tr(D) = dim(S).

We are now ready to prove a quantum version of the spectral bound in (5.3.0.1).

Theorem 5.3.6. Let G = (M, ψ, A, S) be an irreflexive quantum graph . Then

1 +
2m

2m− nγmin

≤ χq(G), (5.3.0.4)

where m is the quantum edge number, n is the quantum vertex number and γmin is the minimum

eigenvalue of the signless Laplacian of G, in the sense of definition 5.3.4. More precisely,

1 +
dim(S)

dim(S)− dim(M)γmin

≤ χq(G). (5.3.0.5)

Proof. Let {Pk}ck=1 ⊆ M⊗ N be a c-quantum coloring of G and let U be defined as in lemma

5.1.3. Then, (5.1.0.5) can be rearranged as U c(A⊗ IN )(U∗)c = −
∑c−1

k=1 U
k(A⊗ IN )(U∗)k. Using

D −Q = −A and U c = IM⊗N , we get

A⊗ IN =
c−1∑
k=1

Uk((D −Q)⊗ IN )(U∗)k

=
c−1∑
k=1

Uk(D ⊗ IN )(U∗)k −
c−1∑
k=1

Uk(Q⊗ IN )(U∗)k

= (D ⊗ IN )
c−1∑
k=1

Uk(U∗)k −
c−1∑
k=1

Uk(Q⊗ IN )(U∗)k

= (c− 1)(D ⊗ IN )−
c−1∑
k=1

Uk(Q⊗ IN )(U∗)k

where we have used the fact that D ∈ M′ and hence D ⊗ IN commutes with U ∈ M⊗N . Let

N be represented in some B(H) and let u denote a unit vector in H such that 〈u, u〉 = 1. Further,

let |ξ〉 = 1⊗ u denote a column vector in L2(M)⊗H and 〈ξ| denote its corresponding conjugate

row vector. Multiplying the left and right most sides of the above equation by 〈ξ| from the left and
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by |ξ〉 from the right, we obtain

〈ξ|A⊗ IN |ξ〉 = (c− 1) 〈ξ|D ⊗ IN |ξ〉 −
c−1∑
k=1

〈ξ|Uk(Q⊗ IN )(U∗)k |ξ〉 . (5.3.0.6)

Now, 〈ξ|A ⊗ IN |ξ〉 = 〈1, A1〉 〈u, u〉 = ψ((A1)∗) = ψ(A1) =
dim(S)

dim(M)
, where we use the

*-preserving property of A (remark 2.2.7) and proposition 5.3.3. Similarly, 〈ξ|D ⊗ IN |ξ〉 =

dim(S)

dim(M)
. To estimate the last term, recall that eigenvalues are invariant under unitary conjugation

and tensoring with identity only changes their multiplicity. So,

γmin = min
{
〈w|Q |w〉 : w ∈ L2(M), 〈w,w〉 = 1

}
= min

{
〈v|Q⊗ IN |v〉 : v ∈ L2(M)⊗H, 〈v, v〉 = 1

}
= min

{
〈v|Uk(Q⊗ IN )(U∗)k|v〉 : v ∈ L2(M)⊗H, 〈v, v〉 = 1

}
≤ 〈ξ|Uk(Q⊗ IN )(U∗)k|ξ〉, ∀k ∈ [c].

Hence, (5.3.0.6) leads to

dim(S)

dim(M)
≤ (c− 1)

dim(S)

dim(M)
− (c− 1)γmin, (5.3.0.7)

which upon rearranging yields 1 +
dim(S)

dim(S)− dim(M)γmin

≤ c. Taking minimum over all c , we

get the desired bound.

5.4 Bound using the sum of square of eigenvalues

In [1], it was proved that for a classical graph G,

1 + max

{
s+

s−
,
s−

s+

}
≤ χ(G), (5.4.0.1)
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where s+ is the sum of the squares of the positive eigenvalues of the adjacency matrix and s− is the

sum of the squares of its negative eigenvalues. In this section, we show that the above bound also

works in the setting of quantum graphs. We first recall the following result from linear algebra,

whose proof can be found in [1].

Lemma 5.4.1. Let X = [Xij]
r
i,j and Y = [Yij]

r
i,j be two positive semidefinite matrices conformally

partitioned. If Xii = Yii for 1 ≤ i ≤ r and XY = 0, then Tr(X∗X) ≤ (r − 1) Tr(Y ∗Y ).

We now adapt the proof of the classical bound in [1] to the quantum case.

Theorem 5.4.2. Let G = (M, ψ, A, S) be an irreflexive quantum graph and λ1 ≥ λ2 ≥ . . . ≥

λdim(M) be all the eigenvalues of A. Let s+ =
∑

λi>0(λi)
2 and s− =

∑
λi<0(λi)

2. Then,

1 + max

{
s+

s−
,
s−

s+

}
≤ χq(G). (5.4.0.2)

Proof. Let {Pk}ck=1 ⊆ M⊗ N be a c-quantum coloring of G. Further, let Ã = A ⊗ IN and let

µ1 ≥ µ2 ≥ . . . ≥ µt be all the eigenvalues of Ã. Consider a spectral decomposition of Ã,

Ã =
t∑
i=1

µi(viv
∗
i ), where vi ∈ L2(M)⊗H, (5.4.0.3)

and write Ã = B̃ − C̃, where

B̃ =
∑
µi>0

µi(viv
∗
i ) C̃ =

∑
µi<0

−µi(viv∗i ). (5.4.0.4)

Suppose N ⊆ B(H) for some Hilbert spaceH. Then,

Tr
(
B̃∗B̃

)
=
∑
µi>0

µ2
i = dim(H) s+ and Tr

(
C̃∗C̃

)
=
∑
µi<0

µ2
i = dim(H) s−. (5.4.0.5)
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Partition Ã as [Âab]
c
a,b=1 as in proposition 5.1.4. Similarly, let

B̃ = [B̂ab]
c
a,b=1 =

c∑
a,b=1

PaB̃Pb and C̃ = [Ĉab]
c
a,b=1 =

c∑
a,b=1

PaC̃Pb.

Now, B and C are positive semidefinite matrices that are conformally partitioned. Further, B̂ii =

Ĉii since 0 = PiÃPi = PiB̃Pi − PiC̃Pi for all 1 ≤ i ≤ c. Also B̃C̃ = C̃B̃ = 0. So, by lemma

5.4.1 and (5.4.0.5), it follows that
s+

s−
≤ c− 1 and

s−

s+
≤ c− 1. Taking minimum over all c, we get

1 + max

{
s+

s−
,
s−

s+

}
≤ χq(G).

5.5 Inertial lower bound

In this section, our goal is to generalize the following inertial bound [18] to quantum graphs:

1 + max

{
n+

n−
,
n−

n+

}
≤ χ(G), (5.5.0.1)

where (n+, n0, n−) is the inertia of G. We begin with defining the inertia of a quantum graph:

Definition 5.5.1. Let G = (M, ψ, A, S) be a quantum graph and λ1 ≥ λ2 ≥ . . . ≥ λdim(M) denote

the eigenvalues of A. The inertia of G is the ordered triple (n+, n0, n−), where n+, n0 and n− are

the numbers of positive, zero and negative eigenvalues of A including multiplicities.

Theorem 5.5.2. Let G = (M, ψ, A, S) be an irreflexive quantum graph with inertia (n+, n0, n−).

Then,

1 + max

{
n+

n−
,
n−

n+

}
≤ χq(G). (5.5.0.2)

Proof. Let {Pk}ck=1 ⊆M⊗N be a c-quantum coloring of G. Let U be defined as in lemma 5.1.3

and Ã, B̃ and C̃ be defined as in the proof of theorem 5.4.2. Then, we have

c−1∑
k=1

UkB̃(U∗)k −
c−1∑
k=1

UkC̃(U∗)k =
c−1∑
k=1

UkÃ(U∗)k = −Ã = C̃ − B̃, (5.5.0.3)

Note that B̃ and C̃ are positive definite operators with rank(B̃) = n+ and rank(C̃) = n−.
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Further let

P+ =
∑
µi>0

viv
∗
i and P− =

∑
µi<0

viv
∗
i

denote the orthogonal projectors onto the subspaces spanned by the eigenvectors corresponding

to the positive and negative eigenvalues of Ã respectively. Observe that B̃ = P+ÃP+ and C̃ =

−P−ÃP−. Multiplying (5.5.0.3) by P− on both sides, we obtain:

P−
c−1∑
k=1

UkB̃(U∗)kP− − P−
c−1∑
k=1

UkC̃(U∗)kP− = C (5.5.0.4)

Now we use the fact that if X, Y are two positive definite matrices such that X − Y is positive

definite, then rank(X) ≥ rank(Y ). By applying this to (5.5.0.4), we get

rank(P−
c−1∑
k=1

UkB̃(U∗)kP−) ≥ rank(C).

Recall that the rank of a sum is less than or equal to the sum of the ranks of the summands, and that

the rank of a product is less than or equal to the minimum of the ranks of the factors. So, we get

(c−1)n+ ≥ n−. Similarly, it can be shown that (c−1)n− ≥ n+. Hence, max

{
n+

n−
,
n−

n+

}
≤ c−1.

Taking minimum over all c, we get the desired bound.

5.6 Bound using maximum eigenvalue of the Laplacian and signless Laplacian

Let L and Q denote the Laplacian and signless Laplacian of G = (M, ψ, A, S) in the sense

of definition 5.3.4. Further, let λmax, θmax and γmax denote the largest eigenvalue of A,L and Q

respectively. Then

1 +
λmax

λmax − γmax + θmax
≤ χq(G). (5.6.0.1)

Like the previous cases, this bound can also be shown by adapting the classical proof [38] and

applying lemma 5.1.3.
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5.7 Application to quantum complete graphs

In this section, we illustrate the tightness of these bounds in the case of quantum complete

graphs [definition 2.2.8]. Let KM denote the irreflexive quantum complete graph on (M, ψ). The

quantum adjacency matrix in this case is given by A = δ2ψ(·)1− I . For x ∈M, we have

A(x) = δ2ψ(x)1− I

= (dimM) 〈x, 1〉 1− I

= (dimM)P1(x)− I,

where P1 : M →M denotes the orthogonal projection onto 1, given by x 7→ 〈x, 1〉 1. Since P1

is a rank-1 projection, its spectrum is precisely {0, 1}, where 0 has a multiplicity of dim(M)− 1.

Using functional calculus, we get

σ(A) = {dim(M)− 1, −1}, (5.7.0.1)

where −1 has a multiplicity of dim(M)− 1. Similarly, we get

σ(Q) = {2 dim(M)− 2, dim(M)− 2}, (5.7.0.2)

where dim(M)− 2 has a multiplicity of dim(M)− 1, and

σ(L) = {dim(M), 0}, (5.7.0.3)

where dim(M) has a multiplicity of dim(M)− 1.

Thus, for an irreflexive quantum complete graph, we have:

• λmax = dimM− 1, λmin = −1

• γmax = 2 dim(M)− 2, γmin = dimM− 2

• θmax = dimM
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• s+ = (dim(M)− 1)2, s− = dim(M)− 1

• n+ = 1, n− = dim(M)− 1

• 2m = dim(M)2 − dim(M)

On applying these to (5.0.0.2), we see that all the five spectral bounds give the same result, namely:

dim(M) ≤ χq(KM). (5.7.0.4)

The reverse inequality χq(KM) ≤ dim(M) was proved in theorem 4.2.4, and χq(KM) = dim(M).

So, we conclude that all the bounds in (5.0.0.2) are tight in the case of quantum complete graphs.
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6. Summary

We have introduced a quantum input-classical output non-local game that captures the color-

ing problem for quantum graphs. We showed that the coloring models arising in this context are

a special case of D.Stahlke’s entanglement assisted coloring of non-commutative graphs. We also

proved that every quantum graph has a finite quantum coloring and is four-colorable in the alge-

braic model. Further, we developed a combinatorial characterization of quantum graph coloring

and obtained lower bounds for the chromatic numbers of quantum graphs using the spectrum of

the quantum adjacency operator.

Future work: We believe that quantum graph theory is a promising field of study. Below, we list

some research questions for future work.

1. Motivated by our work on quantum chromatic numbers (χt), one could ask what is the

quantum independence number (αt) of a quantum graph and how it relates to (χt)? In

particular, it would be interesting to investigate if there is a t-Lov́asz type inequality for

classical graphs and for general quantum graphs, where t ∈ {q, qs, qa, qc, ns}.

2. Finding two graphs that are qc-isomorphic but not qa-isomorphic would give another coun-

terexample to Connes Embedding Problem. In particular, finding quantum graphs with the

analogous property would be very interesting, and might be even easier to do since quantum

graphs are more flexible than classical graphs.

3. It would also be interesting to find bounds that exhibit a separation between the different

chromatic numbers of quantum graphs. Alternatively, investigating examples of quantum

graphs that show a separation between these spectral bounds would also be helpful.

4. We conjecture that our quantum chromatic numbers are equivalent to Stahlke’s entanglement-

assisted chromatic numbers. It maybe possible to prove this using a recent dilation result

from [3].
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