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ABSTRACT 

 

Proposal evaluation of pre-Phase A mission concepts is largely based on the input from 

subject matter experts who determine the scientific merit of a mission concept based on 

a number of criteria including: the relevance of the mission objectives to national and 

international priorities; the existence of a complete set of measurement, instrument, and 

platform requirements that are traceable to the mission objectives; and several others. 

The Science Traceability Matrix is a standard tool used to articulate this relevance and 

traceability and therefore is a key input to this reviewing process. However, 

inconsistencies in the structure and vocabulary used in the Science Traceability Matrix 

and other sections of the proposal across organizations make this process challenging 

and time-consuming. At the same time, as part of the Digital Engineering revolution, 

NASA and other space organizations are starting to embrace key concepts of model-

based systems engineering and understand the value of moving from unstructured text 

documents to more formal knowledge representations that are amenable to automated 

data processing. In this line, this thesis leverages transformer models, a recent advance 

in natural language processing, to demonstrate automatic extraction of science relevance 

and traceability information from unstructured mission concept proposals. By doing so, 

this work helps pave the way for future applications of natural language processing to 

support other systems engineering practices within mission/program development such 

as automated parsing of design documentation. The proposed tool, called AstroNLP, is 

evaluated with a case study based on the Astrophysics Decadal Survey. 
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CHAPTER I  

INTRODUCTION  

 

Overview 

Mission concept evaluation takes place across various domains in the aerospace 

enterprise (defense, planetary science, Earth science, and astrophysics to name a few). It 

is an important period within the systems engineering lifecycle of a program as it takes 

in a pool of alternative concepts aiming to achieve one or more programmatic objectives 

relevant to the wider program itself. By practice, it is up to the review panel(s) to 

determine what these programmatic areas are and determine/recommend which set of 

concept ideas should be considered for further development and implementation. 

In this thesis, we aim to embed one subtopic of artificial intelligence into the 

realm of mission concept evaluation. Specifically, we will demonstrate the implications 

and benefits that natural language processing, an umbrella term that contains various 

semantic strategies and techniques ultimately aimed at analyzing and processing text, 

can bring to the area of mission concept evaluation. 

Throughout this work, we will discuss AstroNLP, a tool developed to support the 

reviewer involved with assessing and issuing recommendations for mission concepts 

submitted to the Astrophysics Decadal Survey. Specifically, we will discuss the 

important implications that science traceability and scientific relevance have on the 

decadal process, discuss important tools and techniques contained within natural 

language processing, describe how such workflows were implemented in AstroNLP, and 
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demonstrate how they can be used in the decadal review process. Ultimately, as our use 

case, we will analyze three mission concepts submitted to the 2020 Astrophysics 

Decadal Survey and provide the outputs that AstroNLP generates when applied to these 

mission concept proposals.  

Relevance to NASA’s Technology Area Breakdown Structure (TABS) 

This thesis is contained entirely within a NASA Space Technology Graduate 

Research Opportunity (NSTGRO). As such, the work discussed here is primarily 

motivated through NASA work practices and areas of growing technical interest at 

NASA. Specifically, this thesis serves to address portions of NASA Technology Area 

11.4.3 Semantic Technologies and NASA Technology Area 11.4.4 Collaborative 

Science and Engineering [1]. Thematically, the work discussed in this thesis addresses 

these two areas through applications of semantic technology (i.e. natural language 

processing) to provide intelligent data understanding within the context of mission 

concept evaluation and support the already collaborative engineering and scientific effort 

that is the decadal process. Furthermore, and throughout the duration of this thesis, much 

of the motivation driving the goals and direction of this work was formulated by these 

NASA TABS areas and through conversations with NASA decadal experts and research 

collaborators. However, it should also be noted that the implications of this work hold 

relevance to other similar activities across various engineering-related enterprises and as 

such, can be adapted to said domains. 
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CHAPTER II  

SCIENCE TRACEABILITY AND SCIENTIFIC RELEVANCE 

 

Early Mission Concepts 

Mission concepts, or what can be more formally considered as pre-Phase A 

mission concepts, hold critical mission and design information that is necessary to 

communicate what are the goals and intended impacts of said mission. As stated in the 

NASA Systems Engineering Handbook, pre-Phase A mission concepts are an essential 

part of concept studies aimed at producing a variety of different ideas and alternatives 

through which a program can be built from [2]. These concepts can range from proposed 

projects and missions aimed at serving one or more programmatic goals and objectives, 

or can be even more specific targeting high risk and/or low TRL technologies that could 

serve programmatic objectives/goals in whichever way the proposer identifies [2]. Once 

these various concepts, technologies, and proposed activities are reported upon and 

submitted to a program for review, it is here where a critical step in the systems 

engineering lifecycle begins: program formulation [2]. 

In program formulation, review panels are formed and implemented so as to sift 

through the various proposals submitted to the program and down-select a promising 

program of concepts from the original submission pool. Here, several pieces of 

information are important when considering a concept for a program. These can include 

(but are not limited to): 

• Proposed mission/concept/technology development cost 
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• Proposed development/implementation schedule 

• Technical feasibility and merit 

• Relevance of mission concept to programmatic goals and objectives 

• Traceability of requirements and engineering decisions from programmatic 

goals and objectives 

• Clarity and completeness of proposal’s content 

The specific details and figures of merit pertaining to each of these evaluation 

criteria are dependent upon the specified program. For example, military-related 

programs may focus on functional capability of new technologies that provide further 

support to existing U.S. defense capabilities and/or are of direct benefit to the warfighter 

[3]. Conversely, in the case of science based-missions, considerations of relevance to the 

scientific program and traceability of engineering decisions/requirements from scientific 

goals and objects are undoubtedly important (in addition to the other criterion listed 

above).  

For the work covered in this thesis, we wish to focus on the two bolded points listed 

above as our areas of focus. As such, we will expand on the importance of science 

traceability in the following section. 

Science Traceability 

When considering traceability, particularly in requirements, it’s important that 

such definitions are constructed coherently, concisely, and mapped effectively so that 

reviewers, stakeholders, and systems engineers alike can adequately adjudicate the 

rationale behind why such requirements exist and where they come from (as well as 
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illustrate, to a degree, how said requirements meet the programmatic goals and 

objectives) [2]. In science-based missions, this is commonly referred to as science 

traceability and is the basis behind how a mission illustrates its potential in meeting one 

or more scientific goals and objectives. One method of establishing science traceability, 

and is requirement for all NASA mission concepts, is an artifact called the science 

traceability matrix [4]. 

Science Traceability Matrix 

The science traceability matrix, first reported in [4], is a useful way in 

formulating a mission’s science traceability structure in a tabular format. Here, the 

mapping of traceability is illustrated in a left-to-right and right-to-left flow (bidirectional 

traceability) with higher level definitions (e.g. science goals and objectives) located on 

the left hand side of the table whilst lower level definitions specific to the mission 

concept (e.g. instrument and mission requirements) are located on the right hand side of 

the table. Also accompanying these elements are measurement objectives, measurements 

requirements, and various items which can be categorized as data products located more 

towards the center of any given matrix. The following figure illustrates this general 

traceability flow: 
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Figure 1: The contents of a science traceability matrix as defined in [4] which 

provides the governing structure for all science traceability matrices. 

 

 As the author states in [4], it is important for all science traceability matrices to 

cover what are the baseline scientific goals and objectives given by the mission concept 

(or as the author states, an ‘Announcement of Opportunity’) that are relevant to a 

program. From here, it is important for said concepts to then trace this high-level 

information to measurement requirements, of which is then to be traced to more specific 

instrument/mission/spacecraft requirements of which will be implemented to satisfy such 
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measurement requirements. To illustrate examples of science traceability matrices, 

consider the following two figures: 

 

 

Figure 2: Science traceability matrix of the Cosmic Dawn Intensity Mapper 

(CDIM) mission concept developed through NASA as a part of the 2020 

Astrophysics Decadal Survey [5]. 
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Figure 3: Science traceability matrix of the STROBE-X mission concept developed 

through NASA as a part of the 2020 Astrophysics Decadal Survey [5]. 

 

 As will be discussed later and can be seen visually through these examples, no 

two STMs are the same which is obviously true given that STMs usually cover one 

specific mission concept each. However, the STM, whilst a standard requirement for 

NASA proposals, is not standardized in-of-itself. Henceforth, the degree of variability 

between two STMs is immense as two STMs could contain wide varieties in data 

representation, tabular structure, and completeness to name a few (this is true even for 

STMs within the same program as illustrated above).  

This implication of variability brings complications from the perspective of a 

concept reviewer working to fill their scientific program (e.g. a panel reviewer who 

adjudicates mission concepts for various decadal surveys such as the Earth Science and 
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Astrophysics decadal surveys). Further still, one must consider whether or not this 

artifact is available to the reviewer especially when considering pre-Phase A mission 

concepts under review by a program. In those cases, of which will be discussed later, the 

degree of variability is further amplified as such traceability information, and structure, 

is buried within the text of a concept proposal. This undoubtedly has implications for 

reviewer quality and raises the chance that mission critical information could be missed 

on the behalf of the reviewer [6]. 

As consequence of this, it is worthy to mention prior work that has catapulted off 

the foundation that [4] provided in establishing the STM. One such work develops the 

concept of the Project-domain Science Traceability and Alignment Framework [7]. 

Project-domain Science Traceability and Alignment Framework 

The authors in [7] identified that the STM does not necessarily provide a 

complete mapping of science traceability as required for mission concept evaluation. As 

such, they provided an extension of the science traceability matrix through the 

implementation of “common definitions and valid relations to structure the 

communication across the project” [7]. Specifically, the Project-domain Science 

Traceability and Alignment Framework (P-STAF) borrows the governing structure of 

the STM and adds other fields fundamental to the framework of P-STAF.  

 More notably, from the perspective of the work contained in this thesis, the 

authors in [7] showed a graph-based representation of their P-STAF artifact, through 

what was referred to as a STAF science information network. This network detailed the 

mappings of STM and P-STAF elements through various nodes and edges as a part of 
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their case study on applying the P-STAF framework towards a planned Europa mission 

[7]. 

 This reformulation of the STM into P-STAF shows the benefit of establishing 

further semantic structure to such an important element of a mission concept (i.e. its 

science traceability). Additional work regarding P-STAF looked at an analysis of 

payload architectures, covered in [8], which provides a further representation of the P-

STAF taxonomy. As will be discussed more thoroughly in following chapters, these 

follow-ons to the STM represent the value that refined taxonomies, or more generally 

ontologies, bring when formulating science traceability.  

 The next item of discussion pertinent to this work is in regard to assessing 

scientific relevance of a mission concept, which cannot be fully explained under the 

topic of science traceability. 

Scientific (Programmatic) Relevance 

When building a scientific program of science-based missions, the reviewer must 

consider not only if the engineering decisions and projected data products are mapped 

appropriately to the proposal’s defined science goals and objectives, but whether or not 

those science goals/objectives are relevant to the science program altogether. What must 

also be considered is whether or not a selected set of candidate concepts cover the 

scientific themes or capabilities in way that is considered desirable by the review panel. 

In essence, relevance can be considered as way of providing coverage across all 

programmatic goals or, on the other hand, targeting specific areas of high interest more 

heavily and areas with low interest less heavily.  
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A more formal way to address the matter of relevance can be issued through the 

lens of probability distribution. Take for example the two following distributions where 

the height of each bar in the chart represents the degree of interest or scientific impact a 

certain scientific theme (i.e. science goal/objective) has to the program: 

 

 

Figure 4: Toy example depicting the scientific impact of several distinct science 

themes based upon their perceived weight.  

 

 As the above figure illustrates, a scientific program may institute a bias, either 

deliberately or unintentionally, when adjudicating the importance of science themes. As 

such, this directly affects the relevance of a portfolio of candidate missions as a portfolio 

may be valued as significantly relevant in one distribution but less so in another.  

 Through the considerations of science traceability and scientific relevance, it was 

determined early in the project that a ripe case study for this work would exist in the 
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realm of decadal surveys. Specifically, the Astrophysics Decadal Survey conducted by 

the National Academies of Science, Engineering, and Medicine. 

Astrophysics Decadal Surveys 

Overview 

The decadal surveys hosted by the National Academies of Science, Engineering, 

and Medicine, as stated above, aim to provide recommendations for scientific programs 

for the following decade in a way that best meets the goals and objectives of the related 

community. For the Astrophysics Decadal Survey in particular, of which has recently 

released its 2020 report and can be found in [9], the survey focused on establishing 

thematic areas in astrophysics and generated specific recommendations across those 

thematic areas through a series of reviews across several panels. The following figure 

summarizes the statement of task that governed the survey: 
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Figure 5: The task breakdown of the 2020 Astrophysics Decadal Survey as 

discussed in [9]. 

  

 Considering the specific tasks of extracting science traceability and determining 

scientific relevance of mission concepts (so as to create an impactful portfolio), the work 

in this thesis is primarily associated with task area three shown in the above figure. As 

stated in [9], task area three aims to “develop a comprehensive research strategy to 

advance the frontiers of astronomy and astrophysics for the period 2022-2032”. Further, 

this task area will consider the science case for each proposed activity (‘activity’ 

including large, medium, or small ground or space-based research programs) and 

generate recommendations on which activities should be considered for the upcoming 

decade [9]. 
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For these reasons, and as this title of this thesis establishes, the aim of this thesis 

work was to develop a tool that can demonstrate the potential benefit that natural 

language processing can bring to a mission concept evaluation effort. We have recently 

reported on a portion of this work focusing on extracting science traceability graphs 

using natural language processing in [10]. There has also been prior work discussed in 

[11] that examined topic trends across the decadal survey’s history in an effort to 

improve the science prioritization process. Specifically, that work used Latent Dirichlet 

Allocation to (LDA) capture astrophysics-based topic frequencies and temporal trends 

by analyzing prior submissions to the decadal [11]. Beyond these two reported ventures 

however, little literature exists on bringing natural language processing to the 

astrophysics decadal survey process and, as such, is a gap we aim to address in this 

thesis. 

Science Panels and Questions 

One final discussion regarding the decadal survey process and of which is crucial 

to the task of determining scientific relevance is in regards to the decadal’s science 

panels and science questions. In the most recently released decadal survey for 

astrophysics [9], the decadal established six science panels targeting various scientific 

themes related to astronomy and astrophysics. Those six panels were: 

1. Panel on Compact Objects and Energetic Phenomena 

2. Panel on Cosmology 

3. Panel on Galaxies 

4. Panel on Exoplanets, Astrobiology, and the Solar System 



 

15 

 

5. Panel on the Interstellar Medium and Star and Planet Formation 

6. Panel on Stars, the Sun, and Stellar Populations 

Contained within the decadal survey are six appendices associated with each of these 

science panels of which contain the reports on the findings of each panel [9]. In each of 

these appendices, four unique science questions are posed per panel (with a varying 

amount of subsidiary science questions/topics for each of these four questions) in 

addition to one area of discovery, and a breakdown of capabilities and future needs 

necessary to serve these science questions [9]. The following table outlines these science 

questions and discovery areas per panel as seen in the decadal survey: 

 

Table 1: The 2020 Astrophysics Decadal Survey's science panels, their science 

questions and their discovery areas as reported in [9]. 

Panel on Compact Objects and Energetic Phenomena 

B-Q1 What are the mass and spin distributions of neutron stars and stellar-mass 

black holes? 

B-Q2 What powers the diversity of explosive phenomena across the 

electromagnetic spectrum? 

B-Q3  Why do some compact objects eject material in nearly light-speed jets, and 

what is that material made of? 

B-Q4 What seeds supermassive black holes and how do they grow? 

B-DA Transforming our view of the universe by combining new information from 

light, particles, and gravitational waves 
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Panel on Cosmology 

C-Q1 What set the Hot Big Bang in motion? 

C-Q2 What are the properties of dark matter and the dark sector? 

C-Q3 What physics drives the cosmic expansion and large-scale evolution of the 

universe? 

C-Q4 How will measurements of gravitational waves reshape our cosmological 

view? 

C-DA The Dark Ages as a cosmological probe 

Panel on Galaxies 

D-Q1 How did the intergalactic medium and the first sources of radiation evolve 

from cosmic dawn through the epoch of reionization? 

D-Q2 How do gas, metals, and dust flow into, through, and out of galaxies? 

D-Q3 How do supermassive black holes form and how is their growth coupled to 

the evolution of their host galaxies? 

D-Q4 How do the histories of galaxies and their dark matter halos shape their 

observable properties? 

D-DA Mapping the circumgalactic medium and intergalactic medium in emission 

Panel on Exoplanets, Astrobiology, and the Solar System 

E-Q1 What is the range of planetary system architectures and is the configuration 

of the solar system common? 



 

17 

 

E-Q2 What are the properties of individual planets and which processes lead to 

planetary diversity? 

E-Q3 How do habitable environments arise and evolve within the context of their 

planetary systems? 

E-Q4  How can signs of life be identified and interpreted in the context of their 

planetary environments? 

E-DA The search for life on exoplanets 

Panel on the Interstellar Medium and Star and Planet Formation 

F-Q1 How do star-forming structures arise from, and interact with, the diffuse 

interstellar medium? 

F-Q2 What regulates the structure and motions within molecular clouds? 

F-Q3 How does gas flow from parsec scales down to protostars and their disks? 

F-Q4 Is planet formation fast or slow? 

F-DA Detecting and characterizing forming planets 

Panel on Stars, the Sun, and Stellar Populations 

G-Q1 What are the most extreme stars and stellar populations? 

G-Q2 How does multiplicity affect the way a star lives and dies? 

G-Q3 What would stars look like if we could view them like we do the Sun? 

G-Q4 How do the Sun and other stars create space weather? 

D-DA “Industrial-scale” spectroscopy 
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These science panels and questions, in addition the subtopics related to these 

questions not shown above, form the foundation of determining the relevance of a 

research program to the decadal. The utility of these guiding topics will be discussed 

more thoroughly in Chapter 4. 
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CHAPTER III  

NATURAL LANGUAGE PROCESSING 

 

Overview 

Natural language processing, which falls under the broader term of semantic 

technology, aims to provide tools and techniques capable of ingesting text in a variety of 

formats and producing usable data for further computation. As stated in [12], the rise of 

the world wide web has given way to a plethora of textual sources which are ripe for 

applications of natural language processing. Further still, applications of various 

techniques within natural language processing/semantic technology are on the rise in 

various engineering-related works such as requirements engineering [13-17]. NASA also 

outlines semantic technology as one of its low TRL technology areas through the 2020 

Technology Taxonomy [18]. In this chapter, we will discuss various strategies of natural 

language processing as it relates to this thesis. First, however, we introduce the 

important topic of ontologies as it is the most fundamental element regarding our work. 

Ontologies 

By definition, ontologies are a formal representation of a domain containing 

elements of various types (e.g. classes, attributes, and relations) to describe said domain. 

As stated in [19], ontologies exist in a branch of metaphysics concerned with “science of 

being as being”. In modern practice, particularly in the space domain, ontologies have 

been used to describe specific sub-domains such as space objects [20], space debris [21], 

satellites databases [22], space systems [23], as well as for other less space-related 
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domains such as systems engineering [24], intelligence, surveillance, and reconnaissance 

[25-27] and requirements engineering [28-31]. 

As an example of an ontology, one can consider the Missions and Means 

Framework (MMF) Ontology defined in [26]. The main concepts of the MMF ontology 

are defined and categorized in a directed graph with nodes and edges. Another layer of 

this ontology can be visualized by grouping certain nodes and edges to sub-regions 

within graph which is reported in a following work [27].  

When considering ontologies in the realm of this thesis, it was determined early 

that ontologies are widely useful in providing a formal description of the domain of 

application (in this case, astrophysics-based space missions). Further, creating a way of 

embedding natural language processing to support mission concept evaluation 

particularly in extracting science traceability and evaluating scientific relevance, we 

determined that the formation of a domain-specific ontology was necessary. We will 

discuss the details of our developed ontology in the following chapter as well as make 

mention of reference ontologies/taxonomies used to create said ontology. 

With ontologies providing the foundation of the semantic technology employed 

in this thesis, the next section will discuss specific strategies and techniques commonly 

used in natural language processing that were henceforth employed in our processing 

pipeline. 

Semantic Strategies 

All of the semantic processing done in this domain of application will act upon 

unstructured textual sources (as described in the previous chapter and is of direct 
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consequence of our domain of study). As such, there exists a need to define the elements 

necessary to form a processing pipeline so as to transform those original chunks of text 

into useful data for the reviewer. Some of the first steps taken on these textual samples 

hardly warrant much background discussion here and are better discussed in the 

following chapter (i.e. document and sentence segmentation). This brings us to the first 

major processing milestone, tokenization. 

Tokenization 

For simplicity, a ‘token’ is a collection of characters that, through a human’s eye, 

form a word, phrase, or simply punctuation. To a computer however, these tokens are 

fundamental units used for processing that are then manipulated in such a way that 

downstream tasks can provide further information about the original textual sample. 

Consider the following sentence taken from [16] detailing the input and output of a 

sentence to its tokenized form: 

• INPUT 

o “These prerequisites are known as (computer) system 

requirements and are often used as a guideline as opposed to an 

absolute rule.” 

• OUTPUT 

o [‘These’, ‘prerequisites’, ‘are’, ‘known’, ‘as’, ‘(‘, ‘computer’, ‘)’, 

‘system’, ‘requirements’, ‘and’, ‘are’, ‘often’, ‘used’, ‘as’, ‘a’, 

‘guideline’, ‘as’, ‘opposed’, ‘to’, ‘an’, absolute’, ‘rule’, ‘.’] 
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In the above example, there is a clear subdivision of the original sentence into its 

constituent words and punctuation. The authors in [16] used the python-based Natural 

Language Toolkit (NLTK) [32] for this tokenization task but there are other open-source 

options available including spaCy [33] which is used in our work. With these words now 

in a tokenized form, it is important to ‘clean’ these tokens, or more formally lemmatize 

them, so that the extra noise intrinsic to the language (e.g. plurals, capitalization, 

suffixes) are removed. For example, the lemmatized form of the token ‘opposed’ would 

be ‘oppose’, removing the ‘ed’ suffix by replacing it with its root form. 

As was mentioned, there are several open-source natural language processing 

libraries available that can perform one or more natural language processing tasks. In 

many cases, these libraries utilize different types of models (e.g. transformers, neural 

networks, rules-based methods, and embeddings to name a few) for these tasks. In such 

cases, some models are better utilized in certain domains rather than others, particularly 

when considering pre-trained statistical models like neural networks and transformers. 

Therefore, it is important to recognize that although the above tokenization example is 

provided in the way it was described in [16], a different tokenization model may 

segment the sentence differently. Due to the implications of this, we shift the discussion 

now to named-entity recognition where the idea of using specially adapted models to 

specific tasks can better be explained. 

Named-Entity Recognition 

In named-entity recognition, a model aims to extract certain ‘entities’ from text 

and assign them a classifying label. There are several reported works detailing 
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applications of named-entity recognition in practice [34-41] as well a surveys covering 

several methods in named-entity recognition [42, 43].  

To illustrate an example of named-entity recognition in practice, consider the 

following sentence: 

• “The Earth {entity_type: PLANET} is a celestial body in orbit around the 

Sun.” 

In the above sentence, the entity “Earth” is extracted and classified as a 

‘PLANET’ entity type through our fictional named-entity recognition system. It is 

important to behold the fact that this supposed system used some form of strategy to not 

only classify the entity with a label (‘PLANET’) but also determine which set of tokens 

within the text were indeed an entity. Further still, it can be argued that other entities 

exist within the text (e.g. “Sun” could be classified as a ‘STAR’). However, a named-

entity recognition system in this context was likely built to extract entities of various 

predefined entity types (assuming that the above output is 100% accurate to the model) 

meaning that other potential entity types recognized by a reader are ignored by the 

machine. This reiterates the importance of establishing a governing ontology which 

classifies these entity types so that further downstream tasks can be performed more 

effectively in that given domain. 

In recent years, named-entity recognition has been largely employed through the 

use of neural networks [43] and transformer models. As stated in [43], a survey of 

named-entity recognition practices conducted in 2018, neural networks were shown to 

outperform more classical feature-engineered models. However, this survey did not 
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cover the more recent advance of transformer models discussed in [44] which have 

become the state-of-the-art for many named-entity recognition tasks.  

In the case of statistical methods, particularly that of neural networks and 

transformers, named-entity recognition models typically employ some degree of training 

(or fine-tuning if pretrained models are available) so that the model is well adapted to its 

domain of application. There exist public datasets available for training named-entity 

recognition models, some of which used the ‘PERSON’, ‘LOCATION’, and 

‘ORGANIZATION’ entity labels for training, as was the case in [34] (which used the 

Computational Natural Language Learning (CoNLL) 2003 and Open Knowledge 

Extraction (OKE) 2016 benchmark datasets). In several cases however, the named-entity 

recognition task for a certain problem may be unable to use these public datasets as the 

domain corpora and/or entity types are not useful for the specific domain of study. In 

these cases, it is necessary to determine what available corpora, and/or training datasets, 

are available so as to develop a custom named-entity recognition system that is best-

suited for your task environment. For example, in [41], the authors were tackling the 

issue of extracting the Hubble Constant from a variety of related scientific texts. 

Henceforth, their custom-trained named-entity recognition system had to train off a 

custom-built training dataset consisting of 1,394 positive/negative training examples 

with 154 examples allocated towards an evaluation (testing) set [41]. It should be noted 

that the complexity of a named-entity recognition system, both in terms of number of 

entity types and degree of variability in entity types, has enormous implications on both 
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the performance of a model and the ‘necessary’ size of a training dataset needed to reach 

an optimal performance envelope (as discussed in [45]). 

Finally, when considering name-entity recognition for a wider natural language 

processing task like information extraction, a useful follow-on technique comes in the 

form of relation extraction. 

Relation Extraction 

Relation extraction involves answering the question of whether a relationship 

exists between two entities and what type of relation that is. As stated in [46], a relation 

“denotes a well-defined relationship between two or more named entities”. For example, 

consider again the following sentence mentioned in the previous section but with an 

added entity type: 

• “The Earth {entity_type: PLANET} is a celestial body in orbit around the 

Sun {entity_type: STAR}.” 

In this sentence, the appearance of two entities brings forward a question of 

whether or not they are related and through what type of relation. As such, a relation 

extraction system could predict that the relation between these two entities does indeed 

exist and is of the type ‘ORBITS’. Thus, this completes the tuple containing two entities 

and a relation, i.e. “Earth”→ORBITS→“Sun”. Of course, not all entities have to be 

related to each other and any predictions should follow a predefined governing relation 

and entity type list (e.g. an ontology). 

 As is the case with named-entity recognition, there are several functional 

methods that can be employed for the task of relation extraction from supervised to 
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unsupervised [46]. Feature-based methods, kernels, bootstrapping, neural networks, and 

transformers are some of the various methods used/proposed for relation extraction as 

reported in various works and reviews [35, 36, 46, 47]. In a recent publication on this 

work, we specifically employed a transformer model to handle the task of relation 

extraction [10].  

 Given the rise of transformers models in the domain of natural language 

processing, and the specific presence of bi-directional encoder representations from 

transformers (BERT) in this work, it is warranted to provide discussion behind the inner-

workings of this powerful method. 

Transformer Architecture and BERT 

The general transformer architecture follows an encoder-decoder processing 

pipeline and was initially conceptualized to support translation efforts as a replacement 

to slower long short term memory (LSTM) networks [48]. In the context of language 

translation tasks, the transformer architecture aims to take the input language sample and 

provide its translation as an output [48]. The role of the encoder is to transform the word 

embeddings (which are essentially vectors unique to each word in the vocabulary) into 

attention vectors that can be compared with the similar attention vectors in the other 

language [48]. Essentially, the encoder learns the context of the input language while the 

lower half of the decoder (in reference to the above diagram) does the same for the target 

language. With these attention vectors for both languages, they can be correlated to 

generate a word-by-word prediction of the translation in the target language, outputted as 

vector probabilities, which is then transformed into a more interpretable output for the 
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user [48]. One important element of this architecture is the use of word embeddings 

which, as just previously stated, is essentially a mapping of the entire domain vocabulary 

onto an embedding space. The following figure provides a visualization of what a low-

dimensional embedding space can look like:  

 

 

Figure 6: Visualization of an embedding space (image source: 

towardsdatascience.com). 

 

Embeddings themselves can be useful for a variety of natural language 

processing tasks like entity disambiguation and relation extraction. For example, [49] 

used a noun-phrase embedding model to improve feature extraction in the engineering 

design domain. 
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 To expand on the original transformer architecture, researchers at Google 

developed BERT, which utilizes the encoder block [44]. Here, the capabilities of the 

transformer, or rather the encoder block, can be expanded to support a wider variety of 

natural language processing tasks such as question and answering, text classification, 

and named entity recognition (to name a few).  

The outputs of the encoding blocks can be reworked from the original 

architecture to serve other natural language processing tasks. In question and answering 

for example, the BERT model is pre-trained (unsupervised) on a corpus to ‘learn’ the 

context of the text vocabulary and structure [44]. This is done through Mask Language 

Modeling (MLM) which randomly masks certain words in a sentence [44]. The model 

then predicts which word lies behind mask [44]. The other element in pre-training, also 

unsupervised, is Next Sentence Prediction (NSP) which further trains the model by 

randomly gathering two sentences and training the model to predict which one comes 

after [44]. In all, the original BERT architecture encompasses 110 million (BERT base) 

or 340 million (BERT large) model parameters to train on and fine-tune [44].  

Fine-tuning a pre-trained BERT model is task specific but rather straightforward 

[44]. Essentially, the model uses the NSP as a binary analog to a specific task input and 

the output provides start and ending spans (i.e. locations in the text) that indicate the 

model’s prediction [44]. In all, this architecture provides a very suitable tool for 

classification tasks like named entity recognition and relation extraction. Several works 

since the original publication of BERT have utilized this architecture to develop other 
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pre-trained models [36, 39] or have fine-tuned BERT to solve specific natural language 

processing tasks [10, 37]. 

Parts of Speech Tagging 

Parts of Speech (POS) tagging in natural language processing is, in essence, the 

technique of assigning grammatical labels to extracted tokens. Similar to named entity 

recognition, there exist several models capable of performing automatic POS tagging on 

textual samples. The following are various POS tags, and examples, available through 

spaCy’s open-source POS tagger: 

 

Table 2: Various POS tags that an extracted token may be categorized as given 

spaCy's POS tagger model (https://spacy.io/usage/linguistic-features). 

POS Tag Description Examples 

ADJ Adjective big, old, green 

ADP Adposition of, to, from 

ADV Adverb very, where, there 

AUX Auxiliary is, has, will 

CONJ Conjunction and, but, or 

CCONJ Coordinating Conjunction and, but, or 

DET Determiner a, an, the 

INTJ Interjection psst, ouch, hello 

NOUN Noun person, tree, air 

NUM Numeral 1, four, MMXIV 

PART Particle ‘s, ‘t 

PRON Pronoun I, she, they 

PROPN Proper Noun Ben, Sue, NATO 
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PUNCT Punctuation ‘, (, ? 

SCONJ Subordinating Conjunction if, while, that 

SYM Symbol &, %, © 

VERB Verb run, eat, ate 

X Other asdfdsfs 

SPACE Space 
 

 

Term Frequency and Topic Modeling 

One final task related to natural language processing and is arguably one of the 

simplest tasks to employ, is that of term frequency. Simply speaking, term frequency 

aims to analyze the occurrence of words throughout a corpus, or similarly determine the 

occurrence of specific words (or topics) in a corpus if said terms/topics are known. This, 

when used in methods such as term frequency/inverse document frequency (TF/IDF), 

Latent Dirichlet Allocation (LDA), or Latent Semantic Analysis (LSA), is useful to 

understand the ‘heatmap’ of words/topics within a document and generate topic models. 

Several prior works have used different forms of term frequency analysis and 

topic modeling to solve various tasks. For example, the authors in [50] used both LDA 

and LSA to support the categorization of patents. LDA was also used in [11] to look at 

topic frequency and temporal trends across astrophysics decadal surveys (as mentioned 

in the previous chapter). However, while LDA can run unsupervised, the outputs of the 

model are dependent on the source text and cannot be defined a-priori. This makes it 

difficult for certain applications of topic matching where a pre-defined topic list needs to 

be referred to.  
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Given this discussion on various natural language processing techniques, it is 

important to establish, wherever possible, a metric for evaluating the performance of 

natural language processing systems.  

Performance Evaluation 

One of the most notable, and widely used, measures for evaluating classification 

tasks (like named entity recognition and relation extraction) are by computing a model’s 

precision, recall, and F1 score. The following list defines each of these metrics: 

• Precision: Refers to the fraction of predictions that are relevant to the 

truth sample. I.e. it is the ratio of total predictions generated by a model that can 

be considered as ‘correct’. 

• Recall: Refers to the fraction of ‘correct’ instances from a ‘truth’ set that 

were reproduced by the model. I.e. in supervised training of a classification 

model, a ‘truth’ dataset is what the model will train on and the higher occurrence 

of distinct ‘truth’ examples in the model’s output results in a higher recall score.  

• F1: The harmonic mean of precision and recall.  

As is typical in reporting, these scores fall between the 0-1 range with values 

closer to one indicative of higher performance in that metric. Considering true 

positives/negatives, false positives, and false negatives, evaluating these metrics is 

straightforward: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(3.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(3.2) 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3.3) 

  

However, these metrics are best applied when a model’s output follows a strict 

binary positive/negative format. In natural language processing classification tasks 

however, the outputs can be more nuanced, and an alternative performance metric would 

provide a better indication of a model’s performance. 

Adapted PRF Metrics (MUC-5) 

The metrics established in [51] are one such adaptation better suited for more 

ambiguous classification tasks. Here, the true/false positive/negative variables are 

replaced with the following scoring categories: 
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Figure 7: Scoring categories established in [51]. 

 

 The most notable metrics in this addition are that of the ‘Partial’ and ‘Spurious’ 

categories with the former referring to model predictions that are partially correct and 

the latter referring to model predictions that are neither correct nor incorrect (i.e. they 

have no reference figure in a ‘truth’ set). As will be discussed in the following chapter, 

these added categories provide a more thorough representation of a model’s performance 

when said model’s outputs are not simply binary in nature. 

Research Question 

Because of the above discussions regarding science traceability and relevance, 

natural language processing tools and techniques, and the potential benefit natural 

language processing can bring to mission concept evaluation efforts, the work reported 

in this thesis will aim to: 

• Determine the utility of natural language processing in the domain of 

mission concept evaluation processes by: 
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o Determining the capabilities of natural language processing in 

extracting a mission concept’s scientific goals, objectives, and 

requirements and; 

o Evaluating those data products against the needs of the scientific 

community so as to assist with generating a recommended 

portfolio of mission concepts. 

The Astrophysics Decadal process is a ripe area to employ natural language 

processing as alluded to in Chapter 2. Furthermore, and through discussions with 

NASA-affiliated researchers, ambitions to employ AI/ML towards the decadal process 

are pronounced and have been drivers of this NSTGRO-supported work. As such, we 

believe we can provide another substantial use case of natural language processing in yet 

another systems engineering domain. The following chapter will discuss our contribution 

to this gap by discussing the methods employed in AstroNLP and the results of our 

contribution. 
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CHAPTER IV  

NATURAL LANGUAGE PROCESSING FOR MISSION CONCEPT EVALUATION 

 

Science Traceability Extraction 

All the work conducted in this thesis was captured in a python-based tool that 

deployed the above-mentioned natural language processing techniques towards science 

traceability extraction and relevance assessment on astrophysics-based space mission 

concepts. This tool, called AstroNLP, coupled methods of PDF document parsing, 

tokenization, NER and relation extraction through the use of specialized transformer 

models, and analyzed term frequencies against a constructed knowledge base of 

concepts to evaluate scientific relevance both at a mission and portfolio level. The figure 

below represents the architecture of the tool: 
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Figure 8: AstroNLP software architecture showing functions, data sources, 

process/data flows, and accompanying open-source libraries/tools. 

 

 For matters of clarity, the above figure can be reduced to its mere functional 

work-flow showing the inputs to the tool (mission concept documentation) as well as its 

outputs (e.g. science traceability graphs, and scientific relevance charts listed in green). 

The following figure details this functional flow: 
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Figure 9: Functional work-flow showing the processing pipeline of the AstroNLP 

tool. 

 

 With the above architecture visualized, the following sections will focus on 

describing the individual elements contained within the functional flow and associated 

processes/libraries/tools utilized to support those functions.  

Science Traceability Graph Ontology 

As discussed in Chapter 3, it is useful to establish some form of semantic 

structure to our processing pipeline to guide the named-entity recognition and relation 

extraction transformers. This is particularly necessary when building custom annotations 

in a training dataset as you are required to establish what are your entity and relation 

types. For AstroNLP, we utilized the existing taxonomical structures established in [4, 7] 

as well as the Semantic Sensor Network/Sensor, Observation, Sample, Actuator 

Ontologies [52], all of which have been discussed in a prior publication of this work 

[10]. A summary of the entity types is provided below along with associated definitions 

and examples: 
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Table 3: List of all 10 entity types with associated descriptions and examples as seen 

in [10]. 

Entity Type Entity Description Examples 

MISSION Any word or phrase containing the 

name and/or acronym of the mission 

Hubble, JWST, 

LUVOIR, The 

Spitzer Telescope 

MISSIONPARAMETER Any word or phrase that can be 

considered as an attribute describing 

the mission 

Orbit, inclination, 

lifetime, cost 

MISSIONPARAMETERVALUE The quantitative or qualitative value of 

a MISSIONPARAMETER entity 

1400 km, $4M, 3 

years 

SCIENCETHEME Any word or phrase defining, 

implying, or relating to a scientific 

topic and/or feature of interest 

Black holes, early 

universe, galaxy, 

Hawking radiation 

SCIENCEACTION Any word or phrase describing an 

activity or set of activities a mission or 

instrument will perform to generate a 

data product and/or achieve a science 

goal 

High-contrast 

direct observations, 

complete full-sky 

survey 

INSTRUMENT Any word or phrase defining an 

instrument contained within the 

mission 

Spectrograph, 

telescope, NIR 

coronagraph 

INSTRUMENTPARAMETER Any word or phrase that is considered 

as an attribute describing an 

instrument 

Field of view, 

aperture, diameter, 

angular resolution 
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INSTRUMENTPARAMETERVALUE The quantitative or qualitative value of 

an INSTRUMENTPARAMETER 

entity 

180 deg, 6 meters 

OBSERVABLEPARAMETER Any word or phrase defining an 

attribute of a SCIENCETHEME that 

the mission/instrument aims to 

measure 

Stellar brightness, 

radial velocity, 

spectral range 

OBSERVABLEPARAMETERVALUE The quantitative or qualitative value 

describing the required value for an 

OBSERVABLEPARAMETER entity 

100,000 

observations, 70% 

of the sky each 

orbit, 5 – 7 keV 

 

As listed in the above table, there are several notable entity types that are 

influenced by prior works and will be discussed now.  The ‘SCIENCETHEME’ and 

‘SCIENCEACTION’ entity types were heavily influenced by similar instances in the P-

STAF architecture [8] and also discussed in [10]. Additionally, the ‘INSTRUMENT’, 

‘INSTRUMENTPARAMETER’, and ‘INSTRUMENTPARAMETERVALUE’ and the 

parallels along the ‘MISSION’ entity types (and related) drew motivation from the 

original STM taxonomy (also reported in [10]). Furthermore, the 

‘OBSERVABLEPARAMETER’ and ‘OBSERVABLEPARAMETERVALUE’ entities 

draw motivation from SSN/SOSA’s “Observable” and “ObservableProperty” entity 

types as discussed in [10]. Finally, as mentioned in [10], it is important to recognize that 

building a universally accepted science traceability taxonomy is a challenge in-of-itself 
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that must balance the views and perspectives of all stakeholders involved. Thus, this 

entity taxonomy merely represents one such possible guideline for formalizing the 

science traceability nomenclature. 

To round out the construction of this science traceability ontology, the previously 

established entities must also have some form of relations associated with them so as to 

create a graph ontology with nodes (entities) and edges (relations). The following figure 

represents this final science traceability ontology utilized in this work: 

 

 

Figure 10: Science traceability graph ontology governing the AstroNLP system as 

seen in [10]. This governing ontology serves as the guiding template for 

annotations. 

 

With the science traceability ontology defined, the following sections will 

discuss the specific processing pipeline employed in AstroNLP starting with the portion 

of the pipeline associated with extracting science traceability graphs. 
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Document Text Extraction 

The first element of the pipeline employs a custom-built python script aimed at 

extracting the raw text from PDF based documentation (mission concept proposals). 

This script employs the py-pdf-parser open-source library [53] which builds off the 

fundamental framework of the pdfminer-six library [54] to extract text from PDF 

documents. This works through a form of object character recognition (OCR) where 

each individual character in the document is parsed and then grouped together in so 

called ‘elements’ through a series of heuristics [54]. The script then takes these elements 

and targets the related ‘science’ and ‘engineering’ sections through an added layer of 

filtering to target the most relevant portions of the document. In the case of decadal 

proposals, these sections typically include the ‘Key Science Goals and Questions’ and 

‘Technical Overview’ sections of the document. However, not all documents follow the 

same header labels but rather have headers with slight deviations to the base 

nomenclature. As such, the parser utilizes a likelihood function that aims to index where 

the most likely relevant headers are located to help guide the extraction. Finally, the 

parser script filters any extracted ‘element’ that falls short of a minimum character 

threshold so as to filter out any unnecessary noise within the document (e.g. page 

numbers, headers, and footers).  

Following text extraction, the raw text is then fed through the transformer 

portions of the pipeline. Prior to transformer processing, the text passes through one final 

filter aimed at removing any non-ASCII characters and replacing common Greek 
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characters with their spelled-out form. The next two sections will now discuss the 

transformers that perform the NER and relation extraction tasks. 

Named-Entity Recognition Transformer 

The NER transformer is built and trained through the expansive python library 

spaCy [33]. There exist several other open-source libraries capable of performing entity 

extraction including the Java-based CoreNLP [55] and OpenNLP [56] as well as the 

python-based NLTK [32]. However, due to the thorough online documentation, 

application programming interface, and recent support for state-of-the-art transformer 

models in spaCy 3.0, the python-based spaCy library was chosen for this task.  

A pre-trained transformer model based in PyTorch, and pulled from 

Huggingface’s vast repository of transformer models, is used for the named entity 

recognition task. Specifically, we selected the ‘allenai/scibert_scivocab_cased’ model 

[39] as our pretrained transformer and with spaCy, fine-tuned the transformer through 

our custom developed training data set. SciBERT was ultimately chosen due to its 

relevant pre-training on a scientific corpus and as such, is relevant for application on 

astronomy/astrophysics-based proposals. Further model parameters for training are 

summarized below: 
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Table 4: Named entity recognition model parameters. 

Model Parameter Value 

model_type bert 

vocab_size 31116 

batch_size 128 

training.optimizer Adam.v1 

max_epochs 30 

tokenizer spacy.tokenizer.v1 

 

 As is the case for both the NER and relation extraction transformers, we kept the 

epoch count high in order to produce two transformer models at the end of training (a 

‘low-epoch’ and ‘high-epoch’ model where the low-epoch model is the ‘best scoring’ 

model determined via spaCy’s training API). This was done as preliminary analyses 

regarding the end-to-end performance of the processing pipeline significantly varied 

based upon type of model used (i.e. a low-epoch model may not produce enough entities 

to reasonably populate a STG whereas a high-epoch would produce a substantial pool of 

entities for an STG, some of which may simply be noise). Example outputs from both 

case models will be discussed later in this chapter. 

 Finally, upon successful extraction of entities through the NER transformer, the 

entity pools go through final slew of POS-based heuristics as a post cleaning step. 

Specifically, all ‘Science Action’ entities must contain a ‘Verb’ or ‘Noun/Proper Noun’ 

token while also restricting any entities containing ambiguous end tokens (e.g. 
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‘Adjectives’, ‘Coordinating Conjunctions’, and ‘Auxiliaries’ to name a few). Similarly, 

all ‘Science Theme’s must contain a ‘Noun/Proper Noun’ POS tag and holds the same 

end token rule mentioned previously. We also restrict all entities to not exceed a 

maximum token length of 10 with specific restrictions on ‘Parameter Value’ entity types 

that need to contain at least 2 tokens (and also must have a ‘Numeral’ token present). 

Relation Extraction Transformer 

The relation extraction transformer follows a very similar parameter architecture 

to that of the named-entity recognition transformer. This model also uses SciBERT as 

the base pre-trained model and is also employed, and trained, through spaCy’s API. The 

model parameters for the relation extraction model are provided below: 

 

Table 5: Relation extraction model parameters. 

Model Parameter Value 

model_type bert 

vocab_size 31116 

batch_size 128 

training_optimizer Adam.v1 

max_epochs 100 

tokenizer spacy.tokenizer.v1 
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 In addition to the relation extraction transformer model itself, a custom script is 

added to the pipeline to add filtering rules to all predicted relations. Specifically, each 

relation generated by the model also comes with a confidence score (valued between 0 

and 1). Any predicted relation that comes with a confidence score below an adjustable 

threshold value will be filtered out of the pipeline. Further, a series of ‘if’ statements is 

applied to hardcode the restrictions enforced by the governing ontology mentioned 

previously. It should be noted that although the training data sets follow the entity-

relation structure provided by the ontology, the model is still stochastic in nature and 

‘false’ relation predictions can still emerge from the model. For those reasons, the ‘if’ 

statements are included as another layer of filtering.  

 The next section will discuss the training procedure and current scope of the 

training data set for both transformer models employed.  

Tool Training 

All annotations were developed through an online-based annotation tool, UBIAI 

[57]. This tool was selected for its intuitive user interface, capabilities for providing both 

entity and relation training data, and low-cost. The following figure illustrates the 

graphical interface provided by this online tool: 
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Figure 11: UBIAI's graphical user interface when viewed from the document 

annotation portal [57]. 

 

This online tool holds several features most notably the ability to add custom 

entity and relation types, upload documentation for annotation, download annotations in 

various formats, add contributors to support data development, and the ability to auto-

annotate documents through its ‘learned’ annotator (i.e. its own annotation model learns 

off of the user’s provided annotation data and can be used to create predictions of its 

own on user-uploaded documentation). For our case, we chose to manually annotate all 

documentation as the auto-annotator capability has only recently become available.  

The source material used to build our training data set comes from two corpora: 

the NASA Space Science Data Coordinated Archive’s (NSSDCA) spacecraft database 

[58], and the Astrophysics Data System (ADS) [59]. Both contain several descriptions 

and links to many prior and proposed astrophysics-based space missions with the latter 

having direct access to many proposal documentation. In fact, ADS is the prime 
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repository for all concept proposals submitted to the Astrophysics Decadal Survey. With 

these corpora, we had access to a rich data pool for generating annotations for training.  

With the UBIAI tool and these data sources, we created the following training 

dataset for both entity and relation annotations: 

 

Table 6: Training data size across all entity and relation types acquired over the 

course of 12 months. 

Named Entity Recognition Training Data Size 

Label Type Number of Examples 

MISSION 484 

MISSIONPARAMETER 143 

MISSIONPARAMETERVALUE 141 

INSTRUMENT 291 

INSTRUMENTPARAMETER 255 

INSTRUMENTPARAMETERVALUE 187 

SCIENCETHEME 383 

SCIENCEACTION 273 

OBSERVABLEPARAMETER 202 

OBSERVABLEPARAMETERVALUE 133 

Relation Extraction Training Data Size 

Label Type Number of Examples 

HAS 626 
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PERFORMS 173 

OBSERVES 121 

MOTIVATES 220 

DICTATES 90 

DRIVES 96 

  

Due to the variances in example amount across all entity and relation types, 

biases do exist in our models. Whilst we have attempted to balance these variances 

during our annotation sprints, it is important to note the difficulty of developing an 

evenly distributed training dataset, especially when considering the nature of our data 

sources. To provide a highlight of the nature of these variances, the following tables 

summarizes the average and standard deviation of the character lengths for each entity 

type: 

 

Table 7: Profile analytics across all ten entity types. 

Entity Type Average # of 

Characters 

Standard 

Deviation 

MISSION 10.886 12.920 

MISSIONPARAMETER 13.154 9.239 

MISSIONPARAMETERVALUE 13.823 10.993 

INSTRUMENT 23.330 12.249 
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INSTRUMENTPARAMETER 15.580 6.752 

INSTRUMENTPARAMETERVALUE 13.369 8.603 

SCIENCETHEME 21.201 10.582 

SCIENCEACTION 39.498 18.710 

OBSERVABLEPARAMETER 18.540 11.095 

OBSERVABLEPARAMETERVALUE 19.564 10.597 

 

The following section will discuss the graph visualization performed post-

transformer processing. 

Graph Generation and Visualization 

The final step in the processing pipeline aims to formulate all the entities and 

relations into a visual artifact for review by a user. Here, we employ the GraphViz [60] 

engine to essentially print the entities and relations as nodes and edges respectively. To 

do this, we constructed a script that uses a python-based GraphViz API that can 

communicate with the GraphViz software to structure and format the graph in a way that 

not only captures the extracted entities and relations, but also orders the graph by various 

sub-groups detailing science themes, science actions, observable requirements, 

instrument requirements, and mission requirements.  

Upon completion of the science traceability extraction task, we expect the model 

to produce the following output (NOTE: this is a manually constructed output as 

reported in [10] on a textual sample obtained from the Cosmic Dawn Intensity Mapper 

concept study [5]): 
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Figure 12: Illustration of the input and output expectations for the AstroNLP tool. 

 

It is important to note that the actual tool will process documentation that are 

multiple pages in length (typically between 10 and 20 pages). As such, the above 

example is merely an apportioned representation to illustrate the end product. 

Science Relevance Assessment 

Science Panels and Questions Knowledge Base 

To address the science relevance question, we utilize a form of term frequency 

and topic matching by tokenizing the input text acquired from documentation and 
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comparing extracted noun-chunks with topics inside a knowledge base. This knowledge 

base, constructed in excel, follows the structure seen in the decadal’s science panels and 

science questions as reported in Chapter 2.  In this excel document, the rows refer to 

each individual science question (24 total) given in the decadal survey. Each question is 

also given a unique identifier, and a corresponding sheet prescribes the set of terms 

related to that science question. This knowledge base was constructed manually based 

upon the perceived importance of certain themes (green), spectra (red), 

instrument/technique (black), and parameters (blue) provided in the appendices of the 

decadal report. For reference, the two sheets of the excel document are provided in 

Appendix A.  

The following section will discuss in detail, the noun chunking and topic 

matching script used to correlate extracted tokens with those given in the knowledge 

base. 

Noun-Chunking and Term Frequencies 

In relation to science traceability extraction, the effort to process the text in a 

manner suitable for topic matching is much more simplified. No training was necessary 

for this portion of the work as publicly available noun-chunking models were used 

(specifically spaCy’s en_core_web_sm model). 

To generate the relevance charts, we first take the inputted textual chunks from 

the mission concept documentation and extract all noun chunks via the en_core_web_sm 

model. We then correlate these noun chunks with the topics listed in the knowledge base 

in order to generate a ‘number of hits’ per term for each and every science question (a 
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‘term hit’ simply refers to the occurrence of a term in a noun chunk). The results for all 

science questions, and individual distributions per science question across its respective 

topic terms, are then plotted in a histogram format to generate topic/term distributions 

(similar to that shown in Chapter 2). For multi-mission analysis, the textual chunks are 

concatenated with the related missions contained in the mission ‘portfolio’ and the 

outputs are generated via the same process.  

The following section will discuss the layout of the tool’s graphical user 

interface, the performance metrics for both transformer models, as well as provide 

output examples for several mission concept proposals in addition to concatenated 

results for combinations of said missions. 

Application to the Astrophysics Decadal Survey 

Tool Graphical User Interface 

The following figure portrays the entire visual field of AstroNLP’s graphical user 

interface (the GUI is built through the PyQt5 [61] python library): 
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Figure 13: AstroNLP's graphical user interface. 

 

Visually, the tool’s interface can be subdivided into four primary subregions: 1) 

the repository metrics region, 2) the mission-level relevance assessment region, 3) the 

graph generation region, and 4) the mission and portfolio relevance assessment region.  

In region 1, the processing of documentation starts through the activation of a 

single widget (i.e. pressing ‘Gather Documentation’). Any PDF documents contained 

within the local repository are then queued and text is extracted. The following figure 

shows this region after loading three proposal documents: 
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Figure 14: Region 1’s document metrics across the repository of mission concepts. 

Here, the total number of documents, entities, tokens, and relations are provided 

for visual inspection to the user. 

 

In region 2, a specific mission concept can be evaluated for relevancy against the 

knowledge base’s scientific questions. Here, a specific mission from the repository can 

be selected and then the output returns the most relevant science panel and top three 

related science questions for that mission (via the same process discussed in the prior 

section). An example output for the LUVOIR mission concept is provided below: 

 

 

Figure 15: Region 2 of the AstroNLP tool showing specific science panel/question 

relevancies for the LUVOIR concept. 
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In region 3, graph generation takes place. After processing, all entities and 

relations are stored in the local cache of the tool, and it is here where a specific mission’s 

science traceability graph can be produced. The open list shows all entities and valid 

relations extracted during the initial processing period and can be viewed individually. 

An example output (excluding the science traceability graph itself) for the LUVOIR 

mission concept is shown below: 

 

 

Figure 16: Region 3's science traceability graph's metrics for a specific mission 

concept (LUVOIR in this example). Notice that both the entity and relation lists can 

be viewed by selecting the appropriate tab. 

 

In region 4, a mission or portfolio can be assessed against specific science 

questions provided in the decadal in order to determine the term/topic distributions for a 

selected science question. This is done via the same process discussed in the recent 
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section and can be evaluated for any combination of mission concepts provided in the 

repository. Additionally, two portfolios can be compared against one another in regards 

to their perceived scientific impact across all science questions and/or select science 

questions. An example output is provided below: 

 

 

Figure 17: Region 4's relevance assessment panel. Here, the histogram plots can be 

viewed across two portfolios under comparison detailing the impacts these 

portfolios have on all/select science questions (science questions are listed via their 

ID number and printed after assessing the 'portfolio'). 
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Further examples of specific science traceability graphs and relevance 

assessments for various mission concepts will be discussed later in this chapter.  

System Performance 

For both transformer models, we constructed a custom python script to evaluate 

the baseline fine-tuned models against the testing dataset (the testing dataset is roughly 

20% of the total annotation dataset and is disjoint from the training dataset). Given the 

performance metric equations discussed in the previous chapter (and in [51]), we follow 

the scoring strategy reported in a previous publication [10] and is as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 + 𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

(4.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑑 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

(4.2) 

 

The F1 score is calculated through the same equation (3.3) provided in the 

previous chapter. Regarding the additional scoring categories from [51] and mentioned 

in the previous chapter, one notable alteration we included in the script was the 

combination of ‘Correct’ and ‘Partial’ instances. In essence, partial instances were 

counted based upon their ‘coverage’ of a true/correct instance. To put it simply, when 

counting instances across all categories, all truly ‘Correct’ instances were given a value 
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of 1 and ‘Partial’ instances were given a value between 0 and 1 depending upon how 

much of the true instance was captured. This was done by measuring the amount of 

overlap that occurred for a predicted span and a ‘true’ span in a textual example. 

With this evaluation, we received the following baseline performance metrics for 

both transformer models: 

 

Table 8: Baseline performance metrics for both transformer models based upon 

gold annotations. 

Transformer Model Precision Recall F1 

NER Transformer 0.34 0.13 0.19 

Relation Extraction 

Transformer 

0.49 0.28 0.35 

 

Note that the above table only considers ‘baseline’ model performance which 

does not factor in the effects of POS filtering and ontology enforcement. By performing 

the same scoring procedure on the ‘enhanced’ processing pipeline (e.g. with filtering 

heuristics) we receive the following performance metrics: 
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Table 9: Full pipeline performance metrics for both transformer models. This 

scoring was carried out semi-automatically with relation extraction performance 

based off of NER model output as opposed to the gold annotations. Additionally, 

this scoring procedure only used ~25% of the testing data set (roughly 5% of the 

total training data set). 

Transformer Model Precision Recall F1 

NER Transformer 0.96 0.71 0.81 

Relation Extraction 

Transformer 

0.58 0.27 0.37 

 

We recognize that these metrics, at large, do not fully meet the upper percentile 

scoring values reported in other literature [41]. As such, various filtering rules discussed 

previously (e.g. POS tags and ontology enforcement) have been applied to the pipeline 

in an effort to improve the quality of outputted STGs. However, we also recognize that 

transformer models require an extensive amount of annotation examples for fine-tuning 

(thousands rather than a few hundred examples across entity and relation types) and thus 

recommend that future implementation of this work require an extensive effort in 

expanding the annotation data set first and foremost.  

The next section will provide the results of the tool given these performance 

metrics by providing a look at example science traceability graphs and relevance 

histograms for various mission concepts. 

Graph Generation and Relevance Examples 

This section serves to provide what AstroNLP is capable of producing when 

applied to various mission concept proposals. As pretense, this section will cover three 
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NASA concept missions submitted to the decadal: two flagship concepts and one probe 

concept. All NASA concept missions submitted to the 2020 decadal survey can be found 

in [5]. Each subsection will be dedicated to one of these three concept missions with one 

final subsection discussing the multi-mission/portfolio level use case.  

Additionally, as a further note, each mission concept discussed is given in the 

form of a PDF document. The document structure follows a loose template judicated by 

the decadal survey process, and each mission concept should contain the following main 

sections: 

• Key Science Goals and Objectives: 

• Technical Overview 

• Technology Drivers 

• Organization, Partnerships, and Current Status 

• Schedule 

• Cost Estimates 

It should be noted that the wording for each of these section headers is not 

followed strictly in practice and proposal documents may also contain superfluous 

sections such as title pages, table of contents, author lists, and bibliographies (to name a 

few). More information regarding the document structure can be found [9]. 

Flagship: The Large UV/Optical/Infrared Surveyor (LUVOIR)  

The LUVOIR concept ultimately consists of two individual observatories dubbed 

LUVOIR-A and LUVOIR-B. The signature science cases for LUVOIR are as follows 

(and available at [5]): 
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Figure 18: Signature science cases for the LUVOIR concept as provided in [5]. 

 

 Some notable technical features of the LUVOIR mission, provided within 

LUVOIR’s concept proposal, are as follows: 

 

Table 10: Notable technical design features of the LUVOIR concept as seen in [5]. 

 LUVOIR-A LUVOIR-B 

Parameter Value Value 

Telescope Diameter 15 m 8 m 

Prime Mission Lifetime 5 years 

Orbit Sun-Earth L2 
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Total Observation 

Wavelength Range 

100-2500 nm 

Tracking Speed 60 milliarcseconds/sec 

Instruments HDI (near-UV – near IR imager), ECLIPS (coronagraph 

with imaging cameras and spectrographs), LUMOS (far-

UV imager and multi-resolution, multi-object 

spectrograph), POLLUX (point-source UV 

spectropolarimeter) 

 

Upon inputting and processing of LUVOIR’s concept proposal, we retrieve the 

following science traceability graph: 



 

63 

 

 

 

 

Figure 19: STG extracted from the LUVOIR concept proposal using a higher-

epoch (30) NER transformer. 
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 Looking at the scientific relevance of the LUVOIR concept across the decadal’s 

science questions, we receive the following distribution chart: 

 

 

Figure 20: LUVOIR's complete relevance distribution normalized across the 

decadal science questions. 

 

 By this measure, and as the tool reports, the most relevant science panel for the 

LUVOIR concept is the ‘Panel on Exoplanets, Astrobiology, and the Solar System’ with 

the following science questions reported as being most relevant: 
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Figure 21: LUVOIR's most relevant science panel as well as its top three most 

relevant science questions. 

  

Upon specific inspection of LUVOIR’s top science question, we receive the 

individual distribution of topics/terms for said science question represented in the 

following figure: 
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Figure 22: LUVOIR's topic/term distributions for its most relevant science 

question. Notice the significant relevant representation of ‘infrared’ and ‘planet’ 

terms.  

 

Flagship: The Origins Space Telescope (OST) [5] 

OST is one observatory looking to explore areas of galaxy formation, the origins 

of habitable worlds, and discover other potentially life-supporting worlds [5]. It’s key 

science goals are as follows (and provided in [5]): 
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Figure 23: OST's science goals and science objectives as seen in [5]. 

 

Notable technical features specific to the OST concept are provided in the table 

below: 

 

Table 11: Select technical details of the OST concept [5]. 

Parameter Value 

Telescope Size 5.9 m 

Wavelength Range 2.8 - 588 µm 

Orbit Sun-Earth L2 

Design Lifetime 5 years 
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 Upon inputting and processing of OST’s concept proposal (of which did contain 

a STM), we receive the following figure: 

 

 

Figure 24: OST’s science traceability graph. A much larger version of this graph 

can be obtained if the baseline NER transformer is switched with a higher epoch 

model (i.e. one that went through all 30 cycles of the training data set). 
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As was done with the LUVOIR concept, we receive the following science 

question distributions for OST:  

 

 

Figure 25: OST's complete relevance distribution normalized across all decadal 

science questions. 

 

Again, we can also report on OST’s most relevant science panel and science 

questions: 
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Figure 26: OST's most relevant science panel and top three related science 

questions. 

 

Upon further analysis of OST’s top science question, we can attain the individual 

topic/term distributions for said question: 

 

 

Figure 27: OST's topic/term distributions across its most relevant science question. 

 



 

71 

 

Probe: The Galaxy Evolution Probe (GEP) [5] 

The GEP concept is a single observatory aimed at studying key concepts about 

star formation and supermassive black hole growth in galaxies over time [5]. 

Specifically, the two key science goals for GEP are listed as: 

1. Map the history of galaxy growth by star formation and accretion by 

supermassive black holes and characterize the relation between those processes 

[5]. 

2. Measure the growth of metals over cosmic time [5]. 

Some notable design details of the GEP concept are reported as follows: 

 

Table 12: Select design features of the GEP mission concept [5]. 

Parameter Value 

Orbit Sun-Earth L2 

Mission Duration 4 years with 46% margin 

Telescope Diameter 2 m 

Instrumentation GEP-I (Imager with 23 bands covering 

10-400 µm), GEP-S (Spectrometer 

covering the 24-42, 40-70, 66-116, and 

110-193 µm range targeting select 

galaxies) 

Total Cost Estimate $910M 
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 Upon processing of GEP’s mission concept document, we can attain the 

following STG: 

 

 

Figure 28: A portion of GEP's science theme and science action regions contained 

within its larger STG. 

 

Considering GEP’s relevance towards decadal science questions, we receive the 

following distribution: 
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Figure 29: GEP's relevance distribution normalized across all decadal science 

questions. 

 

By the distribution, we report the following most relevant science panel and top 

three most relevant science questions: 

 

 

Figure 30: GEP's most relevant science panel and top three most relevant science 

questions. 



 

74 

 

 

 Upon further analysis of GEP’s most relevant science question, we produce the 

following term/topic distribution: 

 

 

Figure 31: GEP's term/topic distribution across its most relevant science question.  

 

In all, a total of three separate mission concept documents were analyzed 

(LUVOIR at 12 pages, OST at 15 pages, and GEP at 24 pages). This resulted in a 

processing total of ~21,000 tokens. 
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Portfolio-Level Analysis 

Science traceability extraction is only available at the individual mission level, 

but an analysis of scientific relevance at the portfolio level is capable through AstroNLP. 

As a toy demonstration of this, consider two portfolios: one containing the LUVOIR and 

GEP concept (Portfolio 1) and one containing the LUVOIR and AXIS concept (Portfolio 

2). AXIS stands for Advanced X-ray Imaging Satellite and is x-ray-based NASA probe 

concept also submitted to the 2020 Decadal [5]. In AstroNLP, and prior to analysis, 

these portfolios would be loaded into region 4 as illustrated in the following figure: 

 

 

Figure 32: Portfolio showing the 'loaded' concept portfolios ready for relevance 

analysis. 

 

Assessing all these concepts provides the following total relevance profiles for 

each portfolio: 
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Figure 33: Each portfolio's relevance across all science questions (the upper is 

Portfolio 1 and the lower is Portfolio 2). This is, in essence, a concatenation of the 

individual relevance profiles of all mission concepts contained within either 

portfolio. 
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 Upon visual inspection of these profiles, we can garner several conclusions 

regarding scientific impact across each question. Most notably, portfolio 2 holds a higher 

weight towards questions BQ-1 and BQ-2. We can also deduce that science question 

DQ-1 is highly relevant to both portfolios. Considering the DQ-1 question, we can attain 

the following term/topic distributions for both portfolios: 

 

 

Figure 34: Topic/term distributions for science questions DQ-1 (under ‘Panel on 

Galaxies’).  

 

 Finally, we can compare both proposals directly and attain similar bar charts 

showing ‘gains’ and ‘losses’ in scientific impact across both the total relevance profiles 

and for specific science questions. For these portfolios, and for science question DQ-1, 

we receive the following comparison charts:  
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Figure 35: The comparison charts showing how portfolio 2's science impact 

compares with portfolio 1's scientific impact. 

 

Discussion 

Across all three mission concepts, AstroNLP provided a STG for each and 

produced their individual mission-level decadal relevance profile. What is also 

noteworthy is AstroNLP’s ability to explore various portfolio decadal relevancies at the 

behest of a reviewer’s choice selection of concepts. 

When considering the STGs, due to performance implications, the 

implementation of POS and ontology enforcement heuristics is necessary to increase the 

readability and quality of the graphs. This is especially true when using higher epoch 

NER transformer models as a higher frequency of noisy entities will typically appear in 
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the output. Additionally, due to the forced filtering of entities with no relations attached 

to them, it is highly possible that much mission critical information is missed in any 

given STG. However, these graphs do already contain very relevant information that a 

reviewer would find useful when generating recommendations in the decadal survey. We 

also recognize that improving the quality of the STGs through additional training data or 

adding a various assortment of filtering rules (while both are incredibly necessary in this 

case) can be a Sisyphean effort given the nature of transformer-based models. 

Regardless, any future work on this endeavor should aim to substantially increase the 

annotation data pool by at least an order of magnitude so as to increase the fidelity of 

STG extraction. 

From the perspective of decadal relevance analysis, we can very clearly visualize 

a mission/portfolio’s relevance to specific science questions given in the decadal survey 

and also get a pretense in regards to how a sample portfolio compares with another. In 

the mission concepts examined, the outputs of the AstroNLP tool regarding a concept’s 

most relevant science panel and questions show very plausible results given the 

descriptions contained in those concept proposals (e.g. LUVOIR’s orientation towards 

the search and characterization of habitable exoplanets was well captured by AstroNLP). 

At the portfolio level, these outputs become even more intriguing as a reviewer can 

visually inspect and optimize its portfolio towards a desirable distribution of science 

topics (i.e. tailor to specific panels, or attempt to achieve a relatively even distribution 

across all science questions).  
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CHAPTER V  

CONCLUSIONS 

 

Computers in the modern era can support and enhance a wide variety of 

previously human-dominated tasks thanks, in part, to the rise of computer processing 

abilities and artificial intelligence. In this thesis, we covered one very specific area 

where natural language processing, a subtopic of artificial intelligence, can enhance what 

is still a human dominated activity (reviewing and adjudicating proposals).  

Specifically, this work discussed AstroNLP; a tool capable of providing support 

to reviewers involved in evaluating space-based astronomy and astrophysics mission 

concepts. AstroNLP gives the reviewer the ability to upload several concept proposals 

and automatically determine 1) their science traceability and 2) their scientific relevance 

to a program. Discussions regarding the functions and processes powering AstroNLP 

were also provided, as well as mentions on current limitations still affecting AstroNLP.   

To demonstrate the ability of AstroNLP, we provided a use case looking at three 

mission concepts submitted to the 2020 Astrophysics Decadal Survey; LUVOIR, OST, 

GEP. Among these three concepts, we portrayed their STGs extracted directly from their 

decadal proposals and showed their respective relevancies across the decadal’s science 

panels and questions. We also showed the use-case of portfolio comparison detailing 

how two different portfolio’s science relevancies can be analyzed directly against each 

other. 
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 Whilst far from perfect, automated science traceability extraction and relevance 

assessment of mission concepts holds enormous implications not only for astrophysics, 

but for other scientific and non-scientific domains (e.g. defense). The tools and 

workflows discussed in this thesis can, in varying degrees, be adapted to these other 

domains to support similar processes across program formulation.  

 It is also worthy to mention, a-posteriori of this work, that it is vital when 

developing semantic technologies for a domain-specific use case to not only adapt the 

tools for said domain, but to understand the context of the given domain. As with many 

machine learning models, the performance of those works are only as good as the data 

provided during training and is therefore essential to understand the semantic structure, 

language habits, nuances, and ‘features’ of the domain material so as to given such a 

model the best chance at performing. This is also plays into the argument of verification 

for the work generated in this thesis, as model verification is paramount before any said 

implementation of this work can be initiated. We’ve provided a first step towards model 

verification through our provided results and performance metrics but recognize that a 

more robust verification framework will be necessary (e.g. comparing STGs with 

human-developed STMs from the same textual source) in future work. 
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APPENDIX A 

SCIENCE PANEL AND SCIENCE QUESTION TOPIC/TERM LISTS 

 

 

Figure 36: Panel and question portion of the knowledge based used as a reference 

guide for users of the AstroNLP tool so that relevance charts can be specifically 

pinpointed to specific scientific areas. 
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Figure 37: Term/topic map portion of knowledge base. Each row corresponds to a 

particular science question provided in the panel and question sheet of the excel 

document. 

 


