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ABSTRACT

Proposal evaluation of pre-Phase A mission concepts is largely based on the input from
subject matter experts who determine the scientific merit of a mission concept based on
a number of criteria including: the relevance of the mission objectives to national and
international priorities; the existence of a complete set of measurement, instrument, and
platform requirements that are traceable to the mission objectives; and several others.
The Science Traceability Matrix is a standard tool used to articulate this relevance and
traceability and therefore is a key input to this reviewing process. However,
inconsistencies in the structure and vocabulary used in the Science Traceability Matrix
and other sections of the proposal across organizations make this process challenging
and time-consuming. At the same time, as part of the Digital Engineering revolution,
NASA and other space organizations are starting to embrace key concepts of model-
based systems engineering and understand the value of moving from unstructured text
documents to more formal knowledge representations that are amenable to automated
data processing. In this line, this thesis leverages transformer models, a recent advance
in natural language processing, to demonstrate automatic extraction of science relevance
and traceability information from unstructured mission concept proposals. By doing so,
this work helps pave the way for future applications of natural language processing to
support other systems engineering practices within mission/program development such
as automated parsing of design documentation. The proposed tool, called AstroNLP, is

evaluated with a case study based on the Astrophysics Decadal Survey.
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CHAPTER |

INTRODUCTION

Overview

Mission concept evaluation takes place across various domains in the aerospace
enterprise (defense, planetary science, Earth science, and astrophysics to name a few). It
is an important period within the systems engineering lifecycle of a program as it takes
in a pool of alternative concepts aiming to achieve one or more programmatic objectives
relevant to the wider program itself. By practice, it is up to the review panel(s) to
determine what these programmatic areas are and determine/recommend which set of
concept ideas should be considered for further development and implementation.

In this thesis, we aim to embed one subtopic of artificial intelligence into the
realm of mission concept evaluation. Specifically, we will demonstrate the implications
and benefits that natural language processing, an umbrella term that contains various
semantic strategies and techniques ultimately aimed at analyzing and processing text,
can bring to the area of mission concept evaluation.

Throughout this work, we will discuss AstroNLP, a tool developed to support the
reviewer involved with assessing and issuing recommendations for mission concepts
submitted to the Astrophysics Decadal Survey. Specifically, we will discuss the
important implications that science traceability and scientific relevance have on the
decadal process, discuss important tools and techniques contained within natural

language processing, describe how such workflows were implemented in AstroNLP, and



demonstrate how they can be used in the decadal review process. Ultimately, as our use
case, we will analyze three mission concepts submitted to the 2020 Astrophysics
Decadal Survey and provide the outputs that AstroNLP generates when applied to these
mission concept proposals.

Relevance to NASA’s Technology Area Breakdown Structure (TABS)

This thesis is contained entirely within a NASA Space Technology Graduate
Research Opportunity (NSTGRO). As such, the work discussed here is primarily
motivated through NASA work practices and areas of growing technical interest at
NASA. Specifically, this thesis serves to address portions of NASA Technology Area
11.4.3 Semantic Technologies and NASA Technology Area 11.4.4 Collaborative
Science and Engineering [1]. Thematically, the work discussed in this thesis addresses
these two areas through applications of semantic technology (i.e. natural language
processing) to provide intelligent data understanding within the context of mission
concept evaluation and support the already collaborative engineering and scientific effort
that is the decadal process. Furthermore, and throughout the duration of this thesis, much
of the motivation driving the goals and direction of this work was formulated by these
NASA TABS areas and through conversations with NASA decadal experts and research
collaborators. However, it should also be noted that the implications of this work hold
relevance to other similar activities across various engineering-related enterprises and as

such, can be adapted to said domains.



CHAPTER II

SCIENCE TRACEABILITY AND SCIENTIFIC RELEVANCE

Early Mission Concepts

Mission concepts, or what can be more formally considered as pre-Phase A
mission concepts, hold critical mission and design information that is necessary to
communicate what are the goals and intended impacts of said mission. As stated in the
NASA Systems Engineering Handbook, pre-Phase A mission concepts are an essential
part of concept studies aimed at producing a variety of different ideas and alternatives
through which a program can be built from [2]. These concepts can range from proposed
projects and missions aimed at serving one or more programmatic goals and objectives,
or can be even more specific targeting high risk and/or low TRL technologies that could
serve programmatic objectives/goals in whichever way the proposer identifies [2]. Once
these various concepts, technologies, and proposed activities are reported upon and
submitted to a program for review, it is here where a critical step in the systems
engineering lifecycle begins: program formulation [2].

In program formulation, review panels are formed and implemented so as to sift
through the various proposals submitted to the program and down-select a promising
program of concepts from the original submission pool. Here, several pieces of
information are important when considering a concept for a program. These can include
(but are not limited to):

e Proposed mission/concept/technology development cost

3



e Proposed development/implementation schedule

e Technical feasibility and merit

e Relevance of mission concept to programmatic goals and objectives

e Traceability of requirements and engineering decisions from programmatic

goals and objectives

e Clarity and completeness of proposal’s content

The specific details and figures of merit pertaining to each of these evaluation
criteria are dependent upon the specified program. For example, military-related
programs may focus on functional capability of new technologies that provide further
support to existing U.S. defense capabilities and/or are of direct benefit to the warfighter
[3]. Conversely, in the case of science based-missions, considerations of relevance to the
scientific program and traceability of engineering decisions/requirements from scientific
goals and objects are undoubtedly important (in addition to the other criterion listed
above).

For the work covered in this thesis, we wish to focus on the two bolded points listed
above as our areas of focus. As such, we will expand on the importance of science
traceability in the following section.

Science Traceability
When considering traceability, particularly in requirements, it’s important that
such definitions are constructed coherently, concisely, and mapped effectively so that
reviewers, stakeholders, and systems engineers alike can adequately adjudicate the
rationale behind why such requirements exist and where they come from (as well as

4



illustrate, to a degree, how said requirements meet the programmatic goals and
objectives) [2]. In science-based missions, this is commonly referred to as science
traceability and is the basis behind how a mission illustrates its potential in meeting one
or more scientific goals and objectives. One method of establishing science traceability,
and is requirement for all NASA mission concepts, is an artifact called the science
traceability matrix [4].
Science Traceability Matrix

The science traceability matrix, first reported in [4], is a useful way in
formulating a mission’s science traceability structure in a tabular format. Here, the
mapping of traceability is illustrated in a left-to-right and right-to-left flow (bidirectional
traceability) with higher level definitions (e.g. science goals and objectives) located on
the left hand side of the table whilst lower level definitions specific to the mission
concept (e.g. instrument and mission requirements) are located on the right hand side of
the table. Also accompanying these elements are measurement objectives, measurements
requirements, and various items which can be categorized as data products located more
towards the center of any given matrix. The following figure illustrates this general

traceability flow:



Program Objectives

Mission and Science Objectives

Measurement Objectives

Measurement Requirements

Instrument Requirements

Science Products

Space Craft Requirements
Ground System Requirements
Mission Requirements

Mission Operations Requirements

Figure 1: The contents of a science traceability matrix as defined in [4] which
provides the governing structure for all science traceability matrices.

As the author states in [4], it is important for all science traceability matrices to
cover what are the baseline scientific goals and objectives given by the mission concept
(or as the author states, an ‘Announcement of Opportunity’) that are relevant to a
program. From here, it is important for said concepts to then trace this high-level
information to measurement requirements, of which is then to be traced to more specific

instrument/mission/spacecraft requirements of which will be implemented to satisfy such
6



measurement requirements. To illustrate examples of science traceability matrices,

consider the following two figures:

Explore the origin | Trace the stellar | Determin if the rate of | Metalicity of [on fon), [ Wavelength Wavelengthrange 2.2 3 <6.0 ym 07527275 pm Deep, medium and wide
andevolution of | mass buildup, dust | growth of metais and | galaxies via the [N Hee, Ho coverage o deteet | Spatial resclution e o surveys each with = 90%
the galaies, nistory, [dust tothe |oxygen Hp @5<z<B | Huoutlozof10. | (piel scale) o= 12 Gpe= 1 vonel compleleness for
stars and pianets | and metal growth of stallar mass | stallar mass, and (i) Spactral resalving tral rescivi internal reliability.
that make up our | enrichment history [at5 <z <8. dust attenuation power i resalve m, ™ [narz30 Mad. =300 spelia -
usl;'::rcg:grﬂm :ﬂﬁiﬁw &smm;:m’ ) w:hr;::. e ([P i ;'1“"-""[:3: m‘ &
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sensiivity (Re5, 6o |23 5ABMagatk band (24.0A8 mag at K band
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Figure 2: Science traceability matrix of the Cosmic Dawn Intensity Mapper
(CDIM) mission concept developed through NASA as a part of the 2020
Astrophysics Decadal Survey [5].



| Science Goals Science Objectives Scientific Measurements Driving Requirements |

Thermal continuum Energy range: 0.2-30 keV

Reflection & X-ray reverberation Energy resolution: 200 eV

High frequency QPO Time resolution: 100 microsec
Effective Area: 20,000 cm*2

1.1 Measure the spin distribution of Observe bright sources with full energy and time

accreting black holes

resolution
Transient outbursts Wide-field monitoring: 75% of sky, 5 merab (1 day)
1.Measure the spin distribution of accreting sensitivity, 1 keV energy resolution, 2 arcmin
black holes position accuracy

ToO response (< 24 hours)

Refiection & X-ray reverberation Energy range: 1-30 keV

1.2 Measure BH spin for 20 AGN to Jetted TDE detection Energy resolution: 200 eV

<10%
Effective Area: 20,000 cm*2

Pulse profile modeling for E@if(;t:l:i;s area: 16,300 cm2 @1 keV/38,200 cm”2
eI ~ rotation powered pulsars, o .
;I;hgossf:; Lor;bﬂgﬂrs;]:l 31;1? accretion powered pulsars, and  Time resolution: 80 microsec

2. Understand the equation of state of dense - oo thermonuclear burst oscillation  Energy resolution: 85-175 eV FWHM (0.2-10 keV)
matter sources

2.1 Measure the mass and radius to

TOO response time: hours

2.2 Search for the fastest spinning Search for spin frequencies UP 10 0 racoiution: 50 microsec

pulsars 2 kHz
Exph e of ty 3.1 Enable detection of 5-10 short Wide-field monitor as above with 1ms time
3 Explore tho propericsofhe precursors. gammerray bursts per year Detoct and localize w/ immedate. resoluton
gravitational wave sources 3.2 Search for signatures of merging trigger or ground searches o ) ;
supermassive BH All wide-field monitor data downlinked to ground

Figure 3: Science traceability matrix of the STROBE-X mission concept developed
through NASA as a part of the 2020 Astrophysics Decadal Survey [5].

As will be discussed later and can be seen visually through these examples, no
two STMs are the same which is obviously true given that STMs usually cover one
specific mission concept each. However, the STM, whilst a standard requirement for
NASA proposals, is not standardized in-of-itself. Henceforth, the degree of variability
between two STMs is immense as two STMs could contain wide varieties in data
representation, tabular structure, and completeness to name a few (this is true even for
STMs within the same program as illustrated above).

This implication of variability brings complications from the perspective of a
concept reviewer working to fill their scientific program (e.g. a panel reviewer who

adjudicates mission concepts for various decadal surveys such as the Earth Science and
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Astrophysics decadal surveys). Further still, one must consider whether or not this
artifact is available to the reviewer especially when considering pre-Phase A mission
concepts under review by a program. In those cases, of which will be discussed later, the
degree of variability is further amplified as such traceability information, and structure,
is buried within the text of a concept proposal. This undoubtedly has implications for
reviewer quality and raises the chance that mission critical information could be missed
on the behalf of the reviewer [6].

As consequence of this, it is worthy to mention prior work that has catapulted off
the foundation that [4] provided in establishing the STM. One such work develops the
concept of the Project-domain Science Traceability and Alignment Framework [7].

Project-domain Science Traceability and Alignment Framework

The authors in [7] identified that the STM does not necessarily provide a
complete mapping of science traceability as required for mission concept evaluation. As
such, they provided an extension of the science traceability matrix through the
implementation of “common definitions and valid relations to structure the
communication across the project” [7]. Specifically, the Project-domain Science
Traceability and Alignment Framework (P-STAF) borrows the governing structure of
the STM and adds other fields fundamental to the framework of P-STAF.

More notably, from the perspective of the work contained in this thesis, the
authors in [7] showed a graph-based representation of their P-STAF artifact, through
what was referred to as a STAF science information network. This network detailed the

mappings of STM and P-STAF elements through various nodes and edges as a part of
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their case study on applying the P-STAF framework towards a planned Europa mission
[7].

This reformulation of the STM into P-STAF shows the benefit of establishing
further semantic structure to such an important element of a mission concept (i.e. its
science traceability). Additional work regarding P-STAF looked at an analysis of
payload architectures, covered in [8], which provides a further representation of the P-
STAF taxonomy. As will be discussed more thoroughly in following chapters, these
follow-ons to the STM represent the value that refined taxonomies, or more generally
ontologies, bring when formulating science traceability.

The next item of discussion pertinent to this work is in regard to assessing
scientific relevance of a mission concept, which cannot be fully explained under the
topic of science traceability.

Scientific (Programmatic) Relevance

When building a scientific program of science-based missions, the reviewer must
consider not only if the engineering decisions and projected data products are mapped
appropriately to the proposal’s defined science goals and objectives, but whether or not
those science goals/objectives are relevant to the science program altogether. What must
also be considered is whether or not a selected set of candidate concepts cover the
scientific themes or capabilities in way that is considered desirable by the review panel.
In essence, relevance can be considered as way of providing coverage across all
programmatic goals or, on the other hand, targeting specific areas of high interest more

heavily and areas with low interest less heavily.
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A more formal way to address the matter of relevance can be issued through the
lens of probability distribution. Take for example the two following distributions where
the height of each bar in the chart represents the degree of interest or scientific impact a

certain scientific theme (i.e. science goal/objective) has to the program:

Impact of Science Themes: Impact of Science Themes:
Unequal Weights Equal Weights
0.25 0.09
0.08
-~ 0.2 -
ﬁn -ED 0.07
v L 0.06
= o = oo
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& 01 =
€ g 0.03
2 0.05 ‘ ‘ S 0.02
0.01
0 [ | I I I I [ | 0
1234567 8910111213 123456 7 8 910111213
Science Themes Science Themes

Figure 4: Toy example depicting the scientific impact of several distinct science
themes based upon their perceived weight.

As the above figure illustrates, a scientific program may institute a bias, either
deliberately or unintentionally, when adjudicating the importance of science themes. As
such, this directly affects the relevance of a portfolio of candidate missions as a portfolio
may be valued as significantly relevant in one distribution but less so in another.

Through the considerations of science traceability and scientific relevance, it was

determined early in the project that a ripe case study for this work would exist in the
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realm of decadal surveys. Specifically, the Astrophysics Decadal Survey conducted by
the National Academies of Science, Engineering, and Medicine.
Astrophysics Decadal Surveys
Overview

The decadal surveys hosted by the National Academies of Science, Engineering,
and Medicine, as stated above, aim to provide recommendations for scientific programs
for the following decade in a way that best meets the goals and objectives of the related
community. For the Astrophysics Decadal Survey in particular, of which has recently
released its 2020 report and can be found in [9], the survey focused on establishing
thematic areas in astrophysics and generated specific recommendations across those
thematic areas through a series of reviews across several panels. The following figure

summarizes the statement of task that governed the survey:
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Astro2020 Statement of Task

1. Provide an overview of the
current state of astronomy

2. ldentify most compelling

science challenges

3. Develop a comprehensive
research strategy

4. Utilize and recommend
decision rules for the research
strategy

Figure 5: The task breakdown of the 2020 Astrophysics Decadal Survey as
discussed in [9].

Considering the specific tasks of extracting science traceability and determining
scientific relevance of mission concepts (so as to create an impactful portfolio), the work
in this thesis is primarily associated with task area three shown in the above figure. As
stated in [9], task area three aims to “develop a comprehensive research strategy to
advance the frontiers of astronomy and astrophysics for the period 2022-2032”. Further,
this task area will consider the science case for each proposed activity (‘activity’
including large, medium, or small ground or space-based research programs) and
generate recommendations on which activities should be considered for the upcoming

decade [9].
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For these reasons, and as this title of this thesis establishes, the aim of this thesis
work was to develop a tool that can demonstrate the potential benefit that natural
language processing can bring to a mission concept evaluation effort. We have recently
reported on a portion of this work focusing on extracting science traceability graphs
using natural language processing in [10]. There has also been prior work discussed in
[11] that examined topic trends across the decadal survey’s history in an effort to
improve the science prioritization process. Specifically, that work used Latent Dirichlet
Allocation to (LDA) capture astrophysics-based topic frequencies and temporal trends
by analyzing prior submissions to the decadal [11]. Beyond these two reported ventures
however, little literature exists on bringing natural language processing to the
astrophysics decadal survey process and, as such, is a gap we aim to address in this
thesis.

Science Panels and Questions

One final discussion regarding the decadal survey process and of which is crucial
to the task of determining scientific relevance is in regards to the decadal’s science
panels and science questions. In the most recently released decadal survey for
astrophysics [9], the decadal established six science panels targeting various scientific
themes related to astronomy and astrophysics. Those six panels were:

1. Panel on Compact Objects and Energetic Phenomena
2. Panel on Cosmology
3. Panel on Galaxies

4. Panel on Exoplanets, Astrobiology, and the Solar System
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5. Panel on the Interstellar Medium and Star and Planet Formation

6. Panel on Stars, the Sun, and Stellar Populations

Contained within the decadal survey are six appendices associated with each of these

science panels of which contain the reports on the findings of each panel [9]. In each of

these appendices, four unique science questions are posed per panel (with a varying

amount of subsidiary science questions/topics for each of these four questions) in

addition to one area of discovery, and a breakdown of capabilities and future needs

necessary to serve these science questions [9]. The following table outlines these science

questions and discovery areas per panel as seen in the decadal survey:

Table 1: The 2020 Astrophysics Decadal Survey's science panels, their science

guestions and their discovery areas as reported in [9].

B-Q1 | What are the mass and spin distributions of neutron stars and stellar-mass
black holes?

B-Q2 | What powers the diversity of explosive phenomena across the
electromagnetic spectrum?

B-Q3 | Why do some compact objects eject material in nearly light-speed jets, and
what is that material made of?

B-Q4 | What seeds supermassive black holes and how do they grow?

B-DA | Transforming our view of the universe by combining new information from
light, particles, and gravitational waves
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C-Q1 | What set the Hot Big Bang in motion?

C-Q2 | What are the properties of dark matter and the dark sector?

C-Q3 | What physics drives the cosmic expansion and large-scale evolution of the

universe?

C-Q4 | How will measurements of gravitational waves reshape our cosmological

view?

C-DA | The Dark Ages as a cosmological probe

D-Q1 | How did the intergalactic medium and the first sources of radiation evolve

from cosmic dawn through the epoch of reionization?

D-Q2 | How do gas, metals, and dust flow into, through, and out of galaxies?

D-Q3 | How do supermassive black holes form and how is their growth coupled to

the evolution of their host galaxies?

D-Q4 | How do the histories of galaxies and their dark matter halos shape their

observable properties?

D-DA | Mapping the circumgalactic medium and intergalactic medium in emission

E-Q1 | What is the range of planetary system architectures and is the configuration

of the solar system common?




E-Q2 | What are the properties of individual planets and which processes lead to
planetary diversity?

E-Q3 | How do habitable environments arise and evolve within the context of their
planetary systems?

E-Q4 | How can signs of life be identified and interpreted in the context of their
planetary environments?

E-DA | The search for life on exoplanets

F-Q1 | How do star-forming structures arise from, and interact with, the diffuse
interstellar medium?

F-Q2 | What regulates the structure and motions within molecular clouds?

F-Q3 | How does gas flow from parsec scales down to protostars and their disks?

F-Q4 | Is planet formation fast or slow?

F-DA | Detecting and characterizing forming planets

G-Q1 | What are the most extreme stars and stellar populations?

G-Q2 | How does multiplicity affect the way a star lives and dies?

G-Q3 | What would stars look like if we could view them like we do the Sun?

G-Q4 | How do the Sun and other stars create space weather?

D-DA | “Industrial-scale” spectroscopy

17




These science panels and questions, in addition the subtopics related to these
questions not shown above, form the foundation of determining the relevance of a
research program to the decadal. The utility of these guiding topics will be discussed

more thoroughly in Chapter 4.
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CHAPTER IlI

NATURAL LANGUAGE PROCESSING

Overview
Natural language processing, which falls under the broader term of semantic
technology, aims to provide tools and techniques capable of ingesting text in a variety of
formats and producing usable data for further computation. As stated in [12], the rise of
the world wide web has given way to a plethora of textual sources which are ripe for
applications of natural language processing. Further still, applications of various
techniques within natural language processing/semantic technology are on the rise in
various engineering-related works such as requirements engineering [13-17]. NASA also
outlines semantic technology as one of its low TRL technology areas through the 2020
Technology Taxonomy [18]. In this chapter, we will discuss various strategies of natural
language processing as it relates to this thesis. First, however, we introduce the
important topic of ontologies as it is the most fundamental element regarding our work.
Ontologies
By definition, ontologies are a formal representation of a domain containing
elements of various types (e.g. classes, attributes, and relations) to describe said domain.
As stated in [19], ontologies exist in a branch of metaphysics concerned with “science of
being as being”. In modern practice, particularly in the space domain, ontologies have
been used to describe specific sub-domains such as space objects [20], space debris [21],

satellites databases [22], space systems [23], as well as for other less space-related
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domains such as systems engineering [24], intelligence, surveillance, and reconnaissance
[25-27] and requirements engineering [28-31].

As an example of an ontology, one can consider the Missions and Means
Framework (MMF) Ontology defined in [26]. The main concepts of the MMF ontology
are defined and categorized in a directed graph with nodes and edges. Another layer of
this ontology can be visualized by grouping certain nodes and edges to sub-regions
within graph which is reported in a following work [27].

When considering ontologies in the realm of this thesis, it was determined early
that ontologies are widely useful in providing a formal description of the domain of
application (in this case, astrophysics-based space missions). Further, creating a way of
embedding natural language processing to support mission concept evaluation
particularly in extracting science traceability and evaluating scientific relevance, we
determined that the formation of a domain-specific ontology was necessary. We will
discuss the details of our developed ontology in the following chapter as well as make
mention of reference ontologies/taxonomies used to create said ontology.

With ontologies providing the foundation of the semantic technology employed
in this thesis, the next section will discuss specific strategies and techniques commonly
used in natural language processing that were henceforth employed in our processing
pipeline.

Semantic Strategies
All of the semantic processing done in this domain of application will act upon

unstructured textual sources (as described in the previous chapter and is of direct
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consequence of our domain of study). As such, there exists a need to define the elements
necessary to form a processing pipeline so as to transform those original chunks of text
into useful data for the reviewer. Some of the first steps taken on these textual samples
hardly warrant much background discussion here and are better discussed in the
following chapter (i.e. document and sentence segmentation). This brings us to the first
major processing milestone, tokenization.
Tokenization
For simplicity, a ‘token’ is a collection of characters that, through a human’s eye,
form a word, phrase, or simply punctuation. To a computer however, these tokens are
fundamental units used for processing that are then manipulated in such a way that
downstream tasks can provide further information about the original textual sample.
Consider the following sentence taken from [16] detailing the input and output of a
sentence to its tokenized form:
e INPUT
o “These prerequisites are known as (computer) system
requirements and are often used as a guideline as opposed to an
absolute rule.”
e OUTPUT
o [‘These’, ‘prerequisites’, ‘are’, ‘known’, ‘as’, ‘(‘, ‘computer’, )’,
‘system’, ‘requirements’, ‘and’, ‘are’, ‘often’, ‘used’, ‘as’, ‘a’,

‘guideline’, ‘as’, ‘opposed’, ‘to’, ‘an’, absolute’, ‘rule’, *.’]
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In the above example, there is a clear subdivision of the original sentence into its
constituent words and punctuation. The authors in [16] used the python-based Natural
Language Toolkit (NLTK) [32] for this tokenization task but there are other open-source
options available including spaCy [33] which is used in our work. With these words now
in a tokenized form, it is important to ‘clean’ these tokens, or more formally lemmatize
them, so that the extra noise intrinsic to the language (e.g. plurals, capitalization,
suffixes) are removed. For example, the lemmatized form of the token ‘opposed” would
be ‘oppose’, removing the ‘ed’ suffix by replacing it with its root form.

As was mentioned, there are several open-source natural language processing
libraries available that can perform one or more natural language processing tasks. In
many cases, these libraries utilize different types of models (e.g. transformers, neural
networks, rules-based methods, and embeddings to name a few) for these tasks. In such
cases, some models are better utilized in certain domains rather than others, particularly
when considering pre-trained statistical models like neural networks and transformers.
Therefore, it is important to recognize that although the above tokenization example is
provided in the way it was described in [16], a different tokenization model may
segment the sentence differently. Due to the implications of this, we shift the discussion
now to named-entity recognition where the idea of using specially adapted models to
specific tasks can better be explained.

Named-Entity Recognition
In named-entity recognition, a model aims to extract certain ‘entities’ from text

and assign them a classifying label. There are several reported works detailing
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applications of named-entity recognition in practice [34-41] as well a surveys covering
several methods in named-entity recognition [42, 43].

To illustrate an example of named-entity recognition in practice, consider the
following sentence:

. “The Earth {entity _type: PLANET} is a celestial body in orbit around the

Sun.”

In the above sentence, the entity “Earth” is extracted and classified as a
‘PLANET” entity type through our fictional named-entity recognition system. It is
important to behold the fact that this supposed system used some form of strategy to not
only classify the entity with a label (‘PLANET”) but also determine which set of tokens
within the text were indeed an entity. Further still, it can be argued that other entities
exist within the text (e.g. “Sun” could be classified as a ‘STAR”). However, a named-
entity recognition system in this context was likely built to extract entities of various
predefined entity types (assuming that the above output is 100% accurate to the model)
meaning that other potential entity types recognized by a reader are ignored by the
machine. This reiterates the importance of establishing a governing ontology which
classifies these entity types so that further downstream tasks can be performed more
effectively in that given domain.

In recent years, named-entity recognition has been largely employed through the
use of neural networks [43] and transformer models. As stated in [43], a survey of
named-entity recognition practices conducted in 2018, neural networks were shown to

outperform more classical feature-engineered models. However, this survey did not
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cover the more recent advance of transformer models discussed in [44] which have
become the state-of-the-art for many named-entity recognition tasks.

In the case of statistical methods, particularly that of neural networks and
transformers, named-entity recognition models typically employ some degree of training
(or fine-tuning if pretrained models are available) so that the model is well adapted to its
domain of application. There exist public datasets available for training named-entity
recognition models, some of which used the ‘PERSON’, ‘LOCATION’, and
‘ORGANIZATION” entity labels for training, as was the case in [34] (which used the
Computational Natural Language Learning (CoNLL) 2003 and Open Knowledge
Extraction (OKE) 2016 benchmark datasets). In several cases however, the named-entity
recognition task for a certain problem may be unable to use these public datasets as the
domain corpora and/or entity types are not useful for the specific domain of study. In
these cases, it is necessary to determine what available corpora, and/or training datasets,
are available so as to develop a custom named-entity recognition system that is best-
suited for your task environment. For example, in [41], the authors were tackling the
issue of extracting the Hubble Constant from a variety of related scientific texts.
Henceforth, their custom-trained named-entity recognition system had to train off a
custom-built training dataset consisting of 1,394 positive/negative training examples
with 154 examples allocated towards an evaluation (testing) set [41]. It should be noted
that the complexity of a named-entity recognition system, both in terms of number of

entity types and degree of variability in entity types, has enormous implications on both
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the performance of a model and the ‘necessary’ size of a training dataset needed to reach
an optimal performance envelope (as discussed in [45]).

Finally, when considering name-entity recognition for a wider natural language
processing task like information extraction, a useful follow-on technique comes in the
form of relation extraction.

Relation Extraction

Relation extraction involves answering the question of whether a relationship
exists between two entities and what type of relation that is. As stated in [46], a relation
“denotes a well-defined relationship between two or more named entities”. For example,
consider again the following sentence mentioned in the previous section but with an
added entity type:

o “The Earth {entity_type: PLANET} is a celestial body in orbit around the

Sun {entity type: STAR}.”

In this sentence, the appearance of two entities brings forward a question of
whether or not they are related and through what type of relation. As such, a relation
extraction system could predict that the relation between these two entities does indeed
exist and is of the type ‘ORBITS’. Thus, this completes the tuple containing two entities
and a relation, i.e. “Earth”>ORBITS->“Sun”. Of course, not all entities have to be
related to each other and any predictions should follow a predefined governing relation
and entity type list (e.g. an ontology).

As is the case with named-entity recognition, there are several functional

methods that can be employed for the task of relation extraction from supervised to
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unsupervised [46]. Feature-based methods, kernels, bootstrapping, neural networks, and
transformers are some of the various methods used/proposed for relation extraction as
reported in various works and reviews [35, 36, 46, 47]. In a recent publication on this
work, we specifically employed a transformer model to handle the task of relation
extraction [10].

Given the rise of transformers models in the domain of natural language
processing, and the specific presence of bi-directional encoder representations from
transformers (BERT) in this work, it is warranted to provide discussion behind the inner-
workings of this powerful method.

Transformer Architecture and BERT

The general transformer architecture follows an encoder-decoder processing
pipeline and was initially conceptualized to support translation efforts as a replacement
to slower long short term memory (LSTM) networks [48]. In the context of language
translation tasks, the transformer architecture aims to take the input language sample and
provide its translation as an output [48]. The role of the encoder is to transform the word
embeddings (which are essentially vectors unique to each word in the vocabulary) into
attention vectors that can be compared with the similar attention vectors in the other
language [48]. Essentially, the encoder learns the context of the input language while the
lower half of the decoder (in reference to the above diagram) does the same for the target
language. With these attention vectors for both languages, they can be correlated to
generate a word-by-word prediction of the translation in the target language, outputted as

vector probabilities, which is then transformed into a more interpretable output for the
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user [48]. One important element of this architecture is the use of word embeddings
which, as just previously stated, is essentially a mapping of the entire domain vocabulary
onto an embedding space. The following figure provides a visualization of what a low-

dimensional embedding space can look like:
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Figure 6: Visualization of an embedding space (image source:
towardsdatascience.com).

Embeddings themselves can be useful for a variety of natural language
processing tasks like entity disambiguation and relation extraction. For example, [49]
used a noun-phrase embedding model to improve feature extraction in the engineering

design domain.
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To expand on the original transformer architecture, researchers at Google
developed BERT, which utilizes the encoder block [44]. Here, the capabilities of the
transformer, or rather the encoder block, can be expanded to support a wider variety of
natural language processing tasks such as question and answering, text classification,
and named entity recognition (to name a few).

The outputs of the encoding blocks can be reworked from the original
architecture to serve other natural language processing tasks. In question and answering
for example, the BERT model is pre-trained (unsupervised) on a corpus to ‘learn’ the
context of the text vocabulary and structure [44]. This is done through Mask Language
Modeling (MLM) which randomly masks certain words in a sentence [44]. The model
then predicts which word lies behind mask [44]. The other element in pre-training, also
unsupervised, is Next Sentence Prediction (NSP) which further trains the model by
randomly gathering two sentences and training the model to predict which one comes
after [44]. In all, the original BERT architecture encompasses 110 million (BERT base)
or 340 million (BERT large) model parameters to train on and fine-tune [44].

Fine-tuning a pre-trained BERT model is task specific but rather straightforward
[44]. Essentially, the model uses the NSP as a binary analog to a specific task input and
the output provides start and ending spans (i.e. locations in the text) that indicate the
model’s prediction [44]. In all, this architecture provides a very suitable tool for
classification tasks like named entity recognition and relation extraction. Several works

since the original publication of BERT have utilized this architecture to develop other
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pre-trained models [36, 39] or have fine-tuned BERT to solve specific natural language
processing tasks [10, 37].
Parts of Speech Tagging
Parts of Speech (POS) tagging in natural language processing is, in essence, the
technique of assigning grammatical labels to extracted tokens. Similar to named entity
recognition, there exist several models capable of performing automatic POS tagging on
textual samples. The following are various POS tags, and examples, available through

spaCy’s open-source POS tagger:

Table 2: Various POS tags that an extracted token may be categorized as given
spaCy's POS tagger model (https://spacy.io/usage/linguistic-features).

ADJ Adjective big, old, green
ADP Adposition of, to, from
ADV Adverb very, where, there
AUX Auxiliary is, has, will
CONJ Conjunction and, but, or
CCONJ Coordinating Conjunction and, but, or
DET Determiner a, an, the

INTJ Interjection psst, ouch, hello
NOUN Noun person, tree, air
NUM Numeral 1, four, MMXIV
PART Particle ‘s, ‘t

PRON Pronoun I, she, they
PROPN Proper Noun Ben, Sue, NATO
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PUNCT Punctuation S5G7?
SCONJ Subordinating Conjunction if, while, that
SYM Symbol &, %, ©
VERB Verb run, eat, ate
X Other asdfdsfs
SPACE Space

Term Frequency and Topic Modeling

One final task related to natural language processing and is arguably one of the
simplest tasks to employ, is that of term frequency. Simply speaking, term frequency
aims to analyze the occurrence of words throughout a corpus, or similarly determine the
occurrence of specific words (or topics) in a corpus if said terms/topics are known. This,
when used in methods such as term frequency/inverse document frequency (TF/IDF),
Latent Dirichlet Allocation (LDA), or Latent Semantic Analysis (LSA), is useful to
understand the ‘heatmap’ of words/topics within a document and generate topic models.

Several prior works have used different forms of term frequency analysis and
topic modeling to solve various tasks. For example, the authors in [50] used both LDA
and LSA to support the categorization of patents. LDA was also used in [11] to look at
topic frequency and temporal trends across astrophysics decadal surveys (as mentioned
in the previous chapter). However, while LDA can run unsupervised, the outputs of the
model are dependent on the source text and cannot be defined a-priori. This makes it
difficult for certain applications of topic matching where a pre-defined topic list needs to

be referred to.
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Given this discussion on various natural language processing techniques, it is
important to establish, wherever possible, a metric for evaluating the performance of
natural language processing systems.

Performance Evaluation

One of the most notable, and widely used, measures for evaluating classification
tasks (like named entity recognition and relation extraction) are by computing a model’s
precision, recall, and F1 score. The following list defines each of these metrics:

. Precision: Refers to the fraction of predictions that are relevant to the

truth sample. l.e. it is the ratio of total predictions generated by a model that can

be considered as ‘correct’.

o Recall: Refers to the fraction of ‘correct’ instances from a ‘truth’ set that

were reproduced by the model. l.e. in supervised training of a classification

model, a ‘truth’ dataset is what the model will train on and the higher occurrence
of distinct ‘truth’ examples in the model’s output results in a higher recall score.

. F1: The harmonic mean of precision and recall.

As is typical in reporting, these scores fall between the 0-1 range with values
closer to one indicative of higher performance in that metric. Considering true
positives/negatives, false positives, and false negatives, evaluating these metrics is

straightforward:
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True Positive

Precision = — —
True Positive + False Positive

True Positive

Recall =
True Positive + False Negative

Precision * Recall
F1=2

*
Precision + Recall

3.1)

(3.2)

3.3)

However, these metrics are best applied when a model’s output follows a strict

binary positive/negative format. In natural language processing classification tasks

however, the outputs can be more nuanced, and an alternative performance metric would

provide a better indication of a model’s performance.

Adapted PRF Metrics (MUC-5)

The metrics established in [51] are one such adaptation better suited for more

ambiguous classification tasks. Here, the true/false positive/negative variables are

replaced with the following scoring categories:
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O Correct response = key
QO Partial response = key
Q Incorrect response ¥ key
O Spurious key is blank and response is not
O Missing response is blank and key is not
O Noncommittal key and response are both blank

Figure 7: Scoring categories established in [51].

The most notable metrics in this addition are that of the ‘Partial’ and ‘Spurious’
categories with the former referring to model predictions that are partially correct and
the latter referring to model predictions that are neither correct nor incorrect (i.e. they
have no reference figure in a ‘truth’ set). As will be discussed in the following chapter,
these added categories provide a more thorough representation of a model’s performance
when said model’s outputs are not simply binary in nature.

Research Question

Because of the above discussions regarding science traceability and relevance,
natural language processing tools and techniques, and the potential benefit natural
language processing can bring to mission concept evaluation efforts, the work reported
in this thesis will aim to:

o Determine the utility of natural language processing in the domain of

mission concept evaluation processes by:
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o Determining the capabilities of natural language processing in
extracting a mission concept’s scientific goals, objectives, and
requirements and,;

o Evaluating those data products against the needs of the scientific
community so as to assist with generating a recommended
portfolio of mission concepts.

The Astrophysics Decadal process is a ripe area to employ natural language
processing as alluded to in Chapter 2. Furthermore, and through discussions with
NASA-affiliated researchers, ambitions to employ Al/ML towards the decadal process
are pronounced and have been drivers of this NSTGRO-supported work. As such, we
believe we can provide another substantial use case of natural language processing in yet
another systems engineering domain. The following chapter will discuss our contribution
to this gap by discussing the methods employed in AstroNLP and the results of our

contribution.
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CHAPTER IV

NATURAL LANGUAGE PROCESSING FOR MISSION CONCEPT EVALUATION

Science Traceability Extraction

All the work conducted in this thesis was captured in a python-based tool that
deployed the above-mentioned natural language processing techniques towards science
traceability extraction and relevance assessment on astrophysics-based space mission
concepts. This tool, called AstroNLP, coupled methods of PDF document parsing,
tokenization, NER and relation extraction through the use of specialized transformer
models, and analyzed term frequencies against a constructed knowledge base of
concepts to evaluate scientific relevance both at a mission and portfolio level. The figure

below represents the architecture of the tool:
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Figure 8: AstroNLP software architecture showing functions, data sources,
process/data flows, and accompanying open-source libraries/tools.

For matters of clarity, the above figure can be reduced to its mere functional
work-flow showing the inputs to the tool (mission concept documentation) as well as its
outputs (e.g. science traceability graphs, and scientific relevance charts listed in green).

The following figure details this functional flow:
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Figure 9: Functional work-flow showing the processing pipeline of the AstroNLP
tool.

With the above architecture visualized, the following sections will focus on
describing the individual elements contained within the functional flow and associated
processes/libraries/tools utilized to support those functions.

Science Traceability Graph Ontology

As discussed in Chapter 3, it is useful to establish some form of semantic
structure to our processing pipeline to guide the named-entity recognition and relation
extraction transformers. This is particularly necessary when building custom annotations
in a training dataset as you are required to establish what are your entity and relation
types. For AstroNLP, we utilized the existing taxonomical structures established in [4, 7]
as well as the Semantic Sensor Network/Sensor, Observation, Sample, Actuator
Ontologies [52], all of which have been discussed in a prior publication of this work
[10]. A summary of the entity types is provided below along with associated definitions

and examples:
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Table 3: List of all 10 entity types with associated descriptions and examples as seen

MISSION

in [10].

Any word or phrase containing the

name and/or acronym of the mission

Hubble, JWST,
LUVOIR, The

Spitzer Telescope

MISSIONPARAMETER

Any word or phrase that can be
considered as an attribute describing

the mission

Orbit, inclination,

lifetime, cost

MISSIONPARAMETERVALUE

The quantitative or qualitative value of

a MISSIONPARAMETER entity

1400 km, $4M, 3

years

SCIENCETHEME

Any word or phrase defining,
implying, or relating to a scientific

topic and/or feature of interest

Black holes, early
universe, galaxy,

Hawking radiation

SCIENCEACTION

Any word or phrase describing an
activity or set of activities a mission or

instrument will perform to generate a

High-contrast
direct observations,

complete full-sky

as an attribute describing an

instrument

data product and/or achieve a science | survey
goal
INSTRUMENT Any word or phrase defining an Spectrograph,
instrument contained within the telescope, NIR
mission coronagraph
INSTRUMENTPARAMETER Any word or phrase that is considered | Field of view,

aperture, diameter,

angular resolution
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INSTRUMENTPARAMETERVALUE

The quantitative or qualitative value of
an INSTRUMENTPARAMETER

entity

180 deg, 6 meters

OBSERVABLEPARAMETER

Any word or phrase defining an
attribute of a SCIENCETHEME that
the mission/instrument aims to

measure

Stellar brightness,
radial velocity,

spectral range

OBSERVABLEPARAMETERVALUE

The quantitative or qualitative value
describing the required value for an

OBSERVABLEPARAMETER entity

100,000
observations, 70%
of the sky each

orbit, 5 -7 keV

As listed in the above table, there are several notable entity types that are

influenced by prior works and will be discussed now. The ‘SCIENCETHEME’ and

‘SCIENCEACTION” entity types were heavily influenced by similar instances in the P-

STAF architecture [8] and also discussed in [10]. Additionally, the INSTRUMENT”,

‘INSTRUMENTPARAMETER’, and ‘INSTRUMENTPARAMETERVALUE’ and the

parallels along the ‘MISSION” entity types (and related) drew motivation from the

original STM taxonomy (also reported in [10]). Furthermore, the

‘OBSERVABLEPARAMETER’ and ‘OBSERVABLEPARAMETERVALUE’ entities

draw motivation from SSN/SOSA’s “Observable” and “ObservableProperty” entity

types as discussed in [10]. Finally, as mentioned in [10], it is important to recognize that

building a universally accepted science traceability taxonomy is a challenge in-of-itself
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that must balance the views and perspectives of all stakeholders involved. Thus, this
entity taxonomy merely represents one such possible guideline for formalizing the
science traceability nomenclature.

To round out the construction of this science traceability ontology, the previously
established entities must also have some form of relations associated with them so as to
create a graph ontology with nodes (entities) and edges (relations). The following figure

represents this final science traceability ontology utilized in this work:

Legend has MISSION has PANI:!:;}I?':‘“ER
PARAMETER I
. = Entity Type
drives
— =Relation
INSTRUMENT
¥ pARAMETER LN S /LI
s~ VALUE T PARAMETER
VALUE
INSTRUMENT -
PARAMETER ras ' SCIENCE
; s THEME

motivates

OBSERVABLE

PARAMETER

(NE> - —_ |
O\Qsﬁ‘;_. = ""'-—J-FfﬁtEs

< performs - - SCIENCE
o ACTION

Figure 10: Science traceability graph ontology governing the AstroNLP system as
seen in [10]. This governing ontology serves as the guiding template for
annotations.

With the science traceability ontology defined, the following sections will
discuss the specific processing pipeline employed in AstroNLP starting with the portion

of the pipeline associated with extracting science traceability graphs.
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Document Text Extraction

The first element of the pipeline employs a custom-built python script aimed at
extracting the raw text from PDF based documentation (mission concept proposals).
This script employs the py-pdf-parser open-source library [53] which builds off the
fundamental framework of the pdfminer-six library [54] to extract text from PDF
documents. This works through a form of object character recognition (OCR) where
each individual character in the document is parsed and then grouped together in so
called ‘elements’ through a series of heuristics [54]. The script then takes these elements
and targets the related ‘science’ and ‘engineering’ sections through an added layer of
filtering to target the most relevant portions of the document. In the case of decadal
proposals, these sections typically include the ‘Key Science Goals and Questions’ and
‘Technical Overview’ sections of the document. However, not all documents follow the
same header labels but rather have headers with slight deviations to the base
nomenclature. As such, the parser utilizes a likelihood function that aims to index where
the most likely relevant headers are located to help guide the extraction. Finally, the
parser script filters any extracted ‘element’ that falls short of a minimum character
threshold so as to filter out any unnecessary noise within the document (e.g. page
numbers, headers, and footers).

Following text extraction, the raw text is then fed through the transformer

portions of the pipeline. Prior to transformer processing, the text passes through one final

filter aimed at removing any non-ASCII characters and replacing common Greek
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characters with their spelled-out form. The next two sections will now discuss the

transformers that perform the NER and relation extraction tasks.

Named-Entity Recognition Transformer

The NER transformer is built and trained through the expansive python library
spaCy [33]. There exist several other open-source libraries capable of performing entity
extraction including the Java-based CoreNLP [55] and OpenNLP [56] as well as the
python-based NLTK [32]. However, due to the thorough online documentation,
application programming interface, and recent support for state-of-the-art transformer
models in spaCy 3.0, the python-based spaCy library was chosen for this task.

A pre-trained transformer model based in PyTorch, and pulled from
Huggingface’s vast repository of transformer models, is used for the named entity
recognition task. Specifically, we selected the “allenai/scibert_scivocab_cased’ model
[39] as our pretrained transformer and with spaCy, fine-tuned the transformer through
our custom developed training data set. SCIBERT was ultimately chosen due to its
relevant pre-training on a scientific corpus and as such, is relevant for application on
astronomy/astrophysics-based proposals. Further model parameters for training are

summarized below:
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Table 4: Named entiti recoinition model iarameters.

model_type bert

vocab_size 31116

batch_size 128
training.optimizer Adam.v1
max_epochs 30

tokenizer spacy.tokenizer.vl

As is the case for both the NER and relation extraction transformers, we kept the
epoch count high in order to produce two transformer models at the end of training (a
‘low-epoch’ and ‘high-epoch’ model where the low-epoch model is the ‘best scoring’
model determined via spaCy’s training API). This was done as preliminary analyses
regarding the end-to-end performance of the processing pipeline significantly varied
based upon type of model used (i.e. a low-epoch model may not produce enough entities
to reasonably populate a STG whereas a high-epoch would produce a substantial pool of
entities for an STG, some of which may simply be noise). Example outputs from both
case models will be discussed later in this chapter.

Finally, upon successful extraction of entities through the NER transformer, the
entity pools go through final slew of POS-based heuristics as a post cleaning step.
Specifically, all ‘Science Action’ entities must contain a ‘Verb’ or ‘Noun/Proper Noun’
token while also restricting any entities containing ambiguous end tokens (e.g.
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‘Adjectives’, ‘Coordinating Conjunctions’, and ‘Auxiliaries’ to name a few). Similarly,
all ‘Science Theme’s must contain a ‘Noun/Proper Noun’ POS tag and holds the same
end token rule mentioned previously. We also restrict all entities to not exceed a
maximum token length of 10 with specific restrictions on ‘Parameter Value’ entity types
that need to contain at least 2 tokens (and also must have a ‘Numeral’ token present).
Relation Extraction Transformer

The relation extraction transformer follows a very similar parameter architecture
to that of the named-entity recognition transformer. This model also uses SCIBERT as
the base pre-trained model and is also employed, and trained, through spaCy’s APIL. The

model parameters for the relation extraction model are provided below:

Table 5: Relation extraction model iarameters.

model_type bert

vocab_size 31116

batch_size 128
training_optimizer Adam.v1l
max_epochs 100

tokenizer spacy.tokenizer.vl
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In addition to the relation extraction transformer model itself, a custom script is
added to the pipeline to add filtering rules to all predicted relations. Specifically, each
relation generated by the model also comes with a confidence score (valued between 0
and 1). Any predicted relation that comes with a confidence score below an adjustable
threshold value will be filtered out of the pipeline. Further, a series of ‘if’ statements is
applied to hardcode the restrictions enforced by the governing ontology mentioned
previously. It should be noted that although the training data sets follow the entity-
relation structure provided by the ontology, the model is still stochastic in nature and
‘false’ relation predictions can still emerge from the model. For those reasons, the ‘if’
statements are included as another layer of filtering.

The next section will discuss the training procedure and current scope of the
training data set for both transformer models employed.

Tool Training

All annotations were developed through an online-based annotation tool, UBIAI
[57]. This tool was selected for its intuitive user interface, capabilities for providing both
entity and relation training data, and low-cost. The following figure illustrates the

graphical interface provided by this online tool:
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Figure 11: UBIAI's graphical user interface when viewed from the document
annotation portal [57].

This online tool holds several features most notably the ability to add custom
entity and relation types, upload documentation for annotation, download annotations in
various formats, add contributors to support data development, and the ability to auto-
annotate documents through its ‘learned’ annotator (i.e. its own annotation model learns
off of the user’s provided annotation data and can be used to create predictions of its
own on user-uploaded documentation). For our case, we chose to manually annotate all
documentation as the auto-annotator capability has only recently become available.

The source material used to build our training data set comes from two corpora:
the NASA Space Science Data Coordinated Archive’s (NSSDCA) spacecraft database
[58], and the Astrophysics Data System (ADS) [59]. Both contain several descriptions
and links to many prior and proposed astrophysics-based space missions with the latter

having direct access to many proposal documentation. In fact, ADS is the prime
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repository for all concept proposals submitted to the Astrophysics Decadal Survey. With
these corpora, we had access to a rich data pool for generating annotations for training.
With the UBIAI tool and these data sources, we created the following training

dataset for both entity and relation annotations:

Table 6: Training data size across all entity and relation types acquired over the
course of 12 months.

MISSION 484
MISSIONPARAMETER 143
MISSIONPARAMETERVALUE 141
INSTRUMENT 291
INSTRUMENTPARAMETER 255
INSTRUMENTPARAMETERVALUE 187
SCIENCETHEME 383
SCIENCEACTION 273
OBSERVABLEPARAMETER 202
OBSERVABLEPARAMETERVALUE 133

HAS 626
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PERFORMS 173
OBSERVES 121
MOTIVATES 220
DICTATES 90
DRIVES 96

Due to the variances in example amount across all entity and relation types,
biases do exist in our models. Whilst we have attempted to balance these variances
during our annotation sprints, it is important to note the difficulty of developing an
evenly distributed training dataset, especially when considering the nature of our data
sources. To provide a highlight of the nature of these variances, the following tables

summarizes the average and standard deviation of the character lengths for each entity

type:

Table 7: Profile analytics across all ten entity types.

MISSION 10.886 12.920
MISSIONPARAMETER 13.154 9.239

MISSIONPARAMETERVALUE 13.823 10.993
INSTRUMENT 23.330 12.249
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INSTRUMENTPARAMETER 15.580 6.752
INSTRUMENTPARAMETERVALUE | 13.369 8.603
SCIENCETHEME 21.201 10.582
SCIENCEACTION 39.498 18.710
OBSERVABLEPARAMETER 18.540 11.095
OBSERVABLEPARAMETERVALUE | 19.564 10.597

The following section will discuss the graph visualization performed post-

transformer processing.
Graph Generation and Visualization

The final step in the processing pipeline aims to formulate all the entities and
relations into a visual artifact for review by a user. Here, we employ the GraphViz [60]
engine to essentially print the entities and relations as nodes and edges respectively. To
do this, we constructed a script that uses a python-based GraphViz API that can
communicate with the GraphViz software to structure and format the graph in a way that
not only captures the extracted entities and relations, but also orders the graph by various
sub-groups detailing science themes, science actions, observable requirements,
instrument requirements, and mission requirements.

Upon completion of the science traceability extraction task, we expect the model
to produce the following output (NOTE: this is a manually constructed output as
reported in [10] on a textual sample obtained from the Cosmic Dawn Intensity Mapper

concept study [5]):
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Figure 12: Illustration of the input and output expectations for the AstroNLP tool.

It is important to note that the actual tool will process documentation that are
multiple pages in length (typically between 10 and 20 pages). As such, the above
example is merely an apportioned representation to illustrate the end product.

Science Relevance Assessment
Science Panels and Questions Knowledge Base

To address the science relevance question, we utilize a form of term frequency

and topic matching by tokenizing the input text acquired from documentation and
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comparing extracted noun-chunks with topics inside a knowledge base. This knowledge
base, constructed in excel, follows the structure seen in the decadal’s science panels and
science questions as reported in Chapter 2. In this excel document, the rows refer to
each individual science question (24 total) given in the decadal survey. Each question is
also given a unique identifier, and a corresponding sheet prescribes the set of terms
related to that science question. This knowledge base was constructed manually based
upon the perceived importance of certain themes (green), spectra (red),
instrument/technique (black), and parameters (blue) provided in the appendices of the
decadal report. For reference, the two sheets of the excel document are provided in
Appendix A.

The following section will discuss in detail, the noun chunking and topic
matching script used to correlate extracted tokens with those given in the knowledge
base.

Noun-Chunking and Term Frequencies

In relation to science traceability extraction, the effort to process the text in a
manner suitable for topic matching is much more simplified. No training was necessary
for this portion of the work as publicly available noun-chunking models were used
(specifically spaCy’s en_core_web_sm model).

To generate the relevance charts, we first take the inputted textual chunks from
the mission concept documentation and extract all noun chunks via the en_core_web_sm
model. We then correlate these noun chunks with the topics listed in the knowledge base

in order to generate a ‘number of hits’ per term for each and every science question (a
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‘term hit’ simply refers to the occurrence of a term in a noun chunk). The results for all
science questions, and individual distributions per science question across its respective
topic terms, are then plotted in a histogram format to generate topic/term distributions
(similar to that shown in Chapter 2). For multi-mission analysis, the textual chunks are
concatenated with the related missions contained in the mission ‘portfolio’ and the
outputs are generated via the same process.

The following section will discuss the layout of the tool’s graphical user
interface, the performance metrics for both transformer models, as well as provide
output examples for several mission concept proposals in addition to concatenated
results for combinations of said missions.

Application to the Astrophysics Decadal Survey
Tool Graphical User Interface
The following figure portrays the entire visual field of AstroNLP’s graphical user

interface (the GUI is built through the PyQt5 [61] python library):
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Figure 13: AstroNLP's graphical user interface.

Visually, the tool’s interface can be subdivided into four primary subregions: 1)
the repository metrics region, 2) the mission-level relevance assessment region, 3) the
graph generation region, and 4) the mission and portfolio relevance assessment region.

In region 1, the processing of documentation starts through the activation of a
single widget (i.e. pressing ‘Gather Documentation’). Any PDF documents contained
within the local repository are then queued and text is extracted. The following figure

shows this region after loading three proposal documents:
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Step 1: Gather and Process Documentation

Fully Process Documentation

MOTE: Make sure to place all mission proposals (.pdf format) in the /pdfs repository.
# of Documents Processed: 3 # of Tokens Processed: 13709

# of Entities Identified: 993 # of Relations Identified: 121

Figure 14: Region 1’s document metrics across the repository of mission concepts.
Here, the total number of documents, entities, tokens, and relations are provided
for visual inspection to the user.

In region 2, a specific mission concept can be evaluated for relevancy against the
knowledge base’s scientific questions. Here, a specific mission from the repository can
be selected and then the output returns the most relevant science panel and top three
related science questions for that mission (via the same process discussed in the prior

section). An example output for the LUVOIR mission concept is provided below:

--- Mission-Level Decadal Relevance —

Step 2: Select Mission for Summary Maost Relevant Science Panel:

LUVOIR hd Exoplanets, Astrobiology, and the Solar i Find Decadal Relevance

Top 3 Relevant Science Questions:

|H0w do habitable environments arise and evolve within the context of their planetary systems? |

|What are the properties of individual planets, and which processes lead to planetary diversity? |

|Hnw can signs of habitable life be identified and interpreted in the context of their planetary environments? |

Figure 15: Region 2 of the AstroNLP tool showing specific science panel/question
relevancies for the LUVOIR concept.
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In region 3, graph generation takes place. After processing, all entities and
relations are stored in the local cache of the tool, and it is here where a specific mission’s
science traceability graph can be produced. The open list shows all entities and valid
relations extracted during the initial processing period and can be viewed individually.
An example output (excluding the science traceability graph itself) for the LUVOIR

mission concept is shown below:

--- Mission-Level Sdence Traceability —

Generate Mission's Scdence Traceability Graph:

Generate Graph

Predicted Entities Predicted Relations

Entity Instance Relation Entity Instance Confidence
SCIEMCETH... galaxies MOTIVATES SCIENCEACTION  detailed cbserv.. 0.9122039
SCIEMCETH... excplanets MOTIVATES SCIENCEACTION detailed cbserv.. 0.2002169
SCIEMCETH... solar system bo... MOTIVATES SCIENCEACTION provide near-fly... 0.66046683
SCIEMCETH... gas giant exepl.. MOTIVATES SCIENCEACTION measure the at.., 0.99473914
SCIEMCEAC... read the fingerp... DICTATE OBSERVAEBLE wavelengths 05124644
SCIENCETH... matter MOTIVATES SCIENCEACTION  access to a ra.. 0.62712234
SCIEMCETH... mmatter MOTIVATES SCIENCEACTION  read the fingerp... 0.9973327
MISSIONPA... prime mission HAS MISSIOMPARA...  5-year 0.59513366
MISSIONPA,., lifetime HAS MISSIOMNPARA S-vear 0.7405785

Clear Table

Figure 16: Region 3's science traceability graph’s metrics for a specific mission
concept (LUVOIR in this example). Notice that both the entity and relation lists can
be viewed by selecting the appropriate tab.

In region 4, a mission or portfolio can be assessed against specific science
questions provided in the decadal in order to determine the term/topic distributions for a

selected science question. This is done via the same process discussed in the recent
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section and can be evaluated for any combination of mission concepts provided in the
repository. Additionally, two portfolios can be compared against one another in regards
to their perceived scientific impact across all science questions and/or select science

questions. An example output is provided below:

Step 3: Evaluate and Compare Portfolios

Partfolio 1: Partfolio 2:
astro2020_HABEX.pdf - Add Mission astro2020_GEP.pdf - Add Mission
Remove Mission astro2010_SPIRIT.pdf - Remove Mission
Select Science Question for Study Select Science Question for Study
BQ 1 - Assess Portfolio BQ1 A Assess Portfolio
Mission Name Mission Mame e (e el
astro2020_AXIS.pdf astro2020_LUVOIR.pdf
astro2020_HABEX.pdf astro2020_GEP.pdf
Compare 5.Q. Relevandes
Decadal Relevance Decadal Relevance Decadal Relevance Comparison
EO EO EQ 3‘ I_
8 fE (8 % II
9 A g : —
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3 g 82
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-1 -] I
g 8 g 8 8 2 —
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Relevance by Weight Relevance by Weight Gains and Losses
Portfolio Profile against Science Question: BQ 1 Portfolio Profile against Science Question: BQ 1 Question Relevance Comparison
mas e _ "
wray wray xray
timing timing ming
Hack hole Hack hole hole
utron star utron star 1 star
o 5 10 15 20 5 oo 05 10 15 20 25 30 =25 =20 <15 -10 =5 o
# of term hits # of term hits Gains and Losses
Sdence Question: Sdence Question:

‘What are the mass and spin distributions of neutron stars and stellar mass black h4 ‘What are the mass and spin distributions of neutron stars and stellar mass black h4

Figure 17: Region 4's relevance assessment panel. Here, the histogram plots can be
viewed across two portfolios under comparison detailing the impacts these
portfolios have on all/select science questions (science questions are listed via their
ID number and printed after assessing the *portfolio”).
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Further examples of specific science traceability graphs and relevance
assessments for various mission concepts will be discussed later in this chapter.
System Performance
For both transformer models, we constructed a custom python script to evaluate
the baseline fine-tuned models against the testing dataset (the testing dataset is roughly
20% of the total annotation dataset and is disjoint from the training dataset). Given the
performance metric equations discussed in the previous chapter (and in [51]), we follow

the scoring strategy reported in a previous publication [10] and is as follows:

Correct Instances

Precision = -
Correct Instances + Incorrect Instances + Spurious Instances
(4.1)
Correct Instances
Recall = -
Correct Instances + Incorrect Instances + Missed Instances
(4.2)

The F1 score is calculated through the same equation (3.3) provided in the
previous chapter. Regarding the additional scoring categories from [51] and mentioned
in the previous chapter, one notable alteration we included in the script was the
combination of ‘Correct’ and ‘Partial’ instances. In essence, partial instances were
counted based upon their ‘coverage’ of a true/correct instance. To put it simply, when

counting instances across all categories, all truly ‘Correct’ instances were given a value
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of 1 and ‘Partial’ instances were given a value between 0 and 1 depending upon how
much of the true instance was captured. This was done by measuring the amount of
overlap that occurred for a predicted span and a ‘true’ span in a textual example.

With this evaluation, we received the following baseline performance metrics for

both transformer models:

Table 8: Baseline performance metrics for both transformer models based upon
gold annotations.

NER Transformer 0.34 0.13 0.19
Relation Extraction 0.49 0.28 0.35
Transformer

Note that the above table only considers ‘baseline’ model performance which
does not factor in the effects of POS filtering and ontology enforcement. By performing
the same scoring procedure on the ‘enhanced’ processing pipeline (e.g. with filtering

heuristics) we receive the following performance metrics:
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Table 9: Full pipeline performance metrics for both transformer models. This
scoring was carried out semi-automatically with relation extraction performance
based off of NER model output as opposed to the gold annotations. Additionally,
this scoring procedure only used ~25% of the testing data set (roughly 5% of the
total training data set).

NER Transformer 0.96 0.71 0.81
Relation Extraction 0.58 0.27 0.37
Transformer

We recognize that these metrics, at large, do not fully meet the upper percentile
scoring values reported in other literature [41]. As such, various filtering rules discussed
previously (e.g. POS tags and ontology enforcement) have been applied to the pipeline
in an effort to improve the quality of outputted STGs. However, we also recognize that
transformer models require an extensive amount of annotation examples for fine-tuning
(thousands rather than a few hundred examples across entity and relation types) and thus
recommend that future implementation of this work require an extensive effort in
expanding the annotation data set first and foremost.

The next section will provide the results of the tool given these performance
metrics by providing a look at example science traceability graphs and relevance
histograms for various mission concepts.

Graph Generation and Relevance Examples
This section serves to provide what AstroNLP is capable of producing when

applied to various mission concept proposals. As pretense, this section will cover three
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NASA concept missions submitted to the decadal: two flagship concepts and one probe
concept. All NASA concept missions submitted to the 2020 decadal survey can be found
in [5]. Each subsection will be dedicated to one of these three concept missions with one
final subsection discussing the multi-mission/portfolio level use case.

Additionally, as a further note, each mission concept discussed is given in the
form of a PDF document. The document structure follows a loose template judicated by

the decadal survey process, and each mission concept should contain the following main

sections:
. Key Science Goals and Objectives:
. Technical Overview
. Technology Drivers
o Organization, Partnerships, and Current Status
o Schedule
o Cost Estimates

It should be noted that the wording for each of these section headers is not
followed strictly in practice and proposal documents may also contain superfluous
sections such as title pages, table of contents, author lists, and bibliographies (to name a
few). More information regarding the document structure can be found [9].

Flagship: The Large UV/Optical/Infrared Surveyor (LUVOIR)

The LUVOIR concept ultimately consists of two individual observatories dubbed

LUVOIR-A and LUVOIR-B. The signature science cases for LUVOIR are as follows

(and available at [5]):
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# 1 - Finding habitable planet candidates

# 2 - Searching for biosignatures and
confirming habitability

# 3 - The search for life in the solar system

# 4 - Comparative atmospheres

# 5 - The formation of planetary systems

# 6 - Small bodies in the solar system

# 7 - Connecting the smallest scales across
cosmic time

# 8 - Constraining dark matter using high
precision astrometry

# 9 - Tracing ionizing light over cosmic
time

# 10 - The cycles of galactic matter

# 11 - The multiscale assembly of galaxies

# 12 - Stars as the engines of galactic
feedback

Figure 18: Signature science cases for the LUVOIR concept as provided in [5].

Some notable technical features of the LUVOIR mission, provided within

LUVOIR’s concept proposal, are as follows:

Table 10: Notable technical design features of the LUVOIR concept as seen in [5].
LUVOIR-A LUVOIR-B

Telescope Diameter 15m 8m
Prime Mission Lifetime 5 years
Orbit Sun-Earth L2
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Total Observation

Wavelength Range

100-2500 nm

Tracking Speed

60 milliarcseconds/sec

Instruments

HDI (near-UV — near IR imager), ECLIPS (coronagraph
with imaging cameras and spectrographs), LUMOS (far-
UV imager and multi-resolution, multi-object
spectrograph), POLLUX (point-source UV

spectropolarimeter)

Upon inputting and processing of LUVOIR’s concept proposal, we retrieve the

following science traceability graph:
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diffraction lunited

multi-resolnfion, multi-object spectrograph

100-1000 mm

Figure 19: STG extracted from the LUVOIR concept proposal using a higher-
epoch (30) NER transformer.
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Looking at the scientific relevance of the LUVOIR concept across the decadal’s

science questions, we receive the following distribution chart:

Decadal Relevance
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Figure 20: LUVOIR's complete relevance distribution normalized across the
decadal science questions.

By this measure, and as the tool reports, the most relevant science panel for the

LUVOIR concept is the ‘Panel on Exoplanets, Astrobiology, and the Solar System’ with

the following science questions reported as being most relevant:
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—- Migsion-Level Decadal Relevance —

Step 2: Select Mission for Summary Most Relevant Scence Panel:

astro2020_LUVOIR. pdf - Exoplanets, Astrobiology, and the Solar Si Find Decadal Relevance

Top 3 Relevant Scence Questions:

|H0w do habitable environments arise and evolve within the context of their planetary systems?

|Is planet formation fast or slow?

|What are the properties of individual planets, and which processes lead to planetary diversity?

Figure 21: LUVOIR's most relevant science panel as well as its top three most
relevant science questions.

Upon specific inspection of LUVOIR’s top science question, we receive the

individual distribution of topics/terms for said science question represented in the

following figure:
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Portfolio Profile against Science Question: EQ 3

xray
spectro
optical
infrared
Atraviclet
imag

star
habitable

planet

5 10 15 20 25
# of term hits

Figure 22: LUVOIR's topic/term distributions for its most relevant science
guestion. Notice the significant relevant representation of ‘infrared’ and ‘planet’
terms.

Flagship: The Origins Space Telescope (OST) [5]
OST is one observatory looking to explore areas of galaxy formation, the origins
of habitable worlds, and discover other potentially life-supporting worlds [5]. 1t’s key

science goals are as follows (and provided in [5]):

66



Table 1: Scientific objectives for the Origins Space Telesc

NASA Goal How does the Universe work? How did we get here? Are we alone?
How do galaxies form How do the conditions
Origins stars, make metals, for habitability Do planets orbiting M-
Science and grow their central m develop during the dwarf stars support
Goals supermassive black process of planet life?
holes from “&a»” formation?
reionization to today?
Origins will spectroscopically 3D map | With  sensitive,  high-resolution | By obtaining precise mid-infrared
Origins wide  extragalactic  fields  to | spectroscopy, Origins maps the water | transmission and emission spectra,
Scientific | simultaneously measure properties of | trail from protoplanetary disks to | Origins will assess the habitability of
Capabilities growing supermassive black holes and | habitable worlds. nearby exoplanets and search for
their galaxy hosts across cosmic time. signs of life.
1) How does the relative growth of stars | 1) What role does water play in the | 1) What fraction of terrestrial planets
Origins and supermassive black holes in | formation and evolution of habitable | around K- and M-dwarf stars has
Scientific | galaxies evolve with time? planets? tenuous,  clear, or  cloudy
Objectives 2) How do galaxies make metals, dust, | 2) How and when do planets fnrm‘_? atmospheres_? .
and organic molecules? 3) How were water and life’s | 2)What fraction of terrestrial M-dwarf
3) How do the relative energetics from | ingredients delivered to Earth and to | planets is temperate?
supernovae and quasars influence the | exoplanets? 3) What types of temperate,
interstellar medium of galaxies? terrestrial, M-dwarf planets support
life?

Figure 23: OST's science goals and science objectives as seen in [5].

Notable technical features specific to the OST concept are provided in the table

below:

Table 11: Select technical details of the OST concept [5].

Telescope Size

59m

Wavelength Range

2.8 - 588 um

Orbit

Sun-Earth L2

Design Lifetime

5 years
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Upon inputting and processing of OST’s concept proposal (of which did contain

a STM), we receive the following figure:

Science Themes

Science Actions

starbursting galaxies
optically-obscured regions

MOTIVATES studying dust,

MOTIVATES - track the growth history

protoplanetary disks

measure the a8 mass

M-dwarf stars

MOTIVATES o study the exoplanet atmospheres

proto-planetary disks.

MOTIVATES - conduct gpectroscopic shudies
MOTIVATES
exoplanet atmospheres,
MOTIVATES

MOTIVATES
white dwarfs produced by slredded asteroids. detect the dust around
@biosigmuu‘es MOTIVATES |,

PERFORMS

measure winds transporting

perform transit spectroscopy

R ecuirements

HAS

wavelengths between
HIAs
gpectral powerful AS

HAS 2.8 to 588 m provide

Figure 24: OST’s science traceability graph. A much larger version of this graph
can be obtained if the baseline NER transformer is switched with a higher epoch
model (i.e. one that went through all 30 cycles of the training data set).

2.8 to 588 m. Origing has

wavelength range
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As was done with the LUVOIR concept, we receive the following science

question distributions for OST:

Decadal Relevance
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Figure 25: OST's complete relevance distribution normalized across all decadal
science questions.

Again, we can also report on OST’s most relevant science panel and science

questions:
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—- Migsion-Level Decadal Relevance —

Step 2: Select Mission for Summary Most Relevant Science Panel:

Crigins A Interstellar Medium and Star and PIanetF| Find Decadal Relevance

Top 3 Relevant Scence Questions:

|Is planet formation fast or slow? |

|How do habitable environments arise and evolve within the context of their planetary systems? |

|What are the properties of individual planets, and which processes lead to planetary diversity? |

Figure 26: OST's most relevant science panel and top three related science
guestions.

Upon further analysis of OST’s top science question, we can attain the individual

topic/term distributions for said question:

Portfolio Profile against Science Question: FQ 4

optical
wrferomet
spectro
infrared
stmosphe
structure
formation

panest

30 40 50
# of term hits

Figure 27: OST's topic/term distributions across its most relevant science question.

70



Probe: The Galaxy Evolution Probe (GEP) [5]
The GEP concept is a single observatory aimed at studying key concepts about
star formation and supermassive black hole growth in galaxies over time [5].
Specifically, the two key science goals for GEP are listed as:
1. Map the history of galaxy growth by star formation and accretion by
supermassive black holes and characterize the relation between those processes
[5].
2. Measure the growth of metals over cosmic time [5].

Some notable design details of the GEP concept are reported as follows:

Table 12: Select desiin features of the GEP mission conceit |5‘

Orbit Sun-Earth L2

Mission Duration 4 years with 46% margin

Telescope Diameter 2m

Instrumentation GEP-I (Imager with 23 bands covering

10-400 um), GEP-S (Spectrometer
covering the 24-42, 40-70, 66-116, and
110-193 pum range targeting select

galaxies)

Total Cost Estimate $910M
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Upon processing of GEP’s mission concept document, we can attain the

following STG:

Instrument Recuirements

y HAS
! beamsize
HAS

sensitive, long-slit spectrometers, GEP
readout bandwidth HAS @

diffraction linitec

Science Themes Science Actions
@lecmar clouds. MOTIVATES correlate their SFRs

@ MOTIVATES access the earliest epochs
@ MOTIVATES measuring the SFR. density precizely
MOTIVATES

identifying galactic outflows

Measuring Redshifts,

measure photometric redshifts

chart the relative metallicity

Figure 28: A portion of GEP's science theme and science action regions contained
within its larger STG.

Obgervable Requirements

imaging spectroscopy

MOTIVATES

bright or lensed galaxies)
nearby resolved galaxies.

MOTIVATES

Considering GEP’s relevance towards decadal science questions, we receive the

following distribution:
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Figure 29: GEP's relevance distribution normalized across all decadal science
guestions.

By the distribution, we report the following most relevant science panel and top

three most relevant science questions:

Step 2: Select Mission for Summary Most Relevant Science Panel:

|GEP - Galaxies Find Decadal Relevance

Top 3 Relevant Science Questions:

|How do gas, metals, and dust flow into, through, and out of galaxies?

|How did the intergalactic medium and the first sources of radiation evolve from cosmic dawn through the epoch of reionization?

|How do the histories of galaxies and their dark matter halos shape their observable properties?

Figure 30: GEP's most relevant science panel and top three most relevant science
guestions.
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Upon further analysis of GEP’s most relevant science question, we produce the

following term/topic distribution:

Portfolio Profile against Science Question: DQ 2

dust
metal
spectro
infrared
optical
x-ray
dtraviolet
gas

galax

# of term hits

Figure 31: GEP's term/topic distribution across its most relevant science question.
In all, a total of three separate mission concept documents were analyzed

(LUVOIR at 12 pages, OST at 15 pages, and GEP at 24 pages). This resulted in a

processing total of ~21,000 tokens.
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Portfolio-Level Analysis

Science traceability extraction is only available at the individual mission level,
but an analysis of scientific relevance at the portfolio level is capable through AstroNLP.
As a toy demonstration of this, consider two portfolios: one containing the LUVOIR and
GEP concept (Portfolio 1) and one containing the LUVOIR and AXIS concept (Portfolio
2). AXIS stands for Advanced X-ray Imaging Satellite and is x-ray-based NASA probe
concept also submitted to the 2020 Decadal [5]. In AstroNLP, and prior to analysis,

these portfolios would be loaded into region 4 as illustrated in the following figure:

Step 3: Evaluate and Compare Portfolios

Portfaolio 1: Portfaolio 2:
astro2020_GEP.pdf - Add Mission astro2020_AXIS.pdf hd Add Mission
astro2020_AXIS.pdf - Remove Mission astro2020_AXIS.pdf A Remove Mission
Select Sdence Question for Study Select Sdence Question for Study
DgQi - Assess Portfolio DQi - Assess Portfolio
Mission Mame Mission Mame
astro2020_LUVOIR. pdf astre2020_LUVOIR.pdf
astro2020_GEP pdf astro2020_AXIS.pdf

Figure 32: Portfolio showing the ‘loaded’ concept portfolios ready for relevance
analysis.

Assessing all these concepts provides the following total relevance profiles for

each portfolio:

75



Decadal Relevance

[saleslaslssls s slealaalssleslss s sls
ot L of ot o Lo Bt T B3 P et P bt P

Science Questions
mmmmE S IO DOmmmmm o006

p03 004 005 006 007 0O
Relevance by Weight

=]
=
=
=
=
=
=]
=)
()

Decadal Relevance

[alals'sls’sle'slssslsalfaialaslelslsslelals]
Tt P T oo et Pt ot o Bt ol il ot P L bt o il o et o L o

Science Questions
mEmEE ST IO Dmmmmm O a

003 004 005 006 007 008
Relevance oy Weight

=]
=]
=]
=
=]
[
=]
=]
(o8]

Figure 33: Each portfolio’s relevance across all science questions (the upper is
Portfolio 1 and the lower is Portfolio 2). This is, in essence, a concatenation of the
individual relevance profiles of all mission concepts contained within either
portfolio.
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Upon visual inspection of these profiles, we can garner several conclusions
regarding scientific impact across each question. Most notably, portfolio 2 holds a higher
weight towards questions BQ-1 and BQ-2. We can also deduce that science question
DQ-1 is highly relevant to both portfolios. Considering the DQ-1 question, we can attain

the following term/topic distributions for both portfolios:

Portfolio Profile against Science Question: DQ 1 Portfolio Profile against Science Question: DQ 1

imag imag

spectro spectro
infrared infrared
ilack hole ilack hole

galax galax

star star

onization onization

0 10 0 0 20 50 0 5 10 15 0 5 N i
# of term hits # of term hits

Figure 34: Topic/term distributions for science questions DQ-1 (under ‘Panel on
Galaxies’).

Finally, we can compare both proposals directly and attain similar bar charts
showing ‘gains’ and ‘losses’ in scientific impact across both the total relevance profiles
and for specific science questions. For these portfolios, and for science question DQ-1,

we receive the following comparison charts:
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Figure 35: The comparison charts showing how portfolio 2's science impact
compares with portfolio 1's scientific impact.

Discussion

Across all three mission concepts, AstroNLP provided a STG for each and
produced their individual mission-level decadal relevance profile. What is also
noteworthy is AstroNLP’s ability to explore various portfolio decadal relevancies at the
behest of a reviewer’s choice selection of concepts.

When considering the STGs, due to performance implications, the
implementation of POS and ontology enforcement heuristics is necessary to increase the
readability and quality of the graphs. This is especially true when using higher epoch

NER transformer models as a higher frequency of noisy entities will typically appear in
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the output. Additionally, due to the forced filtering of entities with no relations attached
to them, it is highly possible that much mission critical information is missed in any
given STG. However, these graphs do already contain very relevant information that a
reviewer would find useful when generating recommendations in the decadal survey. We
also recognize that improving the quality of the STGs through additional training data or
adding a various assortment of filtering rules (while both are incredibly necessary in this
case) can be a Sisyphean effort given the nature of transformer-based models.
Regardless, any future work on this endeavor should aim to substantially increase the
annotation data pool by at least an order of magnitude so as to increase the fidelity of
STG extraction.

From the perspective of decadal relevance analysis, we can very clearly visualize
a mission/portfolio’s relevance to specific science questions given in the decadal survey
and also get a pretense in regards to how a sample portfolio compares with another. In
the mission concepts examined, the outputs of the AstroNLP tool regarding a concept’s
most relevant science panel and questions show very plausible results given the
descriptions contained in those concept proposals (e.g. LUVOIR’s orientation towards
the search and characterization of habitable exoplanets was well captured by AstroNLP).
At the portfolio level, these outputs become even more intriguing as a reviewer can
visually inspect and optimize its portfolio towards a desirable distribution of science
topics (i.e. tailor to specific panels, or attempt to achieve a relatively even distribution

across all science questions).
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CHAPTER V

CONCLUSIONS

Computers in the modern era can support and enhance a wide variety of
previously human-dominated tasks thanks, in part, to the rise of computer processing
abilities and artificial intelligence. In this thesis, we covered one very specific area
where natural language processing, a subtopic of artificial intelligence, can enhance what
is still a human dominated activity (reviewing and adjudicating proposals).

Specifically, this work discussed AstroNLP; a tool capable of providing support
to reviewers involved in evaluating space-based astronomy and astrophysics mission
concepts. AstroNLP gives the reviewer the ability to upload several concept proposals
and automatically determine 1) their science traceability and 2) their scientific relevance
to a program. Discussions regarding the functions and processes powering AstroNLP
were also provided, as well as mentions on current limitations still affecting AstroNLP.

To demonstrate the ability of AstroNLP, we provided a use case looking at three
mission concepts submitted to the 2020 Astrophysics Decadal Survey; LUVOIR, OST,
GEP. Among these three concepts, we portrayed their STGs extracted directly from their
decadal proposals and showed their respective relevancies across the decadal’s science
panels and questions. We also showed the use-case of portfolio comparison detailing
how two different portfolio’s science relevancies can be analyzed directly against each

other.
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Whilst far from perfect, automated science traceability extraction and relevance
assessment of mission concepts holds enormous implications not only for astrophysics,
but for other scientific and non-scientific domains (e.g. defense). The tools and
workflows discussed in this thesis can, in varying degrees, be adapted to these other
domains to support similar processes across program formulation.

It is also worthy to mention, a-posteriori of this work, that it is vital when
developing semantic technologies for a domain-specific use case to not only adapt the
tools for said domain, but to understand the context of the given domain. As with many
machine learning models, the performance of those works are only as good as the data
provided during training and is therefore essential to understand the semantic structure,
language habits, nuances, and ‘features’ of the domain material so as to given such a
model the best chance at performing. This is also plays into the argument of verification
for the work generated in this thesis, as model verification is paramount before any said
implementation of this work can be initiated. We’ve provided a first step towards model
verification through our provided results and performance metrics but recognize that a
more robust verification framework will be necessary (e.g. comparing STGs with

human-developed STMs from the same textual source) in future work.
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APPENDIX A

SCIENCE PANEL AND SCIENCE QUESTION TOPIC/TERM LISTS

Panel sQLabel
Compact Objects and Energetic
Phenomena BQ1
BQ2
BQ3
BQ4
Cosmology cai
caz
cas
ca4
Galaxies pa1
pQz2
pas
pa4
Exoplanets, Astrobiology, and the Solar SyEQ 1
EQ2
EQ3
EQ4
Interstellar Medium and Star and PlanetF FQ 1
FQz2
FQ3
FQ4
Stars, the Sun, and Stellar Populations GQ1
GQ2
GQ3
GQ4

Science Questions Area(s) of Unusual Discovery Potential

What are the mass and spin distributions of neutron stars and stellar mass black holes? Transforming our View of the Universe by
What powers the diversity of explosive phenomena across the electromagnetic spectrum?
What do some compact objects eject material at nearly-light-speed jets, and what is that material made of?

What seeds supermassive black holes and how to they grow?

What set the hot Big Bang in motion? The Dark Ages as a Cosmological Probe
What are the properties of dark matter and the dark sector?
What physics drives the cosmic ion and the larg, I lution of the universe?

How will measurements of gravitational waves reshape our cosmological view?

How did the intergalactic medium and the first sources of radiation evolve from cosmic dawn through the epc Mapping the Circumgalactic Medium and
How do gas, metals, and dust flow inta, through, and out of galaxies?

How do supermassive black hales form and how is their growth coupled to the evolution of their host galaxies?

How do the histories of galaxies and their dark matter halos shape their observable properties?

What is the range of planetary system architectures, and is the configuration of the solar system common?  The Search for Life on Exoplanets

What are the properties of individual planets, and which processes lead to planetary diversity?

How do habitable environments arise and evolve within the context of their planetary systems?

How can signs of habitable life be identified and interpreted in the cantext of their planetary environments?
How to star-forming structures arise from, and interact with, the diffuse ISM?

What regulates the structures and motions within molecular clouds?

How does gas flow from parsec scales down to protostars and disks?

Is planet formation fast or slow?

What are the most extreme stars and stellar populations? “Industrial Scale” Spectroscopy
How does multiplicity affect the way a star lives and dies?

What would stars look like if we view them like we do the Sun?

How do the Sun and other stars create space weather?

Detecting and Characterizing Forming Pla

Figure 36: Panel and question portion of the knowledge based used as a reference
guide for users of the AstroNLP tool so that relevance charts can be specifically

pinpointed to specific scientific areas.
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SQlabel

Relevant Terms

BQ1
BQ 2
BQ3
BQ 4
ca1
ca2
ca3
ca4
pQ1
DQ 2
DQ3
DQ 4
EQ1
EQ2
EQ3
EQ4
FQ1
FQ2
FQ3
FQ4
6Q1
6Q2
GQ3
GQ4

neutron star black hole timing
neutron star black hole timing
jet composit accelerat
black hole redshift optical
gravitational wavimapp fluctuat
dark matter dark sector timing
neutrino cosmic expansion hubble constant
gravitational wav: timing dark age
epoch of reionizai star galax
galax gas ultraviolet
supermassive bla time-domain surv x-ray
milky way galax redshift
planet solar system habitab
planet atmosphere imag
planet habitable star
biosignature planet spectro
star interstellar mediu densit
molecular cloud  velocit densit
gas protostar formation
planet formation structure
star optical infrared
star optical infrared
sun interferomet optical
sun spectropolarimet optical

x-ray
x-ray
optical
infrared

optical
spectro
cosmogr
black hole
x-ray
ultraviolet
optical
mass
ultraviolet
imag
ultraviolet
temperature
structure
structure
atmosphe
spectro
ultraviolet
infrared
infrared

imag
ultraviolet
infrared
spectro

infrared
optical

imag
infrared
optical
optical
infrared
radial velocit
infrared
ultraviolet
infrared
X-ray
infrared
optical
infrared
temperature
spectro
ultraviolet
ultraviolet

imag
spectro
polarimet

ultraviolet
infrared
optical
spectro
infrared
infrared
spectro
timing
mass
infrared

spectro
interferomet
infrared
spectro
velocit
brown dwarf
x-ray

spectro

polarimet
polarimet
imag

spectro
cmb

imag
spectro
spectro
X-ray
structure
radial velocit
optical

ultraviolet
spectro
interferomet
interferomet
ultraviolet
temperature
spectro

imag

pulsar
interferomet

metal
imag

astrometry
spectro

optical

spectro
optical

radii
interferomet
brown dwarf

interferomet imag

dust

spectro

x-ray

infrared interferomet
brown dwarf interferomet

spectropolarimet

Figure 37: Term/topic map portion of knowledge base. Each row corresponds to a
particular science question provided in the panel and question sheet of the excel
document.
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