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ABSTRACT 

 

A new nonlinear second-order frequency-domain model based on the mild-slope 

equation is outlined. The model is an enhancement over previous work in that a closer 

correspondence between scaling of nonlinearity and horizontal variation of bathymetry 

is made relative to earlier models. This results in additional terms in the nonlinear 

summation terms of the model, as amplitude gradient terms are required in order to 

formulate a completely consistent model at second order. From the resulting elliptic 

model equation, a parabolic approximation is developed in order to efficiently model the 

equations for most applications. Comparisons between the present model, previously-

formulated models, and experimental data show that the present model does evidence 

improvement in performance over previous, less-consistent models. It is also found that 

the “phase mismatch,” which arises from the dispersive nature of the resulting equations, 

can adversely impact performance; this is a potential problem with all models of this 

sort.  

Using a scheme developed for stochastic formulations of these phase-resolved 

models, a hybrid consistent nonlinear mild-slope equation in frequency-domain is 

developed. Using this scheme, a newly simplified version of the present model retains 

quasi-cubic terms having a form of cubic term but originating from triad wave 

interaction terms is developed. Because of the quasi-cubic nonlinear summation having 

zero-mismatch, the hybrid model replicates the triad wave-wave interactions more 

accurately compared to the previous deterministic models.  
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A higher-order parabolic evolution equation is derived for high accuracy at large 

wave approach angles. As an alternative, a consistent nonlinear mild-slope equation 

based on the angular spectrum model is also developed. These two newly developed 

models are tested for accuracy in describing wave pattern by a refractive focal lens, 

elliptic shoal, and circular shoal with the several incidence angles. The newly developed 

models are further examined with field data in order to ensure the models’ capability in 

simulating two-dimensional irregular wave processes. Lastly, a source term for triad 

interactions is derived from the present model for implementation into operational 

phase-averaged wave models. 
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CHAPTER I  

INTRODUCTION* 

 

1.1 Introduction 

As surface waves on the ocean propagate from deep ocean towards the shore, 

they are increasingly transformed as they react to changes in the ocean bottom. Analytic 

expressions for the kinematics and dynamics of ocean waves do not generally work in 

these situations, so ocean wave propagation models are required. They are thus a 

cornerstone of coastal and ocean engineering research and practice. The prediction of the 

transformation of waves in coastal zone has been studied during the past several decades 

as bathymetry significantly affects the wavefield in shallow water, which leads to 

refraction, shoaling, diffraction, breaking, and bottom friction. The wavefield is also 

affected by the domain of propagation from tidal or other ambient currents. An 

appropriate prediction of wave transformation might ensure better estimation of 

sediment transport, sandbar, and longshore bar process as well as more reasonable 

management of shipping and offshore and coastal construction. 

Most work regarding wave transformation until the early 1980s had considered 

the problems of refraction and diffraction separately. (e.g., Penney et al. (1952) for 

diffraction of water waves around a semi-infinite breakwater; Keller (1958) for 

refraction approximation by employing WKB approximations of the governing equation; 

 
* Part of this chapter is reprinted with permission from Kim, I. C. and Kaihatu, J. M., 2021. A consistent 

nonlinear mild-slope equation model. Coastal Engineering, 170: 104006. Copyright [2021] by Elsevier. 

DOI: https://doi.org/10.1016/j.coastaleng.2021.104006. 
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and Memos (1980) for the diffraction of waves passing between two breakwaters.) The 

ray method, first developed to study refraction by O’Brien and Mason (1942), was 

widely used as an analytical tool for wave transformation. Since the ray method does not 

take into account diffraction effects caused by arbitrarily varying water depth, ray 

crossings behind bottom shoals would lead to infinite wave heights. This is one of the 

main disadvantages in the ray method. Additionally, another drawback of the ray model 

is the heavy computational requirement resulting from inconsistently varying grid of 

wave heights and directions in the nearshore region. 

To address combined refraction and diffraction effects, the so-called mild-slope 

equation was first proposed by Berkhoff (1973). Smith and Sprinks (1975) and Booij 

(1981) also developed variations of the mild-slope equation by applying Green’s 

identities and a variational principle of Luke (1967), respectively. While an accurate 

depiction of combined refraction and diffraction effects, the mild-slope equation is 

elliptic, requiring all boundaries to be pre-specified. However, the wave breaking 

location for open ocean problems cannot be specified in advance, the parabolic 

approximation (e.g., Radder, 1979) was developed to help address the problems 

associated with elliptic equations. By means of the parabolic approximation, models for 

monochromatic linear waves can be developed. The approximation can be developed in 

different ways; for example, Radder (1979) used a matrix splitting method, and Lozano 

and Liu (1980) utilized a multi scale-perturbation method. Extensions to the mild-slope 

equation (and / or the associated parabolic approximation) have been introduced to 
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account for the other effects. (e.g., Dalrymple et al. (1984) for frictional dissipation 

effects and Booij (1981), Liu (1983), and Kirby (1984) for wave-current interaction.) 

By using the Wentzel-Kramers-Brullion (or WKB) expansions for wave potential 

and free surface elevation (thereby splitting them into a fast scale associated with the 

waveform, and a slow scale associated with other features such as bathymetric 

variation), Yue and Mei (1980), using Stokes-wave steepness parameter for the slow 

scale, developed similar equations to the parabolic mild-slope equation including 

nonlinear terms, which is extension of the parabolic method to the case of second-order 

Stokes waves in constant depth. Kirby and Dalrymple (1983) and Liu and Tsay (1984) 

extended the method to include the effect of slowly varying depth.  

One difficulty with the parabolic approximation is the inherent assumption that a 

wave propagates at small angles to the x-axis (cross-shore axis) of the grid. Considerable 

effort has been expended in attempts to obtain better accuracy for waves propagating at 

larger angle: examples include Booij (1981) utilizing a matrix splitting method; Kirby 

(1986a) applying the Padé approximant of the square root term; Kirby (1986b) using 

minimax approximation, and Dalrymple and Kirby (1988), Dalrymple et al. (1989), and 

Suh et al. (1990) using a linear angular spectrum model, which assumes that the 

wavefield is periodic in the alongshore (y) direction. 

Models which use the mild-slope equation (or its parabolic form) are part of a 

class of models referred to as “phase-resolved” models. These models simulate the 

dynamics of the actual free surface of the wave. This is to be distinguished from “phase 

averaged” models, which simulate the dynamics of a statistical representation of the 
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wave field (e.g., the directional spectrum) and, as such, the phase is not retained. 

Generally, phase-resolved wave models are used in local areas of the nearshore, while 

phase-averaged models are used for larger scale (global, regional) domains, and usually 

outside the nearshore area. Furthermore, phase-resolved models are divided into time-

domain models (in which the dependent variable is modeled as an arbitrary function of 

space and time) and frequency-domain models (in which the dependent variables are 

apriori assumed to periodic functions of space and/or time, with complex amplitudes 

which are slowly-varying functions of space and/or time). Since the amplitudes of 

frequency domain models are complex, they retain phase information.  

The formulations can describe adequately the wavefield for deep water, where 

the Ursell number (𝑈𝑟 =
𝑎

𝑘2ℎ3, where a is the amplitude, k is the wave number, and h is 

the water depth) is less than one. However, for cases where the Ursell number is greater 

than one, Stokes wave theory becomes invalid (e.g., Dean and Dalrymple, 1991). This 

would include scenarios in shallow water (small kh) and/or high waves (large a). 

As ocean waves are significantly affected by the bathymetry in shallow water, in 

addition to the transformation effects such as refraction, shoaling, and diffraction, 

nonlinear effects become more evident in the nearshore region. Since Peregrine (1967) 

introduced Boussinesq-type equations for shallow water wave propagation over mildly 

varying bottoms, models based on the Boussinesq equations have been used to simulate 

phase-resolved wave transformation processes in coastal regions. These Boussinesq 

equations are cast in the form of depth-averaged mass-and-momentum-conserving 

equations, and the dispersion relation associated with these equations is “weakly 
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dispersive” (i.e., the phase speeds of the waves are only weakly dependent on wave 

frequency). In addition, it can be shown that the shoaling relationship governing the 

wave amplification is Green’s Law, which is suited for long waves in shallow water and 

which is essentially a monotonic increase in wave amplitude. Initial models for nonlinear 

wave propagation in shallow water were proposed using the Boussinesq equations of 

Peregrine (1967); examples include Rygg (1988) in time domain, and Freilich and Guza 

(1984), Liu et al. (1985), and Kirby (1991) in frequency domain. These models show 

good agreement to data in cases where the waves are in shallow water (i.e., where the 

relative water depth kh (where k is the wave number and h the water depth) is small). 

However, in intermediate or deep water, the weak dispersion and Green’s Law shoaling 

characteristics tend to lead to significant error.  

In an attempt to increase the dispersive range of Boussinesq models, a number of 

authors have generally proposed adding dispersive effects (creating so-called “extended 

Boussinesq models”) in time-domain. This is usually done by retaining the weakly-

nonlinear formulation of the classical Boussinesq equation while altering the dispersive 

characteristics of the model to be more representative of linear dispersion in deep water. 

Efforts include: Witting (1984) using a Taylor series expansion of the velocity about the 

bottom; Madsen et al. (1991) using additional convective terms in momentum equation; 

and Nwogu (1993) using the Taylor expansion for the horizontal velocity vector at an 

arbitrary location in the water column, the position of which is optimized by performing 

a best fit of the dispersion relation to linear theory. Since Madsen and Sørensen (1993) 

formulated the extended Boussinesq-type model in frequency-domain, several 
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subsequent studies successfully modeled frequency-domain equations based on the 

extended Boussinesq-type models (e.g., Chen and Liu, 1995; Kaihatu and Kirby, 1998). 

Recently, some of developments suggested extensions to include higher order terms in 

the equations (e.g., Wei et al., 1995; Wei and Kirby, 1995; Madsen and Schäffer, 1998; 

Gobbi et al., 2000). Further, other models treated the depth dependence of the solution 

via various Taylor series expansions and operators with velocities at still water level 

(e.g., Agnon et al., 1999; Madsen et al., 2003; Fuhrman and Madsen, 2009), or multi-

layer models (e.g., Lynett and Liu, 2004; Liu and Fang, 2016; Liu et al., 2018) to help 

increase the linear characteristics of these models to better resemble that of fully-

dispersive linear theory. 

Another approach to circumvent the limitations of shallow water approximation, 

while still accounting for nonlinearity, is the extension of the fully-dispersive mild-slope 

equation (Berkhoff, 1973) to involve weakly nonlinear terms. Bryant (1973, 1974) 

formulated space-domain evolution equations on constant depth from the boundary 

value problem. To develop the formulation, spatial periodicity and near periodicity in 

time were assumed. Unfortunately, the spatially-periodic formulation made extension to 

variable bathymetry difficult. Agnon et al (1993) proposed a one-dimensional fully 

dispersive evolution equation by substituting potential functions satisfying Laplace 

equation and bottom boundary condition into the free surface boundary condition 

(truncated at second order) and accounting for resonant interactions between wave 

frequencies. Following Smith and Sprinks (1975), Kaihatu and Kirby (1995) developed 

two-dimensional fully dispersive parabolic model for a small angle of incidence by 
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means of Green's identities, using the same resonant interaction concepts as Agnon et al. 

(1993). Tang and Ouellet (1997) took into consideration additional nonlinear terms 

including nonlinear diffraction terms to the model of Kaihatu and Kirby (1995). 

Moreover, Kaihatu (2001) and Eldeberky and Madsen (1999) improved the models by 

introducing the second-order relationship between amplitudes of wave potential and 

those of free surface elevation in the dynamic free surface boundary condition. Several 

recent models in this regard have been derived: taking into account both triad and quartet 

wave-wave interaction (e.g., Janssen et al., 2006), treating oblique incident waves (e.g., 

Toledo, 2013), using the solution in terms of truncated Taylor series expansions and the 

dispersion operator (e.g., Bredmose et al., 2005; Vrecica and Toledo, 2016), and using 

multiple scale analysis for the spatial phase function in the equations (e.g., Ardani and 

Kaihatu, 2019).   

 

1.2 Objectives and research overview 

A primary aim of the present study is to derive a new nonlinear mild-slope 

equation model in frequency-domain for the propagating surface gravity waves within 

both offshore and nearshore wavefields, with a specific goal to include nonlinearity via a 

scaling relationship between the spatial modulation scales of the amplitude and those of 

the depth variations which is more consistent than in previous models (e.g., Kaihatu and 

Kirby, 1995). The consistent nonlinear mild-slope formulation is then analyzed further 

and compared to data. In Chapter 2, a nonlinear mild-slope equation is newly developed 

by using Green’s second identity from boundary value problem, and then the parabolic 
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approximation is used to reduce the boundary value problem to an initial value problem. 

The present model is compared not only with the existing parabolic nonlinear mild-slope 

equation models, but also with the Stokes third-order theory and stream function theory 

(Dean, 1965). Some numerical simulations for the cases of the finite number of waves, 

including Chapalain et al. (1992), Whalin (1971), and Berkhoff et al. (1982), are detailed 

to verify the ability of the present model in Chapter 3. In Chapter 4, starting from the 

formulations derived in Chapter 2, a simplified version of the present equations is 

proposed for the random waves represented as a sum of numerous waves. Chapter 5 

details the modeling results of the simplified equation and demonstrates how the model 

performs for irregular waves propagating over a mildly sloping bottom. In Chapter 6, we 

extend the parabolic equation model to include wide-angle wave propagation over an 

irregular bathymetry and compares model simulations to laboratory observations. To 

verify the capability of the present models on the scale of the extended coastal zone, the 

numerical simulations of directional wave spectrum are presented in several cases of 

field data in Chapter 7. Summary and suggestions for further research are discussed in 

Chapter 8. 
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CHAPTER II  

CONSISTENT NONLINEAR MILD-SLOPE EQUATION MODEL*                         

 

2.1 Introduction and scale consistency 

Nonlinear mild-slope equations in the frequency domain are generally developed 

in the form of a parabolic equation, which allows for more straightforward modeling of 

open coastal regions. The parabolic form can be developed with a judicious choice of 

modulation scales, which quantify the variation of a given variable and helps determine 

the order of the derivatives to be retained. Kaihatu and Kirby (1995) followed the scaling 

approach of Yue and Mei (1980), where scales for amplitude of free surface elevation 

and the modulation scale δ (where An is function of δx and δ1/2y) were chosen as follows 

(using the small ordering parameter ε = ka, or wave steepness):  

 ( ) ( ) ( )2~ ,  ~nA O O O    (2.1) 

 ( ) ( ) ( ) ( )3 1/2 2~ ,  ~n nA A
O O O O

x y
   

 
= =

 
 (2.2) 

where An is the complex amplitude of free surface elevation of nth frequency component. 

They also chose a scale for depth change ∇hh (where ∇h is a gradient operator in horizontal 

coordinates) as O(ε2) to retain terms of bottom boundary condition to second order in ε 

(following Kirby and Dalymple, 1983). Horizontal derivatives of depth-dependent wave 

 
* This chapter is reprinted with permission from Kim, I. C. and Kaihatu, J. M., 2021. A consistent 

nonlinear mild-slope equation model. Coastal Engineering, 170: 104006. Copyright [2021] by Elsevier. 

DOI: https://doi.org/10.1016/j.coastaleng.2021.104006. 
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characteristics (e.g., wave number k, wave celerity C, the group velocity Cg) would then 

be restricted to O(ε2): 

 ( ) ( )2 2,  
h h

O O
x y

 
 

= =
 

 (2.3) 

 
( )

( )
( )

( )2 2,  
g gkCC kCC

O O
x y

 
 

= =
 

 (2.4) 

These choices of scales should allow the terms neglected in parabolic 

approximation to appear as a term at fifth order in ε: 

 ( ) ( ) ( )3 2 5, ~g nxn x
CC A O O     =

 
 (2.5) 

The nonlinear terms in the model of Kaihatu and Kirby (1995) (those 

proportional to the square of the wave amplitude) are only at second order in ε, but 

additional terms can be included in the parabolic equation because they are at lower 

order than the first neglected term. The consequence for the model of Kaihatu and Kirby 

(1995), therefore, is that the nonlinear terms are incomplete, and should also include 

derivatives of amplitudes as well in order to be completely consistent with the ordering. 

The addition of these consistently-ordered terms was implicitly addressed by Tang and 

Ouellet (1997); however, they did not fully consider terms up to fourth order in ε. It is 

anticipated that models which are consistent with the ordering would be expected to 

more fully describe nonlinear wave propagation effects in situations where amplitudes 

vary considerably (e.g., instances of wave diffraction), thus more completely simulating 

triad wave-wave interaction between frequency components. 
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2.2 Derivation of equations 

2.2.1 Boundary value problem 

A Cartesian coordinate system (x, y, z) is selected, with z taken positive vertically 

upwards from the still water level. We consider a surface gravity wavefield over a 

varying bottom in a horizontal direction, and the varying water depth is h(x, y). For 

inviscid, incompressible and irrotational fluid, the dimensional water wave boundary 

problem that the wave potential ϕ(x, y, z, t) (where t is time) and the free surface 

elevation η(x, y, t)  satisfies is given as: 

 
2 0 ;  h zz h z   + = −    (2.6) 

  ; z h hh z h = −  = −  (2.7) 

 ( )
2 21 1

0 ;  
2 2

t h zg z    + +  + = =  (2.8) 

 0 ;  t z h h z    − +  = =  (2.9) 

where ∇ℎ= (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
) is a gradient operator in horizontal coordinates, g is the 

gravitational acceleration, and subscripts indicate partial derivatives. 

Following the method of Bryant (1973), we retain dimensional quantities while 

noting that the leading order nonlinearity is O(ε2). Using Taylor series about still water 

level, z = 0, the truncated boundary value problem is formulated as: 

 
2 0 ; 0h zz h z  + = −    (2.10) 

  ; z h hh z h = −  = −  (2.11) 
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 ( ) ( )
2 2 31 1

 ;  0
2 2

t h z tzg O z     
 

= − +  + − + = 
 

 (2.12) 

   ( )3  ;  0t z h h zz O z     = −  + + =  (2.13) 

Using the method of Smith and Sprinks (1975), Kaihatu and Kirby (1995) 

assumed a superposition of solutions for wave potential with depth dependence function 

from fully dispersive linear theory: 

 ( ) ( ) ( )
1

, , , , , ,
N

n n

n

x y z t f h z x y t 
=

=  (2.14) 

and 

 ( )
( )cosh

,
cosh

n

n

n

k h z
f h z

k h

+
=  (2.15) 

where fn is depth dependence function, kn is the wave number, and ωn is the wave 

angular frequency. Subscript n indicates the nth frequency component. The wave 

number kn is determined by the linear dispersion relation: 

 
2 tanhn n ngk k h =  (2.16) 

After combining Equations (2.12) and (2.13) to eliminate η, combined free 

surface boundary condition for ϕ only is given: 

 ( ) ( ) ( )
2 2 21 1 1

 ;  0
2 2

z tt h z t t zzt t zt
z

g g
     

 
= − +  + − − = 

 
 (2.17) 

Depth dependence function fn satisfies the following set of equations: 

 
2 0 ; 0nzz nf k f h z− = −    (2.18) 

 0 ; nzf z h= = −  (2.19) 
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2

 ;  0n
nzf z

g


= =  (2.20) 

 

2.2.2 Green’s second identity 

Applying Green’s second identity for ϕ and f, we have: 

 ( )    
0

0n nzz n nzz n nz n nz n nz n nzz z hh
f f dz f f f f     

= =−−
− = − − −  (2.21) 

Using Equations (2.10), (2.11), and (2.17) – (2.20), (2.21) becomes: 

 

( )

( )  

0
2 2

2

0

1
. .

n h n n n n
h

n
ntt n n n n h h n z h

z

f k f dz

N L f f f h
g g

 


  

−

=−

=

−  +

 
= − + +   

 


 (2.22) 

where the nonlinear term is: 

 ( ) ( ) ( ) ( )
2 2 2

0

1 1
. .

2 2

n
h n nz nt nt nzzt t zt

z

f
N L

g g
    

=

  
= −  + − −  

  

 (2.23) 

The horizontal derivatives of potential function ϕ are written in terms of 𝜙̃ and f: 

 ( ) ( )h h h h

f
f f h

h
   


 = =  + 


 (2.24) 

 ( ) ( )
2

22 2 2

2
2h h h h h h

f f f
f h h h

h h h
    

  
 =  +   +  + 

  
 (2.25) 

Substituting Equations (2.24) and (2.25) into Equation (2.22): 

 

( ) ( )

( ) ( ) ( )

2
0 22 2 2 2

2

2
22 2 2

0

 

1
. .

n n
h h n n n n h n h n n n

h

n n
ntt n n n h n h n n n h

z hz

f f
f f h f h k f dz

h h

f
N L f f h f f h

g g h

   


   

−

=−=

  
 −   +  +  +     

   
= − + +   +      


 (2.26) 
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Using Leibnitz’ rule, Equation (2.26) becomes: 

 

( ) ( )

( )

2
0 0 0 22 2 2 2

2

2
22 2

0

1
( . .)

h n h n n n n h h
h h h

n
n ntt n n h

z hz

f f
f dz k f dz f h f h dz

h h

f
N L f f f h

g g h

   


  

− − −

=−=

    −  − −  +          

   
= − + +      

  
  

(2.27) 

The water depth varies gradually (i.e., |∇h| ~ O(α) << 1, where α is a parameter 

characterizing the bottom slope). Following Kirby and Dalrymple (1983), we assume 

O(α) ~ O(ε2) in order to eliminate bottom boundary term of O(ε3) (i.e., –∇hh∙∇hϕ in 

Equation 2.11) in the bottom boundary condition, similar to the manner in which the 

cubic nonlinear terms in the free surface boundary conditions are discarded. 

Additionally, the left-hand side of Equation (2.11) is zero by virtue of Equation (2.19) 

(i.e., 𝜙𝑧|𝑧=−ℎ = 0 or 𝑓𝑛𝑧𝜙̃𝑛|
𝑧=−ℎ

= 0), thus satisfying the bottom boundary condition. 

Then, Equation (2.27) is simplified by discarding the terms of O(εα2) ~ O(ε5) which is at 

higher order than the leading order nonlinearity O(ε2): 

 ( )
2

0 0
2 2 2 2 2

0

1
( . ) n

h n h n n n n n ntt n n
h h

z

f dz k f dz N L f f
g g


   

− −
=

   −  − = − +        
   (2.28) 

Neglecting terms of O(εα2) ~ O(ε5), the nonlinear terms can be also expressed in 

terms of 𝜙̃ and f: 
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 ( )

( ) ( )

( ) ( )

( )
1 1 1

. .
2 2

1

2

l m h l h m

l ml m
m l h m h l m h l h
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lz mz l m lz m l mz lt mt

l m l mt t

l mzz lt m lzz m l mt

l m

f f

f f
f h f h

h h

N L f f f f f f
g g

f f f f

 

   

  

  

    
  
    

+   +     
   

    
= − + − +   
    


 − + 
  





 



0z=













 
 

 (2.29) 

where two arbitrary frequency modes, l and m, influence the nth frequency mode via 

triad wave-wave interaction between frequency components. 

Expressions with depth dependence function are calculated as follows: 

 ( )0 1nf =  (2.30) 

 ( )
2

0 n
nzf

g


=  (2.31) 

 ( ) 20nzz nf k=  (2.32) 

 
( )0

2 
g n

n
h

CC
f dz

g−
=  (2.33) 

 ( )
2

0 2
1

gnn
nz

h
n

C
f dz

g C


−

 
= − 

 
  (2.34) 

 ( ) 2

0

sinh
0 0

cosh

n n n

n z

f k k z

h k h
=

 
= = 

  
 (2.35) 

The time dependency will be factored out by assuming periodicity in time: 

 ( )
*ˆ ˆ

, ,
2 2

n ni t i tn n
n x y t e e

  
 −

= +  (2.36) 
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Applying Equations (2.30) through (2.36) into Equations (2.28) and (2.29), 

elliptic form of nonlinear mild-slope equation is obtained: 

 

( ) ( )

( )

( )

( )

( )

2

2 2

1

2 2
1

2

* 2 2 *

2 2

2

ˆ ˆ

ˆ ˆ ˆ ˆ2

ˆ ˆ4

ˆ ˆ ˆ ˆ2

ˆ2

h g h n n g nn n

n h l h n l l n l n l l l n l
n

l n l n
l

l n l l n l l n l

n h l h n l n l l l l l n l

l n l n
l n l l n l

CC k CC

k k
i

g

k k
i

g

 

     

 
   

      

 
  

− − − −
−

−
=

− − −

+ + +

+
+ +

    +
 

   − +
 

= −   
+ + +  
  

  − −

−
− + −



*
1 ˆ

N n

l
l n l 

−

=
+

 
 
  

  
  



 (2.37) 

Compared to the elliptic equation of Kaihatu and Kirby (1995), Equation (2.37) 

is almost identical except that the nonlinear terms have a form of −𝜔𝑘2𝜙̂𝜙̂,  rather than 

𝜔𝜙̂∇ℎ
2𝜙̂ as seen in Equation 22 in Kaihatu and Kirby (1995). This term arises from using 

–ϕtϕzz in the combined free surface boundary condition (Equation 2.17), rather than 

ϕt∇h
2ϕ as used by Kaihatu and Kirby (1995). We explain how these different nonlinear 

terms in the elliptic equations have a significant effect on the parabolic equations in 

Section 2.3. 

 

2.2.3 Parabolic approximation 

While the model equation (2.37) is a comprehensive form of the nonlinear mild-

slope equation, its elliptic formulation makes it difficult to implement for open coastal 

problems, though a form of the equation was implemented by Sharma et al. (2014). As 

mentioned earlier, elliptic equation requires pre-specification of all boundaries, which 

makes it difficult for open coast problems in which the location of breaking is unknown 
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apriori. In addition, the dependent variables in the equations oscillate at the scale of the 

individual waves, requiring high spatial resolution. To overcome these obstacles, we 

make use of the parabolic approximation (Radder, 1979; Lozano and Liu, 1980) to 

develop the model. 

Incorporation of the parabolic approximation begins by imposing the following 

form for the velocity potential: 

 ( ) ( )
( ),ˆ , ,  

ni k x y dx

n n

n

ig
x y A x y e



= −  (2.38) 

where An is complex amplitude having the small spatial change (i.e., horizontal 

derivatives), and representing waves that propagate primarily in the +𝑥 (axis normal to 

shore) direction. 

Following the scaling approach of Yue and Mei (1980), orders of An and its 

horizontal derivatives are chosen, with derivatives of depth-dependent characteristics 

(e.g., wave number k, wave celerity C, the group velocity Cg) restricted to O(δ) ~ O(ε2) 

due to the assumption of the bottom slope, O(α) ~ O(ε2): 

 ( )~nA O   (2.39) 

 ( ) ( ) ( ) ( )3 1/2 2~ ,  ~n nA A
O O O O

x y
   

 
= =

 
  (2.40) 

 ( ) ( ) ( ) ( )2 2~ ,  ~
h h

O O O O
x y

   
 

= =
 

 (2.41) 

 
( )

( ) ( )
( )

( ) ( )2 2~ ,  ~
g gn n

kCC kCC
O O O O

x y
   

    
   = =

 
 (2.42) 

Linear terms of Equation (2.37) are written with complex amplitude: 
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 ( ) ( ) ( ) ( )2g nx g nx g n g nyn n nx nx y
CC A i kCC A i kCC A CC A   + + +

   
 (2.43) 

but which have the following ordering: 

 ( ) ( ) ( ) ( ) ( )2 5, ~g nx g nx g nxxn nx nx
CC A CC A CC A O O    = + =

 
 (2.44) 

 ( ) ( ) ( ) ( )32 ,  , ~g nx g nn nx
i kCC A i kCC A O O      =

   
 (2.45) 

 ( ) ( ) ( )1/2 4~g nyny
CC A O O =  (2.46) 

 ( ) ( ) ( )3~g nyyn
CC A O O =  (2.47) 

and we note that the orders of terms here are entirely equivalent to that of Kirby and 

Dalrymple (1983), including the smaller term (2.46) in the third order solvability 

condition. 

At this stage it would be opportune to discuss the ordering in detail, in particular 

as it relates to the balance between nonlinearity ε, bottom slope α, and wave modulation 

scale δ. In the prior section we mentioned that only quadratic nonlinearity will be 

included, thus establishing the leading order nonlinearity as O(ε2). To be aligned with the 

parabolic equation ordering established above (as well as in prior studies), terms up to 

O(ε4) and equivalent (e.g., O(εαδ1/2) in Equation 2.46) can be retained. Since we are 

apriori limiting the nonlinearity to the leading order of O(ε2), the established ordering 

allows the retention of not only products of amplitude An to represent this order of 

nonlinearity, but also associated derivatives with respect to x and y. This is possible due 

to the ordering of O(δ) ~ O(α) ~ O(ε2) established in accord with Yue and Mei (1980) 
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and thus is a consistent incorporation of quadratic nonlinearity within the framework of a 

parabolic mild-slope equation model.  

As an additional note, it is also worth comparison to the development of the 

linear parabolic mild-slope equation (Lozano and Liu 1980; Tsay and Liu, 1982; Liu 

1986). In these linear models, the leading order is O(ε), which scales the amplitude An as 

above (Equation 2.39). By assuming O(δ) ~ O(α) ~ O(ε), these linear models retain the 

associated parabolic terms up to O(ε2.5), determined by substituting ε for α and δ in 

O(εαδ1/2). 

With this ordering established, we eliminate terms of O(εδα, εδ2) ~ O(ε5) or 

higher in Equation (2.44): 

 

( ) ( ) ( ) ( )

( )

( )

1

1 2 3 4

1

* * * *

1 2 3 4

1

2

1

4

1

2

l n l n

n l l n

g nx g n g n yn nx n y

n
i k k k dx

l n l lx n l l n lx ly n ly

l

N n
i k k k dx

l n l lx n l l n lx ly n ly

l

i kCC A i kCC A CC A

R A A R A A R A A R A A e

S A A S A A S A A S A A e

−

+

−
+ −

− − − −

=

−
− −

+ + + +

=

 + +
 

 = + + + 

 + + + + 





 (2.48) 

where the interaction coefficients are: 

 

( )( )

( )

2

1

2
2 2

n l n l l n l n l l l n l n

l n l

n
l l n l n l

g
R k k k k k k

g

   



  

− − − −

−

− −

 = + + + 

− + +

 (2.49) 

 

2

2 2 n n l

l n l

g k
R i




−

−

= −  (2.50) 

 

2

3 2 n l

l n l

g k
R i



 −

= −  (2.51) 
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2

4 2 n

l n l

g
R



 −

= −  (2.52) 

and  

 

( )( )

( )

2

1

2
2 2

n l n l n l l n l l l n l n

l n l

n
l l n l n l

g
S k k k k k k

g

   



  

+ + + +

+

+ +

 = + − + 

− − +

 (2.53) 

 

2

2 2 n n l

l n l

g k
S i




+

+

=  (2.54) 

 

2

3 2 n l

l n l

g k
S i



 +

= −  (2.55) 

 

2

4 2 n

l n l

g
S



 +

=  (2.56) 

The wave numbers kn in the phase functions (the complex exponential terms in 

Equation 2.38) are functions of both x and y; however, the integration in the phase 

functions is performed only in the x direction in keeping with the parabolic 

approximation. Kaihatu and Kirby (1995) selected the method of Lozano and Liu (1980) 

to factor out the y-dependence from phase function by using the y-averaged wave 

number 𝑘̅𝑛(𝑥) as a reference wave number: 

 ( ) ( )
( ),ˆ , ,  

ni k x y dx

n n

n

ig
x y a x y e



= −  (2.57) 

where the amplitude functions are related: 

 ( ) ( ) ( ) ( ), , exp ,n n n nA x y a x y i k x k x y dx = −
    (2.58) 
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Substituting Equation (2.58) into Equation (2.48) yields: 

 

( ) ( ) ( ) ( ) ( ) ( )

 ( )

 ( )
( )

 ( )

 

1 1 2

1
3 4

* * *

1 2

3

2 2

1

4

1

2

l n l n

g nx g n n n g n g n yn n nx n y

n l n l l l l n l lx n l i k k k dx

l
n l n l l n l l n lx ly n ly

l n l l l l n l lx n l

n l n l

i kCC a kCC k k a i kCC a CC a

R a a R i k k a a a a
e

R i k k a a a a R a a

S a a S i k k a a a a

S i k k

−
− − − − + −

=
− − − − −

+ + +

+ +

 − − + +
 

 + − +
 =

 + − + +
 

+ − − +
+

+ −



( )
( )

* * *
1

4

n l l n
N n

i k k k dx

l
l n l l n lx ly n ly

e
a a a a S a a

+
−

− −

=
+ + +

 
 

 + +
 



 (2.59) 

We also reduce Equation (2.48) to one dimension for comparisons with 

unidirectional laboratory experiments: 

 

( )
( )

( )

 
( )
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1 2 3

1

* * *

1 2 3

1
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8
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l n l n

n l l n

g nx
nx n

g n

n
i k k k dx

l n l lx n l l n lx

l

N n
i k k k dx

g n
l n l lx n l l n lx

l

kCC
A A

kCC

R A A R A A R A A e
i

kCC
S A A S A A S A A e

−

+

−
+ −

− − −

=

−
− −

+ + +

=

+

 + + 
 = −
  + + +  
 





 (2.60) 

 

2.3 Comparisons with other models 

Two features are apparent in the present model. First, most models (Freilich and 

Guza, 1984; Liu et al., 1985; Agnon et al., 1993; Tang and Ouellet, 1997; Eldeberky and 

Madsen, 1999 among many others) were developed under the assumption that the order 

of amplitude An is the same as that of the spatial gradient of depth (or O(ε)) as well as 

modulation scale δ (where An is function of δx and δ1/2y). Because of this assumption, the 

neglected terms in parabolic approximation have the same order as the x-derivatives of 

amplitude in the nonlinear term AxA. The calculation of scale under the assumption that 
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A ~ O(ε), Ax ~ O(ε2), (CCg)x ~ ∇hh ~ O(ε) was taken in the previous models (e.g., Kaihatu 

and Kirby, 1995): 

 ( ) ( )3~ ~lx n l g nxn x
A A CC A O −

 
 

 (2.61) 

However, we can include the x-derivative nonlinear term AxA in the parabolic 

equation, since it was assumed that amplitude is of lower order than depth change (or 

O(ε2)) and modulation scale δ. For the present study, Equation (2.62) shows the 

comparison of order between the neglected terms in parabolic approximation and the 

nonlinear term AxA which is one of the additional terms: 

 ( ) ( ) ( )5 4~ ~g nx lx n ln x
CC A O A A O −

  
 

 (2.62) 

 

2.3.1 Kaihatu and Kirby (1995) 

The parabolic model of Kaihatu and Kirby (1995) is: 

 

( ) ( ) ( ) ( )

( ) ( )
1

*

1 1

1 1

2

1 1

4 2

l n l n n l l n

g nx g n g n yn nx n y

n N n
i k k k dx i k k k dx

l n l l n l

l l

i kCC A i kCC A CC A

R A A e S A A e
− +

− −
+ − − −

− +

= =

 + +
 

 = + 
 (2.63) 

where R1 and S1 are the same as Equation (2.48). 

To examine the effect of x-derivative nonlinear term AxA, Equations (2.48) and 

(2.63), respectively, were simplified into one-dimensional equations for constant depth. 

The model of Kaihatu and Kirby (1995) (Equation 2.63) is simplified into Equation 

(2.64): 

 
( )

 
1

*

1 1

1 1

2
8

n N n
i i

nx l n l l n l

l lg n

i
A R A A e S A A e

kCC

 
− −

− +

= =

 
 = − +  

 
   (2.64) 
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and the present model (Equation 2.48) is simplified into Equation (2.65): 
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 
1
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1

* * *

1 2 3

1

8
2

n
i

l n l lx n l l n lx

l

nx N n
ig n
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l

R A A R A A R A A e
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A
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−
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=

 
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 = −
 

 + + +  
 





 (2.65) 

where interaction coefficients are the same as Equation (2.48), and: 

 
l n l nk k k dx −= + −  (2.66) 

 
n l l nk k k dx += − −  (2.67) 

are denoted as phase mismatches. These mismatches serve to mitigate the interaction 

between triads of frequencies by detuning the interactions. The interactions between 

wave number (e.g., kl + kn–l – kn) have the same order of magnitude as weak dispersion μ2 

(where μ = kh). In deep water, Kaihatu and Kirby (1997) argued that the phase mismatch 

can become large, which may violate the assumption of slow horizontal variation of 

amplitude. 

To focus on the influence of x-derivative nonlinear term AxA on phase mismatch 

in the numerical model, we created an artificial case where all the values of wave 

characteristics (e.g., A, h,  , k), at the wave maker station (x = 0) are given, and then 

calculate the amplitudes at the next grid point with forward difference method. To 

isolate the impact of μ2, phase mismatches θ and ψ are expressed as μ2κΔx (where κ is 

non-dispersive wave number and Δx is the step size of the model grid). The use of κ 

ensures dimensional homogeneity with the phase mismatches, while the size of μ 

determines the relative depth. In this artificial case, Ax is the only unknown, and the 
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other variables including A can be represented with constants K1 and K2 since these 

values are specified. Equation (2.68) is derived from Equation (2.64), which is the 

simplified version of the model of Kaihatu and Kirby (1995): 

 ( )2

1 expxA K i x =   (2.68) 

For the present model (Equation 2.65, which is the simplified version of 

Equation 2.48), we obtain:  

 ( ) ( )2 2

1 2exp expx xA K i x K A i x   =  +   (2.69) 

Solving Equation (2.69) of the present model for Ax results in: 

 
( )
( )

2

1

2

2

exp

1 exp
x

K i x
A

K i x

 

 


=

− 
 (2.70) 

While K1 involves the square of the amplitude (i.e., AA or AA*), K2 involves only 

a single amplitude. Therefore, it is reasonable to assume K2 to be greater than K1, in 

accordance with the ordering. Assigning values of K1 = 1 and K2 = 3 or 5, the real part of 

Ax for each model is represented as: 

 ( )

( )

( )
( )

( )
( )

2

2

22
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cos                ; Kaihatu and Kirby (1995)

cos 3
   ; Present model with 3Re

6cos 10

cos 5
   ; Present model with 5

10cos 26

x

x

x
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x

x
K

x

 

 

 

 

 

 




 −
== 

−  +


 −
=

−  +


 (2.71) 

Figure 1 shows the real part of amplitude change depending on dimensionless 

grid size κΔx in shallow water (μ = 0.5) and deep water (μ = 3). 
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Figure 1 Comparison of Re(Ax) between model of Kaihatu and Kirby (1995) and 

the present model: (a) μ = 0.5; (b) μ = 3; (Dashed: model of Kaihatu and Kirby 

(1995); Dotted: present model with K2 = 3; Dash-dot: present model with K2 = 5). 
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It is desirable for the real part of the amplitude gradient Ax to demonstrate a low 

degree of sensitivity to the dimensionless step size κΔx. From Figure 1, it is clear that the 

model of Kaihatu and Kirby (1995) shows a high degree of oscillation in deep water (μ = 

3) as a function of κΔx. However, also from Figure 1, we can see that the amplitude of 

the mismatch might not violate the assumption of slow varying amplitude in deep water, 

because the real part of exp[iμ2κΔx] will only oscillate between – 1 and 1 even with large 

μ2.  

In contrast, mismatches in the present model (with x-derivative nonlinear term 

AxA) shows a greatly reduced sensitivity to the dimensionless grid size. Because 

exp[iμ2κΔx] is multiplied by Ax on the right-hand side of Equation (2.69) and serves as 

an oscillating coefficient of Ax, Ax might oscillate to a lesser degree (or remain almost 

constant similar to the case of zero-mismatch) even in deep water (μ = 3). In the interest 

of generalization, the simplest example for N = 2 is provided in Appendix A.  

Another source of difference between the present model and that of Kaihatu and 

Kirby (1995) concerns the combined free surface boundary condition (Equation 2.17). 

We note that the last nonlinear term in the combined free surface boundary condition 

(2.17) is the vertical derivative –ϕtϕzz. In previous studies (Agnon et al., 1993; Kaihatu 

and Kirby, 1995; Tang and Ouellet, 1997; Eldeberky and Madsen, 1999 among many 

others), the Laplace equation was used to trade the vertical derivative for horizontal 

derivatives, leading to the nonlinear term ϕt∇h
2ϕ. It was generally further combined with 

∇hϕt∙∇hϕ, yielding ∇h(ϕt∇hϕ) in the combined free surface boundary condition, affecting 

the resulting form of the model (e.g., Equation 2.23). To compare representation of 
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vertical derivatives with that of horizontal derivatives, we develop two equations with 

complex amplitude An solely based on these derivatives:  
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Since water depth h and complex amplitude An vary gradually in the horizontal 

direction, higher order terms arise from horizontal derivative of wave potential ϕ. As a 

result, when we represent the nonlinear term with the horizontal derivative (i.e., ϕt∇h
2ϕ), 

we discard some of terms higher order than O(ε4), for example, the terms proportional to 

Axx or (∇hh)2, while the representing with vertical derivative (i.e., –ϕtϕzz) allows the 

parabolic equation to include the term without any discarded term. This allows the 

entirety of the nonlinear term –ϕtϕzz (or ϕt∇h
2ϕ) to be retained. In addition, including 

fewer horizontal derivative terms, such as double derivative of complex amplitude with 

respect to y, can enhance model stability and reduce iterations required for numerical 

convergence. 
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2.3.2 Tang and Ouellet (1997) 

The first model of Tang and Ouellet (1997) in dimensional form is: 
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where R1, R4, and S1, S4 are the same as Equation (2.48), and: 
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Tang and Ouellet (1997) did not include the x-derivative nonlinear term, of 

which coefficients are R2, R3, S2, and S3 as well. In addition, the model of Tang and 

Ouellet (1997) has a greater number of terms (e.g., terms with R11, R12, R5, and R6) than 

the present model. These additional terms resulted from the double horizontal derivative 

nonlinear term ϕt∇h
2ϕ discussed above, after neglecting higher order terms. In addition, 

the Laplace equation (2.10) dictates that Equation (2.72) should be identical to Equation 

(2.73), thus the sum of terms except for –k2A in Equation (2.72) must cancel. As a result, 

neglecting some of the higher order terms in ϕt∇h
2ϕ might lead to incomplete 

consideration of ϕt∇h
2ϕ (or –ϕtϕzz).  Paradoxically, the present equation does not include 

the terms present in Tang and Ouellet (1997), but the final term in the combined free 

surface boundary condition (i.e., –ϕtϕzz) insures full consideration of this boundary 

condition to the specified order. 

 

2.3.3 Permanent form solutions 

Kirby (1991) and Kaihatu (2001) derived a permanent form solution for the 

purpose of validating model behavior in deep and shallow water by comparison to 

analytic and numerical wave theories. For similar purposes, we also developed a 

numerical permanent form solution of the present model, and compared the results of 

this solution to those of Stokes third-order theory (e.g., Mei, 1983) and stream function 

theory (Dean, 1965). In addition, Kaihatu (2001) and Eldeberky and Madsen (1999) 

improved the models by introducing the second-order relationship between amplitudes 

of wave potential and those of free surface elevation in the dynamic free surface 
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boundary condition. To investigate the effect of second-order correction, the relationship 

between amplitudes of ϕ and η was used (Kaihatu, 2001): 
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where Bn denotes amplitude of η, and C.C. denotes conjugate complex. 
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  Following Kaihatu (2001), a redefined velocity potential and free-surface 

elevation are used: 
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where k1 is wave number of the first frequency mode, and 𝑘̃ is the difference between 

the linear wave number and non-dispersive wave number. Full details of the method can 

be found in Kaihatu (2001).  

Assuming no change in energy flux, one-dimensional permanent form solutions 

for model of Kaihatu and Kirby (1995) were proposed (Kaihatu, 2001): 



 

31 

 

 ( )
( )

1

1 1 1

1 1

1
2 0

8

n N n

n n l n l l n l

l lg n

n k k k a R a a S a a
C

− −

− +

= =

  + − + + =    
   (2.89) 

For the present model, we obtain one-dimensional equations for permanent 

solution: 
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The specified wave height H provides an additional equation: 
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We compare the phase speeds and free surface profiles from the permanent form 

solutions of Kaihatu (2001) and present model with those from the Stokes third-order 

theory and 15th-order stream function theory. Table 1 shows the condition used in 

comparison. In Figures 2-5, we see that, while both permanent form solutions perform 

well, the present model has a better performance than model of Kaihatu and Kirby 

(1995). In particular, the present model outperforms that of Kaihatu and Kirby (1995) 

when both are compared to phase speed estimates from Stokes third-order theory for the 

condition of h = 9 m and H = 3 m. There seems to be little effect of second-order 

correction on the phase speed and free surface profile. The better fit appears at the 

smaller wave height. In the regimes of deep water, and shallow water, permanent form 
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solutions of the present model agree favorably with those from the Stokes third-order 

theory, and 15th-order stream function theory, respectively. 

 

 

Table 1 Conditions for permanent form solution. 

Theory Comparison T (s) N h (m) H (m) 

Stokes third-order 
Phase speed 5 10 20-9 0.5, 1.0, 2.0, 3.0 

Free surface 5 10 20, 9 3 

Stream function 
Phase speed 10 15 10-1 0.1 

Free surface 10 15 10,1 0.1 
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Figure 2 Comparison of phase speed between permanent-form solutions and third-

order Stokes theory: (a) H = 0.5 m; (b) H = 1 m; (c) H = 2 m; (d) H = 3 m (Dashed: 

present model; Dotted: present model with second-order correction; Dash-dot: 

model of Kaihatu and Kirby (1995); Solid: model of Kaihatu and Kirby (1995) with 

second-order correction). 
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Figure 3 Comparison of free surface profiles between permanent-form solutions 

and third-order Stokes theory: (a) h = 20 m; (b) h = 9 m (Solid: third-order Stokes 

theory; Dashed: present model; Dotted: present model with second-order 

correction; Dash-dot: model of Kaihatu and Kirby (1995); Dash-cross: model of 

Kaihatu and Kirby (1995) with second-order correction).  
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Figure 4 Comparison of phase speed between permanent-form solutions and 15th-

order stream function theory (Dashed: present model without second-order 

correction; Dotted: present model; Dash-dot: model of Kaihatu and Kirby (1995); 

Solid: model of Kaihatu and Kirby (1995) with second-order correction). 
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Figure 5 Comparison of free surface profiles between permanent-form solutions 

and 15th-order stream function theory: (a) h = 10 m; (b) h = 1 m (Solid: stream 

function theory; Dashed: present model; Dotted: present model with second-order 

correction; Dash-dot: model of Kaihatu and Kirby (1995); Dash-cross: model of 

Kaihatu and Kirby (1995) with second-order correction). 
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CHAPTER III  

COMPARISON TO DATA: FINITE NUMBER OF WAVES*                         

 

3.1 Introduction 

We compare numerical results from the present model to both experimental data 

and previous models. The Crank-Nicolson method (Crank and Nicholson, 1947) was 

adopted to model the two-dimensional parabolic Equation (2.59). The implementation of 

the method is similar to that of Liu et al. (1985). We use the notation that [𝑎𝑛,𝑗
𝑖 ]𝑘 

represents the nth harmonic function at x (= iΔx, i = 1 to Nx) and y (= j Δy, j = 1 to Ny). 

Because the nonlinear terms need to be centered between i and i+1, iteration is required. 

This was performed as follows: 
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where the superscripts k + 1 and k are the current and previous iterations, respectively. 

The initial guess (i.e., k = 0) are obtained from the previous x-level solutions. The 

iteration procedure is stopped and converged solutions are calculated when the relative 

error between two successive iteration solutions is less than 10-3: 
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* This chapter is reprinted with permission from Kim, I. C. and Kaihatu, J. M., 2021. A consistent 

nonlinear mild-slope equation model. Coastal Engineering, 170: 104006. Copyright [2021] by Elsevier. 

DOI: https://doi.org/10.1016/j.coastaleng.2021.104006. 
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For cases where a sine wave was specified at the offshore boundary, the 

amplitude for the first harmonic was prescribed with the recorded input values at the 

wave maker station for each experiment, and the initial conditions for higher harmonic 

waves are set to zero.  

A grid convergence procedure was followed, in which the grid size is continually 

reduced until further reduction does not make any difference in results. Table 2 shows 

grid sizes and the number of grids used for computation of each experiment in this study.  

 

 

Table 2 Grid sizes and the total number of grids for computation of each 

experiment. 

Data 
Chaplain et al. 

(1992) 

Whalin 

(1971) 

Berkhoff et al. 

(1982) 

Δx (m) 0.094 0.24 0.083 

Δy (m) - 0.085 0.083 

Grids 250 100×74 261×243 

 

 

To quantitatively examine the performance of the models, we used the IOA 

(Index of Agreement) representing the ratio of mean square error and the potential error 

(Willmott, 1982). The IOA ranges from 0 to 1, with 1 corresponding to the ideal model: 
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where 𝑎𝑛,𝑗
𝑖  is the computed nth harmonic function from models at x (= iΔx, i = 1 – Nx) 

and y (= jΔy, j = 1 – Nx), and 𝑎𝑛,𝑗,𝑜𝑏𝑠
𝑖  is the observed nth harmonic function from 

experimental data at x (= iΔx) and y (= jΔy), and over bar indicates an average. 

 

3.2 Chapalain et al. (1992) 

Chapalain et al. (1992) conducted a laboratory experiment to model the 

transformation of long, small-amplitude waves in constant depth. The primary goal of 

this experiment was to investigate the energy transfer between a small number of 

harmonic components due to nonlinear interactions. The experiment was conducted in a 

wave flume that was 33.54 meters long and 1.3 meters deep. A wavemaker at the end of 

the flume generated monochromatic sinusoidal waves, which were allowed to evolve 

over the flat bottom. Regularly spaced wave gauges in the tank were used to record time 

series of the free surface elevation, and the resulting records were analyzed to determine 

the amplitudes of each harmonic. The experiment captured the phenomenon of 

recurrence, in which energy flowing from low frequencies to higher ones reversed this 

transfer to recapture the initial state. This phenomenon was first seen in water waves in 

the experiments of Boczar-Karakiewicz (1972); Mei and Ü nlüata (1972) analyzed this 

phenomenon using shallow water wave theory. Table 3 shows the wave parameters, the 

number of harmonics, and the nonlinearity parameters calculated for this experiment. 

We used N = 5 harmonics for all cases, but the first four harmonics are compared with 

that of the experimental data. 
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Table 3 Wave parameters of Chapalain et al. (1992), and the nonlinearity 

parameters. 

Case a0 (m) T (s) h (m) kh Ur 

A 0.042  2.5 0.4 0.530 0.373 

C 0.042  3.5 0.4 0.371 0.764 

D 0.0355 2.5 0.3 0.454 0.574 

H 0.035 3 0.4 0.436 0.460 

 

 

Figures 6-7 compare the numerical results for each case obtained by the models 

of Kaihatu and Kirby (1995) (hereinafter KK95 in figures and tables), Freilich and Guza 

(1984) (hereinafter FG84 in figures and tables), and the present model (both with and 

without the second-order correction) with the experimental data of Chapalain et al. 

(1992). For unidirectional wave, the Kadomtsev-Petviashvili (K-P) model of Liu et al. 

(1985) (hereinafter KP85 in figures and tables) is reduced to that of Freilich and Guza 

(1984), and the model of Tang and Ouellet (1997) (hereinafter TO97 in figures and 

tables) is also reduced to that of Kaihatu and Kirby (1995); thus, these other models are 

implicitly included. The agreement between experimental data and numerical solution of 

the present model is reasonable. The first-, second-, and third-harmonic wave amplitudes 

are in good agreement with experimental data, but the numerical model underestimates 

the fourth-harmonic component. For the first-, second-, and third-harmonic, the present 

model mostly outperforms the previous models in terms of the amplitudes and the 

recurrence distances, with the exception that Freilich and Guza (1984) is in closer 

agreement in Case C, where kh is small. For the fourth-harmonic, on the other hand, 
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Kaihatu and Kirby (1995) agrees more favorably in most of the comparisons. The 

inclusion of the second-order correction with Equation (2.84) increases the amplitude, 

leading to better agreement for the fourth harmonic. Since there is no bottom variation in 

this experiment, AxA are the only terms of present model that are additional to that of 

Kaihatu and Kirby (1995). As seen in Section 2.3.3, these added terms contribute to 

additional nonlinear effect despite the explicit use of the fully-dispersive linear theory. 
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Figure 6 Comparison of wave amplitudes between models and data of Chapalain et 

al. (1992) for Case A: (a) first harmonic; (b) second harmonic; (c) third harmonic; 

(d) fourth harmonic; for Case C: (e) first harmonic; (f) second harmonic; (g) third 

harmonic; (h) fourth harmonic (Solid: present model; Dashed: present model with 

second-order correction; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: 

model of Freilich and Guza (1984); Circle: experimental data). 
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Table 4 Comparison of IOA between models for Case A and C of Chapalain et al. 

(1992). 

Case Harmonics Present 
Present with 

correction 
KK95 FG84 

A 

1 0.9475 0.9408 0.7848 0.7563 

2 0.9344 0.9399 0.8466 0.8067 

3 0.6678 0.7081 0.7448 0.6595 

4 0.3286 0.4840 0.8706 0.3804 

C 

1 0.9900 0.9850 0.9365 0.9980 

2 0.9734 0.9811 0.9529 0.9873 

3 0.8691 0.8856 0.8522 0.9606 

4 0.8505 0.8968 0.8889 0.8230 
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Figure 7 Comparison of wave amplitudes between models and data of Chapalain et 

al. (1992) for Case D: (a) first harmonic; (b) second harmonic; (c) third harmonic; 

(d) fourth harmonic; for Case H: (e) first harmonic; (f) second harmonic; (g) third 

harmonic; (h) fourth harmonic (Solid: present model; Dashed: present model with 

second-order correction; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: 

model of Freilich and Guza (1984); Circle: experimental data). 
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Table 5 Comparison of IOA between models for Case D and H of Chapalain et al. 

(1992). 

Case Harmonics Present 
Present with 

correction 
KK95 FG84 

D 

1 0.9667 0.9598 0.8759 0.8761 

2 0.9776 0.9793 0.9536 0.9077 

3 0.7547 0.7704 0.7745 0.7214 

4 0.4679 0.6233 0.7757 0.4787 

H 

1 0.8711 0.8787 0.9342 0.9228 

2 0.9602 0.9684 0.9026 0.9504 

3 0.8237 0.8387 0.7541 0.8720 

4 0.6101 0.7451 0.9009 0.6120 
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3.3 Whalin (1971) 

Whalin (1971) carried out a laboratory experiment to investigate wave 

convergence and wave refraction over a varying bottom, shown in Figure 8. The bottom 

configuration consists of two regions of constant depth connected with a tilted cylinder; 

the cylinder acts as a refractive focal lens, and the amplified wave amplitude at the focus 

point expected to lead to energy transfer among wave frequencies. In Table 6, we 

summarize wave parameters, the number of harmonics, and the nonlinearity parameters 

calculated for this experiment. The values with subscripts 1 and 2 in Table 6 refer to the 

deep and shallow portion of the tank, respectively (h1 = 0.457 m, h2 = 0.152 m). The 

reflective lateral boundary conditions are used along the side-wall and the centerline of 

the wave tank: 

 0  at 0 and 3.048 m
a

y
y


= =


 (3.4) 

 

 

 

Figure 8 Wave tank bathymetry of Whalin (1971).  
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Table 6 Wave parameters of Whalin (1971), the number of harmonics, and the 

nonlinearity parameters. 

Case a0 (m) T (s) N k1h1 k2h2 Ur1 Ur2 

31 0.0068 3 5 0.468 0.264 0.068 0.640 

32 0.0098 3 5 0.468 0.264 0.098 0.922 

33 0.0146 3 5 0.468 0.264 0.146 1.373 

21 0.0075 2 3 0.735 0.402 0.030 0.305 

22 0.0106 2 3 0.735 0.402 0.043 0.431 

23 0.0149 2 3 0.735 0.402 0.060 0.605 

11 0.0097 1 2 1.921 0.873 0.006 0.084 

12 0.0195 1 2 1.921 0.873 0.012 0.168 

 

 

Figures 9-12 show wave amplitudes along the centerline of the wave tank for 

each case, comparing the values obtained by the models of Kaihatu and Kirby (1995), 

Tang and Ouellet (1997), the K-P model of Liu et al. (1985), and the present model with 

the experimental data of Whalin (1971). Since the case of T = 1 s shows obvious 

differences after incorporation of second-order correction (Equation 2.84) only for the 

case of T = 1 s, Figure 12 compares results with the second-order correction by model of 

Kaihatu and Kirby (1995), and the present model. We note that the case of T = 1 s was 

obviously outside the range of validity for Boussinesq so that we do not compare the K-

P model of Liu et al. (1985) for the case of T = 1 s. 

For the case of T = 3 s, no model shows a good agreement with first harmonic 

amplitudes, while the second- and third-harmonic amplitudes are well predicted by all 

the models. Frictional dissipation of the waves could partially cause this deviation at first 
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harmonic amplitudes (Liu et al, 1985). None of the models discussed here include the 

effect of viscous damping in the boundary conditions, while there was a very small 

amount of wave damping from the viscous boundary layers in wave tank (Whalin, 

1971). The present model uniformly overpredicts the first harmonic wave amplitudes, 

and underpredicts the third harmonic wave amplitudes; this behavior is also seen with 

the other models in this comparison.  

For the case of T = 2 s, the amplitudes predicted by all nonlinear parabolic mild-

slope equation models are nearly identical. For the cases of T = 1 s and 2 s, where the 

shallow water assumption might not be applicable, the results of the K-P model (Liu et 

al., 1985) show significant discrepancy between theory and experiment. As the initial 

amplitude a0 decreases, the performance of the present model improves. In particular, 

the present model appears to outperform the other models for the cases of the smallest 

amplitude from T = 1, 2 s (i.e., Case 11 and 21). For example, the value of a0 in Case 21 

is the smallest than that of the other cases of T = 2 s, therefore, Case 21 has the smallest 

value of Ur, which might support the ordering of present study rather than that of 

Boussinesq-type model, based on O(Ur) ~ O(1). 

Kaihatu and Kirby (1995) argued that case of T = 1 s is a severe test of their 

model due to the great value of kh (i.e., k1h1 = 1.921 at the wave maker corresponds to 

intermediate depth), causing considerable phase mismatches and severe amplitude 

change oscillation with increasing grid size. However, the present model shows better 

accuracy in case of T = 1 s, which could imply that the effect of phase mismatches is 

alleviated by x-derivative nonlinear terms AxA.  From Figure 12 (T = 1 s), we note that 
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the present model is generally in agreement with oscillating second harmonic amplitude. 

These oscillations in amplitude occur with wave propagating in x-direction; the 

amplitudes in nonlinear terms are thus variable in x and the cause for the oscillations in 

A. This is in contrast with the situation described in Figure 1, where the oscillation is 

directly related to the grid size rather than the wave amplitude propagation 

characteristics. As explained in comparisons with model of Kaihatu and Kirby (1995) of 

Section 2.3, the exponential function multiplied by Ax on the right-hand side of Equation 

(2.48), might alleviate the effect of phase mismatch, as it serves as an oscillating 

coefficient. 
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Figure 9 Comparison of wave amplitudes between models and data of Whalin 

(1971) for Case 31: (a) first harmonic; (b) second harmonic; (c) third harmonic; for 

Case 32: (d) first harmonic; (e) second harmonic; (f) third harmonic; for Case 33: 

(g) first harmonic; (h) second harmonic; (i) third harmonic (Solid: present model; 

Dashed: model of Kaihatu and Kirby (1995); Dotted: model of Tang and Ouellet; 

Dash-dot: K-P model of Liu et al. (1985); Circle: experimental data). 
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Table 7 Comparison of IOA between models for T = 3 s of Whalin (1971). 

Case Harmonics Present KK95 TO97 KP85 

31 

1 0.6077 0.6375 0.6330 0.6120 

2 0.9168 0.9389 0.9280 0.9298 

3 0.8905 0.9376 0.9251 0.9179 

32 

1 0.4944 0.5771 0.5659 0.5213 

2 0.9551 0.9712 0.9629 0.9692 

3 0.9316 0.9727 0.9621 0.9622 

33 

1 0.5217 0.6917 0.6676 0.5994 

2 0.9633 0.9725 0.9672 0.9664 

3 0.9304 0.9794 0.9718 0.9799 
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Figure 10 Comparison of wave amplitudes between models and data of Whalin 

(1971) for Case 21: (a) first harmonic; (b) second harmonic; (c) third harmonic; for 

Case 22: (d) first harmonic; (e) second harmonic; (f) third harmonic; for Case 23: 

(g) first harmonic; (h) second harmonic; (i) third harmonic (Solid: present model; 

Dashed: model of Kaihatu and Kirby (1995); Dotted: model of Tang and Ouellet; 

Dash-dot: K-P model of Liu et al. (1985); Circle: experimental data). 
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Table 8 Comparison of IOA between models for T = 2 s of Whalin (1971). 

Case Harmonics Present KK95 TO97 KP85 

21 

1 0.9460 0.9493 0.9461 0.8909 

2 0.9653 0.9534 0.9543 0.9263 

3 0.9639 0.9320 0.9310 0.9189 

22 

1 0.9519 0.9516 0.9481 0.8932 

2 0.9660 0.9629 0.9656 0.9534 

3 0.9789 0.9845 0.9861 0.9851 

23 

1 0.7601 0.7976 0.7951 0.6538 

2 0.9168 0.9077 0.9151 0.9034 

3 0.9530 0.9531 0.9566 0.9548 
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Figure 11 Comparison of wave amplitudes between models and data of Whalin 

(1971) for Case 11: (a) first harmonic; (b) second harmonic; for Case 12: (c) first 

harmonic; (d) second harmonic (Solid: present model; Dashed: model of Kaihatu 

and Kirby (1995); Dotted: model of Tang and Ouellet; Circle: experimental data). 
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Figure 12 Comparison of wave amplitudes between models and data of Whalin 

(1971) for Case 11: (a) first harmonic; (b) second harmonic; for Case 12: (c) first 

harmonic; (d) second harmonic (Solid: present model with second-order 

correction; Dashed: model of Kaihatu and Kirby (1995) with second-order 

correction; Dotted: model of Tang and Ouellet; Circle: experimental data). 
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Table 9 Comparison of IOA between models for T = 1 s of Whalin (1971). 

Case Harmonics Present 
Present 

(W/C) 
KK95 

KK95 

(W/C) 
TO97 

11 
1 0.9418 0.9417 0.9387 0.9387 0.9360 

2 0.8688 0.8834 0.8768 0.8795 0.8834 

12 
1 0.8455 0.8458 0.8320 0.8315 0.8316 

2 0.8507 0.9032 0.8751 0.8734 0.8908 

 

  



 

57 

 

3.4 Berkhoff et al. (1982) 

Berkhoff et al. (1982) conducted a laboratory experiment over a varying bottom 

with elliptic shoal situated on a 1:50 slope, shown in Figure 13, to investigate the 

behavior of wave focusing by a submerged shoal. Unlike the experiment of Whalin 

(1971), wave propagation in this experiment would be adequately described with a linear 

wave model (e.g., Berkhoff et al., 1982). However, it has been shown (e.g., Kirby and 

Dalrymple, 1984; Suh et al., 1990; Wei and Kirby, 1995) that wave propagation 

processes in this experiment are better replicated by a nonlinear wave model. 

We ran parabolic linear mild-slope equation (linearized form of Equation 2.48), 

Kaihatu and Kirby (1995), Tang and Ouellet (1997), and the present model against the 

data of Berkhoff et al. (1982). Table 10 shows the wave parameters, the number of 

harmonics, and the nonlinearity parameters calculated for this experiment. The values 

with subscripts 1 and 2 are the values corresponding to the initial condition and the 

values at the shoal crest, respectively (h1 = 0.45 m, h2 = 0.128 m). At the wave maker 

station, a sinusoidal wave was input to the model and the value of kh = 1.895 would 

likely lead to appreciable phase mismatch. We used N = 2 harmonics, but the first 

harmonics were used to obtain relative amplitudes and the relative amplitudes are 

compared with the results of the experimental data. To investigate the effect of phase 

mismatch in the present model, we used N = 3 as well. For frequency domain mild-slope 

equations, increasing N results in more nonlinear terms with phase mismatch. Therefore, 

when N = 3 is used, frequency domain mild-slope equations can be expected to show 

more obvious discrepancy between numerical and experimental results. The sum of odd 
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number harmonics was used in calculating relative amplitude (i.e., a1 + a3) for N = 3. We 

apply reflective lateral boundaries; however, the width of the numerical model grid is 

wide enough so that sidewall reflections do not affect the wave processes near the shoal. 

These lateral boundary conditions are: 

 0  at 0 and 20 m
a

y
y


= =


 (3.5) 

 

 

Table 10 Wave parameters of Berkhoff et al. (1982), the number of harmonics, and 

the nonlinearity parameters. 

a0 (m) h1 (m) h2 (m) T (s) N kh1 kh2 Ur1 Ur2 

0.0232 0.45 0.128 1 2, 3 1.895 0.788 0.014 0.292 

 

 



 

59 

 

 

Figure 13 Bathymetry and gauge Layout of Berkhoff et al. (1982) (Dashed: gauge 

transects). 
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Figure 14 show the results of the models using N = 2 (for nonlinear models) at 

the gauge locations. Although the high kh value would lead to appreciable mismatch, all 

mild-slope equations models, including our model, agree favorably with the 

experimental data. This can be interpreted as a result of few nonlinear terms and the use 

of fundamental harmonics only, because N = 2 was used. Comparison of the IOA values 

at gauge transect 3-6 (Tables 11 and 12) show that the present model outperforms the 

other models used. This is likely due to the additional AAx and AyAy terms in Equation 

(2.48). While the linear model used here shows reasonable results at gauge transect 1, its 

performance worsens at succeeding gauges. Berkhoff et al. (1982) noted that gauge 

transect 6 is near an amphidromic point; this is also where the present model performs 

particularly well, capturing the reduction in amplitude seen in the data far better than 

other models.  

The results using N = 3, shown in Figure 15, validates the hypothesis that the 

predictions of Kaihatu and Kirby (1995) and Tang and Ouellet (1997) become worse 

than the results of N = 2. The results of present model, on the other hand, shows better 

prediction at several gauges. This result is a manifestation of the ability of the model to 

alleviate phase mismatches, as discussed earlier. The present model shows notably better 

prediction skill at several gauges. Additionally, there are no obvious improvements using 

the second-order correction with Equation (2.84).  
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Figure 14 Comparison of normalized wave amplitudes between models and data of 

Berkhoff et al. (1982) for N = 2: (a) gauge 1; (b) gauge 2; (c) gauge 3; (d) gauge 4; 

(e) gauge 5; (f) gauge 6; (g) gauge 7; (h) gauge 8 (Solid: present model; Dashed: 

Linearized mild-slope equation; Dotted: model of Kaihatu and Kirby (1995); Dash-

dot: model of Tang and Ouellet (1997); Circle: experimental data). 
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Table 11 Comparison of IOA between models at 1-8 Gauge of Berkhoff et al. (1982) 

for N = 2. 

Gauge Present LMSE KK95 TO97 

1 0.9127 0.9416 0.9036 0.9312 

2 0.9726 0.9200 0.9767 0.9083 

3 0.9801 0.9701 0.9665 0.9728 

4 0.9877 0.9427 0.9769 0.9833 

5 0.9789 0.8476 0.9583 0.9445 

6 0.9910 0.8082 0.8151 0.8377 

7 0.9304 0.8205 0.9452 0.8703 

8 0.8694 0.7353 0.9388 0.8448 
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Figure 15 Comparison of normalized wave amplitudes between models and data of 

Berkhoff et al. (1982) for N = 3: (a) gauge 1; (b) gauge 2; (c) gauge 3; (d) gauge 4; 

(e) gauge 5; (f) gauge 6; (g) gauge 7; (h) gauge 8 (Solid: present model; Dashed: 

Linearized mild-slope equation; Dotted: model of Kaihatu and Kirby (1995); Dash-

dot: model of Tang and Ouellet (1997); Circle: experimental data). 
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Table 12 Comparison of IOA between models at 1-8 Gauge of Berkhoff et al. (1982) 

for N = 3. 

Gauge Present LMSE KK95 TO97 

1 0.9043 0.9416 0.9062 0.9332 

2 0.9735 0.9200 0.9706 0.9099 

3 0.9838 0.9701 0.9348 0.9686 

4 0.9838 0.9427 0.9399 0.9623 

5 0.9682 0.8476 0.8696 0.8965 

6 0.9862 0.8082 0.6498 0.7241 

7 0.9397 0.8205 0.8846 0.8405 

8 0.8461 0.7353 0.7488 0.8166 
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CHAPTER IV  

HYBRID CONSISTENT NONLINEAR MILD-SLOPE EQUATION MODEL                         

 

4.1 Introduction 

In a realistic surface wave environment, the wavefield is represented by random 

waves, a superposition of a number of sinusoidal waves with their own phases and 

amplitudes. This is distinctly unlike the finite number of waves covered in Chapter 3, 

which were harmonics of a fundamental wave. The most common representation of 

random waves is the wave spectrum, a graphical representation of wave energy as a 

function of wave frequency. Noting the evolution of wave spectra provides a qualitative 

depiction of transferred energy between frequency components. As waves propagate into 

the nearshore region, triad wave-wave interactions among wave components dominate 

the wave evolution process. Due to this nonlinear effect becoming more apparent in 

shallow water, strong evolutional variability on the spectrum takes place over an 

extensive range of frequencies.  

To predict wave spectra both in deep water and in shoaling region, two classes of 

models for wave propagation have been developed: as mentioned in Section 1.1, 

deterministic model (or phase-resolving model) simulates individual waves and the 

correlation between waves, which should be powerful and appealing aspect especially in 

shallow water where the assumption of normal distribution for wave phase is not easily 

able to be justified (e.g., Freilich and Guza, 1984; Madsen and Sørensen, 1993; Kaihatu 

and Kirby, 1995; Ardani and Kaihatu, 2019 among many others).  
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As an alternative, many researchers have presented stochastic evolution 

equations, corresponding to a phase-averaged model, to describe the variation of surface 

gravity wave spectrum (e.g., Agnon and Sheremet, 1997; Herbers and Burton, 1997; 

Kofoed-Hansen and Rasmussen, 1998; Eldeberky and Madsen, 1999; Sheremet et al, 

2011; Vrecica and Toledo, 2016, 2019). These stochastic models are developed by 

averaging the nonlinear phase-resolved equations and then specifying a closure to 

truncate the system. This is different from spectral phase-averaged models such as 

SWAN (Booij et al. 1999), which are developed using averaged variables (e.g., spectral 

density) with no phase information. Most of these stochastic models consist of a coupled 

set of evolution equations: one equation is that of the wave power spectrum and the 

bispectrum derived by manipulating the deterministic formulations for the complex 

amplitude; the other equation involves the bispectrum and trispectrum (the next order 

cumulant of bispectrum). At the heart of derivation of stochastic model, there are two 

significant schemes as in turbulence problem: (1) a stochastic closure; (2) ensemble 

average. Although Gaussian Sea state where waves are statistically independent is 

required to apply the methods, the stochastic closure is also valid for non-Gaussian 

waves for weakly nonlinear waves (Benney and Saffman, 1966). Since the equations are 

averaged (and thus ensembles do not need to be run through the model), the stochastic 

models calculate wave spectrum and bispectrum with computational efficiency, which 

leads the stochastic model feasible and practical in relatively extensive area in time and 

space. 
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4.2 Derivation of equations 

To investigate the spectral evolution of unidirectional random waves, we reduce 

the equations of Kaihatu and Kirby (1995) (Equation 2.63) to one dimension for variable 

depth: 
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The corresponding one-dimensional version of the present model for varying 

depth, equivalent to Equation (2.60), is: 
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 (4.2) 

Equation (4.2) of the present model retains x-derivative of amplitude in the 

nonlinear terms (on the right-hand side), which the model of Kaihatu and Kirby (1995) 

(Equation 4.1) does not. Even though Equation (4.2) is solved for nth component of 

wave amplitude we are thus able to get x-derivative of amplitude for nth component (i.e., 

Anx), it is also necessary to have x-derivative of amplitude of different components from 

nth component (i.e., Alx, An-lx, Alx
*, and An+lx), which results in higher number of 

iterations compared to the model of Kaihatu and Kirby (1995; Equation 4.1). 

Consequently, while inclusion of the term ensures the model is less affected by 

mismatch shown in Section 2.3.1, it could make the present model computationally 
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demanding, which becomes especially severe in the case of random waves and might 

give rise to numerical divergence problem (computational instability). Also, the x-

derivative nonlinear term AxA precludes use of the fourth-order Runge-Kutta method 

because nonlinear terms are required to be obtained to apply the method; while Kaihatu 

and Kirby (1995) accomplished this using adaptive stepsize schemes, this may be 

difficult to reliably accomplish with gradients in the nonlinear summations 

For these reasons, we simplify the present model to apply for the problem where 

the surface gravity waves can be represented as a superposition of an arbitrary number of 

waves. To begin with, the interaction coefficients and the phase mismatches are 

modified with additional subscripts to indicate frequency modes interacting: 
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where 
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The next step is to express Anx and Anx
* up to third order in ε because x-derivative 

nonlinear terms AxA consist of Ax and A (where A ~ O(ε)), and we retain terms of O(ε4) 

or lower in parabolic approximation: 
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where (Σ𝐴2)𝑛 denotes nonlinear summation in model of Kaihatu and Kirby (1995) 

shown in right-hand side of Equation (4.1) at second order in ε: 
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and (Σ𝐴2)𝑛
∗
 is conjugate complex of (Σ𝐴2)𝑛: 
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Substituting Equations (4.12) and (4.13) into nonlinear part of Equation (4.3) 

with adjusting to the frequency modes of Ax in right-hand side of Equation (4.3) (i.e., l, 

𝑛 − 𝑙, and 𝑛 + 𝑙): 
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(4.16) 

By applying the closure of Benney and Saffman (1966) to the second nonlinear 

summation in curly bracket of Equation (4.16), the simplified version of present model is 

finally derived (further details in Appendix B): 
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(4.17) 

 

4.3 Comparisons with other models 

Equation (4.17) has eased the computational demands compared to the original 

consistent nonlinear mild-slope equation (Equation 4.3) by adopting the closure scheme 

of Benney and Saffman (1966) used in stochastic models, but is an extension of the 

deterministic model of Kaihatu and Kirby (1995) in that ensemble average is not 

implemented and part of nonlinear terms retain the phase-mismatch of all combinations 

of triads. This combination of approaches is why we refer to this model as a “hybrid” 

model. The remaining terms in the first nonlinear summation represent the interaction 

between water depth change (shoaling) and near-resonant quadratic interactions. 

Furthermore, the second nonlinear summation in curly bracket consists of quasi-cubic 

terms, which have a form of cubic term but come from one of quadratic terms, which is 
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the x-derivative nonlinear term AxA. As we argue in Section 2.3, the effect of phase 

mismatches is alleviated by x-derivative nonlinear terms AxA, which is reflected in the 

equation where one result is that the terms in the second summation have zero mismatch. 

Benney and Saffman (1966) mentioned that Gaussian closure hypothesis is valid 

for weakly nonlinear waves even in the region of non-Gaussian waves such as nearshore 

region. Nevertheless, the stochastic model is restricted to a certain condition: the model 

can be applicable for moderately-nonlinear waves in adequately-shallow water (e.g., Ur 

< 1.5 in Agnon and Sheremet, 1997). However, we extend the deterministic evolution 

equations of Kaihatu and Kirby (1995) to include not only nonlinear terms retaining the 

phase-mismatch but also additional consistently-ordered term by a means of the closure 

of Benney and Saffman (1966). Hence, the hybrid model should have a strength of 

deterministic model and fully considering triad wave-wave interaction over stochastic 

model and model of Kaihatu and Kirby (1995), respectively. 

Before we verify the ability of the model in terms of spectral evolution in random 

waves, we again conduct a comparison between the results from the simplified version 

of present model to previous models including the original model of present study and 

experimental data of Chapalain et al. (1992). According to the conclusions of Kaihatu 

(2001), second order-correction with Equation (2.84) shows mostly significant 

improvement in simulation of wavefield in terms of random waves with the exception of 

little impact on the evolution of wave spectrum for frequency < 1.7 Hz. It is a kind of 

examination preliminary to verification in random waves, and hence we present second-

order corrected results for all the models except for model of Freilich and Guza (1984). 
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Figures 16 and 17 show the numerical results for each case obtained by the hybrid 

consistent nonlinear mild-slope equation (Equation 4.17, hereinafter HCNMSE in 

figures and tables) with second-order correction, the original consistent nonlinear mild-

slope equation (Equation 4.3, hereinafter CNMSE in figures and tables) with second-

order correction, the models of Kaihatu and Kirby (1995) with second-order correction, 

and Freilich and Guza (1984), all compared to the experimental data of Chapalain et al. 

(1992).  

In Tables 13 and 14, in addition to the values of IOA for each harmonic, average 

values of IOA over 1 through 4 harmonics are added for comprehensive comparison of 

models over the entire harmonics. Overall, the simplified version of the present model 

(or hybrid consistent nonlinear mild-slope equation) shows the most striking agreement. 

In particular, the newly developed model has higher values of IOA than the other models 

(see Tables 13 and 14) for higher order harmonic waves (i.e., third- and fourth-

harmonic) which have the greatest value of relative water depth (kh) and the smallest 

nonlinearity parameter (a/h), which leads to the smallest value of Ursell number (𝑈𝑟 =

𝑎

𝑘2ℎ3). The harmonic waves of higher order are consistent with the Gaussian Sea state in 

deep water, and have the effect of nonlinearity (the normalized amplitude, e.g., Ankn) 

approaching to zero (Benney and Saffman, 1966), implying a justification for application 

of the Gaussian closure scheme. Furthermore, it is apparent that the hybrid model better 

predicts all harmonic wave amplitudes than the deterministic models of Kaihatu and 

Kirby (1995) for the most of cases. This is primarily due to the inclusion of AxA as the 

form of quasi-cubic term with zero mismatch in Equation (4.17). Therefore, despite the 
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application of a simplifying closure method (Benney and Saffman 1966), one may 

conclude from the comparison of IOA values (see Tables 13 and 14) that the hybrid 

model better works and account for the triad wave interaction compared to the previous 

deterministic models. 
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Figure 16 Comparison of wave amplitudes between models and data of Chapalain 

et al. (1992) for Case A: (a) first harmonic; (b) second harmonic; (c) third 

harmonic; (d) fourth harmonic; for Case C: (e) first harmonic; (f) second 

harmonic; (g) third harmonic; (h) fourth harmonic (Solid: hybrid consistent 

nonlinear mild-slope equation; Dashed: consistent nonlinear mild-slope equation; 

Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich and Guza 

(1984); Circle: experimental data). 
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Table 13 Comparison of IOA between models including hybrid consistent nonlinear 

mild-slope equation for Case A and C of Chapalain et al. (1992). 

Case Harmonics HCNMSE CNMSE KK95 FG84 

A 

1 0.8911 0.9408 0.7674 0.7563 

2 0.9205 0.9399 0.8519 0.8067 

3 0.7263 0.7081 0.6795 0.6595 

4 0.7369 0.4840 0.6216 0.3804 

Average 0.8187 0.7682 0.7301 0.6507 

C 

1 0.9465 0.9850 0.9236 0.9980 

2 0.9638 0.9811 0.9607 0.9873 

3 0.8786 0.8856 0.8680 0.9606 

4 0.8908 0.8968 0.8513 0.8230 

Average 0.9199 0.9372 0.9009 0.9422 
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Figure 17 Comparison of wave amplitudes between models and data of Chapalain 

et al. (1992) for Case D: (a) first harmonic; (b) second harmonic; (c) third 

harmonic; (d) fourth harmonic; for Case H: (e) first harmonic; (f) second 

harmonic; (g) third harmonic; (h) fourth harmonic (Solid: hybrid consistent 

nonlinear mild-slope equation; Dashed: consistent nonlinear mild-slope equation; 

Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich and Guza 

(1984); Circle: experimental data). 
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Table 14 Comparison of IOA between models including hybrid consistent nonlinear 

mild-slope equation for Case D and H of Chapalain et al. (1992). 

Case Harmonics HCNMSE CNMSE KK95 FG84 

D 

1 0.9088 0.9598 0.8658 0.8761 

2 0.9654 0.9793 0.9571 0.9077 

3 0.7651 0.7704 0.7620 0.7214 

4 0.7623 0.6233 0.6572 0.4787 

Average 0.8504 0.8332 0.8105 0.7460 

H 

1 0.9106 0.8787 0.9252 0.9228 

2 0.9496 0.9684 0.9164 0.9504 

3 0.8087 0.8387 0.7529 0.872 

4 0.8706 0.7451 0.7961 0.612 

Average 0.8849 0.8577 0.8477 0.8393 
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CHAPTER V  

COMPARISON TO DATA: RANDOM WAVES                         

 

5.1 Introduction 

While it is possible to treat random wave dissipation on a wave-by-wave basis in 

the frequency domain (e.g., Bredmose et al. 2004), spectral phase-resolving wave 

models are more readily served by statistical approaches. The model of Battjes and 

Janssen (1978), which estimated the spatial decay of energy flux due to the wave 

breaking in the energy flux balance equation, is widely used for breaking and decay 

descriptions. Thornton and Guza (1983) extended the model of Battjes and Janssen 

(1978) to describe more realistic wave height distribution in the surf zone, allowing 

waves to be temporarily higher than their theoretical limiting height in order to account 

for the spatial lag between height limit exceedance and actual breaking. Whereas Battjes 

and Janssen (1978) express non-breaking wave distribution as a Rayleigh distribution 

with a sharp wave height cutoff to replicate the impact of breaking on the probability 

distribution, Thornton and Guza (1983) redistributed the truncated probability over the 

remainder of the distribution in order to replicate the effect of momentary exceedance of 

wave height above breaking. Recently, several attempts have been made to improve 

modelling in shallow water on steeper beaches: Baldock et al. (1998) used a Rayleigh 

distribution with a Heaviside step function for broken waves across the surf zone instead 

of the delta function at the breaker criterion Hb in the model of Battjes and Janssen 

(1978), and Janssen and Battjes (2007) extended Baldock et al. (1998) to correct the 
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shoaling law so that the model of Janssen and Battjes (2007) allows for the vanishing of 

wave height at the shoreline. 

To predict wave spectra or wave shape, phase-resolving frequency domain 

models have incorporated the dissipation models of Battjes and Janssen (1978) and 

Thornton and Guza (1983). In incorporating the lumped parameter dissipation model, a 

frequency distribution function was first introduced by Mase and Kirby (1993) to 

address the breaking-induced energy decay proportional to the wave frequency squared, 

and the proposed dissipation term αn with the squared-frequency distribution is given by  

 ( )
22

22
1

n n

n

n n

f A
F F

f A
 

 
= + − 

  




 (5.1) 

where β is dissipation function, f is frequency, A is complex amplitude, and subscript n is 

an index indicating the nth frequency component. Furthermore, F is a free parameter that 

weights frequency dependence for αn (i.e., F = 0: 𝑓2 dependence for the entire 

dissipation term; F = 1: frequency independence for αn). The frequency dependent 

dissipation (i.e., F = 0) gives better prediction of wave shape than the frequency 

independent dissipation (Kaihatu and Kirby, 1997; Chen et al., 1997; Kaihatu, 2001), we 

thus use F = 0 in this section. The dissipation term is incorporated in the linear part of 

frequency-domain models: 
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(5.2) 

The “simple” dissipation function of Thornton and Guza (1983) with shallow 

water approximation for the group velocity Cg is selected as β in the present study: 
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where B is a breaking coefficient, fp is a peak frequency of the spectrum, g is the 

gravitational acceleration, h is a water depth, and γ is a parameter related to the root-

mean-square wave height (Hrms): 
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The wave setup is obtained using balance of momentum flux (Longuet-Higgins 

and Stewart, 1964): 
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where 𝜂̅ is the wave setup and Sxx is the onshore component of the wave-driven 

momentum flux tensor (or wave radiation stress), and shallow water approximation of 

Sxx is given by 
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Though wave setup is considered as a prescribed value for dissipation term rather 

than iterative process in simulation, subsequent simulations have shown that the 

inclusion of setup has limited effect on model accuracy. 

Owing to the demonstrated improvement by the second-order correction 

(Equation 2.84) for the permanent form solutions in Chapter 2 (as seen in Figures 2 

through 5), the finite number of waves in Chapter 3 (i.e.,  Figures 6, 7, and 12), and the 

random waves in Kaihatu (2001), we concern ourselves with the second-order corrected 

results for all the models except for the model of Freilich and Guza (1984), where the 

shallow-water formulation obviates the advantages imparted by a second-order 

correction. The complex Fourier amplitudes of free surface elevation An at the upwave 

boundary are obtained from time series for water surface elevation η by a means of Fast 

Fourier Transform (FFT). The wave models (e.g., Equation 5.2) is then used to predict 

the complex Fourier amplitudes for shallower gauge locations. The simulated results of 

wave amplitude are then used to calculate wave energy spectrum: 
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where S(fn) is the calculated wave energy spectrum of frequency fn (n = 1 to N), and Δf = 

1/T is the frequency resolution (where T is record length of one segment). The resulting 

spectrum is then averaged across all segments, leading to an ensemble averaged 

spectrum. Additional smoothing is accomplished by band averaging.  

The RMSPE (Root-Mean-Square Percentage-Error) is used to evaluate the 

performance of the models over the entire frequency component range as the average 

value of IOA in Tables 13 and 14, and it ranges from 0 to ∞, with 0 corresponding to the 

ideal model (see Equation 5.8): 
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where RMSPEj is evaluated at jth gauge (j = 1 to Ngauge), Sj(fi) is the calculated wave 

energy spectrum of frequency fi (i = 1 to N) at the jth gauge (j = 1 to Ngauge) and Sj,obs(fi)  

is the observed wave energy spectrum of frequency fi (i = 1 to N) at the jth gauge (j = 1 

to Ngauge). 

 

5.2 Mase and Kirby (1993), Bowen and Kirby (1994) 

We use two laboratory experimental data sets in this section. First data set 

considered is the data set of Case 2 of Mase and Kirby (1993) (hereinafter MK93 in 

figures and tables), in which random waves were generated and allowed to propagate 

over a sloping bottom, with conditions leading to spilling-type wave breaking. The 

shapes of the spectra were determined by a Pierson-Moskowitz spectrum with fp = 1 Hz, 

and irregular waves were generated for the initial condition at the wave paddle, and the 
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relative depth is high enough to be in fairly deep water range (kph = 1.97). Data were 

taken at 12 different gauges along the 1:20 slope beach, but we do not consider the 

shallowest gauge (h = 2.5 cm) because of the anomalous measurement where the choice 

of F = 0 caused the destroyed tail of power spectrum at h = 2.5 cm (Mase and Kirby, 

1993; Kirby and Kaihatu, 1997; Chen et al., 1997). The data were split into 7 segments 

of 2048 points with the sampling rate of 20 Hz. Following Mase and Kirby (1993), 

assigned values of B and γ in β (Equation 5.3) are 1.0 and 0.6, respectively. A sketch of 

experimental setup is shown in Figure 18.  

The second data set used to analyze the performance of the hybrid consistent 

nonlinear mild-slope model is that of the Bowen and Kirby (1994) (hereinafter BK94 in 

figures and tables). Of the three wave conditions present in the experimental data set, we 

use Case A in order to investigate the validity of the present model in intermediate water 

depth range (kph = 0.72). Following Bowen and Kirby (1994), the free surface elevation 

has been measured in the sampling rate of 25 Hz, and is divided into 24 realizations, and 

each realization has 1024 data points. Bowen and Kirby (1994) found the optimal values 

of B and γ in β (Equation 5.3) as 1.15 and 0.6, respectively, and thus these are assigned 

in this study. Figure 19 presents the experimental layout showing 44 gauges along the 

1:35 beach slope of total 47 wave gauges, and Table 15 details wave parameters and 

experiment setups of Mase and Kirby (1993) and Bowen and Kirby (1994).  
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Figure 18 Layout of experiment of Mase and Kirby (1993). 

 

 

 

Figure 19 Layout of experiment of Bowen and Kirby (1994). 

 

 

 

Table 15 Wave parameters and experiment setups of Mase and Kirby (1993) and 

Bowen and Kirby (1994). 

Experiment Bed slope Hrms (cm) fp (Hz) N kph Urp 

Case 2 of MK93 1:20 4.7 1 400 1.97 0.01 

Case A of BK94 1:35 6.6 0.5 150 0.72 0.15 
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Figures 20-21 and 22-23 show the wave spectra comparison between the data 

with the hybrid version of present model, models of Kaihatu and Kirby (1995), and 

Freilich and Guza (1984) for Case 2 of Mase and Kirby (1993) and Case A of Bowen 

and Kirby (1994), respectively. Tables 16 and 17 provide comparison of RMSPE 

between models for Case 2 of Mase and Kirby (1993) and Case A of Bowen and Kirby 

(1994), respectively.  Following Kaihatu and Kirby (1995), the present model uses the 

linear shoaling mechanism while Freilich and Guza (1984) took non-dispersive relation 

for shoaling (i.e., Green’s law shoaling). For Case 2 of Mase and Kirby (1993), owing to 

the high relative depth at the first gauge (kph = 1.97), the predictions of two model with 

the fully-dispersive linear theory for the dispersive and shoaling characteristics (i.e., the 

present model and the model of Kaihatu and Kirby (1995)) are in better agreement with 

the measured data compared to those of Freilich and Guza (1984).  

On the other hand, Case A of Bowen and Kirby (1994) corresponds to the 

shallower water case than Case 2 of Mase and Kirby (1993), and as the water get 

shallower, the relative depth at a peak become smaller and arrive at the shallow water 

range for Boussinesq theory (e.g., kph = 0.31 at h = 10 cm). Consequently, the model of 

Freilich and Guza (1984) shows better predictions for the lower frequencies (nearshore 

part of the spectra) at the shallower gauges. The model of Kaihatu and Kirby (1995) 

underestimates the energy spectrum of peak frequency at the shallower gauges, and this 

may be due to the linear dispersive relation, as opposed to the weakly dispersive relation. 

We note that the linear shoaling term includes more terms at O(εαμ2) (where hx ~ O(α)) 

in comparison to the non-dispersive shoaling term (
ℎ𝑥

4ℎ
𝐴): 
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Although the shoaling mechanism based on fully dispersive linear theory has an 

asymptote of that based on the non-dispersive relation in shallow water (or the higher-

order terms at O(εαμ2) in the linear shoaling term approaches to zero at the shallower 

gauge), the integrated effect of the higher-order terms from the initial gauge to the 

shallower gauge may not be negligible. Therefore, the accumulated effect of the terms at 

O(εαμ2) probably attribute to the underestimated predictions (or overestimated shoaling 

effect) of the model of Kaihatu and Kirby (1995) at peak frequency, which begin to 

become noticeable from h = 18 cm (Figure 23(b)).      

Despite the fact that the present study also takes into consideration the identical 

linear dispersive relation, we notice that, comparing to the model of Kaihatu and Kirby 

(1995), the present model shows improvement in prediction of the peak wave energy 

spectra probably due to the inclusion of additional quasi-cubic terms (see Figure 23). 

This advancement is valid for Case 2 of Mase and Kirby (1993) as well shown in Figure 

21. Additionally, the present formulations give the best performances for the higher 

frequencies (deep water part of spectra) at most of shallow gauges in the both cases. In 

the higher frequency range of spectra, the value of mismatch becomes larger, which 

gives the present model an advantage since it is less affected by large mismatch due to 

the presence of additional nonlinear terms with zero-mismatch, which is the most 

obvious at 𝑓 > 2 Hz in Case A of Bowen and Kirby (1994) as seen in Figure 23. Also, 

the value of Ursell number Urn (
𝐻𝑟𝑚𝑠

2𝑘𝑛
2ℎ3

) approaches to zero in the deep water range of 
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wave power spectra, which might validate the ordering of present study instead of that of 

Boussinesq type model with O(Ur) ~ O(1). Moreover, when applying to the laboratory 

and field data where the total number of frequency components are larger and the 

offshore part of spectra is more dominant, the present model may be even more feasible 

alternative to the previous models. 

The low frequency wave range (f < 0.5fp) is likely influenced by strong reflected 

effects from shorelines which is not simulated by all the models. Therefore, the lack of 

considering the reflected waves in frequency-domain model may lead to a strong 

deviation for the measurement at the low frequency range. The predictions of the wave 

spectrum at the low frequency wave range (f < 0.5 fp) in the case of Mase and Kirby 

(1993) are worse than those in the case of Bowen and Kirby (1994), which may be 

ascribed to the steeper slope of Mase and Kirby (1993) (bed slope = 1/20) causing more 

obvious reflected waves due to the more rapid shoaling compared to Bowen and Kirby 

(1994) (bed slope = 1/35). 
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Figure 20 Comparison of wave spectra density using N = 400 for Case 2 of MK93: 

(a) h = 47 cm; (b) h = 35 cm; (c) h = 30 cm; (d) h = 25 cm; (e) h = 20 cm; (f) h = 17.5 

cm (Solid: experimental data; Dashed: hybrid consistent nonlinear mild-slope 

equation; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich 

and Guza (1984)). 
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Figure 21 Comparison of wave spectra density using N = 400 for Case 2 of MK93: 

(a) h = 15 cm; (b) h = 12.5 cm; (c) h = 10 cm; (d) h = 7.5 cm; (e) h = 5 cm (Solid: 

experimental data; Dashed: hybrid consistent nonlinear mild-slope equation; 

Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich and Guza 

(1984)). 
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Figure 22 Comparison of wave spectra density using N = 150 for Case A of BK93: 

(a) h = 44 cm; (b) h = 38 cm; (c) h = 33 cm; (d) h = 30 cm; (e) h = 27 cm; (f) h = 24 

cm (Solid: experimental data; Dashed: hybrid consistent nonlinear mild-slope 

equation; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich 

and Guza (1984)). 



 

92 

 

 

Figure 23 Comparison of wave spectra density using N = 150 for Case A of BK93: 

(a) h = 21 cm; (b) h = 18 cm; (c) h = 15 cm; (d) h = 13 cm; (e) h = 10 cm; (f) h = 7 cm 

(Solid: experimental data; Dashed: hybrid consistent nonlinear mild-slope 

equation; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich 

and Guza (1984)). 
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Table 16 Comparison of RMSPE between models for Case 2 of Mase and Kirby 

(1993). 

Case 
Depth 

(cm) 
HCNMSE KK95 FG84 

Case 2 of MK93 

47 - - - 

35 1.650 1.741 2.242 

30 0.957 1.070 1.236 

25 1.329 1.378 1.330 

20 1.037 1.175 1.444 

17.5 1.650 1.741 2.242 

15 0.957 1.070 1.236 

12.5 1.329 1.378 1.330 

10 0.816 1.118 1.362 

7.5 0.933 1.134 1.339 

5 3.638 3.648 4.778 

Average 1.295 1.449 1.802 
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Table 17 Comparison of RMSPE between models for Case A of Bowen and Kirby 

(1994). 

Case 
Depth 

(cm) 
HCNMSE KK95 FG84 

Case A of BK94 

44 - - - 

41 0.319 0.557 0.216 

38 0.408 0.679 0.240 

35 0.518 1.205 0.309 

33 0.594 1.615 0.305 

30 0.817 1.947 0.370 

27 0.571 2.294 0.427 

24 1.037 2.926 0.495 

21 0.665 2.262 0.545 

18 0.835 2.039 0.571 

15 0.593 1.437 0.590 

13 0.471 0.957 0.600 

10 0.417 0.482 0.595 

7 0.553 0.584 0.763 

Average 0.600 1.461 0.464 
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5.3 Smith and Vincent (1992) 

Smith and Vincent (1992) investigated a laboratory examination where random 

waves having bimodal spectra were transformed through the bottom rising at a slope of 

1:30. In order to generate the double-peaked spectra, they superimposed two TMA 

(Texel, MARSEN, and ARSLOE, Bouws et al., 1985) spectra at a piston-type wave 

paddle. Data were taken at 9 different gauges along the 1:30 slope beach and sampled at 

10 Hz, and then divided into 11 realizations of 1024 points each. B and γ in β (Equation 

5.3) are valued at 0.8 and 0.6, respectively, and we used a mean frequency for the peak 

frequency in β (Equation 5.3) for the cases of Smith and Vincent (1992). Figure 24 

displays the experimental flume with 9 gauges along the 1:30 beach slope. They used 

two sets of two double-peak wave period: one combination shows that the second peak 

was at a harmonic of the first peak (Tp = 2.5 s/1.25 s); other does not (Tp = 2.5 s/1.75 s). 

They argued that regardless of the fact that the second peak is a multiple of the first 

peak, all the cases had similar trends in spectral evolutions. To examine the energy 

transfer between the frequency modes, in particular, two primary peaks, we select Cases 

2, 5, 8, and 11 where the-low frequency peak is almost equal in energy to that of the 

high-frequency. Table 18 represents wave parameters including the total number of 

frequency component taken for the simulation and experiment setup of Smith and 

Vincent (1992).  
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Figure 24 Layout of experiment of Smith and Vincent (1992). 

 

 

Table 18 Wave parameters and experiment setup of Smith and Vincent (1992). 

Experiments 
Bed 

slope 

Hrms 

(cm) 
fp (Hz) N kph Urp 

Case 2 of SV92 1:30 9.8 0.4/0.8 250 0.67/1.68 0.18/0.03 

Case 5 of SV92 1:30 5.9 0.4/0.8 250 0.67/1.68 0.11/0.02 

Case 8 of SV92 1:30 10.3 0.4/0.57 250 0.67/1.03 0.19/0.08 

Case 11 of SV92 1:30 6.1 0.4/0.57 250 0.67/1.03 0.11/0.05 

 

 

Figures 25 through 28 compare the energy spectra of the surface elevation 

computed by the models with the laboratory measurements at the selected gauges. As in 

the experiments of Mase and Kirby (1993) and Bowen and Kirby (1994), the impact of 

the improvements of the present model relative to earlier models in two metrics are also 

observed in the experimental dataset of Smith and Vincent (1992): (1) the improved 

computations of power wave spectra at two peaks; (2) the better predictions over the 

higher frequency range of the spectra. In addition, comparison of the average RMSPE 
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values from Tables 19 and 20 shows that the present model provides much better 

agreement with the measurements over all frequency ranges of the spectra than the other 

models. The second point is likely to be a clear indication that the inclusion of additional 

nonlinear terms having zero-mismatch relives the phase mismatches effect. Although the 

interaction between wave numbers (e.g., 𝑘𝑙 + 𝑘𝑛−𝑙 − 𝑘𝑛) becomes the smallest at the 

shallowest gauge, the phase mismatches have the largest value at the shallowest 

measurement location. This is because the phase mismatch describes the accumulation 

of the interaction between wave numbers from offshore to the shallow gauge location. It 

probably explains the much better agreement of present model compared to that of 

Kaihatu and Kirby (1995) at the shallowest location of the shallower cases (Cases 2 and 

8 where Urp = 0.18 and 0.19 at the first peak, respectively) as seen in Figures 25 (f) and 

27 (f) where nonlinear terms with zero-mismatch may be desirable as in Boussinesq-type 

equations.    
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Figure 25 Comparison of wave spectra density using N = 250 for Case 2 of SV92: 

(a) h = 61 cm; (b) h = 36.6 cm; (c) h = 24.4 cm; (d) h = 18.3 cm; (e) h = 12.2 cm; (f) h 

= 7.6 cm (Solid: experimental data; Dashed: hybrid consistent nonlinear mild-slope 

equation; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich 

and Guza (1984)). 
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Figure 26 Comparison of wave spectra density using N = 250 for Case 5 of SV92: 

(a) h = 61 cm; (b) h = 36.6 cm; (c) h = 24.4 cm; (d) h = 18.3 cm; (e) h = 12.2 cm; (f) h 

= 7.6 cm (Solid: experimental data; Dashed: hybrid consistent nonlinear mild-slope 

equation; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich 

and Guza (1984)). 
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Figure 27 Comparison of wave spectra density using N = 250 for Case 8 of SV92: 

(a) h = 61 cm; (b) h = 36.6 cm; (c) h = 24.4 cm; (d) h = 18.3 cm; (e) h = 12.2 cm; (f) h 

= 7.6 cm (Solid: experimental data; Dashed: hybrid consistent nonlinear mild-slope 

equation; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich 

and Guza (1984)). 
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Figure 28 Comparison of wave spectra density using N = 250 for Case 11 of SV92: 

(a) h = 61 cm; (b) h = 36.6 cm; (c) h = 24.4 cm; (d) h = 18.3 cm; (e) h = 12.2 cm; (f) h 

= 7.6 cm (Solid: experimental data; Dashed: hybrid consistent nonlinear mild-slope 

equation; Dotted: model of Kaihatu and Kirby (1995); Dash-dot: model of Freilich 

and Guza (1984)). 
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Table 19 Comparison of RMSPE between models for Case 2 and 5 of Smith and 

Vincent (1992). 

Case 
Depth 

(cm) 
HCNMSE KK95 FG84 

Case 2 of SV92 

61 - - - 

36.6 0.896 1.281 0.726 

24.4 0.668 1.008 0.767 

18.3 0.764 0.923 0.702 

15.3 0.822 0.855 0.755 

12.2 0.985 1.027 1.015 

9.2 0.995 0.906 1.067 

7.6 0.816 0.852 0.943 

6.1 1.001 1.049 1.186 

Average 0.868 0.988 0.895 

Case 5 of SV92 

61 - - - 

36.6 0.897 1.112 0.812 

24.4 0.712 0.997 0.850 

18.3 0.729 0.837 0.961 

15.3 0.626 0.733 0.917 

12.2 0.804 0.938 1.075 

9.2 0.779 0.794 0.915 

7.6 0.586 0.597 0.688 

6.1 0.874 0.855 0.979 

Average 0.751 0.858 0.900 
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Table 20 Comparison of RMSPE between models for Case 8 and 11 of Smith and 

Vincent (1992). 

Case 
Depth 

(cm) 
HCNMSE KK95 FG84 

Case 8 of SV92 

61 - - - 

36.6 1.179 2.226 0.704 

24.4 0.806 1.296 0.783 

18.3 0.628 0.864 0.711 

15.3 0.696 0.901 0.747 

12.2 0.896 1.020 0.995 

9.2 0.720 0.704 0.885 

7.6 0.605 0.664 0.697 

6.1 0.657 0.843 0.723 

Average 0.773 1.065 0.781 

Case 11 of SV92 

61 - - - 

36.6 0.984 1.450 0.685 

24.4 1.130 1.764 0.782 

18.3 0.833 1.124 0.827 

15.3 0.778 1.017 0.879 

12.2 0.967 1.197 1.060 

9.2 0.802 0.862 0.925 

7.6 0.742 0.768 0.810 

6.1 0.761 0.745 0.794 

Average 0.874 1.116 0.845 
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CHAPTER VI  

MODELS FOR WIDE-ANGLE WATER WAVES 

 

6.1 Introduction 

While they have severe disadvantages in other aspects, elliptic equation models 

(e.g., Berkhoff, 1973) have no limit to the application of wide-angle propagation 

(Dalrymple et al., 1989). However, the application of the parabolic equation implies the 

major limitation in terms of a principal propagation direction, the equation therefore may 

be applied to the problems where the wave propagates at or close to a given direction or 

the refraction effect is not significant over the entire area (Kirby, 1986a, 1986b; 

Dalrymple and Kirby, 1988). In contrast, parabolic wave models are numerically 

convenient to apply (particularly over an open coastline), but suffer in accuracy when 

the wave approach direction is at an oblique angle to the cross-shore (typically x) axis of 

the numerical grid (Kirby, 1986a, 1986b; Dalrymple and Kirby, 1988; Dalrymple et al., 

1989; Suh et al., 1990). 

Several higher-order parabolic models have emerged since then, based on the 

original parabolic equation (Radder, 1979; Lozano and Liu, 1980), to increase the range 

of wave directions over two-dimensional topography (Booij, 1981; Kirby, 1986a, 

1986b). Booij (1981) provided a wave-current parabolic model for wider wave angles by 

applying splitting method for forward and backward scattered components to the wave 

field. Kirby (1986a) made use of the derivation of the wide-angle parabolic model of 

Booij (1981) to formulate a higher-order parabolic model to improve the range of 
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applicability into wider-angle propagation. Kirby (1986b) developed approximations 

based on minimax principle which minimizes maximum error over a prespecified range 

of wave direction, and confirmed that the parabolic approximation of Kirby (1986a) is 

related to (1,1) Padé approximant and the asymptote of minimax approximant when the 

prespecified aperture approaches to 0°. 

Alternatively, considerable effort has been expended in attempts to derive a 

model valid for angles of propagation up to 90° by using the concept of the angular 

spectrum. The angular spectrum model is essentially based on the assumption that the 

wave field and the underlying bathymetry is periodic in the alongshore direction. By 

taking the Fourier transform of the wave field in the direction parallel to the longshore 

direction (typically y), the Fourier components called the angular spectrum express the 

wave field along a straight line, propagating independently in a specific direction. First, 

Dalrymple and Kirby (1988) and Dalrymple et al. (1989) developed solutions of the 

mild-slope equation (Berkhoff, 1973) in terms of the spectrum in longshore wavenumber 

for parallel bathymetry and irregular bathymetry, respectively. Next, Suh et al. (1990) 

developed extended the angular spectrum model to the case of the propagation of Stokes 

waves over water of slowly varying depths, involving the cubic nonlinearity and 

interaction between wave and lateral bottom variation. Kirby (1991) formulated a 

Boussinesq-type angular spectrum model to account for triadic nonlinear interaction 

between angular modes as well as frequency modes over alongshore-uniform 

topography. For the past several years, the angular spectrum approach has been 

extensively applied. For example, Agnon and Sheremet (1997), Eldeberky and Madsen 
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(1999), and Herbers et al. (2003) used the longshore periodic formulation as a means to 

develop a stochastic (phase-averaged) model for directional wave propagation. 

Bredmose et al. (2005) and Vrecica and Toledo (2016, 2019) used a “dispersion 

operator” (essentially a series expansion of trigonometric functions) to further improve 

deep water accuracy. Janssen et al. (2006) derived a set of unified evolution equations 

valid for both Stokes and Boussinesq regimes with longshore periodicity. Toledo (2013) 

introduced nonlinear alongshore wave number by using a perturbation method for the 

wave number field for the extension of mild-slope equation model to the oblique 

incident wave; Davis et al. (2014) and Sheremet et al. (2016) applied the phase-resolved 

model to the offshore directional wave spectrum (e.g., JONSWAP spectrum, 

Hasselmann et al., 1973).   

 

6.2 Higher-order parabolic model 

Kirby (1984) proposed a lowest-order wave-current parabolic approximation by 

correcting the dynamic free surface boundary condition in Booij (1981). Based on the 

splitting approach of Booij (1981), Kirby (1986a) revisited the linear wave-current mild-

slope equation of Kirby (1984) to develop nonlinear version of the equation. The higher-

order parabolic model of Kirby (1986a) appears to be reduced to (1,1) Padé approximant 

in the absence of ambient current and varying depth. Kirby (1986a) showed that the 

higher-order model is superior to the lowest-order parabolic approximation (Kirby and 

Dalrymple, 1983; Kirby, 1984) in describing the behavior of wave focusing by a 

submerged shoal (Berkhoff et al., 1982), in particular the diffraction fringe away from 
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the focal region. Kaihatu (2001) extended the higher-order parabolic approximation of 

Kirby (1986a) by adding the nonlinear terms of Kaihatu and Kirby (1995) to the linear 

model of Kirby (1986a), and Kaihatu (2001) shows that the model agrees very well with 

the experimental data for wide-angle propagation (Chawla, 1995). 

One feature that is apparent with the Padé approximant is that it returns the exact 

solution (i.e., cos 𝜃𝑝 in Equation 6.1) at a principle prescribed direction (θp = 0°; where 

θp is propagation direction) and the accuracy of the approximation decreases with 

increasing θp. It is therefore not surprising that the models based on the Padé 

approximant (i.e., Kirby, 1986a; Kaihatu, 2001) gives poor performance for large angles 

of propagation, though still improved over the classical small-angle parabolic 

approximation. To address this shortcoming, an alternative approach – the minimax 

approximation – can also be used. The minimax approximation is intended to minimize 

the global maximum error within a prescribed interval (0 ≤ θp ≤ θa; where θa denotes 

aperture angle, a pre-set parameter within the approximation) by tolerating a minor 

deviation from optimal accuracy at small grazing angles. Realizing that the (1,1) Padé 

approximation is identical to the minimax approximation as θa → 0, Kirby (1986b) 

modified the parabolic approximation of Kirby (1986a) in the absence of current by 

replacing the Padé approximation coefficients with the coefficients of the minimax 

approach. Kirby (1986b) concluded that the minimax model with θa = 60° is the best 

model because the model shows similar and better performances than the (1,1) Padé 

model in the case of small-angle and wide-angle propagations, respectively (see 
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Equation 6.1 and Figure 29).
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where the coefficients of the minimax approximation with θa = 60° are given: 

 0 1 10.998213736;  0.854229482;  0.383283081a a b= = − = −  (6.2) 
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Figure 29 Comparison of absolute errors for various approximations (Solid: lowest-

order approximation; Dashed: (1,1) Padé approximation; Dotted: minimax 

approximation with θa = 60°). 

 

 

In order to allow for large-angle propagation, we thus select the minimax model 

with θa = 60° for the higher-order linear terms of the present model: 
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 (6.3) 

where An is the complex amplitude of free surface elevation of nth frequency 

component, 𝑘̅𝑛 is the y-averaged wave number, and subscribes x and y refer to 

derivatives with respect to x and y, respectively. 
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Kirby (1986a) chose a different ordering system from classic Stokes-type mild-

slope equation models (Yue and Mei, 1980; Kirby and Dalrymple, 1983), which is the 

relation between the wave steepness ε (= ka where a is the wave amplitude), the 

modulation scale δ (where An is function of δx and δ1/2y), and the scale for bottom slope 

α. Kirby (1986a) chose the following ordering: 

 ( ) ( ) ( ) ( )2 1/2~ ,  ~ ~nA O O O O     (6.4) 

The present study obtained an elliptic mild-slope equation which is slightly 

different from that of previous studies (e.g., Agnon et al., 1993; Kaihatu and Kirby, 

1995; Tang and Ouellet, 1997; Eldeberky and Madsen, 1999 among many others), as it 

was derived by using the combined free surface boundary condition with fewer 

horizontal derivative terms. In addition, the revised scaling relating bathymetric 

variations to amplitude modulations (O(δ) ~ O(ε2)) was employed, allowing 

consideration of additional triad wave-wave interaction terms. In the present study, we 

make use of the nonlinear terms in the present elliptic equation (nonlinear part of 

Equation 2.37): 
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where ωn is the wave angular frequency, g is the gravitational acceleration, two sets of 

two arbitrary frequency components, (l, n – l) and (l, n + l) interact with the nth 

frequency mode through triad nonlinear interaction. 

Following the ordering approach of Kirby (1986a), the following terms have the 

highest order in the linear higher-order parabolic model:  

 ( ) ( ) ( ) ( )2 5.5

1 12

2
2 , ~nx

g ny g nyny nyx
n n

k i
ib CC A b CC A O O

k k
  =  (6.6) 

Of the nonlinear terms in Equation (6.5), we have the following term at the 

highest order: 

 ( ) ( )2 4 4~lx n lxA A O O  − =  (6.7) 

Hence, the choice of ordering system of Kirby (1986a) allows the model to 

include all the nonlinear terms without any terms eliminated from Equation (6.5): 
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where the interaction coefficients (R and S) are the same as Equation (2.48). We note 

that AxAx is added to the nonlinear terms of Equation (2.59) where an in Equation (2.59) 

is equivalent to An in Equation (6.8). 

 

6.3 Angular spectrum model 

6.3.1 Lateral depth variation 

Higher-order approximations require more terms for higher accuracy at very 

wide-angle propagation (Dalrymple and Kirby, 1988). These terms may not be 

accommodated by the parabolic formulation, destroying a key advantage over elliptic 

models. Therefore, in order to develop the models which is available for the large wave 

angles up to 90°, many researchers have used the angular spectrum formulation for 

multi-directional wave propagation. The angular spectrum model requires the use of a 

Fourier transform in the alongshore direction (i.e., y-direction, where x is positive when 

pointed in the onshore direction), by which the wave train is decomposed into discrete 

Fourier components in longshore wavenumber. This may also require that the 

environmental conditions present (bathymetry, currents, etc.) satisfy longshore 

periodicity. Several attempts have been made in this regard: (1) alongshore-uniform 

topography is assumed (Dalrymple and Kirby, 1988; Kirby, 1991; Agnon and Sheremet, 

1997; Eldeberky and Madsen, 1999; Herbers et al., 2003; Vrecica and Toledo, 2016, 

2019); (2) the lateral bottom variation is expressed in terms of an x-varying laterally 

averaged wave number (Dalrymple et al., 1989; Bredmose et al., 2005); (3) ordered 
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lateral depth variation represents the interaction between bottom change in the transverse 

y-direction and surface wave (Suh et al., 1990; Janssen et al., 2006).  

In the present study, we follow the same kind of manipulation by way of laterally 

averaged water depth ℎ̅ (Suh et al., 1990; Janssen et al., 2006) in order to formulate a 

consistently-ordered model with the consistent nonlinear mild-slope equation model. 

The bathymetry is defined by a one-dimensional reference depth (or ℎ̅) and the lateral 

depth variations ℎ̅: 

 ( ) ( ) ( ), ,h x y h x h x y= −  (6.9) 

where the lateral average of water depth is defined by: 

 ( )
0

1
,

y

h h x d
y

 =   (6.10) 

We define that the lateral depth variation is of order of the small parameter γh, 

and we assume O(γh) ~ O(ε) in order to use perturbation scheme: 
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where subscript 0 denotes the references values. For later convenience, v ~ O(1) is 

introduced to obviously express the order of lateral depth variation: 

 ( ) ( ) ( ), ,h x y h x v x y=  (6.12) 
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6.3.2 Derivation of elliptic equation 

Using Taylor series about still water level and laterally-averaged water depth 

(i.e., z = 0 and z = −ℎ̅ where z is positive vertically upward from the still water level) for 

free surface boundary conditions and bottom boundary condition, respectively, the 

truncated boundary value problem is formulated with the leading order nonlinearity of 

O(ε2) as: 

 
2 0 ;  0h zz h z  + = −    (6.13) 

 ( )3  ;  z zz x x x x z h hh h h h h O z h     = − −  −   +  + = −  (6.14) 

 ( ) ( )
2 2 31 1

 ;  0
2 2

t h z tzg O z     = − −  − − + =  (6.15) 

 ( )3  ;  0t z h h zz O z     = −  + + =  (6.16) 

Combined free surface elevation is obtained by manipulating Equations (6.15) 

and (6.16): 
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Wave potential function is given as a superposition of solutions from fully 

dispersive linear theory: 
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Further, the depth dependence function is independent of y-direction: 
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The wave frequency and the y-averaged wave number are related by the linear 

dispersion relation: 

 
2 tanhn n ngk k h =  (6.20) 

Following Smith and Sprinks (1975), we apply Green’s second identity: 
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Using features of depth dependence function f and Equations (6.13), (6.14), and 

(6.17) gives: 
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where nonlinear term is: 
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We use 𝜙̃ and f to represent horizontal derivatives of potential function ϕ: 
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 (6.25) 

Plugging Equations (6.24) and (6.25) into Equation (6.22): 
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Applying Leibnitz’ rule, we obtain: 
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 (6.27) 

Following Kirby and Dalrymple (1983), we assumed O(α) ~ O(ε2) for the slowly 

varying water depth (i.e., |∇hh| = O(α) << 1) to properly balance nonlinear effect with 

bathymetric variations. In order to maintain the consistency with the present ordering 

system, we assume the sales for the horizontal derivatives of h and v: 

 ( ) ( ) ( ) ( ) ( )2~ , ~x hO h O O O v O   =   (6.28) 

and the order of the bottom slope then becomes equivalent to O(α) ~ O(ε2): 
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 (6.29) 

We note that this scaling approach is identical to that of Janssen et al. (2006) in 

the case of intermediate water depth (i.e., 𝑂(𝑘0ℎ̅)~𝑂(1) in Equation (2.3) of that 

publication). Then, we simplify the equation by eliminating the terms which are at 

higher order than the leading order nonlinearity O(ε2): 
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where nonlinear terms are also simplified: 
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 (6.31) 

The frequency-domain model is derived under the assumption of periodicity in 

time: 

 ( )
*ˆ ˆ

, ,
2 2

n ni t i tn n
n x y t e e

  
 −

= +  (6.32) 

With the values of expressions with depth dependence function f at the surface 

and bottom boundaries, we obtain: 
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where  
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cosh 4 2

n
g

n
n n

k hg h
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k h k

 
= + 

 
 (6.34) 

There are two differences between Equation (6.33) and the elliptic equation of 

CNMSE (Equation 2.37): (1) all the wave characteristics (i.e., ℎ̅, 𝑘𝑛
̅̅ ̅, (𝐶𝐶𝑔)̅̅ ̅̅ ̅̅ ̅̅

𝑛) are of y-

averaged value in Equation (6.33) except for the third term on its left-hand side; (2) the 

third term is added and it represents the interaction between 𝜙̂𝑛 and ℎ̃, thereby involving 

the effect of lateral depth variation effects in Equation (6.33). 

 

6.3.3 Derivation of Angular spectrum model 

The wave potential function Equation (6.18) is (via the depth-dependence 

function) based on the premise of fully dispersive linear theory applied to a surface wave 

field propagating over straight and parallel bathymetric contours (Suh et al. 1990). Due 

to this longshore-periodic assumption, we can then decompose the y-dependent wave 
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potential function into a superposition of the discrete alongshore component 

wavenumbers by Fourier transform: 

 ( ) ( ), ,
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where Fm denote the mth component of the discrete Fourier transform in y-direction, we 

thus have: 
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and 
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where An,m is the complex amplitude of nth frequency component and mth alongshore 

component, which propagates independently in the direction: 
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tanp

n m
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k


 −

 
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 
 (6.38) 

where alongshore wavenumber increment is given by: 

 
( )

2

2 1M y


 =

+ 
 (6.39) 

Here the width of domain is 𝐿𝑦 = (2𝑀) ∙ Δ𝑦, and the Pythagoras theorem is 

satisfied between wavenumbers: 

 ( ) ( ) ( )
2 2 2

,n n mk k m= +  (6.40) 
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The evanescent modes (or non-progressive modes) m where (kn,m)2
 < 0 decline 

exponentially. Following Suh et al. (1990), we neglect the evanescent modes at the 

offshore boundary under the assumption that the evanescent modes are negligible 

compared to the progressive modes. Since y-averaged wave number 𝑘𝑛
̅̅ ̅ increases with 

both decreasing water depth ℎ̅, and wave frequency ωn, the number of alongshore 

components varies with the frequency component n. Thus, we introduce a notation Mn to 

indicate the number of active modes in alongshore-domain (i.e., 2Mn + 1). 

As mentioned earlier, the application of the elliptic version to the open-ocean 

conditions results in several problems (computational inefficiency, inability to specify 

downwave boundary condition). Based on the parabolic approximation of the consistent 

nonlinear mild-slope equation (see Chapter 2), we thus eliminate terms of O(εδα, εδ2) ~ 

O(ε5) or higher in Equation (6.33) in order to derive parabolic form: 
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 (6.41) 

where F-1 denotes the inverse Fourier transform, and the overbarred interaction 

coefficients are: 
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and 

 

( )( ) ( )

( )

2 2 2 2

1 , ,

2
2 2

2 n l p n l m p n l n l n l l

l n l

n
l l n l n l

g
S k k p m p k k

g

    



  

+ + + +

+

+ +

 = + + + −
 

− − +

 (6.45) 

 

2

,

2 2
n n l m p

l n l

g k
S i





+ +

+

=  (6.46) 

 

2

,

3 2
n l p

l n l

g k
S i



 +

= −  (6.47) 

The last term on the left-hand side of Equation (6.41) represents the interaction 

between surface wave modes and lateral bottom variation, which is a subset of the 

forcing terms in Janssen et al. (2006). The premise of the leading order nonlinearity of 

O(ε2) leads us to discard the higher-order terms accounting for the interaction between 

wave and lateral bottom variation. In this study, we however correct the forcing term for 

a case with a significant lateral depth variation by fully consideration of the terms in 

Janssen et al. (2006):    
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where  
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 (6.49) 

and  

 tanhn nT k h=  (6.50) 

Despite the fact that the effects of lateral depth variation are further taken into 

consideration in an a posteriori sense, it is noteworthy that the additional forcing terms 

are at lower order than the neglected terms in the parabolic approach, that is, the terms 

are at equal to or lower than O(ε4): 
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6.4 Model validation 

In order to address whether the Fourier spectrum in the longshore direction 

results in any loss of accuracy and test the capability of models for wide-angle 

propagation, we now conduct several comparisons between the higher-order parabolic 

equation model (Equation 6.8; hereinafter HPM: CNMSE in figures and tables) and the 

angular spectrum model (Equation 6.48; hereinafter ASM: CNMSE in figures and 

tables) and experimental data. Furthermore, in order to study the nonlinear amplitude 

gradient terms (e.g., AxA, AyAy) that we added to the consistent nonlinear mild-slope 

equation model, we also compare the reduced equations of Equations (6.8) and (6.48) 

retaining only the nonlinear terms of Kaihatu and Kirby (1995) (i.e., AA), which are 

referred to as HPM: KK95 and ASM: KK95 in figures and tables, respectively. The 

higher-order parabolic model with the nonlinear terms of Kaihatu and Kirby (1995) is: 
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For the angular spectrum model with the nonlinear terms of Kaihatu and Kirby 

(1995), Equation (6.48) is reduced to Equation (6.54): 

 

( ) ( )

( )

( )

( ) ( )

( )

,

,

,

, , , ,

2 1

,

1

, , ,

2

1

1 ,

2

3

2

,

,

cosh
1 ,

1 1

2 1

n p

n p

n p

n m g n mx n m g n m
n n x

i k dx

n m n p

i k dx

n m n m m x n p

i k dxn

n m y n p

nn
n

gn n

i k CC A i k CC A

k F h x y F A e

ik P F h x y F A e
g

k h
im k hT F h x y F A e

TC
k

C T T



−

−

−

   +   

  
  

  

  −   
  

+
  − −   

  

−
+

−
( )

 

 

,

,

, , ,

, ,

2 1

, ,2

min , 1

1 , ,

max , 1

*

1 , ,

,

1

4

1

2

n m

n p

l n l
l p n l m p n m

n l l

l p n l m

i k dx

i k dx

n m m n p

n

M M m n i k k k dx

l p n l m p

p m M M l

i k k

l p n l m p

e

P F h x y F A e

R A A e

S A A e

−
− −

−

+

−

−

 + − + − 
 

− −

= − − =

− +

+ +

 
 
 
 
 
 

 
 
 
 
 

     −     
     


=

+

 

 

 
,

min ,

max , 1

n l l
p n m

n l l

M m M N n k dx

p m M M l

+
+

+

 − − − 
 

= − − − =


 

 (6.54) 

The numerical integration is done by schemes of the Crank-Nicolson (Crank and 

Nicolson, 1947), and the iteration procedure (where relative tolerance 10-3) is necessary 

to obtain the solutions of the parabolic equations. Since the second-order accuracy in the 

surface elevation was confirmed for the case of the finite number of waves in Chapter 3, 

we compare the corrected results by a second-order correction (Equation 2.84). For the 

angular spectrum model, we also derive the second-order relationships by substituting 

the decomposed angular spectrum of wave potential An,m and that of free surface 

elevation Bn,m into the dynamic free surface boundary condition (6.17): 
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where the y-averaged interaction coefficients are: 
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We determined the optimal grid size by conducting a grid convergence 

procedure, in which the grid size was systematically reduced until no further 

improvements were possible. Table 21 details the grid sizes and the number of grids 

used for the final numerical calculations of each test. For each of the cases considered, 

we initialized the amplitude for the first harmonic with the given input values at the 

deeper array while the higher harmonic waves were set to be zero-amplitude. We note 

that the lateral boundaries are taken to be reflective for all the experiments. To give a 

more quantitative evaluation of the model accuracy, we compare the value of index of 

agreement (IOA; Willmott, 1982) ranging from 0 to 1 where 1 indicates a perfect match: 
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where 𝐴𝑛,𝑗
𝑖  is the computed nth amplitude from models at x (= iΔx, i = 1 to Nx) and y (= 

jΔy, j = 1 to Ny), and 𝐴𝑛,𝑗,𝑜𝑏𝑠
𝑖   is the observed nth harmonic function from experimental 

data at x (= iΔx, i = 1 to Nx) and y (= jΔy, j = 1 to Ny), and over bar indicates an average. 

 

 

Table 21 Grid sizes and the total number of grids for computation of each 

experiment. 

Data 
Whalin 

(1971) 

Berkhoff et 

al. (1982) 

Circular 

shoal 

Δx (m) 0.242 0.083 0.083 

Δy (m) 0.056 0.083 0.333 

Grids 100×109 261×243 300×297 

 

 

6.4.1 Whalin et al. (1971) 

As a first step, we compare numerical results from the models described in this 

chapter, as well as previously-developed models, with the experimental data of Whalin 

(1971), who conducted a laboratory experiment to study wave focusing and wave 

refraction over two-dimensional bathymetry. Table 22 details wave parameter including 

the number of harmonics used in the numerical implementation, and the nonlinearity 

parameters for the experiment of Whalin (1971). 
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Table 22 Wave parameters and dimensionless parameters of Whalin (1971). 

Case a0 (m) T (s) N M 

31 0.0068 3 5 54 

32 0.0098 3 5 54 

33 0.0146 3 5 54 

21 0.0075 2 3 54 

22 0.0106 2 3 54 

23 0.0149 2 3 54 

11 0.0097 1 2 54 

12 0.0195 1 2 54 

 

 

Comparison with the measurements along the centerline of the wave tank for all 

the cases is shown in Figures 30-32. Tables 23-25 compare the statistical parameters for 

model accuracy between models. The numerical results are obtained by the present 

higher-order parabolic model (Equation 6.8; HPM: CNMSE), the higher-order parabolic 

model with the nonlinear terms of Kaihatu and Kirby (1995) (Equation 6.53; HPM: 

KK95), the present angular spectrum model (Equation 6.48; ASM: CNMSE), and the 

angular spectrum model with the nonlinear terms of Kaihatu and Kirby (Equation 6.54; 

ASM: KK95).  

For the case of T = 3 s, although the higher-order parabolic models predict the 

first harmonic amplitude in a better way than the angular spectrum models, all the 

models exhibit significant deviation from the measurement. This disagreement is 

probably ascribed to the frictional dissipation of the waves (Liu et al. 1985), which is 

consistent to the report by Whalin (1971) that there is a very small amount to wave 
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damping owing to the viscous boundary layers along the wave tank. However, the 

viscous damping mechanisms were not considered in none of the models compared here. 

For the second and third-harmonic amplitudes, the agreements between the observations 

and predictions by all the models are satisfactorily good. 

At near the beginning of the slope (x = 8 m), the focusing occurred more rapidly 

due to the wave convergence and wave refraction caused by the sudden change from the 

flat bottom to the sloping bottom. It is remarkable that the sudden increases of the first 

harmonic amplitudes in the case of T = 3 s are captured satisfactorily well by the angular 

spectrum models. Although many previous studies have compared to the T = 3 s case of 

Whalin’s experiment (Tang and Ouellet, 1997; Engsig-Karup et al., 2009; Raoult et al. 

2019; Kim and Kaihatu, 2021; Lin et al., 2021 among many others), none of them 

predicted the abrupt rises in the amplitudes of the first harmonic. The predictions of the 

rises by the angular spectrum models are probably due to the analysis of wave train via 

the superposition of a wavefield propagating in a specific direction, which renders the 

angular spectrum models to account for the simultaneous diffraction and refraction of 

waves as well as simulate the wave ray crossing with great accuracy.     

As can be seen in Figure 31 and Table 24 for the case of T = 2 s, the agreement 

between experimental data and numerical solution of all the present models is reasonable 

with the exception that angular spectrum models overpredicts the amplitudes of first 

harmonics. For the case of T = 1 s, all the mild-slope equation models agree favorably 

with the experimental data: the oscillating second harmonic amplitudes are well modeled 

by all the models, which is consistent with the improvements obtained in Kim and 
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Kaihatu (2021). While we demonstrate the ability of the angular spectrum models to 

address the focused wave at the entrance of slope in the case of T = 3 s, neither of 

models account for the generation of the sudden increases of the first harmonic 

amplitudes in the case of T = 1 and 2 s.  
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Figure 30 Comparison of wave amplitudes between models and data of Whalin 

(1971) for Case 31: (a) first harmonic; (b) second harmonic; (c) third harmonic; for 

Case 32: (d) first harmonic; (e) second harmonic; (f) third harmonic; for Case 33: 

(g) first harmonic; (h) second harmonic; (i) third harmonic (Solid: HPM: CNMSE; 

Dashed: HPM: KK95; Dotted: ASM: CNMSE; Dash-dot: ASM: CNMSE; Circle: 

experimental data). 
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Table 23 Comparison of IOA between models for T = 3 s of Whalin (1971). 

Case N HPM: CNMSE HPM: KK95 ASM: CNMSE ASM: KK95 

31 

1 0.6685 0.7025 0.4393 0.4415 

2 0.8898 0.9153 0.8983 0.9012 

3 0.8696 0.9219 0.8455 0.8669 

32 

1 0.5717 0.6587 0.3717 0.3922 

2 0.9305 0.9525 0.9202 0.9275 

3 0.9159 0.9637 0.8724 0.8978 

33 

1 0.6134 0.7750 0.4598 0.5429 

2 0.9435 0.9648 0.9242 0.9394 

3 0.9181 0.9668 0.8532 0.9091 
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Figure 31 Comparison of wave amplitudes between models and data of Whalin 

(1971) for Case 21: (a) first harmonic; (b) second harmonic; (c) third harmonic; for 

Case 22: (d) first harmonic; (e) second harmonic; (f) third harmonic; for Case 23: 

(g) first harmonic; (h) second harmonic; (i) third harmonic (Solid: HPM: CNMSE; 

Dashed: HPM: KK95; Dotted: ASM: CNMSE; Dash-dot: ASM: CNMSE; Circle: 

experimental data). 
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Table 24 Comparison of IOA between models for T = 2 s of Whalin (1971). 

Case N HPM: CNMSE HPM: KK95 ASM: CNMSE ASM: KK95 

21 

1 0.9407 0.9425 0.9499 0.9365 

2 0.9666 0.9548 0.9776 0.9595 

3 0.9623 0.9281 0.9603 0.9294 

22 

1 0.9467 0.9407 0.9531 0.9361 

2 0.9615 0.9579 0.9668 0.9670 

3 0.9769 0.9797 0.9605 0.9801 

23 

1 0.7678 0.7907 0.7722 0.7497 

2 0.9040 0.8952 0.9296 0.9326 

3 0.9521 0.9494 0.9269 0.9623 
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Figure 32 Comparison of wave amplitudes between models and data of Whalin 

(1971) for Case 11: (a) first harmonic; (b) second harmonic; for Case 12: (c) first 

harmonic; (d) second harmonic (Solid: HPM: CNMSE; Dashed: HPM: KK95; 

Dotted: ASM: CNMSE; Dash-dot: ASM: CNMSE; Circle: experimental data). 

 

 

Table 25 Comparison of IOA between models for T = 1 s of Whalin (1971). 

Case N HPM: CNMSE HPM: KK95 ASM: CNMSE ASM: KK95 

11 
1 0.9392 0.9358 0.9365 0.8954 

2 0.8833 0.8982 0.8975 0.9057 

12 
1 0.8452 0.8271 0.8474 0.8110 

2 0.9091 0.9198 0.9268 0.9667 
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6.4.2 Berkhoff et al. (1982) 

According to Janssen et al. (2006), the experimental topography of Whalin 

(1971) corresponds to a mildly two-dimensional bathymetry, where the premise of 

lateral depth variation is thus adequately acceptable This mild degree of lateral variation 

may not be generally descriptive of coastal bathymetry; it is thus necessary to test 

whether the models are applicable to one with severe lateral bottom changes. For this 

purpose of the verification of the models for the wave forecast over a pronounced two-

dimensional bottom, we conduct a comparison of numerical results and data from the 

experiment of Berkhoff et al. (1982). The experiment was conducted by Berkhoff et al. 

(1982) to study the wave evolution over the topography consisting of an elliptic shoal 

situating on a plane sloping beach with a slope of 1:50 (see Figure 13).  

We compare model simulations by a linear model of the higher-order 

approximation (linearized from of Equation 6.8; hereinafter HPM: LMSE in figures and 

tables) and a linear version of the angular spectrum model (linearized from of Equation 

6.48; hereinafter ASM: LMSE in figures and tables) as well as the present higher-order 

parabolic model (Equation 6.8), the higher-order parabolic model with the nonlinear 

terms of Kaihatu and Kirby (1995) (Equation 6.53), the present angular spectrum model 

(Equation 6.48), and the angular spectrum model with the nonlinear terms of Kaihatu 

and Kirby (Equation 6.53) to the observations. Table 26 presents the wave parameters 

and the nonlinearity parameters of Berkhoff et al. (1982), where the subscripts 1 and 2 

indicate the initial condition and the shoal crest, respectively (h1 = 0.45 m, h2 = 0.128 

m). The relatively large value of kh = 1.895 (or the relatively small value of Ur = 0.014) 
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would likely result in an appreciable phase mismatch (Equations 2.66 and 2.67), 

indicating that the Stokes-type model, for example, Kirby and Dalrymple (1983) and 

Suh et al. (1990) should be a suitable predictor of the experimental condition (Kirby and 

Dalrymple, 1984). 

 

 

Table 26 Wave parameters and the dimensionless parameters of Berkhoff et al. 

(1982). 

a0 (m) h1 (m) h2 (m) T (s) N M kh1 kh2 Ur1 Ur2 

0.0232 0.45 0.128 1 2 121 1.895 0.788 0.014 0.292 

 

 

Figures 33 and 34 show comparison between the higher-order parabolic models 

and the angular spectrum models, respectively, and Table 27 presents the comparison of 

index of agreement between models. At Gauge 1, the wave focusing starts to occur along 

this section, and both linear and nonlinear models predict reasonably well. After the 

waves pass by the elliptic shoal, the lateral variation of the diffraction fringes becomes 

obvious and the region of wave focusing is expanded. 

In the cross sections, two aspects are commonly found both in the comparisons 

between the higher-order models and the angular spectrum models: (1) on Gauges 2 and 

3 between where the cusped caustic is developed (at about x = 16 m and y = 10 in Figure 

13, Berkhoff et al., 1982), the nonlinear models compare significantly better to the data 

for the height of the central focused region than the linear models; (2) on Gauges 4 and 

5, the present models outperform the previously-developed models in terms of the shape 
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of side lobes in the diffraction pattern. Also, on the transects 6, 7, and 8 along the 

propagating direction, the present models overall even better captures increase and 

decrease in amplitude in comparison to the other models of each type, with the exception 

that the linear angular model is in closer agreement in the gauge 6 than the nonlinear 

angular models. The inclusion of nonlinear amplitude gradient and diffraction effects 

(from AxA and AyAy, respectively) contributes to the improvement which is very similar 

to that of Stokes-type models (e.g., Kirby, 1986a, Kirby, 1986b, Dalrymple et al., 1989, 

Suh et al., 1990), where nonlinear dispersion relation is considered via the inclusion of a 

cubic nonlinearity or the use of an empirical nonlinear dispersion relation. 

Since the overall results show that the two present model predictions are in best 

agreement with the observations in each group, it is worth here to discuss the difference 

between the present higher-order model (Equation 6.8) and the present angular spectrum 

model (Equation 6.48). It is clear that the higher-order model and the angular spectrum 

model give more accurate predictions in the alongshore direction (y-direction) and the 

cross-shore direction (x-direction, except for the gauge 6), respectively (see Table 27). 

This is primarily due to the assumption of the weak lateral bottom variation in the 

angular spectrum approach, whereas the higher-order parabolic model does not have this 

restriction on the lateral change in bathymetry. Therefore, one would likely conclude 

that the topography of Berkhoff et al. (1982) comprises a challenging test of the angular 

spectrum model. 
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Figure 33 Comparison of normalized wave amplitudes between higher-order 

parabolic models and data of Berkhoff et al. (1982): (a) gauge 1; (b) gauge 2; (c) 

gauge 3; (d) gauge 4; (e) gauge 5; (f) gauge 6; (g) gauge 7; (h) gauge 8 (Solid: HPM: 

CNMSE; Dashed: HPM: KK95; Dotted: HPM: LMSE; Circle: experimental data). 
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Figure 34 Comparison of normalized wave amplitudes between angular spectrum 

models and data of Berkhoff et al. (1982): (a) gauge 1; (b) gauge 2; (c) gauge 3; (d) 

gauge 4; (e) gauge 5; (f) gauge 6; (g) gauge 7; (h) gauge 8 (Solid: ASM: CNMSE; 

Dashed: ASM: KK95; Dotted: ASM: LMSE; Circle: experimental data). 
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Table 27 Comparison of IOA between models for Berkhoff et al. (1982) 

Gauge 
HPM: 

CNMSE 

HPM: 

KK95 

HPM: 

LMSE 

ASM: 

CNMSE 

ASM: 

KK95 

ASM: 

LMSE 

1 0.9213 0.8880 0.9419 0.8811 0.8371 0.7657 

2 0.9574 0.9639 0.8644 0.9085 0.8986 0.8323 

3 0.9850 0.9703 0.9625 0.9550 0.9637 0.9469 

4 0.9901 0.9678 0.9384 0.9697 0.9553 0.9625 

5 0.9844 0.9325 0.8390 0.9519 0.8791 0.9366 

6 0.9789 0.7728 0.7427 0.7445 0.6454 0.9580 

7 0.9379 0.9486 0.8082 0.9606 0.9448 0.8500 

8 0.9150 0.8910 0.8191 0.9497 0.9237 0.9055 
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6.4.3 Circular shoal 

As in the previous studies for very large-angle water waves (Kirby, 1986b; 

Dalrymple et al., 1989; Suh et al., 1990), in order to examine the large-angle capabilities 

of the models, the last example is that of wave propagation over a bathymetry with a 

circular shoal resting on a flat bottom which is quite similar in dimension to that of 

Berkhoff et al. (1982). Because the circular shoal situated on a flat beach satisfies 

axisymmetry, it is desirable to have no distortion to the resulting focusing pattern behind 

the wave shoal due to changes in the incident angle θp. Following Dalrymple et al. 

(1989), the case of a circular shoal with higher shoal height (0.12 m) is taken to consider 

the severe bottom variation, and the depth is given with the origin corresponding to the 

center of the shoal: 
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 (6.59) 

where the radius of the shoal R = 4 m and r = (x2 + y2)1/2 with the coordinates (x, y).  

A monochromatic wavetrain propagates over the circular shoal for three different 

incident angles: θp = 0°, 22.5°, and 45°, with the same wave information as those of 

Berkhoff et al. (1982), shown in Table 28 where the subscripts 1 and 2 indicate the flat 

bottom depth and the shoal crest, respectively (h1 = 0.336 m, h2 = 0.216 m). The primary 

goal of this section is to investigate wave propagation at wide propagation angles to the 

pre-specified numerical grid, as simulated by the two approaches outlined in this chapter 

(higher-order parabolic model and angular spectrum model), therefore, we consider the 

numerical results by the two present models (Equations 6.8 and 6.48). 
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Table 28 Wave parameters and the dimensionless parameters of circular shoal. 

a0 (m) h1 (m) h2 (m) T (s) N M kh1 kh2 Ur1 Ur2 

0.0232 0.336 0.216 1 2 148 1.496 1.091 0.031 0.090 

 

 

Figure 35 shows wave focusing pattern behind a circular shoal resting on a flat 

bottom. For θp = 0°, both of the higher-order parabolic and angular spectrum models 

give similar results, however, the higher-order parabolic approach results in a more 

distorted wave focusing pattern at larger angle compared to that of normal incidence (θp 

= 0°). In contrast, the present angular spectrum model displays less distortion to the 

resulting focusing pattern caused by the changes of θp. To quantitatively assess the 

distortion, the normalized amplitudes at transects 10 m away from the center of the 

circular shoal are shown in Figure 36, in which we obtain the results along the transect 

for θp = 22.5 and 45° by digitization from Figure 35. The results of the present higher-

order model show the obvious shift to the right, which all worsen with the increasing 

angle of incidence θp. On the other hand, the present angular spectrum model shows 

equivalent wave patterns for θp = 22.5 and 45° in comparison to those of normal 

incidence, indicating that the model is suitable for wave propagating at large angles. This 

advantageous feature of the angular spectrum model is most likely due to the approach 

where the wave field is decomposed into an angular spectrum propagating independently 

into the shallower regions (or half-plane, x > 0). The wiggles in the results of the angular 

spectrum model may be due to the discontinuities from the use of a finite Fourier 
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transform in the y-direction; several approaches are available to smooth the oscillations 

in the solution (Suh et al., 1990). 
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Figure 35 Contour of normalized wave amplitudes and topography for circular 

shoal: (a) HPM: CNMSE with θp = 0°; (b) HPM: CNMSE with θp = 22.5°; (c) HPM: 

CNMSE with θp = 45°; (d) ASM: CNMSE with θp = 0°; (e) ASM: CNMSE with θp = 

22.5°; (f) ASM: CNMSE with θp = 45° (Dashed: depth contours; Dotted: transect at 

10 m from shoal crest). 
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Figure 36 Comparison of normalized wave amplitudes at 10 m from circular shoal 

depending on angle of incidence θp: (a) HPM: CNMSE; (b) ASM: CNMSE (Solid: 

θp = 0°; Triangle: θp = 22.5°; Circle: θp = 45°). 
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Considering the performances of the two present models for the experimental 

data of Berkhoff et al. (1982) and the circular shoal, the opposite tendency is found: the 

present higher-order model shows better performance for the experiment of Berkhoff et 

al. (1982), and vice versa for the case of circular shoal. We calculate the curvature of the 

bathymetry in the y-direction, with expectation that the poor level of agreement of the 

present angular spectrum model can be attributed to the severe lateral depth variation in 

the bathymetry of Berkhoff et al. (1982): 
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 (6.60) 

As anticipated, the comparison of bottom curvature around the shoals, shown in 

Figure 37, validates the hypothesis that large value of alongshore bottom curvature (or 

strong lateral depth variation) in the bottom bathymetry of Berkhoff et al. (1982) may 

violate the assumption of small longshore depth variation inherent in the model 

development. This renders the angular spectrum model to be relatively unable to 

replicate the properties of the wave field evolution in detail (e.g., the diffraction fringe 

away from the focal region). In contrast, the higher-order parabolic model (not subject to 

this assumption on longshore depth variability) demonstrates better performance in this 

case. In conclusion, the angular spectrum therefore seems to be a better choice for 

situations where the initial propagation is at large angle to the computational grid but 

also where longshore bathymetric variability is mild. On the other hand, the higher-order 
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parabolic model is preferable when the diffraction and refraction effects are significantly 

caused by a comparatively severe lateral depth variation unless the initial approach angle 

is quite large. It is noteworthy that Tsay et al. (1989) overcame the limitation in the 

parabolic equation model regarding the initial approach angle through the introduction of 

coordinate system based on refraction rays fitted for a boundary condition. 

 

 

 

Figure 37 Comparison of bottom curvature: (a) elliptic shoal of Berkhoff et al. 

(1982); (b) circular shoal (Dashed: depth contours).  
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CHAPTER VII  

COMPARISON TO FIELD OBSERVATIONS                         

 

7.1 Introduction 

In time-domain model simulations, painstaking effort on data analysis is needed 

to deal with uncertainties and details in boundary conditions are often not available 

(Herbers et al. 2003, Sheremet et al. 2016). Also, it can be argued that the time-domain 

model is numerically expensive for large domains coupling the coastal wave field with a 

sediment transport module and morphological evolution since the dependent variable is 

modeled as an arbitrary function of space and time. In contrast, the frequency-domain 

models are numerically straightforward due to apriori assumption of temporal 

periodicity. 

In general, the distinctive features of deep water waves can be explained in terms 

of the fundamental dynamics: strong dispersion, random phases (quasi-Gaussian Sea 

state), and four wave exact-resonant (quartet) interactions, while shallow-water wave 

dynamics are characterized by weak dispersion, strong phase correlations, and three-

wave (triad) near-resonant interactions. Triad interactions inherent to shallow water (and 

predictable by CNMSE models) are responsible for nearshore infragravity waves, which 

have a critical influence on morphological evolution of coastlines such as erosion, 

inundation, and accretion. In shallow water, the suitability of the parameterized triad 

interaction source term and phase-decoupled diffractive term in operational forecasting 

models such as SWAN is suspect due to the inability of these terms to account for a two-



 

149 

 

dimensional wave field (responsible for redistributing the energy over a wide range of 

directions), as well as the lack of history of phase correlations in the wave train. In 

contrast, the phase-resolved model has the advantage of fully describing subharmonic 

and superharmonic interactions so that important process such as infragravity wave 

generation, spectrum widening, and the broadening of the directional range can be 

realistically simulated. 

We can use the consistent nonlinear mild-slope equation model as a useful 

transition model between phase-averaged operational offshore models (e.g., SWAN, 

Booij et al., 1999) and phase-resolved time-domain nearshore models (e.g., FUNWAVE, 

Wei et al., 1999). Frequency domain phase-resolving models strike the right balance 

between over-approximated phase-averaged models (which contain linear wave 

dynamics for the nearshore zone) and computationally-intensive time-domain models in 

areas still somewhat spatially removed from breaking wave impact in the surf. 

 

7.2 DUCK94  

For the purpose of testing the present models in field situations, we use data from 

the field campaign DUCK94 (Fall 1994) where the U.S. Army Field Research Facility 

collected measurements of shoaling and breaking waves across an ocean beach at Duck, 

North Carolina, USA (Birkemeier and Thronton, 1994; Birkemeier et al., 1997). As 

shown in Figure 38 where x and y are the cross- and along-shore coordinates, 

respectively, collocated pressure gauges and current meters deployed at cross-shore 

locations between the shoreline and about 5-m depth were used to record pressure at a 
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sampling rate of 2 Hz. Also, wave frequency-directional spectra were obtained from 

alongshore array of pressure sensors (9 elements, 255 m aperture) located in 8-m depth 

(FRF 8-m array at x = 900 m). A downward-looking sonar altimeter collocated with 

pressure gauges and current meters estimated depth contours through linear 

interpolation. The spatial domain is discretized as Δx = 1 m and Δy = 9.4828 m until 

further reduction does not make any difference in results.  

 

 

 

Figure 38 Instrument array locations during DUCK94 on October 4 1994 AM 

01:00 (Solid: depth contours; Circle: FRF 8-m array; Triangle: most offshore 

pressure gauge at x = 480 m; Diamond: pressure gauges at shallower locations). 
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7.3 Numerical implementation 

7.3.1 Wave models 

To study refraction, shoaling, nonlinear interactions, and breaking characteristics 

of random waves in comparison to field measurement, we modify the consistent 

nonlinear mild-slope equation model (Equation 7.1; PEM: CNMSE hereafter) and the 

angular spectrum version of consistent nonlinear mild-slope equation model (Equation 

7.5; ASM: CNMSE) with the breaking-induced energy dissipation formulation. For 

CNMSE, we obtain:  
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where the interaction coefficients (R and S) are the same as Equation (2.48). Further, the 

dissipation term αn is a function dependent on frequency (Mase and Kirby, 1993): 
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while the lumped dissipation β is approximated for shallow water case (Thornton and 

Guza, 1983).: 
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The angular spectrum version of consistent nonlinear mild-slope equation model 

(ASM: CNMSE) incorporates the simplified breaking function of Thronton and Guza 

(1983): 
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(7.5) 

where [𝜉𝑤𝑏]𝑛,𝑚 represents the forcing due to the interaction between surface wave 

modes and lateral bottom variation (see Equation 6.48), and the y-averaged interaction 

coefficients (𝑅̅ and 𝑆̅) are the same as Equation (6.41). 

The dissipation term 𝛼̅𝑛 is a y-averaged dissipation term with the squared-

frequency distribution (Mase and Kirby, 1993): 
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and 
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Following Sheremet et al. (2016), who studied directional spectral evolution in 

the same location at Duck, North Carolina, USA, the free parameters in dissipation 

functions (Equations 7.2, 7.3, 7.6, and 7.7) are assigned as F = 0.5, B = 1, and γ = 0.7. 

 

 

Table 29 Wave parameters and for numerical implementation of DUCK94. 

T (s) N M λ (1/m) 

1024 300 29 0.0112 

 

 

7.3.2 Preprocessing for simulation 

The models should be initialized with directional wave spectra obtained from 

alongshore array of pressure sensors or results of operational phase-averaging wave 

models (e.g., SWAN), which are given as a form in (f, θ) (where θ is propagation 

direction in this chapter) and thus mapping the directional wave spectra is required 

between (f, θ) and (f, λ) grids for a numerical implementation of both parabolic equation 

and angular spectrum models in frequency-domain. The working of transforming the 

directional wave spectra in (f, θ) (S(f, θ)) to complex amplitudes in (f, λ) (i.e., An,m) can 

be done in a few steps: (1) one should pair each alongshore wave component to a 
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propagation direction θ by using (Equation 6.38 or 𝜃 = tan−1(
𝑚𝜆

𝑘𝑛,𝑚
)); (2) lower and 

upper limits of θ (θl and θu) are determined by median values between the consecutive 

values of paired θ; (3) the sum of angular spectrum between θl and θu is assigned to the 

value at each alongshore component; (4) with random phase approximation based on the 

uniform distribution, the complex amplitudes is obtained. 

Since the directional wave spectrum (e.g., JONSWAP spectrum) does not include 

any information for infragravity wave (f < 0.5fp), the missing values over infragravity 

wave range are necessarily approximated by using two different approaches: (1) second-

order bound wave correction (Davis et al., 2014; Sheremet et al., 2016); (2) simple linear 

interpolation. Additionally, high frequency motions are hardly recorded by a pressure 

transducer located at the bottom in deep water because of confusion between real signal 

and noise of the gauge. For these reasons, it is suggested that the spectral density over 

high-frequency range is approximated with the high-frequency tail of the input spectra 

(e.g., Kaihatu et al., 2007b) to use wave information measured in deep water. 

To circumvent these limitations related with directional wave spectrum such as 

for missing and inaccurate values in low- and high-frequency bands, respectively and to 

minimize the physical effects not addressed here, we initialize the present models at the 

most offshore pressure gauge (x = 480 m), which is relatively shallower than the location 

of FRF 8-m array, where we can obtain time series of surface elevation from pressure 

records collected by collocated pressure gauges and current meters. To generate the 

directional wave spectrum (or 2D spectral density), the frequency surface spectrum (or 

1D spectral density) from pressure records needs to be combined with the information of 
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directional spreading. Therefore, we initialize linear angular spectrum model (linearized 

form of Equation 7.5) with an incident wave directional spectrum observed at FRF 8-m 

array (x = 900 m), and then the directional spreading at x = 480 m is obtained by the 

normalized wave density:  
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At x = 480 m, the free surface elevation obtained from pressure record at a 

sampling rate of 2 Hz is divided into 10 realizations of 2048 data points apiece. By using 

Fast Fourier Transform (FFT), 10 sets of amplitudes An and frequency power spectra 

S(fn) are calculated, and directional wave spectrum can be given by: 

 ( ) ( ) ( ), , /n n nS f m S f D f m  =  (7.10) 

The magnitude of amplitudes in (f, λ) coordinate is calculated by: 

 ( ), 2 ,n m nA S f m f =   (7.11) 

With random phase approximation based on the uniform distribution, the 

complex amplitude for the angular spectrum model is obtained: 

  , , expn m n mA A i RN=   (7.12) 

Inverse Fourier transform gives the input for parabolic model equation: 
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Figure 39 describes an overview of the numerical simulations. 



 

156 

 

 

Figure 39 Overview of numerical simulation for DUCK94.  
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Sheremet et al. (2016) included triad interactions close enough to resonance by 

using detuning parameter to decreases errors and computational efforts resulted from the 

highly oscillating nonlinear terms. They implicitly set a cutoff detuning value based on 

the domain size, a cross-sectional trace of the beach, and the spectral distribution. A 

modified detuning parameter by replacing kn with non-dispersive wave number κ in the 

denominator is used to evaluate the magnitude of interactions between wave number. 

For the parabolic equation model, the numerical implementation is restricted by: 
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For the angular spectrum model, we only consider the triads determined by:  
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where μcr = 3 is arbitrarily chosen as a basis to exclude the triad interaction in deep 

water. 

It is notable that the maximum effective wave number (Mn) increases with 

decreasing water depth, resulting in the alongshore discretization in space needs to be 

finer as waves propagate. However, finer grid size in shallower area for wide-angle 

propagations is not required since waves usually approach the shore with their crests 

oriented somewhat parallel to the coast, primarily owing to refraction effect. This has the 

effect of narrowing the spread of the spectral density in direction so that the equivalent 

grid spacing is fine enough to take into consideration near-resonant interactions, which is 

of primary importance to address nonlinearity (Vrecica and Toledo, 2019).  
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7.3.3 Results 

We compare model simulations to measurements for three representative case 

studies during October 1994 (see Figures 40, 41, and 42). On October 4 AM 01:00, a 

narrow band swell is incident at x = 480 m with root-mean-square wave height 𝐻𝑟𝑚𝑠 =

0.71 m, peak frequency fp = 0.15 Hz, and a mean direction (at fp) 𝜃𝑚 = 10° (from 

slightly northerly direction). On October 5 AM 01:00, an incident trimodal wave field 

(𝐻𝑟𝑚𝑠 = 0.44 m) at x = 480 m consists of a dominant wave (𝑓𝑝 = 0.12 Hz and 𝜃𝑚 =

−26°) arriving from a southerly direction, lower-frequency swell (𝑓𝑝 = 0.08 Hz and 

𝜃𝑚 = −14°) from south and higher-frequency swells (𝑓𝑝 = 0.17 Hz and 𝜃𝑚 = 22°) 

from north. On October 12 AM 01:00, the wave field at x = 480 m (𝐻𝑟𝑚𝑠 = 0.7 m) 

consisting of two nearly-equivalently dominant swells (𝑓𝑝 = 0.13 Hz and 𝜃𝑚 = 10°; 

𝑓𝑝 = 0.16 Hz and 𝜃𝑚 = 10°) arriving from collinearly northerly direction and much less 

energetic infragravity 𝑓𝑝 = 0.07 Hz and 𝜃𝑚 = −14°) arriving from southerly direction is 

incident. 
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Figure 40 Measurement on October 4 1994 AM 01:00 (a) directional spectrum; (b) 

frequency spectrum; (c) spectrum at peak frequency. 

 

 

 

Figure 41 Measurement on October 5 1994 AM 01:00 (a) directional spectrum; (b) 

frequency spectrum; (c) spectrum at peak frequency. 
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Figure 42 Measurement on October 12 1994 AM 01:00: (a) directional spectrum; 

(b) frequency spectrum; (c) spectrum at peak frequency. 
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In Figures 43-48, predictions of the spectral evolution at a few locations outside 

and over the surf zone from the parabolic equation and angular spectrum models based 

on CNMSE are compared with field measurements. In Figures of directional wave 

spectrum, the infragravity band (f < 0.05 Hz) is not visualized because the infragravity 

range is likely influenced by strong reflected effects from shorelines which is not 

simulated by the model (Herbers et al., 2003). Overall, one may conclude from the 

comparison of observed with predicted frequency spectrum (i.e., 1D spectral density) 

that the angular spectrum model compares better to the data for much of the frequency 

range throughout most cases than the parabolic model. This is not a surprise because the 

angular spectrum model treats the wave propagating with the separate consideration of 

wave field in a particular direction by use of the alongshore Fourier component of the 

wave field while the parabolic equation model is limited to the case of waves 

propagating nearly in a prespecified direction. 

It is expected that the growth of the second and higher harmonics of the peak and 

the energy transfers to low-frequency infragravity modes causing amplification of the 

infragravity range (Herbers et al., 2003; Janssen, 2006; Sheremet et al., 2016). However, 

in both model predictions and observations, it appears that self- and cross-interactions 

between wave components are very negligible or weak for the present case studies, 

which is attributed to the fact that the nonlinearity in the surface boundary conditions is 

much weaker than dispersive effect (Urp = 0.1 at x = 480 m for the three test cases). 

Nevertheless, the angular spectrum model predictions are in overall good agreement 

with the measurement where initially-narrow spectrum in frequency space was 
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broadened with attenuated swell conditions, with the exception in lower- and higher-

frequency ranges in the surf zone. The inability of the model to account for the 

infragravity band may be due to the reflection effects not considered in the model. 

Additionally, the long wavelength of very-low-frequency may violate the assumption of 

slow horizontal variation of water depth (Janssen, 2006). The strong deviation from data 

over the higher-frequency band at the shallow gauges may result from the upper 

frequency cutoff (i.e., the limited number of frequency mode) because triad wave-wave 

interaction with any frequency modes above the cutoff could induce the amplification of 

energy levels at the high frequencies (Sheremet et al., 2016). The discrepancies over 

high-frequency range are possibly attributed to the trade-off between the energies of 

low- and high-frequency bands to conserve energy flux. 

The modeled inshore spectra are either uniformly wide in directional space or the 

energy is distributed at large oblique angles. Although we do not compare with the 

observed directional wave spectral density in this study, the directional broadening 

appears to be common in the observed cross-shore evolution of directional wave 

spectrum (e.g., Herbers et al., 2003; Janssen, 2006; Sheremet et al., 2016). Whereas the 

phenomenon was not simulated in the previous models (Herbers et al., 2003; Janssen, 

2006; Sheremet et al., 2016) where lateral depth variations were neglected, the present 

angular spectrum model better describes the wide directional spread at high frequency 

range and refraction shifts toward normal incidence to the shoreline at lower frequencies 

primarily due to the consideration of the lateral depth variation. 
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Figures 49-51 compare bulk wave parameters, namely root-mean-square wave 

height Hrms (Equations 7.4 and 7.8) and maximum bottom wave orbital velocity |𝑈𝑏| 

between the data, the parabolic equation and angular spectrum models based on 

CNMSE. The accurate prediction of bottom wave orbital velocity may lead to better 

estimation of the sediment transport and nearshore morphological evolution in coastal 

regions and linear wave theory calculate the value at bottom layer: 

 
( )sinh

rms
b

H
U

T kh


=  (7.16) 

As seen in Figures 49 through 51, the angular spectrum model shows much better 

agreement with the measurements in comparison to the parabolic equation model, a 

result consistent with those of the frequency spectrum comparisons (i.e., 1D spectral 

density). It supports the conclusion that the angular spectrum seems to be a better choice 

for situations where the initial propagation is at large angle to the shoreline but 

alongshore homogeneity is satisfied in bathymetry. 
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Figure 43 Comparison of directional wave between models and comparison of observed with predicted frequency 

spectrum on October 4 1994 AM 01:00: (a) Data at x = 480 m; (b) PEM: CNMSE at x = 398 m; (c) PEM: CNMSE at x 

= 370 m; (d) Data at x = 480 m; (e) ASM: CNMSE at x = 398 m; (f) ASM: CNMSE at x = 370 m; (g) frequency 

spectrum at x = 480 m; (h) frequency spectrum at x = 398 m; (i) frequency spectrum at x = 370 m (Solid: field data; 

Dashed: PEM: CNMSE; Dotted: ASM: CNSME). 
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Figure 44 Comparison of directional wave between models and comparison of observed with predicted frequency 

spectrum on October 4 1994 AM 01:00: (a) PEM: CNMSE at x = 252 m; (b) PEM: CNMSE at x = 241 m; (c) PEM: 

CNMSE at x = 205 m; (d) Data at x = 252 m; (e) ASM: CNMSE at x = 241 m; (f) ASM: CNMSE at x = 205 m; (g) 

frequency spectrum at x = 480 m; (h) frequency spectrum at x = 398 m; (i) frequency spectrum at x = 370 m (Solid: 

field data; Dashed: PEM: CNMSE; Dotted: ASM: CNSME). 
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Figure 45 Comparison of directional wave between models and comparison of observed with predicted frequency 

spectrum on October 5 1994 AM 01:00: (a) Data at x = 480 m; (b) PEM: CNMSE at x = 398 m; (c) PEM: CNMSE at x 

= 370 m; (d) Data at x = 480 m; (e) ASM: CNMSE at x = 398 m; (f) ASM: CNMSE at x = 370 m; (g) frequency 

spectrum at x = 480 m; (h) frequency spectrum at x = 398 m; (i) frequency spectrum at x = 370 m (Solid: field data; 

Dashed: PEM: CNMSE; Dotted: ASM: CNSME). 
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Figure 46 Comparison of directional wave between models and comparison of observed with predicted frequency 

spectrum on October 5 1994 AM 01:00: (a) PEM: CNMSE at x = 252 m; (b) PEM: CNMSE at x = 241 m; (c) PEM: 

CNMSE at x = 205 m; (d) Data at x = 252 m; (e) ASM: CNMSE at x = 241 m; (f) ASM: CNMSE at x = 205 m; (g) 

frequency spectrum at x = 480 m; (h) frequency spectrum at x = 398 m; (i) frequency spectrum at x = 370 m (Solid: 

field data; Dashed: PEM: CNMSE; Dotted: ASM: CNSME). 
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Figure 47 Comparison of directional wave between models and comparison of observed with predicted frequency 

spectrum on October 12 1994 AM 01:00: (a) Data at x = 480 m; (b) PEM: CNMSE at x = 398 m; (c) PEM: CNMSE at x 

= 370 m; (d) Data at x = 480 m; (e) ASM: CNMSE at x = 398 m; (f) ASM: CNMSE at x = 370 m; (g) frequency 

spectrum at x = 480 m; (h) frequency spectrum at x = 398 m; (i) frequency spectrum at x = 370 m (Solid: field data; 

Dashed: PEM: CNMSE; Dotted: ASM: CNSME).  
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Figure 48 Comparison of directional wave between models and comparison of observed with predicted frequency 

spectrum on October 12 1994 AM 01:00: (a) PEM: CNMSE at x = 252 m; (b) PEM: CNMSE at x = 241 m; (c) PEM: 

CNMSE at x = 205 m; (d) Data at x = 252 m; (e) ASM: CNMSE at x = 241 m; (f) ASM: CNMSE at x = 205 m; (g) 

frequency spectrum at x = 480 m; (h) frequency spectrum at x = 398 m; (i) frequency spectrum at x = 370 m (Solid: 

field data; Dashed: PEM: CNMSE; Dotted: ASM: CNSME). 
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Figure 49 Comparison of bulk parameters on October 4 1994 AM 01:00: (a) Hrms; 

(b) |Ub| (Dashed: field data; Circle: PEM: CNMSE; Ex: ASM: CNSME; Solid: 

depth). 

 

 

 

Figure 50 Comparison of bulk parameters on October 5 1994 AM 01:00: (a) Hrms; 

(b) |Ub| (Dashed: field data; Circle: PEM: CNMSE; Ex: ASM: CNSME; Solid: 

depth). 
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Figure 51 Comparison of bulk parameters on October 12 1994 AM 01:00: (a) Hrms; 

(b) |Ub| (Dashed: field data; Circle: PEM: CNMSE; Ex: ASM: CNSME; Solid: 

depth). 
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It is confirmed from the comparison of frequency spectral density and bulk wave 

statistics with the measurements that the angular spectrum model better predicts wave 

evolution processes measured during the DUCK94 experiment in comparison to the 

parabolic equation models. To examine the effect of nonlinearity as well as the added 

nonlinear amplitude gradient terms (i.e., AxA), the predicted bulk statistics of the present 

nonlinear angular spectrum model (Equation 7.5; ASM: CNMSE), angular spectrum 

model based on Kaihatu and Kirby (1995) (retaining only the nonlinear terms of which 

the interaction coefficients are R1 and S1; ASM: KK95), and its linearized counterpart 

(ASM: LMSE) are shown in comparison to the observed results in Figures 52-54. It is 

shown that linear theory overpredicts wave heights and the magnitude of bottom velocity 

in the surf zone and the nonlinear models give better agreement with the field 

measurement than the linearized model. Comparing the angular spectrum models based 

on the consistent nonlinear mild-slope equation and the equation of Kaihatu and Kirby 

(1995), the nonlinear amplitude gradient terms contribute to the additional nonlinear 

effect and the present model shows improvement in prediction of wave height evolution 

and maximum bottom wave orbital velocity. Therefore, comparisons to the data of field 

study over a two-dimensional beach confirms the robustness of the present model in 

more accurately describing bulk quantities, which are potentially useful for an 

instantaneous sediment transport (Hoefel and Elgar, 2003; Kaihatu et al., 2007b). 

 



 

173 

 

 

Figure 52 Comparison of bulk parameters on October 4 1994 AM 01:00: (a) Hrms; 

(b) |Ub| (Dashed: field data; Circle: ASM: CNMSE; Ex: ASM: KK95; Triangle: 

ASM: LMSE; Solid: depth). 

 

 

 

Figure 53 Comparison of bulk parameters on October 5 1994 AM 01:00: (a) Hrms; 

(b) |Ub| (Dashed: field data; Circle: ASM: CNMSE; Ex: ASM: KK95; Triangle: 

ASM: LMSE; Solid: depth). 
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Figure 54 Comparison of bulk parameters on October 12 1994 AM 01:00: (a) Hrms; 

(b) |Ub| (Dashed: field data; Circle: ASM: CNMSE; Ex: ASM: KK95; Triangle: 

ASM: LMSE; Solid: depth). 
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7.4 Triad interactions source term 

In the phase-averaged operational wave models (e.g., SWAN) based on the 

spectral action balance equation, several attempts have been made to account for triad 

wave-wave interactions: the first attempt for the nonlinear evolution of a directional 

spectrum of Abreu et al. (1992); the lumped-triad approximation (LTA) of Eldeberky 

(1996); the original collinear approximation (OCA) of Booij et al. (1999); the stochastic 

parametric model based on Boussinesq equations (SPB) of Becq-Girard et al. (1999); the 

consistent collinear triad approximation (CCA) of Salmon et al. (2016); and the full two-

dimensional source term of Vrecica and Toledo (2019). In this section, we include the 

development of the CNMSE model as a triad source term formulation suitable for 

implementation into the SWAN model to account for the advanced nonlinear interaction 

effect. The parametrized energy term for triad interactions is derived by manipulating the 

stochastic evolution equation (Eldeberky, 1996). The derivation is fully outlined in 

Appendix C.  

For energy flux 𝐶𝑔𝐸(𝑓) (where energy density is 𝐸(𝑓) = |𝐴𝑛|2/𝛥𝑓), the final 

form of triad interactions source term is developed from the CNMSE model: 

 ( ) ( ) ( )3 3 3nl n nl n nl nS f S f S f+ −= +  (7.17) 

where   



 

176 

 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

2

, /2, /2 /2 /2

3 , /2, /2 /2 , /2, /2/2, /2 ,

, /2, /2 /2/2, /2 ,

/2/2, /2 ,

, /2, /2

/2/2, /2 ,

1

1 1 sin

1 1

2
2

3

4

n n n n n

nl n EB n gn n n n n n n n nn n n

n n n n nn n n

n nn n n x

n n n

n nn n n x
EB

n gn

W E f E f

S f C C W W E f E f

W W E f E f

W E f E f
W

W E f E f
f C





+

−

−

−

−

 
 
 

= +  
 
+  

 
 
+

−

( ) ( ) ( )

( ) ( ) ( )

/2/2, /2 ,

, /2, /2

/2/2, /2 ,

2
3

3

n nn n n x

n n n

n nn n n x

W E f E f
W

W E f E f

−

−

 


 
 
 
   
 +  

+    

 (7.18) 

and  

 

( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( )

2

2, ,2

3 2 2, ,2 , ,2 , ,2

2 , ,, ,2

2, ,2

, ,2

2, ,2

2

2 , ,

, ,2

2 sin

2
2

3

2 2
3

3

n nn n n

nl n EB n gn n nn n n n n n n n n

n n n n nn n n

n nn n n x

n n n

n nn n n xEB
n gn

n n n n nx

n n n

W E f E f

S f C C W W E f E f

W W E f E f

W E f E f
W

W E f E f
f C

W E f E f
W

W





−

−

− − −

−

−

−

−

−

 
 
 

= − +  
 
+ 
 

  
 
+  

+
−

+
− ( ) ( )2 , ,n n n nx

E fn E f

 
 
 
 
   
  
    

 (7.19) 

where the new interaction coefficients: 
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and phase mismatches are newly denoted as: 

 
, ,n l n l n l n lk k k dx− − = − + +  (7.26) 

 
( ), , n l n ln l n l

k k k dx+− +
 = − − +  (7.27) 

with 𝛼𝐸𝐵 is a tunning parameter in Eldeberky (1996) (𝛼𝐸𝐵 = 1 in SWAN, Holthuijsen, 

2010).  

Finally, the source term based on the consistent nonlinear mild-slope equation 

model is developed to modify the existing parameterized formulation (e.g., Eldeberky, 

1996) to include the additional nonlinear effect from the x-derivative nonlinear term AxA.  
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CHAPTER VIII  

SUMMARY AND FURTHER RESEARCH*                         

 

8.1 Consistent nonlinear mild-slope equation model 

Kaihatu and Kirby (1995) and Tang and Ouellet (1997) extended the model of 

Agnon et al. (1993) from one-dimensional frequency domain model to the two-

dimensional frequency domain models, including quadratic nonlinear terms which 

represent triad wave-wave interaction between frequency components. One major 

limitation of previous models from the boundary value problem are the possibility of 

severe phase mismatches between wave frequencies in high relative water depth, which 

violates the assumption of slow variation in the horizontal direction.  

In this study, we further extended the model of Kaihatu and Kirby (1995) by 

following the scaling approach of Yue and Mei (1980) and Kirby and Dalrymple (1983). 

Since the order of amplitude used is lower than the orders of both depth change and 

modulation scale δ (where An is function of δx and δ1/2y), the x-derivative nonlinear term 

AxA is retained in the model equation. In addition, horizontal derivative was replaced by 

vertical derivative in the combined free surface boundary condition, therefore, more triad 

wave-wave interaction between frequency components is taken into consideration in the 

model than previous models. 

 
* Part of this chapter is reprinted with permission from Kim, I. C. and Kaihatu, J. M., 2021. A consistent 

nonlinear mild-slope equation model. Coastal Engineering, 170: 104006. Copyright [2021] by Elsevier. 

DOI: https://doi.org/10.1016/j.coastaleng.2021.104006. 
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In the region of shallow water, it was shown that the results of present model are 

in closer agreement with that of experiment compared to frequency domain Boussinesq 

models. In the region of intermediate or deep water, it is shown that the present model 

outperforms the previous models from the boundary value problem. Experiment of 

Chaplain et al. (1992) is one-dimensional case for constant depth, therefore, the only 

differences between the present and the previous models (Kaihatu and Kirby, 1995 and 

Tang and Ouellet, 1997) are x-derivative nonlinear term AxA. As a result, this is probably 

the effect of x-derivative nonlinear term AxA, alleviating the effect of phase mismatch. 

 

8.2 Hybrid consistent nonlinear mild-slope equation model 

The consistent nonlinear mild-slope equation model was developed in the form 

of a parabolic equation in the frequency-domain, and takes into consideration a 

consistent ordering combining the order of bottom change scales in Kirby and 

Dalrymple (1983) and the modulation scale of Yue and Mei (1980). Despite the fact that 

the added nonlinear terms (e.g., AlxAn–l) allows the consistent model to better describes 

the triad wave-wave interaction including more nonlinear effect than earlier models 

(e.g., Kaihatu and Kirby 1995), the addition of new nonlinear terms may increase the 

iterations required in numerical integration and thus can lead to a more computationally 

demanding model. 

To simulate irregular wave processes in a computationally convenient format, the 

closure of Benney and Saffman (1966) is introduced within the derivation of simplified 

formulations from the original consistent nonlinear mild-slope equation, and thus 
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neglected terms have near-resonant interactions between four waves. Therefore, the final 

form of nonlinear terms in the equation consists of one part that is proportional to 

mismatches, and another part with zero mismatch. As expected, the gradient amplitude 

nonlinear terms AxA give rise to the nonlinear terms independent of mismatches, 

mitigating the effect of these mismatches potentially imparting artificially high 

variability to the wavefield.    

Numerical investigations are conducted to test the ability of the new formulations 

to simulate random waves. The observed spatial evolution of wave spectra is predicted 

qualitatively well by the present model mainly due to the additional nonlinear terms 

(independent of phase mismatches) serving as the x-derivative nonlinear term AxA in the 

original consistent nonlinear mild-slope equation. The improved performance for the 

deep water portion of the wave spectra can be explained by the reduced vulnerability of 

the new model to the impact of strong mismatches in deep water. Besides, the additional 

nonlinear effect contributed by the quasi-cubic terms lead that the observed spectral 

evolution at a single- and double-peaks is modeled more precisely in the majority of 

cases of deep water as well as shallow water by the present model than by the previous 

model. 

 

8.3 Models for wide-angle water waves 

The parabolic equation model has been extensively used for studying the wave 

transformation due to refraction, diffraction, shoaling, and nonlinear wave interactions, 

however, the prescribed principal propagation direction inherent in the parabolic 
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approaches results in the restriction that the wave field must be confined to the 

propagation at small angles with a preferred direction so that accuracy is optimized. In 

this study, we suggest two approaches based on the consistent nonlinear mild-slope 

equation in order to permit wave field propagating into broad band of directions. First 

model uses the minimax approximation of Kirby (1986b) for the linear terms and 

nonlinear summation is developed under the ordering system of Kirby (1986a). 

Secondly, we extend the parabolic equation model of Kim and Kaihatu (2021) by means 

of alongshore wavenumber components by Fourier decomposition. The inverse Fourier 

transform terms are further modified with the forcing terms of Janssen et al. (2006) for 

the interaction between the lateral bottom variation and the wave field. 

Two comparisons are provided to demonstrate the ability of the present models 

to account for the wave focusing by (1) a topographical lens; (2) an elliptic shoal; (3) a 

circular shoal. Numerical examples show that the first model, based on the higher-order 

parabolic approximation, accurately describe the simultaneous diffraction and refraction 

of waves in a realistic topography characterized by strong lateral bottom variation; 

however, it is also shown that the first model exhibits large distortion of wave pattern 

resulting from changes in the angle of incidence. This distortion can be interpreted as a 

result of appreciable error in the minimax approximations as the propagation direction 

approaches to 90° although the error is minimized over a prespecified range of wave 

directions in the minimax approximations relative to the previous lower-order equations. 

On the other hand, the application of the second (angular spectrum) model to the 

wave propagation problems confirms that there is little restriction on the range of wave 
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angles and this model therefore is especially useful in applications to the wide-angle 

propagation. This is because the summation of angularly spreading waves only affected 

by refraction and shoaling described the wave field. In accordance with the conclusion 

of Dalrymple et al. (1989) as to the application to a realistic problem, the second 

approach has an obvious limitation in that it requires minor bottom variation in 

alongshore direction. However, the present appears to offer improvement over the other 

previous angular spectrum models due to the additional nonlinear amplitude gradient 

terms (i.e., AxA) to that of previous model (e.g., Kaihatu and Kirby, 1995). 

 

8.4 Comparison to field observations 

In order to ensure the models’ capability in simulating irregular wave processes, 

the newly developed models are examined with field data from field campaign DUCK94 

(Fall 1994) where the U.S. Army Field Research Facility collected measurements of 

shoaling and breaking waves across an ocean beach at Duck, North Carolina, USA. The 

parabolic equation model and angular spectrum model based on the consistent nonlinear 

mild-slope equation incorporate energy dissipation by breaking, using a realistic wave 

breaking function of Thronton and Guza (1983) modified by Mase and Kirby (1993) to 

consider the distribution of the dissipation over the frequency range. To minimize the 

deviation caused by missing values of spectrum in the infragravity band (f < 0.5fp), 

inaccuracy in the sea band (f > 1.5fp), and the physical mechanisms not included in the 

present models (e.g., wind input, white-capping, bottom friction, and four-wave 

interactions), we initialize the present models with the observed measurement at the 
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most offshore pressure gauge (at x = 480 m) and simulate wave propagation for about 

300 m across the beach to the shoreline. 

To the best knowledge of the author, this study presents the first comparison 

between a parabolic equation model and a corresponding angular spectrum model 

against field experiments. The overall results in the directional wave spectrum and bulk 

statistics show that the angular spectrum model predicts more accurately the process of 

dispersion, refraction, shoaling, and nonlinear energy transfer. Additionally, compared to 

the previous model with less nonlinear summations (i.e., Kaihatu and Kirby, 1995), due 

to the additional nonlinear amplitude gradient term (i.e., AxA), the present model does 

evidence improvement in the prediction of wave height and bottom velocity, which may 

be required for nearshore applications such as sediment transport.  

Lastly, to increase the utility of phase-averaged models (e.g., SWAN) in the 

nearshore (and thus more effectively link it to larger scale ocean wave modeling), a 

nonlinear source term based on the consistent nonlinear mild-slope equation model is 

developed to replace the existing parameterized formulation (e.g., Eldeberky, 1996) to 

include the added nonlinear effect from the x-derivative nonlinear term AxA. 

 

8.5 Future research 

Future work will focus on using the model to include other effects and consider 

other situations. With respect to larger scales of operation, it should be desirable to take 

into account additional physical characteristics such as the ambient current (e.g., Kirby, 

1986a; Kirby and Chen, 1989). To study the effect of ambient currents on nearshore 
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nonlinear cross-spectral energy exchange, we should derive a frequency-domain phase-

resolving model for wave propagation that combines motion of waves and current.  

As a suggestion for extension of the present model, the dissipation term can be 

formulated for nearshore sediment transport (e.g., Kaihatu et al., 2007a; Tahvildari and 

Kaihatu, 2011). Wave energy dissipation over mud is an important mechanism so that 

accurate prediction of a mud-induced damping is important for understanding nearshore 

circulation and accounting for costal processes in muddy coastal areas. Most analytical 

formulations of bed-induced wave dissipation typically, concentrating on a single 

physical process in terms of the bed state and composition and providing the 

characteristics of the mud for energy damping, are based on linear theory. Therefore, in 

order to take into incorporating more realistic scenarios, phase-resolving frequency-

domain models have incorporated these analytical functions to investigate the effect of 

sediment on nearshore wave evolution. 

Furthermore, we can potentially extend the consistent nonlinear mild-slope 

equation model to the case of steep slope such as fringing coral reefs, where the total rate 

of breaking-induced energy dissipation becomes larger than over a gentle sloping beach. 

The model can be modified by keeping higher-order bottom change terms neglected in 

the original form in an a posteriori sense. The reefs feature steep slope and complex 

structures that can potentially protect shorelines from the impact of waves and strong 

currents, which further impact morphological evolution. The steep face induces an 

intense wave breaking which is as large as the nonlinear interactions, leading to a 

reduction in wave action on the areas of coral reef. One often observes high water-level 
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events and high infragravity wave runup events on the regions, which consequently 

cause quarrying of blocks from the cliff top (Sheremet et al., 2014).  

The present model, in its phase-resolved form, rigorously describes subharmonic 

and superharmonic interactions (to its order of truncation) so that important process such 

as infragravity wave generation and frequency-directional spectral widening can be 

realistically simulated. Therefore, the model can provide insight on the complex physics 

of triad interactions to phase-averaged spectral operational models (e.g., SWAN) and 

nearshore numerical models for nearshore and coastal areas (e.g., XBeach, Roelvink et 

al., 2009). Moreover, the present angular spectrum model based on the consistent 

nonlinear mild-slope equation model will be extended to the development of triad 

interactions source term to account for not only the additional nonlinear effect but also a 

two-dimensional wave field which is responsible for redistributing the energy over a 

wide range of directions (Vrecica and Toledo, 2019). 

Lastly, by coupling numerical wave models, namely, phase-averaged operational 

wave model (e.g., SWAN) and phase-resolving model in frequency-domain (e.g., 

CNMSE model) with machine learning methods (e.g., artificial neural network (ANN) 

model), we can propose a new system for wave parameter prediction. While the ANN 

model reduces numerical complexity inherent in the numerical wave models (e.g., 

CNMSE model), the numerical wave models provide wave data which retains phase 

information for training, thus providing the relevant nearshore physics to the training set. 

For example, an operational spectral wave model can be used with wind data to calculate 

directional wave spectrum, which is in turn used to obtain the higher-order statistics as 
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well as spectral density in shallow water by using the CNMSE model. Then, the ANN 

model can output the significant wave height through using not only wind velocities but 

also the skewness and asymmetry as input values to get significant improvements in the 

prediction of wave heights. Through this work, we can construct an accurate and 

economical approach for short-term wave forecasts for coastal protection.   
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APPENDIX A* 

 

In Section 2.3, we illustrated the impact of the additional terms developed by the 

consistent ordering on the phase mismatch, which was often mentioned (e.g., Kaihatu 

and Kirby, 1995) as a drawback of their nonlinear mild-slope equation. In this appendix 

we illustrate the impact of these additional terms on the phase mismatch for the case of 

N = 2, or two frequency components.  At the wave maker station (x = 0), the equations 

can be simplified since all values are given, with the x-derivatives of amplitude the only 

unknown. 

(1) Kaihatu and Kirby (1995) (Equation 2.64) 

When N = 2 and a grid step size of x , the one-dimensional equations of 

Kaihatu and Kirby (1995) can be written for a constant depth: 

 
( )

( )*1
1 1 2 2 1

1

2
exp 2

8
x

g

S
A i A A i k k x

kCC
= − −     (A.1) 

 
( )

( )21
2 1 1 2

2

exp 2
8

x

g

R
A i A i k k x

kCC
= − −     (A.2) 

The phase mismatches can be simplified up to second order in μ, similarly to 

what was done in Section 2.3: 

 ( )2 4

2 12k k O  − = +  (A.3) 

 
* This chapter is reprinted with permission from Kim, I. C. and Kaihatu, J. M., 2021. A consistent 

nonlinear mild-slope equation model. Coastal Engineering, 170: 104006. Copyright [2021] by Elsevier. 

DOI: https://doi.org/10.1016/j.coastaleng.2021.104006. 
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Except for x-derivatives of amplitude and phase mismatches, all the variables are 

given values, so the equations can be written with complex number constant K 

combining all given values (these are distinguished by subscripts and primes): 

 2

1 1 expxA K i x  =    (A.4) 

 
2

2 1 expxA K i x   = −    (A.5) 

(2) Present model (Equation 2.65) 

When N = 2, the one-dimensional form of the present model can be written for a 

constant depth as follows: 

 
( )

  ( )* * *

1 1 1 2 2 1 2 3 1 2 2 1

1

2 2 2 exp 2
8

x x x

g

i
A S A A S A A S A A i k k x

kCC
= − + + −     (A.6) 
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  ( )2

2 1 1 2 1 1 3 1 1 1 2

2

exp 2
8

x x x

g

i
A R A R A A R A A i k k x

kCC
= − + + −     (A.7) 

and again, combining all known values into a complex constant K: 

 ( )* 2

1 1 2 1 3 2 expx x xA K K A K A i x  = + +    (A.8) 

 ( ) 2

2 1 2 1 expx xA K K A i x    = + −    (A.9) 

where K2ʹ includes both terms with R2 and R3. 

Substituting Equation (A.9) into (A.8) to eliminate A2x: 

 ( ) 2 * 2

3 2 1 1 2 1 3 11 exp expx xK K A K i x K A i x K K       − =  +  +     (A.10) 

If A1x has terms with exp[iaμ2κΔx], then a can take the values 1, – a +1, or 0. 

Therefore, A1x can be set as follows with the complex number coefficients C: 
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2
2

1 1 2 3exp exp
2

xA C i x C i x C


  
 

 =  +  +  
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 (A.11) 

Finally, A2x can be also obtained: 

 ( )
2

2

2 1 3 2 2 2 1 2exp exp
2

xA K C K i x C K i x C K


  
 

    = + −  + −  +  
 

 (A.12) 

Substituting Equations (A.11) and (A.12) into Equation (A.8), the coefficients C 

can be obtained from the given amplitude: 

 ( ) *

3 2 2 2 21 K K C K C− =  (A.13) 

 ( ) *

3 2 1 1 2 31 K K C K K C− = +  (A.14) 

 ( ) *

3 2 3 3 1 2 11 K K C K K K C − = +  (A.15) 

Finally, unlike model of Kaihatu and Kirby (1995) (i.e., Equation A.4), present 

model contains the term C3 which has the effect of a buffer against high degrees of 

oscillation. Additionally, terms proportional to exp[(iμ2κΔx)/2] appear; these terms have 

longer cycle than exp[iμ2κΔx], and can thus also alleviate the impact of phase mismatch. 

This appendix therefore shows that the present model is less sensitive to the grid size 

κΔx in this artificial case than the model of Kaihatu and Kirby (1995) for the case of two 

distinct frequencies, thus extending the related discussion in Section 2.3. 
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APPENDIX B 

 

In Section 4.2, the hybrid consistent nonlinear mild-slope equation is derived, 

and we provide the derivation in detail in this appendix. We take a careful look at second 

nonlinear summation in curly bracket of the right-hand side of Equation (4.16): 
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where index m is used instead of l for the internal summations: 
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The internal summations of Equations (B.2) through (B.5), containing mismatch 

of trial wave-wave interaction, are multiplied by another mismatch between three waves 

but one component of each mismatch is canceled out, and hence final form of mismatch 

can show wave-wave interaction between four waves. Following the closure method of 

Benney and Saffman (1966), except for four-wave interactions only with the matching 

indices (i.e., exact resonant interactions), we neglect the terms involving other 

interactions (i.e., near resonant interactions). Each internal summation has two 

summations, and hence there are totally eight summations, to focus on the frequency 

modes of wave-wave interaction, we rewrite the mismatches of summations only: 

(1) First summation 

 
( ) ( ) ( ) ( ), , m l m l l n l nm l m l n l

m l m n l n

k k k k k k dx

k k k k dx
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= + + −




 (B.6) 

The case of exact resonance does not exist.  

(2) Second summation 
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= − + −




 (B.7) 

When m = n – l, exact resonance is satisfied. 

(3) Third summation 
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
 (B.8) 

The case of exact resonance does not exist.  
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(4) Fourth summation 
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When m = n, exact resonance is satisfied. 

(5) Fifth summation 
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The case of exact resonance does not exist.  

(6) Sixth summation 
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When m = n, exact resonance is satisfied. 

(7) Seventh summation 
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When m = l and m = n, exact resonance is satisfied. 

(8) Eighth summation 
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The case of exact resonance does not exist. 

Considering all the case of exact resonance, Equation (B.1) becomes: 
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



 (B.14) 

which is reflected in Equation (4.17). 
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APPENDIX C 

 

In Section 7.4, by manipulating the one-dimensional CNMSE model (Equation 

2.60), the parametrized energy term for triad interactions which is suitable for 

implementation into the SWAN model is derived and we provide the derivation in detail 

in this appendix. First, we provide the derivation of stochastic version of consistent mild-

slope equation model in detail in this appendix. Based on the assumption in the Gaussian 

Sea state (or using Gaussian closure hypothesis), nonlinear phase-resolved models have 

been extended to develop stochastic evolution equations for wave physics in deep and 

intermediate water depths (Agnon and Sheremet, 1997; Herbers and Burton, 1997; 

Kofoed-Hansen and Rasmussen, 1998; Eldeberky and Madsen, 1999; Sheremet et al., 

2011; Vrecica and Toledo, 2016 among many others). 

Following Eldeberky and Battjes (1999), we neglect the shoaling term for brevity 

and present the one-dimensional consistent mild-slope equation model with the new 

complicated interaction coefficients: 

( )

( ) ( ) ( )( )

1

, , , , , ,

1

* * *

, , , , , ,
1

1 2 3

2 1 2 3

l n l n

l n l n

n
i k k k dx

nx n l n l l n l n l n l lx n l n l n l l n lx

l

N n
i k k k dx

l n l lx n l l n lxn l n l n l n l n l n l
l

A iW A A W A A W A A e

iW A A W A A W A A e

−

+

−
+ −

− − − − − −

=

−
− + −

+ + +− + − + − +
=

 = − + + 
 

 + + + 
 





 (C.1) 

where  

 
2 2 2 2 2

, , 2 2
1 2

8

n n l l l n l n l n l l n l
n l n l l n l

gn l n l n n

g k k
W k k

C g g

      

  
− − − −

− −

−

 
= + + − + 

 
 (C.2) 



 

208 

 

 
, ,2

4

n n l
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n l
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g k
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


−

−

=  (C.4) 

and 
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2 2 2 2 2

, , 2 2
1 2

8

n n l l l n l n l n l l n l
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 (C.5) 

 
( ), ,

2
4

n n l
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gn l n l

g k
W
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
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− +

+

=  (C.6) 

 
( ), ,

3
4

n l

n l n l

gn l n l

g k
W

C




− +

+

= −  (C.7) 

(1) Evolution equation for energy spectrum 

Adding Equation (C.1) multiplied by An
* and the conjugate of Equation (C.1) 

multiplied by An gives the equation for energy spectrum 𝐸𝑛 = |𝐴𝑛|2: 

 

( )

( ) ( ) ( ) ( ) ( ) ( )( )
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l n-l
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 (C.8) 

where  

 
*

, , , ,expn l n l n l n l n l n lB A A A i− − −
 =    (C.9) 

 ( ) ( )
* *

, , , ,
expn l n ln l n l n l n l

B A A A i+− + − +
 = 
 

 (C.10) 

and  

 , ,n l n l n l n lk k k dx− − = − + +  (C.11) 
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( ), , n l n ln l n l

k k k dx+− +
 = − − +  (C.12) 

and ℜ denotes the real part and the x-derivative of bispectrum is expressed by bold (e.g., 

𝐵𝑛,𝐥,𝑛−𝑙 = 𝐴𝑛
∗𝐴𝑙𝑥𝐴𝑛−𝑙exp [𝑖∆𝑛,𝑙,𝑛−𝑙]). 

Applying a statistical closure hypothesis (Benney and Saffman, 1966) which 

neglect the effects of nonlinearity between four wave components except for opposite-

signed phases yields evolution equations for the x-derivatives of bispectra 𝐵𝑛,𝑙,𝑛−𝑙:  
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 (C.13) 

 
( )

( ) ( )

2 2

, , , ,

2 2* *

, , , ,

2 1

2 2 2 3

n n l n n ll n l n

n lx n l n nx n n ll n l n l n l n

B iW A A

W A A A W A A A

− −− −

− − −− − − −

=

+ +

l
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=
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 (C.15) 

and for the x-derivatives of bispectra 𝐵𝑛,(−𝑙),𝑛+𝑙: 
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 (C.16) 
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 (C.17) 
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 (C.18) 

The real part ℜ gives the following features: 
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, , , ,
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=

 (C.20) 

Plugging Equations (C.14), (C.15), (C.17), and (C.18) into Equation (C.8) and 

using features (C.19) and (C.20) leads to final form for spectrum: 
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 (C.21) 

(2) Evolution equation for bispectrum 

Combining Equations (C.13) through (C.15), and substituting Equation (C.1) into 

nonlinear part with adjusting to the frequency component of x-derivatives in right-hand 

side of Equations (C.13) through (C.15). Neglecting quintic polynomial which is 

consistent with the statistical closure hypothesis (Benney and Saffman, 1966) yields the 

evolution equation for bispectrum 𝐵𝑛,𝑙,𝑛−𝑙: 
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In a similar manner, the evolution equation for bispectrum 𝐵𝑛,(−𝑙),𝑛+𝑙 is obtained: 
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 (C.23) 

(3) Triad interactions source term 

With the assumption that the terms on the right-hand side of Equations (C.22) 

and (C.23) are constant and bispectrum is initially zero, integrating from 0 to x leads to: 
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 (C.24) 
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 (C.25) 

Neglecting the contribution of the fast-oscillating function: 
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 (C.27) 

Substituting Equations (C.26) and (C.27) into Equations (C.21): 
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 (C.28) 

Rewriting discrete energy as 𝐸𝑛 = 𝐸(𝑓𝑛)∆𝑓: 
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 (C.29) 

The effective interaction bandwidth ∆𝑓 = 𝛿𝑓𝑝 is introduced and the interactions 

between wavenumber is replaced with kp, and replacing the summation of triad 

interactions with self-self-interactions (
𝑛

2
+

𝑛

2
= 𝑛 and 𝑛 + 𝑛 = 2𝑛) which are dominant 

among all the triad interactions between two wave components: 
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 (C.30) 

For energy flux 𝐶𝑔𝐸(𝑓): 

 ( ) ( ) ( )3 3 3nl n nl n nl nS f S f S f+ −= +  (C.31) 

where   
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and  
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 (C.33) 

with 𝛼𝐸𝐵 is a tunning parameter in Eldeberky (1996) (𝛼𝐸𝐵 = 1 in SWAN, Holthuijsen, 

2010). Eventually, the source term based on the consistent nonlinear mild-slope equation 

model is developed to modify the existing parameterized formulation (e.g., Eldeberky, 

1996) to include the additional nonlinear effect from the x-derivative nonlinear term AxA.  

 

 

 


