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ABSTRACT

Given a complete n-dimensional Riemannian manifold X admitting a suitable action by

a group Γ, each Γ-equivariant elliptic differential operator D gives rise to a higher index class

IndΓ(D). A central strength of this algebraic invariant lies in the ability to encode important

“symmetries" ofX, with its construction involving differential geometry,K-theory, functional

analysis, and C∗-algebraic notions. When a primary invariant such as IndΓ(D) is trivial,

even finer geometrical and topological information can be obtained through the analysis of

naturally occurring secondary higher invariants. An intrinsic issue is the general difficulty in

computation of such invariants; generally speaking, the efficacy of the tools and techniques

applied in order to reduce this computability difficulty depend crucially on the structure of

the group Γ.

The content of this thesis concerns higher index theory in the setting of complete closed

spin manifolds M with finitely generated and virtually nilpotent fundamental groups. A

common approach is to pair the given secondary higher invariant with cyclic cohomology

classes associated to the group algebra CΓ. The immediate question which arises is de-

termining when this pairing can be rigorously well-defined; one aspect to be addressed is

purely algebraic topological in nature, while another main difficulty involves norm estimates

in functional calculus and subtle convergence issues. The first contribution of the thesis is

to show that with respect to a virtually nilpotent group Γ every cyclic cocycle class on CΓ

has a representative of polynomial growth. This cohomological growth condition is essential

to proving that every cyclic cocycle class extends continuously from CΓ to certain geometric

C∗-algebras, and provides the foundation for showing that under certain curvature assump-

tions and for π1(M) virtually nilpotent, the explicit integral formula describing a higher

analogue of Lott’s delocalized eta invariant converges absolutely and is well-defined. We

also use a determinant map construction of de la Harpe and Skandalis– adapted by Xie and

Yu– to prove that if Γ is of polynomial growth then there is a well defined pairing between
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delocalized cyclic cocycles and K-theory classes of C∗-algebraic secondary higher invariants.

When this K-theory class is that of a higher rho invariant of an invertible differential opera-

tor we show this pairing is precisely the aforementioned higher analogue of Lott’s delocalized

eta invariant. As an application of this equivalence we provide a delocalized higher Atiyah-

Patodi-Singer index theorem for compact spin manifolds with boundary, equipped with a

positive scalar metric.
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1. INTRODUCTION∗

Given a Fredholm operator T : X −→ Y between two Banach spaces the classic index

theory for Fredholm operators provides an integer valued analytic index

ind(T ) = dim ker(T )− dim coker(T )

which is invariant under perturbations of T by compact operators. The non-vanishing of

ind(T ) is thus an obstruction to invertibility of a Fredholm operator T . When T is an

elliptic differential operator with X and Y smooth vector bundles over a smooth closed

manifold M the work of Atiyah and Singer [4] showed the equivalence between ind(T ) and

the often more tractable topological index (see (4.51) of Section 4.4).

LetM be a complete n-dimensional Riemannian manifold with a discrete group G acting

on it properly and cocompactly by isometries. Each G-equivariant elliptic differential oper-

ator D on M gives rise to a higher index class IndG(D) in the K-theory group Kn(C∗r (G))

of the reduced group C∗-algebra C∗r (G). Higher index classes are invariant under homotopy,

and being an obstruction to the invertibility of D, are often referred to as primary invari-

ants. Higher index theory provides a far-reaching generalization of the Fredholm index by

taking into consideration the symmetries of the underlying spaces; in particular, if M is a

complete compact Riemannian manifold with an associated Dirac-type operator D, a higher

index theory intrinsically involves the fundamental group π1(M). The higher index theory

plays a fundamental role in the studies of many important open problems having relations to

geometry and topology, such as the Novikov conjecture, the Baum-Connes conjecture, and

the Gromov-Lawson-Rosenberg conjecture.

A secondary higher invariant– so called due to its natural appearance upon the vanishing
∗Part of this chapter has been reprinted with permission from “S.A.K.A. John. Secondary Higher In-

variants and Cyclic Cohomology for Groups of Polynomial Growth. Journal of Noncommutative Geometry,
(accepted), 2021 "
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of a primary invariant such as IndG(D)– was developed by Lott [31] within the framework

of noncommutative differential forms, for manifolds with virtually nilpotent fundamental

groups and D invertible. Lott’s work was heavily inspired by the work of Bismut and

Cheeger on eta forms [8], which naturally arise in the index theory for families of manifolds

with boundary [2]. Lott’s higher eta invariant, despite being defined by an explicit integral

formula of noncommutative differential forms is unfortunately difficult to compute in general.

To reduce the computability difficulty and make this second higher invariant more applicable

to problems in geometry and topology one needs to pair it with the cyclic cohomology of

the group algebra. The delocalized eta invariant of Lott [32] can be formally thought of as

precisely such a pairing with respect to traces (see the formula (4.2)).

In Definition 2.22 and Definition 2.23 we provide a precise definition of the cyclic coho-

mology groups HC∗(CG) and their delocalized counterparts HC∗(CG, cl(γ)) with respect to

the group algebra CG and conjugacy classes cl(γ). Given a delocalized cyclic cocycle class

[ϕγ] ∈ HC∗(Cπ1(M), cl(γ)) of any degree, where the conjugacy class cl(γ) is not trivial, a

higher analogue of Lott’s delocalized eta invariant η[ϕγ ](D̃) is given in Definition 4.2; the

explicit formula for η[ϕγ ](D̃) is described in terms of the transgression formula for Connes-

Chern character [12, 15]. The natural problem which arises is in determining when this

delocalized higher eta invariant can actually be rigorously well-defined and involves some

subtle convergence issues which depend crucially on the growth conditions of the cyclic co-

cycles; in addition, it is essential to prove that the pairing is independent of the choice of

representative of any given cocycle class. As a necessary prelude, the first half of this thesis

is concerned with establishing the first main result (see Corollary 3.7), namely that for a

virtually nilpotent group Γ every delocalized cyclic cocycle class on the group algebra has a

representative of polynomial growth.

An analogous result was proven by Chen, Wang, Xie, and Yu [11] under the assumptions

of Γ being a word hyperbolic group; while some of their techniques carry over without much

fuss, the overall proofs require distinctly separate ingredients. By Zγ denote the centralizer of

2



γ, by γZ denote the cyclic group generated by γ, and by Nγ denote the quotient group Zγ/γZ.

It is not hard to show that Nγ is virtually nilpotent if Γ is; moreover, it is proven by Ji [23]

that virtually nilpotent groups are of polynomial cohomology, hence the group cohomology

H∗(Nγ,C) is polynomially bounded. The essential ingredient in proving Corollary 3.7 is thus

the construction of an explicit morphism to delocalized cyclic cohomology which preserves

polynomial growth. Using the long exact sequence of periodic cyclic cohomology involving

the (delocalized) Connes periodicity operator [12] and combining this with a cohomological

dimension result of Ji [24], we prove that H∗(Nγ,C) does not contribute to the delocalized

cyclic cohomology of CΓ if γ is of infinite order. We are thus able to construct a ratio-

nal isomorphism between cohomology groups of a certain augmented complex of delocalized

cyclic cocycles and the group cohomology H∗(Zγ,C). The main technical difficulty lies in

exploiting the equivalence between singular cohomology H∗(BΓ,C) of universal classifying

spaces and group cohomology H∗(Γ,C) in order to prove that the relevant rational isomor-

phisms have geometrically significant analogues which explicitly can be shown to preserve

polynomial growth of cocycle classes.

We are thus able to show that whenever M possesses a finitely generated and virtually

nilpotent fundamental group the higher analogue pairing of Lott’s higher eta invariant with

(delocalized) cyclic cocycles is well-defined, under the conditions that the Dirac operator on

M̃ is invertible– or more generally has a spectral gap at zero.

Theorem 1.1. Let M be a closed odd-dimensional spin manifold equipped with a positive

scalar metric g, and fundamental group which is is virtually nilpotent. Denoting by D̃ the

associated lift of the Dirac operator D to the universal cover M̃ , the higher delocalized eta

invariant η[ϕγ ](D̃) converges absolutely for every [ϕγ] ∈ HC2m(Cπ1(M), cl(γ)). Moreover, if

S∗γ : HC2m(Cπ1(M), cl(γ)) −→ HC2m+2(Cπ1(M), cl(γ))

denotes the delocalized Connes periodicity operator, then η[Sγϕγ ](D̃) = η[ϕγ ](D̃).

3



When the higher index class of an operator is trivial– given a specific trivialization– a

secondary index theoretic invariant naturally arises through a C∗-algebraic approach. For

example, consider the associated Dirac operator on the universal covering M̃ of a closed, n-

dimensional spin manifold M equipped with a positive scalar curvature metric g. The Lich-

nerowicz formula (see (4.1) of Section 4.1) asserts that the Dirac operator on M̃ is invertible

[29], and so IndG(D) must necessarily be trivial. In this case, there is a natural C∗-algebraic

secondary invariant ρ(D̃, g̃) introduced by Higson and Roe [20, 21, 22], called the higher rho

invariant (there is a essentially similar invariant originally defined by Weinberger [44]). This

higher rho invariant is an obstruction to the inverse of the Dirac operator being local, and

describes a class belonging to the group Kn(C∗L,0(M̃)π1(M)), where π1(M) is the fundamental

group of M . As mentioned before, such a secondary index theoretic invariant often plays

an important role in problems in geometry and topology (cf. [45, 46, 49]). The precise

description of the geometric C∗-algebra C∗L,0(M̃)π1(M) is provided in Definition 2.15, and the

particular construction of the higher rho invariant is given at the beginning of Section 4.2. In

the case that π1(M) is a virtually nilpotent group we provide– using the construction of the

determinant map of [50]– in Section 4.2 an explicit formula (see Definition 4.11)for a pairing

of C∗-algebraic secondary invariants and delocalized cyclic cocycles of the group algebra is

realized. Moreover, in the particular instance that [u] ∈ K1(C∗L,0(M̃)π1(M)) is the K-theory

class of the higher rho invariant ρ(D̃, g̃), then the pairing is given explicitly in terms of the

higher delocalized eta invariant η[ϕγ ](D̃).

Theorem 1.2. Let M be a closed odd-dimensional spin manifold with virtually nilpotent

fundamental group, then every delocalized cyclic cocycle [ϕγ] ∈ HC2m(Cπ1(M), cl(γ)) induces

a natural map

τ[ϕγ ] : K1(CL,0(M̃)π1(M)) −→ C

If M has positive scalar curvature metric g then τ[ϕγ ](u) converges absolutely. When [u] =
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ρ(D̃, g̃) is the K-theory class of the higher rho invariant there is an equivalence

τ[ϕγ ](ρ(D̃, g̃)) = (−1)mη[ϕγ ](D̃)

The above theorem holds in the more general case that for the Dirac operator D on

M , the associated lift D̃ to the universal cover M̃ is invertible. Showing that the map

τ[ϕγ ] is well defined occupies the majority of Section 4.2; in particular, the extension of

ϕγ from the group algebra to the localization algebra requires the existence of a certain

smooth dense subalgebra of C∗r (π1(M)) introduced by Connes and Moscovici [16]. In [50],

Xie and Yu established such a pairing between delocalized cyclic cocycles of degree m = 0–

delocalized traces– and classes [u] belonging toK1(C∗L,0(M̃)π1(M)), under the assumption that

the relevant conjugacy class has polynomial growth. Later, in [11], under the assumption that

π1(M) is a hyperbolic group, this construction was extended to allow for a pairing between

delocalized cyclic cocycles of all degrees and the K-theory classes [u] ∈ Kn(C∗L,0(M̃)π1(M)). In

the hyperbolic case, convergence of τ[ϕγ ] relies on the properties of Puschnigg’s [39] smooth

dense subalgebra in an essential way.

The map τ[ϕγ ] allows for a constructive and explicit approach to a higher delocalized

Atiyah-Patodi-Singer index theorem. In Section 4.4 we prove a direct relationship between

pairings of K-theory classes [u] ∈ Kn(C∗L,0(M̃)π1(M)) with τ[ϕγ ], and the pairing of classes

∂[p] with respect to the delocalized Connes-Chern character map [12, 15] (see (4.52) for the

explicit expression used here), where p is an idempotent and

∂ : Kn(C∗(M̃)π1(M)) −→ Kn−1(C∗L,0(M̃)π1(M))

is the usual K-theory connecting map. Combined with Theorem 1.2 this provides the fol-

lowing version of a higher delocalized Atiyah-Patodi-Singer index theorem.

Theorem 1.3. Let W be a compact spin manifold with boundary, equipped with a scalar cur-

vature metric g which is positive on ∂W , and fundamental group which is virtually nilpotent.

5



Denote by D̃W and D̃∂W the lifted Dirac operators on W̃ and its boundary, respectively.

ch[ϕγ ]

(
Indπ1(W )(D̃W )

)
=

(−1)m+1

2
η[ϕγ ](D̃∂W )

for any [ϕγ] ∈ HC2m(Cπ1(M), cl(γ)), where ch[ϕγ ] is the delocalized Connes-Chern character

map which pairs cyclic cocycles with the K-theoretic index class.

There have been various versions of a higher Atiyah-Patodi-Singer theorem in the lit-

erature, such as [26, 27, 17] and [43]. The form of the this result strongly mirrors that

conjectured by Lott [31, Conjecture 1], and is essentially a general case of that proven by

Xie and Yu [50, Proposition 5.3] for zero dimensional cyclic cocycles. In Section 4.4 we

provide the basic background of the original APS index theorem, and show how the above

theorem is specifically related to it. See the discussion following [11, Theorem 7.3] for more

details on the relationships and differences of the above theorem with other existing results

of higher APS index theorems.

This thesis is organized as follows. Section 2.1 provides a brief review of topological

K-theory of C∗-algebras and construction of the index map. In Section 2.2 we provide the

properties of the geometric C∗-algebras which shall be used throughout, as well as detail

the construction of important smooth dense sub-algebras. Section 2.3 is concerned primarily

with providing the definition of cyclic cohomology and detailing the relationship between

this and cohomology for groups; in addition we recall an essential construction for explicit

representative of cyclic cocycle classes. In Section 3.1 we review the long exact sequence

of periodic cyclic cohomology involving the (delocalized) Connes periodicity operator (see

Definition 3.2 and (3.4)); combining this with a cohomological dimension result we prove a

necessary torsion argument. We are thus able to construct a rational isomorphism between

cohomology groups of a certain complex of cyclic cocycles and group cohomology of a partic-

ular subgroup of π1(M). Using the universal classifying description of group cohomology and

the previous rational isomorphism, the entirety of Section 3.2 is devoted to proving that every

6



delocalized cyclic cocycle has a representative of polynomial growth. In Section 4.1, given a

delocalized cyclic cocycle of polynomial growth we define a higher analogue of Lott’s delo-

calized eta invariant and prove it converges for invertible elliptic operators. In Section 4.2,

we first review a construction of Higson and Roe’s higher rho invariant as an explicit K-

theory class. We provide an explicit formula for the pairing between C∗-algebraic secondary

invariants and delocalized cyclic cocycles of the group algebra for virtually nilpotent groups,

and prove it is well-defined. In particular, in the case that the secondary invariant is a

K-theoretic higher rho invariant of an invertible elliptic differential operator, we show in

Section 4.3 that this pairing is precisely the higher delocalized eta invariant of the given

operator. In Section 4.4, we use the determinant map of the previous section to determine

a pairing between delocalized cyclic cocycles and C∗-algebraic Atiyah-Patodi-Singer index

classes for manifolds with boundary, when the fundamental group of the given manifold is

virtually nilpotent.

7



2. PRELIMINARIES∗

In all that follows we will take M to be a closed odd-dimensional spin manifold, which

is equipped with a positive scalar metric g. By D we denote the Dirac operator associated

to M , and analogously by D̃ the associated lift to the universal cover M̃ . By Γ = π1(M) we

refer to a countable discrete finitely generated group which is also the fundamental group of

M . Given γ ∈ Γ the centralizer of γ will be denoted ZΓ(γ), or if there is no confusion as

to the group Γ, by Zγ; likewise, if γZ is the cyclic group generated by γ, then the quotient

group Zγ/γZ will be denoted by Nγ. By CΓ and ZΓ we mean the group algebra with complex

coefficients and the group ring with integer coefficients, respectively.

We recall that a finitely generated discrete group Γ comes equipped with a length function

lS with respect to some given symmetric generating set S ⊂ Γ.

lS(g) = min{c ∈ N : ∃s1, . . . , sc ∈ S, s1 · · · sc = g} (2.1)

There exists an associated word metric dS(g, h) = ||g−1h||; = lS(gh) which is left-invariant

with respect to the group action. More importantly, since the metric spaces (Γ, S) and (Γ, T )

are quasi-isomorphic for any choice of generating sets S and T , we are able to ignore this

choice when dealing with the word metric (or length function); henceforth we will merely

refer to the length function lΓ or the word metric dΓ. Thanks to the work of Gromov [18]

we will also use the terminology “virtually nilpotent" and “group of polynomial growth" in-

terchangeably throughout, depending on the circumstance. Recall that a virtually nilpotent

group is one which possesses a finite index normal nilpotent subgroup, and that Γ is of
∗Part of this chapter has been reprinted with permission from “S.A.K.A. John. Secondary Higher In-

variants and Cyclic Cohomology for Groups of Polynomial Growth. Journal of Noncommutative Geometry,
(accepted), 2021"
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polynomial growth if there exists positive integer constants C0 and m such that

|{g ∈ Γ : ||g|| ≤ n}| ≤ C0(n+ 1)m ∀n ∈ N (2.2)

2.1 Topological K-theory

The material provided in this section is all fairly standard and can be found in various

forms in texts such as that of Atiyah [1], Willett and Yu [47], Park [36], and Blackadder [9].

In 1957 Alexander Grothendieck used the notion of isomorphism classes (Klasse) of coherent

sheaves on an algebraic variety X in order to formulate his Grothendieck-Riemann-Roch

theorem. From the Abelian monoid formed by the sheaves under the direct sum operation,

one then defines a group using isomorphism classes of sheaves as generators of the group,

subject to a relation that identifies any extension of two sheaves with their sum. The resulting

Grothendieck group K0(X) is the universal group completion of the monoid, which can be

concretely realized through the formal adding of inverses. The topological analogue to this

algebraic notion was developed soon after by Atiyah and Hirzebruch who developed a K-

theory based on vectors bundles over compact Hausdorff spaces, the resulting extraordinary

cohomology theory being known as topological K-theory.

Definition 2.1. For a compact Hausdorff space X, let VectC(X) denote the commutative

monoid of isomorphism classes of finite dimensional complex vector bundles over X, with

binary operation being the Whitney sum. We define K0
top(X) = K0(VectC(X)) to be the

associated Grothendieck group completion.

This thesis is concerned with the question of complex vector bundles only, though one can

transfer much of the basic theory verbatim to the case of real or symplectic bundles. More-

over, the operation of tensoring vector bundles gives K0
top(X) a commutative ring structure,

and thus K0
top describes a contravariant functor from the homotopy category of topological

spaces to the category of commutative rings.

9



Definition 2.2. The reduced K-theory group K̃0
top(X) is the Grothendieck completion aris-

ing from stably isomorphic vector bundle classes, or alternatively as the kernel of the map

i∗ : K0
top(X) −→ K0

top({x0}) ∼= Z induced by the inclusion i : x0 ↪→ X of a basepoint.

The higher reduced K-groups can thus be defined according to K̃0
top(S

nX), where SnX

is the n’th reduced suspension (this coincides with the unreduced suspension for CW com-

plexes) of X. The celebrated periodicity theorem of Bott extends this definition to the

positive reduced K-groups by asserting that K̃−ntop (X) ∼= K̃−n−2
top (X). Since K−ntop (X) can be

simply defined as K̃−ntop (X t{x0}), this further shows that for the case of complex coefficients

there exist only two distinct groups: K0
top(X) and K1

top(X).

We now turn to recalling some basic notions concerning the K-theory of C∗-algebras, by

first extending the topological K-theory to that of commutative C∗-algebras. The Swan-

Serre theorem states that there is a one-to-one correspondence between (finite dimensional)

vector bundles over X and (finitely generated) projective modules of C(X), the algebra

of complex-valued continuous functions on X. Passing to isomorphism classes, there is a

natural definition for the topological K-theory groups of C(X).

Ktop
n (C(X)) := Kn(Proj(C(X))) ∼= Kn(VectC(X)) := Kn

top(X)

The famous theorem of Gelfand asserts that the category of compact Hausdorff topological

spaces is contravariantly equivalent 1 to the category of commutative C∗-algebras, and the

equivalence functor ϕ̂ is called the Gelfand-transform. In particular, if A is a commutative

C∗-algebra, then ϕ̂ : A −→ C(X) is an isomorphism for some choice of compact Hausdorff

space X, and allows us to simply define Kn(A) := Ktop
n (ϕ̂(A)).

Definition 2.3. Let A be a C∗-algebra and Mn(A) be the n × n matrix ring with entries

in A. There is an embedding of Mn(A) in Mn+1(A) given by an 7→
(
an 0
0 0

)
, and generally

the matrix direct sum defines a binary operation Mn(A) ×Mk(A) −→ Mn+k(A). We thus
1This contravariant relationship is the reason why we have adopted a reversal of subscript and superscript

for the topological K-theory of C(X) as opposed to that of X itself.
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define the direct limit object

M∞(A) = lim−→
n∈N

Mn(A) =

(⊔
n∈N

Mn(A)

)
/ ∼

where ak ∼ ai if and only if there exists m such that ak ⊕ 0m−k = ai ⊕ 0m−i ∈Mm(A).

Remark 2.4. There is a one-to-one correspondence between the collection of isomorphism

classes of finitely generated projective modules over the C∗-algebra A, and the collection of

Murray-von Neumann (or homotopy) equivalent idempotents in M∞(A).

The above remark, coupled with the Swan-Serre theorem, provides an alternative defi-

nition of K0(A) in terms of equivalence classes of idempotents, and thus suggest a concrete

method of expanding the notion of K0 to non-commutative C∗-algebras.

Definition 2.5. Let A be any unital C∗-algebra and Idem(M∞(A)) denote the Abelian

monoid formed by the collection of all equivalence classes of idempotents in M∞(A) with

direct sum as a binary operation. The Grothendieck group completion of Idem(M∞(A)) is

the K-theory group K0(A).

Definition 2.6. Let A be a C∗-algebra and SA the suspension C∗-algebra defined as SA =

{f ∈ C([0, 1],A) | f(0) = f(1) = 0}. The group K1(A) is defined to be K0(SA), and

similarly Kn(A) = K0(SnA), where SnA is obtained by taking the n-fold suspension of A.

Mirroring Definition 2.3, there is an alternative way of constructing K1 through invertible

matrix elements and which is often more useful for concrete computations.

Definition 2.7. Let GLn(A) denote the n × n matrix group of invertibles with entries

in a unital C∗-algebra A, and GLn(A)0 denote the component containing the identity In.

There is an embedding of GLn(A) in GLn+1(A) given by un 7→
(
un 0
0 1

)
; generally the matrix

direct sum defines a binary operation GLn(A) × GLk(A) −→ GLn+k(A). We thus define–

11



analogously for GL∞(A)0– the direct limit object

GL∞(A) = lim−→
n∈N

GLn(A) =

(⊔
n∈N

GLn(A)

)
/ ∼

where uk ∼ ui if and only if there exists m such that uk ⊕ Im−k = ui ⊕ Im−i ∈ GLm(A).

Proposition 2.8. There is a natural isomorphism between K0(SA) and the quotient group

GL∞(A)/GL∞(A)0.

K-theory satisfies all the usual properties one would expect from a cohomology theory;

particularly, every short exact sequence 0 −→ I −→ B −→ C −→ 0 of C∗-algebras gives rise

to a long exact sequence of K-theory groups. It is, however, important to note that the Bott

periodicity theorem asserts that the Bott map β : K0(A) −→ K2(A) is an isomorphism for

every C∗-algebra. Hence, we obtain a six-term long exact sequence

K0(I) K0(B) K0(C)

K1(C) K1(B) K1(I)

∂2∂1 (2.3)

with connecting maps ∂i. Here ∂2 := Ind2 ◦ β and ∂1 := Ind is the index map referred to

in the introduction; note that Ind2 : K2(C) −→ K1(I) is being understood as the index

map Ind : K1(SC) −→ K0(SI). Using the definition K1(A) = GL∞(A)/GL∞(A)0, we can

provide a concrete description of the index map in terms of invertibles and projections.

Definition 2.9. Consider the short exact sequence 0 −→ I −→ B −→ C −→ 0 of unital

C∗-algebras. Given a cohomology class [u] ∈ K1(C) with u ∈ GLn(C), there exists an

invertible v ∈ GL∞(B) such that v is a lift of the element
(

0n −u−1

u 0n

)
∈ GL2n(C). We define

Ind[u] ∈ K0(I) to be the cohomology class of a formal difference of idempotents.

Ind[u] :=

v
In 0n

0n 0n

 v−1

−

0n 0n

0n In



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If I is an ideal of B and C is the quotient C∗-algebra, then the lift element v can be

made very explicit in terms of u. There are also important representations for the index

map which are geometrical in nature or involve use of functional calculus (see [47, Section

2.8]).

2.2 Geometric C∗-algebras and Smooth Dense Sub-algebras

Let X be a proper metric space, and C0(X) the algebra of continuous functions on X

which vanish at infinity. An X-module HX is a separable Hilbert space equipped with a

∗-representation π : C0(X) −→ B(HX) into the algebra of bounded operators on HX , and

is called non-degenerate if the ∗-representation of C0(X) is non-degenerate. If no non-zero

function f ∈ C0(X) acts a compact operator under this ∗-representation, then we call HX a

standard X-module.

Definition 2.10. Recall that an operator T acting on a Hilbert space H belongs to the

algebra of compact operators K ⊂ B(H) if the image under T of every bounded subset has

compact closure.

(i) Let T ∈ B(HX) be a bounded linear operator acting on HX , then T is locally compact

if for all f ∈ C0(X) both fT and Tf are compact operators. We similarly call T

pseudo-local if the weaker condition, [T, f ] = TF − fT is a compact operator for all

f ∈ C0(X), is satisfied.

(ii) Again assume that T belongs to B(HX); the propagation of T is defined to be

sup{d(x, y) : (x, y) ∈ Supp(T )}

where Supp(T ) denotes the support of T , which is the set

{(x, y) ∈ X ×X : ∃f, g ∈ C0(X) such that gTf = 0 and f(x) 6= 0, g(y) 6= 0}c

If we further impose that HX is a standard and non-degenerate X-module, then there
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exist important constructions of certain geometric C∗-algebras. The first two of these, de-

scribed in Definition 2.11 were introduced by Roe in [40], and the coarse homotopy invariance

of their K-theory was subsequently proven by Higson and Roe [19].

Definition 2.11. The C∗-algebra generated by all locally compact operators with finite

propagation in B(HX), is the Roe algebra of X and is denoted by C∗(X). If we instead

consider the C∗-algebra generated by all pseudo-local operators with finite propagation in

B(HX), then we obtain a related algebra D∗(X). In fact, D∗(X) is a subalgebra of the

multiplier algebra M(C∗(X))– which is the largest unital C∗-algebra containing C∗(X) as

an ideal.

Definition 2.12. Let prop(T ) denote the propagation of an operator T ∈ B(HX). The

localization algebras C∗L(X) and D∗L(X) introduced by Yu [51] are defined as the C∗-algebras

generated by S1 and S2 respectively, where f is bounded and uniformly norm-continuous

S1 =
{
f : [0,∞) −→ C∗(X)| lim

t−→∞
prop(f(t)) = 0

}

S2 =
{
f : [0,∞) −→ D∗(X)| lim

t−→∞
prop(f(t)) = 0

}
Once again D∗L(X) is a subalgebra of the multiplier algebraM(C∗L(X)). The kernel of the

evaluation map ev : C∗L(X) −→ C∗(X) defined by ev(f) = f(0) is an ideal of C∗L(X), and is

itself a C∗-algebra which we denote by C∗L,0(X). Analogously we also define the C∗-algebra

D∗L,0(X) as the kernel of ev : D∗L(X) −→ D∗(X).

It follows that the Roe algebra and its localization fit into a short exact sequence– anal-

ogously for D∗(X)– which give rise to a six term K-theoretic long exact sequence with

connecting map ∂, and for which i = 0, 1(mod 2) by Bott periodicity.

0 C∗L,0(X) C∗L(X) C∗(X) 0ev (2.4)
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Ki(C
∗
L,0(X)) Ki(C

∗
L(X)) Ki(C

∗(X))

Ki−1(C∗(X)) Ki−1(C∗L(X)) Ki−1(C∗L,0(X))

∂∂ (2.5)

Assuming that a group G acts properly and cocompactly on X by isometries, we can equip

HX with a covariant unitary representation of G, which we will denote by $. Explicitly, if

g ∈ G, f ∈ C0(X) and v ∈ HX

$(g)(π(f)v) = π(f g)($(g)v)

where f g(x) = f(g−1x). We call the system (HX , π,$) a covariant system.

Definition 2.13. Suppose that HX is a standard and non-degenerate X-module, and G acts

on X properly and cocompactly. Moreover, for each x ∈ X the action of the stabilizer group

Gx on HX is isomorphic to the action of Gx on l2(Gx) ⊗ H for some infinite dimensional

Hilbert space H, where Gx acts trivially on H and by translations on l2(Gx). Under these

conditions a covariant system (HX , π,$) is called admissible.

If it is not necessary to emphasize the representations we shall simply refer to the admis-

sible system (HX , π,$) by HX , and describe it as an admissible (X,G)-module.

Remark 2.14. For every locally compact metric space X which admits a proper and cocom-

pact isometric action of G, there exists an admissible covariant system (HX , π,$).

Definition 2.15. Consider a locally compact metric space X which admits a proper and

cocompact isometric action of G, and fix some admissible (X,G)-module HX . The G-

equivariant Roe algebra C∗(X)G is the completion in B(HX) of the ∗-algebra C[X]G of

all G-invariant locally compact operators with finite propagation in B(HX). Replacing G-

invariant locally compact operators with G-invariant pseudo-local operators we similarly

obtain D∗(X)G. The G-equivariant localization algebras C∗L(X)G and D∗L(X)G are defined

as the C∗-algebras generated by S1 and S2 respectively, where f is bounded and uniformly
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norm-continuous

S1 =
{
f : [0,∞) −→ C∗(X)G| lim

t−→∞
prop(f(t)) = 0

}

S2 =
{
f : [0,∞) −→ D∗(X)G| lim

t−→∞
prop(f(t)) = 0

}
Analogous to Definition 2.12 we can also define the ideals C∗L,0(X)G and D∗L,0(X)G as the

kernels of the evaluation map.

The equivariant Roe algebra– analogously for D∗(X)G– fits into similar short exact se-

quence as did the original Roe algebra

0 C∗L,0(X)G C∗L(X)G C∗(X)G 0ev

An especially useful consequence of the cocompact action of G on X is that there exists a ∗-

isomorphism between C∗r (G)⊗K and C∗(X)G, where C∗r (G) is the reduced group C∗-algebra

of G.

Remark 2.16. The geometric C∗-algebras defined in Definition 2.12 and Definition 2.15

are all unique up to isomorphism, independent of the choice of HX is a standard and non-

degenerate X-module. Likewise the G-equivariant versions are also, up to isomorphism,

independent of the choice of admissible (X,G)-module HX .

Let Γ and M be as described above; we turn our attention to construction of two impor-

tant smooth dense subalgebras of C∗r (Γ) ⊗ K ∼= C∗(M̃)Γ, the first of which is essentially a

slight modification of Connes and Moscovici’s [16].

Definition 2.17. Fixing a basis of L2(M), the algebra R of smooth operators on M can be

identified with the algebra of matrices (aij)i,j∈N satisfying

sup
i,j∈N

ikjl|aij| <∞ ∀k, l ∈ N
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Consider the unbounded operators ∆1 : `2(N) −→ `2(N) and ∆2 : `2(Γ) −→ `2(Γ) defined

on basis elements according to

∆1(δj) = jδj, j ∈ N and ∆2(g) = ||g|| · g, g ∈ Γ

Denoting by I the identity operator and with [·, ·] being the usual commutator bracket,

we have unbounded derivations ∂(T ) = [∆2, T ] of operators T ∈ B(`2(Γ)) and unbounded

derivations ∂̃(T ) = [∆2 ⊗ I, T ] of operators T ∈ B(`2(Γ)⊗ `2(N)). Define an algebra

B(M̃)Γ = {A ∈ C∗r (Γ)⊗K : ∂̃k(A) ◦ (I ⊗∆1)2 is bounded ∀k ∈ N}

The crucial property of B(M̃)Γ is that it contains CΓ⊗R as a dense subalgebra, is itself

a smooth dense subalgebra of C∗(M̃)Γ, and is thus closed under holomorphic functional

calculus. Moreover, B(M̃)Γ is a Fréchet algebra under the sequence of seminorms {|| · ||B,k :

k ∈ N}, where ||A||B,k = ||∂̃k(A) ◦ (I ⊗∆1)2||op is the operator norm of ∂̃k(A) ◦ (I ⊗∆1)2.

Definition 2.18. We define a kind of localization algebra BL(M̃)Γ associated to B(M̃)Γ,

which by construction is a smooth dense subalgebra of C∗L(M̃)Γ and thus is closed under

holomorphic functional calculus.

BL(M̃)Γ = {f ∈ C∗L(M̃)Γ : f is piecewise smooth w.r.t t , f(t) ∈ B(M̃)Γ ∀t ∈ [0,∞)}

and also define BL,0(M̃)Γ to be the kernel of the usual evaluation map ev : BL(M̃)Γ −→

B(M̃)Γ defined by ev(f) = f(0).

Proposition 2.19. The inclusions BL(M̃)Γ ↪→ C∗L(M̃)Γ and BL,0(M̃)Γ ↪→ C∗L,0(M̃)Γ induce

isomorphisms on K-theory

Ki(BL(M̃)Γ) ∼= Ki(C
∗
L(M̃)Γ) Ki(BL,0(M̃)Γ) ∼= Ki(C

∗
L,0(M̃)Γ)
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Proof. If B is a smooth dense subalgebra of a C∗-algebraA, then the inclusion map i : B ↪→ A

induces an isomorphism on K-theory..

Using the construction of Xie and Yu [50, Equation (10)] we now look at the second kind

of smooth dense subalgebra of C∗(M̃)Γ, this time working more directly with M̃ . Let A

belong to the algebra C∞(M̃ × M̃) of smooth functions on M̃ × M̃ , and assume that A is

both Γ-invariant and of finite propagation. Explicitly, we mean that

A(gx, gy) = A(x, y) ∀g ∈ Γ

∃R > 0 such that A(x, y) = 0, ∀(x, y) ∈ M̃ × M̃ satisfying dM̃(x, y) > R

Definition 2.20. Denote by L (M̃)Γ the convolution algebra of A ∈ C∞(M̃×M̃) which are

both Γ-invariant and of finite propagation. The action of L (M̃)Γ on L2(M̃) is according to

(Af)(x) =

∫
M̃

A(x, y)f(y) dy for A ∈ L (M̃)Γ, f ∈ L2(M̃)

Denote by ρ̂ : M̃ −→ [0,∞) the distance function ρ̂(x) = ρ̂(x, y0) for some fixed point

y0 ∈ M̃ , with ρ being the modification of ρ̂ near y0 to ensure smoothness. The multiplication

operator Tρ thus acts as an unbounded operator on L2(M̃), according to (Tρf)(x) = ρ(x)f(x).

Using the commutator bracket we can define a derivation ∂̃ = [Tρ, ·] : L (M̃)Γ −→ L (M̃)Γ.

A (M̃)Γ = {A ∈ C∗(M̃)Γ : ∂̃k(A) ◦ (∆ + 1)n0 is bounded ∀k ∈ N}

where ∆ is the Laplace operator on M̃ , and n0 is a fixed integer greater than dim(M). The

associated norm is given by ||A||A ,k = ||∂̃k(A) ◦ (∆ + 1)n0||op, which is the operator norm of

∂̃k(A) ◦ (∆ + 1)n0 .

The same proof of Connes and Moscovici [16, Lemma 6.4] shows that A (M̃)Γ is closed

under holomorphic functional calculus, and contains L (M̃)Γ as a subalgebra. Before pro-
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ceeding to define the generalized higher eta invariant in Section 4.1 we first recall a necessary

extension of A (M̃)Γ, by introducing bundles. Consider the bundle on M̃ × M̃ given by

End(S) = p∗1(S) ⊗ p∗2(S∗), where pi : M̃ × M̃ −→ M̃ are the obvious projection maps, with

S and S∗ being the spinor bundle on M̃ and its dual bundle, respectively. Consider the set

C∞(M̃ × M̃,End(S)) of all smooth sections of the bundle End(S) on M̃ × M̃ , and note that

there exists a natural diagonal action of Γ on End(S). Thus, we can construct L (M̃,S)Γ as

the convolution algebra of all Γ-invariant finite propagation elements of C∞(M̃×M̃,End(S)).

Let L2(M̃,S) denote the the space of L2-sections of S over M̃ ; there is an action of L (M̃,S)Γ

on L2(M̃,S)

(Af)(x) =

∫
M̃

A(x, y)f(y) dy A ∈ L (M̃,S)Γ f ∈ L2(M̃,S) (2.6)

Now since L2(M̃,S) is an admissible (M̃,S)-module we can construct the Γ-equivariant

Roe algebra C∗(M̃,S)Γ associated to it; however by Remark 2.16 Roe algebras are up to

isomorphism independent of the choice of admissible module. Thus, we will also denote by

C∗(M̃)Γ the Γ-equivariant Roe algebra constructed with respect to L2(M̃,S).

Definition 2.21. Let D̃ be the Dirac operator on M̃ , and fix some integer n0 > dimM ,

then

A (M̃,S)Γ = {A ∈ C∗(M̃)Γ : ∂̃k(A) ◦ (D̃2n0 + 1) is bounded ∀k ∈ N}

where ∂̃ = [Tρ, ·] is the derivation on L (M̃,S)Γ if we take Tρ to be the multiplication operator

on L2(M̃,S). The algebras AL(M̃,S)Γ and AL,0(M̃,S)Γ are defined analogously to those in

Definition 2.18. The associated norm is given by ||A||A ,S,k = ||∂̃k(A) ◦ (D̃2n0 + 1)||op, which

is the operator norm of ∂̃(A)k ◦ (D̃2n0 + 1).

If there is no cause for confusion, we shall remove the explicit spinor notation and simply

denote the above norm on A (M̃,S)Γ by ||A||A ,k. We end this section with a brief reminder of

the notion of projective tensor product A⊗̂
m
π with respect to any of the ∗-algebras constructed

above. If A⊗B is the algebraic tensor product, then recall that the projective tensor product
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A⊗̂πB is the completion of A⊗ B with respect to the projective cross norm

π(x) = inf

{
nx∑
i=1

||Ai||A||Bi||B : x =
nx∑
i=1

Ai ⊗Bi

}
(2.7)

where || · ||A denotes the norm on A. We will denote the norm on A⊗̂
m
π by || · ||A⊗̂m and

usually write elements of A⊗̂
m
π as A1⊗̂ · · · ⊗̂Am.

2.3 Cyclic and Group Cohomology

Definition 2.22. Denote by Cn(CΓ) the cyclic module consisting of all (n+ 1)-functionals

f : (CΓ)⊗n+1 −→ C together with maps di : (CΓ)⊗n+1 −→ (CΓ)⊗n defined according to

di(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai−1 ⊗ (aiai+1)⊗ ai+2 ⊗ an for 0 ≤ i < n

dn(a0 ⊗ · · · ⊗ an) = (ana0)⊗ a1 ⊗ · · · ⊗ an−1

and a cyclic operator t, where tf(a0 ⊗ · · · ⊗ an) = (−1)nf(an ⊗ a0 · · · ⊗ an−1). Define the

coboundary differential b : Cn(CΓ) −→ Cn(CΓ) by b =
∑n+1

i=0 (−1)iδi, where δi is the dual to

di; that is 〈δif, a〉 = 〈f, di(a)〉. Hence we have

(bf)(a0⊗· · ·⊗an+1) =
n∑
i=0

(−1)if(a0⊗· · ·⊗ (aiai+1)⊗an)+(−1)n+1f(an+1a0⊗a1⊗· · ·⊗an)

The cohomology of the complex (Cn(CΓ), b) is the cyclic cohomology HC∗(CΓ).

Definition 2.23. Fix γ ∈ Γ and denote by (CΓ, cl(γ))⊗n+1 the subcomplex of (CΓ)⊗n+1

spanned by all elements (g0, . . . , gn) ∈ Γn+1 satisfying g0 · · · gn ∈ cl(γ), where cl(γ) is the

conjugacy class of γ. This gives rise to a cyclic submodule Cn(CΓ, cl(γ)) of Cn(CΓ) which

comprises the collection of functionals which vanish on (g0, . . . , gn) if g0 · · · gn /∈ cl(γ). The

coboundary differential b preserves this cyclic subcomplex, and we thus denote the cohomol-

ogy of (Cn(CΓ, cl(γ)), b) by HC∗(CΓ, cl(γ)).
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Definition 2.24. By H∗(Nγ,C) we are referring to the groups Ext∗ZNγ (Z,C) defined over

the projective ZNγ-resolution of Z. Namely, consider the resolution

· · · ZNk+1
γ ZNk

γ · · · ZNγ Z 0
∂k ∂k−1 ∂1 ∂0 ε

where, if ĥi denotes a deleted entry, ∂k acts on the basis elements according to

∂k(h0, . . . , hk) =
k∑
i=0

(−1)k(h0, . . . , ĥi, . . . , hk)

Dropping the Z term and applying the contravariant functor HomNγ (−,C) to this resolution

produces a cochain complex with coboundary differential b̂

· · · HomNγ (ZNk
γ ,C) · · · HomNγ (ZNγ,C) 0b̂ b̂ b̂ b̂

(b̂φ)(h0, · · · , hk+1) =
k+1∑
i=0

(−1)iφ(h0, . . . , ĥi, . . . , hk+1)

The cohomology of this complex is defined to be the group cohomology H∗(Nγ,C).

Note that every cochain φ ∈ Hn(Nγ,C) satisfies the “homogeneous" condition: that is,

for every h ∈ Nγ, hφ(h0, . . . , hn) = φ(hh0, . . . , hhn). It will be extremely useful to replace

the standard cochain complex with the sub-complex of homogeneous skew-cochains

ϕ(σ(h0, h1, . . . , hn)) = ϕ(hσ(0), hσ(1), . . . , hσ(n)) = sgn(σ)ϕ(h0, h1, . . . , hn) ∀σ ∈ Sn+1 (2.8)

where Sn+1 is the symmetric group on n+ 1 letters. It is an immediate consequence of this

definition that ϕ(h0, . . . , hn) vanishes whenever hi = hj for i 6= j; just take σ to be the

permutation satisfying σ(i) = j, σ(j) = i, and which fixes all other indices. Define the map
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F : HomNγ (ZNn
γ ,C) −→ HomNγ (ZNn

γ ,C) according to

(Fφ)(h0, . . . , hn) =
1

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(σ(h0, . . . , hn)) (2.9)

Proposition 2.25. For every φ ∈ HomNγ (ZNn
γ ,C) the cochain Fφ is a skew cochain ϕ.

Proof. Let σ0 be any fixed even permutation– that is σ0 is decomposable as an even number

of 2-cycles, hence sgn(σ0) = 1. Since left multiplication of any group on itself is a free and

transitive action, it follows that for each σ there exists a unique τσ such that σ0τσ = σ.

(Fφ)(σ0(h0, . . . , hn)) =
1

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(σ0σ(h0, . . . , hn))

=
1

(n+ 1)!

∑
σ0τσ∈Sn+1

sgn(σ0τσ)φ(σ0σ(h0, . . . , hn))

=
1

(n+ 1)!

∑
τσ∈Sn+1

sgn(τσ)φ(σ(h0, . . . , hn))

Since sign(σ0)sign(τσ) = sign(σ0τσ) = sgn(σ) and σ0 is an even permutation then τσ must

have the same parity as σ. It follows that

(Fφ)(σ0(h0, . . . , hn)) =
1

(n+ 1)!

∑
τσ∈Sn+1

sgn(σ)φ(σ(h0, . . . , hn)) = (Fφ)(h0, . . . , hn)

Follow the same argument, if σ0 is an odd permutation then again for each σ there exists a

unique τσ such that σ0τσ = σ. However, since sgn(σ0) = −1 it follows that τσ must possess

opposite parity to σ, hence

(Fφ)(σ0(h0, . . . , hn)) =
1

(n+ 1)!

∑
τσ∈Sn+1

−sgn(σ)φ(σ(h0, . . . , hn)) = −(Fφ)(h0, . . . , hn)

Lemma 2.26. The induced map F ∗ : H∗(Nγ,C) −→ H∗(Nγ,C) is an isomorphism.
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Proof. That F induces an isomorphism on cohomology (with real or complex coefficients)

follows if we can show F ' Id as chain complex maps. First a straightforward calculation

proves that F is a chain complex map, in the sense that the following diagram commutes

for all n.
HomNγ (ZNn+1

γ ,C) HomNγ (ZNn
γ ,C)

HomNγ (ZNn+1
γ ,C) HomNγ (ZNn

γ ,C)

F

b̂

F

b̂

(b̂ ◦ Fφ)(h0, . . . , hn+1) =
n+1∑
i=0

(−1)i(Fφ)(h0, . . . , ĥi, . . . , hn+1)

=
1

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)
n+1∑
i=0

(−1)iφ(σ(h0, . . . , ĥi, . . . , hn+1))

=
1

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)(b̂φ)(σ(h0, . . . , hn+1)) = (F ◦ b̂φ)(h0, . . . , hn+1)

Now, F is chain homotopic to Id on each HomNγ (ZNn
γ ,C) if there exists a sequence of maps

{pk| pk : HomNγ (ZNk
γ ,C) −→ HomNγ (ZNk−1

γ ,C)} such that F − Id = b ◦ pn + pn+1 ◦ b. For

ease of notation denote hn−1 = (h0, . . . , hn−1); we will define

(pnφ)(hn−1) =
(−1)n

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(σ(hn−1, ehn−1))− (−1)nφ(hn−1, ehn−1)

where ehn−1 = hn−1 denotes a copy of hn−1 inserted into the n’th position. For further ease

of notation we will denote (h0, . . . , ĥi, . . . , hn, ehn) by (hn,̂i, ehn) for i ≤ n.

(b ◦ pnφ)(hn) =
n∑
i=0

(−1)i(pnφ)(h0, . . . , ĥi, . . . , hn)

=
n∑
i=0

(−1)i

 (−1)n

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(σ(hn,̂i, ehn))− (−1)nφ(hn,̂i, ehn)


(pn+1 ◦ bφ)(hn) =

(−1)n+1

(n+ 2)!

∑
σ∈Sn+1

sgn(σ)(bφ)(σ(hn, ehn))− (−1)n+1(bφ)(hn, ehn)
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=
n+1∑
i=0

(−1)i

(−1)n+1

(n+ 2)!

∑
σ∈Sn+1

sgn(σ)φ(σ(hn,̂i, ehn))− (−1)n+1φ(hn,̂i, ehn)


Using the fact that by Proposition 2.25 the expressions

(−1)n

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(hn,̂i, ehn) and
(−1)n+1

(n+ 2)!

∑
σ∈Sn+1

sgn(σ)φ(hn,̂i, ehn)

vanish for all i ≤ n− 1 since hn = ehn, we thus have the reduced identities

(b ◦ pnφ)(hn) =
(−1)n(−1)n

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(σ(hn,n̂, ehn))−
n∑
i=0

(−1)i+nφ(hn,̂i, ehn)

(pn+1 ◦ bφ)(hn) =
1

(n+ 2)!

∑
σ∈Sn+1

sgn(σ)
(

(−1)2n+2φ(σ(hn, eĥn)) + (−1)2n+1φ(σ(hn,n̂, ehn))
)

−
n+1∑
i=0

(−1)i+nφ(hn,̂i, ehn)

=
n+1∑
i=0

(−1)i+nφ(hn,̂i, ehn) +
1

(n+ 2)!

∑
σ∈Sn+1

0 =
n+1∑
i=0

(−1)i+nφ(hn,̂i, ehn)

where we have used the fact (hn,n̂, ehn) = (hn, eĥn). Moreover, it is readily apparent that

both these tuples are also equal to hn; it follows that (b ◦ pnφ+ pn+1 ◦ bφ)(hn) simplifies to

exactly the expression for (F − Id)φ(hn)

(−1)2n

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(σ(hn,n̂, ehn)) +
n+1∑
i=0

(−1)i+nφ(hn,̂i, ehn)−
n∑
i=0

(−1)i+nφ(hn,̂i, ehn)

=
1

(n+ 1)!

∑
σ∈Sn+1

sgn(σ)φ(σ(hn))− φ(hn) = (F − Id)φ(hn)

For the remainder of this paper, when referring to group cohomology it will be with

respect to the subcomplex of skew cochains. The following splitting of cyclic (co)-homology
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was proven by Burghelea [10] using topological arguments, and Nistor [35] provided a later

algebraic proof.

Theorem 2.27.

HC∗(CΓ) ∼=
∏
cl(γ)

HC∗(CΓ, cl(γ))

Moreover there exist isomorphisms with group (co)-homology

HC∗(CΓ, cl(γ)) ∼=

 H∗(Nγ,C) γ is of infinite order

H∗(Nγ,C)⊗C HC
∗(C) γ is of finite order

Definition 2.28. Fix a group element γ with conjugacy class cl(γ), and let Ck(Γ, Zγ, γ) be

the collection of all multilinear forms α : Γk+1 −→ C satisfying

α(gσ(0), gσ(1), . . . , gσ(n)) = sgn(σ)α(g0, g1, . . . , gk) ∀σ ∈ Sk+1

α(zg0, zg1, . . . , zgk) = α(g0, g1, . . . , gk) ∀z ∈ Zγ

α(γg0, g1, . . . , gk) = α(g0, g1, . . . , gk)

The coboundary map b̂ : Ck(Γ, Zγ, γ) −→ Ck+1(Γ, Zγ, γ) gives rise to a cochain complex

(Cn(Γ, Zγ, γ), b̂), the cohomology of which we will denote by H∗(C,C)

· · · Ck+1(Γ, Zγ, γ) Ck(Γ, Zγ, γ) · · · C0(Γ, Zγ, γ) 0b̂ b̂ b̂ b̂ b̂

(b̂φ)(g0, · · · , gk+1) =
k+1∑
i=0

(−1)iφ(g0, . . . , ĝi, . . . , gk+1)

Recall that a cyclic cocycle of (Cn(CΓ), b) is a functional ϕ which belongs to the kernel

ZCn(CΓ) of the coboundary differential. If cl(γ) is non-trivial we call the cyclic cocycles ϕγ

of (Cn(CΓ, cl(γ)), b) delocalized cyclic cocycles. Following the example of Lott [31, Section

4.1] we can construct explicit representations of any delocalized cyclic cocycle as follows:
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associated to each α ∈ H∗(C,C) define

ϕα,γ(g0, g1, . . . , gn) =

 0 if g0g1 · · · gn /∈ cl(γ)

α(h, hg0, . . . , hg0g1 · · · gn−1) if g0g1 · · · gn = h−1γh
(2.10)

By multilinearity of α, it is immediate that given ai =
∑

gi∈Γ cgi · gi in the group algebra

ϕα,γ(a0 ⊗ · · · ⊗ an) =
∑

g0g1···gn∈cl(γ)

cg0 · · · cgnϕα,γ(g0, g1, . . . , gn)

It is also apparent that the property ϕα,γ(γg0, g1, . . . , gk) = α(g0, g1, . . . , gk) generalizes to

any element of γZ, that is for any r ∈ Z– it suffices to consider r ≥ 0– we have

ϕα,γ(γ
rg0, g1, . . . , gk) = ϕα,γ(γ

r−1g0, g1, . . . , gk) = · · · = ϕα,γ(g0, g1, . . . , gk)

If A is a unital algebra such that ϕγ admits an extension to A then we define a unitized

version of the cyclic cocycle. Let A+ be the algebra formed from adjoining a unit to A,

then the homomorphism (A, λ) 7−→ (A+ λ1A, λ) provides an isomorphism between A+ and

A⊕ C1. For any ϕ ∈ ZCn(CΓ, cl(γ)) we define

ϕγ(A0⊗̂ · · · ⊗̂An) = ϕγ(A⊗̂ · · · ⊗̂An) where Ai = (Ai, λi) ∈ A+ (2.11)

and as shown in [15, Chapter 3.3] the condition bϕγ = 0 still holds.

Remark 2.29. With respect to the delocalized cyclic cocycle representations ϕα,γ there is an

elementary way to move between α(g0, g1, . . . , gn) and the normalized form

α(h, hg0, . . . , hg0g1 · · · gn−1)

which clearly vanishes if gi = e for any 0 ≤ i ≤ n−1. For each y ∈ cl(γ) fix some hy ∈ Γ such

that (hy)−1γhy = y. In particular, the elements y0 = g0g1 · · · gn and yi = gi · · · gng0 · · · gi−1
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all belong to cl(γ) for 1 ≤ i ≤ n, since by hypothesis y0 ∈ cl(γ), and direct computation

shows that yi = (g0 · · · gi−1)−1y0(g0 · · · gi−1).

The map F defined by F (gi) = hy0(gi · · · gn)−1yi induces a map on H∗(C,C) according to

F ∗[α] = [α ◦ F ] where since g0g1 · · · gn = y0 = (hy0)−1γhy0

(α ◦ F )(g0, g1, . . . , gn) = α(F (g0), F (g1), . . . , F (gn))

= α(hy0(g0 · · · gn)−1y0, h
y0(g1 · · · gn)−1y1, . . . , h

y0g−1
n yn)

= α(hy0(g0 · · · gn)−1(g0 · · · gn), hy0(g1 · · · gn)−1g1 · · · gng0, . . . , h
y0g−1

n gng0 · · · gn−1)

= α(hy0 , hy0g0, . . . , h
y0g0 · · · gn−1)

This property of F carries over to ϕα,γ acting on the group algebra CΓ by extending F

linearly.
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3. CYCLIC COHOMOLOGY OF POLYNOMIAL GROWTH GROUPS∗

The convergence properties of the integrals defining the pairing of delocalized cyclic cocy-

cles with higher invariants depend crucially on the growth conditions of the cyclic cocycles.

This in turn is linked to the growth properties of conjugacy classes of Γ, in particular it is

proven in [23] that polynomial growth groups are of polynomial cohomology– with respect

to coefficients in C.

Definition 3.1. The group Γ is of polynomial cohomology if for any [φ] ∈ H∗(Γ,C) there

exists (a skew cocycle) ϕ ∈ Z(HomΓ(ZΓ∗,C), b̂) such that [ϕ] = [φ], and ϕ is of polynomial

growth. That is, ϕ satisfies the following bound for positive integer constants Rϕ and k

|ϕ(g0, g1, . . . , gn)| ≤ Rϕ(1 + ||g0||)2k(1 + ||g1||)2k · · · (1 + ||gn||)2k (3.1)

By Remark 2.29 it follows that any normalized group cocycle α also has polynomial

growth if the non-normalized version does, since

|α(h, hg0, . . . , hg0g1 · · · gn−1)| = |α(F (g0), F (g1), . . . , F (gn))|

The splitting of delocalized cyclic cohomology as shown in Theorem 2.27 provides an abstract

isomorphism between group cohomology and cyclic cohomology, but we desire an explicit

construction of this mapping, so as to prove that polynomial growth group cocycles are

mapped to polynomial growth cyclic cocycles. This shall be proven in Section 3.2 through the

use of the classifying space approach to group cohomology, while in the section immediately

following we show that our attention can be restricted to the case where γ is a torsion

element.
∗Part of this chapter has been reprinted with permission from “S.A.K.A. John. Secondary Higher In-

variants and Cyclic Cohomology for Groups of Polynomial Growth. Journal of Noncommutative Geometry,
(accepted), 2021"
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3.1 Cohomological Dimension and Connes Periodicity Map

In the next section our results depend crucially on H∗(Nγ,C) not contributing to the

delocalized cyclic cohomology of CΓ whenever γ is of infinite order; in this section we make

this notion precise. For any unital associative algebra A over a field containing Q– hence

particularly for the group algebra CΓ– the cyclic and Hochschild homology fit into a long

exact sequence

· · · HHn(A) HCn−1(A) HCn+1(A) HHn+1(A) · · ·S∗ (3.2)

where S is the Connes periodicity operator introduced in [12, II.1]. We will use the explicit

construction in terms of maps of complexes that is provided in [30, Chapter 2], and so provide

the following expression for S when A = CΓ. Let b∗ be the homomorphism induced by the

boundary map b, and define a map β : HC∗(CΓ) −→ HC∗+1(CΓ) according to

(βϕ)(g0, g1, . . . , gk+1) =
k+1∑
i=0

(−1)ii(δiϕ)(g0, g1, . . . , gk+1) (3.3)

Hence (βb)∗ : HC∗(CΓ) −→ HC∗+2(CΓ) and similarly for the map induced by bβ. Dual to

the result given in [30, Theorem 2.2.7] we have that for any cohomology class [ϕ] ∈ HCn(CΓ)

its image under the periodicity operator1 is

S∗[ϕ] = [Sϕ] ∈ HCn+2(CΓ) where S =
1

(n+ 1)(n+ 2)
(βb+ bβ) (3.4)

bβ =
∑

0≤i<j≤n+2

(−1)i+j(j − i)δiδj βb =
∑

0≤i<j≤n+2

(−1)i+j(i− j + 1)δiδj (3.5)

Definition 3.2. The delocalized Connes periodicity operator Sγ is obtained by the restric-
1Note that our choice of constant differs from that of Connes [12] due to the constants involved in the

definition (see Equation (4.52)) of the Connes-Chern character
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tion of S to the sub-complex (Cn(CΓ, cl(γ)), b).

S∗γ : HCn(CΓ, cl(γ)) −→ HCn+2(CΓ, cl(γ))

In the construction of the group cohomology H∗(G,C) = Ext∗ZG(Z,C) the minimal length

of the projective ZG-resolution over Z is called the cohomological dimension of the group.

Denoting this by cdZ(G), it is immediate from the definition that if cdZ(G) = n then

Hk(G,C) = 0 for all k > n. If we consider projective QG-resolutions instead, then there

is notion of rational cohomology and rational cohomological dimension. Recall that Q is a

flat Z-module, hence tensoring with Q preserves exactness, and cdQ(G) denotes the minimal

length of the projective resolution defining the groups

H∗(G,C)⊗Z Q = Ext∗QG(Q,C)

When G is a group of polynomial growth then it belongs to the class C of groups satisfying

the following conditions (see [24, Section 4])

(i) G is of finite rational cohomological dimension.

(ii) The rational cohomological dimension of Ng = ZG(g)/gZ is finite whenever g is not a

torsion element.

It is now important to note that if γ is of infinite order then cl(γ) is torsion free, for otherwise

there exists g−1γg ∈ cl(γ) of finite order, and thus e = (g−1γg)k = g−1γkg, which implies

γk = e. In this torsion free case the nilpotency of Sγ with respect to the long exact sequence

· · · HHn−1(CΓ, cl(γ)) HCn(CΓ, cl(γ)) HCn+2(CΓ, cl(γ))

HHn+2(CΓ, cl(γ)) · · ·

S∗

(3.6)

follows from the proof of [24, Theorem 4.2], and so we have that HCn(CΓ, cl(γ)) = 0 for
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n > 0 and γ of infinite order.

Lemma 3.3. If Γ is of polynomial growth, then Nγ is of polynomial cohomology.

Proof. Since Γ is of polynomial growth, then a theorem of Gromov [18] states that Γ is

virtually nilpotent. We take N to be a normal nilpotent subgroup of finite index, and so

Zγ ∩N ≤ N is finitely generated and nilpotent. The short exact sequence

1 −→ Zγ ∩N −→ Zγ −→ Γ/N −→ 1

shows that Zγ ∩ N is of finite index in Zγ, hence Zγ is finitely generated and admits a

word length function lZγ which is bounded by lΓ. It follows that Zγ is of polynomial growth

with respect to any word length function on it. Taking the quotient by a central cyclic

group preserves polynomial growth, and thus by [23, Corollary 4.2] Nγ is of polynomial

cohomology.

It should be made explicit that in the above proof we also obtained that Zγ was of

polynomial cohomology– or equivalently that H∗(Zγ,C) is polynomial bounded. Extend-

ing the notion of polynomial cohomology to that of delocalized cyclic cocycles, we call

HC∗(CΓ, cl(γ)) polynomially bounded if every cohomology class admits a representative

ϕγ ∈ (Cn(CΓ, cl(γ)), b) which is of polynomial growth.

Lemma 3.4. There is a rational isomorphism between the cohomology group Hn(C,C) (see

Definition 2.28) and Hn(Zγ,C) for n ≥ 1.

Proof. We begin with an alteration of the complex ((Cn(Γ, Zγ, γ), b̂) constructed in Defi-

nition 2.28, by removing the third condition: α(γg0, g1, . . . , gn) = α(g0, g1, . . . , gn). This

produces a larger cochain complex which shall be denoted by ((Dn(Γ, Zγ, γ), b̂), and there

is a natural inclusion map ı : ((Cn(Γ, Zγ, γ), b̂) ↪→ ((Dn(Γ, Zγ, γ), b̂). In the other direction

we consider an "averaging" map R : ((Dn(Γ, Zγ, γ), b̂) −→ ((Cn(Γ, Zγ, γ), b̂) similar to that
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from [11, Theorem 5.2], defined according to

(Rα)(g0, g1, . . . , gn) =

ord(γ)∑
r0,r1,...,rn=1

α(γr0g0, γ
r1g1, . . . , γ

rngn) (3.7)

where ord(γ) is the order of γ. By the above results of this section we only need to concern

ourselves with γ being a torsion element, and thus the above sum is finite, soR is well defined.

To show thatR is a surjective map it is first necessary to prove that (Rα) actually belongs to

the complex ((Cn(Γ, Zγ, γ), b̂); namely if γ is torsion, then γZ = {e, γ, . . . , γord(γ)−1} = γ · γZ

and

(Rα)(γg0, g1, . . . , gn) =

ord(γ)∑
r0,r1,...,rn=1

α(γr0+1g0, γ
r1g1, . . . , γ

rngn)

ord(γ)∑
r0+1,r1,...,rn=1

α(γr0+1g0, γ
r1g1, . . . , γ

rngn) = (Rα)(g0, g1, . . . , gn)

It is similarly straightforward to prove that the following diagram commutes

Dn+1(Γ, Zγ, γ) Dn(Γ, Zγ, γ)

Cn+1(Γ, Zγ, γ) Cn(Γ, Zγ, γ)

R

b̂

R

b̂

and so R is indeed a chain complex map. Explicitly, we have

(b̂ ◦ Rα)(g0, g1, . . . , gn+1) =
n+1∑
i=0

(−1)i(Rα)(g0, . . . , ĝi, . . . , gn+1)

=
n+1∑
i=0

(−1)i
ord(γ)∑

r0,r1,...,rn=1

α(γr0g0, . . . , γ̂r1g1, . . . , γ
rngn)

=

ord(γ)∑
r0,r1,...,rn=1

n+1∑
i=0

(−1)iα(γr0g0, . . . , γ̂rigi, . . . , γ
rn+1gn+1)

=

ord(γ)∑
r0,r1,...,rn=1

(b̂α)(γr0g0, γ
r1g1, . . . , γ

rn+1gn+1) = (R ◦ b̂α)(g0, g1, . . . , gn+1)
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We now prove that the composition R ◦ ı : ((Cn(Γ, Zγ, γ), b̂) −→ ((Cn(Γ, Zγ, γ), b̂) is ratio-

nally equivalent to the identity map IdC , and thus by extension that R is a rational surjec-

tion. Using the property α(γrg0, g1, . . . , gn) = α(g0, g1, . . . , gn), for any α ∈ Cn(Γ, Zγ, γ)

(R ◦ ıα)(g0, g1, . . . , gn) =

ord(γ)∑
r0,r1,...,rn=1

α(γr0g0, γ
r1g1, . . . , γ

rngn)

=

ord(γ)∑
r0=1

ord(γ)∑
r1,...,rn=1

α(γr0g0, γ
r1g1, . . . , γ

rngn)

=
ord(γ)(ord(γ) + 1)

2

ord(γ)∑
r1,...,rn=1

α(g0, γ
r1g1, . . . , γ

rngn)

For convenience denote the coefficient ord(γ)(ord(γ) + 1)/2 by A, then by repeated shifting

of the g0 element the above sum becomes

= (−1)A

ord(γ)∑
r1=1

ord(γ)∑
r2,...,rn=1

α(g1, g0, γ
r2g2, . . . , γ

rngn)

= (−1)A2

ord(γ)∑
r2,...,rn=1

α(g1, g0, γ
r2g2, . . . , γ

rngn) = · · · = (−1)nAn+1α(g1, . . . , gn, g0)

= (−1)n(−1)nAn+1α(g0, g1, . . . , gn) = An+1α(g0, g1, . . . , gn)

It thus follows that as maps from (Cn(Γ, Zγ, γ), b̂)⊗Z Q to itself, we have the equality

(R ◦ ı)⊗Z
1

An+1
= IdC ⊗Z 1 (3.8)

which establishes the isomorphism on cohomology H∗(C,C) ⊗Z Q
R∼= H∗(D,C) ⊗Z Q. The

desired result now follows from Nistor’s [35, Section 2.7] application of spectral sequences to

prove that H∗(D,C) is isomorphic to the group cohomology H∗(Zγ,C).
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3.2 Classifying Space Construction

The isomorphism H∗(D,C) ∼= H∗(Zγ,C) mentioned in Lemma 3.4 unfortunately does

not provide an explicit way to realize preservation of polynomial cohomology. It is, however,

easy to show that as defined in Lemma 3.4 the map R behaves as desired in this respect.

Proposition 3.5. The map (R⊗Z 1/An+1)∗ preserves polynomial growth.

Proof. It suffices to show that if α is of polynomial growth then so is Rα, which follows

directly from γ having finite order.

|(Rα)(g0, g1, . . . , gn)| =

∣∣∣∣∣∣
ord(γ)∑

r0,r1,...,rn=1

α(γr0g0, γ
r1g1, . . . , γ

rngn)

∣∣∣∣∣∣
≤

ord(γ)∑
r0,r1,...,rn=1

|α(γr0g0, γ
r1g1, . . . , γ

rngn)| ≤
ord(γ)∑

r0,r1,...,rn=1

Rα(1 + ||γr0g0||)2k · · · (1 + ||γrngn||)2k

≤ (ord(γ))n+1 max
r0,r1,...,rn∈{1,2...,ord(γ)}

Rα(1 + ||γr0g0||)2k · · · (1 + ||γrngn||)2k

= (ord(γ))n+1Rα(1 + ||γm0g0||)2k · · · (1 + ||γmngn||)2k

Theorem 3.6. For every nontrivial conjugacy class cl(γ) for γ of finite order, if H∗(Zγ,C)

is of polynomial cohomology then H∗(D,C) is polynomially bounded.

Proof. Consider the simplicial set E∗Γ, the nerve of Γ, with simplices EkΓ := Γ × Γk and

relations

di(g0, . . . , gk) =

 (g0, . . . , gi−1, gigi+1, gi+2, . . . , gk) 0 ≤ i ≤ k − 1

(g0, g1 . . . , gk−1) i = k

sj(g0, . . . , gk) = (g0, . . . , gj, e, gj+1, . . . , gk)

(g0, . . . , gk−1, gk)g = (g0g, . . . , gk−1, gk) ∀g ∈ Γ

(3.9)
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The last equation defines a free Γ-action on the nerve according to right multiplication. The

contractible space EΓ = |E∗Γ|– which is a locally finite CW-complex– is the geometrical

realization of the nerve under the relations

|E∗Γ| =
⊔
k≥0

EkΓ×4k/ ∼
(x, δit) ∼ (dix, t) for x ∈ EkΓ, t ∈ 4k−1

(x, σjt) ∼ (sjx, t) for x ∈ EkΓ, t ∈ 4k+1
(3.10)

where 4k = {(t0, . . . , tk) ∈ Rk+1 : ti ∈ [0, 1],
∑k

i=0 ti = 1} is the standard k-simplex with

degeneracy maps σj and face maps δi. Since right multiplication is a free action, it is

immediate that Γ acts freely on EΓ, thus we define the classifying space BΓ = |B∗Γ| to be

the orbit space EΓ/Γ; the simplices of B∗Γ are thus of the form EkΓ/Γ. More generally, it

is useful to view EΓ as a the universal principal bundle p : EΓ −→ BΓ, which provides the

relation of balanced products

BΓ = EΓ×Γ Γ = {(v, w) ∈ EΓ× Γ/((v, gw) ∼ (vg, w))}

Applying the above simplicial construction to Zγ we can similarly construct the universal

principal Zγ-bundle p : EZγ −→ BZγ. The geometric realization is functorial, hence any

group homomorphism induces a homomorphism on EΓ at the simplex level. Since Γ is a

discrete group then Zγ is admissible as a subgroup, and there is the principal Zγ-bundle

q : Γ −→ Γ/Zγ where q is the quotient map. In particular, since p : EΓ −→ BΓ is a

universal principal Γ-bundle

p′ : EΓ×Zγ Γ −→ EΓ×Γ (Γ/Zγ) = (Zγ y EΓ)/Zγ

is a universal principal Z-bundle, where Zγ y EΓ has the same nerve E∗Γ, except with the

third relation in (3.9) replaced by a Zγ group action

(g0, . . . , gk−1, gk)z = (g0z, . . . , gk−1, gk) ∀z ∈ Zγ
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By universality of the principal bundle there is a homotopy equivalence between BZγ and

(Zγ y EΓ)/Zγ as CW-complexes, which implies equivalence of (co)homology groups. (See

[33] for a more detailed discussion on classifying spaces and fibre bundles)

Every point v in an oriented m-simplex Vm of EΓ can be expressed as a formal sum,

using barycentric coordinates and the vertices gi = (e, . . . , gi, . . . , e).

m∑
i=0

ti = 1 and v =
m∑
i=0

tigi Vm = g0[g1| · · · |gm]

The particular notation for the m-simplex is important in emphasizing the group action on

the first coordinate. As we shall see shortly, this is also useful when describing boundary

maps of simplicial chain complexes. First consider the CW-complex BΓ as the image of EΓ

under the projection map p acting on the nerve by deletion of the first coordinate. Hence,

an oriented m-simplex Vm of BΓ is of the form p(Vm) = [g1| · · · |gm]; hence we construct

the following chain complex, with Cm(BΓ) the free module generated by the basis of m-

simplexes.

· · · Cm(BΓ) Cm−1(BΓ) · · · C0(BΓ) 0∂ ∂ ∂ ∂

cα ∈ C,
∑
α

cαp(Vm)α ∈ Cm(BΓ) ∂ =
m∑
i=0

(−1)idi

Thus, explicitly expressing the boundary map action shows that ∂(p(Vm)α) is equal to

p(g0g1[g2| · · · |gm]) +
m−1∑
i=1

(−1)ip(g0[g1| · · · |gigi+1| · · · |gm]) + (−1)mp(gmg0[g1| · · · |gm−1])

= [g2| · · · |gm] +
m−1∑
i=1

(−1)i[g1| · · · |gigi+1| · · · |gm] + (−1)m[g1| · · · |gm−1]

Dualizing, the associated simplicial cochain complex C∗i (BΓ) := Hom(Ci(BΓ),C) is obtained,
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with coboundary map b =
∑n+1

i=0 δ
i; recall that 〈δif, v〉 = 〈f, di(v)〉.

0 C∗0(BΓ) C∗1(BΓ) · · · C∗m(BΓ) · · ·b b b b

The simplicial cohomology groups H∗(BΓ,C) of this complex give precisely the same charac-

teristic classes as the group cohomology H∗(Γ,C). More usefully, the expression of bundles

in the language of balanced products allows us to similarly obtain equivalences

H∗(EZγ ×Zγ Zγ,C) = H∗(BZγ,C) = H∗(Zγ,C)

H∗(EΓ×Γ (Γ/Zγ),C) = H∗((Zγ y EΓ)/Zγ,C) = HZγ ∗(Γ,C) = H∗(D,C)

It follows that exhibiting an explicit Zγ-equivariant map ψ : EΓ×Γ (Γ/Zγ) −→ EZγ ×Zγ Zγ

which induces a polynomial growth preserving isomorphism on cohomology

ψ∗ : H∗(EZγ ×Zγ Zγ,C) −→ H∗(EΓ×Γ (Γ/Zγ),C) (3.11)

also provides an isomorphism ψ∗ : H∗(Zγ,C) −→ H∗(D,C) preserving polynomial cohomol-

ogy. It is of course necessary to be precise by what is meant by polynomial cohomology in

the context of the classifying space construction. If for every class [ϕ] ∈ Hm(BΓ,C) there

exists a representative ϕ̃ ∈ (C∗m(BΓ), b) which is of polynomial growth, then H∗(BΓ,C)

is polynomial cohomology. Viewing ϕ̃ as a function on basis elements, it is of polynomial

growth given

ϕ̃ =
∑
α

cαp(Vm)α =
∑
α

cαp(g0α [g1α| · · · |gmα ]) := ϕ̃(g0α , g1α , . . . , gmα) = cα

|ϕ̃(g0α , g1α , . . . , gmα)| = |cα| ≤ Rϕ̃(1 + ||g0α ||)2k(1 + ||g1α ||)2k · · · (1 + ||gmα ||)2k

(3.12)

where Rϕ̃ and k are positive integer constants. Recall that the word length function lZ

is bounded above by lΓ, hence we shall view Zγ as metrically embedded in Γ. Fix some
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generating set S of Γ and also fix an ordering for S, then every g ∈ Γ can be lexicographically

ordered; denote by lex(Γ) the lexicographic ordering of Γ under that of S. We introduce a

map f : Γ −→ Zγ defined as the following minimizing z ∈ lex(Γ) ∩ Zγ.

f(g) := min
z∈lex(Γ)∩Zγ

{
min
z∈Zγ
{dΓ(z, g) ≤ ||g||}

}
(3.13)

Due to the lexicographic ordering this provides a unique element f(g) ∈ Zγ. Such an element

always exists, since there is at least the option z = e; in particular, it is a direct consequence

that f(z) = z for z ∈ Zγ. Moreover, using the fact that left multiplication of any group on

itself is a free and transitive action it follows that f is Zγ-equivariant, since if we fix z0 ∈ Zγ

f(z0g) := min
z∈lex(Γ)∩Zγ

{
min
z∈Zγ
{dΓ(z, z0g) ≤ ||z0g||}

}

= min
z0z∈lex(Γ)∩Zγ

{
min
z0z∈Zγ

{dΓ(z0z, z0g) ≤ ||z0g||}
}

= min
z0z∈lex(Γ)∩Zγ

{
min
z0z∈Zγ

{dΓ(z, g) ≤ ||z0g||}
}

=: z0f(g)

It is similarly possible to express a Zγ-invariant map f̃ : Γ/Zγ −→ Zγ in terms of the map

f constructed above. We recall that for h, g ∈ Γ

dΓ(hZγ, g) = min
z∈Zγ
{dΓ(hz, g)} and dΓ(h0Zγ, h1Zγ) = min

z,z′∈Zγ
{dΓ(h0z, h1z

′)}

and thus define f̃(hZγ) to be the value of f(hz) present in the minimization

min
z∈Zγ
{dΓ(hz, f(hz))}

By the bijection between cosets of Γ/Zγ and conjugacy classes of γ arising from the map

hZγ 7−→ h−1γh we ensure well-definedness of f̃ . The map ψ acts on EΓ×Γ (Γ/Zγ) according
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to

ψ(x, hZγ) = ψ

(∑
i

tigi, hZγ

)
=

(∑
i

ti(e, . . . , f(gi), . . . , e), f̃(hZγ)

)
(3.14)

From this we can show that ψ is Zγ-equivariant on EΓ and Zγ-invariant in the second

argument. Pick any (z, z′) ∈ Zγ ×Zγ, then converting the right Γ-action on EΓ to a left one

ψ((z, z′)(x, hZγ)) = ψ(z−1x, z′hZγ) = ψ

(∑
i

ti(z
−1gi), z

′hZγ

)

=

(∑
i

ti(z
−1, . . . , f(z−1gi), . . . , z

−1), f̃(z′hZγ)

)

=

(∑
i

ti(z
−1e, . . . , z−1f(gi), . . . , z

−1e), f̃(hZγ)

)

=

(∑
i

ti · z−1(e, . . . , f(gi), . . . , e), f̃(hZγ)

)
= (z, e) · ψ(x, hZγ)

By the definition provided by equation (3.12) the map ψ : EΓ ×Γ (Γ/Zγ) −→ EZγ ×Zγ Zγ

preserves polynomial growth if there exists a positive integer r and constant K > 0 such

that

(ρ, dΓ)p (ψ(x, h0Zγ), ψ(y, h1Zγ)) ≤ K · [(ρ, dΓ)p ((x, h0Zγ), (y, h1Zγ))]
r (3.15)

This ensures that for any change λ|φ| in the value of a cyclic cocycle representative of the

class [ϕ] ∈ H∗(EZγ ×Zγ Zγ,C) there exists a representative of ψ∗[ϕ] ∈ H∗(EΓ×Γ (Γ/Zγ),C)

whose absolute value |ψ∗φ| changes no more than K(λ|φ|)r. As a preliminary necessity to

proving this property of ψ, we recall that a path metric can be put on EΓ such that for x, y

not in the same connected component ρ(x, y) = 1, and otherwise if x and y are joined by a

union of paths
⋃k
l=1 αl, where each αl belongs to a single simplex

ρ(x, y) = inf
αl

k∑
l=1

length(αl)
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Hence there exists points v and v′ in this simplex such that length(αl) = ρ(v, v′); the metric

ρ is defined as min{ρ1, ρ2}, where

ρ1

(∑
i

tigi,
∑
i

t′igi

)
=
∑
i

|ti − t′i|||gi|| ρ2

(∑
i

tigi,
∑
i

t′igi

)
=
∑
i,j

tit
′
jdΓ(gi, gj)

The metric placed on Γ/Zγ will be the usual word metric dΓ, and we assign to EΓ ×Γ

(Γ/Zγ) the p-product metric (ρ, dΓ)p, for p ∈ [1,∞). By the left Γ-invariance of dΓ, and

the fact that (xg, w) ∼ (x, gw) it follows that (ρ, dΓ)p is also left Γ-invariant. Without loss

of generality we may take x and y to belong to the same connected component, and since

the collection of left cosets partition Γ, we assume that h0Zγ is distinct from h1Zγ. The

proof of the inequality (3.15) thus follows immediately from the definition of ψ: explicitly,

(ρ1, dΓ)p (ψ(x, h0Zγ), ψ(y, h1Zγ)) has the expression

∣∣∣∣∣
∣∣∣∣∣ρ1

(
k∑
l=1

∑
il

tilf(gil),
k∑
l=1

∑
il

t′ilf(gil)

)
, dΓ(f̃(h0Zγ), f̃(h1Zγ))

∣∣∣∣∣
∣∣∣∣∣
p

=

∣∣∣∣∣
∣∣∣∣∣
k∑
l=1

∑
il,jl

tilt
′
jl
dΓ(f(gil), f(gjl)), dΓ(f̃(h0Zγ), f̃(h1Zγ))

∣∣∣∣∣
∣∣∣∣∣
p

≤

∣∣∣∣∣
∣∣∣∣∣
k∑
l=1

∑
il,jl

4tilt
′
jl
dΓ(gil , gjl), 4dΓ(h0Zγ, h1Zγ)

∣∣∣∣∣
∣∣∣∣∣
p

The inequality in the last line follows from the bound dΓ(f(gi), f(gj) ≤ 4dΓ(gi, gj) proven

below in Proposition 3.8 and the analogous one for f̃ . Similarly, with respect to the metric

ρ2 we have

∣∣∣∣∣
∣∣∣∣∣ρ2

(
k∑
l=1

∑
il

tilf(gil),
k∑
l=1

∑
il

t′ilf(gil)

)
, dΓ(f̃(h0Zγ), f̃(h1Zγ))

∣∣∣∣∣
∣∣∣∣∣
p

=

∣∣∣∣∣
∣∣∣∣∣
k∑
l=1

∑
il

|til − t′il |||f(gil)||, dΓ(f̃(h0Zγ), f̃(h1Zγ))

∣∣∣∣∣
∣∣∣∣∣
p
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≤

∣∣∣∣∣
∣∣∣∣∣
k∑
l=1

∑
il

2|til − t′il |||gil ||, 4dΓ(h0Zγ, h1Zγ)

∣∣∣∣∣
∣∣∣∣∣
p

The factor of 2 present in the last line stems from the fact that

||f(gi)|| = dΓ(f(gi), e) ≤ dΓ(f(gi), gi) + dΓ(gi, e) ≤ dΓ(e, gi) + dΓ(gi, e) = 2||gi||

In combination with the result for ρ1 this proves the inequality (3.15) for K = 4 and r =

1.

Corollary 3.7. Every delocalized cyclic cocycle class [ϕγ] ∈ HC∗(CΓ, cl(γ)) has a represen-

tative ϕα,γ of polynomial growth, hence H∗(CΓ, cl(γ)) is polynomially bounded.

Proof. Since Γ is of polynomial growth, then the proof of Lemma 3.3 asserts that H∗(Zγ,C)

is of polynomial cohomology. Furthermore, if we denote by R−1 the inverse isomorphism

to that constructed in Lemma 3.4, then by Proposition 3.5 and Theorem 3.6 there exists a

chain of isomorphisms which preserve polynomial cohomology for all n ≥ 1.

Hn(Zγ,C)⊗Z Q
(ψ⊗Z1)∗−−−−−→ Hn(D,C)⊗Z Q

(R−1⊗Z1/An+1)∗−−−−−−−−−−→ Hn(C,C)⊗Z Q

The desired result now follows from recalling that by Definition 2.28 there exists an explicit

representation ϕα,γ ∈ (Cn(Γ, Zγ, γ), b̂) for each ϕγ ∈ (Cn(CΓ, cl(γ)), b).

Proposition 3.8. Let f : Γ −→ Zγ and f̃ : Γ/Zγ −→ Zγ be as described in Theorem 3.6,

then both have a Lipschitz constant of 4.

Proof. Given distinct gi, gj ∈ Γ with word representations gi = si1si2 · · · sik and gj =

sj1sj2 · · · sjk

dΓ(gi, gj) = ||gig−1
j || = lΓ(si1si2 · · · sik−ms−1

jk−m · · · s
−1
j2
s−1
j1

) = jk + ik − 2m

where m is the cancellation length. By definition of f provided above in (3.13) there exist
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lexicographically minimal zi = f(gi) and zj = f(gj) such that dΓ(zi, gi) and dΓ(zj, gj) are

minimized. By the properties of the metric, it is immediate that

dΓ(zi, zj) ≤ dΓ(zi, gi) + dΓ(gi, gj) + dΓ(gj, zj) ≤ ik + (jk + ik − 2m) + jk ≤ 2(ik + jk)

On the other hand, expressing zi and zj as the words zi = s′i1s
′
i2
· · · s′ik′ and zj = s′j1s

′
j2
· · · s′jk′

dΓ(zi, gi) = ||zig−1
i || = lΓ(s′i1s

′
i2
· · · s′ik′−bs

−1
ik−b · · · s

−1
i2
s−1
i1

) = ik′ + ik − 2b

dΓ(gj, zj) = ||gjz−1
j || = lΓ(sj1sj2 · · · sjk−as′

−1
jk′−a · · · s

′−1
j2
s′
−1
j1

) = jk′ + jk − 2a

We can thus make use of the decomposition ziz−1
j = zig

−1
i gig

−1
j gjz

−1
j and obtain the reduced

word expression for ziz−1
j as

s′i1 · · · s
′
ik′−bs

−1
ik−b · · · s

−1
i1
si1 · · · sik−ms−1

jk−m · · · s
−1
j1
sj1 · · · sjk−as′

−1
jk′−a · · · s

′−1
j1

= s′i1s
′
i2
· · · s′ik′−bs

−1
ik−b · · · s

−1
ik−m−1sjk−m−1 · · · sjk−as′

−1
jk′−a · · · s

′−1
j2
s′
−1
j1

where– without loss of generality– we have assumed that m ≥ a, b. It follows that

lΓ(ziz
−1
j ) = ik′ − b+ (ik − b− ik +m+ 1) + (jk − a− jk +m+ 1) + jk′ − a

= ik′ + jk′ − 2a− 2b+ 2m+ 2

However, since the identity element is always a possible choice for zi we know that ik′ +

ik − 2b ≤ ik, from which it follows that ik′ − 2b ≤ 0, and analogously jk′ + jk − 2a ≤ jk

implies that jk′ − 2a ≤ 0; this provides the bound dΓ(zi, zj) ≤ 2m+ 2. We thus have the two

following cases:

(i) If m ≥ ik + jk then dΓ(gi, gj) = jk + ik − 2m ≥ 1
2
(jk + ik), and the bound dΓ(zi, zj) ≤

2(ik + jk) provides: dΓ(zi, zj) ≤ 4dΓ(gi, gj)
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(ii) If m ≤ ik + jk then dΓ(gi, gj) = jk + ik − 2m ≥ 2m, and the bound dΓ(zi, zj) ≤ 2m+ 2

provides: dΓ(zi, zj) ≤ 2dΓ(gi, gj)

An analogous result is obtained for f̃ using its definition with respect to f and the inequalities

already proven for f . The proof follows along the exact same lines, explicitly providing

min
z,z′∈Zγ

{dΓ(f(h0z), f(h1z
′))} ≤ 4 min

z,z′∈Zγ
{dΓ(h0z, h1z

′)}

dΓ(f̃(h0Zγ), f̃(h1Zγ)) ≤ 4dΓ(h0Zγ, h1Zγ)

When choosing a representative of polynomial growth for the purposes of the following

sections, it is paramount that this choice is independent of representative in a way that

respects polynomial growth. Explicitly, let [ϕγ] be a delocalized cyclic cocycle class with

polynomial growth representatives ψγ,1, ψγ,2 ∈ (Cn(CΓ, cl(γ)), b). Since by definition the

group Hn(CΓ, cl(γ)) is the quotient

ZCn(CΓ, cl(γ))/BCn(CΓ, cl(γ))

then ψγ,1 and ψγ,2 being cohomologous implies existence of a delocalized cyclic cocycle φ

belonging to (Cn−1(CΓ, cl(γ)), b) such that ψγ,1 − ψγ,2 = bφ.

Remark 3.9. If [ϕγ] ∈ Hn(CΓ, cl(γ)) has polynomial growth representatives ψγ,1 and ψγ,2,

then there exists a cyclic cocycle φ of polynomial growth such that ψγ,1 − ψγ,2 = bφ.

Proof. For any length function l on Γ it is proven by Ji [23, Theorem 2.23] that the

inclusion i : CΓ ↪→ Sl1(Γ) induces an isomorphism between the Schwartz cohomology

sHn
1 (Γ,C) = Hn(Sl1(Γ),C) and the group cohomology Hn(Γ,C) for Γ a discrete count-

able group of polynomial growth. In particular, we have sHn
l (Zγ,C) ∼= Hn(Zγ,C) and so

Proposition 3.5 along with the strategy of Theorem 3.6 provides for a polynomial growth

preserving map such that φ is the image of a representative of an element in sHn
l (Zγ,C).
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4. PAIRING OF CYCLIC COHOMOLOGY CLASSES IN ODD DIMENSION∗

4.1 Delocalized Higher Eta Invariant

Let D̃ be the Dirac operator lifted to M̃ , denote by S the associated spinor bundle, and

by ∇ : C∞(M̃,S) −→ C∞(M̃, T ∗M̃ ⊗ S) the connection on S. Since M has positive scalar

curvature κ > 0 associated to g̃, then Lichnerowicz’s formula [29]

D̃2 = ∇∇∗ +
κ

4
(4.1)

implies that D̃ is invertible. Moreover, D̃ is a self-adjoint elliptic operator, and so possesses

a real spectrum: σ(D̃) ⊂ R. The invertibility condition particularly provides existence of a

spectral gap at 0, which will be necessary in ensuring convergence of the integral introduced

in Definition 4.2. This will be a higher analogue of the delocalized eta invariant Lott [32]

introduced in the case of 0-dimensional cyclic cocycles– that is for traces. Given a non-trivial

conjugacy class cl(γ) of the fundamental group Γ = π1(M), Lott’s delocalized eta invariant

can be formally defined as the pairing between Lott’s higher eta invariant and traces.

ηtrγ (D̃) :=
2√
π

∫ ∞
0

trγ

(
D̃e−t

2D̃2
)

(4.2)

Here the trace map tr : CΓ −→ C continuously extends to a suitable smooth dense subalgebra

of C∗r (Γ) to which D̃e−t
2D̃2 belongs. Generally, if F is a fundamental domain of M̃ under

the action of Γ, then for Γ-equivariant kernels A ∈ C∞(M̃ × M̃)

trγ(A) =
∑
g∈cl(γ)

∫
F
A(x, gx) dx (4.3)

∗Part of this chapter has been reprinted with permission from “S.A.K.A. John. Secondary Higher In-
variants and Cyclic Cohomology for Groups of Polynomial Growth. Journal of Noncommutative Geometry,
(accepted), 2021"
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Under the assumption of hyperbolicity or polynomial growth of the conjugacy class of γ, Lott

[32] showed convergence of the above integral. Invertibility of D̃ is in general a necessary

condition for this convergence, as was shown by the construction of a divergent counterex-

ample by Piazza and Schick [37, Section 3]. However, it was proven by Chen, Wang, Xie and

Yu [11, Theorem 1.1] that as long as the spectral gap of D̃ is sufficiently large, then ηtrγ (D̃)

converges absolutely, and does not require any restriction on the fundamental group of the

manifold.

Since we shall have occasion to use their properties often, we shall briefly recall the most

important aspects of the space S(R) of Schwartz functions. By definition, f belongs to S(R)

if f : R −→ C is a smooth function such that for every k,m ∈ N

lim
|x|−→∞

xk
dm

dxm
(f(x)) = 0

This implies that f is bounded with respect to the family of semi-norms

||f ||k,m = sup
x∈R

∣∣∣∣xk dmdxm (f(x))

∣∣∣∣ (4.4)

Moreover, the Fourier transform f 7−→ f̂ is an automorphism of the Schwartz space, thus

f̂ ∈ S(R) for every Schwartz function f , where

f̂(ξ) =
1

2π

∫ ∞
−∞

f(x)e−iξx dx (4.5)

Lemma 4.1. If Φ is a Schwartz function and D̃ is the lifted Dirac operator associated to

M̃ , then Φ(D̃) ∈ A (M̃,S)Γ.

Proof. This is proven as Proposition 4.6 in [50]

Definition 4.2. For any delocalized cyclic cocycle class [ϕγ] ∈ HC2m(CΓ, cl(γ)) the delo-
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calized higher eta invariant of D̃ with respect to [ϕγ] is defined as

ηϕγ (D̃) :=
m!

πi

∫ ∞
0

ηϕγ (D̃, t) dt (4.6)

where ηϕγ (D̃, t) = ϕγ((u̇t(D̃)u−1
t (D̃))⊗̂((ut(D̃)− 1)⊗̂(u−1

t (D̃)− 1))⊗̂m) and

Ft(x) =
1√
π

∫ tx

−∞
e−s

2

ds ut(x) = e2πiFt(x) u̇t(x) =
d

dt
ut(x)

Note that the arguments of ηϕγ (D̃, t) all belong to A (M̃,S)Γ, since ut(x)− 1, u−1
t (x)− 1

and u̇t(x)u−1
t (x) are all Schwartz functions. In particular, we have the simplification

u̇t(x)u−1
t (x) = 2πi

(
d

dt
Ft(x)

)
e2πiFt(x)e−2πiFt(x) = 2πi

(
d

dt
Ft(x)

)
= 2i
√
πxe−t

2x2

It is also useful to consider the representation of the delocalized higher eta invariant in terms

of smooth Schwartz kernels, namely if Li is an element of the convolution algebra L (M̃,S)Γ,

the action of ϕγ on CΓ can be extended to L (M̃,S)Γ by– abusing notation a little we will

denote the Schwartz kernel of Li by Li also– defining ϕγ(L0⊗̂L1⊗̂ . . . ⊗̂Ln) to be

∑
g0g1···gn∈cl(γ)

ϕγ(g0, . . . , gn)

∫
Fn+1

tr

(
n∏
i=0

Li(xi, gixi+1)

)
dx0 · · · dxn : xn+1 = x0 (4.7)

where F is the fundamental domain of M̃ under the action of Γ = π1(M), and tr denotes

the pointwise matrix trace, not to be confused with the trace norm || · ||tr for trace class

operators. Denoting by at(x, y), bt(x, y) and kt(x, y) the Schwartz kernels of the operators

ut(D̃)− 1, u−1
t (D̃)− 1 and u̇t(D̃)u−1

t (D̃) respectively, then ηϕγ (D̃, t) is given by

∑
g0g1···g2m∈cl(γ)

ϕγ(g2m)

∫
F2m+1

tr

(
kt(x0, g0x1)

2m−1∏
i=1

at(xi, gixi+1)bt(xi+1, gi+1xi+2)

)
dx2m

g2m := (g0, . . . , g2m) dx2m := dx0 · · · dx2m

(4.8)
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In this form we can better exploit the properties of A (M̃,S)Γ, in order to prove that ηϕγ (D̃)

converges for D̃ invertible and Γ of polynomial growth. The first step is proving extension

of delocalized cyclic cocycles on the smooth dense subalgebra A (M̃,S)Γ, in terms of kernel

operators. Since the fundamental group of a manifold has a cocompact, isometric, and

properly discontinuous action on the universal cover, by the Švarc-Milnor lemma [42, 34]

there is a quasi-isometry f : π1(M) −→ M̃ ; for every g, h ∈ Γ there exists K ≥ 1, ` ≥ 0 such

that

dΓ(g, h)−K` ≤ KdM̃(f(g), f(h)) ≤ K2dΓ(g, h) +K`

and for every y ∈ M̃ there exists gy ∈ Γ such that dM̃(f(gy), y) ≤ `. In particular, we may

fix some p ∈ M̃ and define f(g) = gp; moreover, restricting our attention to points belonging

to F the value of (K, `) can be taken to be (1, diam(F)) since each orbit is cobounded.

We note that in [11, Section 8], under the assumption that π1(M) is of polynomial

growth, the authors used the techniques of [13, 14] to establish that the above definition of

the delocalized higher eta invariant agrees with Lott’s higher eta invariant [31, Section 4.4

& 4.6] up to a constant.

Theorem 4.3. Let Γ = π1(M) and ϕγ ∈ (Cn(CΓ, cl(γ)), b) be a delocalized cyclic cocycle of

polynomial growth, then ϕγ extends continuously on the algebra (A (M̃,S)Γ)⊗̂
n+1
π .

Proof. Denote by ρ̂ : M̃ −→ [0,∞) the distance function ρ̂(x) = ρ̂(x, y0) for some fixed point

y0 ∈ M̃ , with ρ being the modification of ρ̂ near y0 to ensure smoothness. Let B ∈ A (M̃,S)Γ

and recall that we have the norm ||B||A ,k = ||∂̃k(B) ◦ (D̃2n0 + 1)||op; for any f ∈ L2(M̃,S)

the Sobolev embedding theorem provides existence of some constant C such that

|B(f)(x)| ≤ C||(1 + D̃2n0)B(f)||L2(M̃,S) ≤ C||(D̃2n0 + 1)B||op||f ||L2(M̃,S)

In particular, since f is arbitrary, the bound ||B(x, ·)||L2(M̃,S) ≤ C||(D̃2n0 + 1)B||op shows
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that taking the supremum over all (x, y) ∈ M̃ × M̃ the Schwartz kernel

∂̃k(B)(x, y) = (ρ(x)− ρ(y))kB(x, y)

has operator norm bounded by ||B||A ,k, hence it is a uniformly bounded continuous function

for all k ∈ N. Now view B(x, y) as a matrix acting on the spinors f(y), where each section f

has a representation as a matrix in the complex Clifford algebra C`dim(M). If I is the identity

matrix, then by the Holder inequality for Schatten p-norms

|tr(B(x, y))| ≤ ||B(x, y)||tr = ||B(x, y)I||tr ≤ ||B(x, y)||op||I||tr < 2n0||B(x, y)||op

Since all points of M̃ belong to some orbit of the fundamental domain we have the bound

|ρ(xi) − ρ(xi+1)| ≤ diam(F), and by quasi-isometry of Γ and the universal cover, we have

(taking a family of quasi-isometries fi(g) = gxi)

|ρ(xi+1)− ρ(gxi+1)| ≥ dΓ(e, g)− diam(F) = ||g|| − diam(F)

From this, an application of the reverse triangle inequality provides the bound

|ρ(xi)− ρ(gxi+1)| = |ρ(xi)− ρ(xi+1) + ρ(xi+1)− ρ(gxi+1)|

≥ |ρ(xi+1)− ρ(gxi+1)| − |ρ(xi)− ρ(xi+1)| ≥ ||g|| − diam(F)− diam(F)

Denoting the matrix norm || · ||op by | · |, the boundedness properties of the Schwartz kernel

implies existence of a constant Ck > 0 such that for each k ∈ N

Ck|∂̃3k(Bi)(xi, gxi+1)|2 = (ρ(xi)− ρ(gxi+1))6k|Bi(xi, gxi+1)|2 ≥ (1 + ||g||)6k|Bi(xi, gxi+1)|2

We will use the explicit representation ϕα,γ of ϕγ, and for ease of notation, we shorten the
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argument of α by writing α(gn); we wish to prove convergence of the following sum.

ϕα,γ(B0⊗̂B1⊗̂ · · · ⊗̂Bn) =
∑

g0g1···gn∈cl(γ)

α(g)

∫
Fn+1

tr

(
n∏
i=0

Bi(xi, gixi+1)

)
dx0 · · · dxn (4.9)

From the fact that α is of polynomial growth, and using the above inequalities coupled with

Cauchy-Schwartz, |ϕα,γ(B0⊗̂B1⊗̂ · · · ⊗̂Bn)| is bounded above by

∑
g0g1···gn∈cl(γ)

|α(gn)|
∫
Fn+1

∣∣∣∣∣tr
(

n∏
i=0

Bi(xi, gixi+1)

)∣∣∣∣∣ dx0 · · · dxn

≤
∑

g0g1···gn∈cl(γ)

2n0 |α(gn)|
∫
Fn+1

∣∣∣∣∣
n∏
i=0

Bi(xi, gixi+1)

∣∣∣∣∣ dx0 · · · dxn

≤
∑

g0g1···gn∈cl(γ)

Rα

n∏
i=0

(1 + ||gi||)2k

n∏
i=0

(∫
F2

|Bi(xi, gixi+1)|2 dxidxi+1

)1/2

=
∑

g0g1···gn∈cl(γ)

Rα

n∏
i=0

(∫
F2

(1 + ||gi||)4k|Bi(xi, gixi+1)|2 dxidxi+1

)1/2

≤
∑

g0g1···gn∈cl(γ)

RαC
1/2
k

n∏
i=0

(
(1 + ||gi||)−2k

∫
F2

|∂̃2k(Bi)(xi, gixi+1)|2 dxidxi+1

)1/2

≤ RαC
1/2
k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k

∫
F2

|∂̃2k(Bi)(xi, gixi+1)|2 dxidxi+1

)1/2

For each gi the integral over the fundamental domain is finite, since ∂̃2k(Bi)(xi, gixi+1) is

uniformly bounded; explicitly there exists a constant Λk such that for g0g1 · · · gn ∈ cl(γ) the
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above product is bounded above by

≤ RαC
1/2
k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k

∫
F2

sup
(xi,gixi+1)∈F×F

|∂̃2k(Bi)(xi, gixi+1)|2 dxidxi+1

)1/2

RαC
1/2
k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k

∫
F2

Λ2
k||Bi||2A ,k dxidxi+1

)1/2

≤ RαC
1/2
k diam(F)Λk

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k||Bi||2A ,k

)1/2

(4.10)

where we will denote Rα,k = RαC
1/2
k diam(F)Λk. Moreover, due to Γ being of polynomial

growth, there exists ki such that

(1 + ||gi||)−2ki |{gi ∈ Γ : ||gi|| ≤ c}| < 1

c2

It follows that each of the sums in the final expression (4.10) are finite for sufficiently large k,

and thus so is any finite product of them. Now, by construction L (M̃)Γ is a smooth dense

sub-algebra of A (M̃)Γ, and this relationship also extends when considering their projective

tensor products. We have just proven that ϕα,γ is continuous on (A (M̃)Γ)⊗̂
n+1
π ; to obtain

the desired result it suffices to prove that for operators B0, . . . , Bn ∈ L (M̃)Γ, whenever

σ ∈ Sn+1 is a cyclic shift

sgn(σ)ϕα,γ(B0⊗̂B1⊗̂ · · · ⊗̂Bn) = ϕα,γ(Bσ(0)⊗̂Bσ(1)⊗̂ · · · ⊗̂Bσ(n)) (4.11)

By application of the Fubini-Tonelli theorem, and since ϕα,γ is a cyclic cocycle on CΓ, we

obtain that ϕα,γ(Bσ(0)⊗̂Bσ(1)⊗̂ · · · ⊗̂Bσ(n)) is equal to

∑
g0g1···gn∈cl(γ)

sgn(σ)ϕα,γ(gn)

∫
Fn+1

tr

(
n∏
i=0

Bσ(i)(xσ(i), gσ(i)xσ(i+1))

)
dxσ(0) · · · dxσ(n)

50



= sgn(σ)
∑

g0g1···gn∈cl(γ)

ϕα,γ(gn)

∫
Fn+1

tr

(
n∏
i=0

Bi(xi, gixi+1)

)
dx0 · · · dxn

the latter expression clearly being the definition of sgn(σ)ϕα,γ(B0⊗̂B1⊗̂ · · · ⊗̂Bn).

The following technical result is one which we will have occasion to use often, both in

the remainder of this section and elsewhere.

Proposition 4.4. For any collection of Schwartz functions f0, f1, . . . , fn ∈ S(R) and any

delocalized cyclic cocycle ϕγ ∈ (Cn(CΓ, cl(γ)), b) of polynomial growth

lim
t−→0

ϕγ(f0(tD̃)⊗̂f0(tD̃)⊗̂ · · · ⊗̂fn(tD̃)) = 0

Proof. Fix some t 6= 0 and consider the Schwartz functions fi,t(x) = fi(tx) for 1 ≤ i ≤ n;

since the Fourier transform is an automorphism of S(R) there exists gi,t ∈ S(R) such that

ĝi,t ≡ fi,t. Using the change of variables x = y/t, and the definition from (4.5), we obtain

fi,t(ξ) = ĝi,t(ξ) =
1

2π

∫ ∞
−∞

gi,t(x)e−iξx dx =
1

2π

∫ ∞
−∞

gi(tx)e−iξy/t
dy

t

=
1

2πt

∫ ∞
−∞

gi(y)e−iy(ξ/t) dy =
ĝi(ξ/t)

t
= fi(tξ)

Now since each of these functions is Schwartz, (4.4) asserts that the following limit exists

and is finite; in particular, ĝi(tξ) −→ 0 faster than any inverse power of t as t −→ ∞, from

which it follows that

lim
t−→0

fi,t(ξ) = lim
t−→0

fi(tξ) = lim
t−→0

ĝi(ξ/t)

t
= lim

t−→∞
t · ĝi(tξ) = 0

Turning to functional calculus, by Lemma 4.1 each fi(tD̃) belongs to A (M̃,S)Γ, and the

spectral gap at 0 of D̃ ensures that ||fi(tD̃)||A ,k converges to 0 as t −→ 0. From (4.10) of
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Theorem 4.3 it follows that there exists a positive constant Rα,k such that

lim
t−→0
|ϕγ(f0(tD̃)⊗̂f0(tD̃)⊗̂ · · · ⊗̂fn(tD̃))|

≤ lim
t−→0

Rα,k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k||fi(tD̃)||2A ,k

)1/2

= 0

Lemma 4.5. Let [ϕγ] ∈ HC2m(CΓ, cl(γ)), then if D̃ is invertible and ϕγ is of polynomial

growth, then ηϕγ (D̃) converges absolutely.

Proof. The higher delocalized eta invariant can be split into two integrals, as follows.

ηϕγ (D̃) :=
m!

πi

∫ ∞
0

ηϕγ (D̃, t) dt =
m!

πi

(∫ 1

0

ηϕγ (D̃, t) dt+

∫ ∞
1

ηϕγ (D̃, t) dt

)

For the first integral, absolute convergence follows from Theorem 4.3 and Proposition 4.4,

using the Schwartz kernel expression.

∫ 1

0

|ηϕγ (D̃, t)| dt ≤ sup
t∈[0,1]

|ϕγ((u̇t(D̃)u−1
t (D̃))⊗̂((ut(D̃)−1)⊗̂(u−1

t (D̃)−1))⊗̂m)| <∞ (4.12)

For the second integral we use the fact that D̃ is invertible to observe that the spectrum σ(D̃)

of D̃, has finite spectral radius r > 0. By the spectral mapping theorem for holomorphic

functional calculus the operator f(D̃) = e−D̃
2 has spectrum f(σ(D̃)) = σ(f(D̃)), from which

it follows that the spectral radius of f(D̃) is equal to e−r2 . Moreover, since A (M̃,S)Γ is

closed under holomorphic functional calculus the spectral radius of f(D̃) is unchanged when

viewed as an operator in A (M̃,S)Γ. By Gelfand’s formula we have

e−r
2

= lim
n−→∞

(
||e−nD̃2 ||A ,k

) 1
n
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so for t ∈ [n, n+ 1) there exists n large enough such that for some constants C0, C1 > 0

||C0e
−tD̃2||A ,k ≤ ||e−nD̃

2||A ,k ≤ e−nr
2/2 ≤ C1e

−tr2/2 (4.13)

It is useful to work in the unitization (A (M̃,S)Γ)+, for which ϕγ is well defined and con-

tinuous on the projective tensor product ((A (M̃,S)Γ)+)⊗̂
2m+1
π by Theorem 4.3. Using the

explicit expression (u̇t(D̃)u−1
t (D̃)) = 2i

√
πD̃e−t

2D̃2 and the fact that 1 ∈ (A (M̃,S)Γ)+, we

follow an argument similar to that of [11, Proposition 3.30]. Firstly, note that

ϕγ((u̇t(D̃)u−1
t (D̃))⊗̂((ut(D̃)− 1)⊗̂(u−1

t (D̃)− 1))⊗̂m)

= ϕγ((u̇t(D̃)u−1
t (D̃))⊗̂(ut(D̃)⊗̂u−1

t (D̃))⊗̂m)

= ϕγ(2i
√
πD̃e−t

2D̃2⊗̂(ut(D̃)⊗̂u−1
t (D̃))⊗̂m)

= ϕγ(2i
√
πD̃e−D̃

2 × e−(t2−1)D̃2⊗̂(ut(D̃)⊗̂u−1
t (D̃))⊗̂m)

= 2i
√
π · ϕγ(D̃e−D̃

2⊗̂(ut(D̃)⊗̂u−1
t (D̃))⊗̂m × (e−(t2−1)D̃2⊗̂1⊗̂2m))

Now we consider the inclusion map ı : (A (M̃,S)Γ)+ −→ ((A (M̃,S)Γ)+)⊗̂
2m+1
π defined ac-

cording to ı(B) = B⊗̂1⊗̂2m; by definition of the projective cross norm this mapping is an

isometry.

||ı(B)||(A +)⊗̂2m+1,k = ||B⊗̂1⊗̂2m||(A +)⊗̂2m+1,k = ||B||A +,k

In particular, taking the projective tensor norm of the argument of the cyclic cocycle gives
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us the following bound for large enough t, where C0, C1 and r are as defined above.

||( ˙̄ut(D̃)ū−1
t (D̃))⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m||(A +)⊗̂2m+1,k

= |2i
√
π| · ||D̃e−D̃2⊗̂(ut(D̃)⊗̂u−1

t (D̃))⊗̂m × (e−(t2−1)D̃2⊗̂1⊗̂2m)||(A +)⊗̂2m+1,k

≤ |2i
√
π| · ||D̃e−D̃2⊗̂(ut(D̃)⊗̂u−1

t (D̃))⊗̂m||(A +)⊗̂2m+1,k||e
−(t2−1)D̃2⊗̂1⊗̂2m||(A +)⊗̂2m+1,k

= 2
√
π||D̃e−D̃2⊗̂(ut(D̃)⊗̂u−1

t (D̃))⊗̂m||(A +)⊗̂2m+1,k||e
−(t2−1)D̃2||A +,k

≤ (2
√
π)

(
C1

C0

e−(t2−1)r2/2

)
||D̃e−D̃2⊗̂(ut(D̃)⊗̂u−1

t (D̃))⊗̂m||(A +)⊗̂2m+1,k

=
(
C2e

−(t2−1)r2/2
)
||D̃e−D̃2⊗̂(ut(D̃)⊗̂u−1

t (D̃))⊗̂m||(A +)⊗̂2m+1,k

(4.14)

By the inclusion isometry and (4.10) of Theorem 4.3, for large enough k

|ϕγ(B0⊗̂B1⊗̂ · · · ⊗̂Bn)| ≤ Rα,k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k||Bi||2A +,k

)1/2

= Rα,k

n∏
i=0

||Bi||A +,k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k

)1/2

= Rα,k||B0⊗̂B1⊗̂ · · · ⊗̂Bn||(A +)⊗̂n+1,k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k

)1/2

= Rα,k

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k||B0⊗̂B1⊗̂ · · · ⊗̂Bn||2(A +)⊗̂n+1,k

)1/2

The absolute convergence of
∫∞

1
ηϕγ (D̃, t) dt follows from this bound along with (4.14).

∫ ∞
1

ηϕγ (D̃, t) dt =

∫ ∞
1

|ϕγ(( ˙̄ut(D̃)ū−1
t (D̃))⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m)| dt

≤
∫ ∞

1

Rα,k

n∏
i=0

∑
gi∈Γ

(
C2e

−(t2−1)r2
)

(1 + ||gi||)2k
||D̃e−D̃2⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m||2
(A +)⊗̂2m+1,k

1/2

dt

54



[
sup

t∈[1,∞)

n∏
i=0

(∑
gi∈Γ

(1 + ||gi||)−2k||D̃e−D̃2⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m||2

(A +)⊗̂2m+1,k

)1/2

×
∫ ∞

1

Rα,kC2e
−(t2−1)r2/2 dt

]
<∞

Theorem 4.6. The higher delocalized eta invariant is independent of the choice of cocycle

representative. Explicitly, if [ϕγ] = [φγ] ∈ HC2m(CΓ, cl(γ)), then ηϕγ (D̃) = ηφγ (D̃)

Proof. By hypothesis, ϕγ and φγ are cohomologous via a coboundary bϕ belonging to

BC2m(CΓ, cl(γ)). By the results of Section 3.2 we can assume ϕ ∈ (C2m−1(CΓ, cl(γ)), b)

to be a skew cochain of polynomial growth, and it suffices to prove that ηbϕ(D̃) = 0. Here it

is useful to work in the unitization (A (M̃,S)Γ)+ and thus we will use the pairing described

by Connes for K1(A+) and odd cyclic cocycles.

ϕ((ut(D̃)− 1⊗̂u−1
t (D̃)− 1)⊗̂m) = ϕ((ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m) (4.15)

By computing the derivative of this unitized cyclic cocycle we wish to obtain a transgression

formula HC2m−1((A (M̃,S)Γ)+, cl(γ)) 7−→ HC2m(A (M̃,S)Γ, cl(γ)). In particular, we will

prove the transgression formula of [11, eq(3.23)]

mηbϕ(D̃, t) =
d

dt
ϕ((ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m) (4.16)

Direct computation of the right hand side of the above equation gives us

m−1∑
j=0

ϕ((ūt(D̃)⊗̂ū−1
t (D̃))⊗̂j⊗̂ ˙̄ut(D̃)⊗̂ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m−j−1)

+
m−1∑
j=0

ϕ((ūt(D̃)⊗̂ū−1
t (D̃))⊗̂j⊗̂ūt(D̃)⊗̂ ˙̄u−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m−j−1)

We now use the relation 0 = d
dt

(ū−1
t ūt) = ( ˙̄u−1

t )ūt+( ˙̄ut)ū
−1
t so the term ˙̄u−1

t (D̃) can be rewrit-
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ten: −ū−1
t (D̃) ˙̄ut(D̃)ū−1

t (D̃). Considering the first summand, since ϕγ is a cyclic cocycle, we

may apply the cyclic operator t– shifting the last ūt(D̃) term – and changing the sign by a

factor of (−1)2m+1 = −1. With this in mind the above sums simplify to

m−1∑
j=0

ϕ( ˙̄ut(D̃)⊗̂ū−1
t (D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−1)

+
m−1∑
j=0

ϕ(ūt(D̃)⊗̂ − ū−1
t (D̃) ˙̄ut(D̃)ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m−1)

= mϕ( ˙̄ut(D̃)⊗̂ū−1
t (D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−1)

−mϕ(ūt(D̃)⊗̂ū−2
t (D̃) ˙̄ut(D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−1)

Now we compute bϕ, making the important reminder that by Remark 2.29 and the discussion

preceding it, we can normalize ϕ so that it vanishes on the unit 1 ∈ (A (M̃,S)Γ)+.

(bϕ)( ˙̄ut(D̃)ū−1
t (D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m) =

ϕ( ˙̄ut(D̃)ū−1
t (D̃)ūt(D̃)⊗̂ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m−1)

+(−1)2mϕ(ū−1
t (D̃) ˙̄ut(D̃)ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m−1⊗̂ūt(D̃))

+
m−1∑
i=0

(−1)2i+1
[
ϕ( ˙̄ut(D̃)ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂i

⊗̂ūt(D̃)ū−1
t (D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−i−1
]

+
m−1∑
i=0

(−1)2i+2
[
ϕ( ˙̄ut(D̃)ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂i⊗̂ūt(D̃)

⊗̂ūt(D̃)ū−1
t (D̃)⊗̂ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m−i−1)

]
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By definition, ūt(D̃)ū−1
t (D̃) = ūt(D̃)ū−1

t (D̃) = 1 so the latter two sums vanish, leaving

ϕ( ˙̄ut(D̃)⊗̂ū−1
t (D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−1)

+ϕ(ū−2
t (D̃) ˙̄ut(D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−1⊗̂ūt(D̃))

= ϕ( ˙̄ut(D̃)⊗̂ū−1
t (D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−1)

−ϕ(ūt(D̃)⊗̂ū−2
t (D̃) ˙̄ut(D̃)⊗̂(ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m−1)

Comparing to the computation of the derivative, we obtain (4.16) as desired. Ignoring the

constant m!
πi

in the definition of the delocalized higher eta invariant and integrating both

sides with respect to t

mηbϕ(D̃) = m lim
T−→∞

∫ T

1/T

ηbϕ(D̃, t) dt = m lim
T−→∞

∫ T

1/T

d

dt
ϕ((ūt(D̃)⊗̂ū−1

t (D̃))⊗̂m) dt

= m lim
T−→∞

ϕ((uT (D̃)− 1⊗̂u−1
T (D̃)− 1)⊗̂m −m lim

T−→0
ϕ((uT (D̃)− 1⊗̂u−1

T (D̃)− 1)⊗̂m)

The splitting of the limit in the final line is justified by the absolute convergence of the

integral. By Proposition 4.4 we know that limT−→0 ϕ((uT (D̃)− 1⊗̂u−1
T (D̃)− 1)⊗̂m) = 0. To

deal with the case T −→ ∞ we recall some properties of holomorphic functional calculus.

Take x ∈ (0,∞), then we have the limits

lim
T−→∞

uT (x)− 1 = lim
T−→∞

exp

(
2πi√
π

∫ Tx

−∞
e−s

2

ds

)
− 1 = exp

(
2πi√
π
·
√
π

)
− 1 = e2πi − 1 = 0

lim
T−→∞

uT (x)− 1 = lim
T−→∞

exp

(
2πi√
π

∫ Tx

−∞
e−s

2

ds

)
− 1 = exp

(
2πi√
π
· 0
)
− 1 = e0 − 1 = 0

and in particular the convergence to 0 is uniform on R\ [−ε, ε] for any ε > 0. The exact same

results holds true when considering the function u−1
T (x)−1. In both cases the invertibility of

D̃– and hence existence of a spectral gap at 0– means that both uT (D̃)− 1 and u−1
T (D̃)− 1
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also converge in the || · ||A ,k norm to 0. It thus follows from the bounds of Theorem 4.3 that

lim
T−→∞

|ϕ((uT (D̃)− 1⊗̂u−1
T (D̃)− 1)⊗̂m| = 0 (4.17)

Proposition 4.7. Let S∗γ : HC2m(CΓ, cl(γ)) −→ HC2m+2(CΓ, cl(γ)) be the delocalized

Connes periodicity operator, then η[ϕγ ](D̃) = η[Sγϕγ ](D̃) for every [ϕγ] ∈ HC2m(CΓ, cl(γ)).

Proof. We may assume by Corollary 3.7 that ϕγ is of polynomial growth; by the definition

of Sγ the cocycle Sγϕγ is also of polynomial growth. Since our expression for Sγ coincides

with that of [11, Definition 3.32] the result follows from [11, Proposition 3.33]

4.2 Delocalized Pairing of Higher Rho Invariant

To begin with, we recall the assumptions put on the spin manifold M , namely that

it is closed and odd dimensional with a positive scalar curvature metric g. Let D̃ be the

Dirac operator lifted to the universal cover M̃ , s a section of the spinor bundle S, and

∇ : C∞(M̃,S) −→ C∞(M̃, T ∗M̃ ⊗ S) the connection on S. Since M̃ has positive scalar

curvature κ > 0 associated to g̃, then Lichnerowicz’s formula shows that D̃ is invertible,

hence there exists a spectral gap at 0. Since D̃ is an elliptic essentially self-adjoint operator,

using a suitable normalizing function ψ, the operator ψ(D̃) is bounded pseudo-local and self-

adjoint. In particular, to emphasize the relationship with the delocalized higher eta invariant

it is particularly useful that for t ∈ (0,∞) we consider

ψ(tx) =
2√
π

∫ tx

0

e−s
2

ds (4.18)

Since there exist a spectral gap at 0 with respect to D̃, the limit || limt−→0 ψ(D̃/t)||op exists

and converges to ||(D̃|D̃|−1)||op, where D̃|D̃|−1 = signum(D̃). Define an operator H0 =

1
2
(1 + D̃|D|−1) and let {φs,j} be a partition of unity subordinate to the Γ-invariant locally

finite open cover {Us,j}s,j∈N of M̃ . For each s we take diam(Us,j) <
1
s
, and so for t ≥ 0 we
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follow the construction of [48, Section 2.3] to form the operator

H(t) =
∑
j

(s+ 1− t)φ1/2
s,j H0φ

1/2
s,j + (t− s)φ1/2

s+1,jH0φ
1/2
s+1,j : t ∈ [s, s+ 1] (4.19)

Since the support supp(φs,j) of each member of the partition of unity is a subset of Us,j

the propagation of H(t) tends to 0 as t −→ ∞. Together with H(t) being a pseudo-local,

self-adjoint bounded operator, this gives us that H(t) ∈ D∗(M̃,S)Γ; moreover, due to the

choice of χ we have H ′(t), H(t)2 − 1 ∈ C∗(M̃,S)Γ. Moreover, as H(t) is a projection, the

path of invertibles

S = {u(t) = exp(2πiH(t))| t ∈ [0,∞)}

belong to (C∗(M̃,S)Γ)+, and since exp(2πi · signum(x)) = 1 for any x 6= 0 we have by

construction that u(0) = 1. It follows that u belongs to the kernel of the evaluation map

ev : (C∗L(M̃,S)Γ)+ −→ (C∗(M̃,S)Γ)+

and so the path S gives rise to a K-theory class [u] ∈ K1(C∗L,0(M̃,S)Γ), which is by definition

the higher rho invariant ρ(D̃, g̃) of Higson and Roe [20, 21, 22]. Before defining the pairing

between cyclic cocycles and the higher rho invariant it is useful to introduce a few technical

notions which will be needed later on. By Proposition 2.19 any class of invertible [u] ∈

K1(C∗L,0(M̃,S)Γ) is directly equivalent to a class of invertible [u] ∈ K1(BL,0(M̃,S)Γ), and

we also recall that the (localized)-equivariant Roe algebra is independent of the choice of

admissible module, hence we will work within the framework of B(M̃)Γ. The following

notion of a local map comes from [50, Definition 3.3]

Definition 4.8. Consider the unitization (B(M̃)Γ)+ of the algebra B(M̃)Γ, and its suspen-

sion SB(M̃)Γ. If A is a C∗-algebra recall that the suspension SA is defined as

{f ∈ C([0, 1],A) | f(0) = f(1) = 0}
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Identify S1 with the quotient space [0, 1]/(0 ∼ 1), and call an element f ∈ SB(M̃)Γ invertible

if it is a piecewise smooth loop f : S1 −→ (B(M̃)Γ)+ of invertible elements satisfying

f(0) = f(1) = 1. The map f is local if there exists fL ∈ SBL(M̃)Γ such that the following

hold

(i) fL : S1 −→ (BL(M̃)Γ)+ is a loop of invertible elements satisfying fL(0) = fL(1) = 1.

(ii) f is the image of fL under the evaluation map ev : SBL(M̃)Γ −→ SB(M̃)Γ

Recall that identifying the Bott generator b as the class [e2πiθ] ∈ K1(C0(R)) the Bott

periodicity map β provides the following relationship between idempotents of a C∗-algebra

A and invertibles of the suspension

β : K0(A) −→ K1(SA) β[p] = [bp+ (1− p)] (4.20)

Combining this with the Baum-Douglas geometric description of K-homology we obtain the

following result concerning the propagation properties of local loops which is essentially the

same as [50, Lemma 3.4], and we refer the reader to the proof given in that paper.

Lemma 4.9. If f ∈ SB(M̃)Γ is a local invertible then for any ε > 0 there exists an

idempotent p ∈ B(M̃)Γ such that prop(p) ≤ ε and f(θ) is homotopic to the element ψ(θ) =

e2πiθp+ (1− p) through a piecewise smooth family of invertible elements.

We now go through the process of assigning to any class [u] ∈ K1(C∗L,0(M̃,S)Γ) a special

representative which will enable the calculations later on in this section. Making use of

the results proved in [50, Proposition 3.5], there exist a piecewise smooth path of invertible

elements h(t) ∈ B(M̃)Γ connecting u(1) and e2πi
E(1)+1

2 where the operator E : [1,∞) −→

D∗(M̃)Γ has uniformly bounded operator norm and satisfies

lim
t−→∞

prop(E(t)) = 0 E ′(t) ∈ B(M̃)Γ E(t)2 − 1 ∈ B(M̃)Γ E∗(t) = E(t)
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where there exists a twisted Dirac operator D̃ over a spinc manifold, along with smooth

normalizing function χ : R −→ [−1, 1] such that E(t) = χ(D̃/t). We can thus define the

regularized representative of u to be

w(t) =


u(t) 0 ≤ t ≤ 1

h(t) 1 ≤ t ≤ 2

e2πi
E(t−1)+1

2 t ≥ 2

(4.21)

Moreover, by [25, Theorem 3.8] and [50, Proposition 3.5] if v is another such representa-

tive then there exist a family of piecewise smooth maps {Es}s∈[0,1] belonging to D∗L,0(M̃)Γ

and having the same properties as E. In particular, the propagation of Es(t) goes to zero

uniformly in s as t −→∞, and

∂

∂t
Es(t) ∈ B(M̃)Γ Es(t)

2 − 1 ∈ B(M̃)Γ Es(t)
∗ = Es(t)

Furthermore there exists piecewise smooth family of invertibles {vs}s∈[0,1] belonging to (BL,0(M̃)Γ)+

and which satisfy

(i) v0(t) = w(t) for t ∈ [0,∞), and v1(t) = v(t) for all t /∈ (1, 2)

(ii) vs(t) = exp(2πiEs(t−1)+1
2

) for all t ≥ 2

(iii) v1v
−1 : [1, 2] −→ (B(M̃)Γ)+ is a local loop of invertible elements.

Definition 4.10. Let ai =
∑

gi∈Γ cgi · gi be an element of the group algebra CΓ, and ωi

belong to the algebra R of smooth operators on a closed oriented Riemannian manifold.

Denoting Wi = ai ⊗ ωi, the action of ϕγ on CΓ can be extended to CΓ⊗R by

ϕγ(W0⊗̂W1⊗̂ · · · ⊗̂Wn) = tr(ω0ω1 · · ·ωn) · ϕγ(a0, a1, . . . , an)

Definition 4.11. Given [ρ(D̃, g̃)] ∈ K1(BL,0(M̃)Γ) with w being its regularized representa-

tive, associated to each delocalized cyclic cocycle [ϕγ] ∈ HC2m(CΓ, cl(γ)) the determinant
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map τϕγ is defined by

τϕγ (ρ(D̃, g̃)) :=
1

πi

∫ ∞
0

ϕγ(c̃h(w(t), ẇ(t)) dt

c̃h(w, ẇ) = (−1)m (m− 1)!
m∑
j=1

(
(w−1⊗̂w)⊗̂j⊗̂(w−1ẇ)⊗̂(w−1⊗̂w)⊗̂(m−j)

)
We remark that the definition of c̃h is directly modeled upon the secondary odd Chern

character pairing invertibles of GL(N,C) and traces (see, for example, [28, Section 1.2]).

Moreover, by the property of cyclic cocycles this expression can be simplified so that our

coefficients exactly resemble that of the delocalized higher eta invariant. By the action of

the cyclic operator t we obtain from applying the n = 2(m− j) + 1 fold composition tn for

each j, that the integrand can be written as

(−1)m (m− 1)!

πi

m∑
j=1

(−1)2m(2m−2j+1)ϕγ

(
(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m

)

from which it follows that there is the simplified expression for the determinant map

τϕγ (ρ(D̃, g̃)) :=
(−1)mm!

πi

∫ ∞
0

ϕγ

(
(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m

)
dt (4.22)

It is not at all obvious why the above pairing is well defined, the resolving of this doubt

occupying the remainder of this section.

Theorem 4.12. Let Γ = π1(M) and ϕγ ∈ (Cn(CΓ, cl(γ)), b) be a delocalized cyclic cocycle

of polynomial growth, then ϕγ extends continuously on the algebra (B(M̃)Γ)⊗̂
n+1
π .

Proof. Again using the explicit representation for delocalized cyclic cocycles, we show that

ϕα,γ extends to a continuous multi-linear map on (B(M̃)Γ)⊗̂
n+1
π . By fixing a basis, let

Bk ∈ B(M̃)Γ be represented by the matrix (βkij)i,j∈N with βkij ∈ C∗r (Γ). We wish to prove

62



convergence of

ϕα,γ(B0⊗̂B1⊗̂ · · · ⊗̂Bn) = ϕα,γ

(∑
g0∈Γ

B0(g0) · g0⊗̂ · · · ⊗̂
∑
gn∈Γ

Bn(gn) · gn

)

=
∑
g0∈Γ

∑
g1∈Γ

· · ·
∑
gn∈Γ

tr(B0(g0)B1(g1) · · ·Bn(gn)) · ϕα,γ (g0, g1, · · · , gn)

=
∑

g0g1···gn∈cl(γ)

tr(C(g0, . . . , gn)) · α(h, hg0, . . . , hg0g1 · · · gn−1)

(4.23)

Straight forward matrix multiplication gives the product C = (cij)i,j∈N as having entries

cij(g0, . . . , gn) =
∑

kn−1∈N

· · ·
∑
k1∈N

∑
k0∈N

(
β0
ik0

(g0)β1
k0k1

(g1) · · · βnkn−1j
(gn)

)

For ease of notation, we shorten the argument of α by writing α(g); in addition we suppress

the argument of the functions cij. Taking the desired trace in the above expression (4.23),

and using the fact that α is of polynomial growth, we obtain the inequality

|ϕα,γ(B0⊗̂B1⊗̂ · · · ⊗̂Bn)| ≤
∑
j∈N

∑
g0g1···gn∈cl(γ)

|cjj||α(g)|

≤
∑
j∈N

∑
g0g1···gn∈cl(γ)

Rα(1 + ||g0||)2k(1 + ||g1||)2k · · · (1 + ||gn||)2k|cjj|
(4.24)

for some positive constant Rα. Next, considering the following inequality for |cjj|

∑
j∈N

|cjj| ≤
∑

k0,...,kn−1,j∈N

∣∣(β0
jk0

(g0) · · · βnkn−1j
(gn)

)∣∣ ≤ n∏
i=0

 ∑
ki−1,ki∈N

|βiki−1ki
(gi)|2

1/2

where j = k−1 = kn. Substituting the above final product into the second line of (4.24),
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|ϕα,γ(B0⊗̂B1⊗̂ · · · ⊗̂Bn)| is bounded above by

∑
g0g1···gn∈cl(γ)

Rα

n∏
i=0

(1 + ||gi||)2k

n∏
i=0

 ∑
ki−1,ki∈N

|βiki−1ki
(gi)|2

1/2

= Rα

∑
g0g1···gn∈cl(γ)

n∏
i=0

 ∑
ki−1,ki∈N

|βiki−1ki
(gi)|2

1/2

((1 + ||gi||)4k)1/2

= Rα

n∏
i=0

∑
g0g1···gn∈cl(γ)

 ∑
ki−1,ki∈N

(1 + ||gi||)4k|βiki−1ki
(gi)|2

1/2

≤ Rα

n∏
i=0

∑
gi∈Γ

∑
ki−1,ki∈N

(1 + ||gi||)4k|βiki−1ki
(gi)|2

1/2

: g0g1 · · · gn ∈ cl(γ)

In particular, the proof of [16, Lemma 6.4] shows that each of the double sums in the final

expression are in fact bounded by the norm ||Bi||B,k hence finite for all k, and thus so is

any finite product of them. Since CΓ ⊗ R is a smooth dense sub-algebra of B(M̃)Γ and

ϕα,γ has been proven to be continuous on B(M̃)Γ, it suffices to prove that for operators

W0, . . . ,Wn ∈ CΓ⊗R

sgn(σ)ϕα,γ(W0⊗̂W1⊗̂ · · · ⊗̂Wn) = ϕα,γ(Wσ(0)⊗̂Wσ(1)⊗̂ · · · ⊗̂Wσ(n)) (4.25)

whenever σ ∈ Sn+1 is a cyclic shift. Write Wi = ai ⊗ ωi, then using the fact that the trace

is invariant under cyclic shifts and that ϕα,γ is a cyclic cocycle on CΓ

ϕα,γ(Wσ(0)⊗̂Wσ(1)⊗̂ · · · ⊗̂Wσ(n)) = trace(ωσ(0)ωσ(1) · · ·ωσ(n)) · ϕα,γ(aσ(0), aσ(1), . . . , aσ(n))

= trace(ω0ω1 · · ·ωn) · sgn(σ)ϕα,γ(a0, a1, . . . , an)

= sgn(σ)ϕα,γ(a0 ⊗ ω0, a1 ⊗ ω1, . . . , an ⊗ ωn) = sgn(σ)ϕα,γ(W0⊗̂W1⊗̂ · · · ⊗̂Wn)
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Proposition 4.13. Let w be a regularized representative of some class [u] ∈ K1(BL,0(M̃)Γ).

For all t ≥ 2 there exists a finite propagation operator $ ∈ B(M̃)Γ such that for every k > 0

and any ε > 0

||w(t)−$(t)||B,k < Ck/t
3 prop($(t)) < ε

whenever t ≥ max{e2, 6r}, where Ck and r are positive constants .

Proof. For real valued x, finite r > 0 and z = πi(x + 1) ∈ Br(0) define the bounded

holomorphic function f(z) = e2πix+1
2 . Consider the Taylor series expansion of f(z) centered

at the origin, and for each m ∈ N define

Pm(z) =
m∑
k=0

(
2πix+1

2

)k
k!

Rm(z) =
∞∑

k=m+1

(
2πix+1

2

)k
k!

Am(t) = Pm(G(t)) = Pm

(
2πi

E(t− 1) + 1

2

) (4.26)

We know that E(t) has compact real spectrum which is symmetric around λ = 0; in particular

the spectral radius rad(σ(E(t))) is bounded above by ||E(t)||op. It is clear that the same holds

true for G(t), so choose r > supt≥1{||G(t)||op} so that σ(G(t)) ⊂ Br(0), then f ∈ H∞(Br(0))

and since B(M̃)Γ is closed under holomorphic functional calculus, the usual remainder bound

|Rm(z)| ≤ c
|z|m+1

(m+ 1)!
if |f (m+1)(z)| ≤ c,∀z ∈ Br(0)

has a functional equivalent with respect to every || · ||B,k. In particular for every k > 0, there

exists a constant Ck,t > 0 such that

||w(t)− Am(t)||B,k = ||Rm(G(t))||B,k ≤ Ck,t||Rm||∞ = Ck,t sup
z∈Br(0)

|Rm(z)|

≤ Ck,t · c sup
z∈Br(0)

|z|m+1

(m+ 1)!
≤ Ck,t · c

rm+1

(m+ 1)!
= Ck,t

rm+1

(m+ 1)!

Note that we can take c = 1 since |f (m+1)(z)| = |ez| = |ei(πx+π)| = 1. Suppose that
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m ≥ max{e2, 6r}, then by applying Stirling’s approximation

Ck,t
rm+1

(m+ 1)!
≤ Ck,t

rm+1

√
2π(m+ 1)m+3/2e−(m+1)

<
Ck,t
m3

Since the exponential is an entire function its power series converges uniformly on the com-

pact set Br(0), and thus we can choose a finite Ck ≥ supt∈[2,∞){Ck,t}. For all t ≥ 2 we define

the operator $(t) according to

$(t) =
∞∑
m=2

1[Nm,Nm+1)(t) · Am(t) (4.27)

where N2 = 2 and the constants Nm+1 > Nm ≥ m depend only on the propagation of E.

From the definition of E(t) the propagation tends to 0 as t −→∞; hence for all ε > 0 there

exists Nε ∈ N such that prop(E(t)) < ε/Nε whenever t ≥ Nm for sufficiently large m. Recall

that if S and T are bounded operators on some module HX then

prop(ST ) ≤ prop(S) + prop(T ) prop(S + T ) ≤ max{prop(S), prop(T )}

For m > 2 it is possible to set each Nm large enough such that if t ∈ [Nm, Nm+1) then

m ≤ Nε ≤ Nm ≤ t; thus, by the definition of $(t), we have the following result.

prop($(t+ 1)) = prop(Am(t+ 1)) = prop

 m∑
k=0

(
2πiE(t)+1

2

)k
k!

 ≤ prop


(

2πiE(t)+1
2

)m
m!



= prop

(
E(t) + 1

2

)m
≤ m · prop

(
E(t) + 1

2

)
≤ m · prop(E(t)) <

mε

Nε

≤ ε

Corollary 4.14. Let w be a regularized representative of some class [u] ∈ K1(BL,0(M̃)Γ).

For all t ≥ 2 there exists a finite propagation operator $ ∈ B(M̃)Γ such that for every k > 0
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and any ε > 0

||w−1(t)−$−1(t)||B,k < Ck/t
3 prop($−1(t)) < ε

whenever t ≥ max{e2, 6r}, where Ck and r are positive constants .

Proof. Take f(z) = e−2πix+1
2 and apply the same argument as above.

For each member of the family of invertibles {vs}s∈[0,1] the above also leads to finite

propagation operators$s(t) and$−1
s (t) having analogous properties. The following technical

result will be of similar importance in establishing well-definedness of the determinant map.

Remark 4.15. For ϕγ ∈ Cn((CΓ, cl(γ)), b) and B0, . . . , Bn ∈ B(M̃,S)Γ– or equivalently for

A0, . . . , An ∈ A (M̃,S)Γ– there exists εM̃ which depends only on M such that

ϕγ(B0⊗̂B1⊗̂ · · · ⊗̂Bn) = 0

whenever prop(Bi) < εM̃ for each 0 ≤ i ≤ n.

Theorem 4.16. Let [u] ∈ K1(BL,0(M̃)Γ) and w be a regularized representative of u, then

the determinant map τϕ converges absolutely for any ϕγ ∈ (C2m(CΓ, cl(γ)), b) of polynomial

growth.

Proof. Using the simplified expression of Equation (4.22) we can write τϕ(u) as

(−1)mm!

πi

∫ 2

0

ϕγ

(
(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m

)
dt

+
(−1)mm!

πi

∫ ∞
2

ϕγ

(
(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m

)
dt

(4.28)

The first integral is finite due to the uniform boundedness of ||B||B,k and the results of

Theorem 4.12, being bounded above by

2Rα
m!

πi
sup
t∈[0,2]

||w(t)||B,k||w−1(t)||B,k||w−1(t)ẇ(t)||B,k <∞
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By Proposition 4.13 and its corollary there exist operators $(t) and $−1(t) belonging to

(B(M̃)Γ)+ such that for any ε > 0 there exists t large enough such that

prop($(t)), prop($−1(t)) < ε

By basic distribution of tensors over addition and mutlilinearity of cyclic cocycles– ignoring

the constant– we obtain the following expansion for the second integral of (4.28).

∫ ∞
2

ϕγ

(
(w−1(t)ẇ(t))⊗̂(w−1(t)−$−1(t)⊗̂w(t))⊗̂m

)
dt

+

∫ ∞
2

ϕγ

(
(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t)−$(t))⊗̂m

)
dt

+

∫ ∞
2

ϕγ

(
(w−1(t)ẇ(t))⊗̂($−1(t)⊗̂$(t))⊗̂m

)
dt

(4.29)

Since t ≥ 2 the description of the regularized representative gives us that w−1(t)ẇ(t) =

πiE ′(t− 1), the propagation of which tends to 0 as t −→∞. By Remark 4.15 it follows that

the integrand ϕγ

(
(w−1(t)ẇ(t))⊗̂($−1(t)⊗̂$(t))⊗̂m

)
= 0 once the propagation of all these

operators is less than some εM̃ , which occurs for large enough t. Hence there exists some tε

such that the last integral of (4.29) is bounded above by

∫ tε

2

πi
∣∣∣ϕγ (E ′(t− 1)⊗̂($−1(t)⊗̂$(t))⊗̂m

)∣∣∣ dt
which is finite from the bounds of Theorem 4.12. Similarly, by Proposition 4.13 there exists

some constant r > 0 such that for t ≥ 6r

||$(t)− w(t)||B,k and ||$(t)−1 − w−1(t)||B,k <
Ck
t3

The norm boundedness of all B ∈ (B(M̃)Γ)+ and the results of Theorem 4.12 provide
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existence of Mk, Nk > 0 such that the second integral of (4.29) is bounded by

∫ 6r

2

|ϕγ
(

(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t)−$(t))⊗̂m
)
| dt

+

∫ ∞
6r

|ϕγ
(

(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t)−$(t))⊗̂m
)
| dt

≤ Rα sup
t∈[2,6r]

||w−1(t)ẇ(t)||B,k||w(t)||mB,k||$(t)− w(t)||mB,k

+Rα

∫ ∞
6r

||w−1(t)ẇ(t)||B,k||w(t)||mB,k||$(t)− w(t)||mB,k dt

= (6r − 2)RαNk +Rα

∫ ∞
6r

||w−1(t)ẇ(t)||B,k||w(t)||mB,k||$(t)− w(t)||mB,k dt

≤ (6r − 2)RαNk +Rα

∫ ∞
6r

M2
k ||$(t)− w(t)||mB,k dt

The finiteness of the above integral follows directly from

∫ ∞
6r

M2
k ||$(t)− w(t)||B,k dt < M2

kCk

∫ ∞
6r

1

t3m
dt

An exact replica of this argument applied to w−1(t)−$−1(t) shows that the first integral of

(4.29) is finite, hence finishes our proof.

The following three results show that τϕ([u]) is independent of the choice of regularized

representatives, with Theorem 4.19 providing the proof that the replacement of u1 by w

through the path of local loops behaves as intended.

Lemma 4.17. Let [u] ∈ K1(B∗L,0(M̃)Γ) with v and w both being regularized representatives,

and {vs}s∈[0,1] the associated family of piecewise smooth invertibles. For any delocalized cyclic

cocycle ϕγ ∈ (C2m(CΓ, cl(γ)), b)

∂

∂s
ϕγ

(
(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂m
)

=
∂

∂t
ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂m
)

Proof. Working in the unitization (B∗(M̃)Γ)+ and noting that every invertible element in

69



(B∗(M̃)Γ)+ can be viewed as one in (B∗L,0(M̃)Γ), for ease of notation the variable t is

suppressed; that is we will write w as opposed to w(t) unless necessary. We might as well

prove the vanishing of the following generalized difference

∂

∂s
ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−j)

)
− ∂

∂t
ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s ∂svs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−j)

) (4.30)

Now, by definition every cyclic cocycle ϕγ belongs to the kernel of the boundary map b.

Through tedious but straightforward computations we will show that the following double

sum gives precisely the expression for (4.30).

0 =
m∑
k=0

(bϕγ)
(

(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−k)
)

=
m∑
k=0

2m+1∑
l=0

(δlϕγ)
(

(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−k)
) (4.31)

Firstly, looking at (4.30), explicit computation of the ∂
∂s
ϕγ(· · · ) term gives

j−1∑
i=0

ϕγ

(
(v−1
s ⊗̂vs)⊗̂i⊗̂(∂sv

−1
s ⊗̂vs)⊗̂(v−1

s ⊗̂vs)⊗̂j−i−1⊗̂(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−j)
)

+

j−1∑
i=0

ϕγ

(
(v−1
s ⊗̂vs)⊗̂i⊗̂(v−1

s ⊗̂∂svs)⊗̂(v−1
s ⊗̂vs)⊗̂j−i−1⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂m−j)

)
+ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s · ∂s∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−j)

)
+ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(∂sv

−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−j)
)

+

m−j−1∑
i=0

ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂i⊗̂(∂sv

−1
s ⊗̂vs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−j−i−1)
)

+

m−j−1∑
i=0

ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂i⊗̂(v−1

s ⊗̂∂svs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−j−i−1)

)

Now, for every fixed t we use the relation 0 = ∂s(v
−1
s vs) = (∂sv

−1
s )vs + (∂svs)v

−1
s so the term

∂sv
−1
s (t) can be rewritten: −v−1

s (t)(∂svs(t))v
−1
s (t). Moreover, since ϕα,γ is a cyclic cocycle,
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application of the cyclic operator t only affects the value by (−1)2m; in this case, the action

of t2m−2j+1 has the effect of shifting the v−1
s · ∂tvs term to the left j places. With this in

mind, and by making the index shift i 7→ i − j, the latter two sums become exactly as the

first two, providing the intended simplified form.

∂

∂s
ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−j)

)
=

−2
m−1∑
i=0

ϕγ

(
(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂(v−1
s · ∂svs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂(m−i−1)

)
+2

m−1∑
i=0

ϕγ

(
(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂v−1
s ⊗̂∂svs⊗̂(v−1

s ⊗̂vs)⊗̂(m−i−1)
)

+ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s · ∂s∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−j)

)
−ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂((v−1

s · ∂tvs)(v−1
s · ∂svs))⊗̂(v−1

s ⊗̂vs)⊗̂(m−j)
)

(4.32)

We will drop the coefficient of 2 in the rest of this proof since it is inconsequential; analogous

arguments to those preceding (4.32) provide us with the similar result

∂

∂t
ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s · ∂svs)⊗̂(v−1
s ⊗̂vs)⊗̂(n−j)

)
=

−2
m−1∑
i=0

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂(v−1
s · ∂tvs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂(m−i−1)

)
+2

m−1∑
i=0

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂v−1
s ⊗̂∂tvs⊗̂(v−1

s ⊗̂vs)⊗̂(m−i−1)
)

+ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂(v−1

s · ∂t∂svs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−j)

)
−ϕγ

(
(v−1
s ⊗̂vs)⊗̂j⊗̂((v−1

s · ∂svs)(v−1
s · ∂tvs))⊗̂(v−1

s ⊗̂vs)⊗̂(m−j)
)

(4.33)

It is clear that the last two terms of (4.32) and (4.33) are identical, since ∂s∂t = ∂t∂s. Taking
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the difference of these two equations gives the expanded form of (4.30)

−
m−1∑
i=0

ϕγ

(
(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂(v−1
s · ∂svs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂(m−i−1)

)
+

m−1∑
i=0

ϕγ

(
(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂v−1
s ⊗̂∂svs⊗̂(v−1

s ⊗̂vs)⊗̂(m−i−1)
)

+
m−1∑
i=0

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂(v−1
s · ∂tvs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂(m−i−1)

)
−

m−1∑
i=0

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂v−1
s ⊗̂∂tvs⊗̂(v−1

s ⊗̂vs)⊗̂(m−i−1)
)

(4.34)

We now turn our attention to the double sum expression in (4.31). Using the fact that

ϕγ(A0⊗̂ · · · ⊗̂An) vanishes if Ai = 1 for any Ai ∈ A+, fixing any k the image of ϕγ(· · · )

under δl vanishes for indices l 6= 0, 2m+ 1 as follows

(−1)lϕγ

(
(v−1
s · ∂svs)⊗̂1⊗̂(v−1

s ⊗̂vs)⊗̂k−1⊗̂(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−k)
)

: l ≤ 2k − 1

(−1)lϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs)⊗̂v−1

s ⊗̂1⊗̂(v−1
s ⊗̂vs)⊗̂(m−k−1)

)
: l ≥ 2k + 3

(−1)lϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs)⊗̂1⊗̂(v−1

s ⊗̂vs)⊗̂(m−k−1)
)

: l ≥ 2k + 2

(−1)lϕγ

(
(v−1
s · ∂svs)⊗̂v−1

s ⊗̂1⊗̂(v−1
s ⊗̂vs)⊗̂k−1⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−k)

)
: l ≤ 2k − 2

The first two expressions are for l odd, and the latter two for l an even integer; there is the

obvious caveat that each expression only holds if neither k− 1 or m− k− 1 are negative. It

is then a direct consequence that for k 6= 0,m we have the surviving terms

ϕγ

(
(v−1
s · ∂svs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂k−1⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−k)

)
: l = 0

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k−1⊗̂v−1
s ⊗̂∂tvs⊗̂(v−1

s ⊗̂vs)⊗̂(m−k)
)

: l = 2k

−ϕγ
(

(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂(m−k−1)

)
: l = 2k + 1
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−ϕγ
(
∂svs⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−k−1)⊗̂v−1
s

)
: l = 2m+ 1

A bit more care is necessitated for the index k = 0 but the surviving terms are exactly the

same except for the cases l = 0 = 2k; analogously the only difference when j = m is for

l = 2k + 1 = 2m+ 1.

(δlϕγ)(· · · ) = ϕγ

(
(v−1
s · ∂svs · v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂m

)
: l = 0, k = 0

(δlϕγ)(· · · ) = −ϕγ
(

(v−1
s · ∂tvs · v−1

s · ∂svs)⊗̂(v−1
s ⊗̂vs)⊗̂m

)
: l = 2m+ 1, k = m

The above two terms clearly cancel in the total sum, hence (4.31) is equal to

−ϕγ
(

(v−1
s · ∂svs)⊗̂(v−1

s · ∂tvs · v−1
s )⊗̂vs⊗̂(v−1

s ⊗̂vs)⊗̂(m−1)
)

−ϕγ
(
∂svs⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−1)⊗̂v−1

s

)
+

m−1∑
k=1

ϕγ

(
(v−1
s · ∂svs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂k−1⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−k)

)
−

m−1∑
k=1

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂(m−k−1)

)
+

m−1∑
k=1

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂k−1⊗̂v−1
s ⊗̂∂tvs⊗̂(v−1

s ⊗̂vs)⊗̂(m−k)
)

−
m−1∑
k=1

ϕγ

(
∂svs⊗̂(v−1

s ⊗̂vs)⊗̂k⊗̂(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−k−1)⊗̂v−1
s

)
+ϕγ

(
(v−1
s · ∂svs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂m−1⊗̂(v−1

s · ∂tvs)
)

+ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂m−1⊗̂v−1
s ⊗̂∂tvs

)
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Collecting like terms and changing the dummy variable k to i, the above simplifies to

m−1∑
i=0

ϕγ

(
(v−1
s · ∂svs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂i−1⊗̂(v−1

s · ∂tvs)⊗̂(v−1
s ⊗̂vs)⊗̂(m−i)

)
−

m−1∑
i=0

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂(v−1
s · ∂tvs · v−1

s )⊗̂vs⊗̂(v−1
s ⊗̂vs)⊗̂(m−i−1)

)
+

m−1∑
i=0

ϕγ

(
(v−1
s · ∂svs)⊗̂(v−1

s ⊗̂vs)⊗̂i−1⊗̂v−1
s ⊗̂∂tvs⊗̂(v−1

s ⊗̂vs)⊗̂(m−i)
)

−
m−1∑
i=0

ϕγ

(
∂svs⊗̂(v−1

s ⊗̂vs)⊗̂i⊗̂(v−1
s · ∂tvs)⊗̂(v−1

s ⊗̂vs)⊗̂(m−i−1)⊗̂v−1
s

)
= 0

By applying the cyclic operator the necessary number of times– changing the sign by a factor

of (−1)2mk = 1– we obtain precisely (4.34), proving ∂
∂s
ϕγ(· · · )− ∂

∂t
ϕγ(· · · ) = 0.

Corollary 4.18. Let [u] ∈ K1(B∗L,0(M̃)Γ) with v and w both being regularized representatives

and {vs}s∈[0,1] the associated family of piecewise smooth invertibles, then τϕ(v1) = τϕ(w) for

any polynomial growth ϕγ ∈ (C2m(CΓ, cl(γ)), b).

Proof. Taking a double integral
∫ T

0

∫ 1

0
ds dt over the left-hand derivative in the equality of

Lemma 4.17 provides the chain of equalities

∫ T

0

∫ 1

0

∂

∂s
ϕγ

(
(vs(t)

−1∂tvs(t))⊗̂(v−1
s (t)⊗̂vs(t))⊗̂m

)
ds dt

=

∫ T

0

ϕγ

(
(vs(t)

−1∂tvs(t))⊗̂(v−1
s (t)⊗̂vs(t))⊗̂m

)∣∣∣1
0
dt

=

∫ T

0

ϕγ

(
(v1(t)−1∂tv1(t))⊗̂(v−1

1 (t)⊗̂v1(t))⊗̂m
)
dt

−
∫ T

0

ϕγ

(
(w(t)−1∂tw(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m

)
dt

(4.35)

where in the last integral we have used the fact v0(t) = w(t). Integrating the other side of
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the derivative equality shows that the above expression is also equal to

∫ 1

0

∫ T

0

∂

∂t
ϕγ

(
(vs(t)

−1∂svs(t))⊗̂(v−1
s (t)⊗̂vs(t))⊗̂m

)
dt ds

=

∫ 1

0

ϕγ

(
(vs(t)

−1∂svs(t))⊗̂(v−1
s (t)⊗̂vs(t))⊗̂m

)∣∣∣T
0
ds

=

∫ 1

0

ϕγ

(
(vs(T )−1∂svs(T ))⊗̂(v−1

s (T )⊗̂vs(T ))⊗̂m
)
ds

−
∫ 1

0

ϕγ

(
(vs(0)−1∂svs(0))⊗̂(v−1

s (0)⊗̂vs(0))⊗̂m
)
ds

(4.36)

The last integral vanishes since vs(0) ≡ v−1
s (0) ≡ 1 for all s ∈ [0, 1], implying that

ϕγ

(
(vs(0)−1∂svs(0))⊗̂(v−1

s (0)⊗̂vs(0))⊗̂m
)

= 0. Multiplying by (−1)mm!
πi

then taking the limit

as T goes to infinity in (4.35) we clearly obtain the expression τϕ(v1)−τϕ(w). It immediately

follows from doing the same procedure to (4.36) that

τϕ(v1)− τϕ(w) = lim
T−→∞

(−1)mm!

πi

∫ T

0

ϕγ

(
(v1(t)−1∂tv1(t))⊗̂(v−1

1 (t)⊗̂v1(t))⊗̂m
)
dt

− lim
T−→∞

(−1)mm!

πi

∫ T

0

ϕγ

(
(w(t)−1∂tw(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m

)
dt

=
(−1)mm!

πi

∫ 1

0

lim
T−→∞

ϕγ

(
(v−1
s (T )∂svs(T ))⊗̂(v−1

s (T )⊗̂vs(T ))⊗̂m
)
ds

where our interchanging of limits and integrals is easily checked to be justified. It thus only

remains to prove that for all s, uniformly with respect to the norm || · ||B,k

lim
T−→∞

ϕγ

(
(v−1
s (T )∂svs(T ))⊗̂(v−1

s (T )⊗̂vs(T ))⊗̂m
)

= 0 (4.37)

By basic distribution of tensors over addition and mutlilinearity of cyclic cocycles the above
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decomposes as

lim
T−→∞

ϕγ

(
(v−1
s (T )∂svs(T ))⊗̂(v−1

s (T )−$−1(T )⊗̂vs(T ))⊗̂m
)

+ lim
T−→∞

ϕγ

(
(v−1
s (T )∂svs(T ))⊗̂($−1(T )⊗̂vs(T )−$(T ))⊗̂m

)
+ lim

T−→∞
ϕγ

(
(v−1
s (T )∂svs(T ))⊗̂($−1(T )⊗̂$(T ))⊗̂m

)

By Proposition 4.13 and its corollary there exist operators $(t), $−1(t) ∈ (B(M̃)Γ)+ such

that for any ε > 0 there exists t large enough such that the following hold.

||$(t)− vs(t)||B,k , ||$(t)−1 − v−1
s (t)||B,k <

Ck
t3

, prop($(t)) , prop($−1(t)) < ε

We may assume that T ≥ 2 so the description of the regularized representative gives v−1
s (T ) ·

∂svs(T ) = πi∂sEs(T ), the propagation of which tends to 0 as T −→∞. Thus for large enough

T the propagation of all the operators is less than some εM̃ and by Remark 4.15

lim
T−→∞

ϕγ

(
(v−1
s (T )∂svs(T ))⊗̂($−1(T )⊗̂$(T ))⊗̂m

)
= 0

By the results of Theorem 4.12 and the norm boundedness of all B ∈ (B(M̃)Γ)+

lim
T−→∞

∣∣∣ϕγ ((v−1
s (T )∂svs(T ))⊗̂(v−1

s (T )−$−1(T )⊗̂vs(T ))⊗̂m
)∣∣∣

≤ Rα lim
T−→∞

||v−1
s (T )∂svs(T )||B,k||$(t)−1 − v−1

s (T )||mB,k||vs(T )||mB,k

≤ RαC
m
k lim
T−→∞

||v−1
s (T )∂svs(T )||B,k||vs(T )||mB,k

T 3m
= 0

An exact replica of this argument holds for the term involving v−1
s (T )−$−1(T ).

Theorem 4.19. Let [u] ∈ K1(BL,0(M̃)Γ) with v and w both being regularized representatives,

then τϕ(v) = τϕ(w) for any polynomial growth ϕγ ∈ (C2m(CΓ, cl(γ)), b).

Proof. We have proven in the above corollary that τϕ(v1) = τϕ(w). By construction v1(s) =
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v(s) for all s ∈ R≥0 \ (1, 2), with v1v
−1 : [1, 2] −→ (B(M̃)Γ)+ being a local loop of invertible

elements. Thus there exists a local invertible f : S1 −→ (B(M̃)Γ)+, which by Lemma 4.9

is homotopic to e2πiθP (t) + (1 − P (t)) for some idempotent P (t), such that v(s) and v1(s)

differ by f(θ) as elements in K1(B(M̃)Γ).

τϕ(v) = τϕ(v1) + τϕ(v−1
1 v) = τϕ(w) + τϕ(v1v

−1) = τϕ(w) + τϕ(fL)

= τϕ(w) +
(−1)mm!

πi

∫ ∞
0

∫ 1

0

ϕγ

(
(f−1(θ)ḟ(θ))⊗̂(f−1(θ)⊗̂f(θ))⊗̂m

)
dθ dt

Here ḟ(θ) = 2πie2πiθP (t) refers to the derivative with respect to θ; moreover

(e2πiθP (t) + (1− P (t)))(e−2πiθP (t) + (1− P (t))

= e2πiθ−2πiθP 2(t) + e2πiθP (t)(1− P (t)) + e−2πiθP (t)(1− P (t)) + (1− P (t))2

= P 2(t) + 1− 2P (t) + P 2(t) = P (t) + 1− 2P (t) + P (t) = 1

which implies that f−1(θ) is equal (homotopic) to (e−2πiθP (t) + (1− P (t))).

∫ 1

0

ϕγ

(
(f(θ)−1ḟ(θ))⊗̂(f−1(θ)⊗̂f(θ))⊗̂m

)
dθ

=

∫ 1

0

ϕγ

(
(f−1(θ)ḟ(θ))⊗̂(e−2πiθP (t) + (1− P (t))⊗̂e2πiθP (t) + (1− P (t)))⊗̂m

)
dθ

=

∫ 1

0

ϕγ

(
2πiP (t)⊗̂((e−2πiθ − 1)P (t) + 1⊗̂(e2πiθ − 1)P (t) + 1)⊗̂m

)
dθ

For ease of notation set rθ = e2πiθ − 1 and cθ = e−2πiθ − 1; using multilinearity of cyclic
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cocycles and the fact that ϕγ vanishes on the unit, the integrand simplifies to

ϕγ

(
2πiP (t)⊗̂((e−2πiθ − 1)P (t)⊗̂(e2πiθ − 1)P (t))⊗̂m

)
+

m−1∑
j=0

ϕγ

(
2πiP (t)⊗̂(cθP (t)⊗̂rθP (t))⊗̂j⊗̂1⊗̂rθP (t) + 1⊗̂(rθP (t) + 1⊗̂θP (t) + 1)⊗̂m−j−1

)
+

m−1∑
j=0

ϕγ

(
2πiP (t)⊗̂(cθP (t)⊗̂rθP (t))⊗̂j⊗̂cθP (t)⊗̂1⊗̂(cθP (t) + 1⊗̂rθP (t) + 1)⊗̂m−j−1

)
= 2πi(e−2πiθ − 1)m(e2πiθ − 1)mϕγ

(
P (t)⊗̂2m+1

)
+ 0 + 0

(4.38)

Vanishing of the double integral now follows from Remark 4.15 and the fact that for all ε > 0

there exists tε large enough such that prop(P (tε)) ≤ ε.

Theorem 4.20. The determinant map pairing the higher rho invariant is independent of the

choice of delocalized cyclic cocycle representative. Explicitly, if [ϕγ] = [φγ] ∈ HC2m(CΓ, cl(γ)),

then τϕγ (ρ(D̃, g̃)) = τφγ (ρ(D̃, g̃))

Proof. By the previous results we are able to fix a regularized representative w, and by

hypothesis, ϕγ and φγ are cohomologous via a coboundary bϕ ∈ BC2m(CΓ, cl(γ)). We

obtain an identical transgression formula as was calculated in Theorem 4.6, (4.16)

m(bϕ)
(

(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m
)

=
d

dt
ϕ((w−1(t)⊗̂w(t))⊗̂m) (4.39)

Using the simplified definition of the determinant map, provided by (4.22)

mτbϕ(ρ(D̃, g̃)) :=
(−1)mm!

πi

∫ ∞
0

m(bϕγ)
(

(w−1(t)ẇ(t))⊗̂(w−1(t)⊗̂w(t))⊗̂m
)
dt (4.40)

Thus by the transgression formula τbϕ(ρ(D̃, g̃)) is equal (up to a constant) to

lim
t−→∞

ϕ((w−1(t)⊗̂w(t))⊗̂m)− lim
t−→0

ϕ((w−1(t)⊗̂w(t))⊗̂m) (4.41)

By construction w(0) = 1, and ϕ vanishes on 1, thus limt−→0 ϕ((w−1(t)⊗̂w(t))⊗̂m) = 0.
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Moreover, for all t ≥ 2 some smooth normalizing function χ can be chosen such that

w(t) = exp

(
2πi

E(t) + 1

2

)
= exp

(
2πi

χ(D̃/t) + 1

2

)

By the proof of [11, Proposition 6.7] the smooth normalizing function χ can be chosen such

that its distributional Fourier transform has compact support. In particular, this compact

support implies χ̂ belongs to the space S ′(R) of tempered distributions, and hence so do all

its derivatives. Moreover, since the Fourier transform is a linear automorphism on S ′(R) we

also have that χ ∈ S ′(R) along with derivatives of all orders. Now viewing χ as a smooth

function we thus have for all k ∈ N that the derivative χ(k)(x) grows no faster than some

polynomial pk(x); that is there exists an integer Nk along with Ck > 0 satisfying

|χ(k)(x)| ≤ Ck(1 + |x|2)Nk

Denote ψ(x) = exp
(

2πiχ(x)+1
2

)
− 1 = ei(πχ(x)+π) − 1, then using power series expansion

ψ(x) =
∞∑
k=0

ik(πχ(x) + π)k

k!
− 1 =

∞∑
k=1

ik(πχ(x) + π)k

k!

If ψ(k)(x) denotes the k’th derivative, then we have the following expression for ψ(k)(x)

(πi)k(χ′(x))kψ(x) +
∑

2m2+···+(k−1)mk−1=k

Cm2,...,mk−1

k−1∏
l=2

(χl(x))mlψ(x) + (πi)χ(k)(x)ψ(x)

where 0 ≤ ml ≤ k. By periodicity of eiθ it suffices to replace πχ(x) + π with π(1− |χ(x)|).

|xmψk(x)| ≤ |x|m
( ∑
m1+2m2+···+kmk=k

Cm1,...,mk

k∏
l=1

|(χl(x))|ml |ψ(x)|

)

≤ |x|m
( ∑
m1+2m2+···+kmk=k

Cm1,...,mk

k∏
l=1

Cml
k (1 + |x|2)Nlml

∞∑
n=1

|πin|(1− |χ(x)|)n

n!

)
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Now, by continuity of χ(x) and the fact that it is an odd function we have that for every

1 > ε > 0 there exists Nε such that 1 − |χ(x)| < ε whenever |x| ≥ Nε. Since the class of

K-theory representative is independent of the class of smooth normalizing function, without

loss of generality assume that limx−→±∞ χ(x) converges to ±1 fast enough so we can always

choose an Nε,m large enough such that for each m

ε <
1

|x|m+1(1 + |x|2)N1m1
if |x| ≥ Nε,m

From this it immediately follows that ψ is a Schwartz function, and thus by Proposition 4.4

limt−→∞ ϕ((w−1(t)⊗̂w(t))⊗̂m) = 0

Proposition 4.21. Let S∗γ : HC2m(CΓ, cl(γ)) −→ HC2m+2(CΓ, cl(γ)) be the delocalized

Connes periodicity operator, then τ[Sγϕγ ](ρ(D̃, g̃)) = τ[ϕγ ](ρ(D̃, g̃)) for every [ϕγ] ∈ HC2m(CΓ, cl(γ)).

Proof. The proof exactly mirrors that of Proposition 4.7.

4.3 Proof of Theorem 1.2

The following discussion and the proof of Proposition 4.22 closely align with the proof of

Theorem 4.3 in [50]. We first recall the construction at the beginning of the previous section

of a representative of ρ(D̃, g̃) using the path of invertibles

S = {U(t) = exp(2πiH(t))| t ∈ [0,∞)}

This construction can be altered by using the following smooth normalizing function ψ,

where Ft is as defined in the construction of Lott’s higher eta invariant.

ψ(t−1x) = F1/t(x) =
1√
π

∫ x/t

−∞
e−s

2

ds t > 0 (4.42)

The invertibility of the Dirac operator D̃ implies that ψ(t−1D) converges in operator norm

to 1
2
(1+D̃|D̃|−1) as t→ 0. Since ψ is a smooth normalizing function the operator ψ(D̃)2−1
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is locally compact, hence e2πiFt(D̃) ≡ 1 modulo locally compact operators. Moreover, ψ can

be approximated by smooth normalizing functions with compactly supported distributional

Fourier transforms, hence the inverse Fourier transform relation

ψ(D̃) =

∫ ∞
−∞

ψ̂(s)eisD̃ ds (4.43)

is well defined, and by finite propagation property of the wave operator eisD̃ it follows that

the path U ∈ (C∗L,0(M̃,S)Γ)+ defined by

U(t) = Ut(D̃) = e2πiψ(D̃/t); t ∈ (0,∞) U0 ≡ 1 (4.44)

can be uniformly approximated by paths of invertible elements with finite propagation. In

totality, we have that U is an invertible element of (C∗L,0(M̃,S)Γ)+ and gives rise to a class

in K1(C∗L,0(M̃,S)Γ).

Proposition 4.22. The element U is invertible in (AL,0(M̃,S)Γ)+.

Proof. Firstly, we note that by the proof of Theorem 4.20 the function Ut(x)−1 is a Schwartz

function, and so by Lemma 4.1, Ut(D̃)−1 belongs to A (M̃,S)Γ) for all t ∈ [0,∞). Being of

the form ef(D̃) this further proves that Ut(D̃) ∈ (A (M̃,S)Γ)+ is invertible for all t. By defini-

tion of the localization algebra, to prove that U is an invertible element of (AL,0(M̃,S)Γ)+ it

suffices to show that U−1 is a piecewise smooth function on the half-line. By the description

of F1/t this is immediate for all t ∈ (0,∞), hence we only need to show smoothness at t = 0

with respect to the Frechet topology generated by the seminorms ||·||A ,k. By the smoothness

and boundedness of F1/t(x), an application of the fundamental theorem of calculus gives

Ut(D̃)− 1 = exp(2πiψ(D̃/t))− 1 = exp

(∫ t

0

2πi
d

ds
ψ(D̃/s) ds

)
− 1 (4.45)

Denoting by ψ̇(s) the derivative with respect to s, for t ∈ (0,∞) the usual power series
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expansion and sub-multiplicative property of norms in Banach algebras gives

||Ut(D̃)− 1||A ,k = exp

(∫ t

0

2πiψ̇(D̃/s) ds

)
− 1 =

∣∣∣∣∣
∣∣∣∣∣
∞∑
n=1

1

n!

(∫ t

0

2πiψ̇(D̃/s) ds

)n∣∣∣∣∣
∣∣∣∣∣
A ,k

≤
∞∑
n=1

(2π)n

n!

∣∣∣∣∣∣∣∣(∫ t

0

ψ̇(D̃/s) ds

)∣∣∣∣∣∣∣∣n
A ,k

≤
∞∑
n=1

(2π)n

n!

∣∣∣∣∣
∣∣∣∣∣
(

1√
π

−2

s2
D̃e−D̃

2/s2
)∣∣∣∣t

0

∣∣∣∣∣
∣∣∣∣∣
n

A ,k

Following a similar line of argumentation to that on [50, Page 21], as in Lemma 4.5 we

use the fact that D̃ is invertible– along with A (M̃,S)Γ being closed under holomorphic

functional calculus– to observe that for each seminorm Gelfand’s formula asserts

e−r
2

= lim
n−→∞

(
||e−nD̃2 ||A ,k

) 1
n

This implies that for 1/s2 ∈ [n, n+1) there exists n large enough such that for some positive

constants C0 and C1

||C0e
−D̃2/s2||A ,k ≤ ||e−nD̃

2||A ,k ≤ e−nr
2/2 ≤ C1e

−r2/2s2 (4.46)

Thus for s > 0 sufficiently small and for some positive constant C2 we obtain the bound

∣∣∣∣∣∣∣∣ 1√
π

−2

s2
D̃e−D̃

2/s2
∣∣∣∣∣∣∣∣

A ,k

=

∣∣∣∣∣∣∣∣ 1√
π

−2

s2
D̃e−D̃

2 · e−(1/s2−1)D̃2

∣∣∣∣∣∣∣∣
A ,k

≤
∣∣∣∣∣∣∣∣ 1√

π

−2

s2
D̃e−D̃

2

∣∣∣∣∣∣∣∣
A ,k

∣∣∣∣∣∣e−(1/s2−1)D̃2
∣∣∣∣∣∣

A ,k
=
−2

s2
√
π

∣∣∣∣∣∣D̃e−D̃2
∣∣∣∣∣∣

A ,k

∣∣∣∣∣∣e−(1/s2−1)D̃2
∣∣∣∣∣∣

A ,k

≤ −2

s2
√
π
C2

∣∣∣∣∣∣e−(1/s2−1)D̃2
∣∣∣∣∣∣

A ,k
≤ −2

s2
√
π
C2C1e

−r2/2s2

This final term converges to 0 as s→ 0, hence from the above calculations we obtain– taking

t > 0 sufficiently small to begin with– the bound

lim
t−→0
||Ut(D̃)− 1||A ,k ≤ lim

t−→0

∞∑
n=1

(2π)n

n!

(
−2

t2
√
π
C2C1e

−r2/2t2 − lim
s−→0

−2

s2
√
π
C2C1e

−r2/2s2
)n
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= lim
t−→0

∞∑
n=1

(2π)n

n!

(
−2

t2
√
π
C2C1e

−r2/2t2
)n

= lim
t−→0

exp

(
1

t2
Ce−r

2/2t2
)
− 1 = 0

Since U0(D̃) = 1 it follows that U −1 is continuous with respect to the family of seminorms;

the same holds true for all orders of its derivatives according to the expansion

d

dt
(Ut(x)− 1) =

∑
m1+2m2+···+kmk=k

Cm1,...,mk

k∏
l=1

Cml
k

(
dl

dtl
ψ(x/t)

)ml
(Ut(x)− 1) (4.47)

where 0 ≤ ml ≤ k. Thus U − 1 is smooth with respect to || · ||A ,k which proves that

U ∈ (AL,0(M̃,S)Γ)+ as desired.

Corollary 4.23. Let ϕγ ∈ (C2mCΓ, cl(γ), b) be of polynomial growth, with D̃ being invertible,

then the integral ∫ ∞
0

ϕγ

(
U̇t(D̃)U−1

t (D̃)⊗̂(Ut(D̃)⊗̂U−1
t (D̃))⊗̂m

)
dt

converges absolutely.

Proof. This is a direct consequence of Lemma 4.5.

The construction of a regularized representative of ρ(D̃, g̃) involves the choice of some

smooth normalizing function χ with compactly supported distributional Fourier transform

χ̂, such that E(t) = (χ(D̃/t) +1)/2 and E has the properties outlined on page 60. Adapting

the argument preceding [11, Proposition 6.11] we can thus construct a path w

w(t) =


U(t) 0 ≤ t ≤ 1

e2πi((2−t)ψ(D̃)+(t−1)E(1)) 1 ≤ t ≤ 2

e2πiE(t−1) t ≥ 2

(4.48)

which defines a regularized representative. On the other hand, by definition, U is its own reg-

ularized representative and the equality of [U ] and [w] as K-theory classes inK1(C∗L,0(M̃,S)Γ)

follows from their being homotopic in (BL,0(M̃,S)Γ)+. Explicitly, we have the homotopy
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induced by the family of invertibles hs : s ∈ [0, 1] defined by

hs(t) =


U(t) 0 ≤ t ≤ 1

e2πi((2−t)ψ(D̃)+(t−1)(sE(1)+(1−s)ψ(D̃))) 1 ≤ t ≤ 1 + s

e2πi(sE(t−1)+(1−s)ψ( D̃
t−1

)) t ≥ 1 + s

(4.49)

Thus by Corollary 4.23 and the proofs of Lemma 4.17 and Corollary 4.18 we obtain that

τ[ϕγ ](ρ(D̃, g̃)) = τ[ϕγ ](w) = τϕγ (U)

=
(−1)mm!

πi

∫ ∞
0

ϕγ

(
Ut(D̃)−1U̇t(D̃)⊗̂(U−1

t (D̃)⊗̂Ut(D̃))⊗̂m
)
dt

=
(−1)mm!

πi

∫ ∞
0

ϕγ

(
˙̄ut(D̃)ū−1

t (D̃)⊗̂(ūt(D̃)⊗̂ū−1
t (D̃))⊗̂m

)
dt = (−1)mη[ϕγ ](D̃)

where ūt = U1/t and we have used the substitution ut ←→ u−1
t .

4.4 Delocalized Higher Atiyah-Patodi-Singer Index Theorem

Consider smooth vector bundles V1 and V2 over a compact orientable smooth manifold M–

without boundary– and an elliptic differential operator D : V1 −→ V2 which acts on the

smooth sections of these vector bundles. Since every such D has a pseudo inverse it is a

Fredholm operator, with analytical index defined by

ind(D) = dim ker(D)− dim ker(D∗) (4.50)

Let us also recall the topological index of D with respect to a cohomological formula

∫
M

ch(D)Td(T ∗M ⊗ C) (4.51)

where Td(T ∗M ⊗ C) is the Todd class of the complexified tangent bundle of M , and ch(D)

is the Thom isomorphism pullback of a particular Chern class associated to D. The original
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version of the Atiyah-Singer index theorem [4] was proven through use of cobordism theory,

and asserts that for a compact manifold without boundary the topological index of D is equal

to its analytical index. A more powerful K-theoretic approach [5, 6] was later provided, with

the resulting formula for the topological index shown to be equivalent to the aforementioned

cohomological one. Using this K-theory framework, the Atiyah-Patodi-Singer index theorem

[2, 3] generalizes the equality of topological and analytical indexes to include manifolds with

boundary, under satisfaction of certain global boundary conditions. By considering IndG(D)

rather than ind(D), this further admits a kind of (delocalized) higher analogue, in our case

modeled on that of Lott [31] (see the relationship between equations (1) and (66)).

Prior to stating and proving the delocalized version of a higher Atiyah-Patodi-Singer

index theorem we will first exhibit a necessary relationship between the determinant map

τϕγ of the previous section and the Connes-Chern character map. In the remainder of this

section we will work within the restriction of even dimensional cyclic cocycles and under the

condition of a compact spin manifold M having fundamental group Γ of polynomial growth.

In particular, given a delocalized cyclic cocycle ϕγ ∈ (C2mCΓ, cl(γ), b) we will define the

ϕγ-component of the Connes-Chern character of an idempotent p ∈ B(M̃)Γ according to

that of [30, Chapter 8]

chϕγ (p) :=
(−1)m(2m)!

m!
ϕγ

(
p⊗̂2m+1

)
(4.52)

Firstly let us prove the usual well-definedness properties.

Proposition 4.24. Let [ϕγ] ∈ HC2m(CΓ, cl(γ)), then the [ϕγ]-component of the Connes-

Chern character

ch[ϕγ ] : K0(B(M̃)Γ) −→ C

is well defined, particularly being independent of the choices of cocycle representative and

K-theory class representative.

Proof. Since ϕγ can be chosen to be of polynomial growth and p ∈ (B(M̃)Γ)+ then Theo-

rem 4.12 asserts that the formula for the ϕγ-component of the Connes-Chern character makes
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sense. Suppose that ϕγ and φγ belong to the same cohomology class in HC2m(CΓ, cl(γ));

by hypothesis, ϕγ and φγ are cohomologous via a coboundary bϕ ∈ BC2m(CΓ, cl(γ)). In-

dependence with respect to cyclic cocycle representatives thus follows from showing that

chbϕ(p) = 0 for any idempotent p. A direct computation gives

(bϕ)
(
p⊗̂2m+1

)
= (−1)2mϕ

(
p2⊗̂p⊗̂2m−1

)
+

2m−1∑
i=0

(−1)iϕ
(
p⊗̂i⊗̂p2⊗̂p⊗̂2m−i−1

)
= ϕ

(
p⊗̂2m

)
+m

(
ϕ
(
p⊗̂2m

)
− ϕ

(
p⊗̂2m

))
= ϕ

(
p⊗̂2m

)
= 0

(4.53)

since by the definition of the cyclic operator tϕ
(
p⊗̂2m

)
= (−1)2m−1ϕ

(
p⊗̂2m

)
. Let us

now turn our attention to proving that if p0, p1 ∈ (B(M̃)Γ)+ belong to the same class

in K0(B(M̃)Γ) then ch[ϕγ ](p0) = ch[ϕγ ](p1). By hypothesis there exists a piecewise smooth

family of idempotents pt : t ∈ (0, 1) connecting p0 and p1, which allows for the usual trick of

taking the derivative.

d

dt
ϕγ

(
p⊗̂2m+1
t

)
=

2m∑
i=0

ϕγ

(
p⊗̂it ⊗̂ṗt⊗̂p⊗̂2m−i

t

)
=

2m∑
i=0

t2m+1−iϕγ

(
p⊗̂it ⊗̂ṗt⊗̂p⊗̂2m−i

t

)
=

2m∑
i=0

ϕγ

(
ṗt⊗̂p⊗̂2m

t

)
= (2m+ 1)ϕγ

(
ṗt⊗̂p⊗̂2m

t

) (4.54)
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On the other hand since ϕγ belongs to the kernel of the boundary map b, we have

0 = (bϕγ)
(

(ṗtpt − ptṗt)⊗̂p⊗̂2m+1
t

)
= ϕγ

(
(ṗtp

2
t − ptṗtpt)⊗̂p⊗̂2m

)
+ (−1)2m+1ϕγ

(
(ptṗtpt − p2

t ṗt)⊗̂p⊗̂2m
t

)
+

2m∑
i=1

(−1)iϕγ

(
(ṗtpt − ptṗt)⊗̂p⊗̂i−1

t ⊗̂p2
t ⊗̂p⊗̂2m−i

t

)
= ϕγ

(
(ṗtpt − ptṗtpt)⊗̂p⊗̂2m

t

)
− ϕγ

(
(ptṗtpt − ptṗt)⊗̂p⊗̂2m

t

)
+

2m∑
i=1

(−1)iϕγ

(
(ṗtpt − ptṗt)⊗̂p⊗̂2m

t

)
= ϕγ

(
(1− pt)ṗtpt⊗̂p⊗̂2m

t

)
− ϕγ

(
ptṗt(pt − 1)⊗̂p⊗̂2m

t

)
+m

(
ϕγ

(
(ṗtpt − ptṗt)⊗̂p⊗̂2m

t

)
− ϕγ

(
(ṗtpt − ptṗt)⊗̂p⊗̂2m

t

))
= ϕγ

(
((1− pt)ṗtpt + ptṗt(1− pt))⊗̂p⊗̂2m

t

)

Since pt and (1 − pt) are orthogonal idempotents, the Peirce decomposition for associative

unital algebras– for the non-unital case the element (1− pt) is formally viewed as satisfying

(1− pt)B(M̃)Γ = {B − ptB : B ∈ B(M̃)Γ}– asserts that (B(M̃)Γ)+ splits as

pt(B(M̃)Γ)+pt ⊕ pt(B(M̃)Γ)+(1− pt)⊕ (1− pt)(B(M̃)Γ)+pt ⊕ (1− pt)(B(M̃)Γ)+(1− pt)

which means that ṗt is decomposable as

ptṗtpt + ptṗt(1− pt) + (1− pt)ṗt + (1− pt)ṗt(1− pt)

However, since pt is an idempotent it follows that ṗt = ˙(p2
t ) = ṗtpt + ptṗt, hence

ptṗtpt = pt(ṗtpt + ptṗt)pt = p2
t ṗtpt + ptṗtp

2
t = 2ptṗtpt =⇒ ptṗtpt = 0

(1− pt)ṗt(1− pt) = (1− pt)(ṗtpt + ptṗt)(1− pt)
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= (1− pt)ṗtpt(1− pt) + (1− pt)ptṗt(1− pt)

= (1− pt)ṗt0 + 0ṗt(1− pt) = 0

This means that ṗt = ptṗt(1− pt) + (1− pt)ṗt, hence we obtain a transgression formula

HC2m((B(M̃)Γ), cl(γ)) 7−→ HC2m+1(B(M̃)Γ, cl(γ))

d

dt
ϕγ

(
p⊗̂2m+1
t

)
= (2m+ 1)ϕγ

(
ṗt⊗̂p⊗̂2m

t

)
= (2m+ 1)(bϕγ)

(
(ṗtpt − ptṗt)⊗̂p⊗̂2m+1

t

)
= 0

(4.55)

The desired result now follows immediately from integration

0 =

∫ 1

0

(−1)m(2m)!

m!

d

dt
ϕγ

(
p⊗̂2m+1
t

)
dt = ch[ϕγ ](p1)− ch[ϕγ ](p0)

Proposition 4.25. Let S∗γ : HC2m(CΓ, cl(γ)) −→ HC2m+2(CΓ, cl(γ)) be the delocalized

Connes periodicity operator, then ch[ϕγ ] = ch[Sγϕγ ] for every [ϕγ] ∈ HC2m(CΓ, cl(γ)).

Proof. Recalling the definition of the map β as given in (3.4) of Section 3.1 it is straightfor-

ward to compute the action of βb and bβ as refers to the Connes-Chern character. It is not

difficult to see that (β ◦ bϕγ)
(
p⊗̂2m+3

)
vanishes, since it equals

2m+1∑
i=1

(−1)ii(bϕγ)
(
p⊗̂i⊗̂p2⊗̂p⊗̂2m+1−i

)
+ (−1)2m+2(2m+ 2)(bϕγ)

(
p2⊗̂p⊗̂2m+1

)
=

2m+2∑
i=1

(−1)ii(bϕγ)
(
p⊗̂2m+2

)
= (m+ 1)(bϕγ)

(
p⊗̂2m+2

)
= (m+ 1)

[
ϕγ

(
p2⊗̂p⊗̂2m

)
+

2m∑
i=1

(−1)iϕγ

(
p⊗̂i⊗̂p2⊗̂p⊗̂2m−i

)
+ (−1)2m+1ϕγ

(
p2⊗̂p⊗̂2m

)]

= (m+ 1)
[
ϕγ

(
p⊗̂2m+1

)
− ϕγ

(
p⊗̂2m+1

)
+ 2m

(
ϕγ

(
p⊗̂2m+1

)
− ϕγ

(
p⊗̂2m+1

))]
= 0
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Following the same basic computational arguments as above we obtain

(b ◦ βϕγ)
(
p⊗̂2m+3

)
=

2m+2∑
i=0

(−1)i(βϕγ)
(
p⊗̂2m+2

)
= (βϕγ)

(
p⊗̂2m+2

)
=

2m+1∑
i=1

(−1)iiϕγ

(
p⊗̂2m+1

)
= −(2m+ 1)ϕγ

(
p⊗̂2m+1

)
+

m∑
i=1

(2i− (2i− 1))ϕγ

(
p⊗̂2m+1

)
= −(2m+ 1)ϕγ

(
p⊗̂2m+1

)
+mϕγ

(
p⊗̂2m+1

)
= −(m+ 1)ϕγ

(
p⊗̂2m+1

)

Using the relation Sγ = 1
(2m+1)(2m+2)

(βb+ bβ) as in Definition 3.2 we obtain the desired

result.

ch[Sγϕγ ](p) =
(−1)m+1(2m+ 2)!

(m+ 1)!
(Sγϕγ)

(
p⊗̂2m+3

)
=

(−1)m+1(2m+ 2)!

(2m+ 1)(2m+ 2)(m+ 1)!

(
β ◦ bϕγ

(
p⊗̂2m+3

)
+ (b ◦ βϕγ)

(
p⊗̂2m+3

))
= 0 +

(−1)m(m+ 1)(2m)!

(m+ 1)!
ϕγ

(
p⊗̂2m+1

)
=

(−1)m(2m)!

m!
ϕγ

(
p⊗̂2m+1

)
= ch[ϕγ ](p)

Lemma 4.26. Let [ϕγ] ∈ HC2m(CΓ, cl(γ)), then the following diagram commutes

K1(CL,0(M̃)Γ) C

K0(C∗(M̃)Γ) C

τ[ϕγ ]

∂

ch[ϕγ ]

×(−2)

Proof. By Proposition 2.19 we know that the K-theory of C∗(M̃)Γ coincides with that of

B(M̃)Γ, and likewise with respect to the localization algebras. Thus we can view every

element of K0(C∗(M̃)Γ) as a formal difference of two idempotents belonging to (B(M̃)Γ)+.

Each idempotent p ∈ B(M̃)Γ defines an element F ∈ BL(M̃)Γ

F (t) =

 (1− t)p t ∈ [0, 1]

0 t ∈ (1,∞)
(4.56)
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If ∂ : K0(C∗(M̃)Γ) −→ K1(CL,0(M̃)Γ) denotes the K-theoretical connecting map, then

∂[p] = [u] defines a K-theory class of invertibles in K1(B∗L,0(M̃)Γ), where u(t) = e2πiF (t)

for t ∈ [0,∞). The proof now follows by along the same lines as for the calculations in

[11, Proposition 7.2]. Invertiblity of u is clear, with u−1(t) = e−2πiF (t); to show that u ∈

(B∗L,0(M̃)Γ)+ we only need to prove that u belongs to the kernel of the evaluation map, that

is u(0) = 1.

u(t) = e2πiF (t) =
∞∑
n=0

(2πi)n(1− t)npn

n!
= 1 +

∞∑
n=1

(2πi)n(1− t)npn

n!

1 +
∞∑
n=1

(2πi)n(1− t)np
n!

= 1 +

(
∞∑
n=0

(2πi)n(1− t)n

n!
− 1

)
p = 1 +

(
e2πi(1−t) − 1

)
p

This expression for u(t) makes it clear that u(0) = 1, and moreover we obtain

u−1(t)u̇(t) =
(
1 +

(
e−2πi(1−t) − 1

)
p
) (

2πie−2πi(1−t)p
)

= −2πip (4.57)

Since ϕγ is multilinear and vanishes on the unit, following the arguments detailed in the

second half of Theorem 4.19 gives

τ[ϕγ ](u) =
(−1)mm!

πi

∫ ∞
0

ϕγ

(
(u−1(t)u̇(t))⊗̂(u−1(t)⊗̂u(t))⊗̂m

)
dt

=
(−1)mm!

πi

∫ 1

0

ϕγ

(
(u−1(t)u̇(t))⊗̂(u−1(t)⊗̂u(t))⊗̂m

)
dt

=
(−1)mm!

πi

∫ 1

0

ϕγ

(
−2πip⊗̂

((
1 +

(
e−2πi(1−t) − 1

)
p
)
⊗̂
(
1 +

(
e2πi(1−t) − 1

)
p
))⊗̂m)

dt

=
(−1)mm!

πi

∫ 1

0

ϕγ

(
−2πip⊗̂

((
e−2πi(1−t) − 1

)
p⊗̂
(
e2πi(1−t) − 1

)
p
)⊗̂m)

dt

= (−1)m(−2)m!ϕγ

(
p⊗̂2m+1

)∫ 1

0

(
e−2πi(1−t) − 1

)m (
e2πi(1−t) − 1

)m
dt

(4.58)

At this junction we will make a short combinatorial detour in order to more easily evaluate
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the integral; setting z = 2πi(1− t) we have the decomposition

(ez − 1)m(e−z − 1)m =

(
m∑

k1=0

(−1)m−k1
(
m

k1

)
ek1z

)(
m∑

k2=0

(−1)m−k2
(
m

k2

)
e−k2z

)
=

2m∑
n=0

cn

cn =
n∑
k=0

(−1)m−k(−1)m+k−n
(
m

k

)(
m

n− k

)
ekze−(n−k)z

=
n∑
k=0

(−1)2m−n
(
m

k

)(
m

n− k

)
e(2k−n)z

It is now straightforward to express the above integral as

∫ 1

0

(
e−2πi(1−t) − 1

)m (
e2πi(1−t) − 1

)m
dt

=

∫ 1

0

2m∑
n=0

n∑
k=0

(−1)2m−n
(
m

k

)(
m

n− k

)
e(2k−n)2πi(1−t) dt

=
2m∑

n=0,n 6=2k

n∑
k=0

(−1)2m−n
(
m

k

)(
m

n− k

)
e(2k−n)2πi(1−t)

(n− 2k)2πi

∣∣∣∣∣
1

0

+
2m∑
k=0

(−1)2m−2k

(
m

k

)(
m

2k − k

)
e0

=
2m∑

n=0,n 6=2k

n∑
k=0

(−1)2m−n
(
m

k

)(
m

n− k

)
1− 1

(n− 2k)2πi
+

2m∑
k=0

(
m

k

)(
m

k

)
=

2m∑
k=0

(
m

k

)2

Using the fact that
(
m
k

)
= 0 whenever k > m, and applying the Chu-Vandermonde identity,

we obtain the desired relationship

τ[ϕγ ](u) = (−1)m(−2)m!ϕγ

(
p⊗̂2m+1

) m∑
k=0

(
m

k

)2

= (−1)m(−2)m!ϕγ

(
p⊗̂2m+1

)(2m

m

)

=
(−1)m(−2)m!(2m)!

(m!)2
ϕγ

(
p⊗̂2m+1

)
= (−2)ch[ϕγ ](p)

Now we shall set up the necessary preliminaries for a delocalized version of the Atiyah-
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Patodi-Singer index theorem. To begin with, let W be a compact n-dimensional spin man-

ifold with boundary ∂W = M which is closed, and naturally is an n − 1-dimensional spin

manifold. Moreover, W is endowed with a Riemannian metric g which has product structure

near M and is of positive scalar curvature metric when restricted to M . Let D̃W be the

Dirac operator lifted to the universal cover W̃ , g̃ be the metric lifted to W̃ , and by ∂W̃ = M̃

denote the lifting of M with respect to the covering map p : W̃ −→ W . As shown in [48,

Section 3] the operator D̃W defines a higher index Indπ1(W )(D̃W ) ∈ Kn(C∗(W̃ )π1(W )), and

as we have already detailed in Section 4.2 in the case of n − 1 being odd, the Dirac oper-

ator D̃M defines a higher rho invariant ρ(D̃M , g̃) in Kn−1(C∗L,0(M̃)π1(W )). Recall that every

equivariant coarse map f : X −→ Y induces a homomorphism C(f) : C∗(X)G −→ C∗(Y )G,

which itself induces a functorial map K(f) on the K-theory. Clearly the lifted inclusion map

ı̃ : M̃ ↪→ W̃ is equivariantly coarse and so gives rise to a natural homomorphism

K (̃ı) : Kn−1(C∗L,0(M̃)π1(W )) −→ Kn−1(C∗L,0(W̃ )π1(W )) (4.59)

We will denote the image of ρ(D̃M , g̃) under this map to also be ρ(D̃M , g̃).

Theorem 4.27 (Delocalized APS Index Theorem). Let W be a compact even dimensional

spin manifold with closed boundary ∂W = M , and endowed with a Riemannian metric g

which has product structure near M and is of positive scalar curvature metric when restricted

to M . If π1(W ) is countable discrete, finitely generated, and of polynomial growth

ch[ϕγ ]

(
Indπ1(W )(D̃W )

)
=

(−1)m+1

2
η[ϕγ ](D̃M)

for any [ϕγ] ∈ HC2m(CΓ, cl(γ))

Proof. The proof of Lemma 4.26 did not depend on the dimension or boundary structure of

M , the only necessity being that M̃ admit a proper and co-compact isometric action of Γ
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(see Definition 2.15); thus the following diagram also commutes.

K1(CL,0(W̃ )π1(W )) C

K0(C∗(W̃ )π1(W )) C

τ[ϕγ ]

∂

ch[ϕγ ]

×(−2) (4.60)

Moreover, since dim(W ) = n is even, by [38, Theorem 1.14] and [48, Theorem A] the image

of the higher index under the connecting map is

∂
(

Indπ1(W )(D̃W )
)

= ρ(D̃M , g̃) ∈ Kn−1(C∗L,0(W̃ )π1(W )) ∼= K1(C∗L,0(W̃ )π1(W )) (4.61)

Coupling this identity with the main result of Section 4.3 we obtain

−2ch[ϕγ ]

(
Indπ1(W )(D̃W )

)
= τ[ϕγ ]

(
∂
(

Indπ1(W )(D̃W )
))

= τ[ϕγ ]

(
ρ(D̃M , g̃)

)
= (−1)mη[ϕγ ](D̃M)

(4.62)
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5. CONCLUSIONS

The results proven– and techniques employed– in this thesis depend heavily upon π1(M)

being a virtually nilpotent group, parallel to the work of [11], which establishes analogous

results for π1(M) a hyperbolic group. A major reason why these classes of groups are so

frequently the subject of study throughout the years of higher manifold theory is due to the

vast body of work which can be drawn upon in exploiting their geometric and group theo-

retical properties. One natural extension to be considered, if staying within this framework,

is to ask the following:

Question 1. Are there analogues to Theorem 1.1 and Theorem 1.2 when considering split

extensions π1(M) = G1 of G2 in the case where one of G1 or G2 is a hyperbolic group, and

the other is virtually nilpotent?

For the simplest case we can consider (an inner direct product) π1(M) = G1×G2, which

naturally arises for M having the structure of a product of two Riemannian manifolds. The

immediate issue is algebraic topological, in that to ensure that every cyclic cocycle has a

representative of polynomial growth rate we need to consider group cohomology Hn(G1 ×

G2,C) and classifying spaces of products. Since our interest is in complex coefficients, the

Künneth formula decomposition for group cohomology reduces to its simplest form

Hn(G1 ×G2,C) ∼=
⊕
i+j=n

(
H i(G1,C)⊗Hj(G2,C)

)
(5.1)

On the classifying space front, it follows from the functoriality of B : G −→ BG for topologi-

cal groups that B(G1×G2) is homotopically equivalent as a CW-complex to B(G1)×B(G2).

In a paper currently under preparation we have made use of this structure to directly gen-

eralize the combined approaches of this thesis and [11] with respect to cyclic cocycle growth

rate. However, it is not entirely clear what the correct choice of smooth dense subalgebra of

C∗r (G1×G2)⊗K should be, since we naively have need of both a Puschnigg construction [39]
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in addition to that of Connes and Moscovici [16]. If we wish to depart from the relatively well-

known world of virtually nilpotent and hyperbolic groups, there is a class of geometrically

important groups which arises as a candidate for investigation. The Baumslag-Solitar groups

[7] are easily described according to the presentation BS(m,n) = 〈x, y| x−1ymx = yn〉. These

groups have been instructive in a considerable number of geometric and algebraic counterex-

amples; for example, a remarkable result of Shalen [41] showed that if |m| 6= |n| there exists

no non-degenerate morphism φ : BS(m,n) −→ π1(M) for M any connected and orientable

3-manifold. All Baumslag-Solitar groups (excepting the case |m| = |n| = 1) are of exponen-

tial growth (hence not virtually nilpotent) and none of them can be subgroups of hyperbolic

groups, thus a priori we cannot expect to be able to directly modify the arguments specific

to the virtually nilpotent or hyperbolic cases.

Question 2. Is it possible to establish conditions on M which allow for defining a pairing

between cyclic cohomology and the higher rho invariant, given π1(M) = BS(m,n)?

As a final note, I will mention that there is a direct proof of Proposition 4.7 using just

the definitions of (3.4) and (3.5) and explicit computation of the action on cyclic cocycles:

the case of m = 0 is easily verifiable.

η[Sγϕγ ](D̃) :=
1

2πi

∫ ∞
0

(Sγϕγ)( ˙̄ut(D̃)ū−1
t (D̃)⊗̂ūt(D̃)⊗̂ū−1

t (D̃)) dt =

1

2πi

∫ ∞
0

−1

2
(β ◦ bϕγ)( ˙̄ut(D̃)ū−1

t (D̃)⊗̂ūt(D̃)⊗̂ū−1
t (D̃)) dt

+
1

2πi

∫ ∞
0

−(b ◦ βϕγ)( ˙̄ut(D̃)ū−1
t (D̃)⊗̂ūt(D̃)⊗̂ū−1

t (D̃)) dt

=
1

2πi

∫ ∞
0

0 dt+
2

2πi

∫ ∞
0

ϕγ( ˙̄ut(D̃)ū−1
t (D̃)) =: η[ϕγ ](D̃)

However, I decided to not include the several pages of calculations due to their unenlightening

nature and a tendency for very important parity mistakes to be hidden in the morass of

summations and cancellations, somewhat in the vein of Lemma 4.17.
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