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ABSTRACT 

Tropical maize germplasm holds a wealth of diversity that could be used for crop 

improvement. Phenomic and genomic tools can help characterize phenotypes associated 

with both crop improvement as demonstrated here. Phenomics and genomics were used 

in this dissertation to characterize maize for crop improvement. Chapter I identified 7 

loci, including three novel loci, that were linked to photoperiod-associated flowering in a 

novel recombinant inbred line (RIL) population derived from Tx773 and three temperate 

adapted lines (LH195, LH82 and PB80) grown in Texas, Wisconsin and Iowa in over 

three years. Chapter II showed that allelic effect sizes of economically valuable loci are 

both dynamic in temporal growth, resulting in characterizations of phenotypic variability 

overlooked traditional laborious phenotyping methods. Chapter III demonstrated how 

unoccupied aerial systems (UAS)-based phenotyping can reveal novel and dynamic 

relationships between time-specific associated loci with complex traits. These 

relationships were previously impractical to evaluate but doing so demonstrated many 

candidate genes putatively involve in the regulation of plant architecture even in early 

stages of maize growth and development. Chapter IV is among the first to demonstrate 

an ability to predict yield in elite hybrid maize breeding trials using temporal UAS 

image-based phenotypes and supports the benefit of phenomic selection approaches in 

estimating breeding values before harvest. Chapter V showed that (i) it is possible to 

predict complex traits using high throughput phenomic data between different 

managements and years, and that (ii) temporal phenotype data can reveal time-dependent 

association between RILs and abiotic stresses, to select resilient plants. Chapter VI 
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showed that (i) complex traits can be predicted using the high throughput phenomic data 

between different managements and years, and (ii) temporal phenotype data can reveal 

time-dependent association between RILs and abiotic stress, which can help to select 

resilient plants. Chapter VII showed that when weather data was combined with 

temporal phenomic data, prediction abilities increased and were found to be more 

effective in yield prediction when tested and untested environments were less similar. 

Overall, temporal phenomic and weather data could moderately predict grain yield under 

the most challenging predictive breeding scenario of untested genotypes in untested 

environments. 
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NOMENCLATURE 

 

BLUE Best Linear Unbiased Estimate 

BLUP Best Linear Unbiased Prediction 

CHM Canopy Height Model 

CIMMYT The International Maize and Wheat Improvement Center 

CV Cross Validation 

DAP Days After Planting 

DTA Days to Anthesis 

DTS Days to Silking 

EH Ear Height (from ground to first ear) 

Ex-PVP Expired Plant Variety Protection 

FH Flag Leaf Height (from ground to flag leaf) 

FHTP Field Based High-Throughput Phenotyping 

G2F Genome to Field Project 

G2FD Optimal Planting Time Without Irrigation 

G2FI Optimal Planting Time with Irrigation 

G2LA Late Planting Time 

GA Georgia 

GAPIT Genome Association and Prediction Integrated Tool 

GBLUP Genomic Best Linear Unbiased Prediction 

GBS Genotyping by Sequencing 
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GCP Ground Control Point 

GDD Growing Degree Day 

GLM General Linear Model 

GP Genomic Prediction 

GWAS Genome Wide Association Study 

GxE Genotype-by-Environment Interaction 

HIF Heterogeneous Inbred Families 

HTP High-Throughput Phenotyping 

IA Iowa 

K Kindship 

KASP Kompetitive Allele-Specific PCR 

LD Linkage disequilibrium 

LM Linear Model 

MAE Mean Absolute Error 

MAF Minor Allele Frequency 

MAS Marker Assistant Selection 

MLM Mixed Linear Model 

NAM Nested Associated Mapping Population 

NID Normal and Independent Distribution 

PAF Photoperiod Associated Flowering 

PCA Principal component Analysis 

PCR Polymerase Chain Reaction 
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PEBV Phenotypically Estimated Breeding Value 

PLSR Partial Least Square Regression 

PTT Photothermal time 

QC/QA Quality Control/Quality Assurance 

QTL Quantitative Trait Loci 

REML Restricted Maximum Likelihood 

RF Random Forest 

RGB Red-Green-Blue 

RIL Recombinant Inbred Line 

RMSE Root Mean Square Error 

SNP Single Nucleotide Polymorphism 

TAMU Texas A&M University 

TBLUP Temporal Best Linear Unbiased Prediction 

TH Terminal Plant Height 

TPP Temporal Phenomic Prediction 

TX Texas 

UAS Unoccupied/Unmanned Aerial System 

VI Vegetation Index 

VIF Variation Inflation Factor 

WAASB Weighted Average of the Absolute Scores 

WI Wisconsin 
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and their ears were grown as rows (ear-to-row selection). After obtaining NILs, 

homozygous calls from both SNPs were selected as both identical (XX:XX, YY:YY) 

and opposite (XX:YY, YY:XX) to generate HIFs. All parents were genotyped (left). 

Parents; Ki3, NC356, Tx740, and LH82, calls (SNP1: SNP2) are YY:YY, XX:XX, 

YY:YY, and XX:XX, respectively. No template controls, black color in KASP 

figure, were used in each plate as negative controls. ...................................................... 43 

 

Figure 17BLUEs of all three ruler measures of plant heights. This showed XX calls 

significantly increased all height measures in a consistent direction across 

populations. Population 1, 2, 3, and 4 are NILs of [LAMA (recurrent parent) LH82], 

[Ki3 NC356 (recurrent parent)], [Ki3 (recurrent parent) NC356], and [Tx740 

(recurrent parents) NC356], respectively. BLUEs were calculated using Equation 1 

(SNPi term). Differences of BLUEs between XX and YY calls were statistically 

significant across all populations for TH which changed between 2.0 cm and 8.9 cm 

for SNP1 and between 3.0 cm and 11.9 cm for SNP2. *, **, and *** indicate 

significance levels at 0.05, 0.01 and 0.001, respectively, while ns indicates not 

significant. Whiskers represent the standard error. TH, tip of tassel height; FH, flag 

leaf collar height; and EH, height of the first ear shank from ground on the x-axis ....... 51 

 

Figure 18Temporal resolution of differences between SNP1 (left) and SNP2 (right) 

calls obtained by Equation 2 (SNPj term) during UAS flights across all populations. 

Whiskers represent the standard error. BLUEs of calls (XX vs YY) were orthogonally 

contrasted for each SNP at each time point and statistically significant differences 

were placed above the effects. *** indicates significance level at 0.001, while ns 

indicates not significant. .................................................................................................. 52 

 

Figure 19Temporal resolution of interactions of [Pop*SNP]ij obtained by Equation 

2 during UAS flights. Modeling interactions showed that there were large differences 

between how the SNPs behaved on different genetic backgrounds. Whiskers 

represent the standard error. BLUEs of calls (XX vs YY) were orthogonally 

contrasted for each SNP in each population at each time point and statistically 

significant differences were placed above the effects for each time points. *, **, and 

*** indicate significance levels at 0.05, 0.01, and 0.001 respectively, while ns 

indicates not significant.. ................................................................................................. 55 

 

Figure 20Temporal resolution of differences among SNP1-SNP2 interactions during 

UAS flights. The interaction [SNP1*SNP2]jk was obtained from Equation 3 and 

shows that the two loci had a synergistic effect on increasing height. Whiskers 

represent the standard error. BLUEs of XX:XX (SNP1:SNP2) and other call 

combinations (XX:YY, YY:XX, and YY:YY) were contrasted for SNP1 and SNP2 

interactions at each time point and statistically significant differences were placed 

above the effects for each time points. and *** indicate significance levels at 0.05, 

0.01, and 0.001 respectively, while ns indicates not significant ..................................... 55 

 

file:///F:/Disertation%20comitee%20(sent)/dissertation%20with%20footnotes/Revision%201/Figure%2016Breeding%20scheme%20of%20generating%20HIFs%20based%20on%20two%20SNP%20models%20and%20selection%20stages%20of%20pedigrees%20via%20KASP%20technology%20(http:/%20www.kbioscience.co.uk/).%20Ten%20to%2020%20plants%20from%20each%20plot%20were%20randomly%20selected%20or%20aided%20by%20markers%20for%20multiple%20generations%20until%20obtaining%20NILs%20(BC3F2%20or%20more%20recurrent%20parent%20crosses%20or%20selfs).%20Only%20those%20having%20heterozygous%20loci%20(XY)%20were%20selected%20each%20generation%20and%20their%20ears%20were%20grown%20as%20rows%20(ear-to-row%20selection).%20After%20obtaining%20NILs,%20homozygous%20calls%20from%20both%20SNPs%20were%20selected%20as%20both%20identical%20(XX:XX,%20YY:YY)%20and%20opposite%20(XX:YY,%20YY:XX)%20to%20generate%20HIFs.%20All%20parents%20were%20genotyped%20(left).%20Parents;%20Ki3,%20NC356,%20Tx740,%20and%20LH82,%20calls%20(SNP1:%20SNP2)%20are%20YY:YY,%20XX:XX,%20YY:YY,%20and%20XX:XX,%20respectively.%20No%20template%20controls,%20black%20color%20in%20KASP%20figure,%20were%20used%20in%20each%20plate%20as%20negative%20controls.43
file:///F:/Disertation%20comitee%20(sent)/dissertation%20with%20footnotes/Revision%201/Figure%2016Breeding%20scheme%20of%20generating%20HIFs%20based%20on%20two%20SNP%20models%20and%20selection%20stages%20of%20pedigrees%20via%20KASP%20technology%20(http:/%20www.kbioscience.co.uk/).%20Ten%20to%2020%20plants%20from%20each%20plot%20were%20randomly%20selected%20or%20aided%20by%20markers%20for%20multiple%20generations%20until%20obtaining%20NILs%20(BC3F2%20or%20more%20recurrent%20parent%20crosses%20or%20selfs).%20Only%20those%20having%20heterozygous%20loci%20(XY)%20were%20selected%20each%20generation%20and%20their%20ears%20were%20grown%20as%20rows%20(ear-to-row%20selection).%20After%20obtaining%20NILs,%20homozygous%20calls%20from%20both%20SNPs%20were%20selected%20as%20both%20identical%20(XX:XX,%20YY:YY)%20and%20opposite%20(XX:YY,%20YY:XX)%20to%20generate%20HIFs.%20All%20parents%20were%20genotyped%20(left).%20Parents;%20Ki3,%20NC356,%20Tx740,%20and%20LH82,%20calls%20(SNP1:%20SNP2)%20are%20YY:YY,%20XX:XX,%20YY:YY,%20and%20XX:XX,%20respectively.%20No%20template%20controls,%20black%20color%20in%20KASP%20figure,%20were%20used%20in%20each%20plate%20as%20negative%20controls.43
file:///F:/Disertation%20comitee%20(sent)/dissertation%20with%20footnotes/Revision%201/Figure%2016Breeding%20scheme%20of%20generating%20HIFs%20based%20on%20two%20SNP%20models%20and%20selection%20stages%20of%20pedigrees%20via%20KASP%20technology%20(http:/%20www.kbioscience.co.uk/).%20Ten%20to%2020%20plants%20from%20each%20plot%20were%20randomly%20selected%20or%20aided%20by%20markers%20for%20multiple%20generations%20until%20obtaining%20NILs%20(BC3F2%20or%20more%20recurrent%20parent%20crosses%20or%20selfs).%20Only%20those%20having%20heterozygous%20loci%20(XY)%20were%20selected%20each%20generation%20and%20their%20ears%20were%20grown%20as%20rows%20(ear-to-row%20selection).%20After%20obtaining%20NILs,%20homozygous%20calls%20from%20both%20SNPs%20were%20selected%20as%20both%20identical%20(XX:XX,%20YY:YY)%20and%20opposite%20(XX:YY,%20YY:XX)%20to%20generate%20HIFs.%20All%20parents%20were%20genotyped%20(left).%20Parents;%20Ki3,%20NC356,%20Tx740,%20and%20LH82,%20calls%20(SNP1:%20SNP2)%20are%20YY:YY,%20XX:XX,%20YY:YY,%20and%20XX:XX,%20respectively.%20No%20template%20controls,%20black%20color%20in%20KASP%20figure,%20were%20used%20in%20each%20plate%20as%20negative%20controls.43
file:///F:/Disertation%20comitee%20(sent)/dissertation%20with%20footnotes/Revision%201/Figure%2016Breeding%20scheme%20of%20generating%20HIFs%20based%20on%20two%20SNP%20models%20and%20selection%20stages%20of%20pedigrees%20via%20KASP%20technology%20(http:/%20www.kbioscience.co.uk/).%20Ten%20to%2020%20plants%20from%20each%20plot%20were%20randomly%20selected%20or%20aided%20by%20markers%20for%20multiple%20generations%20until%20obtaining%20NILs%20(BC3F2%20or%20more%20recurrent%20parent%20crosses%20or%20selfs).%20Only%20those%20having%20heterozygous%20loci%20(XY)%20were%20selected%20each%20generation%20and%20their%20ears%20were%20grown%20as%20rows%20(ear-to-row%20selection).%20After%20obtaining%20NILs,%20homozygous%20calls%20from%20both%20SNPs%20were%20selected%20as%20both%20identical%20(XX:XX,%20YY:YY)%20and%20opposite%20(XX:YY,%20YY:XX)%20to%20generate%20HIFs.%20All%20parents%20were%20genotyped%20(left).%20Parents;%20Ki3,%20NC356,%20Tx740,%20and%20LH82,%20calls%20(SNP1:%20SNP2)%20are%20YY:YY,%20XX:XX,%20YY:YY,%20and%20XX:XX,%20respectively.%20No%20template%20controls,%20black%20color%20in%20KASP%20figure,%20were%20used%20in%20each%20plate%20as%20negative%20controls.43
file:///F:/Disertation%20comitee%20(sent)/dissertation%20with%20footnotes/Revision%201/Figure%2016Breeding%20scheme%20of%20generating%20HIFs%20based%20on%20two%20SNP%20models%20and%20selection%20stages%20of%20pedigrees%20via%20KASP%20technology%20(http:/%20www.kbioscience.co.uk/).%20Ten%20to%2020%20plants%20from%20each%20plot%20were%20randomly%20selected%20or%20aided%20by%20markers%20for%20multiple%20generations%20until%20obtaining%20NILs%20(BC3F2%20or%20more%20recurrent%20parent%20crosses%20or%20selfs).%20Only%20those%20having%20heterozygous%20loci%20(XY)%20were%20selected%20each%20generation%20and%20their%20ears%20were%20grown%20as%20rows%20(ear-to-row%20selection).%20After%20obtaining%20NILs,%20homozygous%20calls%20from%20both%20SNPs%20were%20selected%20as%20both%20identical%20(XX:XX,%20YY:YY)%20and%20opposite%20(XX:YY,%20YY:XX)%20to%20generate%20HIFs.%20All%20parents%20were%20genotyped%20(left).%20Parents;%20Ki3,%20NC356,%20Tx740,%20and%20LH82,%20calls%20(SNP1:%20SNP2)%20are%20YY:YY,%20XX:XX,%20YY:YY,%20and%20XX:XX,%20respectively.%20No%20template%20controls,%20black%20color%20in%20KASP%20figure,%20were%20used%20in%20each%20plate%20as%20negative%20controls.43
file:///F:/Disertation%20comitee%20(sent)/dissertation%20with%20footnotes/Revision%201/Figure%2016Breeding%20scheme%20of%20generating%20HIFs%20based%20on%20two%20SNP%20models%20and%20selection%20stages%20of%20pedigrees%20via%20KASP%20technology%20(http:/%20www.kbioscience.co.uk/).%20Ten%20to%2020%20plants%20from%20each%20plot%20were%20randomly%20selected%20or%20aided%20by%20markers%20for%20multiple%20generations%20until%20obtaining%20NILs%20(BC3F2%20or%20more%20recurrent%20parent%20crosses%20or%20selfs).%20Only%20those%20having%20heterozygous%20loci%20(XY)%20were%20selected%20each%20generation%20and%20their%20ears%20were%20grown%20as%20rows%20(ear-to-row%20selection).%20After%20obtaining%20NILs,%20homozygous%20calls%20from%20both%20SNPs%20were%20selected%20as%20both%20identical%20(XX:XX,%20YY:YY)%20and%20opposite%20(XX:YY,%20YY:XX)%20to%20generate%20HIFs.%20All%20parents%20were%20genotyped%20(left).%20Parents;%20Ki3,%20NC356,%20Tx740,%20and%20LH82,%20calls%20(SNP1:%20SNP2)%20are%20YY:YY,%20XX:XX,%20YY:YY,%20and%20XX:XX,%20respectively.%20No%20template%20controls,%20black%20color%20in%20KASP%20figure,%20were%20used%20in%20each%20plate%20as%20negative%20controls.43


 

xix 

Figure 21Temporal resolution of differences for two populations among SNP1-SNP2 

interactions during UAS flights. Interactions [Pop*SNP1*SNP2]ijk obtained from 

Equation 3 showed the SNP combinations had different effects across different 

populations genetic backgrounds, especially early in the season. Whiskers represent 

the standard error. BLUEs of XX:XX (SNP1:SNP2) and other call combinations 

(XX:YY, YY:XX, and YY:YY) were contrasted for SNPs and population 

interactions at each time point and statistically significant differences were placed 

above the effects for each time points. and *** indicate significance levels at 0.05, 

0.01, and 0.001 respectively, while ns indicates not significant ..................................... 56 

 

Figure 22The allelic frequency combinations of SNP1 and SNP2 over years for five 

germplasm categories. The favorable C (SNP1) and A (SNP 2), referred to as XX, 

XX in this study, are both increasing in frequency in newer germplasm and are 

essentially fixed in US temperate Ex-PVP and public germplasm. The 989 subset of 

genotyped lines contained 448 public inbred lines, 87 GEM-like lines, 215 GEM 

lines, 118 Ex-PVP lines, and 121 CIMMYT germplasm lines. ...................................... 62 

 

Figure 23Illustrations of categorizing the plant heights of each flight of the hybrids 

grown in 2017 according to the high and the low yield values. G2FI, G2FD, and 

G2LA trial represent the optimal planting time with irrigation, optimal planting time 

without irrigation (dryland), and delayed planting time (late) with irrigation, 

respectively. X axes represents the flights as days after planting. Y axis represent the 

best linear unbiased predictions of plant heights (as meter unit) of both hybrids’ 

categories; high yield and low yield hybrid categories were represented by purple 

and cyan color box plots, respectively, for each flight date. Every hybrid was 

categorized as low- or high-yielding hybrids if they had lower and higher yield value 

than average yield value of regarding trials .................................................................... 75 

 

Figure 24Stacked bar graph showed the explained percentage variations by each 

component calculated by Eq. 1 with repeatability and total variance (as number) for 

each trial. X axis is the flight as days after planting (DAP). Left y axis was scaled as 

percentage to show the repeatability values (white diamond) and percent variations 

by components. Right y axis was scaled as number to show the total variation 

explained as number (black round). DTA, DTS, and GY are the abbreviations of days 

to anthesis, silking (days), and plot-based grain yield (t ha−1), respectively. Total 

variance of DTA, DTS, and GY in number are 5.67, 5.80, and 3.48 for G2FD; 4.22, 

3.99, and 2.24 for G2FI; and 4.59, 4.32, and 1.49 for G2LA. G2FI, G2FD, and G2LA 

trials represent the optimal planting time with irrigation, optimal planting time 

without irrigation, and delayed planting time with irrigation respectively ..................... 77 

 

Figure 25Model evaluations and variable importance scores. (a) The R2 of linear 

(LM) and random forest (RF) model, higher is better. (b) Root mean square error 

(RMSE) of each model in each trial, lower is better. (c) Mean absolute error (MAE) 

of each model in each trial, lower is better. (d) Correlation results between predicted 
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yield and actual yield of test data obtained by 1,000 bootstrap belonging to each 

model in each trial. Wilcoxon sign rank test results showed the comparison of 

correlations belonging to both analysis models in each trial. (e) Variable importance 

scores (varImp) show the variable importance scores of the predictors (flight dates) 

where higher varImp score indicates more importance variable in prediction the 

yield. G2FI, G2FD and G2LA trial represent the optimal planting time with 

irrigation, optimal planting time without irrigation, and delayed planting time with 

irrigation, respectively ..................................................................................................... 80 

 

Figure 26The partial dependence plots for each predictor (flight dates as days after 

planting; DAP) in each trial. Y axis of each plot shows the predicted continuous yield 

(t ha−1), while x axes are the predictor values that are plant heights of each flight 

dates. Red lines show the relationships between each predictor and predicted yield 

values. G2FI, G2FD, and G2LA trial represent the optimal planting time with 

irrigation, optimal planting time without irrigation, and delayed planting time with 

irrigation, respectively. .................................................................................................... 81 

 

Figure 27Combined Manhattan plots for plant heights of each flight using best linear 

unbiased predictions (BLUPs) of the mixed effects spatial model. The heat map at 

the bottom of each Manhattan plot shows the single nucleotide polymorphism (SNP) 

density (within 1 Mb window size) through the chromosomes. Scale of this heat map 

was given on the right side of Manhattan plot. Star shapes were used for colocalized 

SNPs detected in more than one trial. Triangle shapes were used for colocalized SNPs 

detected in more than one flight within any trial. Round shapes were used for unique 

SNPs. Each unique color within each trial represents the association between SNPs 

and plant heights of each flight; color charts are given inside the rectangles at the top 

of each Manhattan plots. G2FI, G2FD, and G2LA trial represent the optimal planting 

time with irrigation, optimal planting time without irrigation, and delayed planting 

time with irrigation, respectively .................................................................................... 83 

 

Figure 28Linkage disequilibrium (LD) blocks of seven colocalized single nucleotide 

polymorphisms (SNPs) located in chromosomes 1, 6, and 10 associated with plant 

height. Black lines indicated the pairwise LD regions of the SNPs with 0.8 or higher 

R2 within the physical lengths. Black stars showed the locations (base pair; bp) of 

the above SNPs. ............................................................................................................... 85 

 

Figure 29Single nucleotide polymorphisms (SNPs) associated with hybrid grain 

yield (t ha−1) for G2FI, G2FD, and G2LA trials. G2FI, G2FD, and G2LA trial 

represent the optimal planting time with irrigation, optimal planting time without 

irrigation (dryland), and delayed planting time with irrigation respectively. The heat 

map at the bottom of the Manhattan plot shows the SNP density (within 1 Mb window 

size) through the chromosomes. Scale of this heat map was given on the right side of 

Manhattan plots. .............................................................................................................. 89 
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Figure 30Temporal cumulative marker effects of each chromosome (negative and 

positive) for each flight of each trial. The cumulative effects of whole-genome-wide 

markers (y axis, mm) were dependent upon the flights (x axis, DAP). G2FI, G2FD, 

and G2LA trial represent the optimal planting time with irrigation, optimal planting 

time without irrigation, and delayed planting time with irrigation, respectively. ........... 92 

 

Figure 31Genomic prediction accuracies (rgpa) (y axes) for flights (x axis as days 

after planting [DAP]) as well as for days to anthesis (DTA), days to silking (DTS), 

and yield in three trials. G2FI, G2FD, and G2LA trial represent the optimal planting 

time with irrigation, optimal planting time without irrigation, and delayed planting 

time with irrigation respectively. .................................................................................... 93 

 

Figure 32Shows the steps of high-throughput phenotyping pipeline including data 

collection, processing, and extraction from the RGB images ....................................... 100 

 

Figure 33Variance component decomposition (Equation (1)) for each predictor trait 

(fifteen vegetative indices, VIs and canopy height measurement; CHM) for each trial 

(DHOT on the left and OHOT on the right). X axes, left Y axis, and right Y axes 

represent the traits, explained percent variation by each variance component, and 

temporal repeatability, respectively. Black circles and white diamonds represent the 

R2 and repeatability values, respectively, for each trait according to the right Y axis 

scale. Temporal repeatability was calculated based on the Equation (2) ...................... 111 

 

Figure 34Explained percent variation of each component in Equation (3) for each 

predicted variable (days to anthesis (DTA), days to silking (DTS), and yield (t/ha)) 

for each trial (DHOT on the left and OHOT on the right). X axes, left Y, and right Y 

axes represent the traits, explained percent variation by each variance component, 

and repeatability, respectively. Black circles and white diamonds represent the R2 

and repeatability values, respectively. ........................................................................... 112 

 

Figure 35The best linear unbiased predictors (BLUPs) values of predicted variables 

[days to anthesis (DTA), days to silking (DTS), and yield (t/ha)]. Y axes shows to 

best linear unbiased predictors (BLUP) of hybrids for DTA, DTS and yield unique 

to each trait while X axes shows the trials. ................................................................... 112 

 

Figure 36Temporal best linear unbiased predictions (TBLUPs) of the traits (fifteen 

vegetation indices, VIs and canopy height measurement; CHM) of the pedigrees in 

the OHOT (optimal planting trial) population estimated by Equation (1). Each Y axis 

shows the range of TBLUPs unique to each trait while each X axis shows the flight 

dates as days after planting (DAP) same to each trait. The heatmap scale was 

generated from the range of yield (t/ha) values in the OHOT trial, and then applied 

to each pedigree to show the TBLUPs of each trait through the flight dates along with 

yield values of pedigree. Blue, white, and red colors in the heatmap scale were used 
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to indicate low, medium, and high yield values, respectively, specific to the OHOT 

trial  ............................................................................................................................... 113 

 

Figure 37Temporal best linear unbiased predictions (TBLUPs) of the traits (fifteen 

vegetation indices, VIs and canopy height measurement; CHM) of the pedigrees in 

the DHOT (delayed planting trial) population estimated by Equation (1). Each Y axis 

shows the range of TBLUPs unique to each trait while each X axis shows the flight 

dates as days after planting (DAP) same to each trait. The heatmap scale was 

generated from the range of yield (t/ha) values in the DHOT trial, and then applied 

to each pedigree to show the TBLUPs of each trait through the flight dates along with 

yield values of pedigree. Blue, white, and red colors in the heatmap scale were used 

to indicate low, medium and high yield values, respectively, specific to the DHOT 

trial. ............................................................................................................................... 114 

 

Figure 38Explained percent variation of each component in Equation (5) for each 

predictor trait (fifteen vegetation indices, VIs and canopy height measurement; 

CHM). X axis, left and right Y axes represent the traits, explained percent variation 

by each variance component and R2 respectively. Black circles and white diamonds 

represent the R2 and repeatability values, respectively, for each trait according to the 

right Y axis scale. Repeatability was calculated based on Equation (6) ....................... 115 

 

Figure 39Temporal comparison results of each time point between each test. The 

joint analysis of temporal effects of the trials based on means of flight dates was 

derived from Management(flight) component in Equation (5). Each Y axis shows the 

range of flight means unique to each trait while each X axis shows the flight dates as 

successive order same to each trait. *, **, *** are significance levels at 0.05, 0.01 

and 0.001; ns is not significant. Whiskers represent the conditional standard 

deviations for each time point of each trait ................................................................... 116 

 

Figure 40Each correlogram chart contains the pairwise correlation coefficients (r2) 

belonging to time points of each trait with predicted traits [days to anthesis (DTA), 

days to silking (DTS), and yield (t/ha)]. Correlogram charts above and below the 

horizontal black dashed line belong to DHOT (delayed planting trial) and OHOT 

(optimal planting trial) respectively. Time points (days after planting, DAP) were 

given diagonal and horizontal for each vegetation index and CHM in both trials along 

with DTA, DTS and yield in each correlogram chart. The correlation coefficient 

heatmap change from −1 to 0 from pink to white and from 0 to 1 from white to cyan. 

The cross signs (×) show statistically insignificant pairwise correlations at the 0.05 

level ............................................................................................................................... 117 

 

Figure 41Box plots of root mean squares (RMSE), mean absolute errors (MAE), and 

coefficient of determination (R2) values (from left to right) of linear, elastic net, 

lasso, and ridge regressions for DHOT (delayed planting trial; above) and OHOT 

(optimal planting trial; below). Each Y axis has the unique value ranges for RMSE, 
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MAE and R2 in each trial while each X axis shows the predicted variables used in 

each regression models [days to anthesis (DTA), days to silking (DTS), and yield 

(t/ha)] same to RMSE, MAE, and R2 in each trial. Whiskers represent the standard 
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CHAPTER I  

INTRODUCTION  

For over three decades genomics tools have been developed to provide the 

genome wide markers used in genetic mapping studies to predict traits of interest (e.g. 

yield) of untested genotypes (José Crossa et al., 2017; Heffner, Lorenz, Jannink, & 

Sorrells, 2010). Phenotyping technologies have lagged behind genomic technologies; 

traditional phenotyping has been low throughput in scale and time-dimensions, impeding 

the biological understanding of complex trait (Araus & Cairns, 2014). However, recent 

advances in phenotyping are providing high-dimensional phenotype data, which has 

become a key component to increase understanding of the biology of complex traits 

(Araus & Cairns, 2014; Shi et al., 2016). This dissertation addresses how to integrate 

high throughput phenotyping data with high throughput genotyping data, and provides 

applications in quantitative genetics and maize breeding. In the first chapter, photoperiod 

driven late flowering was phenotyped across southern and northern environments of the 

U.S.A and genetic markers are aimed to discover via genome wide association study. 

The output of this discovery will be a potential to eliminate the extended flowering from 

tropical maize germplasm which suffers from extended flowering causing adaptation 

problem in northern environments (Teixeira et al., 2015). In the second chapter, 

temporal effect sizes of genome wide markers are aimed to monitor growth across time 

of maize hybrids using unoccupied aerial surveys (UAS). Early growth variation has not 

been well investigated at either the genomic and phenomic level. In the third chapter, the 

goal will be to build on a past genome wide association study (GWAS) (Farfan et al., 
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2015) and a linkage mapping confirmation study (Y. Chen, 2016) to confirm two loci of 

interest using new heterogenous inbred families and new UAS tools for monitoring 

height (Shi et al., 2016). In the third chapter, temporal plant height data obtained from 

multiple UAS surveys will be used as predictors to predict yield and, temporal 

phenotype data in both GWAS and temporal genomic prediction. The goal of the third 

chapter is to discover the candidate genes in GWAS that play a role in regulation of 

plant architecture across growth as well as temporal marker effects. In addition, temporal 

plant height is also investigated to determine whether it has an association with grain 

yield in maize to confirm previous reports (Anderson et al., 2019; Miao, Xu, Liu, 

Schnable, & Schnable, 2020; Pauli, Andrade-Sanchez, et al., 2016; Xiaqing Wang et al., 

2019). In the fourth chapter, temporal phenomic data containing the temporal vegetation 

index and plant height is aimed to use as predictors for yield and flowering times in 

maize. This is modeled after genomic prediction (Meuwissen, Hayes, & Goddard, 2001) 

and terminal trait phenomic prediction (Holly M. Lane et al., 2020; Rincent et al., 2018; 

Weiß et al., 2022). This novel approach of temporal phenomic prediction introduces how 

to generate and use to predict the grain yield with different machine learning algorithms 

(López, López, & Crossa, 2022). In the fifth chapter, temporal phenomic prediction 

conducted between years tests temporal dimension reduction to address the problem of 

unmatched flight times between years. In addition, high throughput phenomic data will 

be integrated with high throughput genomic data as has so far been done in very few 

studies (Adak, Conrad, et al., 2021; Adak, Murray, & Anderson, 2021; Adak, Murray, 

Anderson, et al., 2021; Anderson et al., 2020; Jinyu Wang et al., 2021; Xiaqing Wang et 
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al., 2019). As a special case study in the fifth chapter, time-dependent relationship 

between genotype, time and weather will be examined. Crop modeling and experience 

suggests it is logical that these factors interact (Xianran Li et al., 2022; Xin Li, Guo, Mu, 

Li, & Yu, 2018; Q. Mu, Guo, Li, & Yu, 2022; Pigliucci, 2005). In the sixth chapter, 

temporal phenomic prediction is aimed to compare with genomic prediction to assess the 

prediction ability of phenomic data. This has been done for near infrared spectroscopic 

phenomic prediction (Rincent et al., 2018), as well as in wheat (Krause et al., 2019), but 

has not yet been looked at in maize or using this depth of temporal phenotypes.  In the 

seventh chapter, a three-way interaction (pedigree*flight*management) design will be 

introduced in analyzing the temporal data derived from UAV surveys; an extension from 

traditional analysis models for each time points (Anderson et al., 2019; Pugh et al., 

2018). In addition, temporal phenomic data and weather data will be assessed in the 

prediction of grain yield, this integrates much of the work in previous chapters.  

Photoperiod associated flowering (PAF) is a major obstacle impeding U.S. 

production of southern, tropical and exotic derived hybrids. This is because their parent 

inbred lines flower too late in the US Corn Belt, where nearly all hybrid seed for the 

U.S. is produced. In more extreme cases of PAF, even Southern U.S. maize breeding 

programs can be limited in their use of tropical lines due to cryptic extended flowering 

time caused by PAF under longer day circumstances; this could be caused by 

photoperiod and/or associated thermal times which require many environments of 

screening to separate (Xin Li et al., 2018). PAF triggers delayed flowering in tropical 

derived germplasm but it is not currently possible to visually select for using only one 
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southern location (e.g. Texas), because it cannot be separated from insensitive flowering 

without screening at other latitudes. To determine the underlying genetic cause(s) of 

PAF in different germplasm pools, phenotyping is needed in both southern production 

environments along with northern production environments where day lengths are longer 

combined with genomic analysis tools for mapping. Determining loci affecting PAF 

could increase the efficiency of Southern U.S. maize breeding programs to selectively 

eliminate PAF from advanced lines and breeding stocks without having to phenotype 

each line flowering across multiple locations.  

 While many late flowering and PAF loci are known, diverse tropical germplasm 

is expected to vary in the loci causing their quantitative variation. The “LAMA” pool of 

lowland Bolivian derived, Texas adapted lines demonstrates PAF, which is a barrier for 

U.S. seed production (Murray et al., 2019). As a source for PAF loci, an elite breeding 

line (Tx773) derived from LAMA with the latest flowering time, even in Texas, was 

used. Tx773 is notable for being one of two parents by pedigree of Tx777 (Murray et al. 

2019) and is one of the most foliar disease resistant lines in the Texas A&M maize 

breeding program. Through previous tests conducted with the Genomes to Fields (G2F) 

project, three Corn Belt adapted lines were selected as parents based on their diverse 

responses to flowering times and their ability to perform well as inbred lines per se. Of 

these, LH195 (Holden's Foundation Seeds, 1991) showed a reverse response to PAF, 

referring late flowering in Texas and early flowering in Wisconsin and Iowa while LH82 

(Holden's Foundation Seeds, 1985) and PB80 (DeKalb‐Pfizer Genetics, 1988) were 
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shown to flower with more stability at early and moderate flowering times in each 

environment, respectively. 

Domestication of maize occurred in southern Mexico c. 9000 year ago from 

teosinte (Zea mays ssp. parviglumis) which is the wild progenitor of maize (Matsuoka et 

al., 2002). Throughout the domestication process, flowering time has been subjected to 

many dramatic alterations compared to teosinte (Doebley, 2004). Specifically, maize 

enlarged its growing area towards the north where day light is shorter and temperatures 

cooler during the maize growth periods while teosinte remained restricted to tropical 

environments in Mexico and Central America (C. Huang et al., 2018; Hung et al., 2012). 

In maize (Zea mays L.), one of the important constraints triggering aberrant phenotypic 

plasticity is caused by photoperiod sensitivity (Teixeira et al., 2015). Photoperiod 

sensitivity prevents utilizing exotic genetic diversity of tropical germplasm (K. Liu et al., 

2003; Ochs, 2005; Wahl et al., 2017). This is because tropical germplasm is generally 

characterized by later flowering, weak standability and especially extended plant height 

with higher numbers of leaves. These problems are exacerbated by photoperiod 

sensitivity when tropical maize germplasm is grown in temperate regions where 

daylengths exceeds the 10-13.5 h in the north during the growing season (Warrington & 

Kanemasu, 1983b), as well as by cooler temperatures delaying the triggering of the 

flowering response (Goodman, 1999; Tarter & Holland, 2006). In contrast, major maize 

production areas in the Southern United States encounter the serious problems in maize 

production as well as in breeding with the temperate-adapted germplasm used by 

industry. Temperate-adapted germplasm has impeded maize production because it is not 



 

6 

well-adapted to the Southern US, including susceptibility to drought stress and aflatoxin; 

temperate germplasm is often poor for these problems (F. J. Betrán, Bhatnagar, Isakeit, 

Odvody, & Mayfield, 2006; KL Mayfield, Murray, Rooney, Isakeit, & Odvody, 2011). 

Taken together, in order to manipulate the aberrant plasticity by photoperiod sensitivity 

in southern-exotic germplasm, understanding the PAF mechanism to develop new 

tropical derived varieties adapted to Northern US climate conditions is important. 

Flowering time has been diagnosed as complex trait, orchestrated by many genes 

of small effects (Buckler et al., 2009). Light is a deterministic factor on maize flowering 

in addition to temperature. Maize germplasm that was adapted to temperate climate has 

an ability to flower early which is associated with reduced response to day light 

(Markelz et al. 2003). Many successive research studies have been conducted to 

understand this complex trait through discovering roles of underlying genes during the 

transition from vegetative to reproductive development (Dong et al., 2012). Gene 

regulatory networks were previously developed by Dong et al. (2012) to examine 

flowering time related genes interactions in maize in different pathways, namely, light 

transduction, circadian clock, photoperiod transduction, aging, gibberellin and pathway 

integrators.   

The transition of a plant from the vegetative to the reproductive phase can be 

manipulated by multiple environmental factors especially photoperiod (Kiniry, Ritchie, 

& Musser, 1983; Warrington & Kanemasu, 1983a), and flowering time can vary 

significantly between different genotypes of a plant species. The phenotypic differences 

between these genotypes may result in delayed or absent flowering (Gouesnard, 
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Rebourg, Welcker, & Charcosset, 2002). Tropical germplasm that are not photoperiod 

sensitive have been studied before (Gouesnard et al., 2002; Weldekidan et al., 2022), but 

the timely flowering of this germplasm in temperate regions remains an important but 

challenging subject needed for plant breeding between the northern and southern 

regions. Combination of environmental factors are key determining factors that 

manipulate the flowering times, such as temperature (Ellis, Summerfield, Edmeades, & 

Roberts, 1992), growing degree days (C. Huang et al., 2018), photothermal time (Xin Li 

et al., 2018) and diurnal times (Q. Mu et al., 2022). Environmental parameters affecting 

flowering times and photoperiod can be modeled to dissect confounding factors across 

environments. 

So far, many QTLs affecting flowering related biological pathways directly or 

indirectly have been identified and some have been cloned (Aukerman & Sakai, 2003; 

Bomblies & Doebley, 2006; Bomblies et al., 2003; Colasanti, Yuan, & Sundaresan, 

1998; Danilevskaya, Meng, Hou, Ananiev, & Simmons, 2008; Danilevskaya, Meng, 

Selinger, et al., 2008; C. Huang et al., 2018; Hung et al., 2012; Lawit, Wych, Xu, 

Kundu, & Tomes, 2010; Lazakis, Coneva, & Colasanti, 2011; Liang et al., 2019; 

Malcomber, Preston, Reinheimer, Kossuth, & Kellogg, 2006; X. Meng, Muszynski, & 

Danilevskaya, 2011; Salvi et al., 2007; Sawers et al., 2002; Thornsberry et al., 2001; Q. 

Yang et al., 2013; Zhu & Helliwell, 2011). The majority of QTLs found have been loci 

that helped maize to adapt to temperate climates while others have been found to be 

related to the regulation of hormones. From the plant breeding standpoint, a cloned gene 

is not necessary if a linked marker can be used to selectively eliminate the PAF out of 
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tropical derived germplasm. Knowing the functional polymorphism might allow us to go 

beyond this to further optimize flowering. 

 Previous literature has defined adaptation phenomena of maize from southern to 

northern climates and identified QTL conditioning these phenotypes (Hung et al., 2012). 

However, to our knowledge, no markers to date have been used in marker assisted 

selection to eliminate PAF out of tropical germplasm. This is in contrast to the modern 

sorghum conversion program which first phenotypically eliminated photoperiod 

sensitivity from exotic material but now uses markers for a few major cloned genes 

(Klein, Miller, Bean, & Klein, 2016).  

Ex PVP inbreds LH82 (Holden's Foundation Seeds, 1985), PB80 (DeKalb‐Pfizer 

Genetics, 1988) and LH195 (Holden's Foundation Seeds, 1991) were evaluated during 

2014 and 2015 and selected based on flowering responses on 19 environments (Figure 1) 

within to Genome to Field (G2F) project (Bridget A. McFarland et al., 2020). LH82 

flowered the earliest consistently across evaluated environments, PB80 flowered 

moderately (between LH195 and LH82) and LH195 flowered later then PB80 (Figure 1).  
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Figure 1 Genotype by environment (G x E) model (equation 1) was implemented todays 

to anthesis (DTA) and silking (DTS) of 33 different inbreds in 2014 and 2015, and 

LH195, LH82 and PB80 were chosen as candidate parental lines because of diverse 

flowering response. A-) Explained percent variation by each component of G x E model 

for DTA and DTS in 2014 and 2015. B-) DTA and DTS values of inbreds across 

environments in 2014 and 2015. Black round is Rsquared of G x E model and white 

diamond is repeatability value. 

The primary objective of this study was to identify loci responsible for 

photoperiod associated flowering in Texas LAMA germplasm for future marker assisted 

selection or possibly gene cloning. The scope of this project was to (i) develop and 

advance NAM population during 2018, 2019, 2020 and 2021 (ii) collect flowering times 

from recombinant inbred lines (RILs) in Texas (TX), Wisconsin (WI) and Iowa (IA) 

with environmental data during 2018, 2019, 2020 and 2021 (iii) identify (map) key loci 

controlling PAF and (iv) annotate discovered loci to determine possible candidate 

gene(s). A secondary aim of this study was to evaluate the NAM population in terms of 

lesion mimic phenotype that was opportunistically and dramatically observed in the in 

NAM-RILs.  

Materials and Methods 

Experimental Population 

LH82, PB80, LH195 were then crossed with Tx773 parents beginning in 2013 to 

construct recombinant inbred lines (RILs) for further investigation. Until 2018, the 

single seed descent method was applied to develop RILs in each population. Generally, 

in the F3 generation, three ears from a single row plot were grown as different rows in 

successive generations. In summer of 2018, 67 F4’s from Tx773 x LH195, 64 F4’s from 

Tx773 x LH82 and 37 F4’s from Tx773 x PB80 were grown along with two counts from 
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each parental line in 2018. In total, 178 RILs were grown in the summer of 2018 in TX, 

WI and IA, most were in the F4 generation. The F4’s were planted in Weslaco in 2018 as 

a fall off-season nursery to advance the generation (F5) of inbreeding as well as the 

amount of seed. In 2019, 235 F6 RILs from Tx773 x LH195, 66 RILs from Tx773 x 

LH82 and 41 RILs from Tx773 x PB80 (342 RILs in total) were grown along with two 

counts from each parental line. Then 252 RILs from Tx773 x LH195, 158 RILs from 

Tx773 x LH82 and 130 RILs from Tx773 x PB80 (540 RILs in total the latest being F7) 

were grown along with four counts from each parental line in 2020. New RILs (mostly 

F4:5) from another related breeding nursery were responsible for the increase. Finally 254  

RILs from Tx773 x LH195, 159 RILs from Tx773 x LH82 and 125 RILs from Tx773 x 

PB80 (538 RILs in total) were grown along with four counts from each parental line in 

2021 ; generation was reached up to F8 in 2021 (Table 1). 

Table 1 Number of RILs belonging to each sub-population across years, phenotypic 

measurements and growing environments. 

 2018 2019 2020 2021 

Tx773 x LH195 67 235 252 254 

Tx773 x LH82  64 66 158 159 

Tx773 x PB80  37 41 130 125 

Phenotypic 

measurements DTA, DTS DTA, DTS 

DTA, 

DTS 

DTA, DTS,  

Lesion mimic 

Environment 
TX, IA and 

WI 

TX, IA and 

WI TX TX, WI and GA 

*TX, IA, WI and GA are Texas, Iowa, Wisconsin and Georgia respectively. DTA and 

DTS are days to anthesis and silking respectively. Only lesion mimic phenotype was 

observed in GA. 

Growing Areas and Trait Evaluation 

In 2018, 178 RILs were grown in College Station, TX, Ames, IA and Madison, WI with 

planting times of March 28th in TX (both reps in TX), May 8th (first rep in IA), June 1th 
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(second rep in IA) and May 29th in WI (both reps in WI). In 2019, 342 RILs were grown 

again in the three locations with the planting times of April 3th (both reps in TX), May 

16th (first rep in IA), June 6th (second rep in IA) and May 13th  (both reps in WI). In 

2020, 540 RILs with enough seed were grown in College Station, TX planted March 17th 

(both reps in TX). In 2021, same 538 RILs, which were grown in 2020, were also grown 

in College Station, TX and Madison, WI with the planting time of March 22th in TX 

(both reps in TX) and May 28th (both reps in WI). One rep was grown in Athens, GA 

with the planting time of first week of April in 2021. (Figure 2). A randomized complete 

block design with two replicates were used in all environments across 2018 to 2021 with 

one replicate in Georgia in 2021.  

All environment flowering times (days to anthesis and silking: DTA and DTS) 

were collected except for Georgia in 2021. DTA and DTS were recorded as days from 

planting to time to 50% of the plants in a plot had anthers or silks respectively. An 

intense lesion mimic mutant was also observed segregating in the population and scored 

on a one to five scale. 538 RILs were scored for lesion mimic mutant phenotype in 

College Station, TX, Athens, GA (one rep) and Madison, WI in only 2021. An example 

of the scoring used is in Figure 3.  

Statistical Interference 

All model components were chosen random using Restricted Maximum Likelihood 

(REML) in LME4 package in R (Bates, Mächler, Bolker, & Walker, 2014). Two models 

were used to analyze the flowering times and the lesion mimic phenotype. The first 

model was the single environment model based on equation 1 as follow:  
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Figure 2 A-) Growing areas were given with their longitude and latitude information. B-

) the population structure derived from genotype by sequencing data. 

 

𝑦 = µ +  𝑋𝑔 + 𝑍𝑏 + 𝑇𝑟 + 𝑊𝑖 +  휀     [Equation 1]  

Where 𝑦 is the response vector of flowering times (days to anthesis; DTA and silking; 

DTS), µ is grand mean, 𝑔 is the vector of recombinant inbred lines (𝑔 ~ 𝑁𝐼𝐷(0, 𝜎𝑔
2)), 𝑏, 

𝑟 and 𝑖 are replication (𝑏 ~ 𝑁𝐼𝐷(0, 𝜎𝑏
2)), range (𝑟 ~ 𝑁𝐼𝐷(0, 𝜎𝑟

2)) and row  

(𝑖 ~ 𝑁𝐼𝐷(0, 𝜎𝑖
2)) effects respectively, accounting for the randomized complete block 

design, 휀 is the vector of error (휀 ~ 𝑁𝐼𝐷(0, 𝜎2)). 𝑋, 𝑍, 𝑇 and 𝑊 are incidence matrices. 
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Figure 3 A-) lesion mimic severity; severity level increased from 1 to 5 and used in 

College Station, TX, Athens, GA and Madison, WI in 2021. B-) Appearance of lesion 

mimic mutant based on plot level. C-) Appearance of lesion mimic mutant based on leaf 

level. 

 Heritability (hs) was estimated based on single environment model as follows (Equation 

2): 

hs =
𝜎𝑔

2

𝜎𝑔
2+

𝜎𝜀
2

𝑛𝑜.𝑜𝑓 𝑟𝑒𝑝𝑠

 [Equation 2] 

The second model is the multiple environments model based on equation 3 as follow: 

𝑦 = µ +  𝑋𝑔 + 𝑍𝑏 + 𝑋 ∗ 𝑍(𝑔 ∗ 𝑏) + 𝑇𝑟 + 𝑊𝑖 + 𝜃𝑙 +  휀   [Equation 3]

 Where 𝑦 is the response vector of flowering times (days to anthesis; DTA and 

silking; DTS and lesion mimic phenotype), µ is grand mean, 𝑔 is the vector of 

recombinant inbred lines (𝑔 ~ 𝑁𝐼𝐷(0, 𝜎𝑔
2)); 𝑏 is the environments (𝑏 ~ 𝑁𝐼𝐷(0, 𝜎𝑏

2)); 𝑔 ∗
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𝑏 is the interaction terms between RILs and environments ((𝑔 ∗ 𝑏 ~ 𝑁𝐼𝐷(0, 𝜎𝑔∗𝑏
2 )); 𝑟, 𝑖 

and 𝑙 are replication (𝑟 ~ 𝑁𝐼𝐷(0, 𝜎𝑟
2)), range (𝑖 ~ 𝑁𝐼𝐷(0, 𝜎𝑖

2)) and row 

(𝑙 ~ 𝑁𝐼𝐷(0, 𝜎𝑙
2)) effects respectively, accounting for randomized complete block design, 

휀 is the vector of error (휀 ~ 𝑁𝐼𝐷(0, 𝐼𝜎2)). 𝑋, 𝑍, 𝑇, 𝑊𝑎𝑛𝑑 𝜃 are incidence matrices. The 

multiple environment model was run separately for 2018, 2019 and 2021 because the 

number of lines were different and at different generations. TX, IA and WI environments 

were available in 2018 and 2019 while TX, WI and GA were available in 2021. 

Heritability (hm) was estimated based on the multiple environment model as follows 

(Equation 4):  

hm =
𝜎𝑔

2

𝜎𝑔
2+

𝜎𝑔∗𝑏
2

𝑛𝑜.𝑜𝑓 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠
+

𝜎𝜀
2

𝑛𝑜.𝑜𝑓 𝑟𝑒𝑝𝑠∗𝑛𝑜 𝑜𝑓 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠

 [Equation 4] 

Genotyping  

In total, genome wide data of 450 RILs (out of 530 RILs) were sequenced using 

SkimSeq technique (Scheben, Batley, & Edwards, 2017). This was conducted by 

genotyping by sequencing data (GBS) using a NovaSeq 6000 sequencing platforms 

(https://www.illumina.com/systems/sequencing-platforms/novaseq.html). Single 

nucleotide (SNP) were called using the DRAGEN pipeline at TxGen in that Zm-B73-

REFERENCE-NAM-5.0 were used as reference genome (Johnson, 2019). In total 

559,288 SNP and InDel calls were generated from the raw sequence.  

Genome Wide Association Study 

To map the loci controlling the PAF, differences of flowering days of RILs 

between TX and WI, and TX and IA were used as phenotype data accounting for PAF 

https://www.illumina.com/systems/sequencing-platforms/novaseq.html
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the genome wide association study (GWAS). To minimize the field spatial and 

environmental variation, best linear unbiased prediction (BLUP) derived flowering times 

were used from the models described above [Equation 1 and 3] as suggested by (Kump 

et al., 2011).  

GBS data was filtered as follows: (i) all heterozygote calls were treated as 

missing, (ii) markers with higher than 20 percent missing values were removed, (iii) 

markers with lower than 5 percent minor (secondary call) allele frequency were 

removed. After filtering 39,611 SNPs were retained and were used in GWAS. GWAS 

was conducted in GAPIT (version 3) by implementing MLM (including PCA + K) and 

GLM (including K) models in R (X. Liu, Huang, Fan, Buckler, & Zhang, 2016; Jiabo 

Wang & Zhang, 2021). Two Bonferroni correction were applied as -log(0.01/ no. of 

markers) and -log(0.05/no of markers). The false positive discovery rate was also set as 

5. Three types of thresholds were used in discovery of loci linked to phenotype of 

interest. LD heatmap package were used to visualize and determine the LD region 

around the discovered loci and used in the determination of candidate genes (Shin et al. 

2006).  

QTL Mapping 

Quantitative trait locus(QTL) mapping was also run for the lesion mimic mutant 

phenotype to identify QTL intervals linked to lesion mimic separately in TX, WI and 

GA. IciMapping software was used to run QTL (L. Meng, Li, Zhang, & Wang, 2015). 

First each marker in filtered hapmap format GBS (explained in Genome Wide 

Association Study) data was converted into A and B codded GBS data. The allele was 
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coded A if it belonged to Tx773 (LAMA), while B was coded if the others belonged to 

LH195, LH82, or PB80. Linkage groups as centimorgan were constructed by “By 

Anchor Only” setting, and the marker were ordered depending on their physical 

locations by the “By Input” function. Then MAP function of IciMapping were used to 

run the QTL analysis for three lesion mimic phenotypes belonging to TX, WI and GA.  

Genomic Prediction 

Genomic prediction was conducted using the rrBLUP package in R (Endelman, 

2011) to predict the PAF as well as flowering times. In the first genomic prediction, PAF 

was calculated as the differences of flowering times (both DTA and DTS) of RILs 

between TX and WI, and TX and IA. Then PAF was predicted using the genome wide 

markers in rrBLUP in that 65 percent of total RILs were used tested RILs and hold-out 

35 percent RILs were used as untested RILs. After this model was trained, tested and 

untested RILs were predicted, and correlation between predicted and actual breeding 

values of flowering times were used as two types of predictions. In the second genomic 

prediction, flowering times of RILs grown in TX were used to train the model and 

flowering items were predicted in WI and IA. 65 percent of total RILs were used as 

tested RILs and hold-out 35 percent RILs were used as untested RILs. After the model 

was trained, tested and untested RILs were predicted in TX, WI and IA. Correlation 

between predicted and actual breeding values of flowering times were used as a 

prediction ability. In addition, environmental parameters (given below in Environmental 

Modelling) from planting to the first 100 days after planting were merged with GBS data 
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to run the second genomic prediction to examine the contribution of environmental 

parameters on the prediction of flowering times.  

Environmental Modelling 

To understand the environmental parameters causing the PAF, eleven 

environmental parameters were obtained from the National Oceanic and Atmospheric 

Administration National Centers for Environmental Information 

(https://www.ncdc.noaa.gov/). These environmental parameters were temperature 

(minimum, average and maximum; °C), dew point (minimum, average and maximum; 

°C), humidity (minimum, average and maximum, %), wind speed (minimum, average 

and maximum; mph), atmospheric pressure (minimum, average and maximum; 

millibars), precipitation (cm), photoperiod (day light as hours). From these, the diurnal 

temperature range  (𝑇𝑒𝑚𝑝𝑚𝑎𝑥 − 𝑇𝑒𝑚𝑝𝑚𝑖𝑛), growing degree days (
𝑇𝑒𝑚𝑝𝑚𝑎𝑥+𝑇𝑒𝑚𝑝𝑚𝑖𝑛

2
−

𝑇𝑏𝑎𝑠𝑒; 𝑇𝑏𝑎𝑠𝑒 𝑖𝑠 10°C ), and photothermal time (𝐺𝐷𝐷 ∗ 𝑝ℎ𝑜𝑡𝑜𝑝𝑒𝑟𝑖𝑜𝑑) were calculated. 

The environmental models were used as predictors to classify the environments. Mean 

DTA was calculated by the multiple environments model (equation 3) and 

environmental parameters from planting date to the mean DTA for each environment 

(TX, WI and IA) were used as predictors while TX, WI and IA were used as dependent 

variables. A random forest algorithm was used to classify the environments based on the 

environmental variables using the 10-fold with three repeat cross validation in caret 

package in R. mtry vale was set 4 while ntree was set as 1500. Variable importance 

scores (varImp) were calculated to identify the most important environmental parameters 

causing PAF, and partial dependence plots were used to visualize the probability of 

https://www.ncdc.noaa.gov/
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environments depending on changing environmental parameters with high variable 

importance scores using edarf package in R. 

Results 

Variance Component Results 

Results for flowering times 

In the single environment model (equation 1), pedigree (RILs) always explained 

the highest variance for DTA and DTS, changing between ~ 68 to 89 percent of total 

variation in TX and WI but between ~27 to 53 percent of total variation in IA (caused by 

different plating times of replications) across four years (2018 to 2021). Broad-sense 

heritabilities were calculated between ~0.80 to 0.93 for DTA and DTS across four years 

(Figure 4). Overall, DTA was slightly more heritable (Figure 4). In the multiple 

environment model (equation 3), pedigree (RILs) explained the ~40 percent of total 

experimental variance in 2018 and ~50 percent in 2021 but explained only ~10 percent 

in 2019. This was because the environment explained ~75 percent of total experimental 

variance in 2019, by far higher than those in 2018 (~40 percent) and 2021 (~1 percent) 

(Figure 4). Because variation due to environment alone is not included in calculation, 

heritability ranged between ~0.74 to ~0.92 in the multiple environment model (Figure 

4). Different planting times were practiced across years thus RILs were exposed to 

different environmental parameters in each year that allowed capture of PAF, a genetic 

by environmental interaction. Differences in planting dates resulted in late flowering 

caused by PAF to reach up to ~20  and ~9 days in WI and IA respectively in 2019 

(Figure 5). So, 2019 was considered the best year to dissect PAF in GWAS. 
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Figure 4 A-) explained percent variation by each component of single environment 

model by equation 1 for days to anthesis (DTA) and silking (DTS). B-) Explained 

percent variation by each component of single environment model by equation 3 for 

DTA and DTS. Black round is R-squared for each model while white triangle is 

heritability value calculated by equation 2 and 4 for single and multiple environments 

models respectively.  

 

Results for lesion mimic phenotype 

Lesion mimic phenotypes were evaluated using the multiple environment model 

(Equation 3) to assess the heritability and genotype by environment interactions. 

Pedigree (RILs) explained the 40 percent of total variation followed by 16 percent by 

pedigree environment interaction. Heritability was calculated as 0.76 for the lesion 

mimic phenotype. Lesion mimic phenotypic values of RILs were visualized across TX, 

GA and WI (Figure 6). Overall, individual RILs showing the lesion mimic phenotype 

were consistently observed in three environments, although their specific scoring 
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differed. Although the majority of lesion mimic plants were seen in the Tx773 x LH195 

population, none of the four parents showed the lesion mimic in any environment.  

 
Figure 5 A-) Flowering times of days to anthesis (DTA) and silking (DTS) of RILs 

across four years. B-) Expanded panel to show flowering times of DTS in 2019, the most 

discriminatory environment; the latest flowering was observed in 2019.    

 

 

Figure 6 A-) Lesion mimic percent variation explained by the multiple environment 

model (Equation 3). Black diamond, round and triangle are heritability, Rsquared and 

root mean square error respectively. HS, MR and HR are highly susceptible, moderate 
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resistance and highly resistance. HS was considered if the score was higher than 4 in 

each environment and colored red. 

Results of Environmental Modelling 

Random forest classification was performed within years and across years. In 

2019, when PAF was observed most strongly, random forest prediction had an accuracy 

of 0.86 with 0.78 Kappa coefficient value over all environmental parameters used as 

predictors. This high accuracy and Kappa coefficient were the indicators of accurate 

classification results. Variable importance scores showed that photoperiod, air pressure, 

wind speed, humidity and PTT were nominated the most important environmental 

parameters (Figure 7A). Daylength with more than 14 hours and air pressure lower than 

990 millibars were nominated as the environmental characteristics of WI and IA in 2019 

that caused the PAF (Figure 7B). 

 

Figure 7 A-) variable importance scores (varImp) of environmental parameters provided 

by random forest algorithm, B-) partial depended plot shows the probability of TX, IA 

and WI for 2019 based on values of environmental parameters. Number on the top of 

environmental parameters show the importance ranks determined by varImp. 
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Loci Discovered the Photoperiod Associated Flowering 

Genome wide association nominated several loci associated with PAF. PAF 

estimates for each RIL were calculated between TX and IA, TX and WI for DTA and 

DTS in 2019, and associated with GBS through the MLM and GLM model. PAF 

calculated in 2021 between TX and WI were also associated with GBS to examine the 

consistency in terms of discovery of same loci across years (Figure 8 and 9). Genomic 

regions associated with PAF were visualized in figure 12; LD regions (>0.8) around the 

markers controlling the PAF nominated two regions each in chromosome 1, 9 and 10, 

and one region in chromosome 4 and 7 (Figure 12). Markers associated with PAF are 

given in Table 1A.  

 

Figure 8 Manhattan plot shows the loci linked to photoperiod associated flowering 

(PAF) of days to anthesis (DTA) in 2019 and 2021. A-) Manhattan plot for PAF between 

IA and TX in 2019. B-) Manhattan plot for PAF between WI and TX in 2019 and C-) 

Manhattan plot for PAF between WI and TX in 2021. 
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Figure 9 Manhattan plot shows the loci linked to photoperiod associated flowering 

(PAF) of days to silking (DTS) in 2019 and 2021. A -) Manhattan plot for PAF between 

IA and TX in 2019. B-) Manhattan plot for PAF between WI and TX in 2019 and C-) 

Manhattan plot for PAF between WI and TX in 2021. 

 

Genome wide association study were also conducted for the flowering times 

(DTA in DTS) of 2019, and there were no associated loci discovered in TX, but 

discovered in WI and IA (Figure 10 and 11). The loci discovered in WI and IA were also 

consistent with the loci discovered for PAF.  
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Figure 10 Manhattan plot shows the loci linked to days to anthesis (DTA) in 2019. A-) 

Manhattan plot for DTA of TX in 2019. B-) Manhattan plot for DTA of IA in 2019 and 

C-) Manhattan plot for DTA of WI in 2019. 

 

 

Figure 11 Manhattan plot shows the loci linked to days to silking (DTS) in 2019. A-) 

Manhattan plot for DTS of TX in 2019. B-) Manhattan plot for DTS of IA in 2019 and 

C-) Manhattan plot for DTS of WI in 2019. 

 

Genomic Prediction Results for Flowering Time and Photoperiod Associated Flowering 

Flowering times (DTA and DTS) were predicted with genome wide markers by 

training the genomic prediction model in TX and predicting the flowering times in IA 

and WI to select RILs that had no PAF, causing the late flowing in WI and IA in 2019. 

Flowering times were predicted with ~0.77 accuracy in TX and 0.47 in both IA and WI 

for tested RILs (used in training model), however there were ~0.01 percent increases 

(~0.78 in TX and ~0.48 in WI and IA) in prediction of flowering times of tested RILs 

when genomic and weather data used together (Figure 13A). Flowering times were 

predicted between 0.10 to 0.16 for untested RILs in TX, IA and WI and combined data 

(genome and weather data) did not increase the prediction ability (Figure 13A). 
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Figure 12 Zoom-in Manhattan plots of associated genomic regions with delayed 

flowering in 2019 and 2021. 

 

PAF were predicted using genome wide markers. PAF of DTA, which were 

calculated between WI and TX, were predicted with an accuracy of ~0.81 and ~0.20 for 

tested and untested RILs (Figure 13B). PAF of DTA, which were calculated between IA 

and TX, were predicted with the prediction accuracy of ~0.91 and ~0.24 for tested and 

untested RILs. PAF of DTS, were calculated between WI and TX, were predicted with 

the prediction accuracy of ~0.93 and ~0.27 for tested and untested RILs. PAF of DTS, 

which were calculated between IA and TX, were predicted with the prediction accuracy 

of ~0.95 and ~0.33 for tested and untested RILs (Figure 13B).  
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Figure 13 Genomic prediction results for flowering times across three environment and 

photoperiod associated flowering. A-) Results of the first genomic prediction model 

where flowering times were trained in Texas (TX) and predicted in Iowa (IA) and 

Wisconsin (WI). B-) Results of the second genomic prediction model where photoperiod 

associated flowering (photoperiod sensitivity) were calculated between TX and WI, TX 

and IA. DTA and DTS are the days to anthesis and silking respectively. 

 

Locus Discovered for the Lesion Mimic Phenotype 

The lesion mimic phenotype was associated with genome wide markers that 

nominated the locus 70,643,531 base pairs (based Zm-B73-Refgen-NAM-5.0) on 

chromosome 7 (Figure 14A, 14B and 14C). This locus was discovered consistently in 

TX, WI and IA. The locus segregated at this position for Adenine (A) and Guanine (G) 

in that A cause the lesion mimic mutant phenotype while G had a normal leaf 

appearance. The adenine (A) allele is supplied by LH195 parent while PB80, LH82 and 

Tx773 parents had the G allele. The RILs haplotypes segregating in terms of this locus 

were also contrasted, and resulted in that RIL haplotypes with A had higher score of 
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lesion mimic mutant than those with G (Figure 14D). The locus explained the 20, 37 and 

46 percent of the lesion mimic phenotype in WI, IA and TX respectively.  

Discussion 

Maize flowering times differ for the male (silking, DTS) and female (anthesis, 

DTA) organs but both tend to be well correlated across genotypes. DTA and DTS are 

polygenic traits in maize (Boyle, Li, & Pritchard, 2017; Buckler et al., 2009; Chardon et 

al., 2004; Xin Li et al., 2018; Y. x. Li et al., 2016; Salvi, Castelletti, & Tuberosa, 2009; 

J. Xu et al., 2012), and show high plasticity across different latitudes and altitudes 

(Kusmec, Srinivasan, Nettleton, & Schnable, 2017; Xin Li et al., 2018; Y. x. Li et al., 

2016); but remain relatively heritable traits, with low GxE and error in most germplasm 

across all conditions (Buckler et al., 2009; Navarro et al., 2017). 
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Figure 14 Manhattan plots for lesion mimic phenotype. A-) Manhattan plot results fir 

TX, B-) Georgia and C-) Wisconsin. D-) haplotype comparison between RILs having 

adenine (A) and guanine (G). E-) QTL analysis revealed the QTL intervals of genomic 

region linked to lesion mimic on chromosome 7. 

 

A constant flowering time, reflecting insensitivity to environmental changes 

across different altitude and latitude, is an important selection standard in maize 

breeding; critical for temperate breedings program to introduce tropical derived inbreds 

to northern environments. Photoperiod (also known as day length) is a primary trigger of 

flowering time in maize causing late flowering under long day circumstances (Buckler et 

al., 2009; C. Huang et al., 2018; Hung et al., 2012; Xin Li et al., 2018; Teixeira et al., 

2015; Q. Yang et al., 2013). Yet various other environmental parameters have an impact 

on flowering (Briggs, McMullen, Gaut, & Doebley, 2007; D. Li et al., 2016) that require 

further investigation. Therefore, this study also aimed to discover environmental 

parameters that lead the late flowering and discover genomic regions that control the late 

flowering. 

Key Environmental Factors Triggering Late Flowering 

Photoperiod (also known as day length) is the best identified environmental 

factor leading the late flowering in maize; especially tropical maize germplasm which 

has propensity to flower late under long day circumstance (>13.5h day light) (Teixeira et 

al., 2015). Photoperiod was the primary factor nominated by the random forest 

classification in this study (Figure 7A) and ~14 hour was proposed as critical threshold; 

greater than 14 hours represent WI and IA environments where late flowering was 

observed (Figure 7B). Air pressure was nominated second most important environmental 

parameters leading the late flowering, which was unexpected. There is a reverse 
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correlation between altitude and atmospheric pressure (air pressure); WI and IA had 

higher elevation than TX meaning that WI and IA had lower atmospheric pressure than 

TX across growth period of RILs. It might be speculated that gas exchange between air 

and plant was affected adversely; rate of CO2 intake reduced that caused decrease in rate 

of photosynthesis resulting in delay in crop growth. Overall, flowering time was delayed 

because of extended vegetative stage referring the maladaptive syndrome of tropical or 

tropical derived maize (Teixeira et al., 2015).  

This study examined the late flowering of tropical derived RILs across different 

latitudes to select the most stable (least plastic) RIL candidates to introduce the novel 

genetic resources that are supplied by the tropical parent (Tx773). The genotype by 

environment effect explained smaller percent of phenotypic variation of flowering times 

as compared to environmental main effects that explained majority of percent of 

phenotypic variation of flowering times (Figure 4). That result underlines the importance 

of change in environmental parameters that were nominated by random forest 

classification (Figure 7). Allelic variation was tried to maximize by using three different 

linkage population in this study, and response of genome wide markers allowed us to 

predict late flowering (caused by Tx773) positively that was driven by changes in 

environment parameters from TX to IA and WI (Figure  13). Overall, we can nominate 

the most stable (least plastic) RILs across three environments. Thus, these candidate 

RILs has a potential to enhance the genetic diversity of temperate adapted germplasm. 

Determining Candidate Genes Linked to PAF 
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FLOWERING LOCUS (aka, FT) genes are well studied gene families 

(phosphatidylethanolamine-binding (PEBP) genes) in Arabidopsis and FT-like genes 

contribute the flowering times in maize (Danilevskaya, Meng, Hou, et al., 2008; X. 

Meng et al., 2011; Pin & Nilsson, 2012). One of the well-known FT-like genes, ZCN8,  

act as floral activator coding florigen hormone in maize, and involves the photoperiod 

sensitivity related flowering in maize (X. Meng et al., 2011). We discovered a locus 

(chr8: 127,275,201) that is ~0.5 kb away from ZCN8 (chr8:126,678,560..126,680,664, 

Zm-B73-Refgen-NAM-5.0) gene in our GWAS results only in 2021 with the ~4.0 p-

values and explained 3 percent variation of PAF of DTA between WI and TX that 

corresponded to ~ 1 day PAF. ZCN8 was only discovered in 2021 plausibly because 433 

RILs were used in 2021 GWAS analysis, which allowed greater statistical power to 

detect the ZCN8. In contrast 290 RILs were used in 2019 which may have been too few 

to discover ZCN8 from noise, though it is also possible that environmental variation or 

the effects of other large loci masked ZCN8. The PEBP gene family is diverse gene 

family that harbors many (26) known flowering related genes in maize, PEBP genes 

were used primary source in this study to compare our GWAS hits based on most 

updated reference genome of maize (Zm-B73-Refgen-NAM-5.0). One GWAS hit was 

discovered on 111,884,305 bp on chromosome 10 in 2019 (Figure 8, 9 and 10), and 4.6 

kb away from ZCN5 (chr10:116,536,722..116,538,239). This locus explained up to 10 

percent variation for DTA and DTS of TX-IA and TX-WI PAF and it corresponds to ~2-

day PAF in these location comparisons as well as in delayed flowering within locations 

(Figure 8, 9, 10 and 11). Another GWAS hit was discovered on 130,667,200 bp on 
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chromosome 10 in 2019 (Figure 8, 9,10,11), and 1.2 kb away from ZCN19 

(chr10:129,434,908..129,439,219). This locus explained up to 10 percent variation for 

DTA in TX-IA, and DTS in TX-AI and TX-WI and it also corresponds ~ 2-day PAF in 

these location comparisons as well as in delayed flowering within locations (Figure 8, 9, 

10 and 11).   

Another GWAS hit was discovered on 2,691,247 bp on chromosome 10 in 2019 

(Figure 8, 9,10,11 and 12), and 0.6 kb away from MYB69 (chr10:2,009,030..2,010,379). 

This locus explained up to 8 percent variation for DTA in TX-IA, and DTS in TX-AI 

and TX-WI and corresponding ~2-day PAF, in these location comparisons, as well as in 

delayed flowering within locations. MYB69 positively regulates the gibberellin synthesis 

in Arabidopsis (Song et al., 2012) that affect the FT-like gene under the different 

latitudes in maize (Li et al., 2016).  

Another GWAS was 93,292,309 on chromosome 10 that is ~2.8 kb away from 

one of ZmCCT (cct1: chr10:96,175,404..96,178,980) genes or PAF of DTA between TX 

and IA (Figure 8). ZmCCT was positionally cloned gene, and is considered one of the 

major loci involved in PAF in maize. The ZmCCT allele in teosinte expressed at high 

level and cause late flowering under long day circumstances (Dong et al., 2012; Hung et 

al., 2012). This GWAS hit explained 8 percent variation with p value of 4.5 and it 

corresponds ~1.4-day flowering delay for DTA between TX and IA in 2019. 

The most consistent major GWAS hit across all locations and years for late 

flowering is 246,319,812 bp on chromosome 1 and is ~ 1 kb away from the ID1 gene 

(chr1:245,247,265..245,251,918), explaining ~8 percent phenotypic variation 
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corresponding 2.1 day PAF in this study as well as in delayed flowering within 

locations. ID1 is responsible for encoding zinc transcription factor and expressed in 

immature leaves (Coneva, Zhu, & Colasanti, 2007; Dong et al., 2012), and a mutant 

(loss-of-function) id1 triggers the production of more leaves and cause late flowering 

along with abnormal floral organs (Colasanti et al., 1998; Coneva et al., 2007). This 

indicates that ID1 is related to autonomous pathway of flowering times and aids the 

transporting of ZCN8 from leaves to phloem, which is not controlled by photoperiod 

(Coneva et al., 2007; Dong et al., 2012; Wong & Colasanti, 2007). This was strongly 

supported in our study that our GWAS peak corresponding to ID1, was discovered in 

2019 and 2021 for both DTA and DTS consistently (Figure 8, 9,10,11 and 12) in TX, WI 

and IA, and supporting that this peak was not affected by photoperiod or other 

environmental factors since it is related to floral induction in autonomous pathway of 

regulation flowering time. Our another major GWAS hit was 76,074,057 on 

chromosome 4 explaining ~10 percent of phenotypic variation of PAF corresponding to 

~2.4 days as well as late flowering; the LD region (extending from ~76,100,000 to 

76,300,000 kb with >.80 R2) of this hit was given in Figure 12; GRMZM2G031846 

(chr4:76,027,784..76,034,921) is the only gene in this LD region that was not previously 

reported involving any of conceptual regulatory network of flowering time in maize 

(Dong et al., 2012). Another major GWAS hit is located on 53,979,643 bp on 

chromosome 9 and located in LD extending ~53,000,000 bp to ~ 54,300,000 bp on 

chromosome 9 (Figure 8, 9,10,11 and 12). This GWAS hit explained the ~12 percent 

variation corresponding ~2.6 days PAF delayed flowering as well as late flowering. 
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GRMZM2G001454 (chr9:54,000,483..54,029,870) is located in this LD and coding the 

putative RING zinc finger domain super family protein, Another gene within LD of this 

SNP is GRMZM2G319760 (chr9:53,179,359..53,192,366) a gene with unknown 

function. Based on our literature review, these two candidate genes have not been 

previously reported for flowering or delayed flowering related function involving any of 

conceptual regulatory network of flowering time in maize as described in (Dong et al., 

2012). Another GWAS hit is located on 77,795,828 bp on chromosome 7 explaining the 

~ 9 percent of PAF and corresponding ~ 2.1 days PAF as well as late flowering (Figure 

8, 9, 10 ,11 and 12). This GWAS was not previously associated with flowering pathway 

in maize before.     

When major SNPs discovered for PAF, these 7 SNPs (2,691,247 bp, 111,884,305 

bp, 130,667,200 bp on chromosomes 10; 246,319,812 bp on chromosome 1; 76,074,057 

bp on chromosome 4; 53979643 bp on chromosome 9; 77795828 bp on chromosome 7) 

loci could explained up to 63 percent variant of PAF combined corresponding 15.2  days 

PAF, however, there might be some overfitting (Beavis, 2019). These loci and genes 

have potential to manipulate late flowering; using these loci in a KASP (Kompetitive 

Allele-Specific PCR) assay has the potential to develop maize lines without late 

flowering in temperate maize breeding program locations where late flowering cannot be 

accurately separated from PAF observed/scored visually. In addition, late flowering 

were predicted using genome wide markers (Figure 13); so that RILs, which were 

predicted in terms of showing least/no late flowering, can be used as novel genetic 

sources in a maize breeding program. 
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Determining the Candidate Genes Linked to Lesion Mimic Phenotype  

Lesion mimic mutants (denoted les and Les for recessive or dominant allelic 

state) are very diverse maize mutants that usually display diverse phenotypes similar to 

maize diseases (Johal, Hulbert, & Briggs, 1995; Neuffer, Jones, & Zuber, 1968). Lesion 

mimic mutants are likely controlled more than 200 loci (Walbot, 1991); however, 

several have been cloned or mapped so far. For example, lethal leaf spot 1 (lls1) and Rp1 

(Resistance to P sorghi-D21) are the mutants providing resistance against to 

Cochliobolus heterostrophus and Puccinia sorghi infections in maize (Hu, Richter, 

Hulbert, & Pryor, 1996; Simmons, Hantke, Grant, Johal, & Briggs, 1998; S. M. Smith, 

Steinau, Trick, & Hulbert, 2010). 32 Les mutants were mapped previously; of those  

Les2, Les5, Les-2552 and lls1 are located on short arm of chromosome 1; Les7 is located 

on long arm of chromosome 1, Les1, Les11 and Les15 are located on short arm of 

chromosome 2; Les4 and Les10  are located on long arm of chromosome 2; Les14, Les17 

are located on long arm of chromosome 3; Les13 is located on long arm of chromosome 

6; Les9 is located on short arm of chromosome 7; Les8 is located on short arm of 

chromosome 9; Les3 is located on long arm of chromosome 10; Les6, Les12, Les16 and 

rp1 are located on short arm of chromosome 10 (Johal et al., 1995; Neuffer et al., 1968). 

Most of those mutants were obtained by EMS (Ethyl methanesulfonate) or mutator (a 

transposable element in maize) and they were dominant except for Rp1 and lls1(Johal et 

al., 1995; Neuffer et al., 1968). Les genes are known to be responsible for the 

programmed cell death (Bruggeman et al., 2015). Especially, Les4, Les10 and Les17 

mutants had diverse differentially expressed genes as compared to their wild type (not 
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carrying Les allele) that were responsible for defense related genes in maize (X. Mu et 

al., 2021). These results imply that Les mutants activate the plant defense against to 

disease in early stages of infection. Novel source of Les mutants are valuable for 

dissecting and underlying the resistance mechanisms against to diseases in maize. Our 

GWAS hit for lesion mimic is located on 70,643,531 bp on chromosome 7; only Les9 

was mapped on the chromosome 7 near to ra1 gene (chr7:114,958,643..114,959,398) but 

that is ~45,000,000 bp away from the our GWAS hit and not within the QTL interval 

given in Figure 12. Allelic segregation of our GWAS hit across RILs showed that 

Adenine (A) provided by LH195 parent contribute the lesion mimic mutant and Guanine 

(G) provided by other parents cause the normal phenotype (Figure 15). In addition, we 

did not observe any lesion mimic mutant phenotype in any of the hundreds of maize 

hybrids that have been made from these lines (data not shown) in 2020 or 2021. Overall, 

this lesion mimic is likely a novel spontaneous lesion mimic phenotype supplied by 

LH195 parent showing recessive inheritance.    
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Figure 15 Marker effects (zero center) across calculated by rrBLUP all chromosomes in 

A-) Texas, B-) Georgia and C-) Wisconsin. GWAS hit discovered for lesion mimic 

phenotype (70,643,531 bp) on chromosome 7 had negative marker effects across three 

environments.   

 

Candidate genes were scanned within the 5 kb proximal region (Wallace et al., 

2014) within the given LD (Figure 14). Zm00001eb308050 (chr7:69369648..69372362), 

Zm00001eb308070 (chr7:69475864..69477768), Zm00001eb308090 

(chr7:69884969..69885647), Zm00001eb308100 (chr7:70151131..70156945), 

Zm00001eb308110 (chr7:70325754..70326263), Zm00001eb308120 

(chr7:70627651..70635362) and Zm00001eb308130 (chr7:70754766..70766777) are 

located in the LD and given in Figure 14. These candidate genes were positioned in 

reference genome 5 of maize (Zm-B73-Refgen-NAM-5.0) and their function are 

unknown; each these genes have a potential to govern the lesion mimic mutant in maize; 

function of these genes might shed the light on elevating the early plant defense 

mechanism in maize when their functions are revealed and used in marker assisted 

selection. 
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CHAPTER II  

VALIDATION OF FUNCTIONAL POLYMORPHISMS AFFECTING MAIZE 

PLANT HEIGHT BY UNOCCUPIED AERIAL SYSTEMS DISCOVERS NOVEL 

PHENOTYPES1 

Plant height (PHT) in maize has been subjected to many phenomic and genomic 

investigations since it influences plant architecture and agricultural performance, relating 

to other agronomically and economically significant traits in maize (Zea mays L.) 

(Anderson et al., 2019; Farfan, Murray, Labar, & Pietsch, 2013; Lima, de Souza, Bento, 

De Souza, & Carlini-Garcia, 2006; Peiffer et al., 2014; Sari-Gorla, Krajewski, Di Fonzo, 

Villa, & Frova, 1999; Sibov et al., 2003). A key component of success to the green 

revolution was the manipulation of PHT in wheat (Triticum spp.) and rice (Oryza Sativa) 

through the introduction of dwarf loci, initially used as a breeding strategy to maintain 

grain yield lost through lodging (Khush, 2001; J. Peng et al., 1999). However, an 

important postscript has been that taller PHT leads to better yields in a number of cereal 

crops including rice (Y. Zhang et al., 2017), sorghum (S. C. Murray et al., 2008; Shukla, 

Felderhoff, Saballos, & Vermerris, 2017), wheat (Navabi, Iqbal, Strenzke, & Spaner, 

2006), and maize (Farfan et al., 2013); as long as lodging can be avoided. Specifically, 

 

1 This is an open access article distributed under the terms of the Creative Commons CC BY 

license, which permits unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly cited as follows: 

Adak, A., Conrad, C., Chen, Y., Wilde, S. C., Murray, S. C., Anderson II, S. L., & Subramanian, 

N. K. (2021). Validation of functional polymorphisms affecting maize plant height by 

unoccupied aerial systems discovers novel temporal phenotypes. G3, 11(6), jkab075. 

https://doi.org/10.1093/g3journal/jkab075  
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(Farfan et al., 2013) found that manual measured terminal PHT was positively correlated 

(r = 0.61) with grain yield in commercial hybrids over subtropical environments. They 

proposed that an optimal taller PHT is a desirable maize ideotype with respect to yield, 

especially under subtropical heat and drought stress, as long as lodging is not an issue. 

The wealth of studies on maize PHT has demonstrated the complexity, dynamic pattern, 

and polygenic inheritance of this trait; a trait governed by a large number of loci but with 

minor effects (Peiffer et al., 2014; Wallace et al., 2016a; Xiaqing Wang et al., 2019). 

Thus far at least 219 quantitative trait loci (QTLs) have been identified as controlling the 

PHT in maize (http://archive.gramene. org/qtl/). Very few of these to our knowledge 

have been confirmed as QTL in independent studies across different genetic 

backgrounds and environments. In contrast, the large effect genes identified with maize 

PHT have been associated with novel mutant alleles in hormone pathway genes; alleles 

rare or absent in landrace and elite cultivars because they are deleterious to plant fitness 

in nature. For instance, the dwarfing genes dwarf 8 and dwarf 9 encode DELLA 

proteins, which repress gibberellin (GA)-induced gene transcriptions in the absence of 

GA signaling (Lawit et al., 2010); the Dwarf3 gene (D3) of maize has significant 

sequence similarity to the cytochrome P450, which encodes one of the early steps in GA 

biosynthesis (Winkler & Helentjaris, 1995); brachytic2 mutants, the polar movement of 

auxins was hindered, which resulted in compact lower stalk internodes (Multani et al., 

2003), and nana plant1 effects brassinosteroid synthesis (Hartwig et al., 2011). That 

quantitative genetic loci discovered for PHT diversity still segregating in maize have not 

been cloned, let alone manipulated has likely been due to (i) limitations in detection 
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ability of height related QTLs in diverse structure of mapping populations (Y. Xu, Li, 

Yang, & Xu, 2017), (ii) different growth pattern under different plant architectures and 

genetic backgrounds (El-Soda, Malosetti, Zwaan, Koornneef, & Aarts, 2014; Pigliucci, 

2005), (iii) reaction norms across varying environments and genetic-by-environmental 

interactions (El-Soda et al., 2014; Gage et al., 2017), and (iv) antagonistic pleiotropy of 

major genes (Peiffer et al., 2014). This is likely compounded by the use of inbred lines in 

genetic mapping as opposed to testcrossed hybrids. Maize evolved as a heterogenous and 

heterozygous outcrossing species and inbred lines expose weakly deleterious alleles 

uncommonly exposed in nature which are detected but which heterosis in hybrids can 

again mask (J. Yang et al., 2017). Hybrids tend to reduce phenotypic variance, especially 

when topcrossed to a common tester. A genome wide association study (GWAS) on 

testcrossed hybrids made between a diversity panel and topcrossed to a line from the 

Stiff Stalk heterotic group (Tx714; (F. Betrán, Bockholt, Fojt III, Mayfield, & Pietsch, 

2004)) under variable management discovered three significant loci associated with both 

terminal PHT and yield (Farfan et al., 2015). These loci explained up to 5.6 cm per 

variant (4.6% of total), two of which (Chr2: 27,482,431kp and Chr7: 164,955,163 kp; 

maize refgen_v2) also ranged from 0.14 ton/ha to 0.59 ton/ha effects on grain yield 

(4.9% of total). While (Farfan et al., 2015) suggest possible candidate genes, they did not 

calculate the linkage disequilibrium (LD) from these single nucleotide polymorphisms 

(SNPs) or exhaustively examine linked candidates, which we do here in this article. The 

two candidate genes suggested by Farfan et al. (2015) include GRMZM2G035688 and 

GRMZM2G009320. GRMZM2G035688 is an important crop improvement gene in 
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maize that is responsible for arrangement the maize leaves around stem (referring the 

aberrant phyllotaxy (abph1) in maize) (Hufford et al., 2012; Jackson & Hake, 1999). 

GRMZM2G009320, a housekeeping gene and acts as a glycose-related enzyme, encodes 

the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzyme to regulate the 

energy metabolism in maize (Bustos, Bustamante, & Iglesias, 2008; X.-H. Zhang, Rao, 

Shi, Li, & Lu, 2011). Even if the metabolic and developmental-related functions of these 

genes have been identified, the temporal effect sizes of native alleles on phenotype 

across maize development stages and under different genetic populations remain 

unknown. Past GWASs have shown false positives due to cryptic population structure, 

familial relatedness, allele variants with low frequency or various allelic variants, as well 

as spurious associations between phenotypic variations and unlinked markers. For this 

reason, loci must be validated using different populations, environments (Larsson, 

Lipka, & Buckler, 2013), and, where relevant, growth stages. Next to transformation or 

gene editing, near isogenic lines (NILs) remain the standard for the validation of effect 

sizes of loci on phenotype, crucial for plant breeders and geneticists to measure effect 

sizes of these loci. Outside of (Farfan et al., 2015), hybrid maize populations have been 

used in relatively few other GWASs to discover SNPs. GWAS can comprise both 

additive and nonadditive SNP effects for the traits controlled by both overdominance 

and dominance conditions (Galli, Alves, Morosini, & Fritsche-Neto, 2020; Vidotti et al., 

2019; H. Wang et al., 2017; Warburton et al., 2015). So that validation of SNPs 

discovered in maize hybrid GWAS populations over multiple genetic backgrounds is 

important to find pure additive effects of candidate genes.(Y. Chen, 2016) found effects 
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consistent with (Farfan et al., 2015) in constructed recombinant inbred line (RIL) 

populations as both inbred and hybrids; however, due to various field issues, this study 

did not have enough power to determine significance. RILs were thus used as the basis 

for developing the heterogenous inbred families (HIFs), a type of NIL, tested in this 

study. In this study for the first time (i) validated the temporal loci effects, first 

discovered using hybrid genetic background in GWAS, in HIFs generated from different 

parental crosses; (ii) implemented an unoccupied aerial system (UAS) platform to detect 

temporal changing of these loci effects on PHTs of HIFs; (iii) examined epistasis 

between these two loci; and (iv) characterized genetic architecture of their pleotropic 

effects on flowering times. 

Materials and Methods 

Development of HIF Populations 

The two target SNPs were first validated to segregate across elite breeding lines 

by means of Sanger sequencing, as expected from the genotyping calls in the previous 

GWAS (Farfan et al., 2015). These calls were further confirmed using F1 hybrids on-

hand that were derived from these parents (Y. Chen, 2016). The primers for Sanger 

sequencing were developed by Primer 3 (Untergasser et al., 2012), using the B73 maize 

genome (Schnable et al., 2009) as reference; the primer information is provided in 

Supplementary Table S1. All polymorphisms within the linkage populations were 

identified using ClustalX 2.1 (Larkin et al., 2007). As a result, LH82, LAMA, Tx740, 

Ki3, and NC356 were used as parental lines in four linkage populations (Y. Chen, 2016) 

and HIFs since their genotyping calls were validated to segregate (Supplementary Figure 
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S1). The four linkage populations, segregating for the two SNPs of interest, were 

developed from crosses (1) LH82 LAMA, (2) Ki3 NC356, (3) NC356 Ki3, and (4) 

Tx740 NC356 (recurrent parent donor parent for populations 1 to 4), respectively, and 

selfed to generate F5 RILs (Y. Chen, 2016). RILs were selected based on having the 

desired donor SNPs on a mostly recurrent parent background and backcrossed to the 

recurrent parent to create F1 hybrids. First, F1 hybrids were further backcrossed with 

recurrent parents (four to five times) and selfed (three to five times) up to obtaining NILs 

as HIFs. Until obtaining NILs, both loci (SNP1: 27,482,431 kp in Chr2; SNP2: 

164,955,163 kp in Chr7 based on Maize Refgen_v2) were maintained as heterozygote 

calls in each population (seen as X: Y; i.e., donor allele: recurrent parent allele in 

Kompetitive Allele-Specific PCR (KASP) genotyping results (below and Figure 16). 

Second, individuals were selected in each population to have both opposite (XX: YY 

and/or YY: XX) and identical (XX: XX and/or YY: YY) to determine the HIFs within 

each population (Figure 16).  

DNA Extraction and KASP Genotyping of HIFs 

Total genomic DNA was extracted from the frozen (60C) plant flag leaf tissue 

using a modified cetyltrimethylammonium bromide method (D.-H. Chen & Ronald, 

1999). To design the unique markers targeting the SNP1 and SNP2, around 100 bp 

surrounding the two SNPs on either side were selected to determine allelespecific 

primers and allele general SNPs using BatchPrimer3 v1.0 (You et al., 2008).  
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Figure 16 Breeding scheme of generating HIFs based on two SNP models and selection 

stages of pedigrees via KASP technology (http:// www.kbioscience.co.uk/). Ten to 20 

plants from each plot were randomly selected or aided by markers for multiple 

generations until obtaining NILs (BC3F2 or more recurrent parent crosses or selfs). Only 

those having heterozygous loci (XY) were selected each generation and their ears were 

grown as rows (ear-to-row selection). After obtaining NILs, homozygous calls from both 

SNPs were selected as both identical (XX:XX, YY:YY) and opposite (XX:YY, YY:XX) 

to generate HIFs. All parents were genotyped (left). Parents; Ki3, NC356, Tx740, and 

LH82, calls (SNP1: SNP2) are YY:YY, XX:XX, YY:YY, and XX:XX, respectively. No 

template controls, black color in KASP figure, were used in each plate as negative 

controls. Reprinted from Adak, Conrad, et al., 2021. 

 

Sequence information of primers was obtained from (Y. Chen, 2016). Loci implemented 

into KASP (http://www.kbio science.co.uk/) assays by (Y. Chen, 2016) were used in 

marker-assisted backcrossing to develop HIFs across different NIL backgrounds and 

used to detect SNP calls (XX, XY, and YY) for developing HIFs during 2016 to 2019 

(Figure 16). 
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Determining LD 

Farfan et al. (2015) did not provide LD estimates, so the data were reanalyzed 

and are reported here. Tassel software (version 5) (Bradbury et al., 2007) was used to 

obtain LD (LD windows size = 10 markers). First, LD decay plots were generated per 

chromosome using 61.402 total polymorphic markers used in (Farfan et al., 2015) to 

determine the LD decay rate. Especially, LD decay plots were generated to assess 

distances of LD decay pattern in chromosomes 2 and 7 where SNP1 and SNP2 were 

discovered. (Supplementary Figure S9). Second, nearby LD patterns of SNP1 (Chr2: 

27,482,431 kp) and SNP2 (Chr7: 164,955,163 kp) were visualized using LD heatmap in 

R (Shin et al. 2006). LD calculated based on R2 and lower than 0.2 LD was ignored. The 

MaizeGBD (http://www.maizegdb.org/) genome browser was used to determine 

plausible genes linked to SNPs. The Gramene database (http://www.gramene.org) was 

used for the identification of candidate genes. 

Allele Frequency Estimates in Elite Germplasm 

The Panzea (https://www.panzea.org/) website was used to extract sequence 

information of genes from publicly available maize germplasm to evaluate how the 

allele frequency of these SNPs differs over germplasm and time. For elite temperate 

material, the information on the years when germplasm was developed were obtained 

from expired plant variety protection (ExPVP) certificates available on the USDA-ARS 

Germplasm Resources Information Network (https://www.ars-grin.gov). Allele shift of 

the loci were illustrated as count-based frequency histogram (qualitative calculation) 

through release years of germplasms.  
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Planting and Agronomic Practices 

Plants were grown near College Station, TX for summer nurseries and Weslaco, 

Texas for winter nurseries from 2016 to 2019. All nurseries were grown based on range 

and row design with two replications per HIF. Each row plot (6.10 m long) in each range 

contained two row plots of two different HIFs. Plot rows were 3.05 m long for each HIF, 

and 18 seed were planted per HIF row plots. During the advancement of HIFs from 2016 

to 2018, SNP1 and SNP2 calls were primarily maintained by selecting heterozygotes 

(X:Y) to advance and increase. For traditional and UAS phenotyping in College Station 

2019, entire plots of X:X, Y:Y, and X:Y for each HIF were planted on the 12th of April, 

2019, in two replicates. These HIFs were grown in a total of 18 ranges with 16 row plots 

each as well as parental lines and red stalker inbreds (Supplementary Table S3). Row 

plots of red stalker inbreds were used as planting indicators to verify that the planting 

was correct via orthomosaic because of their red stem and leaf color. Experimental 

designs were applied as a split:split:split plot design where the main split was replicate, 

the second split was population/genetic background, and the third split was genotype. 

Unless noted, all reported hand measurements and unoccupied aerial vehicle (UAV) 

flights were conducted when HIFs were grown near College Station in 2019.  

Phenotyping 

Days to anthesis (DTA) and silking (DTS) were recorded on a plot basis when 

50% of the plants were showing anthers and silks, respectively, checking plots daily. 

Three different terminal PHT measurements were taken using a ruler including TH, FH, 

EH July 2nd, 2019, about 2 to 3 weeks after flowering. In addition, UAV (aka drone) 
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PHT measurements were taken weekly from emergence to the end of the growth period. 

The flight dates were shown as day/month/year (dd/mm/yy). Grain yield was not taken 

as it has little value in the inbred lines screened which often are confounded by 

inconsistent pollination in the heat stress of Texas. UAV images of the field were taken 

using a DJI Phantom 4 Pro V2.0 (DJI, Shenzhen, China) at an above ground altitude of 

25 m. The standard integrated camera resulted in images having a resolution of 72 DPI. 

DJI standard flight control software was used. Orthomosaics and point clouds were 

created with the images for each flight by using Agisoft Metashape V15.2 software 

(Agisoft LLC, Russia). The captured images were at 72 dpi with 90% overlap and were 

used to create an orthomosaic and point cloud for determining the PHT as a function of 

time during the growth period. Ground control points were used during the flights to 

assist the data processing and reduce effects due to aberrations and the resulting 

georeferenced mosaics. Previous work has shown that various methods to measure 

inbred maize plants from the ground using point clouds produced similar results 

(Anderson et al., 2019). Point clouds of each flight were processed using CloudCompare 

(version: 2.11. alpha). To set a canopy height model (CHM), first flight containing bare 

ground was used as a digital terrain model (DTM). Digital surface model (DSM) of each 

flight was subtracted from DTM to calculate CHM (Supplementary Figure S2). Each 

plot was drawn using the polygon function of CloudCompare.  

Statistical Inference 

Statistical models were developed according to the distribution of SNP1 and 

SNP2 combinations obtained from the HIFs. Spatial variation was partitioned as random 
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effects into ranges and rows. Each model was run using a restricted maximum likelihood 

method in JMP version 15.0.0 (SAS Institute Inc., Cary, NC, USA) to predict the best 

linear unbiased estimates (BLUEs) of SNPs. SNPs were fit as fixed effects to obtain 

BLUEs values for flights as well as for ruler measurements. Separate models with 

genotypes as random effects in an all random model were fit to obtain variance 

components. All components, except the SNPs and population, were always fit as 

random effects under the following mixed linear models in each model. First, each SNP 

was tested separately within each population (Equation 1). While one of two SNPs was 

segregating, the other one was fixed (not segregating as XX or YY) in respective 

populations to compare the BLUEs of SNP calls. This equation was used for hand 

measurement data on a plant basis for each population. 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝑆𝑁𝑃𝑖 + 𝑅𝑎𝑛𝑔𝑒𝑗 + 𝑅𝑜𝑤𝑘 + 𝑅𝑒𝑝𝑙 + 휀𝑖𝑗𝑘𝑙   Equation 1 

Within this base model, response variable (𝑌𝑖𝑗𝑘𝑙) was one of the three hand measures of 

plant height data; (𝑆𝑁𝑃𝑖) represented variance of one of SNPs to be tested on condition 

that other one is fixed XX and/or YY within each respective population. Other variance 

components, including range (𝑅𝑎𝑛𝑔𝑒𝑗~𝑁(0, 𝜎𝑅𝑎𝑛𝑔𝑒
2 ), row (𝑅𝑜𝑤𝑘~𝑁(0, 𝜎𝑅𝑜𝑤

2 ) and rep 

(𝑅𝑒𝑝𝑙~𝑁(0, 𝜎𝑅𝑒𝑝
2 ), account for the spatial variation. 휀𝑖𝑗𝑘𝑙~𝑁(0, 𝜎2) is the pooled 

unexplained residual error.  

Plant height and flowering time were also tested for SNP1 and SNP2 individually 

combining all data across populations 1, 2 and 3 (Equation 2). While one of the two 

SNPs segregated, the other one was fixed (not segregating as XX) in the model. In this 

equation, the population (𝑃𝑜𝑝𝑖) effect was added compared to Equation 1. BLUEs and 
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BLUPs of SNPs and their interactions with populations respectively were obtained for 

each UAS flight and ruler measurement.  

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑃𝑜𝑝𝑖 +  𝑆𝑁𝑃𝑗 + [𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃]𝑖𝑗 + 𝑅𝑎𝑛𝑔𝑒𝑘 + 𝑅𝑜𝑤𝑙 + 𝑅𝑒𝑝𝑚 + 𝜖𝑖𝑗𝑘𝑙𝑚

  Equation 2 

The interactions of both SNPs and populations using the full factorial function 

was tested for both flowering time and for plant height from the ruler measurement and 

UAS flights temporally across populations 1 and 2 (Equation 3). 

𝑌𝑖𝑗𝑘𝑙𝑚𝑛 = 𝜇 + 𝑃𝑜𝑝𝑖 +  𝑆𝑁𝑃1𝑗 + 𝑆𝑁𝑃2𝑘 + [𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃1]𝑖𝑗 + [𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃2]𝑖𝑘 +

[𝑆𝑁𝑃1 ∗ 𝑆𝑁𝑃2]𝑗𝑘 + [𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃1 ∗ 𝑆𝑁𝑃2]𝑖𝑗𝑘 + 𝑅𝑎𝑛𝑔𝑒𝑙 + 𝑅𝑜𝑤𝑚 + 𝑅𝑒𝑝𝑛 + 𝜖𝑖𝑗𝑘𝑙𝑚𝑛

  Equation 3 

Here, response variable (𝑌𝑖𝑗𝑘𝑙𝑚𝑛) is plant height data. 𝑆𝑁𝑃1𝑗 , 𝑆𝑁𝑃2𝑘 and 

𝑃𝑜𝑝𝑖~𝑁(0, 𝜎𝑃𝑜𝑝
2 ) represent the variance components of SNP1, SNP2 and population 

respectively while other variance components were the same as stated previously in 

Equation 1 and Equation 2. In this equation only population 1 and 2 were used due to 

sample size. 

Orthogonal contrasts were applied to  𝑆𝑁𝑃𝑖 and [𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃]𝑖𝑗variance 

components in equation 2 as well as [𝑆𝑁𝑃1 ∗ 𝑆𝑁𝑃2]𝑗𝑘 and [𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃1 ∗ 𝑆𝑁𝑃2]𝑖𝑗𝑘 in 

Equation 3 to illustrate temporal statistically significance differences between BLUEs of 

loci calls. In equation 2, BLUEs of XX and YY calls of two SNPs were orthogonally 

contrasted for each SNP and each population while BLUEs of XX:XX (SNP1:SNP2) 

and other call combinations (XX:YY, YY:XX and YY:YY) were contrasted for SNP1 

and SNP2 interactions as well as SNPs and population interactions in equation 3. 
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Statistically significance differences between calls for each time point were reported at 

the level of 0.01, 0.05 and 0.001 in Figure 18, 19, 20 and 21. 

Repeatability (R) was calculated based on following formula with number of replication 

(r) for single environments (Equation 4). 

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑅) =
𝜎𝑃𝑜𝑝

2

𝜎𝑃𝑜𝑝
2 + 𝜎𝜖

2/𝑟
  Equation 4 

Additional data processing and visualizations were performed in R version 3.5.1 (R core 

team 2018). 

Data Availability 

UAV-point cloud data, tiff files and canopy height measurements (CHM) of all 

flight dates and ruler height measurement are publicly accessible at; 

https://figshare.com/articles/dataset/Flight_dates_tif_/13046306; 

https://figshare.com/articles/dataset/Data_set_2/13269953. Primer development and 

designs used in KASP genotyping are given in Table S1 and S2. Table S3 contains the 

number of row plots of HIFs with their population background and SNPs information. 

Tables S4 and S5 contain the results of explained percent variations estimated by 

Equations 2 and 3 respectively for ruler measurements. Figures S3 and S4 contain the 

BLUEs for SNPs and the interaction of SNPs with populations obtained by Equation 2 

for ruler measurements.  Figure S5 contains the BLUEs for flowering times estimated by 

Equation 3. Figures S6 and S7 contain the BLUEs for the interactions between both 

SNPs and combined interactions between SNPs and populations respectively for ruler 

measurements estimated by Equation 3. Figure S8 contains Pearson correlations between 
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UAS-PHT with ruler measured means and median. Figure S9 contains the linkage 

disequilibrium decay plots for each chromosome.  

Results 

The effects of cytosine/C for SNP1, adenine/A for SNP2 (e.g., XX) calls in both 

SNPs, contributed by both NC356 and LH82 parents (Supplementary Figure S1), 

increased all three ruler measures of PHTs (TH; from ground to tip of tassel, FH; from 

the ground to the flag leaf collar, EH; first ear height from the ground to first ear shank). 

Tassel height differences between XX and YY calls were statistically significant across 

all populations (Figure 17), varying from 2.0 cm to 8.9 cm (SNP1) and 3.0 cm to 11.9 

cm (SNP2) depending on the populations genetic background (Figure 17). The favorable 

locus (XX) of SNP1 and SNP2 across populations increased TH ~ 4 cm and FH ~ 3 cm 

(Equation 2; Supplementary Figure S3). Interactions between SNP1*population and 

SNP2*population varied, with TH differences were observed up to 10 cm, followed by 

up to 7.0 cm for FH (Supplementary Figure S4). Flowering times (DTA and DTS) when 

used as response in Equation 2 demonstrated that the taller XX allele of SNP1 and SNP2 

for PHTs also caused later flowering. XX allele of SNPs delayed flowering times 

between 1 day and 5 days depending on the genetic backgrounds of populations 

(Supplementary Figure S5). Result of orthogonal contrasts conducted between calls of 

each population showed this lateness was statistically significant (Supplementary Figure 

S5). In Equation 3, SNP1 and SNP2 interactions [SNP1 * SNP2]jk for TH and combined 

interaction with populations [Pop * SNP1 * SNP2]ijk were found to be significantly taller 

than shortest combination (YY-YY) when either SNP1, SNP2, or both were XX 
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favorable locus, resulting in that combined favorable SNP1 and SNP2 loci (XX-XX) was 

tallest in TH, which was 8.8 cm taller than the YY-YY combination (Supplementary 

Figure S6). This was 3.5 cm taller than expected from SNP1 or SNP2 alone and 

represents a synergistic effect between these two loci. There was also an epistatic effect 

of these loci with the XX-XX combination increasing height 8 cm in population 1 but 

9.6 cm for population 2 which was consistent for other measurements of PHT 

(Supplementary Figure S7). The proportion of total experimental variance attributable to 

differences between populations (Var(Pop)) varied from 64% to 80% within Equation 2 

and Equation 3 for PHT measurements by ruler. Population effects, spatial (range, row) 

partitioned large amounts of experimental variance, but repeatability was high at 89% to 

95% (Supplementary Tables S4 and S5). 

 

Figure 17 BLUEs of all three ruler measures of plant heights. This showed XX calls 

significantly increased all height measures in a consistent direction across populations. 

Population 1, 2, 3, and 4 are NILs of [LAMA (recurrent parent) LH82], [Ki3 NC356 

(recurrent parent)], [Ki3 (recurrent parent) NC356], and [Tx740 (recurrent parents) 

NC356], respectively. BLUEs were calculated using Equation 1 (SNPi term). 
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Differences of BLUEs between XX and YY calls were statistically significant across all 

populations for TH which changed between 2.0 cm and 8.9 cm for SNP1 and between 

3.0 cm and 11.9 cm for SNP2. *, **, and *** indicate significance levels at 0.05, 0.01 

and 0.001, respectively, while ns indicates not significant. Whiskers represent the 

standard error. TH, tip of tassel height; FH, flag leaf collar height; and EH, height of the 

first ear shank from ground on the x-axis. Reprinted from Adak, Conrad, et al., 2021. 

 

 

Figure 18 Temporal resolution of differences between SNP1 (left) and SNP2 (right) 

calls obtained by Equation 2 (SNPj term) during UAS flights across all populations. 

Whiskers represent the standard error. BLUEs of calls (XX vs YY) were orthogonally 

contrasted for each SNP at each time point and statistically significant differences were 

placed above the effects. *** indicates significance level at 0.001, while ns indicates not 

significant. Reprinted from Adak, Conrad, et al., 2021. 

 

Statistical Inferences of UAS PHT 

Temporal resolution of each UAS flight captured that the highest PHT (Canopy 

Height Model; CHM) differences between favorable (XX) and unfavorable loci (YY) 

were 16–20 cm in early growing stages (34–54 days after sowing; first four flights) but 

narrowed 3– 5 cm by harvest time depending on when either SNP1 or SNP2 was tested 
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in Equation 2, respectively (Figure 18). The differences between favorable and 

unfavorable loci varied depending on the interaction between populations with SNP1 

[Pop* SNP1]ij and populations with SNP2 [Pop*SNP2]ik by Equation 2. The differences 

between calls in either interaction had a descending pattern from early growing season to 

time of harvest, showing the highest differences between calls for populations were 

captured between 9 cm and 26 cm in early season and narrowed 1 cm to 10 cm by the 

time of harvest (Figure 19). In Equation 3, UAS captured that favorable loci 

combinations of XX-XX (SNP1: SNP2) were tallest in every flight followed by YY-XX, 

XX-YY, and YY-YY (Figure 20), resulting in height differences between favorable and 

unfavorable loci combined for population 1 and population 2 of 11–25 cm in the early 

growing stages and 7–10 cm by the time of harvest (Figure 21). Synergetic effects of the 

favorable loci combination on the unfavorable loci combination also decreased from 9 

cm to 2 cm as the growing period progressed. Population variation (Var(Pop)) always 

explained the highest percentage of total variation in both Equation 2 and Equation 3, 

resulting in repeatability estimates which fluctuated between 84% and 97% (Tables 1 

and 2) during growing periods for PHT. SNP1 (Var(SNP1)) and SNP2 (Var(SNP2)) in 

Equation 2 showed decreasing trends from ~20% to 30% of explained total variation to 

below 1% over the growing period (Table 2) as well as decreases from ~2% to 5% to 

below 1% in the interaction of SNPs in Equation 3 (Table 3). 

Accuracy Assessment Between UAS-PHT and TH 

For accuracy assessment, means and medians of each plot measured by ruler on 

July 2nd, 2019, were correlated with UAS-PHT captured on the same date, and a 
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correlation coefficient was found to be 0.83 for either the median or mean correlated 

with UAS-PHT (Supplementary Figure S8). 

Candidate Genes Associated with The SNPs 

LD decay distances calculated for each chromosome were found to be 1.5, 5.8, 

4.5, 3.7, 4.5, 5.1, 4.5, 4.5, 4.9, and 5.7 kb for chromosomes 1 to 10, respectively 

(Supplementary Figure S9). Candidate genes were determined based on the LD decay 

around the surrounding regions of SNP1 (Chr2: 27,482,431 kb) and SNP2 (Chr7: 

164,955,163 kb) as well as their physical positions using the Maize Refgen v2 

coordinates (Supplementary Figure S2). SNP1 (Chr2: 27,482,431 kb) has a strong LD 

(R2:1, sig ¼ 0.00) with an adjacent locus (Chr2: 27,482,479 kb) which is 48 base pair 

away (upstream region) and both loci are in the genic region of GRMZM2G035688 

(Chr2: from 27,478,703 to 27,483,682 kb) genes (Supplementary Figure S2). The region 

5.8 kb upstream and downstream of SNP1 was also investigated, since the LD decay 

distance chromosome 2 was 5.8 kb. Only one other gene, GRMZM2G035637 (Chr2: 

from 27,478,035 to 27,479,631 kb), falls within the downstream region of SNP1 (1 kb 

away). SNP2 (Chr7: 164,955,163 kb) has strong LD (R2:0.86, sig = 0.95) with a locus 

(Chr7: 164,954,968 bp) that is located at 195 bp away downstream region of SNP2. 

SNP2 and the locus, which is located 195 bp away from SNP2 with high LD, are located 

in the genic region of GRMZM2G009320 (Chr7: from 164,954,304 to 164,956,841 kb). 

The region 4.5 kb upstream and downstream of SNP2 was scanned, since LD decay 

distance for chromosome 7 was 4.5 kb. There is only one other gene, 

GRMZM2G009538 (Chr7: from 164,948,659 to 164,953,684 kb), is located downstream 
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of SNP2 (within 1 kb away; Supplementary Figure S1). Physical locations of 

GRMZM2G035688 and GRMZM2G009320 were updated to reference genome version 

5 (Supplementary Figure S1). 

 

Figure 19 Temporal resolution of interactions of [Pop*SNP]ij obtained by Equation 2 

during UAS flights. Modeling interactions showed that there were large differences 

between how the SNPs behaved on different genetic backgrounds. Whiskers represent 

the standard error. BLUEs of calls (XX vs YY) were orthogonally contrasted for each 

SNP in each population at each time point and statistically significant differences were 

placed above the effects for each time points. *, **, and *** indicate significance levels 

at 0.05, 0.01, and 0.001 respectively, while ns indicates not significant. Reprinted from 

Adak, Conrad, et al., 2021. 
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Figure 20 Temporal resolution of differences among SNP1-SNP2 interactions during 

UAS flights. The interaction [SNP1*SNP2]jk was obtained from Equation 3 and shows 

that the two loci had a synergistic effect on increasing height. Whiskers represent the 

standard error. BLUEs of XX:XX (SNP1:SNP2) and other call combinations (XX:YY, 

YY:XX, and YY:YY) were contrasted for SNP1 and SNP2 interactions at each time 

point and statistically significant differences were placed above the effects for each time 

points. and *** indicate significance levels at 0.05, 0.01, and 0.001 respectively, while 

ns indicates not significant. Reprinted from Adak, Conrad, et al., 2021. 

 

 

Figure 21 Temporal resolution of differences for two populations among SNP1-SNP2 

interactions during UAS flights. Interactions [Pop*SNP1*SNP2]ijk obtained from 

Equation 3 showed the SNP combinations had different effects across different 

populations genetic backgrounds, especially early in the season. Whiskers represent the 

standard error. BLUEs of XX:XX (SNP1:SNP2) and other call combinations (XX:YY, 

YY:XX, and YY:YY) were contrasted for SNPs and population interactions at each time 

point and statistically significant differences were placed above the effects for each time 

points. and *** indicate significance levels at 0.05, 0.01, and 0.001 respectively, while 

ns indicates not significant. Reprinted from Adak, Conrad, et al., 2021. 

 

Table 2 Percentages of total variance explained by each component in Equation 2 when 

SNP1 was tested (above) and SNP2 was tested (below) as well as the total variance in 

number and repeatability for each UAS flight *, **, and *** indicate significance levels 

at 0.05, 0.01, and 0.001 respectively. Reprinted from Adak, Conrad, et al., 2021. 
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Table 3 Percentages of variance explained by each component in Equation 3 as well as 

total variance and repeatability for each UAS flights. The flight dates were shown as 

day/month/year (dd/mm/yy). Reprinted from Adak, Conrad, et al., 2021. 

 

Discussion 

These results demonstrated in maize for the first time that quantitative height loci 

first discovered through GWAS testcrossed diversity panel studies also conferred effects 

across four very diverse genetic backgrounds. An uncommonly discussed advantage of 

GWAS over linkage mapping is the ability to detect alleles that function nonspecifically 

 

Variance 

component 

(Random effect) 

Percentage of variation explained by each variable component for each flight 

17.05.19 30.05.19 4.06.19 11.06.19 13.06.19 19.06.19 21.06.19 28.06.19 2.07.19 9.07.19 12.07.19 

Population 45.7 46.2 45.5 47.1 47.2 64.3 66.0 54.0 53.8 54.3 54.1 

SNP1 20.4 18.1 18.9 9.1 13.9 8.1 7.6 0.7 0.3 0.3 0.4 

Population*SNP1 2.6 1.8 1.7 1.7 1.8 1.1 1.3 0.0 0.0 0.0 0.0 

Replication 8.0 9.4 8.5 7.4 7.8 4.9 4.7 14.7 14.5 14.2 14.0 

Row 0.2 0.3 0.0 1.1 0.5 0.5 0.6 3.4 3.2 3.3 3.2 

Range 11.7** 13.0** 13.8** 14.3** 15.9** 12.4*** 10.9** 7.0* 7.5* 7.2* 7.7* 

Residual 11.4 10.8 11.7 19.3 12.9 8.7 9.0 20.3 20.7 20.7 20.6 

Total variation in 

number 
449.4 490.1 476.7 474.9 412.5 395.4 371.8 547.8 551.3 550.1 559.3 

Repeatability (R) 0.89 0.89 0.87 0.83 0.88 0.94 0.94 0.84 0.84 0.84 0.84 

Variance 

component 

(Random effect) 

Percentage of variation explained by each variable component for each flight 

17.05.19 30.05.19 4.06.19 11.06.19 13.06.19 19.06.19 21.06.19 28.06.19 2.07.19 9.07.19 12.07.19 

Population 30.9 32.3 32.8 34.7 32.2 50.9 88.2*** 48.4*** 50.5*** 49.2*** 82.0*** 

SNP2 32.4 27.6 30.8 21.9 24.2 16.6 0.1*** 0.1*** 0.2*** 0.1*** 0.1*** 

Population*SNP2 7.1 5.8 3.9 4.3 7.9 7.1 0.0 0.1*** 0.1*** 0.1*** 0.1*** 

Replication 9.2 11.3 9.3 12.2 7.8 6.2 0.4 30.4 27.3 28.0 7.2 

Row 0.1 0.1 0.1 0.1 0.2 0.8 0.7 0.8*** 0.6*** 0.4*** 1.0*** 

Range 11.9** 14.3** 14.8** 17.2** 16.3** 11.8** 5.7*** 7.4*** 7.3*** 7.3*** 2.7*** 

Residual 8.4 8.6 8.2 9.7 11.3 6.6 4.9 12.9 14.0 14.9 6.8 

Total variation in 

number 
475.2 512.6 548.9 473.8 394.7 403.0 385.2 660.4 484.1 608.2 1379.2 

Repeatability (R) 0.88 0.88 0.89 0.88 0.85 0.94 0.97 0.88 0.88 0.87 0.96 

Variance 

component 

(Random effect) 

Percentage of variation explained by each variable component for each flight 

17.05.19 30.05.19 4.06.19 11.06.19 13.06.19 19.06.19 21.06.19 28.06.19 2.07.19 9.07.19 12.07.19 

Population 81.4*** 81.1*** 74.6*** 81.1*** 79.3*** 68.3 84.8*** 70.8*** 57.4*** 57.3*** 57.4*** 

SNP1 2.2*** 2.7*** 2.1*** 1.5*** 1.6*** 1.4 0.1*** 0.6*** 0.7*** 0.6*** 0.3*** 

Population*SNP1 0.1*** 0.1*** 0.1*** 0.1*** 0.1*** 0.1 0.1*** 0.3*** 0.5*** 0.6*** 0.6*** 

SNP2 5.5*** 3.9 5.7 3.4 3.2 4.1 0.3*** 2.0*** 1.2*** 1.0*** 0.2*** 

Population*SNP2 0.1*** 0.2*** 0.2*** 0.1*** 1.6*** 6.1 3.5*** 1.4*** 2.2*** 2.6*** 2.2*** 

SNP1*SNP2 0.7*** 0.7*** 1.2*** 1.1*** 1.8*** 2.0 1.7*** 0.2*** 0.3*** 0.3*** 0.7*** 

Population*SNP1

*SNP2 

0.7*** 0.2*** 0.1 0.1*** 1.1*** 0.1*** 0.1*** 0.1*** 0.1*** 0.1*** 0.1*** 

Replication 0.7 1.4 1.3 1.3 0.0 0.0 0.0 7.4 5.1 4.8*** 5.2 

Row 0.2*** 0.1*** 0.1 0.1*** 0.5*** 1.1 0.9*** 2.3*** 2.9*** 2.8*** 2.8*** 

Range 3.3*** 5.0*** 7.2** 5.2*** 3.7*** 6.4* 2.4*** 4.2*** 11.2*** 11.2*** 11.5*** 

Residual 5.1 4.5 7.4 6.0 7.1 10.3 6.1 10.7 18.3 18.7*** 19.1 

Total variation in 

number 

640.1 807.7 609.1 895.6 691.2 377.0 593.0 871.2 473.8 463.0 466.0 

Repeatability (R) 0.97 0.97 0.95 0.96 0.95 0.93 0.96 0.93 0.86 0.86 0.86 

 



 

58 

across genetic backgrounds, maximizing discovery of context-independent alleles 

unaffected by genetic background epistasis that has hindered use of quantitative loci in 

the past. These alleles were first confirmed in linkage mapping populations (F3:4) 

developed from parental lines segregating for the two SNPs of interest (Y. Chen, 2016). 

However, (Y. Chen, 2016) estimated different absolute effect sizes for these loci 

compared to those estimated in the initial GWAS (Farfan et al., 2015). 

Across many studies, thousands of maize loci have been associated with 

agronomic traits in maize (e.g., (Andersen, Schrag, Melchinger, Zein, & Lübberstedt, 

2005; Anderson, Mahan, Murray, & Klein, 2018; Farfan et al., 2015; Larsson et al., 

2013; H. Li et al., 2013; Peiffer et al., 2014; Thornsberry et al., 2001; Weng et al., 

2011)). Although strong population structure and relatedness has been controlled in most 

GWASs to reduce false positive results (Lipka et al., 2015; Myles et al., 2009), we are 

cautioned by the cryptic population structure of dwarf8 (Larsson et al., 2013) and 

possibilities of overfitting GWAS models to identify noncausal loci. Independent genetic 

confirmation of loci from GWASs is therefore necessary to understand whether the 

alleles are robust and useful as well as if the effect sizes are consistent across genetic 

backgrounds. Therefore, it is critically valuable that the two loci used in this study were 

validated over HIFs from four linkage populations, as contributing to taller PHTs in both 

ruler measurements and UAS data. 

Temporal Resolutions of Loci Effects on PHT 

The first seven UAS flights, flown during vegetative growth (typically up to 

70 days after planting), found the largest effect sizes of loci and interaction effects of 
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loci (Figures 18–22) as well as explained the most variation (Tables 1 and 2). This was 

unexpected since these SNPs were initially discovered in the GWAS panel through 

terminal height measurements using a ruler (Farfan et al., 2015). However, UAS 

phenotyping technologies were not available when Farfan et al. 2015 was conducted and 

temporal ruler measurements would have been infeasible. The last four UAS flights were 

flown in the reproductive stage (days 70–100 after sowing) after vegetative growth when 

internodes had stopped increasing and the effect size of loci and their interactions had 

become much smaller, in agreement with ruler measurement results taken July 2nd, 2019 

(82nd day after sowing, between R5 and R6) (Tables 1 and 2; Supplementary Tables S4 

and S5). In the reproductive growth phase, measuring plants individually with a ruler 

and plots by UAS, the differences between the main effects of loci could still be resolved 

(Supplementary Table S4 and S5). Maize yield has been most strongly correlated with 

PHT, in V6 (6-leaf), V10 (10-leaf), and V12 (12-leaf) growth stages, with V10 and V12 

growing stages more important than other stages when earliness was desired (Yin, 

McClure, Jaja, Tyler, & Hayes, 2011). While no other studies have looked at maize yield 

relationships with height at intermediate growth time points, strong correlations have 

been reported between terminal PHT and grain yields in Texas maize (Anderson et al., 

2019; Farfan et al., 2013). Context-dependency effects of loci under different genetic 

backgrounds were best able to be resolved in early UAS flights with larger effects sizes 

for populations 1 and 2 in the earliest flights (Figures 19 and 21). Population 3, 

developed as a reciprocal cross of population 2, was also observed to have had effect 

size differences (Figure 21). 
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Pleiotropy of Loci with Flowering Times 

Both loci in this study were found to have pleiotropic effects on flowering 

(Supplementary Figure S5) not observed in the initial GWAS (Farfan et al., 2015). This 

was likely because heterosis in hybrid backgrounds tends to reduce or compress 

variation seen in inbred lines and because heterosis causes maize to flower earlier. Here 

the earliest flowering population had the smallest difference between alleles (population 

1, <0.5 days) while the latest flowering population had and was able to discriminate the 

largest differences (population 3, >2 days) (Supplementary Figure S5). 

Description of Candidate Genes 

GRMZM2G035688, within 5.8 kb of SNP1, corresponding to aberrant 

phyllotaxy1 (also known as abph1) ,was first observed in maize mutant showing 

transformed phyllotaxy behavior (Jackson & Hake, 1999). Phyllotaxy is the geometric 

arrangement of leaves and flowers to control the plant formation by shoot apical 

meristem (SAM). Unlike auxin action in phyllotaxy regulation in Arabidopsis 

(Arabidopsis thaliana), cytokinin-inducible type A response regulator is encoded by 

abph1, indicating that cytokinins play a role on aberrant phyllotaxy in maize (B.-h. Lee 

et al., 2009). Auxin or its polar transport is necessity for abph1 expression due to fact 

that abph1 expression was dramatically lessened after treatment of a polar auxin 

transport inhibitor to maize shoots (B.-h. Lee et al., 2009). Taken together, 

GRMZM2G035688 encoding abph1 is essential for adequate maize PINFORMED 

(PIN1) expression, which is polar auxin transporter for leaf primordia expression in 

maize, and auxin localization in embryonic leaf primordia in SAM (B.-h. Lee et al., 
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2009). Another gene, 1 kb away in the downstream region of SNP1, is 

GRMZM2G035637. This gene is the Mo25 like gene that involves the cell proliferation, 

asymmetric cell establishment, as well as expansion that is crucial for plant 

establishment (Bizotto, Ceratti, Braz, & Masuda, 2018). This gene has not been 

previously implicated in PHT. However, given the pattern observed by UAV of stronger 

differentiation in alleles at early growth stages, when cells are dividing rather than 

expanding, this candidate is just as logical as abph1. 

GRMZM2G009320, within 4.5 kb of SNP2, encodes a GAPDH, which catalyzes the 

sixth step of glycolysis into energy as well as carbons in higher plants. Under stress 

conditions such as salt or oxidative stresses, the activity of enzyme increases to 

manipulate energy formation in plants (Bustos et al., 2008; X.-H. Zhang et al., 2011). 

Another gene 1 kb away in the downstream region of SNP2 is GRMZM2G009538. This 

gene is a member of the acidic leucine-rich nuclear phosphoprotein 32 (Anp32) family 

that involves in crucial biological process such as the regulation of cell signaling, 

transduction, and cell formation (Matilla & Radrizzani, 2005). 

Recent Breeding Has Selected the Favorable Alleles at Both Loci 

Previously, several genes important in post domestication adaptation were 

identified by comparing maize lines from different early and late eras to show the proof 

of directional selection (van Heerwaarden, Hufford, & Ross-Ibarra, 2012); the genes of 

importance here (GRMZM2G035688 and GRMZM2G009320) were not included. 

Recent publicly available genotyping of diverse public inbred lines and germplasm 

((Romay et al., 2013 ); 989 subset containing 448 public inbred lines, 87 germplasm 
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enhancement of maize (GEM)-like lines, 215 GEM lines, 118 Ex-PVP lines, 121 

CIMMYT germplasm) for SNP1 and SNP2 information was extracted and grouped into 

five categories (Figure 22) and qualitatively compared by year of development or 

release. The frequency of SNP favorable alleles (X:X; increased height yield and 

flowering) showed consistent increases over time within most groups (Figure 22). Ex-

PVP lines developed and released by industry and US public lines showed the greatest 

shifts toward the favorable alleles, almost to fixation. A lower frequency but less 

dramatic shift in CIMMYT originated tropical germplasm lines suggests that these loci 

still segregate in elite tropical maize, perhaps because the effects are less dramatic in the 

tropics. These alleles show favorable allelic selection over time, especially in temperate 

areas, unsurprising given their large phenotypic effects. This is another piece of evidence 

that these loci are economically valuable for improved varieties. 

 

Figure 22 The allelic frequency combinations of SNP1 and SNP2 over years for five 

germplasm categories. The favorable C (SNP1) and A (SNP 2), referred to as XX, XX in 

this study, are both increasing in frequency in newer germplasm and are essentially fixed 

in US temperate Ex-PVP and public germplasm. The 989 subset of genotyped lines 

contained 448 public inbred lines, 87 GEM-like lines, 215 GEM lines, 118 Ex-PVP 

lines, and 121 CIMMYT germplasm lines. Reprinted from Adak, Conrad, et al., 2021. 
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In summary, a previous GWAS field study of hybrids under stress successfully 

nominated quantitative trait variants (QTVs) that work across genetic backgrounds, in 

inbred lines and throughout diverse environments, confirmed through this study. New 

UAS tools provided substantially more information and better screening for the effects 

of these alleles than the traditional terminal ruler height measurements in which they 

were discovered. To get a better understanding of QTV’s affecting complex traits such 

as PHT and grain yield in maize, a combination of high-throughput phenotyping and 

genotyping studies must be evaluated together, which will be critical for managing the 

phenotypic plasticity of complex traits. 
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CHAPTER III  

UNOCCUPIED AERIAL SYSTEMS (UAS) DISCOVERED OVERLOOKED LOCI 

CAPTURING THE VARIATION OF ENTIRE GROWING PERIOD IN MAIZE2 

Quantitative variation of complex traits in maize (Zea mays L.) have been 

challenging to dissect since they show strong environmental interactions and are 

generally inconsistent between populations and different screening environments 

(Beavis, Grant, Albertsen & Fincher, 1991; Peiffer et al., 2014, Veldboom & Lee, 1996; 

Wang, Yao, Zhang & Zheng, 2006; Sari-Gorla, Krajewski, Di Fonzo, Villa & Frova, 

1999; Koester, Sisco, & Stuber, 1993).  Plant height, traditionally measured terminally at 

the end of the growing season with a ruler, is a prime example of a quantitative, complex 

trait; it is relatively easy to measure across many plots and it has high 

repeatability/heritability (Anderson, Mahan, Murray & Klein, 2018; Anderson et al., 

2019; Mahan et al., 2018; Anderson et al., 2020; Peiffer et al., 2014; Veldboom & Lee, 

1996; Rood & Major, 1981). Genetic mapping and theory suggest an omnigenic model 

supported by the genetically polygenic inheritances observed and the variable 

contributions of pedigree as a source of variation, consistent with a large number of loci 

with minor effects governing these traits (Boyle, Li & Pritchard, 2017; Wallace et al., 

2016; Wang, Yao, Zhang & Zheng, 2006; Peiffer et al., 2014; Mackay, 2001). Recently, 

 

2 This is an open access article distributed under the terms of the Creative Commons CC BY license, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work 

is properly cited as follows: 

Adak, A., Murray, S. C., Anderson, S. L., Popescu, S. C., Malambo, L., Romay, M. C., & de Leon, N. 

(2021). Unoccupied aerial systems discovered overlooked loci capturing the variation of entire growing 

period in maize. The Plant Genome, 14(2), e20102. https://doi.org/10.1002/tpg2.20102  
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emerging high throughput phenotyping tools have demonstrated that complicated 

phenotypically dynamic growth patterns are occurring (Anderson et al., 2020; Pauli et 

al., 2016; Wang et al., 2019; Wu & Lin, 2006; Miao, Xu, Liu, Schnable & Schnable, 

2020) and that the importance of various loci change temporally throughout plant growth 

and development (Furbank & Tester, 2011).  

Using ruler-based terminal plant height, a limited number of genes well-known 

to play a role in hormone synthesis and signaling pathways in maize have been found. 

These larger-effect plant height genes are involved in processes such as regulating 

gibberellin signaling and biosynthesis (Bensen et al., 1995; Lawit, Wych, Xu, Kundu & 

Tomes, 2010; Winkler & Helentjaris, 1995), hindering of polar movement of auxin 

transport (Multani et al., 2003) and brassinosteroid synthesis (Hartwig et al., 2011; 

Makarevitch, Thompson, Muehlbauer & Springer, 2012). Disruption of such hormone 

synthesis and signaling genes can cause significant reductions in plant heights. Although 

application to breeding have remained limited because of an antagonistic effect on yield 

(Bensen et al., 1995; Winkler & Helentjaris, 1995; Thornsberry et al., 2001), genetic 

variants at large effect hormone loci may have been fixed or found to not segregate 

widely as a consequence of directional selection over time (Peiffer et al., 2014). As a 

phenotype, terminal plant height can also be a strong predictor of yield in some 

environments, even in elite commercial hybrids (Farfan, Murray, Labar & Pietsch , 

2013). It has been observed that early plant height measures (ie. in seedling, jointing and 

flowering growth stages; V0-VT) may provide novel insights into maize yield (Machado 

et al., 2002) and have the potential to predict yield at earlier time points (Yin, McClure, 
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Jaja, Tyler & Hayes, 2011; Zhang et al., 2017; Anderson et al., 2019; Miao et al., 2020). 

It is likely that many quantitative trait loci (QTLs) studies have been limited in 

explaining erratic plant height variation because they relied on end of season terminal 

height phenotyping data that did not monitor plant architecture and environmental 

stresses throughout plant growth (Su et al., 2019; Wang et al., 2010). Partitioning the 

genetic component from the total variation at each growth stage in a timely and repeated 

manner might further help to explain the hidden heritability issue in genetic dissection 

(Gibson, 2010). 

Complex traits are orchestrated by the interplay of many genes, some 

constitutively expressed during all growth periods, while others are expressed at specific 

time periods (Tessmer, Jiao, Cruz, Kramer & Chen, 2013; Feldman et al., 2017; Bac-

Molenaar, Vreugdenhil, Granier & Keurenties , 2015; Schmid et al., 2005; Sun & Wu, 

2015; Li & Sillanpää, 2015). High throughput phenotyping (HTP) can measure the 

physical characteristics of plants in a temporal manner and has previously been used to 

discover temporal QTLs under field conditions for rice (Yang et al., 2014; Tanger et al., 

2017), triticale (Würschum et al., 2014), cotton (Pauli et al., 2016), barley (Neumann et 

al., 2017) and wheat (Lyra et al., 2020). In order to capture temporal gene-trait 

associations in maize, two studies have used automated greenhouse based-HTP 

platforms (Junker at al. 2015) under environmentally controlled conditions (Zhang et al., 

2017; Muraya et al., 2016) while two others used unoccupied aerials system (UASs) 

based-HTP platforms under field conditions (Anderson et al., 2020; Wang et al., 2019) 

but only for inbred lines and not hybrids, which are what farmers grow.     
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Repeated data collection of maize plant height by UASs has already shown dynamic 

correlations with yield at different time points in a segregating population of hybrid lines 

(Anderson et al., 2019). Within the scope of the Genomes to Fields (G2F) project, UAS 

HTP data captured the temporal variations of growth patterns in diverse hybrids as well 

as other agronomic traits (i.e. flowering times and yield) under three different 

environmental management conditions (optimal planting with irrigation, optimal 

planting without irrigation and late planting with irrigation) during 2017. In breeding 

programs, a predictive model that can quickly identify the highest yielding cultivars to 

advance before or without harvest yield data in larger nurseries would facilitate faster 

decisions, saving time and resources and possibly shortening the breeding cycle.  

The objectives of this study were to  (i) use temporal plant heights of the maize hybrids 

belonging to 22 flight dates (corresponding to 60 time points for three trials) as predictor 

variables in order to predict maize yield via a random forest algorithm; (ii) dissect the 

underlying temporal QTLs associated with the variation captured by each flight via a 

genome wide association (GWA) study; and (iii) estimate and compare the temporal 

genomic predictions for plant height of each flight for each trial.  

Materials and Methods 

Genetic Materials, Experimental Conditions and High Throughput Phenotyping 

The G2F project is an umbrella initiative involving collaborators from a variety 

of disciplines aiming to perform high-throughput genotyping and phenotyping to 

understand gene-gene (GxG) and genotype-environment (GxE) interactions in maize 

(https://www.genomes2fields.org). Under this project, a HTP platform via UAS was 
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used to capture plant growth during various development stages over three management 

conditions per year in College Station, TX. In 2017, 280 hybrids were planted on March 

3rd under optimal planting time with irrigation (G2FI), while 230 hybrids of the same set 

were planted on March 3rd under dryland conditions (G2FD; optimal planting time 

without irrigation) and on April 6th for increased heat stress (G2LA; delayed planting 

with irrigation) in College Station, Texas. To visualize the heat stress to which the 

G2LA has been exposed, cumulative growing degree days (°C) and photoperiod (hour) 

were illustrated for the first 150-days period following optimal (G2LE and G2FD) and 

delayed (G2LA) planting times (Supplemental Figure S1). Growing degree days (GDD) 

were calculated per day by subtracting the average of the daily maximum and minimum 

temperature from the base temperature (10 °C). If GDD was below zero for any given 

day, it was set to zero. All hybrids in each trial were grown based on a randomized 

complete block design with two replications. In each replication of each trial, all hybrids 

were grown as two adjacent row plots (7.62 m row plot length and 0.76 m row plot 

spacing between all rows) and grain yield (GY) was collected from two adjacent row 

plots per hybrid with a plot combine harvester. Days to anthesis (DTA) and silking 

(DTS) were recorded for each hybrid as the number of days from the time of planting 

until at least fifty percent of each hybrid showed anthesis and silking emergence in the 

two row plots. Agronomic field data and weather data is available for 2017 

https://doi.org/10.25739/w560-2114  (McFarland et al., 2020). 

Preliminary studies of image processing and plant height extraction from HTP 

platform for the three trials of 2017 were reported previously by Anderson et al., (2019). 

https://doi.org/10.25739/w560-2114
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First, point clouds were clipped based on the trial boundaries of G2FI, G2FD and G2LA. 

Then noise points, which are located at the far bottom and top of the point clouds were 

illustrated by using the lateral view function in CloudCompare v2.10 (Girardeau‐

Montaut, 2016). These noise points can cause big fluctuations in plant height data 

extraction, so they were manually selected using segment tool function of 

CloudCompare v2.10 and removed from point cloud data. Executable functions of 

LAStools (Isenburg, 2015; rapidlasso, 2017) and FUSION/LDV (McGaughey, 2016) 

software were transported in R. A custom batch script was developed with several steps 

to extract the plot-based plant height data. “R/UAStools” package was used to create the 

polygons (ESRI shapefile) for each two adjacent row plots in each trial using the unique 

plot IDs (Anderson and Murray et al., 2020); two adjacent row plots-based polygon 

construction was also illustrated in 

https://github.com/andersst91/UAStools/wiki/plotshpcreate.R. A brief overview of the 

plant height extraction steps of custom batch script from point cloud data in R was 

described as follows; (i) points of clipped point cloud data of each trial were first sorted 

using the function of “lasssort.exe” of LAStools software; (ii) the noisy points that were 

so close to the canopy structure of plants in row plots were removed using the function 

of lasnoise.exe of LAStools before constructing the digital surface model (DSM); (iii) 

ground points were identified using the hierarchical robust interpolation algorithm (HRI; 

Kraus and Pfeifer, 1998) using the function of “GroundFilter.exe”  of FUSION software 

(iv) maximum points from the ground points were determined using the function of 

“lasthin.exe” of LAStools software; and finally (v) a digital terrain model (DTM) was 
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generated based on the maximum points from the previous steps using the function of 

“GridSurfaceCreate.exe” of FUSION software. Next, canopy surface models (CSM) 

generated from the DTM (output of step v) were extracted from the DSM (the output of 

step ii). Row plots in CSM then were clipped based on the previously generated ESRI 

shapefile using the function of “PolyClipData.exe” of FUSION software. As a final step, 

plant heights were extracted for each clipped cloud points of each row plot as a 

percentile metrics using the function of CloudMetrics.exe  of FUSION software. This 

study only used 99 percentile based-plant heights (Malambo et al., 2018). All flight dates 

were converted into days after planting (DAP) and specified DAP in the text, figures and 

tables in this study. 

The point cloud data (and all raw data) is available on Cyverse (Murray et al., 

2019). In total, 21, 20 and 19 flights were used for G2FI, G2FD and G2LA trials, 

respectively. For plant height, obvious outliers (>3-meter-tall) were removed from the 

phenotypic data. Missing phenotypes (two hybrids at 36 and 39 DAP in G2LA) were 

imputed using “missForest” package in R. 

Statistical Models and Random Forest Application to HTP Data 

In order to calculate phenotypically estimated breeding values for each flight 

(UASPEBVs), a full random model was fit using standard least squares (restricted 

maximum likelihood method, REML) in JMP version 15 Pro (SAS Institute Inc., Cary, 

NC, USA). Best linear unbiased predictions (BLUPs) of hybrids along with all random 

effects of variance components were estimated based on (Equation 1):  
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𝑦𝑔𝑟𝑖𝑗 = 𝜇 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑔 +  𝑅𝑒𝑝𝑙𝑎𝑡𝑖𝑜𝑛𝑟 +  𝑅𝑎𝑛𝑔𝑒𝑖 + 𝑅𝑜𝑤𝑗 +  휀𝑔𝑟𝑖𝑗   

 Eq. 1 

Where 𝑦 is the response vector of plant heights belonging to each flight time, µ is 

grand mean, 𝑔 is the vector of genetic effects of the hybrids (𝑔 ~ 𝑁𝐼𝐷(0, 𝐼𝜎𝑔
2)), 𝑟, 𝑖 and 

𝑗 are replication (𝑟 ~ 𝑁𝐼𝐷(0, 𝐼𝜎𝑟
2)), field range (𝑖 ~ 𝑁𝐼𝐷(0, 𝐼𝜎𝑖

2)) and field row 

(𝑗 ~ 𝑁𝐼𝐷(0, 𝐼𝜎𝑗
2)) effects, respectively, accounting for spatial effects in the randomized 

complete block design; 휀 is the vector of error (휀 ~ 𝑁𝐼𝐷(0, 𝐼𝜎2)). 

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑟𝑎𝑛𝑔𝑒 and 𝑟𝑜𝑤 are the incidence matrices of the variance 

components in the model.  

Repeatability was estimated as follows (Equation 2): 

    R =
𝜎𝑔

2

𝜎𝑔
2+

𝜎𝜀
2

𝑛𝑜.𝑜𝑓 𝑟𝑒𝑝𝑠

      Eq. 2 

Pearson correlation coefficients were also calculated using UASPEBVs belonging to 

each flight of each trial separately to show the correlations among plant heights of different 

time points.  

UASPEBVs belonging to each flight of each trial were used as predictors to predict 

continuous yield. Linear (LM) and random forest regressions (RF) were applied to each 

trial separately. The training and test populations were set as 70% and 30%, respectively. 

The "Caret" package was used to implement two regression models in R by setting the 

method = "lm" for LM and “rf” for RF models. K-fold cross validation was implemented 

by using the "trainControl" function of "Caret" package for both models. To conduct the 

10-fold with 3 replications cross validation, method, number, and repeats were set 
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"repeatedcv", 10 and 3 respectively. Root mean square error (RMSE), mean absolute 

error (MAE) and Rsquared were used to assess models for each trial. To tune the 

parameters of RF, "tunegrid" was used to find best number of predictors sampled for 

splitting at each node (𝑚𝑡𝑟𝑦) and number of trees grown (𝑛𝑡𝑟𝑒𝑒) based on lowest 

RMSE. To illustrate the importance of UASPEBVs belonging to each flight, “varImp” 

function was used after RF model where higher "varImp" scores indicate higher 

importance of the explanatory variable (flight dates) in prediction the yield. To show the 

relationships between each predictor (flight dates) and outcome (yield) in the RF, partial 

dependence plots were generated by using the "pdp" package in R (Friedman 2001). 

To assess prediction skill of the LM and RF models, predict function of Caret 

"caret::predict()" was used to predict yield of test data set using 1000 bootstraps. 

Correlations between actual yield of test data and predicted yield of test data were 

calculated for LM (rlm) and RF (rrf) models at each bootstrap. The Wilcoxon signed rank 

test was then applied to each trial to compare correlation results of the LM and RF 

models.  

SNP Discovery and Association Mapping 

More than 1500 inbred lines with a total of 955,690 SNPs (GBS v2.7) were 

produced using Illumina Hi-seq 2000/2500 at the Institute for Genomic Diversity, 

Cornell University, Ithaca, NY, USA (Glaubitz et al., 2014). The imputed ZeaGBSv2.7 

data is also available through CyVerse with AGPv4 physical coordinates (McFarland et 

al., 2020; www.panzea.org, Elshire et al., 2011). GBS data of 158, 118 and 118 hybrids 

from 2017 was synthesized from sequence information of the available parental inbreds 

http://www.panzea.org/
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for the G2FI, G2FD and G2LA trials, respectively. Tassel 5 software was used to call 

polymorphic markers (Bradbury et al., 2007). First, markers were set as missing if the 

either or both inbreds of hybrids used in this study were heterozygous. Second, sequence 

information of each hybrid was generated using the “Create Hybrid Genotype” function 

in Tassel 5. Third, markers with missing data (more than 10%) and minor allele 

frequency (MAF) of less than 1% were filtered out. Missing markers were imputed using 

“SNP.impute=major” code in GAPIT (Genome Association and Prediction Integrated 

Tool) package in R (Lipka et al., 2012). Finally, 153,252 markers remained.  

Plant heights of hybrids, using the BLUPs in Eq. 1, captured by each flight were 

associated with filtered GBS data in the three trials individually, implementing the fixed 

and random model circulating probability unification (FarmCPU) (Liu, Huang, Fan, 

Buckler & Zhang, 2016) with principal components (PCs) in GAPIT (Lipka et al., 2012). 

In GAPIT, the “Model.selection=TRUE” code was used to determine the optimal 

number of PCs based on Bayesian information criterion (BIC). The first three PCs were 

used in GWA study (Supplemental Figure S2). To calculate the explained variation by 

the SNPs with a higher score than conservative Bonferroni correction (− 𝑙𝑜𝑔(10)(𝑝)>6.5 

; 0.01/no. of markers), a “Random.model=TRUE” code was used in GAPIT function. In 

addition, a false positive discovery rate (FDR) was set (− 𝑙𝑜𝑔(10)(𝑝)>5) to determine the 

same SNP(s) (if any), which were discovered with Bonferonni correction in one flight, 

were important in any other different flight. MaizeGBD (http://www.maizegdb.org/) was 

used to look up SNPs positions for determining the candidate genes in those regions 

using AGPv4 physical coordinates of B73. The Gramene database 
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(http://www.gramene.org) was used to determine the functions of candidate genes. 

Linkage disequilibrium (LD) was examined for co-localized SNPs that were discovered 

in more than one flight or trial using R2 (>0.8) in LD heatmap package in R (Shin, Blay, 

McNeney & Graham, 2006).  

Genomic Prediction of Flights 

Genome wide prediction was applied to each flight of each trial to calculate 

genetic estimated breeding values (UASGEBVs) using rrBLUP (ridge regression best 

linear unbiased prediction) package in R (Endelman, 2011). Training and test data sets 

were arranged at 70% and 30%, respectively. Equation 3 was used to estimate GEBVs: 

𝑦 = 1µ + 𝑍𝛽 +  휀      Eq. 3    

 

Where 𝑦 is the vector of observations as BLUPs of plant heights of flights, µ is 

the overall mean, 𝑍 is the marker matrix, 𝛽 is the marker effects matrix and 휀 is the 

residual effects vector with the assumptions of 𝛽 ~ 𝑁𝐼𝐷(0, 𝐼𝜎𝛽
2) and 휀 ~ 𝑁𝐼𝐷(0, 𝐼𝜎2). 

Prediction accuracies for genomic predictions (rgpa) were obtained for each flight using 

correlations between UASPEBVs and UASGEBVs of test data set, which were calculated by 

using cross-validation with 500 iterations. 

Results and Discussion 

Variance Components, Repeatability and Breeding Value Estimations of Hybrids Using 

HTP Data 

Using plot-based plant height extraction from the 2017 G2F project in College Station, 

TX, BLUPs of plant heights belonging to maize hybrids for each flight date (UASPEBVs) 
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were estimated using [Eq. 1]. The UASPEBVs were categorized into two groups, low and 

high yielding hybrids using the average yield threshold of each trial. As expected from 

previous work, taller hybrids, especially at flights after flowering, were relatively higher 

yielding than hybrids that were shorter (Figure 23).    

 

Figure 23 Illustrations of categorizing the plant heights of each flight of the hybrids grown 

in 2017 according to the high and the low yield values. G2FI, G2FD, and G2LA trial 

represent the optimal planting time with irrigation, optimal planting time without irrigation 

(dryland), and delayed planting time (late) with irrigation, respectively. X axes represents 

the flights as days after planting. Y axis represent the best linear unbiased predictions of 

plant heights (as meter unit) of both hybrids’ categories; high yield and low yield hybrid 

categories were represented by purple and cyan color box plots, respectively, for each 

flight date. Every hybrid was categorized as low- or high-yielding hybrids if they had 

lower and higher yield value than average yield value of regarding trials. Reprinted from 

Adak, Murray, Anderson, et al., 2021. 

 

Late plantings (G2LA) being taller is consistent with our normal observations in 

our breeding program over the years. Our best reason for this result is that hybrids were 

exposed to longer day length with higher heat accumulation (as illustrated in 

Supplementary Figure S1) when planted late (e.g. G2LA in this research). We do not 
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know the entire mechanism but speculate it has to do with a combination of photoperiod 

(our plantings in Texas have been the only G2F location where plants flower as the days 

are getting longer, the later planting flowers closer to the longest day of the year) and/or 

with temperature (more rapid accumulations of growing degree days). These 

environmental conditions caused by late planting may cause the maize hybrids to 

produce more photosynthetic activity resulting in taller plant height and biomass, 

however less yield.  

The UASPEBVs variation explained by pedigree fluctuated between 5% to 80% of 

total variation explained by the model. Repeatability ranged from 12 to 93% across 

flights and trials (Figure 24). The hybrids with continuous taller plant heights across 

flights resulted in higher yield (Figure 23) even though repeatability results were not 

consistently estimated for plant heights through the flights.  In addition, correlation 

coefficients among the plant heights (UASPEBVs) belonging to later flights (after 

flowering times) had higher and more consistent correlation coefficients than the 

correlation coefficients of the plant heights (UASPEBVs) belonging to earlier flights 

(before flowering times) (Supplemental Figure S3). It is likely that differences in 

repeatability for each flight were related to the image and stitching quality of each flight 

(Anderson et al., 2019; Malambo et al., 2018) as well as weed pressures especially in 

earliest flights (e.g. 35 DAS in G2FD). 
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Figure 24 Stacked bar graph showed the explained percentage variations by each 

component calculated by Eq. 1 with repeatability and total variance (as number) for each 

trial. X axis is the flight as days after planting (DAP). Left y axis was scaled as 

percentage to show the repeatability values (white diamond) and percent variations by 

components. Right y axis was scaled as number to show the total variation explained as 

number (black round). DTA, DTS, and GY are the abbreviations of days to anthesis, 

silking (days), and plot-based grain yield (t ha−1), respectively. Total variance of DTA, 

DTS, and GY in number are 5.67, 5.80, and 3.48 for G2FD; 4.22, 3.99, and 2.24 for 

G2FI; and 4.59, 4.32, and 1.49 for G2LA. G2FI, G2FD, and G2LA trials represent the 

optimal planting time with irrigation, optimal planting time without irrigation, and 

delayed planting time with irrigation respectively. Reprinted from Adak, Murray, 

Anderson, et al., 2021. 

 

It is also likely that plant height at any point in time was impacted by the activity 

of many genes and interplays between genes in response to changing environmental 

conditions during various growth periods (Veldboom & Lee, 1996; Messmer et al., 

2009; Sibov et al., 2003; Anderson et al., 2020; Dijak et al., 1999; Han et al., 2018). 

Since UAS allowed temporal variation of plant height to be estimated here, this variation 

can be used in dissecting underlying genetic mechanisms such as discovering time 

specific and co-localized genes in association mapping.   
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Random Forest Algorithm for Determining the Importance Ranks of Flights 

Plant heights captured by various flights from the three different trials were used 

as predictors to predict grain yield using the LM and RF algorithm. The RF model was 

consistently found to perform better than the LM model in predicting yield in each trial 

based on Rsquared, RMSE and MAE (Figure 25). Prediction accuracies of the RF model 

(rrf) were found to be greater than prediction accuracies of LM model (rlm) in each trial 

(Figure 25), indicating that the RF model works slightly better in predicting grain yield 

using temporal plant heights. Variable importance scores (varImp) were used to 

determine variable (flight dates) importance (Figure 25). Results of varImp scores 

showed that different flight dates were most important across different trials; earlier 

flights (e.g. 48 DAP in G2FI and 52 DAP in G2LA) and later flights (e.g. 82 and 101 

DAP in G2FD and 78 and 98 DAP in G2LA) had the highest scores (Figure 25). The 

partial dependence plots are a functional illustration for evaluating the relationship 

between each explanatory variable (flight dates) and the response variable (yield); the 

relationships might be linear, parabolic or something even more complex (Friedman, 

2001). The partial dependence plot shows the changing predicted yield values based on 

the plant heights at a particular time point; illustrations of this change are critical to 

understand the relationships between plant heights at different flight dates and yield. 

Partial dependence plots of every flight date in each trial were illustrated (Figure 26). 

For instance, the most important variable (based on varImp scores) was found to be 101 

DAP in G2FD, 48 DAP in G2FI and 57 DAP in G2LA (Figure 25). Plant height between 

2.00 and 2.05 meters at 101 DAP in G2FD, plant height between 0.75 and 0.80 meters at 
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48 DAP in G2FI and plant height between 1.60 and 1.70 meters at 57 DAP in G2LA 

were found to be desired plant heights that attached to maize hybrids with higher yield 

values (Figure 26). There were additional plant height thresholds belonging to each 

flight times that can be used as selection criteria for higher yielding hybrids, considering 

the relationships between plant height at particular time points and yield (Figure 26). 

The majority of plant heights belonging to the flight dates were found to have nearly 

linear relationships with predicted yield values, except for first three flights in G2FD and 

first four flights in G2FI (Figure 26). However, it is noteworthy to mention that linear 

relationships between plant heights of majority flights in G2FI is more obvious than 

G2FD and G2LA, indicating that stress factors in G2FD and G2LA caused the trend of 

linear relationships between plant heights and higher grain yield to change. In addition, 

taller plant height in earlier flight dates (33, 36, 39 and 48 DAP in G2LA) were better 

indicators of higher yield in G2LA than G2FI and G2FD (Figure 26). Different 

contributions of plant heights belonging to different growth periods and environments in 

predicting grain yield suggests that discovering genes controlling the plant height 

variation at different growth periods will provide supportive genetic information to 

manipulate yield in maize. 
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Figure 25 Model evaluations and variable importance scores. (a) The R2 of linear (LM) 

and random forest (RF) model, higher is better. (b) Root mean square error (RMSE) of 

each model in each trial, lower is better. (c) Mean absolute error (MAE) of each model 

in each trial, lower is better. (d) Correlation results between predicted yield and actual 

yield of test data obtained by 1,000 bootstrap belonging to each model in each trial. 

Wilcoxon sign rank test results showed the comparison of correlations belonging to both 

analysis models in each trial. (e) Variable importance scores (varImp) show the variable 

importance scores of the predictors (flight dates) where higher varImp score indicates 

more importance variable in prediction the yield. G2FI, G2FD and G2LA trial represent 

the optimal planting time with irrigation, optimal planting time without irrigation, and 

delayed planting time with irrigation, respectively. Reprinted from Adak, Murray, 

Anderson, et al., 2021. 
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Figure 26 The partial dependence plots for each predictor (flight dates as days after 

planting; DAP) in each trial. Y axis of each plot shows the predicted continuous yield (t 

ha−1), while x axes are the predictor values that are plant heights of each flight dates. Red 

lines show the relationships between each predictor and predicted yield values. G2FI, 

G2FD, and G2LA trial represent the optimal planting time with irrigation, optimal 

planting time without irrigation, and delayed planting time with irrigation, respectively. 

Reprinted from Adak, Murray, Anderson, et al., 2021. 
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In general, the slightly convex shape distribution in varImp scores of flight dates 

in G2FD and G2FI trial (Figure 25), showed that  82 to 112 DAP in G2FI, 73 to 88 DAP 

and 95 to 118 DAP in G2FD contributed to higher grain yield than other flight dates. 

The same flight dates varied in terms of varImp scores in G2FD and G2FI, especially 

later flight dates were found to have grater varImp scores in G2FD than G2FI. This is 

interesting because G2FI and G2FD trials were planted and flown at the same time, 

however they were managed differently for optimal and dryland conditions, respectively. 

This suggests that plant height belonging to different growth periods of these 

management conditions affected grain yield differently; while this has long been 

hypothesized (Haghighattalab et al., 2017; Sun et al., 2019) and shown for a few 

varieties, it has previously been impossible to observe this across large segregating 

populations in field situations. The late planting, G2LA, further differs from the other 

two trials but, also being a stress trial (Supplemental Figure S1), is unsurprisingly more 

similar to the dryland planting, and the late flight dates are more important predictors for 

grain yield than early flight dates  (Figure 25). 

SNPs-Flights Associations and Functions of Candidate Genes 

Over the three trials, the 99 percentile plant heights over 60 UAS flights, as well 

as grain yield were genetically mapped using 153,252 SNP markers. Principal 

component analysis suggested that there were effectively three populations 

(Supplemental Figure S3). After accounting for population structure across all three 

trials, a total of 52 SNPs with p-values above the Bonferroni correction were detected 
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and annotated; seven were discovered to be common in more than one flight date, while 

45 of these were flight time-specific (Figure 27, Supplemental Table S1). 

 

Figure 27 Combined Manhattan plots for plant heights of each flight using best linear 

unbiased predictions (BLUPs) of the mixed effects spatial model. The heat map at the 

bottom of each Manhattan plot shows the single nucleotide polymorphism (SNP) density 

(within 1 Mb window size) through the chromosomes. Scale of this heat map was given 

on the right side of Manhattan plot. Star shapes were used for colocalized SNPs detected 

in more than one trial. Triangle shapes were used for colocalized SNPs detected in more 

than one flight within any trial. Round shapes were used for unique SNPs. Each unique 
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color within each trial represents the association between SNPs and plant heights of each 

flight; color charts are given inside the rectangles at the top of each Manhattan plots. 

G2FI, G2FD, and G2LA trial represent the optimal planting time with irrigation, optimal 

planting time without irrigation, and delayed planting time with irrigation, respectively. 

Reprinted from Adak, Murray, Anderson, et al., 2021. 

 

Of the seven SNPs that showed association with the trait in multiple flights and/or trials, 

three were located on chromosomes 1 and 10 and showed association in two flights, four 

were located on chromosomes 1 and 6 showed association across three flights 

(Supplemental Table S1). Additionally, two SNPs on chromosomes 1 showed 

association in two trials (Supplemental Table S1). Of the SNPs that showed association 

in two trials, none showed association in the same flight in different trials (Supplemental 

Table S1). In other words, the same SNPs were discovered in an earlier flight of the 

delayed planting trial (67 DAP in G2LA) but later flights in optimal planting (73 and 95 

DAP in G2FD) (Supplemental Table S1); these were not the same calendar date flights. 

Discovering the common SNPs for plant heights belonging to different flights in more 

than one trial suggested that the same genetic cause of phenotypic variation in plant 

height can occur in different times under different management conditions such as 

delayed and optimal planting (Supplemental Table S1). This results in the discovery of 

the same loci at different time points of growth belonging to different management 

conditions.  

The ranges in linkage disequilibrium (LD) observed in the regions surrounding 

the seven co-localized SNPs cannot exclude linked SNPs as causal (Figure 28). In 

chromosome 1, SNPs (76,153,074bp and 76,153,056bp) were found to be significant in 

flights of 73 and 95 DAP in G2FD and 67 DAP in G2LA, both high stress trials. While 
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these two SNPs discovered in G2FD 73 and 95 DAP flights with the highest LOD scores 

(>6.55), these SNPs were also nearly significant later in 98, 112, 118 and 132 DAP 

flights (LOD scores >5) in G2FD. LD regions surrounding these two SNPs extends to 

131 kbp (Chr1:76.08 to 76.21) (Figure 27) and contains four candidate genes in the LD 

interval. One of the candidate genes in LD interval is GRMZM2G005630, located 26 

kbp away from these SNPs. GRMZM2G005630 encodes the EID1-like F-box protein 2 

that regulates ABA-dependent signaling that manages seed germination, root growth and 

transition to flowering time as well as the accumulation of anthocyanin under drought 

conditions in Arabidopsis (Koops et al., 2011). F box genes are one of the most diverse 

and largest gene families in higher plants; maize has around 359 F-box genes (Zhang et 

al., 2019, Jia et al., 2013). The F-box protein family regulates plant growth and 

development as well as biotic and abiotic stresses in maize (Jia et al., 2013). 

 

Figure 28 Linkage disequilibrium (LD) blocks of seven colocalized single nucleotide 

polymorphisms (SNPs) located in chromosomes 1, 6, and 10 associated with plant 
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height. Black lines indicated the pairwise LD regions of the SNPs with 0.8 or 

higher R2 within the physical lengths. Black stars showed the locations (base pair; bp) of 

the above SNPs. Reprinted from Adak, Murray, Anderson, et al., 2021. Reprinted from 

Adak, Murray, Anderson, et al., 2021. 

Two additional SNPs associations were found close to each other on Chromosome 1 

(91,993,193bp and 92,056,014bp) and were significant at 88, 91 and 101 DAP in G2FI 

trials. The LD region is ~66 kbp (Chr:91.99 to 92.06) (Figure 28) and contains three 

candidate genes. One of the candidate genes in LD is GRMZM5G806839 that controls 

the AP2 transcription factor (also known as ereb44) in maize. GRMZM5G806839 

mediates response to multiple abiotic and biotic stresses (Kizis, Lumbreras & Pagès, 

2001) such as southern corn leaf blight response (Bipolaris maydis) in maize (Bian, 

Yang, Balint-Kurti, Wisser & Holland, 2014).  

Another SNP association on chromosome 1 (204145649bp) was found at 98 and 

105 DAP in G2FI. The surrounding LD region of this SNP is ~170 kbp (Chr1:203.98 to 

204.15) and contains seven candidate genes in the interval, of which none have been 

previously identified. One of the candidate genes, GRMZM2G016210, contains this 

SNP in its genic region and includes the umc1122 simple sequence repeat (SSR) marker. 

The flanking region between umc1035 and umc1122 markers was previously found to 

control plant height at different growth stages with different effect sizes in maize (Yan et 

al., 2003).  Qph1, which is a rare SNP in Bractic2 gene, is one of the well-known QTL 

controlling plant height that has also been mapped near umc1122 (Xing et al., 2015). 

This QTL is congruent with the idea of a major QTL often described based on studies 

largely conducted in optimal environmental conditions of the Midwestern U.S. and 

Europe would only be detected in Texas under the most favorably managed trial.  
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Two Chromosome 1 SNP associations (286,738,454bp and 286,738,763bp) were found 

at 82, 91 and 101 DAP in G2FI. LD block around the SNPs is ~ 66 kbp (Chr1:286.73-

286.79) (Figure 28) and it contains three candidate genes. GRMZM2G028286 is one of 

the candidate genes in the LD region and it is reported to control the cellulose 

biosynthesis pathway (Kianifariz, 2017). In a previous study, GRMZM2G028286 was 

found to be downregulated when the NUT1 mutant gene is active; the NUT1 mutant gene 

causes an erratic tassel phenotype (e.g. tassel browning and sterility) especially under 

drought stress because of a defect in water transport (Dong et al., 2020), as well as 

reduced plant height in maize (Dong et al., 2020). Another candidate gene in this LD 

region is GRMZM2G028151 (ereb184 - AP2-EREBP-transcription factor) that is an 

AP2-like ethylene responsive transcription factor and it was reported to be upregulated 

under heat stress (Casaretto et al., 2016). 

The Chromosome 1 SNP association (287,796,640bp) was found at 67 and 105 

DAP in G2LA and G2FD trials. LD region surrounding this SNP is ~253kbp 

(Chr1:287.66 to 287.92) and contains eleven candidate genes. One of the candidate 

genes within the LD interval is GRMZM2G122139, and this SNP is also found in its 

genic region. This candidate gene encodes Cytosolic purine 5-nucleotidase. This enzyme 

was purified from maize microsomes (Carter & Tipton, 1985) and wheat seedling leaves 

and potato (Polya, 1974, 1975) suggesting a relationship with a cyclic nucleotide 

regulatory system in higher plants. Another candidate gene, GRMZM2G072806, 

encodes the ubiquinone oxidoreductase enzyme; its activity plays a role on NAD(H) 
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biosynthesis by transporting a hydride ion (H-). This gene could disrupt regular 

enzymatic activities causing oxidative stress (Moller, 2001).  

A SNP association on chromosome 6 (108,551,216bp) was found at 88, 105 and 

112 DAP in the G2FI trial. The LD region around this SNP is ~ 180 kbp (Chr6:108.40 to 

108.58) (Figure 28) and contains nine genes. One candidate gene in this interval is 

Zm00001d036994.  This candidate gene has been reported to encode trichome 

birefringence-like (TBL) proteins that were localized in Golgi and transfers the acetyl 

groups to xylan resulting in the elongation of the xylan (Xiong, Cheng & Pauly, 2013).  

Two TBL related recessive mutants in rice were found to reduce the xylan 

monoacetylation in cell wall and cause the reduced plant height and susceptibility to leaf 

blight (Gao et al., 2017). 

Chromosome 10 SNP associations (88,841,430 and 88,845,809) were found at 35 

DAP in the G2FD trial. The LD region around these SNPs is ~6 kbp (Chr10: 88.84 to 

88.85) (Figure 28) and contains two candidate genes. One of the candidate genes in this 

interval, GRMZM2G089484 (MAP kinase), was reported to be a possible candidate 

associated with northern corn leaf blight (NCLB) resistance caused by Exserohilum 

turcicum (Ding et al., 2015). Another candidate gene, GRMZM2G422090 (GTP-binding 

protein), is related to the control of cell elongation due to stimulation of the auxin 

hormone (Terryn, van Montagu & Inzé, 1993).  

 Five SNPs that are in the genic region of GRMZM2G010356, GRMZM2G455869, 

GRMZM2G051050, GRMZM2G058522 and GRMZM2G028014 were discovered for 

grain yield in G2FD and in G2FI (Figure 29). GRMZM2G010356, also known as tps17, 
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involves the terpene synthase biosynthesis that contributes the defense mechanisms 

against parasitoids and pathogens in maize (Block, Vaughan, Schmelz & Christensen, 

2019; Liang et al., 2018). GRMZM2G455869, also known as MYB37, regulates the 

elongation of bundle sheath cells in maize (Chang et al., 2012). GRMZM2G051050, also 

known as Ypt/Rab domain of the gyp1p superfamily protein, was found to be related 

with yield under high infestation of Mediterranean corn borer (Sesamia 

nonagrioides Lefebvere) in maize (Jiménez-Galindo, Malvar, Butrón, Caicedo & Ordás, 

2018). GRMZM2G058522, also known as superoxide dismutase, creates an initial 

defense response against reactive oxygen species (ROS) that stemmed from exposure of 

numerous environmental stresses such as drought, intense UV lights, air pollutants and 

chilling temperatures (Alscher, Erturk & Heath, 2002). GRMZM2G028014 is one of 

member in F-box protein family in maize that is responsible for regulation of protein 

degradation, signal perception and transduction pathways inside and often outside of 

cells regions in maize (Jia, Wu, Li, Huang & Zheng, 2013)  

 

Figure 29 Single nucleotide polymorphisms (SNPs) associated with hybrid grain yield (t 

ha−1) for G2FI, G2FD, and G2LA trials. G2FI, G2FD, and G2LA trial represent the 
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optimal planting time with irrigation, optimal planting time without irrigation (dryland), 

and delayed planting time with irrigation respectively. The heat map at the bottom of the 

Manhattan plot shows the SNP density (within 1 Mb window size) through the 

chromosomes. Scale of this heat map was given on the right side of Manhattan plot. 

Reprinted from Adak, Murray, Anderson, et al., 2021. 

 

Contributions of UAS to Association Studies 

High throughput phenotyping by UAS captured phenotypic variation arising 

from the response of diverse hybrids to various abiotic stresses across plant development 

stages. When this variation was combined with genomic information in an association 

mapping study, SNPs were detected and linked candidate genes were identified for plant 

heights of different flights and grain yield involved in coping with many environmental 

stress factors (Figure 27, Figure 29, Supplemental Table S1).  The resulting candidate 

gene annotations for these SNPs showed that segregating loci controlling numerous 

biological functions orchestrate differences between hybrids temporally throughout plant 

development, yet there were substantial differences under the two abiotic stresses. Some 

of these loci conditioned variation across multiple time periods, while others appeared at 

a specific time point and under specific growing conditions. Plant height is a result of 

many environmental stress factors during the development periods, causing temporal 

modifications in plant height depending on different growth stages. The temporal 

variations in plant height can therefore be evaluated as a phenotypic consequence of the 

response of maize hybrids to environmental stresses during growth. When temporal 

phenotypic data collected by UAS are combined with genomic (e.g. GBS) data, 

phenotypic plasticity of plant height occurred within growth stages and underlying genes 

can be scrutinized with higher accuracy and resolution.  
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Cumulative SNP Effects 

Genomic prediction and selection approaches rely on contributions of genome-

wide genetic markers. However, the phenotypes used in these studies typically have 

been low-dimensional and low-throughput; obtained from limited time intervals (one or 

a few times) or small sample sizes. Therefore, different contributions of each locus at 

different time points for the same phenotype of interest will remain unobserved, with the 

exception of those effects that make substantial enough contribution to be detected 

during the terminal measurements. As we were able to only obtain genotypes of 158 

hybrids of the over 270 hybrids studies, this limited these studies potential detection 

ability.  In this study, cumulative SNP marker effects of each chromosome were found to 

differ depending on the flight date (Figure 30). However, like repeatability (Figure 24) 

the cumulative marker effects likely varied over time due to both unexplained error and 

different sources of phenotypic variation at different flights. For instance, there is a peak 

in cumulative marker effects at 64 DAP in the G2LA trial (Figure 30). 64 DAP also had 

the highest repeatability value in G2LA trial (Figure 24). This is a particular example 

where repeatability and total cumulative marker effects were highest in G2LA trial 

which may help explain that variation by pedigree at 64 DAP in G2LA trial has stemmed 

mostly from marker effects contributed by many regions across the genome (Figure 30). 

Furthermore, the different results we observed between the three management conditions 

demonstrated that genetic by environment (G by E) interplay, illustrated here by the 

interaction of hybrids and trials, had a cryptic influence on phenotypic variation (Gage et 

al., 2017). Plasticity is occurring even within an environment temporally as 



 

92 

demonstrated by fluctuating marker effects, repeatability values and explained variation 

by pedigree. The flights revealed this temporal within environmental variation, which 

was combined with G-by-E to better scrutinize phenotypic plasticity. This study was 

only carried out within one year, but additional years would likely further increase the 

amount of G-by-E effects found.  

 

Figure 30 Temporal cumulative marker effects of each chromosome (negative and 

positive) for each flight of each trial. The cumulative effects of whole-genome-wide 

markers (y axis, mm) were dependent upon the flights (x axis, DAP). G2FI, G2FD, and 

G2LA trial represent the optimal planting time with irrigation, optimal planting time 

without irrigation, and delayed planting time with irrigation, respectively. Reprinted 

from Adak, Murray, Anderson, et al., 2021. 

 

Temporal Genomic Predictions 

Genomic prediction accuracies (rgpa) for plant heights belonging to each flight in 

each trial were illustrated in figure 31. rgpa for days to anthesis (DTA), silking (DTS) and 

grain yield (GY) were also calculated for each trial (Figure 31). 
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Figure 31 Genomic prediction accuracies (rgpa) (y axes) for flights (x axis as days after 

planting [DAP]) as well as for days to anthesis (DTA), days to silking (DTS), and yield 

in three trials. G2FI, G2FD, and G2LA trial represent the optimal planting time with 

irrigation, optimal planting time without irrigation, and delayed planting time with 

irrigation respectively. Reprinted from Adak, Murray, Anderson, et al., 2021. 

 

Our findings showed rgpa for plant heights captured by flights fluctuated within 

G2FD (-0.06~0.73), G2FI (0.33~0.76) and G2LA (0.26~0.78) trials (Figure 30). rgpa for 

40 to 60 DAP flights (pre-flowering) were surprisingly higher than in later flights for 

each trial (Figure 31). Dynamic patterns of rgpa tended to decrease towards later flights, 

especially in the G2FI optimal trial. In other words, flights before initiation of flowering 

times had higher rgpa as opposed to later flights in each trial (Figure 31). In the findings 

of this study, the time-dependent alteration of genomic prediction results (Figure 31) and 

the genome wide marker effects (Figure 30) revealed that the same markers (loci) may 

have diverse effects on plant height depending on different growth periods in maize.  

In conclusion, the estimations of breeding values for genetic materials using HTP 

combined in association with high throughput genotyping data (eg. GBS) has only begun 
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to be explored. This study was among the first evaluating a high number of hybrid maize 

plots with UAS in a genome wide association study to discover loci (and where LD 

permitted, candidate genes) and the prediction ability for the phenotype of interest. 

Within the scope of this study, early growth stages were found to have undiscovered 

phenotypic variation controlled by unique loci not found at later stages; this is important 

to increase our understanding of complex traits in crops. Major conclusions of this study 

were that (i) earlier plant height data had more importance for grain yield under optimal 

planting and irrigation, whereas later plant height data had more importance in terms of 

yield under stressed conditions; (ii) genomic prediction accuracies (rgpa) varied for plant 

heights belonging to different growth stages; and  (iii) a large number of plant height 

data captured by UAS can be used as predictors to predict yielding hybrids via random 

forest algorithm.  
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CHAPTER IV  

TEMPORAL VEGETATION INDICES AND PLANT HEIGHT FROM REMOTELY 

SENSED IMAGERY CAN PREDICT GRAIN YIELD AND FLOWERING TIME 

BREEDING VALUE IN MAIZE VIA MACHINE LEARNING REGRESSION3 

Estimating breeding values for genotypes (pedigrees) before harvest would be 

useful for speeding the breeding cycle while reducing combine measurement resources. 

Early season breeding values can be enabled by implementing temporal field-based high 

throughput phenotyping (HTP) (Krause et al., 2020a). Unoccupied aerial systems (UAS; 

i.e., drones with sensor payloads) can objectively capture the temporal variation of 

complex traits in crops with limited resources; providing a new tool to dissect complex 

traits in a time-series manner. UAS provides higher quality raw images with better 

resolutions than traditional remote sensing platforms such as Landsat-derived images 

(Shi et al., 2016). UAS raw images are processed (e.g., orthomosaic and point cloud 

densification) to generate geographically corrected mosaics over each time point 

throughout the growing period (Shi et al., 2016). To increase precision of data extracted 

from the processed images, novel plot-based data extraction pipelines have been 

developed for breeding nurseries (Anderson & II, 2020; Matias, Caraza‐Harter, & 

 

3 This is an open access article distributed under the terms of the Creative Commons CC BY 

license, which permits unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly cited as follows: 

Adak, A., Murray, S. C., Božinović, S., Lindsey, R., Nakasagga, S., Chatterjee, S., ... & Wilde, 

S. (2021). Temporal vegetation indices and plant height from remotely sensed imagery can 

predict grain yield and flowering time breeding value in maize via machine learning regression. 

Remote Sensing, 13(11), 21-41. https://doi.org/10.3390/rs13112141 
 

https://doi.org/10.3390/rs13112141
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Endelman, 2020). When successfully performed, multiple plot-based temporal 

phenotypes can be generated that include various vegetation indices (VIs) (Bendig et al., 

2015; Gitelson, Kaufman, Stark, & Rundquist, 2002; Hague, Tillett, & Wheeler, 2006; 

Hamuda, Glavin, & Jones, 2016; Hunt, Cavigelli, Daughtry, Mcmurtrey, & Walthall, 

2005; Louhaichi, Borman, & Johnson, 2001; G. E. Meyer & Neto, 2008; Tucker, 1979; 

Woebbecke, Meyer, Von Bargen, & Mortensen, 1995) as well as canopy height 

measurements (CHMs) (Adak, Conrad, et al., 2021; Anderson et al., 2020; Anderson et 

al., 2019; Pugh et al., 2018; Tirado, Hirsch, & Springer, 2020). Temporal VIs and CHMs 

have been used for downstream analysis in prediction models (Adak, Conrad, et al., 

2021; Aguate et al., 2017b; Anderson et al., 2020; Anderson et al., 2019; García-

Martínez et al., 2020; Maresma, Ariza, Martínez, Lloveras, & Martínez-Casasnovas, 

2016; Montesinos-López et al., 2017; Y. Peng & Gitelson, 2011; Shanahan et al., 2001; 

G. Wu, Miller, De Leon, Kaeppler, & Spalding, 2019b) demonstrating improvement in 

prediction modeling when utilizing UAS image-based phenotypes over conventional 

manual measurements. Temporal HTP platforms are enabling researchers to improve the 

understanding of environmental and growth stage specific interactions. 

Genotype-by-environment (GxE) interaction is a special case in plant breeding 

used to dissect the phenotypic plasticity and reaction norm of complex traits occurring 

among discriminate environments (Gage et al., 2017; Xin Li et al., 2018; Rogers et al., 

2021). GxE describes how differences in measured appearances between different 

genotypes are a result of interactions of each with their environments creating plasticity, 

which is nearly impossible to predict. However, the examination of temporal phenotypic 
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plasticity (TPP) for complex traits occurring beyond a single growth stage is typically 

unfeasible due to labor, time, and resource demands. Dissecting the TPP of complex 

traits at differential growth stages has lagged behind commonly collected terminal 

phenotypes (e.g., grain yield) resulting in understanding GxE interactions based on the 

accumulation of the entire growth season. As a result, it is difficult to determine if 

specific time points caused the significant GxE variation at the end of the season. HTP 

platforms, such as UAS, enable repeated phenotypic data collection, allowing evaluation 

of phenotypes at various time points throughout plant lifecycles with large numbers of 

genotypes at low cost (Araus & Cairns, 2014). Recently, UAS have demonstrated that 

quantitative trait loci (QTL) have varying effect sizes for the same trait (e.g., CHM) at 

different time points throughout growth periods of maize (Adak, Conrad, et al., 2021; 

Adak, Murray, Anderson, et al., 2021; Anderson et al., 2020). Similarly, both unique and 

common loci belonging to different time points have been discovered to have 

associations with vegetative indices and canopy height measurements in maize 

throughout growth (Adak, Conrad, et al., 2021; Adak, Murray, & Anderson, 2021). The 

uniqueness of temporal QTL has also been shown in cotton (Pauli, Andrade-Sanchez, et 

al., 2016), wheat (Singh et al., 2019), and sorghum (Miao et al., 2020). These findings 

underline new opportunities in dissecting complex traits using remotely sensed 

phenotypes belonging to multiple time points instead of one or a few terminal time 

points, as has been done traditionally. 

Multicollinearity Challenges in Temporal Predictions 



 

98 

Multiple time point-derived temporal phenotypes have previously improved yield 

prediction accuracies beyond single time point-derived phenotypes, but come with new 

challenges (Adak, Murray, Anderson, et al., 2021; Aguate et al., 2017a; Anderson et al., 

2019). For instance, when using phenotypic data from many VIs derived across time 

points as predictors, multicollinearity problems are often revealed in multiple linear 

regression analysis. Multicollinearity leads to the variance inflation factors (VIFs) 

among predictors that causes inflation of the variation of the estimated regression 

coefficients in the prediction model (James, Witten, Hastie, & Tibshirani, 2013). When 

multiple time point derived temporal phenotypes are used as predictors, the coefficients 

of the predictors need to be penalized to increase the prediction accuracy. The reasoning 

being: (i) the predictors included in a model may have relatively similar and large effects 

on the predicted variable, (ii) a small number of predictors may have significant and 

large effects on the predicted variables while others have smaller effects, or (iii) any 

conditions involving these two possibilities. The three conditions above are underlying 

phenomena that need to be controlled to accomplish better prediction accuracy in the 

prediction of complex quantitative terminal traits such as yield and flowering times. 

This study aimed to (i) predict the temporal breeding values of maize hybrids using 

fifteen VIs and CHMs derived from twelve UAS flights over the two trials; (ii) compare 

performances of linear regression and machine learning based regressions (ridge, lasso, 

and elastic net) in predicting grain yield and flowering times (days to anthesis; DTA and 

days to silking; DTS) from temporal breeding values of fifteen VIs and CHMs; and (iii) 

calculate the temporal variable importance scores of the predictors in the best 
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performing (i.e., least error with highest prediction accuracy) machine learning 

regression for yield and flowering times. Understanding these aims will help to better 

understand how to maximize and improve the results of phenomics-assisted breeding 

through remote sensing and identify new fundamentally important biological processes 

for further investigation in plant breeding and quantitative genetic researches. 

Materials and Method 

Experimental Conditions 

The two trials, containing same 100 advanced maize breeding hybrids, were 

planted in College Station, Texas (30°32′46.3″ N 96°26′00.2″ W) on 21 March 2019 

(OHOT trial; irrigated) and 12 April 2019 (DHOT trial; delayed planting) respectively. 

Each population was planted in a separate randomized completed block design with two 

replications. Experimental plots consisted of two-row adjacent plantings of the same 

genotype (0.76 m row spacing, 7 m plot length). Each randomized complete block trial 

consisted of 13 ranges (from front to back of field, perpendicular to the tractor rows), 

where each range contained 16 hybrids across tractor rows represented by two-row plots, 

32 single rows in total. The last range in each trial had eight two-row plots of 

commercial check fill to form a rectangle, and commercial checks were planted around 

the trial as a border. 

Field-Based High Throughput Phenotyping 

A DJI Phantom 4 Pro V2.0 (DJI, Shenzhen, China) was flown 25 m above the 

ground to capturing RGB images at 72 DPI resolution from the standard integrated 

camera. The raw images were taken using 5472 × 3648 pixels with 90 percent forward 
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and sideward overlap. These images were processed using Agisoft Metashape V15.2 

software (Agisoft LLC, Russia) to generate an orthomosaic and point cloud for each 

flight date (Figure 32). Ground control points (GCPs) were used to aid in data processing 

during the flights and mitigate aberrations in the resulting georeferenced mosaics. In 

total, 45 GCPs were used during the flights. A total of 25 UAS surveys were conducted 

throughout the growing season. Following qualitative QC/QA (Quality Control/Quality 

Assurance) of the orthomosaics and point clouds, twelve flights were identified to be 

free of artifacts and blunders (Table 4). 

 

Figure 32 Shows the steps of high-throughput phenotyping pipeline including data 

collection, processing, and extraction from the RGB images. Reprinted from Adak, 

Murray, Božinović, et al., 2021. 

 

Table 4. Summary table of UAS flights dates and corresponding days after planting (DAP) 
times for each trial. The optimal planting date trial (OHOT) and delayed planting date trial 
(DHOT) were sown on March 21st, 2019 and April 12nd, 2019, respectively. Reprinted from 
Adak, Murray, Božinović, et al., 2021. 

Flight time (month) April May June July 
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Flight time (day) 20th  22nd  29th  6th  10th  23rd  4th  17th  25th  11th  16th  26th  

Days after planting (DHOT trial) 8 10 17 24 28 41 53 66 74 90 95 105 

Days after planting (OHOT trial) 30 32 39 46 50 63 75 88 96 112 117 127 

 

The UAS was flown in moderate weather at midday during periods of clear skies and no 

wind, whenever possible. Consistent time periods were attempted between flights but to 

obtain more data not all flights could be made in ideal conditions. As the season 

progressed, issues due to windy conditions became more prevalent in the processing 

stream with plants swaying further when affected by the wind. Cloud coverage was 

addressed by a brightness correction measurement from an onboard solar radiance 

detector or by using images of calibrated reflectance targets in situ prior to and after 

flights. Large overlaps of images reduced water reflections. Importantly, because 

varieties were primarily being compared within flights, errors from many of these 

potential sources of variation are nested within each flight and rendered irrelevant 

compared to if comparisons are made between flights. 

Extracting Temporal Traits from RGB Images and 3D Point Clouds 

Fifteen VIs and temporal plant heights were extracted from the orthomosaic 

images (.tif file extensions) and three-dimensional (3D) point clouds (.las or .laz file 

extensions), respectively. First, ESRI (Environmental Systems Research Institute, Inc.) 

shape files (.shp file extensions) were created using R/UAStools::plotshpcreate function 

(Anderson & II, 2020; James et al., 2013) in R to create the polygons for each 

consecutive row plot (nrowplot = 2, multirowind = T) for each population based on their 
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respective field maps/experimental layouts. The buffer arguments were set to “rowbuf = 

0.61” and “rangebuf = 3.1” to reduce adjacent plot overlap and uninformative data 

within the walking alleys data extractions. Two fit ESRI shape files were generated 

separately to extract plot information from each one of the consecutive two row plots in 

the images and point clouds. These shape files were then used in extracting VIs and 

plant heights for each time point (Figure 32). 

To extract the plot-based VIs the FIELDImageR package (Matias et al., 2020) 

was used. Before extraction of VIs, the R/FIELDImageR::fieldMask function was 

implemented to remove the soil color from the RGB (Red-Green-Blue, also known as 

true color)images using HUE index corresponding to soil color (Escadafal, 1993). The 

fifteen VIs were extracted from RGB images using the R/FIELDImageR::fieldIndex 

function for each flight date. The VIs included: the blue green pigment index (BGI) 

(Zarco-Tejada et al., 2005), brightness index (BI) (Richardson & Wiegand, 1977), blue 

index, excessive green (EXG) (Woebbecke et al., 1995), excess green minus excess red 

index (EXGR) (G. E. Meyer & Neto, 2008), green leaf index (GLI) (Louhaichi et al., 

2001), green index, modified green red VI (MGVRI) (Bendig et al., 2015), normalized 

difference index (NDI) (Hamuda et al., 2016), normalized green-blue difference index 

(NGBDI) (Hunt et al., 2005), normalized green red difference index (NGRDI) (Tucker, 

1979), red index, red green blue VI (RGBVI) (Bendig et al., 2015), visible 

atmospherically resistant index (VARI) (Gitelson et al., 2002) and vegetativen (VEG) 

(Hague et al., 2006) (Table 5). BI, GLI, NGRDI, VARI and BGI are prebuilt VIs that 
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were used in the FIELDimageR package, but remaining VIs were added externally as an 

additional function into FIELDimageR using ‘R/RIELDImageR::myIndex’ function. 

Table 5. Ratios of vegetation indices used in this study. Reprinted from Adak, Murray, 

Božinović, et al., 2021. 

Vegetation index Formula References 

Blue green pigment index (BGI) 
𝐵

𝐺
 (Zarco-Tejada et al., 2005) 

Brightness index (BI)  𝑠𝑞𝑟𝑡(
𝑅2 + 𝐺2 + 𝐵2

3
) (Richardson & Wiegand, 1977) 

Excessive green (EXG) (2 ∗ 𝐺) − 𝑅 − 𝐵 (Woebbecke et al., 1995) 

Excess green minus excess red index (EXGR) (3 ∗ 𝐺) − (2.4 ∗ 𝑅) − 𝐵 (G. E. Meyer & Neto, 2008) 

Green leaf index (GLI) 
2 ∗ 𝐺 − 𝑅 − 𝐵

2 ∗ 𝐺 + 𝑅 + 𝐵
 (Louhaichi et al., 2001) 

Modified green red index (MGVRI) 
𝐺2 − 𝑅2

𝐺2 + 𝑅2 (Bendig et al., 2015) 

Normalized difference index (NDI) 128 ∗ ((
𝐺 − 𝑅

𝐺 + 𝑅
) + 1) (Hamuda et al., 2016) 

Normalized green-blue difference index (NGBDI) 
𝐺 − 𝐵

𝐺 + 𝐵
 (Hunt et al., 2005) 

Normalized green red difference index (NGRDI) 
𝐺 − 𝑅

𝐺 + 𝑅
 (Tucker, 1979) 

Red green blue index (RGBVI) 
𝐺2 − 𝑅 ∗ 𝐵

𝐺2 + 𝑅 ∗ 𝐵
 (Bendig et al., 2015) 

Visible atmospherically resistant index (VARI) 
𝐺 − 𝑅

𝐺 + 𝑅 − 𝐵
 (Gitelson et al., 2002) 

Vegetativen (VEG) 
𝐺

𝑅0.667 ∗ 𝐵0.334 (Hague et al., 2006) 

 

3D point clouds were used to extract the plot-based plant heights of each flight based on 

the pipeline described in (Anderson et al., 2019). First, areas of the two trials (OHOT 

and DHOT) were clipped, and extreme points above or below the bare ground were 
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removed from the point clouds in CloudCompare (version 2.12 alpha) (Girardeau-

Montaut, 2016). After initial anomaly removal, executable functions of batch scripts of 

FUSION/LDV (McGaughey, 2016) and LAStools (Isenburg, 2015; Rapidlasso, 2017) 

software were transported into R to construct the plant height extraction pipeline for 

each flight. A brief outline of the pipeline contains (i) the sorting the points of clipped 

point cloud data (LAStools\lasssort.exe), (ii) removing the erratic points around the 

canopy structure of plants in row plots (LAStools\lasnoise.exe) to construct the digital 

surface model (DSM), (iii) identifying the ground points using a hierarchical robust 

interpolation (HRI) (Kraus & Pfeifer, 1998) ground filtering algorithm (HRI) (Kraus & 

Pfeifer, 1998) (FUSION\GroundFilter.exe), (iv) identifying the maximum points from 

the ground filter to outline digital terrain model (DTM) (LAStools\lasthin.exe), and (v) 

constructing the DTM model using the maximum points from the previous step 

(FUSION\GridSurfaceCreate.exe). Next, the DTM model was extracted from the 

previously constructed noise-filtered point cloud data (DSM model as an output of step 

ii) to canopy surface models (CSM). Each row of plots in CSM then were clipped 

(FUSION/PolyClipData.exe), and plot-based plant heights were estimated using the 99th 

percentile metrics (FUSION/CloudMetrics.exe) (Figure 32). 

Plot-based yield was collected using a plot combine. Flowering time was 

recorded as the point in which 50% of the individuals within a plot were shedding pollen 

(DTA) or silks emerging (DTS). Days to anthesis/silk were calculated by subtracting the 

planting date from the recorded flowering date of the respective trait. All temporal 
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phenotypic data as well as R codes are publicly available (see the Data Availability 

Statement and Supplementary Materials sections). 

Statistical Analysis for High Throughput Phenotyping Data 

Statistical analysis of extracted temporal data (VIs and CHM) and visualizations 

were processed in R studio (version 1.3.959). In the analysis of high-throughput 

phenotyping data, a nested statistical design was fit. To predict the breeding values for 

each pedigree in both trials the row, range, (block) and replicates model terms were used 

to control for spatial variation. This tends to perform as well as other methods of spatial 

correction for furrow irrigated trials in our environment due to the patterns created by 

irrigation and tractor-applied fertilizer and cultivation in otherwise fairly uniform soils. 

A nested design was used to estimate the temporal breeding values in a time-series 

manner for fifteen VIs and CHMs. To do this, the statistical Equation (1) below was 

developed to implement the two trials separately using a mixed linear model in lme4 

package in R (Bates et al., 2014) to estimate temporal best linear unbiased predictors 

(TBLUP) of the respective response variable (Y) for each pedigree (maize hybrids). 

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑓𝑙𝑖𝑔ℎ𝑡𝑖 + [𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑗 + [𝑟𝑎𝑛𝑔𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑘 + [𝑟𝑜𝑤(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑙

+ [𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑚 + 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚 

where, 𝑌 represents each individual observation of pedigree at each 𝑖th time point (flight 

dates as DAP unit); 𝜇 represents the grand mean; 𝑓𝑙𝑖𝑔ℎ𝑡 represents the effect of 𝑖th 

flight date, 𝑖 ∈ (8, 10 … 105; 𝐷𝐻𝑂𝑇) 𝑎𝑛𝑑 𝑖 ∈ (30, 32 … 127; 𝑂𝐻𝑂𝑇); 

[𝑝edigree(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑗 represents the effect of 𝑗th pedigree within 𝑖th flight date; 

[𝑟ange(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑘~𝑁(0, 𝜎[𝑟ange(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑘

2 ) represents the effect of 𝑘th range within 𝑖th 
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flight date; [𝑟ow(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑙~𝑁(0, 𝜎[𝑟ow(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑙

2 ) represents the effect of 𝑙th row within 

𝑖th flight date [𝑟eplication(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑚~𝑁(0, 𝜎[𝑟eplication(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑚

2 ) represents the effect 

of 𝑚th replication within 𝑖th flight date, and 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚~ 𝑁(0, 𝜎𝑒𝑟𝑟𝑜𝑟
2 ) represents the 

pooled error comprising residuals of all experimental factors above. Temporal 

repeatability was calculated for each temporal trait based on the results of explained 

percent variation of [𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑗 (𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)
2 ) and 

𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚(𝜎𝑒𝑟𝑟𝑜𝑟
2 ) with numbers of replication (b) (Equation (2)):  

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)

2

𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)
2 +  

𝜎𝑒𝑟𝑟𝑜𝑟
2

𝑏

 

The previous model was adjusted to run without the 𝑓𝑙𝑖𝑔ℎ𝑡 component to 

estimate the BLUP for pedigree (maize hybrids) for single time-measured traits that are 

yield, DTA and DTS (Equation (3)): 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖 + 𝑟𝑎𝑛𝑔𝑒𝑗 + 𝑟𝑜𝑤𝑘 + 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑙 + 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙 

where 𝑌 represents the each individual observation of pedigree; 𝜇 represents the grand 

mean; 𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖 represents the effect of 𝑖th pedigree; 𝑟𝑎𝑛𝑔𝑒𝑗~𝑁(0, 𝜎𝑟𝑎𝑛𝑔𝑒𝑗

2 ) represents 

the effect of 𝑗th range; 𝑟𝑜𝑤𝑘~𝑁(0, 𝜎𝑟𝑜𝑤𝑘
2 ) represents the effect of 𝑘th row; 

𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑙~𝑁(0, 𝜎𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑙

2 ) represents the effect of 𝑙th replication, and 

𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙~ 𝑁(0, 𝜎𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙

2 ) represents the pooled error comprising residuals of all 

experimental factors above. Repeatability was calculated for Yield, DTA and DTS from 

Equation (4): 
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𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒

2

𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒
2 +  

𝜎𝑒𝑟𝑟𝑜𝑟
2

𝑏
 
 

 

Statistical Equation (5) was developed by adding the 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 and 

[𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡] components into Equation (1) as nested within 𝑓𝑙𝑖𝑔ℎ𝑡. In 

Equation (5), the management effect contained the OHOT and DHOT trials, indicating 

optimal and delayed planting, respectively. Equation (5) aimed to contrast each trait 

value of flight date for each trial. To do that, [𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 ∗

𝑓𝑙𝑖𝑔ℎ𝑡]𝑖𝑘 ~𝑁(0, 𝜎[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡∗𝑓𝑙𝑖𝑔ℎ𝑡]𝑖𝑘

2 ) effect was included. Here, 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 

represents the effect of 𝑘th management, 𝑘 ∈ (𝐷𝐻𝑂𝑇 𝑎𝑛𝑑 𝑂𝐻𝑂𝑇); [𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 ∗

𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑗𝑘 ~𝑁(0, 𝜎[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡∗𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑗𝑘

2 ) represents the 

interaction of 𝑗th pedigree with 𝑘th management within 𝑖th flight date. Spatial variation 

(𝑟𝑎𝑛𝑔𝑒, 𝑟𝑜𝑤 and 𝑟𝑒𝑝) were treated nested within 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 and 𝑓𝑙𝑖𝑔ℎ𝑡 in 

Equation (5). 

𝑌𝑖𝑗𝑘𝑙𝑚𝑛 = 𝜇 + 𝑓𝑙𝑖𝑔ℎ𝑡𝑖 + [𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑗 + 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑘

+ [𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝑓𝑙𝑖𝑔ℎ𝑡)]𝑖𝑗𝑘 + [𝑓𝑙𝑖𝑔ℎ𝑡 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑖𝑘]

+ [𝑟𝑎𝑛𝑔𝑒(𝑚𝑎𝑛𝑎𝑔𝑚𝑒𝑛𝑡, 𝑓𝑙𝑖𝑔ℎ𝑡)𝑖𝑘𝑙] + [𝑟𝑜𝑤(𝑚𝑎𝑛𝑎𝑔𝑚𝑒𝑛𝑡, 𝑓𝑙𝑖𝑔ℎ𝑡)𝑖𝑘𝑚]

+ [𝑟𝑒𝑝(𝑚𝑎𝑛𝑎𝑔𝑚𝑒𝑛𝑡, 𝑓𝑙𝑖𝑔ℎ𝑡)𝑖𝑘𝑛] + 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚𝑛 

Multi‐management based repeatability was calculated by expanding Equation (2) 

to include the interaction term between 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 and 𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 nested within 
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𝑓𝑙𝑖𝑔ℎ𝑡 [𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝑓𝑙𝑖𝑔ℎ𝑡)] with the number of the management (a) 

and replication (b) (Equation (6)): 

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)

2

𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒(𝑓𝑙𝑖𝑔ℎ𝑡)
2 +

𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(𝑓𝑙𝑖𝑔ℎ𝑡)
2

𝑎 +
𝜎𝑒𝑟𝑟𝑜𝑟

2

𝑎 ∗ 𝑏
 

 

Machine Learning Regression 

All temporal breeding values (TBLUPs) of VIs and CHMs of pedigree were used 

to predict three predicted variables (Yield, DTA and DTS) for both populations. Linear, 

lasso, ridge, elastic net and partial least square regression (PLSR) were run to predict the 

predicted variables using the caret package in R. The data set was split into 60% training 

and 40% validation data. Cross validation was adjusted using the R/caret::trainControl() 

function, with ten resampling iterations (i.e. folds; numbers=10) and ten repeated k-fold 

cross validations (repeats=10). The adjusted cross validation was then used in each 

regression model. To run all regression models, R/caret::train() function was 

implemented using method=lm for linear regression and method=glmnet for ridge, lasso, 

and elastic net regressions and “method=pls” for PLSR. The tuneGrid argument was 

used to tune the “lambda” (for elastic net, lasso and ridge regressions) and “alpha” (for 

elastic net regression) using the expand.grid() function. Value of “alpha” was set as 0 

for ridge regression and 1 for lasso regression, while sequential numbers between 0 and 

1 by ten equal increment sequences were performed to find the best alpha for elastic net 

regression. Sequential “lambda” values between 0 and 1 by five equal increment 

sequences were empirically tested to find the best lambda values for lasso, ridge, and 

elastic net regressions. In PLSR, the tuneLength function was used to find the best 
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number of principal components with the lowest cross-validation error. In the prediction 

of yield in the DHOT trial, alpha and lambda values used were 1 and 0.25, 0 and 1, 0.1 

and 0.50 for lasso, ridge and elastic net regressions, respectively, and numbers of 

principal component (ncomp) used was 8 for PLSR. In the prediction of DTA in the 

DHOT trial, alpha and lambda values used were 1 and 0.0001, 0 and 1, 0.1 and 0.0001 

for lasso, ridge and elastic net regressions, respectively, and ncomp used was 10 for 

PLSR. In the prediction of DTS in the DHOT trial, alpha and lambda values used were 1 

and 0.0001, 0 and 1, 0.1 and 0.0001 for lasso, ridge and elastic net regressions, 

respectively, and ncomp used was 7 for PLSR. In the prediction of yield in the OHOT 

trial, alpha and lambda values used were 1 and 0.25, 0 and 1, 0.1 and 1 for lasso, ridge 

and elastic net regressions, respectively, and ncomp used was 4 for PLSR. In the 

prediction of DTA in the OHOT trial, alpha and lambda values used were 1 and 0.25, 0 

and 1, 0.1 and 0.50 for lasso, ridge and elastic net regressions, respectively, and ncomp 

used was 10 for PLSR. In the prediction of DTS in the OHOT trial, alpha and lambda 

values used were 1 and 0.25, 0 and 1, 0.1 and 0.25 for lasso, ridge and elastic net 

regressions, respectively, and ncomp used was 9 for PLSR. To compare the regression 

models, coefficient of determination (R2), root mean square errors (RMSE), and mean 

absolute errors (MAE) were evaluated for each model. To evaluate the prediction 

accuracy of the linear, ridge, elastic net, lasso and PLSR models, R/caret::predict() was 

used to predict DTA, DTS, and yield of the test data set in each trial using 500 

bootstraps iterations. The predicted results of the test data were correlated (Pearson 

pairwise correlation) with the actual values of test data set in each bootstrap. Finally, the 



 

110 

Tukey HSD (Honest Significant Difference) test was applied to compare the means of 

correlation results belonging to each model for DTA, DTS, and yield in both trials. 

Letters were assigned to each model indicating the comparison results of Tukey HSD 

test to indicate statistically significant differences. The R/caret::varImp() function was 

used to rank the predictors based on their importance (0-100 scale) for lasso, ridge, 

elastic net and PLSR regression. All R codes are available in Github repository 

(https://github.com/alperadak/Supplementary-File-

1/blob/main/Supplementary%20file%201.txt). 

Results 

Explained Percent Variation of Flight and Repeatability 

The variation explained by the flight component in (Equation (1)) was the 

greatest of the variance components and was statistically significant (>0.0001) for each 

UAS trait (fifteen different VIs and CHMs) in each trial. The flight component explained 

up to 97 - 98 % of variation in the CHM for DHOT and OHOT, respectively, while 

explaining the lowest for true bands (Blue, Red and Green) and BI (41 - 51 %; Figure 

33). Similarly, the highest temporal repeatability values were also estimated for CHMs 

(0.76 in DHOT and 0.74 in OHOT; Equation (2)) and lower repeatability estimates were 

found for the VI’s (<0.6 ; Figure 33). 
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Figure 33. Variance component decomposition (Equation (1)) for each predictor trait 

(fifteen vegetative indices, VIs and canopy height measurement; CHM) for each trial 

(DHOT on the left and OHOT on the right). X axes, left Y axis, and right Y axes 

represent the traits, explained percent variation by each variance component, and 

temporal repeatability, respectively. Black circles and white diamonds represent the 

R2 and repeatability values, respectively, for each trait according to the right Y axis 

scale. Temporal repeatability was calculated based on the Equation (2). Reprinted from 

Adak, Murray, Božinović, et al., 2021. 

 

For predicted variables (yield, DTA and DTS) used in the regression models, the 

explained percent variations of the pedigree component in Equation (3) explained the 

greatest variation (53–83%). Repeatability values for predicted variables were calculated 

between 0.91 and 0.98 (Figure 34). Predicted values (Equation (3)) of maize hybrids for 

DTA, DTS, and yield in both trials were given in Figure 35. DHOT trial had shorter days 

after planting values in DTA and DTS than those of OHOT while grain yield (t/ha) was 

higher in OHOT than those of DHOT (Figure 35). 
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Figure 34 Explained percent variation of each component in Equation (3) for each 

predicted variable (days to anthesis (DTA), days to silking (DTS), and yield (t/ha)) for 

each trial (DHOT on the left and OHOT on the right). X axes, left Y, and right Y axes 

represent the traits, explained percent variation by each variance component, and 

repeatability, respectively. Black circles and white diamonds represent the R2 and 

repeatability values, respectively. Reprinted from Adak, Murray, Božinović, et al., 2021. 

 

 

Figure 35 The best linear unbiased predictors (BLUPs) values of predicted variables 

[days to anthesis (DTA), days to silking (DTS), and yield (t/ha)]. Y axes shows to best 

linear unbiased predictors (BLUP) of hybrids for DTA, DTS and yield unique to each 

trait while X axes shows the trials. Reprinted from Adak, Murray, Božinović, et al., 

2021. 
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Temporal Breeding Values 

Effects of the pedigree(flight) (Equation (1)) were illustrated to display temporal 

breeding values (TBLUPs) of predictor traits (fifteen VIs and CHMs) of pedigrees for 

optimal planting (OHOT) and delayed planting (DHOT) trials separately (Figure 36 and 

Figure 37). In all, TBLUPs of 16 traits, which were derived from 12 flight time points, 

were displayed, corresponding to 192 predictors evaluated in regression models for each 

trial. 

 

Figure 36 Temporal best linear unbiased predictions (TBLUPs) of the traits (fifteen 

vegetation indices, VIs and canopy height measurement; CHM) of the pedigrees in the 

OHOT (optimal planting trial) population estimated by Equation (1). Each Y axis shows 

the range of TBLUPs unique to each trait while each X axis shows the flight dates as 

days after planting (DAP) same to each trait. The heatmap scale was generated from the 

range of yield (t/ha) values in the OHOT trial, and then applied to each pedigree to show 

the TBLUPs of each trait through the flight dates along with yield values of pedigree. 

Blue, white, and red colors in the heatmap scale were used to indicate low, medium, and 

high yield values, respectively, specific to the OHOT trial. Reprinted from Adak, 

Murray, Božinović, et al., 2021. 
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Figure 37 Temporal best linear unbiased predictions (TBLUPs) of the traits (fifteen 

vegetation indices, VIs and canopy height measurement; CHM) of the pedigrees in the 

DHOT (delayed planting trial) population estimated by Equation (1). Each Y axis shows 

the range of TBLUPs unique to each trait while each X axis shows the flight dates as 

days after planting (DAP) same to each trait. The heatmap scale was generated from the 

range of yield (t/ha) values in the DHOT trial, and then applied to each pedigree to show 

the TBLUPs of each trait through the flight dates along with yield values of pedigree. 

Blue, white, and red colors in the heatmap scale were used to indicate low, medium and 

high yield values, respectively, specific to the DHOT trial. Reprinted from Adak, 

Murray, Božinović, et al., 2021. 

 

TPP of VIs and CHMs occurring among the flight dates ([pedigree(flight)] 

component of Equation (1)) were found to be statistically significant (<0.0001) in both 

trials. TPP patterns were also found to be unique for many traits across trials. In general, 

EXG, EXGR, GLI, MGVRI, NDI NGRDI, RGBVI, VARI, and VEG followed concave 

plasticity patterns while Red followed a slightly convex plasticity pattern (Figure 36 and 

Figure 37). BI, Blue, Green, and NGBDI slightly increased over time while BGI slightly 

decreased across the flight dates. CHM followed a sigmoidal plasticity pattern through 

the flight dates. However, each trial had different slopes, edges, and peaks of the 

TBLUPs of the traits depending on the flight times (Figure 36 and Figure 37). 
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Equation (5) was developed to compare the flight means of each trial for each trait by 

adding the management (DHOT and OHOT trials) effects within flight dates 

([management(flight) effects in Equation (5)). The [management(flight)] component 

explained between 29 and 96% of total depending on VIs and 14 percent for CHM 

(Figure 38). 

 

Figure 38 Explained percent variation of each component in Equation (5) for each 

predictor trait (fifteen vegetation indices, VIs and canopy height measurement; CHM). X 

axis, left and right Y axes represent the traits, explained percent variation by each 

variance component and R2 respectively. Black circles and white diamonds represent the 

R2 and repeatability values, respectively, for each trait according to the right Y axis 

scale. Repeatability was calculated based on Equation (6). Reprinted from Adak, 

Murray, Božinović, et al., 2021. 

 

The majority of the mean comparisons of each time point (flight dates) between 

the trials were found to be statistically significant (Figure 39). In addition, there were 

found to be cross over changes in comparisons of flight means varying between one to 

six times depending on different traits; meaning that the relative performance at one time 

point and trial could not predict the relative performance in a different time point. 



 

116 

However, where there were more cross overs, they were less likely to be significantly 

different. 

 

Figure 39 Temporal comparison results of each time point between each test. The joint 

analysis of temporal effects of the trials based on means of flight dates was derived from 

Management(flight) component in Equation (5). Each Y axis shows the range of flight 

means unique to each trait while each X axis shows the flight dates as successive order 

same to each trait. *, **, *** are significance levels at 0.05, 0.01 and 0.001; ns is not 

significant. Whiskers represent the conditional standard deviations for each time point of 

each trait. Reprinted from Adak, Murray, Božinović, et al., 2021. 

 

Temporal Correlations between Predictors and Predicted Variables 

Temporal correlation coefficients (Pearson correlation) were calculated between 

TBLUPS of the traits (predictors) and predicted variables (DTA, DTS, and yield) 

(Figure 40). To calculate the temporal correlations, BLUPs of pedigrees for each flight 

date were derived from [pedigree(flight)] in Equation (1) for each trait and trial. BLUPs 

of DTA, DTS, and yield were correlated with TBLUPs of predictor traits for each flight 

date. Temporal correlation results varied from −0.6 to 0.6 across the flight dates. The 

majority of predictor traits fluctuated in correlation temporally (Figure 40). The highest 
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and lowest temporal correlation with DTA, DTS, and yield were found more frequently 

in DHOT than in OHOT (Figure 40). All traits were found to have both negative and 

positive correlation coefficients in both trials through the flight dates, except for positive 

correlation coefficients between CHM and yield in both trials throughout the flight dates 

(Figure 40). 

 

 

Figure 40 Each correlogram chart contains the pairwise correlation coefficients (r2) 

belonging to time points of each trait with predicted traits [days to anthesis (DTA), days 
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to silking (DTS), and yield (t/ha)]. Correlogram charts above and below the horizontal 

black dashed line belong to DHOT (delayed planting trial) and OHOT (optimal planting 

trial) respectively. Time points (days after planting, DAP) were given diagonal and 

horizontal for each vegetation index and CHM in both trials along with DTA, DTS and 

yield in each correlogram chart. The correlation coefficient heatmap change from −1 to 0 

from pink to white and from 0 to 1 from white to cyan. The cross signs (×) show 

statistically insignificant pairwise correlations at the 0.05 level. Reprinted from Adak, 

Murray, Božinović, et al., 2021. 

Regression Model Comparisons 

Temporal best linear unbiased predictors (TBLUPs) of pedigrees for each 

predictor trait (fifteen VIs and CHM) were estimated by the component of 

[pedigree(flight)] in Equation (1) for each trial separately. BLUPs of predicted variables 

(DTA, DTS, and yield) were estimated from the pedigree component in Equation (3). 

Predictor traits (fifteen VIs and CHM) were used in four different regressions to predict 

the predicted variables. TBLUPs, including the individual BLUPs of sixteen predictor 

traits on twelve flight dates (192 predictors for each trial), were estimated by Equation 

(1) separately and then used in regression models to predict the predicted variables 

(DTA, DTS and Yield) for each trial. Elastic net, lasso, ridge, PLSR and linear 

regressions were used to predict the predicted variables using all 192 predictors and 

models. Model fit was evaluated based on their root mean square errors (RMSE), mean 

absolute errors (MAE), and coefficient of determination (R2) as well as prediction 

accuracies of the models. Linear regression was found to perform the worst among 

regression models in predicting all three predicted variables in both trials, resulting in 

the highest RMSE, MAE, and lowest R2 values and lowest prediction accuracies 

followed by PLSR (Figure 41 and Figure 42). Slight differences were found among the 

results of machine learning regressions in terms of predicting predicted variables (Figure 
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41 and Figure 42). Accordingly, lasso and elastic net regressions were found to be best 

in predicting flowering times (DTA and DTS) with the prediction accuracy of between 

~0.75 and ~0.80 in DHOT and OHOT trials (Figure 42). However, ridge regression was 

found to be best in predicting yield, with prediction accuracy of ~0.60 in DHOT and 

OHOT trials (Figure 42). 

 

Figure 41 Box plots of root mean squares (RMSE), mean absolute errors (MAE), and 

coefficient of determination (R2) values (from left to right) of linear, elastic net, lasso, 

and ridge regressions for DHOT (delayed planting trial; above) and OHOT (optimal 

planting trial; below). Each Y axis has the unique value ranges for RMSE, MAE and 

R2 in each trial while each X axis shows the predicted variables used in each regression 

models [days to anthesis (DTA), days to silking (DTS), and yield (t/ha)] same to RMSE, 

MAE, and R2 in each trial. Whiskers represent the standard errors. Y axes of RMSE and 

MAE were scaled based on the log2 to show the outliers belonging to the linear model. 

Reprinted from Adak, Murray, Božinović, et al., 2021. 

 

Variable Importance 

The relative importance of the TBLUPs were calculated to show the temporal 

importance of predictor traits in the prediction of the predicted variables (DTA, DTS, 

and yield) used in machine learning regressions. 
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Figure 42 Prediction accuracy results of each model for days to anthesis (DTA), days to 

silking (DTS), and yield (t/ha), respectively. Y axes represents the correlation 

coefficients (r2) between predicted value and actual value of days to anthesis (DTA), 

days to silking (DTS) and yield (t/ha) (from left to right) in DHOT (delayed planting 

trial) and OHOT (optimal planting trial) (From top to bottom). X axis shows the 

predictive models used in this study. Each box represents letters of Tukey HSD 

comparison results for each predicted trait in each trial. Reprinted from Adak, Murray, 

Božinović, et al., 2021. 

 

Results showed that some of the VIs were found to contribute predictions of 

predicted variables throughout the flight dates, while others were found to contribute 

predictions at specific flight dates, depending on the predicted variables as well as the 

trials (Figure 43 and Figure 44). The best-performing predictors of yield nominated in 

ridge (in both trials) and elastic net (in DHOT only) regressions (Figure 42) were 

NGRDI, NGBDI VARI and GLI, traits with fluctuating variable importance scores 

across the flight dates in both trials (Figure 43 and Figure 44). Their variable importance 

scores were frequently higher before flowering than after flowering time (Figure 43 and 

Figure 44). 
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Figure 43 Heatmap temporal variable importance of predictor traits across the flight 

dates generated by the ‘varImp’ function of each machine learning regression in the 

DHOT trial. X axes are identical and represent the flight dates of DHOT as days after 

planting (DAP). Left Y-axes are identical and represent the predictor traits for each 

regression model and predicted variables. The heatmap illustrations were divided into 

nine for the elastic net, lasso and ridge regressions top to bottom and DTA, DTS and 

Yield predicted variables from left to right. Heatmap scales show the variable 

importance scores as 0–100 scales calculated from the ‘varImp’ functions of each 

machine learning regression. Flowering times varied from 57 to 69 for DTA and 57 to 

70 for DTS (grey boxes) in DHOT. Reprinted from Adak, Murray, Božinović, et al., 

2021. 
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Figure 44 Heatmap of temporal variable importance of predictor traits across the flight 

dates generated by the ‘varImp’ function of each machine learning regression in the 

OHOT trial. X axes are identical and represent the flight dates of OHOT as days after 

planting (DAP). Left Y axes are identical and represent the predictor traits for each 

regression model and predicted variables. The heatmap illustrations were divided into 

nine for the elastic net, lasso and ridge regressions top to bottom and DTA, DTS and 

Yield predicted variables from left to right. Heatmap scales show the variables 

importance scores as 0–100 scales calculated from the ‘varImp’ functions of each 

machine learning regression. Flowering times varied from 66 to 75 for DTA and 67 to 

76 for DTS (grey boxes) in OHOT. Reprinted from Adak, Murray, Božinović, et al., 

2021. 

The remaining traits were found to have a lower importance score than NGRDI, 

NGBDI, VARI and GLI in the prediction of yield across both trials (Figure 143 and 

Figure 44); however, their importance sores were also higher before the plants flowered 

in both trials. 

Lasso and elastic net regressions performed best in predicting the flowering times 

(DTA and DTS), in the both trials (Figure 42). The methods nominated fluctuating 

variable importance of the temporal traits across the flight dates (Figure 43 and Figure 

44); many of the flight dates belong to the period before flowering. For instance, GLI 

and NGRDI on 28th DAP were important date/predictor combinations for flowering 

time in the DHOT trial (Figure 43). NGBDI and GLI on 46th, 50th, 63rd DAP for DTA, 

(Figure 44), and NGRDI, VARI, CHM, GLI and MGVRI on 30th DAP for DTS (Figure 

44) were important date/predictor combinations in the OHOT trial. 

Discussion 

Implementing field-based high-throughput phenotyping (HTP) tools such as 

unoccupied aerial systems (UAS) in agriculture has been recognized to be an efficient 

way to monitor temporal variation of plant growth (Adak, Murray, Anderson, et al., 
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2021; Anderson et al., 2019; Araus & Cairns, 2014; Shi et al., 2016). Temporal 

variations throughout growth are novel sources of variation that have not previously 

been measured and now can be used for plant breeding and genetics in prediction 

models. Estimating the degree of phenotypic variation controlled by the genetic variation 

of tested pedigrees for HTP-derived traits (e.g., measuring repeatability for VIs and 

CHMs) is a first fundamental step to determine how heritable or consistent trait 

measurements are before using VIs and CHMs in prediction models. The sixteen traits 

(fifteen VIs and CHM) used in this study had temporal repeatability values of 0.60 to 

0.76 in delayed and optimal planting trials (DHOT and OHOT trials, respectively) 

(Figure 33), suggesting that estimating the breeding values from HTP-derived traits of 

tested pedigrees has potential in prediction models as well as in the decision making 

process for plant breeding. Temporal variation of each HTP-derived trait, estimated by 

Equation (1) for each trial separately, was the source of the biggest proportion of total 

experimental variation. This temporal resolution, derived from twelve time points, 

supported the existence of TPP across pedigrees for fifteen VIs and CHMs in both trials. 

Joint analysis of both trials, estimated by Equation (5), showed that different reaction 

norms to compare each time point (flight means) under different environmental 

conditions characterized the dissimilar TPP patterns of VIs and CHMs. Importantly, 

NGBDI and BGI were found to have the least TPP under two distinct environmental 

conditions and are proposed as the most robust VIs from this study. Moreover, NGBDI 

was found to be an important variable in yield prediction at 30 DAP in the OHOT trial, 

as well as for predicting flowering times at 28 DAP in both OHOT and DHOT; if this 
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can be further validated it would be valuable and exciting for early-season predictions of 

grain yield. The above, along with the high repeatability values (~0.7 in Figure 33) 

nominate NGBDI, NGRDI, and GLI as the most effective and robust predictors of yield 

and flowering times in this study. However, it remains worthwhile to estimate multiple 

VI’s since the same collected data is needed and many indices had non-redundant 

information. 

Physiological Basis of These Predictions 

Vegetation indices (VIs) are biologically based remote sensing measurements 

that can assess the physiological processes of maize hybrids quantitively using the 

reflected wavelengths. More specifically, VIs are ratios that belong to the green 

apparatus of maize where photosynthetic activity occurs. The visible spectrum of solar 

radiation (400 nm to 700 nm) is absorbed by plants pigments, of which chlorophyll a and 

b absorb the blue-violet and red-blue regions of the visible spectrum to provide the light 

for photosynthetic activity and reflect far red wavelengths. Photoassimilate is produced 

by photosynthetic activity containing the light dependent reactions that are likely 

affected by different environmental conditions and contributed to yield differences. As a 

result of these processes, temporal correlations, and predictive ability of VIs with yield 

in maize likely depends on environmental variability (M. R. Smith, Rao, & Merchant, 

2018); in agreement with our findings (Figure 40). Differences between the wavelengths 

belonging to different varieties tested in different environmental conditions relate to how 

the plants handle multiple stresses (Zaman-Allah et al., 2015). 
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Although this study showed the surprising predictive ability of VIs belonging to time 

points earlier than the reproductive (flowering) stage, for flowering times later time 

points were also important, likely relating to senescence after grain fill. Grain yield can 

be adversely affected because of heat stress or early senescence after flowering. VIs 

belonging to time points after flowering lose their ability to predict yield as senescence 

accelerates, which was found for both trials. Early leaf senescence, especially, shortens 

the grain-filling duration in maize, and would be expected to reduce measured grain 

yield. A leaf senescence index has been proposed to be well correlated with VIs, as well 

as yield in maize under low nitrogen stress (Zaman-Allah et al., 2015). Slow reduction in 

photosynthetic pigments throughout plant growth is associated with greater yield, as well 

as with the stay-green trait (E. A. Lee & Tollenaar, 2007). As such, using temporal 

breeding values of the VIs near the end of growth may quantitatively select maize 

hybrids where the higher yield is a result of slow reduction in the VIs across growth. 

This study used VIs calculated by wavelength of ranges of visible light, not affected by 

additional factors that affect near-infrared (NIR) reflectance such as soil brightness, 

moisture and color, canopy and cell structure, or cloud shadows [13]. As such, these VIs 

belonging to false positive color reflectance should result in greater precision in 

extraction of VIs, compared to NIR reflectance (Gitelson et al., 2002; X. Zhang et al., 

2019). For example, normalized difference vegetation index (NDVI) which contains the 

NIR reflectance, was found to be very sensitive towards background brightness since 

NDVI increases accordingly if the background brightness increases (Xue & Su, 2017). It 

might be concluded that the VIs without NIR used here are more sensitive in detecting 
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high amounts of absorption of red referring to the presence of the chlorophyll and green 

vegetation, disregarding noisy reflectance. 

The delayed planting trial (DHOT) had higher growing degree days as well as 

higher photo-thermal time accumulations than the optimal planting trial (OHOT) across 

plant growth stages in maize breeding nurseries in Texas. The temporal differences in 

weather station measurements between the two trials suggest a primary reason for the 

TPP of the pedigrees of several VIs likely stemmed from the rapid accumulation of 

growing units in DHOT, a combination of both higher photoperiod and increased heat. 

Taken together, despite the fact that VIs and CHMs were shown to be controlled by 

genetic variation to a certain extent, monitoring of TPP belonging to VIs and CHMs can 

be more appropriate to evaluate performance of maize hybrids under diverse 

environmental conditions including their different time points. Because correlations 

between VIs and yield, or CHMs and yield, are dynamic, and different time points had 

different correlation coefficients (Figure 40), this suggests that correlations in earlier 

time points could be considered to assess the performance of maize hybrids. In genomic 

selection, selections are accomplished through estimating the large and small marker 

effects on phenotype belonging to terminal growth stages. Now, with temporal 

phenotypes estimated by Equation (1), it is possible to include the genotypic variation 

occurring at early stages into phenomic selection (Rincent et al., 2018) and phenomic 

selection can contain temporal marker effects on VIs and CHMs that give rise to better 

prediction accuracy. Analyzing multiple time points of different management conditions 

can supply better confidence levels, as well as more statistical power in predicting 



 

127 

temporal breeding values; this will allow temporal breeding values to be later used in 

downstream analysis, such as, more accurate prediction modeling. In addition, using VIs 

with high repeatability values as predictive variables will lead to more effective 

estimates, especially under stress conditions, largely because the signal-to-noise ratio is 

higher (Montesinos-López et al., 2017; Weber et al., 2012). 

Model Comparisons 

Machine learning-based prediction models performed best in comparison with 

linear models for predicting flowering times and yield using the temporal data. The 

predictive ability of ridge regression in genomic prediction has been demonstrated 

(Endelman, 2011). Similarly, ridge regression excelled in predicting yield in phenomic 

prediction compared to other models in this study (Figure 42), signifying that prediction 

accuracy of ridge regression can be increased in selecting the high yielding maize 

hybrids when a greater number of phenotypic predictors are extracted from UAV 

images. Ridge regression models have previously been used in yield prediction using 

reflectance wavelengths (between 350 to 2500 nm) in wheat and performed best in 

prediction under drought (Hernandez et al., 2015). This result is in agreement with our 

finding that ridge regression performed best under the stress trial (DHOT) in yield 

prediction by using VIs. (Hernandez et al., 2015) wheat used only reflectance at anthesis 

and grain filling time periods; this study, however, discovered important effects of VIs at 

many earlier time points in maize, even before flowering and grain filling such as at 28 

and 30 DAP in the DHOT and OHOT trial, respectively. If this can be validated in 

further work it is an exciting and important finding not only for speeding up breeding 
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decisions earlier in the season, and the associated physiological ramifications, but also 

for identifying important growth stages for precision agricultural management by 

farmers. Our findings also support the value of temporal VIs measurement for predicting 

yield; not only during specific time periods of growth, but that the entire growth period 

has value with different effect sizes at each time point. In this way these VI’s may be 

better used like a genomic selection approach of incorporating and weighting all time 

points, than a genetic mapping approach of identifying and monitoring only the time 

point with the largest effect size; as supported in phenomic selection approaches, using 

laboratory near-infrared reflectance spectroscopy data of grain (Rincent et al., 2018). 

This study also revealed that flowering times (DTA and DTS) can be best predicted 

before flowering using the temporal VIs, which is critical where earliness traits for 

maize can be selected based on the values of certain VIs at specific early time points, 

such as NGRDI and VARI at 28 DAP in DHOT; NGRDI and GLI at 30 DAP in OHOT 

(Figure 43 and Figure 44). 

Single time point-derived CHMs (Anderson et al., 2019) and reflectance bands 

(Aguate et al., 2017a) have previously been shown to perform worse than using fewer 

parameters estimated from modeling combined data derived across multiple time points. 

Our findings suggested that temporal variations of VIs and CHMs should be trained 

together in a predictive model using machine learning based regressions to predict grain 

yield with more accuracy, when the number of predictors are high, which otherwise may 

lead to overfitting and multicollinearity problems. 
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Given the long history of satellite remote sensing to predict yield (B. Peng, Guan, 

Pan, & Li, 2018; B. Peng et al., 2020), the results of the temporal and visible aspects of 

this study were surprising. However, it must be emphasized that to date there have been 

comparatively few studies using remote sensing predictors across segregating genetic 

populations to predict differences within species. These findings similarly suggest that 

unquantified genetic variation might exist that would affect satellite yield predictions. 

This also suggests new temporal measurements that farmers might be able to use to 

identify plant stress and intervene earlier than previously to predict yield loss. In 

summary, the strong predictive power of temporal VIs and CHMs for predicting yield 

was shown in this study which could serve as an alternative to genomic prediction 

methods in the near future. 

In conclusion, field-based high-throughput phenotyping identified that the 

phenotypic variation occurring early in developmental stages of plants can be used as 

novel predictors to predict yield and flowering times in phenomic selection. This 

research extracted fifteen different vegetation indices and canopy height measurements 

from the aerial drone imageries belonging to twelve time points across the growth of 

tested maize hybrids. Our study demonstrated that (i) predicted temporal vegetation 

indices and plant heights for each pedigree (maize hybrid) have discrimination power of 

low-yielding and high-yielding maize hybrids and that these temporal vegetation indices 

and plant heights are heritable traits in maize; (ii) machine learning-based regressions 

have better prediction accuracy in prediction yield and flowering times than linear 

regression when temporal vegetation indices and plant heights are used as predictors in 
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phenomics selection in maize; and (iii) variable importance scores of vegetation indices 

are higher at earlier time points than later time points, indicating that variation in earlier 

in growth should be monitored to predict yield and flowering times with higher accuracy 

in maize. 

Data Availability Statement 

Data set containing predictors (temporal vegetation indices and canopy height 

measurements) and predicted traits (days to anthesis, silking and yield) belonging to 

OHOT (optimal planting trial) and DHOT (late planting trial) used in prediction models 

was given as supplementary data 1 set. The R code used in prediction models was given 

in Github repository(https://github.com/alperadak/Supplementary-File-

1/blob/main/Supplementary%20file%201.txt, accessed on 28 May 2021). 
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CHAPTER V  

PHENOMIC DATA-DRIVEN PREDICTION THROUGH FIELD-BASED HIGH 

THROUGHPUT PHENOTYPING, AND INTEGRATION WITH GENOMIC DATA 

IN MAIZE 

 

Genetic gain is a goal for plant breeding programs relying on selection intensity, 

selection accuracy, genetic variance, and the interplay within breeding cycles over time 

(Heffner, Sorrells, & Jannink, 2009). All parameters have direct relationships with both 

the quality and quantity of phenotype data. Increasing selection intensity and selection 

accuracy requires growing large numbers of genetically diverse breeding materials and 

collecting phenotypic data from each genotype across breeding cycles. Traditional 

phenotyping approaches provide limited phenotype data that are resource intensive and 

poorly scale across time. This results in increased uncertainty and error-prone decision 

making in plant breeding programs with low accuracy in downstream statistical analysis 

(Araus, Kefauver, Zaman-Allah, Olsen, & Cairns, 2018; Desta & Ortiz, 2014; Furbank 

& Tester, 2011). Field based high-throughput phenotyping (FHTP) technology can 

supply phenomic data with high time-dimensional (multiple time points) and high 

organismal resolution despite requirements of high computational demands and 

processing. FHTP is more affordable per observation and less arduous compared to 

traditional phenotyping methodologies. Thanks to unoccupied aerial vehicles (UAVs, 

aka drones) equipped with high-tech sensors, plant nurseries and trials can be screened 

multiple times with high spatial (pixel), and temporal (days) resolution at different plant 
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growth stages. Reflectance bands can be captured to use as novel predictors and/or 

secondary traits in prediction of agronomically important traits e.g. yield and flowering 

times (Adak, Murray, Božinović, et al., 2021; Aguate et al., 2017a; Galán et al., 2020; 

Rutkoski et al., 2016; Sandhu, Mihalyov, Lewien, Pumphrey, & Carter, 2021; G. Wu et 

al., 2019b). Extracting reflectance band data from remotely sensed images over multiple 

time points reveals novel temporal pedigree values that provide key information for 

plant scientist to discover critical time/trait combinations. This allows early selection 

criteria to be proposed, before the collection of traditional end-of-season phenotypes 

have been collected e.g. grain yield by combine (Adak, Murray, Božinović, et al., 2021; 

Krause et al., 2020a; Sun et al., 2019), similar to genomic based approaches.  

Marker assisted selection (MAS) enables selection of traits inherited by Mendelian and 

quantitative loci (QTLs) on the condition that segregation for these phenotypic traits of 

interest can be largely explained by the QTLs across breeding cycles. However, complex 

quantitative traits generally follow an omnigenic model, where thousands of small 

interacting loci contribute to the formation of the phenotype of complex traits (e.g., yield 

and flowering times) (Boyle et al., 2017). To better include the contributions of genome 

wide markers in selection, genome wide markers are being used as predictors for the 

phenotypic formation of complex traits as a measure of genetic merit; this method was 

first applied in maize as genomic prediction (GP) by (Bernardo, 1994),also known as 

genomic best linear unbiased prediction (GBLUP) today. Subsequently, ridge-regression 

BLUP (rrBLUP) was developed where effects of each marker (treated as random) on 

phenotype were estimated assuming that marker effects are distributed normally with a 
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common variance (Endelman, 2011; Whittaker, Thompson, & Denham, 2000). Bayesian 

GP methods were then developed to better predict phenotype where marker effects are 

not normally distributed and/or marker effects do not share a common variance 

(Meuwissen et al., 2001). Prediction results of these models across genome wide 

markers are now applied to the selection of candidate plants known as genomic selection 

(GS) (Bernardo & Yu, 2007). Genomic prediction has proved reliable for the selection of 

complex traits in various crops across plant breeding cycles (Jose Crossa et al., 2014; 

Heslot, Jannink, & Sorrells, 2015; Windhausen et al., 2012; Y. Zhao et al., 2012). 

However, GS requires significant effort in DNA extractions and genotyping to obtain 

useful genome wide markers from populations with GP models. The GS model must be 

trained for hundreds to thousands of candidate plants using their genomic and phenomic 

data then again in each growing period for selection and to update the models. To train 

accurate GS models, large phenotypic data sets must be collected; a bottleneck in 

predictive plant breeding. Reducing the resources needed and improving the throughput 

of data collection using FHTP technologies is a critical need to (i) associate phenotypic 

traits to genomic data to boost the potential of GS and (ii) use directly as novel 

predictors.  

FHTP has revealed dynamic associations between genomic data and temporal 

phenotypes of complex traits never before possible in plants (Adak, Murray, & 

Anderson, 2021; Adak, Murray, Božinović, et al., 2021; Anderson et al., 2020; Bac-

Molenaar, Vreugdenhil, Granier, & Keurentjes, 2015; Campbell et al., 2017; Feldman et 

al., 2017; Pauli, Chapman, et al., 2016; Ward et al., 2019). These same types of temporal 
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associations are difficult to be revealed when more limited phenotypic data collected via 

traditional phenotyping methods are used in GS. Phenomic data collected from multiple 

environments and/or multiple time points can be better predictors than genome-wide 

markers for the purpose of selection the desired plants in plant breeding (Bernardo, 

2021). High throughput phenotyping data has untapped potential not only to enhance the 

prediction of the complex traits in plants, but also to supply complementary phenomic 

data sets for genomics to dissect these complex traits and their plasticity within high 

time dimension over the growth.  

When combined with high-revisit temporal UAS phenotypic data, genome wide 

markers were found to have fluctuating phenotypic effects sizes when used in GWAS 

and QTL studies (Adak, Conrad, et al., 2021; Adak, Murray, & Anderson, 2021; Adak, 

Murray, Anderson, et al., 2021; Anderson et al., 2020; Jinyu Wang et al., 2021). This 

phenomenon demonstrates that the same markers could have different effects sizes in 

terms of  the temporal fitness of phenotypes of both traits and genotypes. Much like 

using the genome wide markers as predictors, temporal phenotype data of different 

sensor-based traits (e.g. vegetation indices) can be used as predictors. The predictive 

ability can then be compared to the predictive ability of genomic wide markers (Adak, 

Murray, & Anderson, 2021; Rincent et al., 2018). 

 Genome wide markers are collected once, and different individuals are typically 

straightforward to compare at the same genetic location regardless of when the data is 

collected. In contrast, phenomic markers are temporally and environmentally dependent 

and it is not straightforward to compare phenomic features collected in different 
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environments, at different growth stages or on different days. This is a major barrier to 

using phenomic features in prediction 

This study used recombinant inbred lines (RILs) from the three different bi-parental 

maize populations totaling 520 RILs, grown from 2016 to 2018. Multiple UAS surveys 

were conducted using the red-green-blue (RGB) and multispectral sensors in 2017 and 

2018. 520 RILs were also genotyped using the Infinium genotyping assay. Days to 

anthesis and silking were collected from RILs across three years and predicted by 

phenomic and genomic data using the different regression methods and scenarios. 

Specifically, our objectives were to:  

1) Predict the flowering times using temporal phenomic data derived from 

multispectral and RGB sensors and compare the phenomic prediction accuracies 

across irrigated and drought trials grown in 2018. As the same flights were used 

for both trials these can be achieved directly via existing methods.  

2) Predict the flowering times using the temporal phenomic data derived from 

multispectral sensor across 2017 to 2018. We adopt principal component analysis 

(PCA) to overcome the challenge that data are not directly comparable between 

years. 

3) Predict flowering times using the genomic data across years (2016 to 2018) and 

combined data containing genomic and phenomic data between trials in 2018. 

4) Integrate temporal phenomic data with genomic data to conduct GWAS, 

temporal genomic prediction, validation of temporal effects of candidate gene as 
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well as temporal SNP effects for temporal traits derived from drone images 

belonging to multiple time points. 

 

Materials and Methods 

Developing Recombinant Inbred Lines and Experimental Design 

Parental maize inbred lines used for constructing the three bi-parental linkage 

populations were developed from three parental crosses: Tx740xNC356, Ki3xNC356 

and LH82xLAMA. From 2014 to 2018, population were advanced to the F7:8 using 

single seed descent method across College Station (summer nursery) and Weslaco 

(winter nursery) in Texas. In total, 238, 178 and 104 RILs were derived from 

Ki3xNC356, LH82xLAMA and Tx740xNC356, respectively. LH82 is a temperate 

adapted line while Ki3 is tropical and NC356, LAMA and Tx740 are tropical but 

temperate selected lines. One LAMA line (pedigree: ((LAMA2002-12-1-B-B-B-

B/LAMA2002-1-5-B-B-B-B)-3-2-B-1-B3-B]) parent was Tx740 (pedigree: 

(LAMA2002-12-1-B-B-B)) and would be expected to be 50% related (Kerry Mayfield et 

al., 2012). All plantings were made in the ranges (horizontal grids, 0.76 m between 

plots) and rows (lateral grids 3.81 m long per plot) accounting for randomized complete 

block design with two replications in 2018 and one replication in 2016 and 2017. In 

2018, the RILs were grown under two different experimental conditions, with and 

without irrigation and referred to as irrigated (2018_I) and drought (2018_D) trials in 

this study. RILs were planted on the 8th of April in 2016, the 24th of March in 2017 and 

the 14th of March in 2018 (both 2018_I and 2018_D). 
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Field Based High Throughput Phenotyping Platforms and Image Processing 

Two different UAS platforms were used in this study. A rotary wing type UAS 

where a rotary wing UAS (DJI Phantom 3 Professional) equipped with a RGB sensor 

(12-megapixel DJI FC300X camera) was flown at an altitude of 25 m resulting in ~1 cm 

per pixel resolution. Additionally, a fixed-wing Tuffwing UAS mapper equipped with a 

multispectral camera (MicaSense RedEdge-MX) was flown at an altitude of 120 m 

resulting in ~7.5 cm per pixel resolution. In both platforms, 80 percent side and forward 

overlap was used. The RGB platform was flown 16 times over both trials (2018_I and 

2018_D) in 2018, while the multispectral platform was flown 8 times over both trials in 

2018 and 10 times in 2017. Dates of the flights belonging to both platforms with 

corresponding days after planting times are in Supplementary Figure 1. 

To obtain the orthomosaics for every flight, raw images belonging to each flight were 

processed in Pix4Dmapper (https://www.pix4d.com) for RGB and Agisoft PhotoScan 

(Agisoft, 2016) for multispectral platforms, respectively. Later each orthomosaic were 

subjected to plot-based data extraction. 

Data Extraction from Orthomosaic 

A shapefile was first created in QGIS containing the examined population field 

in each orthomosaic; each orthomosaic was clipped into population levels in QGIS 

(https://qgis.org/en/site) using the “Clip Raster by Mask Layer” function and further data 

extraction was conducted in R. UAStools (https://github.com/andersst91/UAStools, 

(Anderson & II, 2020)and FIELDimageR  

(https://github.com/OpenDroneMap/FIELDimageR, (Matias et al., 2020))  packages 

https://www.pix4d.com/
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were used in R to create the shape files and extract the vegetation indices (VIs), 

respectively. Briefly, (i) shape files for each plot were created using the field map 

(where range, row and plot info are stored) using  UAStools::plotshpcreate(); (ii) high 

resolution orthomosaics (only in RGB FHTP platform) were reduced using the 

raster::aggregate(); (iii) FIELDimageR::fieldmask()was used to remove the soil from the 

vegetation, (iv) FIELDiamgeR::fieldindex() was used to define the VIs; (v) 

FIELDimageR::fieldInfo() was used to extract the defined VIs for each plot according to 

the shapefile created in step one. More complete descriptions of these steps can be found 

in previous literature (Adak et al., 2021). VIs used in this study are presented in 

Supplementary Table 1.  

Statistical Analysis of Phenomic Data 

A nested design was implemented to examine genotypic variation of RILs for 

each VI extracted from orthomosaics at all flight times of RGB FHTP platform in 2018 

and multispectral FHTP platform in 2017 and 2018. The main idea of the nested design 

was to treat the RILs nested within flight times to predict the temporal best linear 

unbiased predictors (TBLUP) (Adak, Murray, & Anderson, 2021; Adak, Murray, 

Božinović, et al., 2021). The nested design was run using restricted maximum likelihood 

method (REML) mixed models for each VI where all components in equation 1 (Eq. 1) 

were attributed as random effects. 

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝐹𝑖 + 𝐺𝑖(𝑗) + 𝑅𝑎𝑛𝑔𝑒𝑖(𝑘) + 𝑅𝑜𝑤𝑖(𝑙) + 𝑅𝑒𝑝𝑖(𝑚) + ɛ𝑖𝑗𝑘𝑙𝑚 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1; 𝐸𝑞. 1) 

where, 𝑌𝑖𝑗𝑘𝑙𝑚 is the value of each vegetation index of each row plot at all flight times; 𝜇 

= overall mean; 𝐹𝑖 = the random effect of 𝑖th flight time (as days after planting time; 
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DAP) with 𝐹𝑖  𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝐹𝑖

2 ), 𝑖 ∈ [31, 39, 49, 52, 67, 84, 91, 97, 111, 123; Tuffwing with 

multispectral camera FHTP platform in 2017], 𝑖 ∈ [66, 68, 86, 91, 96, 100, 105, 117; 

Tuffwing with multispectral camera FHTP platform in 2018], and 𝑖 ∈ [27, 34, 42, 56, 

61, 64, 68, 71, 75, 78, 82, 84, 90, 99, 110, 127; rotary-wing with RGB camera FHTP 

platform in 2018 including irrigated and drought trials]; 𝐺𝑖(𝑗)= the random effect of 𝑗th 

RIL within the 𝑖th flight time with 𝐺𝑖(𝑗)  𝑖𝑖𝑑
~

 𝑁 (0, 𝜎𝐺𝑖(𝑗)

2 ), 𝑗 ∈ {1, … , 520}; 𝑅𝑎𝑛𝑔𝑒𝑖(𝑘) = 

the random effect of 𝑘th range within the 𝑖th flight time with 

𝑅𝑎𝑛𝑔𝑒𝑖(𝑘)  𝑖𝑖𝑑
~

 𝑁 (0, 𝜎𝑅𝑎𝑛𝑔𝑒𝑖(𝑘)

2 ), 𝑘 ∈ {1, … , 32; 𝑖𝑛 2017 𝑎𝑛𝑑 2018}; 𝑅𝑜𝑤𝑖(𝑙)= the 

random effect of 𝑙th row within the 𝑖th flight time with 𝑅𝑜𝑤𝑖(𝑙)  𝑖𝑖𝑑
~

 𝑁 (0, 𝜎𝑅𝑜𝑤𝑖(𝑙)

2 ), 𝑙 ∈

{1, … , 34}; 𝜃𝑖(𝑚)= the random effect of 𝑚th replication within the 𝑖th flight time with 

𝑅𝑒𝑝𝑖(𝑚)  𝑖𝑖𝑑
~

 𝑁 (0, 𝜎𝜃𝑖(𝑚)

2 ), 𝑚 ∈ {1; 𝑖𝑛 2017}, 𝑚 ∈ {1, 2; 𝑖𝑛 2018}; ɛ𝑖𝑗𝑘𝑙𝑚 is pooled error 

with ɛ𝑖𝑗𝑘𝑙𝑚
𝑖𝑖𝑑
~

 𝑁 (0, 𝜎ɛ𝑖𝑗𝑘𝑙𝑚

2 ). Results of the 𝐺𝑖(𝑗) component of each VI in Eq. 1 was 

then combined to create the TBLUP phenomic data used as predictors in the regression 

models. Thus 560 predictors in RGB FHTP platform in 2018, 728 predictors in 

multispectral FHTP platform in 2018 and, 910 predictors in multispectral FHTP 

platform in 2017 were extracted to predict DTA and DTS. Temporal repeatability for 

each VIs was calculated based on the below Eq. 2:  

 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜎𝐺𝑖(𝑗)

2

𝜎𝐺𝑖(𝑗)

2 +
𝜎ɛ𝑖𝑗𝑘𝑙𝑚

2

𝑛𝑜 𝑜𝑓 𝑟𝑒𝑝

 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2; 𝐸𝑞. 2) 
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Dependent phenotypic traits DTA and DTS were predicted to obtain the actual 

breeding values (ABVs) for each RIL using Eq. 1 where the flight component was 

removed, and then DTA and DTS were merged with the phenomic data to be predicted 

in regression models. 

A genotype by environment model was run to dissect the plasticity of the 

manually collected flowering times across three years (2016 to 2018) based on Eq. 3 

using REML in mixed model as follows: 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝐺𝑖 + 𝐸𝑗 + (𝐺𝐸)𝑖∗𝑗 + 𝑅𝑎𝑛𝑔𝑒𝑘 + 𝑅𝑜𝑤𝑙 + ɛ𝑖𝑗𝑘𝑙 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3; 𝐸𝑞. 3) 

 

Where, 𝜇 = overall mean; 𝐺𝑖= the random effect of 𝑖th RIL with 𝐺𝑖  𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝐺𝑖

2 ), 

𝑖 ∈ {1, … , 520}; 𝐸𝑗= the random effect of 𝑗th environment with 𝐸𝑗  𝑖𝑖𝑑
~

 𝑁 (0, 𝜎𝐸𝑗

2 ), 𝑗 ∈

{2016, 2017, 2018_𝐼 𝑎𝑛𝑑 2018_𝐷}; (𝐺𝐸)𝑖∗𝑗 = the random effect of interaction of the 

𝑖th RIL at 𝑗th environment; 𝑅𝑎𝑛𝑔𝑒𝑘 = the random effect of 𝑘th range with 

𝑅𝑎𝑛𝑔𝑒𝑘  𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑅𝑎𝑛𝑔𝑒𝑘

2 ), 𝑘 ∈ {1, … , 32; 𝑖𝑛 2016, 2017, 2018𝐼𝑎𝑛𝑑 2018𝐷}; 

𝑅𝑜𝑤𝑖(𝑙)= the random effect of 𝑙th row with 𝑅𝑜𝑤𝑙  𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑅𝑜𝑤𝑖

2 ), 𝑙 ∈ {1, … , 34}; ɛ𝑖𝑗𝑘𝑙 is 

pooled error with ɛ𝑖𝑗𝑘𝑙
𝑖𝑖𝑑
~

 𝑁 (0, 𝜎ɛ𝑖𝑗𝑘𝑙

2 ). 

Repeatability for the DTA and DTS across trials in 2016 to 2018 was calculated 

based on the below Eq. 4: 
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𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=
𝜎𝐺

2
𝑖

(𝜎𝐺
2

𝑖
+

𝜎(𝐺𝐸)
2

𝑖∗𝑗

𝑛𝑜 𝑜𝑓 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
+

𝜎ɛ𝑖𝑗𝑘𝑙
2

𝑛𝑜 𝑜𝑓 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ∗ 𝑛𝑜 𝑜𝑓 𝑟𝑒𝑝
)

 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4; 𝐸𝑞. 4) 

To analyze the genotype by environment interaction of flowering time, weighted average 

of the absolute scores (WAASB) and which-won-where biplot view illustration by 

Genotype and Genotype-vs-Environment interaction (GGE) model were run using DTA 

scores of each RIL belonging to 2016, 2017, 2018_I and 2018_D trials using the 

“metan” package in R (Olivoto & Lúcio, 2020). WAASB scores were used as values of 

stability analysis for each RIL across four environments, and which-won-where biplot 

view was used to identify the diverse environments including DTA performance of the 

RILs.  

DNA Extraction, Genotyping and Filtering 

These procedures were previously documented in (Chen, 2016) but are briefly 

described here. Genomic DNA samples were extracted according to a CTAB protocol 

(Chen and Ronald, 1999) where eight seedlings were bulked for each RIL and used in 

DNA extraction. Genomic DNA for each of the 520 genotypes was collected using an 

Infinium whole-genome genotyping assay in AgReliant Genetics LLC, resulting in 

17,444 genome wide single nucleotide polymorphisms (SNPs). B73 RefGEN_v3 was 

used to determine the physical location of the genome wide SNPs. Tassel 5 software 

(Bradbury et al., 2007) was used to filter and impute the genomic data as follows; (i) 

heterozygote calls set as missing, (ii) markers filtered if allele frequency was lower than 

0.05 and missing values were higher than ten percent across RILs, finally (iii) genomic 



 

142 

data were imputed based on LD-kNNi (Money et al., 2015). As a result, 11,334 SNPs 

were retained to be used in genome wide association analysis (GWAS) and genomic 

prediction. 

Phenomic Prediction 

Eight regression methods were implemented in the Caret package in R (Kuhn, 

2008) to predict the DTA and DTS using two phenomic derived data sets from RGB and 

multispectral FHTP platforms. The data was split into a training set (70%) and a test set 

(30%) randomly in each bootstrap, and 10-fold cross validation with 3 replications were 

applied to all regression methods. 500 bootstraps were applied in all prediction models 

to assess the phenomic prediction accuracy; phenomic prediction accuracy was 

calculated based on correlation coefficients between actual breeding value (ABV) and 

phenotypically estimated breeding value (PEBV) for each regression method and 

predicted variable (DTA and DTS). Assessment of the prediction accuracy of each 

regression method are given in “Prediction accuracy assessment of phenomic prediction 

models: scenario 1 and -2”. 

In the caret::train(), the regression method was set as “lm” for linear regression, 

“glmnet” for ridge, lasso and elastic net regressions, “rf” for random forest regression, 

“svmLinear” for support vector machine regression with linear kernel, “pcr” for partial 

least square regression,  and “knn” for k-nearest neighbors regression. For each 

regression model, respective tunning parameters are chosen to minimize root mean 

square error (RMSE). The functional parameter alpha value was set to 0 for ridge 

regression, 1 for lasso while optimal alpha value was searched between 0 and 1 with the 
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5 increments for elastic net using the expand.grid (). Lambda value for ridge, lasso and 

elastic net regressions were also explored between 0.0001 and 1 with the 5 increments 

using expand.grid(). Mtry (variables randomly sampled at each split) was explored 

between 30 to 50 with 5 increments and ntree was set as 1000 for random forest 

regression. The Cost was explored between 0 to 2 with 20 increments for support vector 

machine regression with linear kernel. TuneLength was set as 100 to find an optimal 

number of principal components minimizing RMSE in the partial least square 

regression. TuneLength was set as 100 to specify the number of k minimizing RMSE in 

k-nearest neighbors regression. 

Genomic Prediction 

DTA and DTS were predicted using genomic data (11,334 SNPs) in the rrBLUP 

package in R (Endelman, 2011). “rrBLUP::A.mat()” was used to impute the missing 

calls in genomic data using the expectation maximization algorithm (impute.method 

=EM) (Poland & Rife, 2012). Data was split into a traninig set (70%) and a test data set 

(30%) respectively, and 500 bootstraps were applied to the genomic prediction model. 

Prediction accuracy of the genomic predictions were calculated based on the correlation 

coefficients between actual breeding value (ABV) and genotypically estimated breeding 

value (GEBV) of DTA and DTS in each bootstrap. Assessment of the genomic 

prediction model was given in “Prediction accuracy assessment of genomic prediction 

models: scenario 3 and -4”. 

Prediction Accuracy Assessment of Phenomic Prediction Models: Scenario 1 
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In the scenario 1, RGB and multispectral phenomic data were each used 

individually to predict DTA and DTS in 2018 to assess the prediction accuracy of each 

phenomic prediction model. 2018_I and 2018_D trials were used as tested (training) and 

untested (validation) environments respectively, and 70 and 30 percent split data were 

used as tested and untested genotypes respectively. Phenomic prediction models were 

trained using the 70 percent of data in 2018_I (see phenomic prediction) and four type of 

phenomic prediction accuracies were calculated between ABV and PEBV (i) of tested 

genotypes in tested environment (2018_I), (ii) untested genotypes in tested environment, 

(iii) tested genotypes in untested environment (2018_D) and (iv) untested genotypes in 

untested environment. 

Prediction Accuracy Assessment of Phenomic Prediction Models: Scenario 2 

In scenario 2, multispectral phenomic data were used to predict DTA and DTS 

between 2017 and 2018 since multispectral FHTP platform was conducted in 2017 and 

2018. 2018_I and 2017 trials were used as tested and untested environments 

respectively. The reason the later year (2018) was selected to build the calibration was 

because it had both RGB and multispec, and the overall quality was improved; the 

important point was that these were different years for phenomic prediction. It is 

important to note that flight times of the multispectral FHTP platform did not match 

between 2017 and 2018, which is a current unsolved challenge in the use of phenomic 

tools. To address this principal component scores (PCs) of each VI were calculated and 

used for each RIL using “prcomp” function in R. The first five PCs of each VI were used 

in 2017 and 2018 multispectral phenomic data. Thus, predictors were able to be matched 
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using the PCs in multispectral phenomic data in 2017 and 2018. Here, the time interval 

of the VIs were chosen as close as possible; phenotype data of VI belonging to 52, 67, 

84, 91, 97, 111, 123 DAPs were chosen in 2017 and, 66, 68, 86, 91, 96, 100, 105, 117 

DAPs were chosen in 2018_I trial. Model training and phenomic prediction accuracy 

were the same as scenario 1. 

Prediction Accuracy Assessment of Genomic Prediction Model: Scenario 3 

In the scenario 3, genomic data was used to predict the DTA and DTS using the 

“rrBLUP” package. The 2018_I trial was used as a tested environment while 2018_D, 

2017 and 2016 trials were used as untested environments respectively, and 70 and 30 

percent split data was used as tested and untested genotypes, respectively. The genomic 

prediction model was trained using 70 percent of data in 2018_I (see genomic 

prediction) and eight types of genomic prediction accuracies were calculated between 

ABV and GEBV: (i) tested genotypes in tested environment, (ii) untested genotypes in 

tested environment, (iii) tested genotypes in untested environment (2018_D trial), (iv) 

untested genotypes in untested environment (2018_D trial), (v) tested genotypes in 

untested environment (2017 trial), (vi) untested genotypes in untested environment 

(2017 trial), (vii) tested genotypes in untested environment (2016), and (viii) untested 

genotypes in untested environment (2016). 

Prediction Accuracy Assessment of Genomic Prediction Model: Scenario 4 

In the scenario 4, genomic data was merged with the RGB phenomic data to 

predict the DTA and DTS using the “rrBLUP” package in 2018. 2018_I and 2018_D 
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trials were used as tested and untested environments respectively. Model training and 

calculations of four type of prediction accuracies were the same as scenario 1. 

Prediction Accuracy Assessment of Phenomic and Genomic Prediction Model for 

Stability: Scenario 5 

In the scenario 5, WAASB stability scores that were calculated for days to 

anthesis (DTA) of RILs were predicted by RGB phenomic data belonging to drought and 

irrigated trials in 2018 [RGB (2018_D); RGB(208_I)], RGB plus multispectral 

phenomic data belonging to drought and irrigated trials in 2018 [RGB(2018_D) + 

Multi(2018_D); RGB(2018_I) + Multi(2018_I)], RGB phenomic data belonging to 

drought and irrigated trials in 2018 plus multispectral phenomic data belonging to 2017 

[RGB(2018_D) + Multi(2017); RGB(2018_I) + Multi(2017)] and genome wide markers 

(11,334 SNPS) to assess the predictive ability of six different phenomic and genomic 

data in the prediction of WAASB stability scores. 70 and 30 percent split data was used 

as tested and untested genotypes, respectively for each data set. To be consistent, ridge 

regression in caret and rrBLUP packages were used for phenomic and genomic 

prediction respectively. Models were trained using the 70 percent of each data set (see 

phenomic and genomic prediction) and two type of prediction accuracies were calculated 

(i) of tested genotypes (CV1), (ii) untested genotypes (CV2). 

Genome Wide Association Study of Temporal Traits and Flowering Times 

Beyond prediction, it is valuable to understand the underlying biological function 

of phenomic features that predict the flowering time traits of interest. The fixed and 

random model circulating probability unification (FarmCPU) method was conducted in 
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GAPIT (version 3) in genome wide association studies (GWAS) in R using 11,334 

filtered SNPs (Liu et al., 2016; Wang and Zhang, 2021). Flowering times (DTA and 

DTS) belonging to 2016, 2017, 2018_D and 2018_I, and temporal traits of all vegetation 

indices in RBG phenomic data belonging to 2018_D and 2018_I and multispectral 

phenomic data belonging to 2017, 2018_D and 2018_I were used as phenotype data in 

GWAS. To control for population structure, genomic data was used to calculate a 

kindship matrix based on the centered_IBS method (Endelman & Jannink, 2012), and 

principal component analysis (PCA) in Tassel 5 software (Bradbury et al., 2007). Three 

PCs (explaining 26.4%, 8.3% and 2.2% among the first three PCs) were used along with 

kindship matrix in GWAS studies. Population structure, PC scores, and SNP distribution 

across each chromosome are shown in Figure 45. A false positive discovery (FDR) rate 

was applied as [p <= 10^(-5)] to consider the significant SNPs in the GWAS study. 

Candidate genes within 100 kb of discovered SNPs, as well as within the linkage 

disequilibrium (LD) block where the minimum R2 value was 0.8. LD was calculated and 

visualized using the LDheatmap package in R (Shin, Blay, McNeney, & Graham, 2006). 

LD blocks of ten chromosome are presented in Figure 46. 

Environment Modelling of The Trials 

Thirteen environmental parameters were collected at 10-minute increments and 

obtained from the Texas A&M Research Farm Mesonet. Wind speed [WS (m s-1)], gust 

[Gust (m s-1)] temperature [Temp (℃)], relative humidity [RH (%)], barometric 

pressure [BP (mBar)], solar radiation [SR [W (m2)-1], photoperiod [photoperiod [hr]), 

growing degree days; [GDD  [(T_max+T_min)/2-T_base (10℃)], photothermal time 
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[PTT; (GDD*photoperiod)], photo thermal ratio [PTR; (GDD/photoperiod)], diurnal 

temperature range  [DTR; (T_max-T_min)], minimum temperature (Min, T_min), and 

maximum temperature (Max, T_max) were used as environmental parameters. The 

environmental parameters were used as predictors to classify the trials grown in 2016, 

2017 and 2018. To do so, environmental parameters were merged from planting times of 

each trial to average of the days to anthesis times of each trial. Average values of DTA 

were predicted by Eq. 4 resulting in 68, 70 and 76 DTA for each trial grown in 2016, 

2017 and 2018 respectively. Predicted variables were years treated as categorical 

variables. This classification was intended to dissect the underlying environmental 

paraments of flowering time plasticity occurring across years with different planting 

times for the RILs in this study. A random forest algorithm was used to classify the years 

based on the environmental variables using the 10-fold with three repeat cross validation 

in caret package in R. Variable importance scores (varImp) were calculated to identify 

the most important environmental parameters, and a partial dependence plot was used to 

visualize the probability of occurrence of the trials grown in different years based on the 

values of each environmental predictor using edarf package in R. Environmental 

parameters and their values from planting time to the mean of days to anthesis times for 

each trial grown in 2016, 2017 and 2018 were illustrated in Supplementary Figure 46. 

Correlations among the environmental variables for each trial grown in 2016, 2017 and 

2018 were given in Supplementary Figure 47. 
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Figure 45 A-) the biplot illustration including first two principal component showing 

separation of 520 recombinant inbred lines (RILs), B-) Scree plot showing the explained 

percent variation by each principal component, C-) distance matrix showing the 

population structure of 520 RILs, and D-) distribution of 11,334 filtered single 

nucleotide polymorphisms across ten chromosomes.  
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Figure 46 the linkage disequilibrium (LD) blocks of each chromosome were illustrated 

based on R2. X axis shows the genomic positions in (mega basepair) and points shows the 

R2 value of pairwise LD value of among SNPs. Vertical dashed line indicates the 0.8 LD 

threshold in each chromosome. 

Results 

Nested Design Results: Temporal Repeatability, Variance Components, Temporal 

Breeding Values and Correlation 

Temporal repeatability values of VIs in multispectral phenomic data varied 

between ~0.10 and 0.60 in 2017, ~0.16 and 0.61 in 2018_D, ~0.19 and 0.69 in 2018_I 

whereas temporal repeatability values of VIs in RGB phenomic data varied between 

~0.50 and 0.71 in 2018_D, ~0.54 and 0.81 in 2018_I (Supplementary Data 1). The RGB 

platform had higher resolution (~1 cm per pixel) than the multispectral platform (~7.5 

cm per pixel) thanks to flight surveys along with a lower flight altitude (25 m) than those 

of multispectral HTP platform, resulting in overall higher temporal repeatability values 

in the RGB phenomic data. The flight component in the nested design (Eq. 1) explained 

the highest amount of total variation for a majority of VIs in the phenomic data set 

(Supplementary Data 1). The genetic variance components, in which genetic materials 

(RILs) were considered nested within flights, were used to predict temporal breeding 

values of RILs for each VI in RGB and multispectral phenomic data. Temporal breeding 

values were found to have different temporal trajectories throughout plant growth 

(Supplementary Data 2). Correlations were calculated (i) within five phenomic data and 

genomic data, and (ii) between phenomic data and flowering times (DTA and DTS). 

Correlation between phenomic data and flowering times were found to be temporally 

changing between -0.4 and +0.4 depending on the flight dates. Temporal VIs in RGB 
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phenomic data in 2018 (drought and irrigated) had the correlations that were mostly 

inverted in flowering times from positive to negative or vice versa, these correlation 

inversions were more obvious between flowering times and RGB phenomic data 

belonging to 2018 drought trial than RGB phenomic data belonging to 2018 irrigated 

trial (Figure 47). In the 2017 multispectral phenomic data, it was calculated that rather 

than the inversion of the correlations, the correlations approached zero from the planting 

time to the flowering time and continued in this way (Figure 47). However, there was no 

obvious inversion in multispectral phenomic data belonging to 2018 (drought and 

irrigated), because there were no flight date belonging to earlier time point of growth 

(Figure 47).   

Correlation of phenomic data showed that temporal VI phenotypes belonging to 

the same growth stages were usually correlated in a positive way, whereas temporal 

phenotype of VIs belonging to different growth stages often negatively correlated or had 

no correlation (Figure 48). High temporal dimension (time points) of VI inhibited the 

multicollinearity problem in phenomic data set.  

Plasticity of the Flowering Times 

The genotype by environment model (Eq. 3) revealed the existence of plasticity 

in flowering times. The year variance component explained the highest percentage of the 

total variation (59.6% for DTA and 51.2% for DTS); interaction variance components 

between pedigree (RILs) and years explained 3.5% and 4.6% variation of total variation 

for DTA and DTS, respectively (Figure 49). Weighted average of the absolute scores 

(WAASB) were calculated as a unit of stability index for each RIL. 
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Figure 47 shows the correlations as heatmap illustration between each vegetation index 

(on the Y axis) belonging to each time point (on the X axis as days after planting unit) in 

each phenomic data and flowering times (DTA and DTS). A and B shows the 

correlations between each phenomic data with DTA and DTS respectively. Phenomic 

data was defined at the top of each heatmap where top line represents the year and 

bottom line shows the type of phenotyping platform (multispectral or RGB).  

 

This showed that as environmental means in flowering times increased from 

2016 to 2018, stability of the RILs weakened. Which-won-where view of GGE biplot 

illustration also revealed that DTA performance of RILs were found to be affected by 

different planting times of the different trials from 2016 to 2018 (Figure 49). Under the 

existence of plasticity, flowering times across years with different planting times along 

with the interplays of the environmental parameters, phenomic, genomic and phenomic 

plus genomic data were used to predict flowering times across trials in different years 

and managements to assess their predictive ability by applying four different cross 

validation schemes. 
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Figure 48 the correlation of temporal VIs in (A) the multispectral phenomic data in 

2018_D, (B) in 2018_I, (C) in 2017 and RGB phenomic data in (D) 2018_D, (E) 2018_I 

and (F) GBS data.   
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Figure 49 Results of the variance component of genotype by environment model 

(equation 3, Eq. 3). A-) box plots of the predicted flowering time values of recombinant 

inbred lines belonging to their sub-populations across trials and years as a result of the 

genotype by environment interaction component in Eq. 3. B-) explained percent 
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variation by each component in Eq. 3. C-) statistically significance information of each 

component in Eq. 3. D-) Weighted average of the absolute scores (WAASB)-based 

stability values of each RIL across 2016, 2017, 2018_D and 2018_I (left), and which-

won-where biplot illustration by Genotype plus Genotype-vs-Environment interaction 

(GGE) analysis showing diverse environments (trials in different years: 2016, 2017, 

2018_I and 2018_D) and different performances of RILs in terms of days to anthesis 

(DTA) across environments (left). 

 

Results of Scenario 1 

Prediction accuracies were obtained from eight different machine learning 

regression model algorithms using the multispectral and RGB phenomic data in scenario 

1. The most challenging cross-validations (CVs), prediction of tested and untested RILs 

in the untested environment (CV3 and CV4), demonstrated that ridge regression was the 

best performing model for predicting flowering time in this data set using both RGB and 

multispectral phenomic data (Figure 50). Ridge regression prediction accuracy was 

~0.36 for DTA and ~0.27 for DTS for CV3; and ~0.35 for DTA and ~0.25 for DTS in 

CV4 when multispectral phenomic data was used. Ridge regression prediction accuracy 

was ~0.54 for DTA and ~0.52 for DTS in CV3, ~0.52 for DTA and ~0.48 for DTS in 

CV4 when RGB phenomic data was used (Figure 50). The linear model was found to be 

the worst performing model. Using this methodology of scenario 1, management 

conditions with the same flight dates can be tested but this approach is impossible across 

environments or years where flight dates differ and may not be valid where rates of crop 

development differ. For this reason, an approach using principal component analysis 

(PCA) was developed and tested in scenario 2.   
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Figure 50 Phenomic prediction accuracies (y-axis) of eight machine learning regression 

models (x-axis) for days to anthesis (DTA) and silking (DTS) using multispectral and 

RGB phenomic data in scenario 1. En: elastic-net regression, lasso: lasso regression, pls: 

partial least square regression, ridge: ridge regression, knn: k-nearest neighbor 

regression, lm: linear regression, rf: random forest regression, svm: support vector 

machine regression. Cross validation 1 (CV1): tested RILs in tested environment 

(2018_I trial), CV2: untested RILs in tested environment (2018_I trial), CV3: tested 

RILs in untested environment (2018_D trial), CV4: untested RILs in untested 

environment (2018_D trial). 

 

Results of Scenario 2 

This prediction scenario addressed the subject of prediction of the flowering 

times between years using multispectral phenomic data across two years whose flight 

times did not match. To address different flight times, principal component scores (PCs) 

were used to align predictors in multispectral phenomic data across two years 2018 (both 

irrigated and drought trials) and 2017 to conduct the prediction of the flowering times 

across years (RGB was not available in 2017). Among the eight machine learning 

regression models, ridge regression was found to be the best performing model, though 
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not significantly different from others, and predicted flowering times across years with 

accuracies of ~0.15 for DTA and ~0.16 for DTS in CV3 and CV4 (Figure 51). 

 

Figure 51 phenomic prediction accuracies (y-axis) of eight machine learning regression 

models (x-axis) for days to anthesis (DTA) and silking (DTS) using multispectral and 

RGB phenomic data in scenario 2. En: elastic-net regression, lasso: lasso regression, pls: 

partial least square regression, ridge: ridge regression, knn: k-nearest neighbor 

regression, lm: linear regression, rf: random forest regression, svm: support vector 

machine regression. Cross validation 1 (CV1): tested RILs in tested environment 

(2018_I trial), CV2: untested RILs in tested environment (2018_I trial), CV3: tested 

RILs in untested environment (2017 trial), CV4: untested RILs in untested environment 

(2017 trial). 

 

Results of Scenario 3 

Genome wide markers were used as predictors in rrBLUP algorithm to predict 

the flowering times across trials and years in scenario 3; genomic prediction model (GP) 

was trained in 2018_I (to compare with other scenarios), and trained GP model was used 

to predict the flowering times in three different untested environments (2018_D, 2017, 

and 2016). Genomic prediction accuracies of untested RILs were ~0.67 for DTA and 
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~0.65 for DTS in 2018_D (CV4:), ~0.33 for DTA and DTS in 2017 (CV6), and 0.56 for 

DTA and 0.49 for DTS in 2016 (CV8) trial (Figure 52). 

 

Figure 52 Genomic prediction accuracies (y-axis) of different cross validation schemes 

(x-axis) for days to anthesis (DTA) and silking (DTS) using genome wide markers in 

rrBLUP in scenario 3 with all trained on 2018_I. Cross validation 1 (CV1): tested RILs 

in tested environment (2018_I trial), CV2: untested RILs in tested environment (2018_I 

trial), CV3: tested RILs in untested environment (2018_D trial), CV4: untested RILs in 

untested environment (2018_D trial). CV5: tested RILs in untested environment (2017 

trial), CV6: untested RILs in untested environment (2017 trial). CV7: tested RILs in 

untested environment (2016 trial), CV8: untested RILs in untested environment (2016 

trial). 

 

Results of Scenario 4 

Genome wide markers were merged with RGB phenomic data to predict the 

flowering times in scenario 4; model was trained in 2018_I and used to predict the 

flowering times in 2018_D untested environment. Prediction accuracy of untested RILs 

were 0.77 and 0.75 for DTA and DTS in 2018_D, respectively (Figure 53). These 
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accuracies were higher than that of phonemic or genomic data independently as 

predictors of flowering time. 

 

Figure 53 Combined prediction accuracies (y-axis) of different cross validation schemes 

(x-axis) for days to anthesis (DTA) and silking (DTS) using genome wide markers and 

RGB phenomic data as combined predictors in rrBLUP in scenario 4. Cross validation 1 

(CV1): tested RILs in tested environment (2018_I trial), CV2: untested RILs in tested 

environment (2018_I trial), CV3: tested RILs in untested environment (2018_D trial), 

CV4: untested RILs in untested environment (2018_D trial). 

 

Results of Scenario 5 

Genome wide markers (GP), RGB phenomic data belonging to drought and 

irrigated trials in 2018 [RGB (2018_D); RGB(208_I)], RGB plus multispectral 

phenomic data belonging to drought and irrigated trials in 2018 [RGB(2018_D) + 

Multi(2018_D); RGB(2018_I) + Multi(2018_I)], RGB phenomic data belonging to 

drought and irrigated trials in 2018 plus multispectral phenomic data belonging to 2017 

[RGB(2018_D) + Multi(2017); RGB(2018_I) + Multi(2017)] were used as predictors to 
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predict the stability of RILs (WAASB scores) for DTA calculated across three years. 

Stability was predicted using the phenomic and genomic data due to the fact that all the 

phenomic and genomic data provided positive prediction accuracy (0.18 - 0.35). The 

best prediction accuracy for CV2 in scenario 5 was provided by genome wide markers 

(0.35) followed by combined phenomic data containing RGB phenomic data belonging 

to 2018 and multispectral phenomic data belonging to 2017 (~0.25) (Figure 54). 

 

Figure 54 prediction accuracy for days to anthesis (DTA) stability index (WAASB) of 

RILs by RGB phenomic data belonging to drought and irrigated trials in 2018 [RGB 

(2018_D); RGB(208_I)], RGB plus multispectral phenomic data belonging to drought 

and irrigated trials in 2018 [RGB(2018_D) + Multi(2018_D); RGB(2018_I) + 

Multi(2018_I)], RGB phenomic data belonging to drought and irrigated trials in 2018 

plus multispectral phenomic data belonging to 2017 [RGB(2018_D) + Multi(2017); 

RGB(2018_I) + Multi(2017)]. 

 

Important Predictor/Time Combination 

Variable importance scores (varImp) were derived from the output of ridge 

regression because it was nominated as the best model in the prediction of the flowering 

times in the most challenging phenomic prediction scenarios (eg. CV3 and CV4 in 
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scenario 1 and 2). RGB phenomic data of 2018_I nominated RCC as one of the most 

informative VIs across multiple time points, followed by NGRDI, VARI, GCC and ExR. 

Multispectral phenomic data of 2018_I nominated NLI and MNLI as the most 

informative VIs across multiple time points in both prediction flowering times (Figure 

55).    

 

Figure 55 variable importance scores (varImp) derived from the ridge regression 

showing the variable importance scores of each vegetation index (y axis) belonging to 

each time point (x axis). A-) varImp belonging to the RGB phenomic data in scenario 1. 

B-) varImp belonging to multispectral phenomic prediction in scenario 1. 

 

Partial Dependence Plot 

Partial dependence plots were used to visualize the relationships between time 

points of most important variables (based on varImp) and predicted trait (DTA) from the 
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ridge and random forest regressions. RCC and NLI were identified by the RGB and 

multispectral phenomic data, respectively, and temporal relationships between RCC, 

NLI and DTA were visually identified. Direction of temporal relationships were found 

vary in positive or negative ways depending on values of RCC and NLI belonging to 

different time points (Figure 56). For example, the RCC value belonging to 56, 61, 78 

and 99 DAPs were nominated among the most important VI/time points combination 

based on the varImp scores. Flowering occurred 68-83 days after planting (DAP), RCC 

values belonging to 56 and 61 DAPs (corresponding to before flowering times) had a 

positive relation with DTA whereas RCC values belonging to 78 and 99 had the negative 

relationships with DTA (Figure 56). Similarly, NLI values belonging to 96 DAP was 

nominated as an important VI/time point combination and was found to have negative 

relationship with DTA (Figure 56). Partial dependence plots of other important VIs in 

RGB and multispectral phenomic data were given in supplementary data 3. 
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Figure 56 Partial dependence plots between temporal phenotype of NLI and RCC, which 

were nominated most important variable in RGB and multispectral phenomic data based 

on varImp, respectively, and predicted days to anthesis (DTA). Each flight time was 

separated as consecutive facet for NLI and RCC, showing the positive, negative and linear 

relationship depending on the time points. 

Genome Wide Association Studies Discovered Plant Development Related Genes Using 

Temporal Phenotype 

Temporal phenotype data of VIs in multispectral data and RGB phenomic data 

were used as phenotype data in a genome wide association study (GWAS) analysis. 

Combining all phenotypic data across environments, 728 phenotypes in 2018_I, 728 

phenotypes in 2018_D and 910 phenotypes in 2017 belonging to multispectral data; 560 

phenotypes in 2018_D and 560 phenotypes in 2018_I belonging to RGB data resulted in 

3468 unique phenomic temporal x VI predictors. These 3468 phenomic measures were 

used in association mapping analysis, resulting in discovery of 6151 SNPs, of which 

1599 were unique SNPs (Figure 59, Supplementary data 4). 

A GWAS was conducted using all 2016, 2017 and 2018 DTA and DTS and the 11,334 

SNPs collected. A total of 9 segregating loci were discovered for DTA and 13 SNPs for 

DTS using a FDR significance threshold [-log10(p) > 5]. Five of these loci corresponded 

to well-known candidate genes involved in various steps of floral transition pathways. 

These genes were identified based on  strong LD blocks (R2≥0.8) in the proximal 

regions of significant SNPs discovered for DTA and DTS (Figure 57).  Of those, two 

phytochrome related genes, GRMZM2G057935 (phyC1) and GRMZM2G092174 

(phyB2), transduce daylight into endogenous circadian clock pathway to initiate the 

floral transition (Dong et al., 2012). One of the 24 phosphatidylethanolamine-binding 
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(PEBP) genes in maize, GRMZM2G440005 (pebp24), corresponds to FLOWERING 

LOCUS T (FT) in Arabidopsis and regulates the floral transition in maize 

(Danilevskaya, Meng, Hou, et al., 2008). The small ubiquitin-related modifier (SUMO) 

related gene in maize, GRMZM2G010505 (esdl4), is related to the SUMO-specific 

protease ESD4 (At4g15880) in Arabidopsis causing early flowering in maize (Murtas et 

al., 2003). One of the photoperiod responsive genes in maize, GRMZM2G381691 (cct1), 

encodes a CCT domain, it was expressed high in tropical maize germplasm under longer 

day circumstances (Hung et al., 2012) and contributes the maize adaptation towards to 

higher latitudes (C. Huang et al., 2018). Genomic positions of the SNPs discovered for 

the VIs and close to the genomic positions of the candidate flowering genes are 

illustrated in Figure 58 with nearby strong LD blocks illustration.  

The five candidate genes, discovered using DTA and DTS, were also discovered using 

the temporal phenotype of certain VIs in GWAS analysis, considering the strong 

proximal LD regions (R2≥0.8) containing the genomic positions of five candidate 

flowering genes (phyC1, esdl4, pebp24, phyB2, cct1) and the SNPs that were discovered 

for the VIs (Figure 58, supplementary data 4). For instance, SNPs, which were 

discovered for 17 different VIs belonging to various DAPs in multispectral phenomic 

data, were also discovered within the proximal genomic regions of the 

GRMZM2G381691 (cct1) (Figure 58, supplementary data 4). The temporal phenotype 

data of the 17 VIs in multispectral phenomic data belonged to times ranging from 52 to 

105 DAPs depending on 2017, 2018_I and 2018_D trials.  



 

165 

The temporal phenotype data of certain VIs also discovered flowering-related 

candidate genes different from the candidate genes discovered using the phenotype data 

of flowering times in the GWAS study. GRMZM2G414779 (EXPA11) was discovered 

by multispectral phenomic data belonging to 2018_I, and was previously discovered for 

flowering times in maize (Jinyu Wang et al., 2021). GRMZM2G011357 (indeterminate; 

ID1) was discovered by RGB phenomic data belonging to 2018_D, and was one of the 

flowering-time genes reported by (Wong & Colasanti, 2007) which has been shown to 

be upregulated under drought conditions (Kim, Song, Park, Kim, & Lee, 2021). 

GRMZM2G017087 (KNOTT1; kn1) is the ortholog of GIBBERELLIC ACID 

INSENSITIVE (GAI) gene in Arabidopsis, and it is related to the GA pathway of 

flowering times in maize identified to impede the accumulation of the gibberellins 

regulating the GA2ox1 gene (Bolduc & Hake, 2009). GRMZM2G106613 

(LUMINIDEPENDENS, ldp1) was discovered by multispectral and RGB phenomic data 

belonging to 2017 and 2018_D, it is the ortholog of LUMINIDEPENDENS in 

Arabidopsis that regulates the flowering time (I. Lee et al., 1994). GRMZM2G110153 

(zmm16) was discovered by multispectral and RGB phenomic data belonging to 2017, 

2018_D and 2018_I, it belongs to MADs-domain transcription factor that control the 

floral organ development in maize (Setter et al., 2011), and was found to have an 

expression peak in mature anthers (S. Qi et al., 2021). GRMZM2G045275 (pco135758, 

ELF3-like) and GRMZM2G106903 were discovered by RGB and multispectral 

phenomic data belonging to 2018_D and 2018_I; it controls the early flowering and 

flowering time related protein in maize respectively, their homologs correspond to 
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heading date, flowering time, and plant height in rice (S.-Y. Chen, Wang, & Cai, 2007; 

Fu et al., 2009). Another early flowering related gene, GRMZM5G877647 (ELF4-like3) 

and GRMZM2G359322, discovered by RGB phenomic data belonging to 2018_I, 

encodes DUF1313 related protein that is highly preserved domain in plants and related 

to photoperiod sensitivity in maize (J. Li et al., 2016). GRMZM2G141756 (pebp7, 

ZCN7) was discovered by multispectral phenomic data belonging to 2017, and is one of 

the phosphatidylethanolamine-binding (PEBP) genes that involves the floral transition in 

maize (Danilevskaya, Meng, Hou, et al., 2008); this is the paralog of ZCN8 encoding 

florigen hormone in maize (Mascheretti et al., 2015). Another 

phosphatidylethanolamine-binding (PEBP) genes, GRMZM2G373928 (pepb14; ZCN14) 

and GRMZM2G338454 (pebp3; ZCN3), discovered by multispectral and RGB phenomic 

data belonging to 2017, 2018_D (Danilevskaya, Meng, Hou, et al., 2008). 

AC233870.1_FG003 (pza01875) was discovered by multispectral and RGB phenomic 

data belonging to 2017 and 2018_I, and it is ELF3-like gene involving the regulation of 

photoperiodic related flowering (Kim et al., 2021). GRMZM2G067921 (dlf1) was 

discovered by multispectral phenomic data belonging to 2017 and 2018_I, and it is 

homolog FLOWERING LOCUS D (FD) in Arabidopsis encoding the bZIP protein 

domain to initiate the floral signal in shoot apical meristem in maize (Muszynski et al., 

2006). GRMZM2G179264 (pebp8; ZCN8) was discovered by RGB and multispectral 

phenomic data belonging to 2018_D and 2018_I, it is a member of PEBP gene family 

promoting the transition from vegetative to generative phase encoding the florigen 

hormone in maize (X. Meng et al., 2011). GRMZM2G004483 (cct2) was discovered by 
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multispectral phenomic data belonging to 2018_I and 2017, it encodes CCT domain that 

regulates flowering under long days in maize as well as maize adaptation to higher 

latitudes (C. Huang et al., 2018). GRMZM2G076602 (AP2; APETALA2-like TF) was 

discovered by multispectral and RGB phenomic data; it is floral development related 

gene and down regulated under drought stress causing the delayed flowering 

(Danilevskaya et al., 2019). Temporal values of VIs belonging to different growth stages 

of RILs enabled discovery of flowering related candidate genes in GWAS including 

early- and mid-vegetative stages as well as early reproductive stages depending on trials 

in different years that were given in supplementary data 4 and Figure 58. 

Various plant development and plant defense related genes were also discovered using 

the temporal phenotype of VIs belonging to multispectral and RGB phenomic data in 

GWAS analysis (Supplemental data 4). While these are unlikely to have affected 

flowering time, it is likely that they are segregating in these population and responsible 

for some of the phenomic variation observed across growth. These genes are briefly 

mentioned. GRMZM2G044481 (an2) involves kauralexin synthesis in maize that 

suppress the fungal attack (e.g. Fusarium) (Harris et al., 2005), and deficiency in 

kauralexin synthesis increased drought sensitivity in maize (Vaughan et al., 2015). 

GRMZM2G077197 (ZmNPR1) is responsible for encoding the salicylic acid contributing 

immune system and initiate the plant defense in maize (Y. Wu et al., 2012). 

GRMZM2G163015 (acs1) syntheses the ethylene and upregulated under the drought 

condition in maize (H. Zheng et al., 2020). GRMZM2G083810 (hsp18f) encodes the heat 

shock protein that are responsible for heat stress in maize (J. Li et al., 2019). 
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GRMZM2G449033 (na1) is one of the well-known genes regulating the brassinosteroids 

biosynthesis, causing the dwarf mutants with deficiency in brassinosteroids biosynthesis 

in maize (Hartwig et al., 2011). GRMZM2G373522 (dhn3) encodes dehydrin related 

protein that was upregulated under the drought and heat stress in maize (Blein-Nicolas et 

al., 2020; P. Li et al., 2017). GRMZM2G081310 (cdpk7) differentially expressed under 

the Aspergillus flavus infection in maize (Parish, Williams, Windham, & Shan, 2019). 

GRMZM2G025867 (pco093706) controls the drought stress by regulating the osmatic 

pressure based on proline synthesis in maize (L. Cao et al., 2018). GRMZM2G118737 

(invan2) regulates the nitrogen remobilization (X. Gong et al., 2020). 

GRMZM2G414660 (PsbZ) encodes the photosystem II PsbZ protein that was 

upregulated under drought stress to contribute the efficiency of the photosynthesis (B. 

Wang et al., 2018). GRMZM2G076987 differentially expressed for the phosphate 

deficiency in maize (Gupta, Kumari, Kumar, & Varadwaj, 2017). GRMZM2G058451 

(bhlh164) involves various maize development related traits such as cell wall associated 

pathways (Ramsay & Glover, 2005), root development (Z. Li et al., 2011) and 

photosynthetic related traits in maize (X. Zhao et al., 2019). GRMZM2G072280 (Ihca2) 

involves chlorophyll fluorescence pathways by regulating the light absorption and 

transport; down regulation of this gene caused the low photosynthetic rate (X. Mu, Chen, 

Chen, Yuan, & Mi, 2017). GRMZM2G056075 (mus1) is responsible for the DNA repair 

and replication mechanism in maize (Youssef et al., 2019). GRMZM2G384528 (ca3p4) 

contributes drought stress tolerance (B. Wang et al., 2018). GRMZM2G120401 

(ereb194) regulates the early embryogenesis in monocot including maize (P. Zhao, 
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Begcy, Dresselhaus, & Sun, 2017). GRMZM2G060824 is the phosphate homeostasis and 

deprivation related gene in maize (Calderón-Vázquez, Sawers, & Herrera-Estrella, 2011; 

Schlüter et al., 2012). GRMZM2G335720 (phd10) encodes methyl-lysine related 

involving cellular processes and cell cycle development (Qiu, Sawada, Zhang, & Cheng, 

2002). GRMZM2G146885 was upregulated under drought for peroxisome that leads the 

ROS in maize (H. Zheng et al., 2020). GRMZM2G020216 (mpk2) is responsible for the 

map kinases synthesis being associated to senescence (Lindsey, 2015). 

GRMZM2G161905 (gst25) is a glutathione S-transferase gene that are associated with 

multiple pathogen resistances in maize such as southern and northern leaf blight and 

gray leaf spot (Wisser et al., 2011). AC197146.3_FG002 (myb69) involves the cuticular 

wax pathway, showing co-expression with glossy genes in maize (J. Zheng et al., 2019). 

GRMZM2G095725 (incw5) involves raffinose metabolism related genes, raffinose is key 

oligosaccharide to response harsh environmental factors such as drought and heat 

stresses in maize (M.-L. Zhou et al., 2012), it also contributes the maize kernel 

development involving grain filling and kernel size (J. Liu et al., 2017).  

Temporal phenotypic data of VIs at time points including flowering times and time 

points close to flowering times (before and after) in high-resolution RGB phenomic data 

enabled discovery of a greater number of significant SNPs in GWAS than those of 

multispectral phenomic data (Figure 60). Conversely, temporal phenotypes of VIs at the 

time points including early growth vegetative stages and reproductive stages in 

multispectral phenomic data belonging to 2017 and 2018 (both 2018_I and 2018_D) 

trials enabled discovery of a greater number of significant SNPs in GWAS than those of 



 

170 

RGB phenomic data (Figure 60). Certain VIs and their temporal phenotype data 

belonging to different time points, annotated candidate genes, explained percent 

variations and effect sizes of discovered 6151 SNPs were given in supplementary data 4 

as a tabular format; genomic position of the discovered 6151 SNPs across chromosomes 

were shown in Figure 59. Number of SNPs discovered by different VIs were also given 

in Figure 61.  

NGRBI resulted in the highest number SNPs in GWAS belonging to 2018_I and 

2018_D trials (Figure 61). The cumulative SNP effects of each chromosome calculated 

for NGRBI in GWAS was illustrated and contrasted for every DAPs of drought 

(2018_D) and irrigated (2018_I) trials, and cumulative SNP effects of each chromosome 

belonging to drought and irrigated trials in 2018 were found to be varying in terms of 

statistically significance depending on the DAPs (Figure 63). Different chromosomes 

were found to have different cumulative temporal SNP effects which were occasionally 

statistically significant between drought and irrigated trials in 2018 (Figure 63). 
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Figure 57 A-) Manhattan plot of days to anthesis (DTA) and silking (DTS) belonging to 

four environments (2016, 2017, 2018_D, 2018_I) by GWAS discovered well known 

genes controlling the flowering time in maize. B-) Five flowering related candidate 

genes with their linkage disequilibrium blocks. 
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Figure 58 Five candidate flowering genes, discovered in GWAS using flowering 

phenotype belonging to 2016, 2017, 2018_I and 2018_D trials, were illustrated thick 

black lines with the with its name texts along with the nearby discovered SNPs for the 

certain temporal VIs belonging to multispectral (round shape) and RGB phenomic data 

(triangle shape) belonging to 2017 (red), 2018_D (blue) and 2018_I (green) trials. X axis 

shows the genomic positions of candidate flowering genes and their proximal regions in 

mega base pairs with the LD regions where high LD regions were drawn with black 

triangles; Y axis shows the negative logarithm of the p-values of discovered SNPs with 

≥5. 
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Figure 59 the Manhattan plot of 6151 SNPs with 5 -log(p) values (Y axis) using the 

RGB and multispectral phenomic data belonging to 2017, 2018_D and 2018_I trials. 

 

Figure 60 Density plot of significant temporal SNPs (6151 SNPs) across flight times (as 

DAP on X axis) belonging to RGB and multispectral phenomic data. Green region 

shows the scale of flowing times (DTA; days to anthesis) unique to each trial in different 

years, red line shows the density of the discovered SNPs based on Y axis. 
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Figure 61 the number of SNPs discovered by using the temporal VIs belonging to 

phenomic data in different years. 
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Figure 62 A-) Right Y axis shows temporal effect size of the GRMZM2G083810 

(hsp18f) in 2018_D and 2018_I trials. GRMZM2G083810 (hsp18f) was discovered in 

GWAS using the blue index belonging to 64, 78 and 84 DAPs in 2018_I, and 75,78, 84 

and 90 DAPs in 2018_D, these times were indicated by black points. Left y axis shows 

the temperatures (℃) of three dashed lines showing the highest, average and lowest 

(from above to below) temperature belonging to each DAP on x axis. Thermometers 

symbols show DAPs when temperatures reach the highest values and purple box 

corresponds to population days to anthesis. Allelic segregation (Adenine: A and 

Guanine: G) belonging to GRMZM2G083810 (hsp18f) differentiated the haplotypes 

with A versus G in terms of plant height (B) and days to anthesis (C). Haplotype groups 

were compared using Wilcoxon test, and p-values were located on the boxplots. 

 

 

 
 

Figure 63 cumulative marker effects of each chromosome in each day after planting 

time (DAP) belonging to NDRBI vegetation index in 2018_I and 2018_D trials. 

Cumulative SNP effects of each chromosome belonging to two different trials were 

contrasted based on Wilcoxon test, and p-values were located on the bar plots; this 

comparison was applied to each DAP. *, **, ***, **** are significant at 0.05, 0.01, 

0.001 and 0.0001; ns is not significant. 
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Figure 64 Temporal genomic prediction results for NDRBI vegetation index belonging 

to drought (2018_D) and irrigated (2018_I) trials in 2018. Temporal genomic prediction 

accuracies were found to be different between irrigated and drought trials at multiple 

time points. *, **, ***, **** are significant at 0.05, 0.01, 0.001 and 0.0001; ns is not 

significant. 
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Figure 65 Random forest algorithm was used to classify the trails grown in 2016, 2017 

and 2018 (irrigated and drought) trials, using their thirteen environmental parameters 

belonging to from planting times to means of days to anthesis of each trial grown in 

2016, 2017 and 2018. A -) variable importance plot (scaled to 100 on X axis) nominated 

first three most important environmental parameters as photoperiod(h), photo thermal 

time (PTT) and diurnal temperature (DTR) respectively. B-) partial dependence plot 

shows the probability of the 2016, 2017 and 2018 (predicted categorical variables) on Y 

axis based on the values of environmental parameter related predictors (numbered based 

on their importance scores values from left to right and above to below) on the x axis.  

 

Discussion 

Days to silking and anthesis are well-known plastic traits with omnigenic 

inheritance in maize (Boyle et al., 2017; Buckler et al., 2009; Chardon et al., 2004; J. Li 

et al., 2016; Salvi et al., 2009; J. Xu et al., 2012). Both flowering traits have heritabilities 

relatively higher than other complex traits even under different latitude and altitude 

conditions (Buckler et al., 2009; Navarro et al., 2017). A major component of maize 

domestication and migration stemmed from modification of flowering response to 

photoperiod associated changes in latitudes. Towards this, related genes (CCT domain) 

enabled the migration of the maize post domestication, resulting in maize that has a 

wider range of adaptation and can be grown from temperate to tropical regions (Coles, 

McMullen, Balint-Kurti, Pratt, & Holland, 2010; Hung et al., 2012; Navarro et al., 2017; 

Swarts et al., 2021; Jinyu Wang et al., 2021). The underlying genetic mechanism of 

flowering time in maize to date contain circadian clock, photoperiod, autonomous, aging 

and gibberellin pathways and pathway integrators (Dong et al., 2012). Differing 

environmental conditions played a major role in discovering genes controlling the 

flowering in these pathways; effect sizes of those genes on flowering times as well as 

their expression levels were observed differently because of the reaction norm driven by 
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diverse environmental factors (Fournier-Level et al., 2011; Xin Li et al., 2018; Stratton, 

1998). Our findings support those different environmental parameters, in part caused by 

different plantings times from 2016 to 2018 led flowering time plasticity (Figure 49D). 

In this study, the random forest algorithm nominated the photoperiod, photo thermal 

time (PTT) and diurnal temperature (DTR) as important environmental parameters that 

manipulated the days to flowering of RILs across years (Figure 65A); however, it is 

challenging to separate that photoperiod from the temperature. (Teixeira et al., 2015) 

showed that adaptation of tropical germplasm towards temperate regions requires 

selecting tropical germplasm with early flowering in temperate environments due to 

shorter day length conditions. In this study, RILs were exposed to longest day lengths in 

2016 and shortest in 2018 from planting to flowering, resulting in 2018 having the latest 

flowering as well as weakest stability (Figure 45, Supplementary Figure 2, Figure 65B). 

This study considered photoperiod, temperature as well as their interplays (e.g., PTT and 

DTR) across growth to dissect plasticity in days to flowering in maize. The weakest 

stability observed in 2018 (Figure 49D) was triggered by the combination of shortest day 

length, lowest PTT environmental parameters (Figure 65). However, the difference in 

day length alone between 2016 and 2017 did not cause a weak stability as much as the 

weak stability observed in 2018, because the temperature and photoperiod related 

environmental parameters in 2016 and 2017 often followed more closely to each other 

than either between 2016 and 2018 or between 2017 and 2018. This resulted in 

prediction probabilities of 2016 and 2017 being close to each other at most values of 

temperature related environmental parameters as it seen in the partial dependence plots 
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(Figure 65B). However, prediction probabilities of 2018 were found to differ as 

compared to 2016 and 2017 at most temperature related environmental parameters as 

well as photoperiod (Figure 65B), leading to plasticity in flowering time as well as less 

stability of RILs (Figure 49D).  

This study primarily intended to predict and understand the flowering times using 

high throughput phenomic data collected by multiple UAS surveys with different sensors 

within and between years, despite plasticity in flowering times. Temporal phenomic data 

and genomic data were subjected to correlation calculation to assess the multicollinearity 

problem, in that correlation pattern within both phenomic and genomic data reveal to be 

same changing the -1 to 1. It is important to note that high temporal dimension (multiple 

flight times) in the phenomic data inhibited the multicollinearity to great extent that 

enables to conduct phenomic prediction (Figure 48). Moreover, correlation between 

phenomic data and flowering times was correlated between each other that is a 

promising sign of better predictability (Figure 47).  

Temporal phenomic data collected from drone images (multispectral and RGB 

sensors) were used as predictors in phenomic prediction, and promising prediction 

accuracies were obtained between diverse trials grown within and between years. When 

predicting yield in a single year, phenomic tools appeared to be as good or better than 

genomic tools (Adak, Murray, & Anderson, 2021; Rincent et al., 2018). However, 

combined data (phenomic plus genomic data) yielded greater than either genomic or 

phenomic data in prediction the flowering times in maize. This suggests that temporal 

phenomic data proposes promising complementary prediction for flowering time and 
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other complex traits in maize. Both phenomic and genomic prediction provide the 

opportunity to predict and select flowering performance of untested genotypes in 

untested environments; in addition to that, phenomic data can predict the stability scores 

of flowering times of RILs driven by environmental conditions across years.  

Temporal Phenomic Prediction Can Predict the Complex Traits 

In previous studies agronomic complex traits (e.g., flowering times and yield) 

were predicted using raw reflectance bands from one or limited number of vegetation 

indices belonging to one or limited number of time points and in one environment. For 

example, BNDVI (normalized difference between the blue and near infrared wavelength 

bands) has been used as predictor to predict the yield and flowering times in maize using 

the PLS regression; the prediction accuracies (0.54 to 0.79) varied depending on the 

temporal resolution (number of flights) used in different years (G. Wu, Miller, De Leon, 

Kaeppler, & Spalding, 2019a). However, prediction accuracies for flowering times, as 

well as, yield were shown to increase in diverse managements when a higher number of 

VIs (>0.80) over multiple time points were used in different machine learning algorithms 

in maize (Adak, Murray, & Anderson, 2021; Adak, Murray, Božinović, et al., 2021). 

These studies used a 25 m flight elevation which provided promising prediction for 

flowering time, as well as, grain yield in maize. (Aguate et al., 2017a) evaluated the 

prediction performance of the 62 hyperspectral reflectance bands between 392 and 850 

nm obtained at 300 m of flight elevation in prediction of maize yield across diverse 

scenarios (populations, small plots, a farmers field, etc.) and over five time points; 

however single time points derived reflectance bands predicted yield around ~10 to 20% 
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lower than using all five time points derived from reflectance bands, and their highest 

prediction accuracies reached up to ~0.49 thanks to multiple time point derived 

reflectance bands. However, previously lower flight elevation providing higher pixel 

resolution (~1 cm per pixel) along with higher number of flights proved that prediction 

of yield in maize can result in higher prediction accuracies (>0.5) (Adak, Conrad, et al., 

2021; Adak, Murray, Božinović, et al., 2021), although differences in populations and 

environments cannot be ruled out. Considering resources needed, this study similarly 

supported that high resolution images derived from low flight altitude with RGB camera 

belonging to high number of time points can provide better prediction than those derived 

from high flight altitude with more spectral bands belonging to fewer time points (results 

of scenario 1: Figure 50).  

Genomic Prediction 

Results of scenario 3 underlines that predictive ability of genome wide makers 

decreases when it comes to predicting unknown genotypes in unknown environments 

across years (results of scenario 3: Figure 52). This is likely in part because plasticity in 

flowering times driven by environmental variation cannot easily be taken into 

consideration from genome wide markers, since genomic variation is fixed across all 

environments. So, it is logical that the results of scenario 4 showed that prediction of 

flowering times of unknown genotypes in unknown environment (2018_D) was 

predicted with higher prediction accuracy when phenomic data was added to genomic 

data (~0.77) than either only genomic (~0.67) or phenomic data (~0.52) alone (results of 

scenario 4: Figure 53). This demonstrated the concept that combining high throughput 
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phenomic and genomic data in prediction better incorporates the genomic and 

environmental variation together. This resulted in a better prediction accuracy for 

complex traits in the most challenging scenario, the prediction the performance of 

untested genotype in untested environments.  

Temporal Phenomic and Genomic Data Complemented Each Other 

Vegetation indices were found to boost predictions when combined with 

genomic data, and higher resulting prediction accuracy has also been shown for yield in 

wheat and rye (Crain, Mondal, Rutkoski, Singh, & Poland, 2018; Galán et al., 2020; 

Rutkoski et al., 2016; Sun et al., 2019). Findings of the present study similarly supported 

that combining high throughput phenomics and genomic data outperformed the 

prediction of flowering time in maize as compared using either phonemic or genomic 

data as predictors individually. Specifically, combining genomic and phenomic data as 

predictors outperformed the prediction of untested genotype in untested environments 

(results of scenario 2 and 4: Figure 51 and 53), which has not previously been shown. 

Likely this will be trait, population and environmentally specific. 

There is also a similarity between phenomic and genomic prediction with how 

ridge regression in general performs superior in genomic prediction and selection by 

including the contributions of minor effects of whole genome markers (Endelman, 

2011). Our results also support that instead of using single preselected VIs (as is 

common) or limited reflectance bands, using higher number of VIs may provide greater 

prediction accuracy, that is similar transition trend from MAS to GWAS to genomic 

prediction through time in prediction using whole genome markers. 
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Combining Disparate Phenomic Data Across Years for Prediction 

Among the most potentially important contribution of this study is an approach 

allowing data to be combined across years where flight date and development stages 

differ. In both scenario 1 and 2, multispectral phenomic data with low resolution (~120 

meter) and time dimension (belonging to from initiation of flowering times to end of 

reproductive stages) was  used between years (2017 and 2018). Principal component 

scores for each VI in multispectral phenomic data in both years were calculated to be 

used as predictors that resulted in positive but small (~0.15-0.16) prediction accuracies 

by ridge regression (Figure 51). This approach allows phenomics data to predict the 

unknown genotypes in unknown environments across different locations or years via 

principal component scores of phonemic data when flight times were different.  

Ability To Predict Stability 

In scenario 5, stability scores calculated for DTA were also predicted using 

genome wide markers (~0.35) and six different phenomic data (up to 0.25) with the 

positive prediction accuracy for untested genotypes (Figure 54). Results suggested that 

stability of flowering times of RILs can be predicted using genome wide marker as well 

as phenomic data. When phenomic data belonging to single year [RGB (2018_D); 

RGB(2018_I), RGB(2018_D) + Multi(2018_D) or RGB(2018_I) + Multi(2018_I)], was 

used to predict WAASB stability, prediction accuracy changed between 0.18 to 0.20. 

However, when phenomic data belonging to two years was used to predict to predict 

WAASB stability, prediction accuracy increased up to ~0.25. Flowering stability index 

of untested genotypes can be predicted with genomic and phenomic data up 0.35 and 
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0.25 respectively. Phenomic data belonging to multiple environments can predict the 

flowering time stability scores of untested genotypes more accurately than using the 

phenomic data belonging to single environment. When phenomic data belonging to two 

years were used as predictors, prediction accuracy was increased from ~0.18 to ~0.25. 

Since we observed the increase in prediction accuracy when combined phenomic data 

(2017 plus 2018) used to predict stability score, and we did not have a phenomic data 

belonging to 2016 trial, we could hypothesis that phenomic data likely has potential to 

predict the stability of complex trait as much as or better than genome wide markers 

when enough number of temporal data belonging to multiple environments and years 

were provided in phenomic data.  

Integration of High Throughput Phenomic Data with Association Mapping and Genomic 

Prediction 

Temporal plant height (aka, canopy height measurement; CHM) captured by 

UAS has been used as phenotype data in association mapping in maize hybrids (Adak, 

Murray, & Anderson, 2021; Adak, Murray, Anderson, et al., 2021) and inbreds 

(Anderson et al., 2020; Xiaqing Wang et al., 2019), resulting in discovery of numerous 

temporal loci. Temporal loci explain phenotypic variation of plant height differently 

depending on the growth stage measured, which allows better biological understanding 

of the loci segregating for control of growth. Similar findings have been shown in 

soybean using UAS based phenotyping (Xavier, Hall, Hearst, Cherkauer, & Rainey, 

2017), in cotton using a ground-based vehicle phenotyping (Pauli, Chapman, et al., 

2016), in wheat, rice and triticale using tractor-based phenotyping (Lyra et al., 2020; 
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Tanger et al., 2017; Würschum et al., 2014), as well as in maize and barley using 

automated-based phenotyping under greenhouse conditions (Muraya et al., 2017; 

Neumann et al., 2017; X. Zhang et al., 2017). Temporal NDVI (normalized difference 

vegetation index) captured by UAS have also been used in association studies in cotton 

(Pauli, Chapman, et al., 2016) and maize (Jinyu Wang et al., 2021). However, the 

present study showed that NDVI discovered among the lowest number of SNPs in 

association mapping (Figure 61), indicating that using only one or a few temporal 

phenotypes of VIs or CHM will not be sufficient to discover segregating temporal loci 

controlling plant growth. Various vegetation indices were previously found to have 

different capability to classify grain yield when their area under curve (AUC) values 

were used (Adak, Murray, & Anderson, 2021), and only temporal plant height predicted 

yield weakly (Adak, Murray, Anderson, et al., 2021; Anderson et al., 2019). However, 

usage of multiple temporal VIs belonging to multiple time points increased the 

prediction ability of yield in maize dramatically in this study and previous studies (Adak, 

Murray, & Anderson, 2021; Adak, Murray, Božinović, et al., 2021). These results 

highlight an incomplete understanding of segregating factors in plant growth when one 

or a few indices were used in either phenomic prediction or temporal association 

mapping. Our findings support the previous statement that temporal phenotypes of 

different VIs enabled the discovery of 1599 unique SNPs in multispectral and RGB 

platform out of total 6151 SNPs in this study (Figure 61, Supplementary data 4), and 

density of discovered SNPs varied depending on the measurement time (Figure 60). 

High resolution RGB images discovered more loci during the mid-growth, around 
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flowering, than other growth periods while low resolution multispectral images 

discovered more loci before and after the mid-growth stages (Figure 60). These results 

showed that temporal phenotypes captured by multiple drone surveys can discover 

previously unrevealed time dependent associations between temporal traits and genome 

wide polymorphisms. This enables dissection of temporal plant growth better than usage 

of low time dimensional phenotype data in association mapping studies. 

Validation of Candidate Gene Using Temporal Phenotype Data 

This study discovered a heat stress related candidate gene, GRMZM2G083810 

(hsp18f), using temporal blue index phenotype belonging to around only flowering times 

in both drought and irrigated trials in 2018. Flowering times are one of the most 

sensitive periods to heat and drought stress (Barnabás, Jäger, & Fehér, 2008) where heat 

stress led the discovery of GRMZM2G083810 (hsp18f) with different effect sizes during 

flowering times in both drought and irrigated trials in this study (Figure 62). This finding 

is a proof of the concept that temporal phenotype value of VIs enables discovering 

opportunistic QTLs (oQTLs) (R. Wu, Wang, Zhao, & Cheverud, 2004) since high 

resolution drone images can capture the specific interplays between plant growth and 

biotic stresses belonging to certain growth period. In addition, the GRMZM2G083810 

(hsp18f) candidate gene caused the RIL haplotypes to have statistically different terminal 

plant height as well as flowering times in both drought and irrigated trials in 2018 

consistently (Figure 62A). This indicates that the allelic variation associated with stress 

related genes discovered in early plant growth stages can impact on the terminal 

phenotype such as terminal plant height and flowering times (Figure 62B and 62C).  
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Drone images belonging to flowering times, which were most sensitive growth stages to 

heat stress in maize, provided a time specific genetic variation occurred in RILs and led 

the discovery of the heat stress related genes along with its impact on the terminal traits 

(e.g. terminal plant height and flowering time). This is a proof of concept that UASs can 

provide time specific temporal phenotype data belonging to when plants are exposed to 

abiotic stress factors at specific time points across growth (e.g. heat stress in flowering 

times in this study). Thus, the relationships between abiotic stresses belonging and plants 

along with related candidate genes with these stresses can be better dissected with 

temporal data captured by UASs. We proposed that we could discover the heat related 

genes using the temporal phenotype of VI belonging to specific time points (e.g. 

flowering times) in GWAS that enables us to select resistance candidate maize lines 

against to heat. 

Temporal NDRBI values belonging to majority time points in irrigated trial were 

predicted greater than those in drought trial by genome wide markers (Figure 64). This 

finding underlies that genome wide makers do not perform stably in the prediction of 

temporal phenotype data of a trait across different management conditions as well as 

chromosomes (Figure 63). Repetitive UAS surveys can monitor the temporal prediction 

ability of genome wide markets for specific time points and managements. This 

approach advises to select the desired plants thanks to temporal genomic prediction 

results that can provide better precision in selection than using one time based genomic 

prediction. 
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In conclusion, field based high throughput phenotyping propose novel 

technologies and applications such drones and new tech sensors to better screen the 

breeding nurseries with higher precision, accuracy and high time dimension; that allows 

us to dissect the novel interaction between environment, plant and underlying genomic 

mechanisms. First, temporal phenomic data containing reflectance bands belonging to 

multiple time points thanks to repetitive UAS surveys predicted the complex traits (e.g. 

flowering times in this study) across different managements and years as well as the 

stability scores of flowering times in maize. Second, temporal phenotype data was found 

to be required to dissect the time-dependent associations between plant and abiotic 

stresses; reflectance bands belonging to flowering times led the discovery of heat-related 

candidate gene when heat stress reached peaked at flowering times. Overall, temporal 

phenomic prediction and dissecting time-dependent association between temporal 

phenotype, genomic and environmental data were demonstrated in this study. Integration 

of high throughput phenomic data into plant breeding and plant genomic will allow to 

select the complex traits and dissect the plant-environment interaction across plant 

development. 
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CHAPTER VI  

TEMPORAL PHENOMIC PREDICTIONS FROM UNOCCUPIED AERIAL 

SYSTEMS CAN OUTPERFORM GENOMIC PREDICTIONS4 

 

To improve genetic gain, plant breeders must phenotype more plants repeatedly 

during growth allowing higher selection intensity, accuracy, and increased statistical 

power(Araus et al., 2018; Shi et al., 2016). High quality and quantity phenomic data is 

essential to develop widely applicable prediction models (e.g., phenomic predictions) to 

predict yield across growing environments and conditions in the near future (Bernardo, 

2021). To date, few phenomic data sets, approaches and applications have been reported, 

especially those applied in a breeding context.  

Organismal fitness, such as terminal grain yield in crops, is a cumulative 

response of genetics (G), the environment (E), management (M) and integrated GxExM 

interactions temporally throughout growth. To predict cumulative fitness of an 

individual organism without direct measurement of that individual’s fitness, proxies such 

as genetic markers are used, to link measurements of relatives and predict fitness with 

breeding values. Traditional best linear unbiased prediction (BLUP) derived breeding 

values (Henderson, 1975) were modified by (Bernardo, 1994) where genotypic marker 

 

4 This is an open access article distributed under the terms of the Creative Commons CC BY 

license, which permits unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly cited as follows: 

Adak, Alper, Seth C. Murray, and Steven L. Anderson. "Temporal phenomic predictions from 

unoccupied aerial systems can outperform genomic predictions. " bioRxiv (2021) : 

https://www.biorxiv.org/content/10.1101/2021.10.06.463310v1.abstract  

https://www.biorxiv.org/content/10.1101/2021.10.06.463310v1.abstract
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data of parental inbreds was combined with the yield data of the related single cross 

hybrids to predict yield performance of the single cross hybrids, known as genomic 

BLUP (GBLUP). However, prediction accuracies dropped dramatically when yield of 

unknown (previously untested) parental lines derived hybrids was predicted (Bernardo, 

1996a, 1996b). Various genomic based statistical models have been developed after the 

traditional GBLUP approach with advent of genomic technology (Endelman, 2011; 

Meuwissen et al., 2001; Whittaker et al., 2000). These methods have been applied 

extensively as genome wide marker facilitated selection also known as genomic 

selection in plants (Bernardo & Yu, 2007). Predicting the performance of previously 

untested genotypes in both tested and untested environments remains the central problem 

in plant breeding selections, and new approaches to addressing this challenge are 

needed. Genomic selection to estimate genotype fitness, as measured by terminal grain 

yield, relies on manually collected phenotype data which is resource intensive to collect. 

Phenotypic characteristics of cumulative complex traits are often not accurately 

predicted in GS because of (i) the different interplays of genes on phenotype throughout 

different growth stages, (ii) different effect sizes of the same genetic markers on 

phenotype of complex traits at different growth stages and (iii) different sources of 

phenotypic variation of the complex traits at different growth stages (Adak, Conrad, et 

al., 2021; Adak, Murray, Anderson, et al., 2021; Adak, Murray, Božinović, et al., 2021; 

Anderson et al., 2019; Bac-Molenaar et al., 2015; Campbell et al., 2017; Feldman et al., 

2017; Ward et al., 2019; R. Wu et al., 2004). Tools that can inexpensively evaluate 

individuals throughout growth, as they interact with their environment, would therefore 
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be a valuable addition to predicting an organism’s fitness. Unoccupied aerial systems 

(UAS) are now able to provide these insights, frequently evaluating individuals 

temporally throughout growth. However, to date, fitness predictions from UAS alone 

have not been compared to the standard method of genomic prediction.  

To evaluate fitness prediction of UAS based phenomics tools, the breeding value of each 

hybrid must be produced, these can be estimated from temporal VIs and structural 

measurements (canopy height) collected temporally throughout growth. Correlations 

between temporal VIs with yield and flowering times, as well as machine learning 

models can investigate predictive abilities for fitness traits (yield and flowering times). 

Phenomic predictions made from temporal vegetation indices and canopy height can be 

compared with traditional genomic predictions. Ultimately, major causal loci underlying 

phenomic predictions success for complex traits can be useful to understand underlying 

biology of organismal fitness over growth. Here we report phenomic data-driven 

selection for complex traits in maize breeding. We conducted UAS surveys with 

multispectral and RGB sensors to collect image-based temporal predictors throughout 

maize growth stages. We compared phenomic based prediction accuracy to that of 

genomic prediction, explored temporal shifts in image-based phenotypic variation 

explained by genome wide markers, and conducted association mapping utilizing 

temporal image-based phenotypes to identify biologically important loci.   
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Materials And Methods 

Using the Genome to Fields initiative’s 2017 germplasm, 280 unique maize 

hybrids were grown under optimal management (OM) and 230 were grown under 

stressed management (SM, no irrigation, low fertilizer) near College Station, Texas. Two 

replications were used in a randomized complete block design with each hybrid grown 

as two consecutive row plots.  

UAS Surveys and Image Processing 

A Phantom 3 Professional rotary-wing UAS, equipped with a 12-megapixel red-

green-blue (RGB) DJI FC300X camera, flown 25 meters above the ground (TPP_RGB). 

Additionally, a Tuffwing UAS equipped with a MicaSense RedEdge-MX multispectral 

camera was flown 120 meters above the ground (TPP_Multi). Images were collected 

with 80% forward and side overlap in both surveys. Raw images were processed in 

Agisoft Metaphase Professional software (https://www.agisoft.com/) to generate the 3D 

point clouds and orthomosaics (SI appendix, Table S1) (S. Murray et al., 2019). 

Phenomic Data Extraction Pipeline 

Environmental Systems Research Institute, Inc. (ESRI) shape file were 

constructed using R/UAStools::plotshpcreate function (Anderson & II, 2020) and 

applied to each survey’s respective orthomosaic (.tif files) and 3D point clouds (.las or 

.laz files) to extract plot level image based phenotypes. Vegetation indices (SI appendix, 

Table S2) for each flight date were extracted using the FIELDImageR package (Matias 

et al., 2020) for each UAS survey (SI appendix, SI Materials and Methods). Plot based 

99th percentile temporal plant heights (canopy height measurement; CHM) were 

https://www.agisoft.com/
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extracted from 3D point clouds following the methods of (Anderson et al., 2019) (SI 

appendix, SI Materials and Methods).  

Experimental Design and Nested Model for Phenomic Data 

To analyze the temporal VIs and CHM, a custom nested design was applied to raw data 

of each VI and CHM belonging to each row plot in OM and SM, where experimental 

design and maize hybrids were treated as nested within drone flight times (SI appendix, 

SI Materials and Methods). Hybrids nested within pedigree results were used to predict 

GY, DTA, DTS, and PHT within and between the trials.  

Machine Learning Based Phenomic Prediction Models 

Manually collect phenotypes (GY, DTA, DTS and PHT) were predicted using 

linear, elastic net, ridge, lasso, and random forest regressions using the TPP_RGB and 

TPP_Multi image-based phenotypes (Dataset S1). Prediction models were trained using 

a random sampling of 70% of the common maize hybrids (tested genotypes) across the 

two management environments. The remaining 30% were used as the validation dataset 

(untested genotypes). Models were trained using OM trial (tested environment) while the 

SM trial served as the untested environment. Four cross validation schemes (CVs) were 

conducted as follows: (i) tested genotypes in tested environment (CV1), (ii) untested 

genotypes in tested environment (CV2), (iii) tested genotypes in untested environment 

(CV3), and (iv) untested genotypes in untested environment (CV4) (Xin Li et al., 2018). 

Phenomic prediction models and prediction steps are available in the SI appendix, SI 

Materials and Methods. 
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Association Mapping for Phenomic Data 

The image-based vegetation indices and Weibull_CHM were converted to 

cumulative area under curve (AUC) values and used as trait data in a genome wide 

association study (GWAS) (SI appendix, SI Materials and Methods). Association 

mapping was conducted using 158 maize hybrids and 101,100 genotyping by sequencing 

(GBS) SNP markers, implementing three multiple loci test methods; (i) fixed and 

random model circulating probability unification (FarmCPU) (X. Liu et al., 2016), (ii) 

multiple loci mixed model (MLMM) (Segura et al., 2012), and (iii) bayesian-information 

and linkage-disequilibrium iteratively nested keyway (BLINK) (M. Huang, Liu, Zhou, 

Summers, & Zhang, 2019) (SI appendix, SI Materials and Methods). Linkage 

disequilibrium (LD) estimates were used to identify candidate genes within LD blocks 

(𝑅2 ≥ 0.8) of colocalized SNPs (SI appendix, Fig. S1). 

Genomic Prediction for Phenomic Data 

Genome-wide prediction was applied to 540 image-based phenotypes (35 VIs 

and CHM belonging to 16 flight times) of the 158 maize hybrids in TPP_RGB of OM 

using 153,252 SNPs, temporal genomic prediction model was explained in SI appendix, 

SI Materials and Methods.  

Phenomic Prediction Versus Genomic Prediction 

GBS marker data (GP) and two sets of phenomic data (TPP_RGB and 

TPP_Multi) were used to conduct genomic prediction and phenomic prediction for 

maize grain yield (GY). A total of 118 G2F maize hybrids were used to compare the 

predictive ability between the genomic and phenomic data sets. Four cross validation 
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schemes were applied as explained in “Machine learning based phenomic prediction 

models” section. Additional details regarding phenomic prediction versus genomic 

prediction are available within the SI appendix, SI Materials and Methods. 

Results 

Variance Decomposition and Repeatability Estimates Demonstrate UAS Sensor-Based 

Phenotypes were Genetically Stable 

Variance component decomposition of the 83 sensor-based VIs (35 RGB and 54 

multispectral) demonstrated UAS sensor-based data was statistically repeatable and 

biologically meaningful with a genetic basis. The rotary-wing equipped with an RGB (3 

band, 12 MP) sensor flown at 25 m resulted in ~1 cm pix-1 image resolution and had 

higher repeatability than the Tuffwing platform equipped with a multispectral (5 band, 

3.8 MP) sensor flown at 120 m (~8 cm pix-1). The main source of phenotypic variation 

for both platforms was explained by the temporal flight component (𝛽𝑖 component in 

Eq.1) of the nested design (31-96%) showing a temporal plasticity of maize spectral 

reflectance signatures throughout the plants growth cycle (SI appendix, Figs. S2 and S3). 

Genetic variance (𝛺𝑖(𝑗) component in Eq.1) was slightly greater for the higher 

resolution-low altitude RGB (1.5 - 5.2%; TR: 0.46 - 0.77) phenotypes compared to the 

lower resolution-high altitude RGB (1.1 - 4.5%; TR: 0.26 - 0.66) and lower resolution-

high altitude multispectral (0.5 - 3.4%; TR: 0.28 - 0.62) phenotypes (SI appendix, Figs. 

S2 and S3). The repeatability estimates over the 35 RBG phenotypes were highly 

correlated (r=0.71) between the two sensor systems, although repeatability was 

improved by 0.08 on average, when implementing the higher resolution-low altitude 
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RGB platform. Noticeable improvements in repeatability estimates (>0.1) were achieved 

for 13 RGB VIs and 6 VIs repeatability were reduced (<0.06) when implementing the 

higher resolution-low altitude RGB platform (SI appendix, Figs. S2 and S3). Overall, 

significant genetic variation was attributed to all VIs on both platforms, useful in 

predictive modeling of important agronomic traits such as grain yield, flowering times, 

and plant height (SI appendix, Fig. S4). 

Temporal Correlation 

Temporal correlation between UAS survey dates of the VIs derived from the 

higher-resolution-low altitude RGB demonstrated that 14 of 35 RGB-derived VIs 

achieved a correlation above 0.50 (up to 0.61) to GY (SI appendix, Fig. S5). However, 

the 14 RGB- and 40 multispectral-derived VIs from the lower resolution-high altitude 

multispectral achieved correlations above 0.50 (up to 0.70) to GY (SI appendix, Fig. S6). 

Sensor-based VIs correlations with GY varied depending on the flight times. High 

correlations were found for VIs belonging to certain time points in both TP_RGB and 

TPP_Multi demonstrating that temporal VIs tend to synchronize with GY in maize 

hybrids indicating potential source for predicting yield. 

Phenomic Prediction Using High Dimensional UAS Data 

Temporal breeding values of each pedigree at each timepoint in TPP_RGB and 

TPP_Multi followed unique trajectories (SI appendix, Figs. S7 and S8) visually 

discriminating low, mid, and high yielding maize hybrids. Phenotype data of VIs at 

different time points had different discriminative ability for yield. This led us to test the 

predictive ability of two phenomic data derived from different sensors and resolutions 



 

197 

utilizing the different prediction models. To assess the multicollinearity of each 

phenomic data, correlation coefficients were calcauted. Correlation results of each 

phenomic data showed that correlations were fluctuating between -1 and 1, and VI’s 

were found to be less correlated at different time points (SI appendix, Figs. S9).  

The three machine learning models improved prediction accuracy (>90%) for all four 

agronomic traits (GY, DTA, DTS, and PHT) compared to the linear model when 

temporal phenotypes in TPP_RGB and TPP_Multi phenomic data were used as 

predictors (Fig. 66). The linear models had the highest prediction errors (RMSE and 

MAE) and lowest R2 (SI appendix, Fig. S10). Ridge regression was the highest 

performing model for predicting GY regardless of the phenomic data sets; resulting in 

the best prediction performances for untested genotypes in tested environment (CV2), 

tested genotypes in untested environment (CV3), and untested genotypes in untested 

environment (CV4) (Fig. 66). Ridge regression best predicted GY for CV2 using the 

low-resolution multispectral sensor (TPP_Multi), while ridge regression also best 

predicted GY for tested and untested genotypes in untested environment cross 

validations (CV3 and CV4) using the high resolution RGB sensor (TPP_RGB; Fig. 66). 

Furthermore, ridge regression achieved the greatest prediction accuracy for the flowering 

times and plant heights utilizing the high resolution RGB UAS (Fig. 66). Prediction 

accuracies were higher in the most challenging CVs (CV3 and CV4) when TPP_RGB 

was used to predict GY, DTA, DTS, and PHT. These results demonstrate that the 

reduction in resolution, increased spectral bands, and increased sensor cost of 

incorporating the multispectral bands did not significantly improve model performance. 
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Fig. 66 Shows the prediction accuracy (on the y axis) of the phenomic prediction 

obtained by each model for four cross validation schemes (on the x axis) belonging to 

each predicted variable (from left to right) in phenomic prediction: (A) the prediction 

performance of TPP_RGB phenomic data derived from HTP platform including 25-

meters elevation with RGB sensor. (B) the prediction performance of TPP_Multi 

phenomic data derived from HTP platform including 120-meters elevation with 

multispectral sensor. Ridge regression performed best overall for the most challenging 

cross-validation schemes, CV3 and CV4, compared to other prediction models when 
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TPP_RGB was used. Whereas, Randomforest performed best overall for the most 

challenging cross-validation schemes, CV3 and CV4, compared to other prediction 

models when TPP_Multi was used. Reprinted from Adak, Murray, & Anderson, 2021. 

 

Variable Importance Scores of the Machine Learning Models 

To understand potential biological causes behind the most accurate predictions, 

variable importance scores were derived from the prediction models to identify critical 

predictor/time point combinations for TPP_RGB and TPP_Multi phenomic data sets (SI 

appendix, Figs. S11 and S12). Different contributions of VIs and Weibull_CHM at 

multiple time points were important among both phenomic datasets in the prediction of 

GY, DTA, DTS and PHT (SI appendix, Figs. S11 and S12). For instance, the TPP_RGB 

red chromatic coordinate index (RCC) and TPP_Multi modified nonlinear index values 

(MNLI) belonging to various time points, either before or after flowering times, for all 

predicted variables were identified by all machine learning models consistently and are 

therefore critical VI/timepoints combinations for all predicted variables (SI appendix, 

Figs. S11 and S12).  This demonstrates the ability of machine learning models to 

identify important image-based phenotypes for future UAS surveying efforts and 

provides foundational insight towards understanding the biological importance of 

images-based phenotypes within a plant’s growth cycle. 

Genome Wide Association Mapping Results 

To gain further insight into biological significance of successful predictions, 

GWAS peaks were identified using area under curve values (SI appendix, Figs. S13 and 

S14) of each high resolution VI and Weibull_CHM in the TPP_RGB phenomic data set 

(SI appendix, Figs. S13 and S14). A total of 241 GWAS peaks were identified across 
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the 36-temporal image-based phenotypes in TPP_RGB. Five genomic regions had 

significant loci for VIs and candidate genes of relevant interest (SI appendix, SI 

Results). Two genomic regions were identified as hotspots (fourth bin in chr2 and eighth 

bin in chr4) having GWAS peaks belonging to 24 VIs discovered across the three 

GWAS models (SI appendix, Fig. S15 and Dataset S2). A 15 kb genomic distance 

around the GWAS peaks was scanned to determine candidate genes based on the 

calculated LD decay (SI appendix, Fig. S1). LD patterns of both hotspots were 

visualized along with six candidate genes with functions described in SI appendix, Fig. 

S15.  

A hotspot was identified at 36,828,844 bp on chromosome 2 (chr2_1), identified 

by the excessive red, modified green red, normalized difference, Normalized green red 

difference, and visible atmospherically resistant indices by the three GWAS models 

consistently explaining 8-13% phenotypic variation (Dataset S2). The chr2_1 peak is 

inside GRMZM2G023204 (chr2:36827859..36,829,876; B73 RefGen_v4), a putative 

protein kinase domain that catalyzes the function of protein kinases. Another candidate 

gene (~4kb away from chr2_1) is GRMZM2G021560 (pebp25; 

chr2:36,779,809..36,782,444; B73 RefGen_v4) a member of phosphatidylethanolamine-

binding proteins (PEBPs) that regulate floral transitions (Danilevskaya, Meng, Hou, et 

al., 2008) as well as that GRMZM2G021560 found to be expressed at the early 

vegetative stage (eg. third leaf stage) (SONG et al., 2019). Integrating GWAS with 

temporal phenotypes (TPP RGB), loci controlling the temporal VIs explained the 
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phenotypic variations of multiple VIs revealing the pleiotropic effects of the loci. 

Additional candidate genes for other hotspots are discussed in SI appendix. 

Genomic Prediction Results of Temporal Phenomic Data 

Genomic prediction results of temporal VI’s identified specific time points for 

each of the high-resolution VIs in TPP_RGB had varying ability to be predicted in cross 

validation (Fig. 67). Prediction accuracy showed flowering was the most (and in a few 

cases least) predictable by genomic markers for many VI’s likely because of differential 

emergence of tassels (Fig. 67). It was surprising that time points prior to flowering in 

some cases had relatively similar or higher prediction accuracy than those at flowering 

time (Fig. 67). Overall, sensor-based VIs were predictable at different time points using 

whole genome markers but estimated different phenotypic effect sizes (Fig. 67). This 

demonstrates that genetic makers estimated changing effects sizes revealing the 

plasticity of temporal VIs that are more explanatory to monitor the interactions between 

genetic background of plants and their growing environments across plant growth.  

Genomic Prediction vs Phenomic Prediction 

Grain yield (GY) prediction ability of phenomic and genomic approaches were 

compared between both phenomic data sets (TPP_RGB and TPP_Multi) and genomic 

data (genomic prediction, GP). Comparing model prediction accuracies for untested 

genotypes in tested environment (CV2), low resolution multispectral (TPP_Multi) 

outperformed (r ̅= 0.80) both genomic prediction (r ̅  = 0.71) and high resolution RGB 

(TPP_RGB; r ̅ = 0.72) (Fig. 68). Comparing model prediction accuracies for untested 

genotypes in untested environment (CV4), genomic prediction and RGB high resolution 



 

202 

 

 

Fig. 67. Each box plot shows the genomic prediction accuracy results belonging to each 

time points of each temporal trait in TPP_RGB, each contains 500-prediction accuracies. 

Y axis shows the prediction accuracy and x axis shows the flight date as days after 

planting time. Each box plot was colored based on their mean. Heatmap color scale was 

given in the figure legend changing between 0 to 0.6. Gray shading in each represents 

flowering time. Different time points of temporal traits were found to have different 

response to genetic markers across growth stages of plant development. Reprinted from 

Adak, Murray, & Anderson, 2021. 

 

phenomic selection supplied similar prediction accuracies (r ̅: 0.53-0.55), while low 

resolution with multispectral sensor based HTP supplied a lower prediction accuracy 

(Fig. 68). Overall, the phenomic prediction platforms used in this study were largely able 

to predict better (CV2), or equivalent to, genomic prediction (CV1 and CV3) depending 

on which of the four cross validation schemes is evaluated (Fig. 68). However, genomic 

prediction outperformed phenomic prediction when predicting known genotypes in 

unknown environments (CV3). Combining both UAS measures (TPP_RGB and 
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TPP_Multi) using ridge regression did not further improve prediction accuracies (data 

not shown). 

 

 

Fig. 68 shows the prediction accuracy results of yield belonging to the three models. GP 

represents the prediction accuracy of genomic prediction, TPP_Multi represents the 

prediction accuracy of phenomic prediction using the VIs derived from the multispectral 

images with low resolution, TPP_RGB represents the prediction accuracy of phenomic 

prediction using the VIs derived from the RGB images with high resolution. Four cross 

validation schemes were used: predicting tested genotypes in tested environments 

(CV1), predicting untested genotypes in tested environments (CV2), tested genotypes in 

untested environments (CV3), and untested genotypes in untested environments (CV4). 

Phenomic prediction predicted the grain yield (GY) of maize hybrids better in CV2 than 

genomic prediction. Prediction accuracies were close to each other in CV3 and CV4. 

Reprinted from Adak, Murray, & Anderson, 2021. 

 

Discussion 

Field-based high-throughput phenotyping technologies, such as drones, are able 

to provide phenome-wide measurements of plants in much the same way that high-

throughput sequencers have provided genome-wide data. Uniquely, phenotyping 

technologies can screen high numbers of plots repeatedly through the growing period 

resulting in not only high spatial resolution but also high temporal resolution, helping 

dissect how different genotypes respond to their environments to maximize fitness in 
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near real-time (SI appendix, Figs. S7 and S8). Correlations were variable between 

overall VIs in the phenomic data (SI appendix, Fig. S9). First, there were low to 

moderate correlations between VIs. Second, temporal values of the same VIs had low 

correlations across different time points. These results indicates that both using different 

VIs and their temporal values belonging to multiple time points provide unique and 

additional information, thus importance of including different VIs and high temporal 

dimension in constructing the phenomic data was emphasized.    

As new temporal phenomic markers are difficult to independently measure and 

validate, one of the first approaches to evaluate phenomic marker utility is to look at 

heritability/repeatability values over different replicates and environments. This 

approach is not needed for genomic markers which do not vary over replicates and 

environments and theoretically have a repeatability near 1, but are also unable to capture 

environmental interaction in real time. Temporal repeatability (Eq. 3) of VIs were 

moderate, above ~0.5 for TPP_RGB (SI appendix, Fig. S2) and between 0.26 and 0.66 

for TPP_Multi (SI appendix, Fig. S3). Temporal repeatability relied on variation across 

plant development, biologically more meaningful than using genotypic variation which 

is static at every time point. Temporal variation captured by drones assesses temporal 

genotypic variation jointly over time via nested design (Eq. 2). Previously, repeatability 

has only been calculated between different vegetation indices/CHM and yield at a single 

time point (Aguate et al., 2017b; Anderson et al., 2019; Galán et al., 2021; Krause et al., 

2020b; Montesinos-López et al., 2017; Rutkoski et al., 2016; Sun et al., 2019; G. Wu et 

al., 2019a); disregarding the temporal genotypic variation occurring across plant growth. 
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Furthermore, previous studies used either one or a limited number of time points and 

analyzed each time point separately.  

High dimensional and temporal resolution phenomic data used in predictive plant 

breeding integrated with high throughput genotyping data discovered underlying genetic 

causes for many important temporal VI features. For instance, pleiotropy discovered via 

GWAS identified specific loci controlling more than one VIs (SI appendix, Figs. S14 

and S15, Dataset S2). In addition, genomic prediction of temporal VI phenotypes proved 

that estimated effects of each marker varied through time, causing different prediction 

accuracy results for temporal phenotypes of the same VIs (Fig. 67). Therefore, instead of 

depending on discrete genome wide markers as predictors for yield, temporal phenotype 

data formed by estimated temporal marker effects could better predict certain scenarios 

(e.g., untested genotypes in tested environment). Predicting grain yield of untested 

genotypes in a tested environment is an important scenario for public breeding programs 

because lines developed in public breeding programs are mostly targeted for specific 

environments. So that figure 68 proved that TPP predicted the grain yield better than GP 

in CV2 indicating that TPP can be better solution for the public breeding programs for 

genetic gain. In addition, the predictive ability of TPP in untested genotype untested 

environments (CV4) was in the same range as that of GS (Fig. 68). This is also an 

important proof of concept that TPP can be used as widely as GP.  Genomic prediction 

methods have been developed over more than a decade and phenomic prediction 

methods can likewise be improved. Further optimization and improvement of this 
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approach will likely benefit from the integration of novel crop growth models as 

genomic prediction has (Messina et al., 2018). 

Phenomic Data Can Predict Yield and Flowering Times Via Machine Learning 

Regressions 

Shrinkage factors previously shown as the best performing prediction models 

when using different hyper parameters have been adapted for predicting both yield 

(Adak, Murray, Božinović, et al., 2021; Aguate et al., 2017b; Kismiantini, Montesinos-

López, Crossa, Setiawan, & Wutsqa, 2021) and flowering times (Adak, Murray, 

Božinović, et al., 2021) when different reflection bands were used as predictors. 

Machine learning models with different regularization parameter settings to predict yield 

and flowering times (Fig. 66) were more accurate than linear-based prediction models 

(Adak, Murray, Božinović, et al., 2021; Montesinos-López et al., 2017). This suggests 

that temporal variation in VIs do not have a linear relationship to predicted variables. 

This is because linear models tend to overfit when there are increasing numbers of 

predictors and with fluctuating collinearity between predictors, such as in phenomic 

data. Linear models are not capable to explain non-linear relationships between 

predictors and predicted variables.  

Tuning regularization parameters of the ridge, lasso and elastic net-based prediction 

models is a good approach to deal with model overfitting when high dimensional 

phenomics data are used in prediction. Tuned regularization parameters in ridge, lasso 

and elastic net models can lessen coefficients, and predict test data more reliably than 

linear models. For example, pedigree within flight combination (𝛺𝑖(𝑗) component in Eq. 
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2) were found to be statistically significant for all VI and CHM (SI appendix, Fig. S2) 

indicating a temporal interaction among the pedigree across flight times because of 

fluctuating temporal phenotype values of VIs (SI appendix, Figs. S7 and S8). 

Nevertheless, a general trend demonstrated that high- and low- yielding pedigrees 

segregate according to temporal phenotypes of VIs. This reverse correlation of temporal 

breeding values of the pedigree through time supports the existence of nonlinear 

relationships, problematic for a linear model to capture. Because of multiple decision 

tree learning, the random forest model accounts for non-linearity, limiting overfitting.  

Phenomic prediction reached up to ~0.80 for grain yield and flowering time 

prediction (Fig. 66) higher than previously reported prediction accuracies (Aguate et al., 

2017b; Galán et al., 2021; Krause et al., 2020b; Rutkoski et al., 2016; Sun et al., 2019; G. 

Wu et al., 2019a).  (Aguate et al., 2017b) showed use of raw reflected bands instead of 

ratios (e.g. vegetation indices) performed better in prediction models. (Montesinos-López 

et al., 2017) further reported using all bands simultaneously increased prediction accuracy 

instead of VIs alone. However, reflected bands used in past studies derived from five to 

nine time points, lower time dimension data than what we generated in our study. This 

suggests that predictors derived from additional time points could play an important role 

on increasing the prediction ability of the models; more so than using the predictors as 

either raw reflectance bands or vegetation indices.  

Genomic Prediction for Temporal Traits Can Vary Depending On The Time Points Of 

Growth 
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TPP_RGB phenomic data tested using genomic prediction to identify temporal marker 

effects and their prediction accuracies for each VI and Weibull_CHM throughout time 

(Fig. 67) demonstrated that genomic markers could predict an individual’s VI or 

Weibull_CHM value through cross validation using other individuals at the same stage. 

This demonstrated that certain stages and VIs have more genetic determination and are 

more heritable.  

Temporally varying marker effects on the phenotype of VIs resulted in 

phenotypes at different timepoints of VIs and Weibull_CHM having different 

correlations with yield (SI appendix, Figs. S5 and S6) as well as different prediction 

abilities for dependent variables (Fig. 67). A dynamic pattern of marker effects as shown 

here has so far been overlooked in genomic prediction/selection of yield. (Bernardo, 

2021) underlined that predicting the candidate genotype using the phenotype information 

collected from across multiple environments may be more accurate than using the 

genetic markers in the prediction model. Similarly, instead of predicting grain yield 

fitness by whole genome marker effect approaches such as RR-BLUP and GBLUP, 

including the temporal phenotypic variation occurring across growth into prediction 

models can result in more accurate fitness prediction as phenomic data already contain 

temporal marker effects. This study also showed that specific loci can explain different 

phenotypic variance across more than one derived VI (SI appendix, Figs. S14 and S15, 

Dataset S2) signifying pleiotropic effects of certain markers for the VIs. These 

pleiotropic effects have various associations with developing young tissues, 

inflorescence, and yield. 
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Phenomic Prediction Can Perform Similarly to or Outperform Genomic Prediction 

Phenomic data (TPP_Multi and TPP_RGB) predicted grain yield as well as 

genomic data using ridge regression (Fig. 68) but different results were observed 

depending on the cross validation scheme. TPP_RGB contained 35 VIs derived from 

only RGB bands and Weibull_ CHM belonging to fifteen time points (525 phenomic 

features) resulting in an accuracy of 0.71; this accuracy was same as the accuracy of 0.71 

belonging to GP containing the 153,252 segregating whole genome markers. However, 

when TPP_Multi, which contains the 89 VIs derived from the multispectral bands and 

Weibull_CHM belonging to twelve time points (1068 phenomic features), were used in 

the prediction the yield, prediction accuracy reached up to 0.80; substantially higher than 

both GP and TPP_RGB supplied for the untested genotype in tested environments 

schemes (CV2) (Fig. 68). Moreover, in the most challenging cross-validation scheme, 

untested genotypes in untested environment (CV4), GP, TPP_RGB and TPP_Multi 

performed approximately equally as their prediction accuracies were around 0.50 ± 0.05 

(Fig. 68). These empirical findings suggest, for the first time, that increasing temporal as 

well as spectral information can be used to predict fitness substantially better than 

genomic prediction. This also suggests that temporal and continuous phenomic data can 

be better predictors than discrete genomic data in prediction and selection of high 

yielding genotypes. In the only two previous phenomic prediction studies reported to 

date, (Holly M Lane & Murray) used 3,076 NIRS bands at a single timepoint, while 

(Rincent et al., 2018) used 1,050 NIRS bands on grain samples. (Rincent et al., 2018) 

then showed these NIRS bands outperformed genomic selection which used 84,259 SNP 
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markers in wheat. Overall, phenomic selection is an emerging approach that may remove 

the cost of genotyping each year that is required by genomic prediction/selection. 

Adding a temporal component into phenomic prediction has innumerable known and yet 

to be discovered advantages.  

In summary, this study demonstrated the predictive capability of phenomic data 

for complex traits in maize, yielding as much as genomic markers frequently applied in 

plant selection over the past 20 years. UAS surveys over the experimental field plots 

supplied temporal traits as predictors to facilitate the selection of untested genotypes in 

untested environments. Growing more plants and measuring them accurately are critical 

steps to drive effectiveness of selection intensity and accuracy resulting in higher genetic 

gain over time. This study exemplified that screening more plants and measuring them 

thanks to repetitive UAV flights across plant growth may results in greater genetic gain 

than genomic selection when phenomic prediction/selection is applied routinely. 

In conclusion, genetic prediction methods, primarily genomic selection, became 

instrumental over the last decade to drive genetic gain for crop improvement. Such 

prediction methods leverage information shared between relatives to predict an 

individual’s fitness but remain prohibitively resource intensive and unable to dissect 

responses to a changing environment. Unoccupied aerial systems (UAS; i.e., drones with 

sensors) have demonstrated high-throughput, low-resource approaches to temporally 

evaluate fitness of large and genetically diverse populations. For the first time, this study 

demonstrates that temporal phenomic predictions (TPP) made from UAS have capacity 

to perform equal to or better than genomic selection and require fewer resources. TPP 
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success opens new lines of inquiry for understanding organism reactions to their 

environment and for our understanding of genetic relationships. 

Data availability 

Dataset S1 contains the four phenomic data that belongs to RGB HTP platform in 

optimal management (TPP_RGB_OM), RGB HTP platform in stress management 

(TPP_RGB_SM), multispectral HTP platform in optimal management (TPP_Multi_OM) 

and multispectral HTP platform in stress management (TPP_Multi_SM). Dataset S2 

contains the discovered SNPs in GWAS for the AUC phenotype values of each VI along 

with their chromosome, chromosome positions, p-values, minor allele frequencies, 

effects, explained percent variation, VIs and GWAS models. Dataset S1 and S2 are big 

files and available upon request by Texas A&M University Quantitative Genetic and 

Maize Breeding Program. 
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CHAPTER VII 

PEDIGREE-MANAGEMENT-FLIGHT INTERACTION FOR TEMPORAL 

PHENOTYPE ANALYSIS AND TEMPORAL PHENOMIC PREDICTION 

High throughput phenotyping (HTP) platforms are allowing researchers to 

examine phenotypes of complex traits in plants at high temporal resolution. Unoccupied 

aerial systems (UAS) HTP systems are used in field-based research where a large 

number of plants (such as in plant breeding nursery) can be phenotyped at high 

resolution with minimal labor, cost, and high functional (Shi et al., 2016). Importantly, 

repetitive UAS surveys over plant breeding nurseries enable examination of temporal 

phenotypic variation occurring across plant growth, impractical and overlooked in 

traditional phenotyping so far (Araus & Cairns, 2014).  

One important phenotype estimated from UAS images (e.g. orthomosaics and 3D 

point cloud data) is plant height (aka, canopy height measurements; CHM) with other 

important measures being spectral reflectance. Temporal phenotypic information of 

plant height and reflectance bands revealed that various loci govern the temporal 

phenotypes of plant height and reflectance bands at different time points in genome wide 

association studies (Adak, Murray, & Anderson, 2021; Adak, Murray, Anderson, et al., 

2021; Anderson et al., 2020; Pauli et al., 2016; J. Wang et al., 2021; Xavier, Hall, 

Hearst, Cherkauer, & Rainey, 2017). Thus, genome wide markers predicted temporal 

plant height and reflectance bands with varying prediction abilities (Adak, Murray, & 

Anderson, 2021; Adak, Murray, Anderson, et al., 2021; Adak, Murray, Božinović, et al., 

2021). Different heritability values of temporal plant height and reflectance bands have 
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been calculated previously and range from X to Y showing they are repeatable (Adak, 

Conrad, et al., 2021; Adak, Murray, Anderson, et al., 2021; Anderson et al., 2019; 

Krause et al., 2019; Montesinos-López et al., 2017). The heritable nature of UAS 

derived measures were considered as novel predictors to predict yield in plant breeding 

programs; temporal phenotypes were used either alone (Adak, Murray, & Anderson, 

2021; Adak, Murray, Anderson, et al., 2021; Adak, Murray, Božinović, et al., 2021; 

Krause et al., 2019) or combined with genomic data (Galán et al., 2021; Rincent et al., 

2018; Sun et al., 2019) to predict yield.  

The majority of current literature pertaining to UAS derived PHT and reflectance 

bands estimates has focused on the extraction of breeding values (i.e. genetic means or 

best linear unbiased predictors/estimates [BLUP/BLUE]) per individual flight dates in 

maize (Zea mays L.) hybrids (Anderson et al., 2020; Anderson et al., 2019; Pugh et al., 

2018; Tirado, Hirsch, & Springer, 2020). Several optimization related studies regarding 

the implementation of field based HTP platforms were proposed in agricultural field-

based research plots (Anderson et al., 2019; Chu, Starek, Brewer, Murray, & Pruter, 

2018; Geipel, Link, & Claupein, 2014; Han et al., 2019; Han et al., 2018; Malambo et 

al., 2018; Pugh et al., 2018; Shi et al., 2016; Tirado et al., 2020). In addition, plot-based 

data extraction pipelines from the outputs of UAS flights (e.g. 3D point clouds and 

geographically corrected images) were proposed (Anderson & Murray, 2020; Matias, 

Caraza‐Harter, & Endelman, 2020; Morales et al., 2020), which are important for plant 

breeding nurseries and trials to estimate the breeding values of tested genetic materials 

(e.g. hybrids or inbreds) from their temporal reactions under different environmental 
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conditions and managements (Araus & Cairns, 2014; Sankaran et al., 2015; Shi et al., 

2016; Tirado et al., 2020).  

Genotype-by-environment (GxE) interaction is special case study in crop science 

to understand plasticity of complex traits such as plant height in maize (Peiffer et al., 

2014; Wallace et al., 2016b). However, understanding of the underlying causes of 

plasticity for  measures like plant height and spectral reflectance remains limited, in part 

due to only having terminal measures (yield, terminal plant height); monitoring 

genotypes throughout growth stages, especially early growth, is needed. Single time 

point analysis of UAS flights disregards the hierarchy of biological variations in 

temporal plant height of tested genetic materials through the growth periods, which 

disregards the retrospective systematic effects leading plasticity during growth periods. 

Previous studies have identified unique quantitative trait loci (QTLs) associated with 

temporal plant height belonging to different time points. Additionally, the same QTL 

change effect sizes, demonstrating sources of variation in early growth periods in terms 

of temporal plant heights and reflectance bands (Adak, Murray, & Anderson, 2021; 

Adak, Murray, Anderson, et al., 2021; Anderson et al., 2020; J. Wang et al., 2021; X. 

Wang et al., 2019). This is important where temporal plant height and reflectance bands 

data should be analyzed jointly to better scrutinize their plasticity within growth stages.  

Previous field based HTP studies have evaluated temporal plant heights or reflectance 

bands by individual flight dates to predicting the breeding values for each flight date 

independently. Here we propose analyzing UAS derived temporal plant height data as an 

interaction based statistical design, where the genetic model term has interaction of 
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pedigrees and flight dates to obtain the temporal breeding values to dissect the plasticity 

along with different levels of management conditions (e.g. late and optimal planting) and 

populations (e.g. diverse hybrids population in maize). To test this interaction model, 

228 and 100 maize hybrids were grown in 2017 and 2019 as both optimal and late 

plantings, and seven and five drone surveys were conducted over 2017 and 2019 trials 

respectively, where drone flights were same across plantings in each year.  

The objectives of this study were to (i) conduct the interaction based statistical design to 

predict the temporal breeding values of CHM and a vegetation index (NGRDI; 

Normalized green-red difference index) of maize hybrids across flight dates and 

managements, and (ii) predict the grain yield using temporal phenotypes of CHM and 

NGRDI in each year, in which optimal planting and late planning were used as tested 

and untested environments to test the predictive ability of temporal phenotype data for 

grain yield in each year. Weather data were also combined with temporal phenotype data 

to test the second objective.   

Material and Methods 

Genetic Materials and Management Conditions 

Two different populations were used in this study. The 2017 trial was a subset of 

the genome to field (G2F; https://www.genomes2fields.org/) project containing 228 

hybrids. The 2017 trial was grown under two different management conditions, defined 

as optimal planting with irrigation (OI) and late planting with irrigation (LP). The LP 

trial was expected to expeiance increased heat stress. Optimal and late plantings of 2017 

trials were planted on March 3, 2017 and April 6, 2017 respectively. The 2019 trial 
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contained 100 advanced maize hybrids developed by the Texas A&M maize breeding 

program. 2019 trials were grown under two different management conditions that were 

optimal planting with irrigation (OI) and late planting with irrigation (LP). Optimal and 

late plantings of 2019 trial were planted on March 20, 2019 and April 12, 2019, 

respectively.  

Field Based High Throughput Phenotyping and Data Extraction 

An unoccupied aerial vehicle (UAV, DJI Phantom 4 Pro V2.0 (DJI, Shenzhen, 

China) was flown over 2017 and 2019 trials to collect temporal plant heights and 

NGRDI. Seven and five UAV surveys were conducted for both managements (Table 6). 

A height of 25 meters was set for UAV flight elevation in each year. Resolution of the 

UAV images was 72 DPI obtained by the standard integrated camera of the DJI Phantom 

4 Pro V2.0. Raw images were collected with the integrated 20-megapixel RGB camera 

with one-inch square CMOS (complementary metal oxide semiconductor). Image 

overlap was set to 90 percent side and forward overlap. All raw images were processed 

within Agisoft Metashape V15.2 software (Agisoft LLC, Russia) to generate 

orthomosaics, point clouds, and digital surface models (DSM). 99th percentile plant 

heights were estimated from the densified point cloud following the procedures set forth 

by (Anderson et al., 2019) using hierarchical robust interpolation approached. The 

R/UAStools::plotshpcreate (Anderson & Murray, 2020) function was used to create the 

polygons shapefiles (.shp) for each row plot. Resulting shapefiles were used within the 

R/FIELDimageR (Anderson & Murray, 2020) to extract the normalized green-red 

difference index (NGRDI) (Tucker, 1979) for each row plot of both populations. 
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Grain yield (t/ha) was collected using a research plot combine. Flowering times were 

collected as the number days after sowing at which approximately 50% of each plot 

expressed extruded silks [days till silking (DTS)] and 50% expressed tassels extruded 

anthers [days to anthesis (DTA)]. Three types of terminal plant heights were measured at 

the end of reproductive stage one time manually with a ruler. These were plant height 

(from ground to tip of tassel; PHT), flag leaf height (from ground to flag leaf; FHT) and 

ear height (from ground to closest ear to ground; EHT). Two consecutive row plots were 

used for each hybrid in flowering times, manually measured plant heights and yield data 

collections for each management in both years. 

Table 6 The flights as days after plantings (DAP) and their corresponding days in 

optimal and late plantings in 2017 and 2019 were given. 

Flight 

(DAP) 

2017 

Optimal planting Late planting 

48 20/4/2017 22/7/2017 

63 5/5/2017 6/8/2017 

70 12/5/2017 13/8/2017 

73 15/5/2017 16/8/2017 

82 24/5/2017 25/8/2017 

98 9/6/2017 10/9/2017 

112 23/6/2017 24/9/2017 

Flight 

(DAP) 

2019 

Optimal planting Late planting 

39 28/4/2019 21/5/2019 

63 22/5/2019 14/6/2019 

75 3/6/2019 26/6/2019 

88 16/6/2019 9/7/2019 

96 24/6/2019 17/7/2019 
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Experimental Design and Statistical Analysis 

Each trial was grown as a randomized complete block design with spatial 

variation partitioned into ranges and rows with two replications (Eq. 1). Each plot 

consisted of two consecutive row plots in each replication. Each row was ~7.62 m, and 

row spacing was 0.76 m. Variance components and yield (t/ha) of maize hybrids were 

estimated in each year using the Eq. 1 below : 

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖 + 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑗 + (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑗 +

𝑟𝑎𝑛𝑔𝑒𝑘 + 𝑟𝑜𝑤𝑙 + 𝑟𝑒𝑝[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡]𝑚[𝑗] + 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚     Eq. 1 

Where, 𝑌𝑖𝑗𝑘𝑙𝑚is the yield value (t/ha) of the 𝑖th two row planted maize hybrid 

belonging to 𝑗th management, 𝑘th range , 𝑙th row and 𝑚th replication; 𝜇 = grand mean; 

𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖 is the random effect of 𝑖th maize hybrid with  𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖

2 ); 

𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑗 is the random effect of 𝑗th management with 

𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑗
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑗

2 ); 𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑖∗𝑗 is the random 

effect of interaction between 𝑖th maize hybrid and 𝑗th management with (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗

𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑗
𝑖𝑖𝑑
~

 𝑁(0, 𝜎(𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒∗𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑗

2 ); 𝑟𝑎𝑛𝑔𝑒𝑘, and 𝑟𝑜𝑤𝑙 are the random 

effects of 𝑘th range, 𝑙th row with 𝑟𝑎𝑛𝑔𝑒𝑘
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑟𝑎𝑛𝑔𝑒𝑘
2 ), 𝑟𝑜𝑤𝑙

𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑟𝑜𝑤𝑙
2 ) which 

do not need nesting as unique locations in the field,  𝑟𝑒𝑝𝑚 is the random effect of 𝑚th 

replication nested within 𝑗th management with  

𝑟𝑒𝑝[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡]𝑚[𝑗]
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑟𝑒𝑝[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡]𝑚[𝑗]

2 ). 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚 is the residual error 

containing unexplained variation by any components in Eq. 1. 
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Repeatability of yield was calculated in each year with the below formula (Eq. 2).  

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒

2

𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒
2 + (

𝜎(𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒∗𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)
2

𝑎 ) +
𝜎𝑒𝑟𝑟𝑜𝑟

2

𝑎 × 𝑐

 

Eq. 2 

Where, 𝑎 is the number of managements (late and optimal plantings) and 𝑐 is the 

number of replications (two reps) in each year. 

To predict the temporal phenotype data (CHM and NGRDI) of maize hybrids we 

here propose a three-way interaction design (Eq. 2) across flight dates and managements 

for each year as follows:  

𝑌𝑖𝑗𝑘𝑙𝑚𝑛 = 𝜇 + 𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖 + 𝑓𝑙𝑖𝑔ℎ𝑡𝑗 + 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑘 + (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑓𝑙𝑖𝑔ℎ𝑡)𝑖𝑗

+ (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑘 + (𝑓𝑙𝑖𝑔ℎ𝑡 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑗𝑘

+ (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑓𝑙𝑖𝑔ℎ𝑡 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑗𝑘 +  𝑟𝑎𝑛𝑔𝑒𝑙 + 𝑟𝑜𝑤𝑚

+ 𝑟𝑒𝑝[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡]𝑛[𝑘] + 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚𝑛 

           Eq.3 

Where, 𝑌𝑖𝑗𝑘𝑙𝑚 is the CHM or NGRDI values of two rowss of the 𝑖th maize hybrid 

belonging to 𝑗th flight date, 𝑘th management, 𝑙th range, 𝑚th row and 𝑛th replication 

nested within 𝑘th management; 𝜇 = grand mean; 𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖 is the random effect of 𝑖th 

maize hybrid with  𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒𝑖

2 ); 𝑓𝑙𝑖𝑔ℎ𝑡𝑗 is the random effect of 𝑗th 

maize hybrid with  𝑓𝑙𝑖𝑔ℎ𝑡𝑗
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑓𝑙𝑖𝑔ℎ𝑡𝑗

2 ); 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑘 is the random effect of 
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𝑘th management with 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑘
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑘

2 ); (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑓𝑙𝑖𝑔ℎ𝑡)𝑖𝑗 

is the random effect of interaction between 𝑖th maize hybrid and 𝑗th flight date with 

(𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑓𝑙𝑖𝑔ℎ𝑡)𝑖𝑗
𝑖𝑖𝑑
~

 𝑁(0, 𝜎(𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒∗𝑓𝑙𝑖𝑔ℎ𝑡)𝑖𝑗

2 ); (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑘 is 

the random effect of interaction between 𝑖th maize hybrid and 𝑘th management with 

(𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑘
𝑖𝑖𝑑
~

 𝑁(0, 𝜎(𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒∗𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑘

2 ); (𝑓𝑙𝑖𝑔ℎ𝑡 ∗

𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑗𝑘 is the random effect of interaction between 𝑗th flight and 𝑘th 

management with (𝑓𝑙𝑖𝑔ℎ𝑡 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑗𝑘
𝑖𝑖𝑑
~

 𝑁(0, 𝜎(𝑓𝑙𝑖𝑔ℎ𝑡∗𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑗𝑘

2 ); 

(𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑓𝑙𝑖𝑔ℎ𝑡 ∗ 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑗𝑘 is the random effect of interaction between 𝑖th 

pedigree, 𝑗th flight and 𝑘th management with (𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝑓𝑙𝑖𝑔ℎ𝑡 ∗

𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑗𝑘
𝑖𝑖𝑑
~

 𝑁(0, 𝜎(𝑓𝑙𝑖𝑔ℎ𝑡∗𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡)𝑖𝑗𝑘

2 ); 𝑟𝑎𝑛𝑔𝑒𝑙, and 𝑟𝑜𝑤𝑚 are the random 

effects of 𝑙th range, 𝑚th row with 𝑟𝑎𝑛𝑔𝑒𝑙
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑟𝑎𝑛𝑔𝑒𝑙
2 ), 𝑟𝑜𝑤𝑚

𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑟𝑜𝑤𝑚
2 ) and 

𝑟𝑒𝑝[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡]𝑛[𝑘] is the random effect of 𝑛th replication nested within 𝑘th 

management with  𝑟𝑒𝑝[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡]𝑛[𝑘]
𝑖𝑖𝑑
~

 𝑁(0, 𝜎𝑟𝑒𝑝[𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡]𝑛[𝑘]

2 ). 𝑒𝑟𝑟𝑜𝑟𝑖𝑗𝑘𝑙𝑚𝑛 

is the residual error containing unexplained variation after fitting components in Eq. 3. 

Temporal repeatability (Eq. 4) for each temporal phenotype was proposed as follows: 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=
𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒

2

𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒
2 + (

𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒∗𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡
2

𝑎 ) + (
𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒∗𝑓𝑙𝑖𝑔ℎ𝑡

2

𝑏 ) + (
𝜎𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒∗𝑓𝑙𝑖𝑔ℎ𝑡∗𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑛𝑡

2

𝑎 × 𝑏 ) +
𝜎𝑒𝑟𝑟𝑜𝑟

2

𝑎 × 𝑏 × 𝑐

 

Eq. 4 
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Where, 𝑎, 𝑏, and 𝑐 are the numbers of managements (late and optimal plantings), 

flight times (seven in 2017 and five in 2019) and replications (two reps) in 2017 and 

2019 trials. All equations were run using the lme4 package in R with restricted 

maximum likelihood (REML) approach 

Prediction model 

Grain yield breeding values (predicted by Eq.1) were used as predicted traits in 

machine learning based regression models by using temporal breeding values of CHM 

and NGRDI (predicted by Eq. 3) to assess the predictive ability of temporal phenomic 

data. To do so, results of (pedigree*flight*management) interaction components in Eq. 3 

were combined and used as predictors. Prediction was conducted between managements 

of each year. Optimal planting trials (OI) were used for training as tested environments 

while late plantings (LP) were used as untested (validation) environments in each year. 

The R/caret package was used to construct the prediction models with 1000 bootstraps; 

each bootstrap contained the random data split where 60 percent of maize hybrids were 

used as tested genotypes while theremaining hold-out 40 percent were used as untested 

genotypes. Five-fold cross validation with three repeats was used in each bootstrap. One 

bootstrap of the prediction models is briefly explained here. First, a random data split 

was conducted as 60:40 percent ratio as training and test data set respectively by 

R/caret::createDataPartition(). Second ridge, and lasso regressions were trained using 

training data set (60 percent split data) by R/caret::train(), where model was set “glmnet” 

for both ridge and lasso regressions, alpha level was set as “0” and “1” for ridge and 

lasso regressions respectively, “lambda” values were also searched between 0 and 1 
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based on then equal increments numbers to tune the ridge and lasso regressions. Third, 

these trainings were applied to: tested genotypes in tested environment (Cross validation 

1 (CV1): 60 percent maize hybrids in OI), untested genotypes in tested environment 

(CV2: 40 percent maize hybrids in OI), tested genotypes in untested environment (CV3: 

60 percent maize hybrids in LP), untested genotypes in untested environment (CV4: 40 

percent maize hybrids in LP) were predicted by trained ridge and lasso regressions. 

Finally, correlation between predicted grain yield values and actual grain yield breeding 

values were calcauted for four scenarios (given in the third step) and calculated as four 

types of prediction abilities.  

Weather data were also merged with temporal phenomic data of 2017 and 2019 

trials to predict yield following the same prediction procedures explained above. Daily 

weather data were obtained from the National Oceanic and Atmospheric Administration 

National Centers for Environmental Information (https://www.ncdc.noaa.gov/), and 

environmental parameters from planting to 100 days after planting times were used in 

prediction models. Specifically included were temperature (minimum, average and 

maximum; °C), dew point (minimum, average and maximum; °C), humidity (minimum, 

average and maximum, %), wind speed (minimum, average and maximum; mph), 

atmospheric pressure (minimum, average and maximum; Hg), precipitation (cm), 

photoperiod (day light as hours), diurnal temperature range  (𝑇𝑒𝑚𝑝𝑚𝑎𝑥 − 𝑇𝑒𝑚𝑝𝑚𝑖𝑛), 

growing degree days (
𝑇𝑒𝑚𝑝𝑚𝑎𝑥+𝑇𝑒𝑚𝑝𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒; 𝑇𝑏𝑎𝑠𝑒 𝑖𝑠 10°C ), and photothermal time 

(𝐺𝐷𝐷 ∗ 𝑝ℎ𝑜𝑡𝑜𝑝𝑒𝑟𝑖𝑜𝑑). These environmental parameters from planting to 100 days after 
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planting were illustrated for optimal and late planning trials in 2017 and 2019 in 

supplementary figure 69.  

Results 

Results of Interaction Design and Temporal Repeatability 

Temporal phenomic data of CHM and NGRDI was predicted by an interaction 

design (Eq. 3) containing three-way interactions of maize hybrids (pedigree), drone 

flights (flights), and managements (optimal and late plantings). Overall, the 𝐹𝑙𝑖𝑔ℎ𝑡 

variance component explained the highest percent variation of total variation for CHM 

and NGRDI (Figure 69). Interaction based design for temporal phenotype enables to 

calculate the temporal repeatability of CHM and NGRDI by equation 4 (Eq. 4). 

Temporal repeatability was 0.87 and 0.55 for CHM in 2017 and 2019, and 0.56 and 0.68 

for NGRDI in 2017 and 2019 respectively (Figure 69).  
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Figure 69 Explained percent variation by each variance component of Equation 3 (Eq. 3) 

for temporal plant height (canopy height measurement; CHM) and normalized green-red 

difference index (NGRDI). Left axis shows the percentages explained by the variance 

components; right axis shows the temporal repeatability values of the temporal traits 

(white diamond), R-squared (white triangle) and root mean square error (RMSE, white 

square) of the models. The flight effect and interactions explained the highest proportion 

of total variation. 

 

The 𝐹𝑙𝑖𝑔ℎ𝑡 variance component explained the highest amount of variation. The 

temporal variation of the maize hybrids was scrutinized across management by 

demonstrating the (𝑃𝑒𝑑𝑖𝑔𝑟𝑒𝑒 ∗ 𝐹𝑙𝑖𝑔ℎ𝑡 ∗ 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡) and (𝐹𝑙𝑖𝑔ℎ𝑡 ∗ 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡) 

interactions for CHM (Figure 70) and NGRDI (Figure 71). 

 

Figure 70 A and C show the (Pedigree*Flight*Management) and B and D show the 

(Flight*Management) interactions for the temporal plant height (canopy height 

measurement; CHM).  A and B are the results of 2017 while B and D are the results of 



 

225 

2019. LP and OI are the late and optimal planting managements respectively. Temporal 

variation of CHM showed that late planting had taller plant heights than those of optimal 

planting for 2019 and most of 2017. Vertical dashed lines show the means of flowering 

time (days to anthesis; DTA) of each management in 2017 and 2019. 

 

 

Figure 71 shows the results of (Pedigree*Flight*Management) and 

(Flight*Management) interactions for the normalized green-red difference index 

(NGRDI). A and C are the results of (Pedigree*Flight*Management) for 2017 and 2019 

trials respectively; A and D are the results of (Flight*Management) interaction for the 

2017 and 2019 trials respectively. Temporal variation of NGRDI showed that late 

plating had high there was a interaction after flowering times in both year consistently. 

Vertical dashed lines show the means of flowering time (days to anthesis; DTA) of each 

management in 2017 and 2019. LP and OI are the late and optimal planting 

managements respectively. 

 

Temporal plant heights (CHM) were taller in late planting than optimal planting 

across flight dates in both years consistently, except during later growth in 2017 (Figure 
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70). This was in agreement with manually measured plant heights (PHT, FHT and EHT) 

(Figure 72). Maize hybrids flowered earlier in late planting, when measured in days after 

planting, than in optimal plantings in both years consistently (Figure 72).  Normalized 

green-red difference index (NGRDI)always scored higher in late planting than optimal 

planting up to end of flowering times in both years consistently, however this was 

shifted where NGRDI scores were lower in late planting than optimal planting after 

flowering times in both years consistently, showing the earlier senescence of this 

planting (Figure 71). Grain yield was lower in late plantings than in the optimal 

plantings as typically observed(Figure 72). Comparing genotypes, correlations between 

NGRDI and grain yield were always positive belonging to early flight dates in both 

years consistently and reached up to ~0.5 in 2019 and ~0.6 in 2017; however, the 

correlations become weaker and sometimes turned non-significant during late flights in 

both years (Figure 73). Correlations between CHM and grain yield were more stable 

than correlations between NGRDI and grain yield, and reached up to ~ 0.5 in both years 

(Figure 73). 
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Figure 72 the explained percent variation by each variance component of equation 1 (Eq. 

1) for grain yield, plant heights and flowering times. A, B and C show the explained 

percent variances by each component for grain yield, three types of manually measured 

plant heights and flowering times respectively. White diamonds are the repeatability 

values (calculated by equation 2) of yield, plant heights and flowering times; white 

rectangles are the R-squared of the models. EHT, FHT and PHT are manually measured 

plant heights from ground to first ear, to flag leaf and to tip of tassel respectively; DTA 

and DTS are days to anthesis and silking respectively. D, E and F are the breeding 

values of maize hybrids for grain yield, three types of manually measured plant heights 

and flowering times respectively; breeding values were obtained from 

(pedigree*management) component in each year. 
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Figure 73 correlation coefficients of temporal phenomic data belonging to 2017 (left) 

and 2019 (right) and yield. LP and OI indicate late and optimal planting management 

respectively in both years. 

 

Prediction Model 

The predictions of grain yield were conducted based on four different prediction 

abilities (see the prediction model in M&M). Ridge regression performed better than 

lasso in prediction the grain yield in untested environments (CV3 and CV4) in 2017 and 
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2019 trial consistently (Figure 74). Phenomic data predicted the grain yield with the 

prediction ability of 0.23 in CV3 and CV4 of 2017 trial by lasso regression; however, 

prediction abilities were higher (0.34 in CV3 and CV4) by ridge regression (Figure 74). 

Similar results were observed in 2019; lasso predicted grain yield with the prediction 

ability of 0.5 in CV3 and 0.48 in CV4, which were less than the prediction ability of 

ridge regression (0.51 in CV3 and 0.49 in CV4) (Figure 74). Remarkably, combined data 

(phenomic data plus weather data) predicted grain yield greater than phenomic data in 

both years by ridge regression (Figure 74). Combined data predicted the grain yield in 

2017 trial with the prediction accuracy of 0.49 in CV3 and CV4 by ridge regression, 

which were significantly / substantially higher than prediction accuracies (0.34 in CV3 

and CV4) obtained when only phenomic data was used (Figure 74). Similarly, combined 

data predicted grain yield in the 2019 trial with the prediction accuracy of 0.53 in CV3 

and 0.51 in CV4 by ridge regression, higher but not significantly different than the 

prediction accuracies (0.51 in CV3 and 0.49 in CV4) obtained when only phenomic data 

was used (Figure 74). Overall, prediction ability of the grain yield was improved in 

untested environments in both years when combined data (weather plus phenomic data) 

was used (Figure 74).   
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Figure 74 Prediction abilities calculated for grain yield using temporal phenomic data 

and combined data (phenomic and weather data) using ridge and lasso regressions in 

2017 and 2019. Ridge regression predicted the grain yield of maize hybrids in untested 

environments. Combined data also boosted the prediction accuracies in prediction of 

grain yield of maize hybrids in untested environments. CV1 (cross validation 1) is the 

prediction accuracy of tested genotypes (60 percent maize hybrids) in tested 

environment (optimal planting, OI); CV2 is the prediction accuracy of tested genotypes 

(60 percent maize hybrids) in untested environment (late planting, LP); CV3 is the 

prediction accuracy of untested genotypes (40 percent maize hybrids) in tested 

environment (optimal planting, OI) and CV4 is the prediction accuracy of untested 

genotypes (40 percent maize hybrids) in untested environment (late planting, LP) in both 

years. 

Discussion 

The Importance of Interaction Designs in Temporal Data Analysis 

In crop science, statistical model selection is an important step in evaluating the 

temporal traits that are collected from various time points of crop growth. UAS high 

throughput phenotyping application have been providing a vast amount of temporal data 

for complex traits. A need for statistical and biologically meaningful data assessment to 
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predict genetic performance has emerged as a major concern. This study proposed an 

interaction design containing three-way interaction of pedigree (maize hybrids), drone 

surveys (flight) and managements (optimal and late plantings). Thus, temporal breeding 

values of maize hybrids temporal traits (e.g. CHM and NGRDI) can be estimated and 

visualized through flight times as a result of three-way interaction components in the 

mixed model (equation 1; Eq.1). Using visualization of the temporal breeding values, 

phenotypic plasticity of traits was dissected within growth stages (Figure 74). Since 

segregation of temporal plant heights, and NGRDI during maize growth are orchestrated 

by unique loci as well as same loci with different effect sizes depending on the time 

points (Adak, Murray, & Anderson, 2021; Adak, Murray, Anderson, et al., 2021; 

Anderson et al., 2020; J. Wang et al., 2021; X. Wang et al., 2019), a natural biological 

variation in plant height are emerged as a result of the manipulation that create 

hierarchical layers belonging to different time points of crop growth (Bac-Molenaar, 

Vreugdenhil, Granier, & Keurentjes, 2015). Utilizing the interaction component 

(pedigree*flight*management component in Equation 1), the biological hierarchy in 

plant heights that occurs at any time of growth can be evaluated in that time level of the 

interaction factor. The interaction design is more powerful in regard to explaining the 

biology of the temporal trait genetic variation of maize hybrids (e.g. CHM and NGRDI) 

across flight times and management. With the interaction design approach for temporal 

traits, temporal variation of each plot can be considered within crop growth, potentially 

more meaningful in biological interpretation of plasticity in any of CHM and NGRDI 

across maize growth. The interaction design also is convenient model for dissecting 
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sources of phenotypic plasticity of complex traits in the hierarchy of the multiple time 

points that are captured by drones. 

Prediction of Grain Yield 

Temporal changes in the CHM and NGRDI had unique trajectories for late and 

optimal plantings in both years (Figure 70 and 71); these trajectories resulted in low and 

high grain yield in late and optimal planting managements in both years (Figure 72). In 

other words, these temporal trajectories of CHM and NGRDI were early predictors of 

grain yield, across diverse management (optimal vs late plantings); weather data merged 

with temporal phenotype data improved the predictions of grain yield. Weather 

parameters previously have been incorporated with genomic markers to predict the grain 

yield of maize hybrids (Rogers & Holland, 2021), these weather effects boosted the 

grain yield prediction ability. However, prediction ability was also found to have a 

dependence of similarity in levels between tested and untested environments. Similarity 

between training (optimal planning; OI) and test environments (late plating; LP) was less 

in 2017 than those in 2019 (Supplementary Figure 2). Therefore, it is notable that 

weather data boosted the prediction ability to be greater in 2017 than in 2019 (Figure 

74). Temporal phenotype data captured by UAS is the response to changing 

environmental parameters occurring across growth. Temporal variation of UAS derived 

traits can therefore improve the link between training and test environments. Because 

temporal phenotype data are manipulated by multiple loci; some certain loci control the 

temporal traits at multiple time points with changing phenotypic effect sizes while other 

certain loci control the temporal phenotypes at single time points with the unique effect 
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sizes across time points of growth and environments (Adak, Murray, Anderson, et al., 

2021; Li, Guo, Mu, Li, & Yu, 2018; Mu, Guo, Li, & Yu, 2021; Scheres & Van Der 

Putten, 2017). In other words, temporal phenotype data from UAS along with weather 

data can result in better predictors of grain yield across tested environments than 

genomic markers can; because genomic markers are not capable to capture temporal 

variation of pedigrees driven by various environmental parameters across growth in 

training and testing environments. 

Previous prediction studies considering the genomic and environmental data 

together have shown that prediction accuracies were increased thanks to genotype by 

environment interaction effects.; However,  prediction models were found to be most 

successful when similarity is high between training and test environments (Bandeira e 

Sousa et al., 2017; Cuevas et al., 2018; Monteverde et al., 2018). Our results indicate 

that temporal phenotype data along with environmental data predicted grain yield better 

when similarity between training and test environment was lower (Figure 74; 2017 

trials). Using weather data and temporal phenomic data, is and extension of temporal 

phenomic prediction (Adak, Murray, & Anderson, 2021) that might provide greater 

ability to predict grain yield between unrelated environments.  

In conclusion, with the advent of field based high throughput phenotyping, 

temporal data extraction from multiple time points via multiple UAS surveys provide 

novel temporal measurements for use in predictive plant breeding. This study also 

demonstrated an efficient interaction based mixed model to evaluate temporal data, with 

drone flights added as new variance component. Thus, pedigrees monitored across 
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multiple time points and environments dissected temporal plasticity occurred across 

growth. 

Temporal phenomic prediction was previously introduced where drone derived temporal 

phenotypic data was used to predict yield across diverse managements in maze that 

yielded equal to or better than genomic prediction (Adak, Murray, & Anderson, 2021). 

This study extended temporal phenomic prediction by using different genotypes and 

environments and leveraging weather data to train machine learning based prediction 

models. With this approach, the prediction model performed better in predicting grain 

yields across hybrids in unknown environments because temporal phenotype data 

provide a link between training and unknown environments by taking advantages of 

capturing the temporal variation unique to training and unknown environments that has 

been disregarded so far by genomic markers. 
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APPENDIX A 

APPENDIX OF CHAPTER I 

Table 1A The discovered markers for photoperiod associated flowering. 

SNP 
Chromosom
e Position  P.value MAF 

Explained 
variation 
(%) effect Log PAF Region 

S1_84550450 chr 1 84550450 7.95E-07 0.090909 0.09 2.076455 6 
IA-
TX(DTS) region 1 

S1_84550450 chr 1 84550450 9.02E-08 0.090909 0.10 2.28243 7 
WI-
TX(DTS) region 1 

S1_84550450 chr 1 84550450 8.52E-06 0.090909 0.07 1.649227 5 
IA-
TX(DTA) region 1 

S1_84550465 chr 1 84550465 4.44E-07 0.085664 0.09 2.170191 6 
IA-
TX(DTS) region 1 

S1_84550465 chr 1 84550465 1.06E-07 0.085664 0.10 2.316473 7 
WI-
TX(DTS) region 1 

S1_84550465 chr 1 84550465 1.03E-06 0.085664 0.09 1.854646 6 
IA-
TX(DTA) region 1 

S1_84550644 chr 1 84550644 1.11E-06 0.089161 0.09 2.01662 6 
IA-
TX(DTS) region 1 

S1_84550644 chr 1 84550644 3.77E-06 0.089161 0.08 1.931815 5 
WI-
TX(DTS) region 1 

S1_84550644 chr 1 84550644 1.72E-06 0.089161 0.08 1.750333 6 
IA-
TX(DTA) region 1 

S1_246318979 chr 1 2.46E+08 2.51E-08 0.066434 0.11 2.641109 8 
IA-
TX(DTS) region 2 

S1_246318979 chr 1 2.46E+08 2.64E-06 0.066434 0.08 2.232913 6 
WI-
TX(DTS) region 2 

S1_246318979 chr 1 2.46E+08 2.74E-06 0.066434 0.08 1.949582 6 
IA-
TX(DTA) region 2 

S1_246319812 chr 1 2.46E+08 1.25E-08 0.059441 0.12 2.8487 8 
IA-
TX(DTS) region 2 

S1_246319812 chr 1 2.46E+08 9.96E-06 0.059441 0.07 2.209735 5 
WI-
TX(DTS) region 2 

S1_246319812 chr 1 2.46E+08 1.75E-06 0.059441 0.08 2.097481 6 
IA-
TX(DTA) region 2 

S1_246319828 chr 1 2.46E+08 1.25E-08 0.059441 0.12 2.8487 8 
IA-
TX(DTS) region 2 

S1_246319828 chr 1 2.46E+08 9.96E-06 0.059441 0.07 2.209735 5 
WI-
TX(DTS) region 2 

S1_246319828 chr 1 2.46E+08 1.75E-06 0.059441 0.08 2.097481 6 
IA-
TX(DTA) region 2 

S1_246320639 chr 1 2.46E+08 1.13E-08 0.062937 0.12 2.792728 8 
IA-
TX(DTS) region 2 

S1_246320639 chr 1 2.46E+08 2.85E-06 0.062937 0.08 2.292944 6 
WI-
TX(DTS) region 2 

S1_246320639 chr 1 2.46E+08 1.84E-06 0.062937 0.08 2.044629 6 
IA-
TX(DTA) region 2 

S1_246331356 chr 1 2.46E+08 5.87E-08 0.066434 0.11 2.574775 7 
IA-
TX(DTS) region 2 

S1_246331356 chr 1 2.46E+08 1.75E-05 0.066434 0.07 2.041499 5 
WI-
TX(DTS) region 2 

S1_246331356 chr 1 2.46E+08 1.36E-05 0.066434 0.07 1.809441 5 
IA-
TX(DTA) region 2 

S1_246331987 chr 1 2.46E+08 4.34E-09 0.06993 0.13 2.729912 8 
IA-
TX(DTS) region 2 

S1_246331987 chr 1 2.46E+08 6.92E-07 0.06993 0.09 2.313443 6 
WI-
TX(DTS) region 2 

S1_246331987 chr 1 2.46E+08 2.24E-06 0.06993 0.08 1.924164 6 
IA-
TX(DTA) region 2 

S1_246332064 chr 1 2.46E+08 1.80E-05 0.062937 0.07 2.067867 5 
IA-
TX(DTS) region 2 
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S1_246339162 chr 1 2.46E+08 2.96E-08 0.062937 0.11 2.699878 8 
IA-
TX(DTS) region 2 

S1_246339162 chr 1 2.46E+08 2.46E-05 0.062937 0.06 2.053432 5 
WI-
TX(DTS) region 2 

S1_246339162 chr 1 2.46E+08 8.29E-06 0.062937 0.07 1.90108 5 
IA-
TX(DTA) region 2 

S1_246346556 chr 1 2.46E+08 8.89E-06 0.055944 0.07 2.261426 5 
IA-
TX(DTS) region 2 

S1_246346633 chr 1 2.46E+08 9.82E-06 0.055944 0.07 2.247626 5 
IA-
TX(DTS) region 2 

S1_246346713 chr 1 2.46E+08 8.89E-06 0.055944 0.07 2.261426 5 
IA-
TX(DTS) region 2 

S1_246346738 chr 1 2.46E+08 7.69E-06 0.059441 0.07 2.209707 5 
IA-
TX(DTS) region 2 

S4_75985939 chr 4 75985939 1.52E-07 0.055944 0.10 2.683869 7 
IA-
TX(DTS) region 1 

S4_75985939 chr 4 75985939 1.57E-05 0.055944 0.07 1.936733 5 
IA-
TX(DTA) region 1 

S4_75986298 chr 4 75986298 1.42E-07 0.055944 0.10 2.687412 7 
IA-
TX(DTS) region 1 

S4_75986298 chr 4 75986298 1.21E-05 0.055944 0.07 1.960871 5 
IA-
TX(DTA) region 1 

S4_75997451 chr 4 75997451 2.29E-06 0.059441 0.08 2.324276 6 
IA-
TX(DTS) region 1 

S4_76000912 chr 4 76000912 2.87E-07 0.059441 0.10 2.54214 7 
IA-
TX(DTS) region 1 

S4_76001018 chr 4 76001018 6.73E-07 0.08042 0.09 2.116052 6 
IA-
TX(DTS) region 1 

S4_76001018 chr 4 76001018 1.49E-05 0.08042 0.07 1.622051 5 
IA-
TX(DTA) region 1 

S4_76001245 chr 4 76001245 4.41E-07 0.062937 0.09 2.4423 6 
IA-
TX(DTS) region 1 

S4_76001245 chr 4 76001245 2.16E-05 0.062937 0.06 1.804308 5 
IA-
TX(DTA) region 1 

S4_76001753 chr 4 76001753 5.12E-08 0.055944 0.11 2.766331 7 
IA-
TX(DTS) region 1 

S4_76074057 chr 4 76074057 6.02E-10 0.055944 0.14 3.191235 9 
IA-
TX(DTS) region 1 

S4_76074057 chr 4 76074057 1.22E-07 0.055944 0.10 2.732199 7 
WI-
TX(DTS) region 1 

S4_76074057 chr 4 76074057 1.35E-07 0.055944 0.10 2.381014 7 
IA-
TX(DTA) region 1 

S4_76077492 chr 4 76077492 1.19E-07 0.055944 0.10 2.713047 7 
IA-
TX(DTS) region 1 

S4_76077492 chr 4 76077492 7.36E-06 0.055944 0.07 2.016608 5 
IA-
TX(DTA) region 1 

S4_76099704 chr 4 76099704 5.39E-07 0.06993 0.09 2.290256 6 
IA-
TX(DTS) region 1 

S4_76101130 chr 4 76101130 1.41E-05 0.083916 0.07 1.805471 5 
IA-
TX(DTS) region 1 

S4_76104089 chr 4 76104089 3.20E-07 0.055944 0.09 2.61155 6 
IA-
TX(DTS) region 1 

S4_76104089 chr 4 76104089 1.25E-05 0.055944 0.07 1.961423 5 
IA-
TX(DTA) region 1 

S4_76104418 chr 4 76104418 1.09E-05 0.083916 0.07 1.834349 5 
IA-
TX(DTS) region 1 

S4_76112068 chr 4 76112068 3.90E-07 0.062937 0.09 2.472872 6 
IA-
TX(DTS) region 1 

S4_76112068 chr 4 76112068 2.88E-05 0.062937 0.06 1.789498 5 
IA-
TX(DTA) region 1 

S4_76143833 chr 4 76143833 3.76E-08 0.055944 0.11 2.808193 7 
IA-
TX(DTS) region 1 

S4_76143833 chr 4 76143833 1.46E-05 0.055944 0.07 2.213924 5 
WI-
TX(DTS) region 1 

S4_76143833 chr 4 76143833 5.00E-06 0.055944 0.07 2.043044 5 
IA-
TX(DTA) region 1 

S4_76144085 chr 4 76144085 1.43E-07 0.055944 0.10 2.689515 7 
IA-
TX(DTS) region 1 
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S4_76144085 chr 4 76144085 6.58E-06 0.055944 0.07 2.024097 5 
IA-
TX(DTA) region 1 

S4_76151459 chr 4 76151459 7.93E-07 0.059441 0.09 2.435238 6 
IA-
TX(DTS) region 1 

S4_76151459 chr 4 76151459 2.14E-05 0.059441 0.06 1.843384 5 
IA-
TX(DTA) region 1 

S4_76154787 chr 4 76154787 1.42E-07 0.055944 0.10 2.687412 7 
IA-
TX(DTS) region 1 

S4_76154787 chr 4 76154787 1.21E-05 0.055944 0.07 1.960871 5 
IA-
TX(DTA) region 1 

S4_76154795 chr 4 76154795 8.52E-08 0.055944 0.10 2.740116 7 
IA-
TX(DTS) region 1 

S4_76154795 chr 4 76154795 5.44E-06 0.055944 0.07 2.04256 5 
IA-
TX(DTA) region 1 

S4_76155114 chr 4 76155114 2.52E-07 0.055944 0.10 2.650814 7 
IA-
TX(DTS) region 1 

S4_76155114 chr 4 76155114 1.18E-05 0.055944 0.07 1.978639 5 
IA-
TX(DTA) region 1 

S4_76207905 chr 4 76207905 1.46E-07 0.059441 0.10 2.611357 7 
IA-
TX(DTS) region 1 

S4_76207905 chr 4 76207905 3.00E-05 0.059441 0.06 1.816355 5 
IA-
TX(DTA) region 1 

S4_76208236 chr 4 76208236 4.95E-07 0.059441 0.09 2.482053 6 
IA-
TX(DTS) region 1 

S4_76208236 chr 4 76208236 2.74E-05 0.059441 0.06 2.079109 5 
WI-
TX(DTS) region 1 

S4_76208236 chr 4 76208236 1.75E-05 0.059441 0.07 1.863099 5 
IA-
TX(DTA) region 1 

S4_76228192 chr 4 76228192 2.47E-06 0.06993 0.08 2.161821 6 
IA-
TX(DTS) region 1 

S4_76228200 chr 4 76228200 2.47E-06 0.06993 0.08 2.161821 6 
IA-
TX(DTS) region 1 

S4_76248441 chr 4 76248441 5.18E-07 0.073427 0.09 2.238263 6 
IA-
TX(DTS) region 1 

S4_76248441 chr 4 76248441 2.59E-06 0.073427 0.08 2.113916 6 
WI-
TX(DTS) region 1 

S4_76253781 chr 4 76253781 1.45E-05 0.06993 0.07 1.978157 5 
IA-
TX(DTS) region 1 

S4_76255457 chr 4 76255457 1.42E-07 0.055944 0.10 2.687412 7 
IA-
TX(DTS) region 1 

S4_76255457 chr 4 76255457 1.21E-05 0.055944 0.07 1.960871 5 
IA-
TX(DTA) region 1 

S4_76255488 chr 4 76255488 1.28E-07 0.059441 0.10 2.630016 7 
IA-
TX(DTS) region 1 

S4_76255488 chr 4 76255488 2.25E-05 0.059441 0.06 2.114759 5 
WI-
TX(DTS) region 1 

S4_76255488 chr 4 76255488 1.26E-05 0.059441 0.07 1.90733 5 
IA-
TX(DTA) region 1 

S4_76255489 chr 4 76255489 1.28E-07 0.059441 0.10 2.630016 7 
IA-
TX(DTS) region 1 

S4_76255489 chr 4 76255489 2.25E-05 0.059441 0.06 2.114759 5 
WI-
TX(DTS) region 1 

S4_76255489 chr 4 76255489 1.26E-05 0.059441 0.07 1.90733 5 
IA-
TX(DTA) region 1 

S4_76258847 chr 4 76258847 7.82E-08 0.055944 0.10 2.751029 7 
IA-
TX(DTS) region 1 

S4_76258847 chr 4 76258847 9.00E-06 0.055944 0.07 1.994605 5 
IA-
TX(DTA) region 1 

S4_76258923 chr 4 76258923 7.82E-08 0.055944 0.10 2.751029 7 
IA-
TX(DTS) region 1 

S4_76258923 chr 4 76258923 9.00E-06 0.055944 0.07 1.994605 5 
IA-
TX(DTA) region 1 

S4_76287384 chr 4 76287384 7.96E-07 0.101399 0.09 1.892966 6 
IA-
TX(DTS) region 1 

S4_76287384 chr 4 76287384 8.08E-06 0.101399 0.07 1.723782 5 
WI-
TX(DTS) region 1 

S4_76287384 chr 4 76287384 7.98E-06 0.101399 0.07 1.508413 5 
IA-
TX(DTA) region 1 
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S4_76289463 chr 4 76289463 3.69E-08 0.055944 0.11 2.839459 7 
IA-
TX(DTS) region 1 

S4_76289463 chr 4 76289463 1.53E-05 0.055944 0.07 2.231897 5 
WI-
TX(DTS) region 1 

S4_76289463 chr 4 76289463 4.31E-06 0.055944 0.08 2.079147 5 
IA-
TX(DTA) region 1 

S4_76289480 chr 4 76289480 1.14E-07 0.059441 0.10 2.648639 7 
IA-
TX(DTS) region 1 

S4_76289480 chr 4 76289480 2.59E-05 0.059441 0.06 2.104731 5 
WI-
TX(DTS) region 1 

S4_76289480 chr 4 76289480 1.08E-05 0.059441 0.07 1.928566 5 
IA-
TX(DTA) region 1 

S4_76289530 chr 4 76289530 1.28E-07 0.059441 0.10 2.630016 7 
IA-
TX(DTS) region 1 

S4_76289530 chr 4 76289530 2.25E-05 0.059441 0.06 2.114759 5 
WI-
TX(DTS) region 1 

S4_76289530 chr 4 76289530 1.26E-05 0.059441 0.07 1.90733 5 
IA-
TX(DTA) region 1 

S4_76292620 chr 4 76292620 1.28E-07 0.059441 0.10 2.630016 7 
IA-
TX(DTS) region 1 

S4_76292620 chr 4 76292620 2.25E-05 0.059441 0.06 2.114759 5 
WI-
TX(DTS) region 1 

S4_76292620 chr 4 76292620 1.26E-05 0.059441 0.07 1.90733 5 
IA-
TX(DTA) region 1 

S7_77675871 chr 7 77675871 6.58E-06 0.062937 0.07 2.196852 5 
IA-
TX(DTS) region 1 

S7_77795828 chr 7 77795828 9.00E-09 0.062937 0.12 2.829353 8 
IA-
TX(DTS) region 1 

S7_77795828 chr 7 77795828 2.95E-07 0.062937 0.09 2.53602 7 
WI-
TX(DTS) region 1 

S7_77795828 chr 7 77795828 4.91E-07 0.062937 0.09 2.174054 6 
IA-
TX(DTA) region 1 

S7_77957848 chr 7 77957848 2.52E-07 0.073427 0.10 2.349578 7 
IA-
TX(DTS) region 1 

S7_77957848 chr 7 77957848 2.11E-06 0.073427 0.08 2.177352 6 
WI-
TX(DTS) region 1 

S7_77957848 chr 7 77957848 5.45E-06 0.073427 0.07 1.822421 5 
IA-
TX(DTA) region 1 

S7_77964769 chr 7 77964769 3.99E-06 0.076923 0.08 2.069811 5 
IA-
TX(DTS) region 1 

S9_47452498 chr 9 47452498 9.93E-06 0.475524 0.07 1.670073 5 
WI-
TX(DTS) region 1 

S9_47482210 chr 9 47482210 1.90E-05 0.412587 0.07 1.78814 5 
IA-
TX(DTS) region 1 

S9_47582318 chr 9 47582318 2.86E-05 0.396853 0.06 1.805727 5 
WI-
TX(DTS) region 1 

S9_47582724 chr 9 47582724 2.61E-06 0.393357 0.08 2.18144 6 
WI-
TX(DTS) region 1 

S9_47582724 chr 9 47582724 1.12E-05 0.393357 0.07 1.778645 5 
IA-
TX(DTA) region 1 

S9_47582724 chr 9 47582724 9.00E-06 0.393357 0.07 1.855691 5 
WI-
TX(DTA) region 1 

S9_47584741 chr 9 47584741 5.26E-06 0.410839 0.07 2.031774 5 
WI-
TX(DTS) region 1 

S9_47584741 chr 9 47584741 1.69E-05 0.410839 0.07 1.675405 5 
IA-
TX(DTA) region 1 

S9_47584818 chr 9 47584818 7.32E-06 0.403846 0.07 1.949754 5 
WI-
TX(DTS) region 1 

S9_47584856 chr 9 47584856 1.51E-05 0.405594 0.07 1.864087 5 
WI-
TX(DTS) region 1 

S9_47584859 chr 9 47584859 7.71E-06 0.409091 0.07 1.903918 5 
WI-
TX(DTS) region 1 

S9_47585018 chr 9 47585018 2.58E-05 0.379371 0.06 1.802524 5 
IA-
TX(DTS) region 1 

S9_47585018 chr 9 47585018 1.97E-05 0.379371 0.06 1.85014 5 
WI-
TX(DTS) region 1 

S9_47585018 chr 9 47585018 6.90E-06 0.379371 0.07 1.761759 5 
WI-
TX(DTA) region 1 
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S9_47589901 chr 9 47589901 2.82E-05 0.395105 0.06 1.90414 5 
IA-
TX(DTS) region 1 

S9_47589901 chr 9 47589901 1.64E-05 0.395105 0.07 1.734063 5 
IA-
TX(DTA) region 1 

S9_47599294 chr 9 47599294 2.46E-05 0.40035 0.06 1.890926 5 
IA-
TX(DTS) region 1 

S9_47599294 chr 9 47599294 8.31E-06 0.40035 0.07 1.770028 5 
IA-
TX(DTA) region 1 

S9_47600589 chr 9 47600589 1.55E-05 0.402098 0.07 1.960129 5 
WI-
TX(DTS) region 1 

S9_47600683 chr 9 47600683 2.91E-05 0.403846 0.06 1.648814 5 
IA-
TX(DTA) region 1 

S9_47601010 chr 9 47601010 1.86E-05 0.402098 0.07 1.934625 5 
WI-
TX(DTS) region 1 

S9_47601062 chr 9 47601062 1.42E-05 0.407343 0.07 1.932628 5 
WI-
TX(DTS) region 1 

S9_47601358 chr 9 47601358 2.24E-05 0.391608 0.06 1.725674 5 
IA-
TX(DTA) region 1 

S9_47601624 chr 9 47601624 2.67E-05 0.393357 0.06 1.68319 5 
IA-
TX(DTA) region 1 

S9_47601875 chr 9 47601875 6.04E-06 0.405594 0.07 2.039687 5 
WI-
TX(DTS) region 1 

S9_47601876 chr 9 47601876 6.10E-06 0.398601 0.07 2.07658 5 
WI-
TX(DTS) region 1 

S9_47601876 chr 9 47601876 1.68E-05 0.398601 0.07 1.7251 5 
IA-
TX(DTA) region 1 

S9_47601991 chr 9 47601991 1.87E-05 0.409091 0.07 1.927059 5 
IA-
TX(DTS) region 1 

S9_47601991 chr 9 47601991 2.44E-06 0.409091 0.08 2.153698 6 
WI-
TX(DTS) region 1 

S9_47601991 chr 9 47601991 8.33E-06 0.409091 0.07 1.776971 5 
IA-
TX(DTA) region 1 

S9_47601995 chr 9 47601995 1.87E-05 0.409091 0.07 1.927059 5 
IA-
TX(DTS) region 1 

S9_47601995 chr 9 47601995 2.44E-06 0.409091 0.08 2.153698 6 
WI-
TX(DTS) region 1 

S9_47601995 chr 9 47601995 8.33E-06 0.409091 0.07 1.776971 5 
IA-
TX(DTA) region 1 

S9_47602020 chr 9 47602020 1.13E-05 0.402098 0.07 2.027561 5 
WI-
TX(DTS) region 1 

S9_47602088 chr 9 47602088 2.07E-05 0.388112 0.06 1.77424 5 
IA-
TX(DTA) region 1 

S9_47602125 chr 9 47602125 2.36E-05 0.396853 0.06 1.940761 5 
IA-
TX(DTS) region 1 

S9_47602125 chr 9 47602125 8.83E-06 0.396853 0.07 2.066285 5 
WI-
TX(DTS) region 1 

S9_47602125 chr 9 47602125 7.56E-06 0.396853 0.07 1.820993 5 
IA-
TX(DTA) region 1 

S9_47602129 chr 9 47602129 1.88E-05 0.402098 0.07 1.931371 5 
IA-
TX(DTS) region 1 

S9_47602129 chr 9 47602129 1.20E-05 0.402098 0.07 1.999863 5 
WI-
TX(DTS) region 1 

S9_47602129 chr 9 47602129 1.70E-05 0.402098 0.07 1.717242 5 
IA-
TX(DTA) region 1 

S9_47607018 chr 9 47607018 3.17E-06 0.388112 0.08 1.973019 5 
WI-
TX(DTS) region 1 

S9_53023168 chr 9 53023168 3.35E-06 0.059441 0.08 2.322398 5 
IA-
TX(DTS) region 1 

S9_53023168 chr 9 53023168 2.94E-05 0.059441 0.06 2.103181 5 
WI-
TX(DTS) region 1 

S9_53113618 chr 9 53113618 3.33E-06 0.066434 0.08 2.237552 5 
IA-
TX(DTS) region 1 

S9_53113618 chr 9 53113618 2.54E-05 0.066434 0.06 1.786001 5 
IA-
TX(DTA) region 1 

S9_53113625 chr 9 53113625 3.32E-06 0.062937 0.08 2.291982 5 
IA-
TX(DTS) region 1 

S9_53113625 chr 9 53113625 2.03E-05 0.062937 0.06 1.851729 5 
IA-
TX(DTA) region 1 
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S9_53118532 chr 9 53118532 1.10E-05 0.066434 0.07 2.108803 5 
IA-
TX(DTS) region 1 

S9_53118542 chr 9 53118542 7.67E-06 0.066434 0.07 2.149095 5 
IA-
TX(DTS) region 1 

S9_53118542 chr 9 53118542 3.75E-06 0.066434 0.08 1.966985 5 
IA-
TX(DTA) region 1 

S9_53135092 chr 9 53135092 9.51E-06 0.104895 0.07 1.494393 5 
IA-
TX(DTA) region 1 

S9_53152354 chr 9 53152354 2.62E-07 0.059441 0.10 2.59887 7 
IA-
TX(DTS) region 1 

S9_53152354 chr 9 53152354 2.43E-06 0.059441 0.08 2.09606 6 
IA-
TX(DTA) region 1 

S9_53152390 chr 9 53152390 2.21E-07 0.062937 0.10 2.54623 7 
IA-
TX(DTS) region 1 

S9_53152390 chr 9 53152390 6.64E-06 0.062937 0.07 1.946678 5 
IA-
TX(DTA) region 1 

S9_53189551 chr 9 53189551 1.09E-06 0.055944 0.09 2.51746 6 
IA-
TX(DTS) region 1 

S9_53189551 chr 9 53189551 5.34E-06 0.055944 0.07 2.072827 5 
IA-
TX(DTA) region 1 

S9_53354213 chr 9 53354213 4.49E-08 0.055944 0.11 2.846101 7 
IA-
TX(DTS) region 1 

S9_53354213 chr 9 53354213 1.19E-05 0.055944 0.07 2.281569 5 
WI-
TX(DTS) region 1 

S9_53354213 chr 9 53354213 4.69E-07 0.055944 0.09 2.308838 6 
IA-
TX(DTA) region 1 

S9_53359448 chr 9 53359448 6.39E-08 0.055944 0.11 2.792798 7 
IA-
TX(DTS) region 1 

S9_53359448 chr 9 53359448 5.11E-07 0.055944 0.09 2.285497 6 
IA-
TX(DTA) region 1 

S9_53360022 chr 9 53360022 3.56E-07 0.055944 0.09 2.61231 6 
IA-
TX(DTS) region 1 

S9_53360022 chr 9 53360022 4.00E-06 0.055944 0.08 2.083636 5 
IA-
TX(DTA) region 1 

S9_53361654 chr 9 53361654 9.33E-08 0.055944 0.10 2.778898 7 
IA-
TX(DTS) region 1 

S9_53361654 chr 9 53361654 1.20E-06 0.055944 0.09 2.22459 6 
IA-
TX(DTA) region 1 

S9_53390849 chr 9 53390849 4.13E-08 0.055944 0.11 2.858571 7 
IA-
TX(DTS) region 1 

S9_53390849 chr 9 53390849 1.95E-05 0.055944 0.06 2.226892 5 
WI-
TX(DTS) region 1 

S9_53390849 chr 9 53390849 2.84E-07 0.055944 0.10 2.358088 7 
IA-
TX(DTA) region 1 

S9_53391564 chr 9 53391564 9.33E-08 0.055944 0.10 2.778898 7 
IA-
TX(DTS) region 1 

S9_53391564 chr 9 53391564 1.20E-06 0.055944 0.09 2.22459 6 
IA-
TX(DTA) region 1 

S9_53391751 chr 9 53391751 4.13E-08 0.055944 0.11 2.858571 7 
IA-
TX(DTS) region 1 

S9_53391751 chr 9 53391751 1.95E-05 0.055944 0.06 2.226892 5 
WI-
TX(DTS) region 1 

S9_53391751 chr 9 53391751 2.84E-07 0.055944 0.10 2.358088 7 
IA-
TX(DTA) region 1 

S9_53392358 chr 9 53392358 4.41E-08 0.062937 0.11 2.67963 7 
IA-
TX(DTS) region 1 

S9_53392358 chr 9 53392358 1.14E-06 0.062937 0.09 2.094643 6 
IA-
TX(DTA) region 1 

S9_53392731 chr 9 53392731 1.67E-07 0.062937 0.10 2.568988 7 
IA-
TX(DTS) region 1 

S9_53392731 chr 9 53392731 1.06E-05 0.062937 0.07 1.898427 5 
IA-
TX(DTA) region 1 

S9_53392846 chr 9 53392846 1.08E-07 0.059441 0.10 2.683986 7 
IA-
TX(DTS) region 1 

S9_53392846 chr 9 53392846 3.09E-05 0.059441 0.06 2.107635 5 
WI-
TX(DTS) region 1 

S9_53392846 chr 9 53392846 2.72E-06 0.059441 0.08 2.084031 6 
IA-
TX(DTA) region 1 
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S9_53392892 chr 9 53392892 1.08E-07 0.059441 0.10 2.683986 7 
IA-
TX(DTS) region 1 

S9_53392892 chr 9 53392892 3.09E-05 0.059441 0.06 2.107635 5 
WI-
TX(DTS) region 1 

S9_53392892 chr 9 53392892 2.72E-06 0.059441 0.08 2.084031 6 
IA-
TX(DTA) region 1 

S9_53454966 chr 9 53454966 2.34E-05 0.122378 0.06 1.494352 5 
IA-
TX(DTS) region 1 

S9_53459703 chr 9 53459703 4.80E-06 0.06993 0.07 2.093981 5 
IA-
TX(DTS) region 1 

S9_53459703 chr 9 53459703 2.92E-05 0.06993 0.06 1.687271 5 
IA-
TX(DTA) region 1 

S9_53461547 chr 9 53461547 3.50E-07 0.066434 0.09 2.459818 6 
IA-
TX(DTS) region 1 

S9_53461547 chr 9 53461547 2.89E-05 0.066434 0.06 2.026535 5 
WI-
TX(DTS) region 1 

S9_53461547 chr 9 53461547 3.20E-06 0.066434 0.08 1.981395 5 
IA-
TX(DTA) region 1 

S9_53461744 chr 9 53461744 1.14E-06 0.062937 0.09 2.392292 6 
IA-
TX(DTS) region 1 

S9_53461744 chr 9 53461744 8.68E-06 0.062937 0.07 1.92723 5 
IA-
TX(DTA) region 1 

S9_53461754 chr 9 53461754 8.60E-07 0.066434 0.09 2.372385 6 
IA-
TX(DTS) region 1 

S9_53461754 chr 9 53461754 5.66E-06 0.066434 0.07 1.928611 5 
IA-
TX(DTA) region 1 

S9_53461769 chr 9 53461769 8.60E-07 0.066434 0.09 2.372385 6 
IA-
TX(DTS) region 1 

S9_53461769 chr 9 53461769 5.66E-06 0.066434 0.07 1.928611 5 
IA-
TX(DTA) region 1 

S9_53488387 chr 9 53488387 1.31E-07 0.059441 0.10 2.652679 7 
IA-
TX(DTS) region 1 

S9_53488387 chr 9 53488387 1.84E-05 0.059441 0.07 2.159011 5 
WI-
TX(DTS) region 1 

S9_53488387 chr 9 53488387 1.28E-06 0.059441 0.08 2.144199 6 
IA-
TX(DTA) region 1 

S9_53500761 chr 9 53500761 1.31E-07 0.059441 0.10 2.652679 7 
IA-
TX(DTS) region 1 

S9_53500761 chr 9 53500761 1.84E-05 0.059441 0.07 2.159011 5 
WI-
TX(DTS) region 1 

S9_53500761 chr 9 53500761 1.28E-06 0.059441 0.08 2.144199 6 
IA-
TX(DTA) region 1 

S9_53500780 chr 9 53500780 1.31E-07 0.059441 0.10 2.652679 7 
IA-
TX(DTS) region 1 

S9_53500780 chr 9 53500780 1.84E-05 0.059441 0.07 2.159011 5 
WI-
TX(DTS) region 1 

S9_53500780 chr 9 53500780 1.28E-06 0.059441 0.08 2.144199 6 
IA-
TX(DTA) region 1 

S9_53501169 chr 9 53501169 5.40E-07 0.066434 0.09 2.38416 6 
IA-
TX(DTS) region 1 

S9_53501169 chr 9 53501169 2.46E-06 0.066434 0.08 1.97689 6 
IA-
TX(DTA) region 1 

S9_53507253 chr 9 53507253 1.42E-06 0.062937 0.08 2.333301 6 
IA-
TX(DTS) region 1 

S9_53507253 chr 9 53507253 1.05E-05 0.062937 0.07 1.879136 5 
IA-
TX(DTA) region 1 

S9_53508018 chr 9 53508018 1.50E-07 0.059441 0.10 2.631006 7 
IA-
TX(DTS) region 1 

S9_53508018 chr 9 53508018 3.94E-06 0.059441 0.08 2.032294 5 
IA-
TX(DTA) region 1 

S9_53597676 chr 9 53597676 1.52E-06 0.062937 0.08 2.345211 6 
IA-
TX(DTS) region 1 

S9_53597676 chr 9 53597676 6.69E-06 0.062937 0.07 1.937308 5 
IA-
TX(DTA) region 1 

S9_53651716 chr 9 53651716 4.43E-08 0.055944 0.11 2.838933 7 
IA-
TX(DTS) region 1 

S9_53651716 chr 9 53651716 1.35E-06 0.055944 0.08 2.203466 6 
IA-
TX(DTA) region 1 
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S9_53679864 chr 9 53679864 7.27E-07 0.055944 0.09 2.551471 6 
IA-
TX(DTS) region 1 

S9_53679864 chr 9 53679864 3.08E-06 0.055944 0.08 2.119662 6 
IA-
TX(DTA) region 1 

S9_53686456 chr 9 53686456 5.24E-08 0.059441 0.11 2.763729 7 
IA-
TX(DTS) region 1 

S9_53686456 chr 9 53686456 2.82E-05 0.059441 0.06 2.12666 5 
WI-
TX(DTS) region 1 

S9_53686456 chr 9 53686456 1.69E-07 0.059441 0.10 2.343906 7 
IA-
TX(DTA) region 1 

S9_53703347 chr 9 53703347 1.50E-07 0.059441 0.10 2.634144 7 
IA-
TX(DTS) region 1 

S9_53703347 chr 9 53703347 2.91E-06 0.059441 0.08 2.063656 6 
IA-
TX(DTA) region 1 

S9_53703390 chr 9 53703390 1.36E-07 0.059441 0.10 2.643961 7 
IA-
TX(DTS) region 1 

S9_53703390 chr 9 53703390 2.45E-05 0.059441 0.06 2.120797 5 
WI-
TX(DTS) region 1 

S9_53703390 chr 9 53703390 1.03E-06 0.059441 0.09 2.159411 6 
IA-
TX(DTA) region 1 

S9_53703665 chr 9 53703665 1.08E-07 0.059441 0.10 2.683986 7 
IA-
TX(DTS) region 1 

S9_53703665 chr 9 53703665 3.09E-05 0.059441 0.06 2.107635 5 
WI-
TX(DTS) region 1 

S9_53703665 chr 9 53703665 2.72E-06 0.059441 0.08 2.084031 6 
IA-
TX(DTA) region 1 

S9_53703736 chr 9 53703736 1.83E-07 0.06993 0.10 2.442017 7 
IA-
TX(DTS) region 1 

S9_53703736 chr 9 53703736 5.81E-06 0.06993 0.07 1.865812 5 
IA-
TX(DTA) region 1 

S9_53704114 chr 9 53704114 4.58E-07 0.073427 0.09 2.316407 6 
IA-
TX(DTS) region 1 

S9_53704114 chr 9 53704114 1.65E-05 0.073427 0.07 1.738952 5 
IA-
TX(DTA) region 1 

S9_53707327 chr 9 53707327 7.09E-06 0.062937 0.07 2.168388 5 
IA-
TX(DTS) region 1 

S9_53744161 chr 9 53744161 1.38E-05 0.094406 0.07 1.712171 5 
IA-
TX(DTS) region 1 

S9_53744161 chr 9 53744161 1.20E-05 0.094406 0.07 1.744062 5 
WI-
TX(DTS) region 1 

S9_53746510 chr 9 53746510 2.60E-07 0.06993 0.10 2.405958 7 
IA-
TX(DTS) region 1 

S9_53746510 chr 9 53746510 8.99E-06 0.06993 0.07 1.823145 5 
IA-
TX(DTA) region 1 

S9_53766139 chr 9 53766139 1.61E-07 0.06993 0.10 2.432754 7 
IA-
TX(DTS) region 1 

S9_53766139 chr 9 53766139 1.14E-05 0.06993 0.07 1.78869 5 
IA-
TX(DTA) region 1 

S9_53766140 chr 9 53766140 1.61E-07 0.06993 0.10 2.432754 7 
IA-
TX(DTS) region 1 

S9_53766140 chr 9 53766140 1.14E-05 0.06993 0.07 1.78869 5 
IA-
TX(DTA) region 1 

S9_53778393 chr 9 53778393 2.84E-07 0.062937 0.10 2.510429 7 
IA-
TX(DTS) region 1 

S9_53778393 chr 9 53778393 6.37E-06 0.062937 0.07 1.94148 5 
IA-
TX(DTA) region 1 

S9_53778686 chr 9 53778686 1.31E-07 0.059441 0.10 2.652679 7 
IA-
TX(DTS) region 1 

S9_53778686 chr 9 53778686 1.84E-05 0.059441 0.07 2.159011 5 
WI-
TX(DTS) region 1 

S9_53778686 chr 9 53778686 1.28E-06 0.059441 0.08 2.144199 6 
IA-
TX(DTA) region 1 

S9_53778706 chr 9 53778706 2.84E-07 0.062937 0.10 2.510429 7 
IA-
TX(DTS) region 1 

S9_53778706 chr 9 53778706 6.37E-06 0.062937 0.07 1.94148 5 
IA-
TX(DTA) region 1 

S9_53883948 chr 9 53883948 1.41E-08 0.066434 0.12 2.734594 8 
IA-
TX(DTS) region 1 
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S9_53883948 chr 9 53883948 2.68E-06 0.066434 0.08 2.267238 6 
WI-
TX(DTS) region 1 

S9_53883948 chr 9 53883948 9.63E-07 0.066434 0.09 2.073204 6 
IA-
TX(DTA) region 1 

S9_53884515 chr 9 53884515 1.70E-08 0.087413 0.12 2.400286 8 
IA-
TX(DTS) region 1 

S9_53884515 chr 9 53884515 1.73E-06 0.087413 0.08 2.041679 6 
WI-
TX(DTS) region 1 

S9_53884515 chr 9 53884515 2.96E-08 0.087413 0.11 2.084501 8 
IA-
TX(DTA) region 1 

S9_53888672 chr 9 53888672 2.65E-07 0.076923 0.10 2.30431 7 
IA-
TX(DTS) region 1 

S9_53888672 chr 9 53888672 1.56E-05 0.076923 0.07 1.942134 5 
WI-
TX(DTS) region 1 

S9_53888672 chr 9 53888672 4.50E-06 0.076923 0.08 1.807182 5 
IA-
TX(DTA) region 1 

S9_53892783 chr 9 53892783 8.03E-08 0.062937 0.10 2.647125 7 
IA-
TX(DTS) region 1 

S9_53892783 chr 9 53892783 6.76E-06 0.062937 0.07 2.227953 5 
WI-
TX(DTS) region 1 

S9_53892783 chr 9 53892783 3.36E-06 0.062937 0.08 2.014125 5 
IA-
TX(DTA) region 1 

S9_53892794 chr 9 53892794 8.03E-08 0.062937 0.10 2.647125 7 
IA-
TX(DTS) region 1 

S9_53892794 chr 9 53892794 6.76E-06 0.062937 0.07 2.227953 5 
WI-
TX(DTS) region 1 

S9_53892794 chr 9 53892794 3.36E-06 0.062937 0.08 2.014125 5 
IA-
TX(DTA) region 1 

S9_53892797 chr 9 53892797 8.03E-08 0.062937 0.10 2.647125 7 
IA-
TX(DTS) region 1 

S9_53892797 chr 9 53892797 6.76E-06 0.062937 0.07 2.227953 5 
WI-
TX(DTS) region 1 

S9_53892797 chr 9 53892797 3.36E-06 0.062937 0.08 2.014125 5 
IA-
TX(DTA) region 1 

S9_53893128 chr 9 53893128 5.69E-06 0.097902 0.07 1.843916 5 
IA-
TX(DTS) region 1 

S9_53978401 chr 9 53978401 8.47E-06 0.083916 0.07 1.936967 5 
IA-
TX(DTS) region 1 

S9_53979486 chr 9 53979486 5.63E-06 0.076923 0.07 2.029755 5 
IA-
TX(DTS) region 1 

S9_53979643 chr 9 53979643 6.48E-09 0.08042 0.12 2.568544 8 
IA-
TX(DTS) region 1 

S9_53979643 chr 9 53979643 3.79E-07 0.08042 0.09 2.256887 6 
WI-
TX(DTS) region 1 

S9_53979643 chr 9 53979643 2.09E-07 0.08042 0.10 2.019515 7 
IA-
TX(DTA) region 1 

S9_53979729 chr 9 53979729 1.51E-07 0.066434 0.10 2.524984 7 
IA-
TX(DTS) region 1 

S9_53979729 chr 9 53979729 1.77E-06 0.066434 0.08 2.022877 6 
IA-
TX(DTA) region 1 

S9_54071623 chr 9 54071623 2.34E-07 0.066434 0.10 2.46687 7 
IA-
TX(DTS) region 1 

S9_54071623 chr 9 54071623 1.56E-05 0.066434 0.07 1.809597 5 
IA-
TX(DTA) region 1 

S9_54072045 chr 9 54072045 9.71E-07 0.073427 0.09 2.22246 6 
IA-
TX(DTS) region 1 

S9_54114660 chr 9 54114660 4.60E-06 0.174825 0.08 1.39375 5 
IA-
TX(DTS) region 1 

S9_54200239 chr 9 54200239 8.23E-08 0.059441 0.10 2.722575 7 
IA-
TX(DTS) region 1 

S9_54200239 chr 9 54200239 1.31E-06 0.059441 0.08 2.161806 6 
IA-
TX(DTA) region 1 

S9_54200277 chr 9 54200277 5.23E-07 0.059441 0.09 2.511528 6 
IA-
TX(DTS) region 1 

S9_54200277 chr 9 54200277 2.95E-06 0.059441 0.08 2.062903 6 
IA-
TX(DTA) region 1 

S9_54200465 chr 9 54200465 1.21E-07 0.055944 0.10 2.740657 7 
IA-
TX(DTS) region 1 
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S9_54200465 chr 9 54200465 2.52E-06 0.055944 0.08 2.144497 6 
IA-
TX(DTA) region 1 

S9_54200583 chr 9 54200583 6.43E-07 0.062937 0.09 2.439856 6 
IA-
TX(DTS) region 1 

S9_54200583 chr 9 54200583 3.62E-06 0.062937 0.08 2.001917 5 
IA-
TX(DTA) region 1 

S9_54200729 chr 9 54200729 1.50E-07 0.062937 0.10 2.571214 7 
IA-
TX(DTS) region 1 

S9_54200729 chr 9 54200729 1.06E-05 0.062937 0.07 2.164682 5 
WI-
TX(DTS) region 1 

S9_54200729 chr 9 54200729 3.51E-06 0.062937 0.08 1.997169 5 
IA-
TX(DTA) region 1 

S9_54200952 chr 9 54200952 1.43E-08 0.062937 0.12 2.785371 8 
IA-
TX(DTS) region 1 

S9_54200952 chr 9 54200952 3.48E-06 0.062937 0.08 2.28303 5 
WI-
TX(DTS) region 1 

S9_54200952 chr 9 54200952 1.38E-06 0.062937 0.08 2.080725 6 
IA-
TX(DTA) region 1 

S9_54201389 chr 9 54201389 8.93E-07 0.062937 0.09 2.397768 6 
IA-
TX(DTS) region 1 

S9_54201389 chr 9 54201389 2.95E-05 0.062937 0.06 2.048839 5 
WI-
TX(DTS) region 1 

S9_54201389 chr 9 54201389 7.89E-06 0.062937 0.07 1.920892 5 
IA-
TX(DTA) region 1 

S9_54202466 chr 9 54202466 4.37E-08 0.059441 0.11 2.758198 7 
IA-
TX(DTS) region 1 

S9_54202466 chr 9 54202466 2.95E-05 0.059441 0.06 2.103945 5 
WI-
TX(DTS) region 1 

S9_54202466 chr 9 54202466 1.32E-06 0.059441 0.08 2.141707 6 
IA-
TX(DTA) region 1 

S9_54203544 chr 9 54203544 9.44E-08 0.059441 0.10 2.673715 7 
IA-
TX(DTS) region 1 

S9_54203544 chr 9 54203544 1.66E-05 0.059441 0.07 2.162368 5 
WI-
TX(DTS) region 1 

S9_54203544 chr 9 54203544 1.00E-06 0.059441 0.09 2.157895 6 
IA-
TX(DTA) region 1 

S9_54203764 chr 9 54203764 3.73E-07 0.055944 0.09 2.633478 6 
IA-
TX(DTS) region 1 

S9_54203764 chr 9 54203764 1.12E-06 0.055944 0.09 2.2274 6 
IA-
TX(DTA) region 1 

S9_54205096 chr 9 54205096 2.35E-07 0.059441 0.10 2.602554 7 
IA-
TX(DTS) region 1 

S9_54205096 chr 9 54205096 1.35E-06 0.059441 0.08 2.145449 6 
IA-
TX(DTA) region 1 

S9_54206880 chr 9 54206880 6.33E-08 0.055944 0.11 2.811808 7 
IA-
TX(DTS) region 1 

S9_54206880 chr 9 54206880 2.42E-07 0.055944 0.10 2.368287 7 
IA-
TX(DTA) region 1 

S9_54207123 chr 9 54207123 5.24E-08 0.059441 0.11 2.763729 7 
IA-
TX(DTS) region 1 

S9_54207123 chr 9 54207123 2.82E-05 0.059441 0.06 2.12666 5 
WI-
TX(DTS) region 1 

S9_54207123 chr 9 54207123 1.69E-07 0.059441 0.10 2.343906 7 
IA-
TX(DTA) region 1 

S9_54207311 chr 9 54207311 1.99E-07 0.062937 0.10 2.559435 7 
IA-
TX(DTS) region 1 

S9_54207311 chr 9 54207311 3.16E-06 0.062937 0.08 2.018524 5 
IA-
TX(DTA) region 1 

S9_54223580 chr 9 54223580 7.23E-07 0.062937 0.09 2.417823 6 
IA-
TX(DTS) region 1 

S9_54223580 chr 9 54223580 7.90E-07 0.062937 0.09 2.130475 6 
IA-
TX(DTA) region 1 

S9_54224127 chr 9 54224127 8.23E-08 0.059441 0.10 2.722575 7 
IA-
TX(DTS) region 1 

S9_54224127 chr 9 54224127 1.31E-06 0.059441 0.08 2.161806 6 
IA-
TX(DTA) region 1 

S9_54224137 chr 9 54224137 8.23E-08 0.059441 0.10 2.722575 7 
IA-
TX(DTS) region 1 
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S9_54224137 chr 9 54224137 1.31E-06 0.059441 0.08 2.161806 6 
IA-
TX(DTA) region 1 

S9_54224599 chr 9 54224599 1.08E-07 0.059441 0.10 2.683986 7 
IA-
TX(DTS) region 1 

S9_54224599 chr 9 54224599 3.09E-05 0.059441 0.06 2.107635 5 
WI-
TX(DTS) region 1 

S9_54224599 chr 9 54224599 2.72E-06 0.059441 0.08 2.084031 6 
IA-
TX(DTA) region 1 

S9_54225623 chr 9 54225623 7.46E-08 0.062937 0.11 2.666162 7 
IA-
TX(DTS) region 1 

S9_54225623 chr 9 54225623 2.92E-06 0.062937 0.08 2.32859 6 
WI-
TX(DTS) region 1 

S9_54225623 chr 9 54225623 7.94E-07 0.062937 0.09 2.154844 6 
IA-
TX(DTA) region 1 

S9_54232738 chr 9 54232738 2.51E-06 0.059441 0.08 2.35416 6 
IA-
TX(DTS) region 1 

S9_54242046 chr 9 54242046 1.08E-07 0.059441 0.10 2.683986 7 
IA-
TX(DTS) region 1 

S9_54242046 chr 9 54242046 3.09E-05 0.059441 0.06 2.107635 5 
WI-
TX(DTS) region 1 

S9_54242046 chr 9 54242046 2.72E-06 0.059441 0.08 2.084031 6 
IA-
TX(DTA) region 1 

S9_54242388 chr 9 54242388 4.49E-08 0.055944 0.11 2.846101 7 
IA-
TX(DTS) region 1 

S9_54242388 chr 9 54242388 1.19E-05 0.055944 0.07 2.281569 5 
WI-
TX(DTS) region 1 

S9_54242388 chr 9 54242388 4.69E-07 0.055944 0.09 2.308838 6 
IA-
TX(DTA) region 1 

S9_54243812 chr 9 54243812 1.61E-08 0.059441 0.12 2.848048 8 
IA-
TX(DTS) region 1 

S9_54243812 chr 9 54243812 3.26E-06 0.059441 0.08 2.350424 5 
WI-
TX(DTS) region 1 

S9_54243812 chr 9 54243812 4.65E-07 0.059441 0.09 2.23385 6 
IA-
TX(DTA) region 1 

S9_54245258 chr 9 54245258 1.05E-07 0.055944 0.10 2.761598 7 
IA-
TX(DTS) region 1 

S9_54245258 chr 9 54245258 2.25E-05 0.055944 0.06 2.204997 5 
WI-
TX(DTS) region 1 

S9_54245258 chr 9 54245258 1.07E-06 0.055944 0.09 2.231297 6 
IA-
TX(DTA) region 1 

S9_54247653 chr 9 54247653 4.49E-08 0.055944 0.11 2.846101 7 
IA-
TX(DTS) region 1 

S9_54247653 chr 9 54247653 1.19E-05 0.055944 0.07 2.281569 5 
WI-
TX(DTS) region 1 

S9_54247653 chr 9 54247653 4.69E-07 0.055944 0.09 2.308838 6 
IA-
TX(DTA) region 1 

S9_54248991 chr 9 54248991 5.80E-08 0.059441 0.11 2.731818 7 
IA-
TX(DTS) region 1 

S9_54248991 chr 9 54248991 9.88E-06 0.059441 0.07 2.230767 5 
WI-
TX(DTS) region 1 

S9_54248991 chr 9 54248991 5.80E-07 0.059441 0.09 2.216829 6 
IA-
TX(DTA) region 1 

S9_54289336 chr 9 54289336 1.83E-07 0.073427 0.10 2.39862 7 
IA-
TX(DTS) region 1 

S9_54289336 chr 9 54289336 9.39E-06 0.073427 0.07 1.789841 5 
IA-
TX(DTA) region 1 

S9_54289356 chr 9 54289356 9.94E-08 0.062937 0.10 2.615375 7 
IA-
TX(DTS) region 1 

S9_54289356 chr 9 54289356 4.00E-06 0.062937 0.08 1.989131 5 
IA-
TX(DTA) region 1 

S9_54306734 chr 9 54306734 4.49E-08 0.055944 0.11 2.846101 7 
IA-
TX(DTS) region 1 

S9_54306734 chr 9 54306734 1.19E-05 0.055944 0.07 2.281569 5 
WI-
TX(DTS) region 1 

S9_54306734 chr 9 54306734 4.69E-07 0.055944 0.09 2.308838 6 
IA-
TX(DTA) region 1 

S9_54381406 chr 9 54381406 9.33E-08 0.055944 0.10 2.778898 7 
IA-
TX(DTS) region 1 
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S9_54381406 chr 9 54381406 1.20E-06 0.055944 0.09 2.22459 6 
IA-
TX(DTA) region 1 

S9_54381445 chr 9 54381445 4.49E-08 0.055944 0.11 2.846101 7 
IA-
TX(DTS) region 1 

S9_54381445 chr 9 54381445 1.19E-05 0.055944 0.07 2.281569 5 
WI-
TX(DTS) region 1 

S9_54381445 chr 9 54381445 4.69E-07 0.055944 0.09 2.308838 6 
IA-
TX(DTA) region 1 

S9_54400418 chr 9 54400418 1.35E-08 0.115385 0.12 2.122892 8 
IA-
TX(DTS) region 1 

S9_54400418 chr 9 54400418 1.98E-05 0.115385 0.06 1.592722 5 
WI-
TX(DTS) region 1 

S9_54400418 chr 9 54400418 1.03E-07 0.115385 0.10 1.752625 7 
IA-
TX(DTA) region 1 

S9_54527240 chr 9 54527240 8.23E-08 0.059441 0.10 2.722575 7 
IA-
TX(DTS) region 1 

S9_54527240 chr 9 54527240 1.31E-06 0.059441 0.08 2.161806 6 
IA-
TX(DTA) region 1 

S9_54539165 chr 9 54539165 1.08E-07 0.059441 0.10 2.683986 7 
IA-
TX(DTS) region 1 

S9_54539165 chr 9 54539165 3.09E-05 0.059441 0.06 2.107635 5 
WI-
TX(DTS) region 1 

S9_54539165 chr 9 54539165 2.72E-06 0.059441 0.08 2.084031 6 
IA-
TX(DTA) region 1 

S9_54541738 chr 9 54541738 4.49E-08 0.055944 0.11 2.846101 7 
IA-
TX(DTS) region 1 

S9_54541738 chr 9 54541738 1.19E-05 0.055944 0.07 2.281569 5 
WI-
TX(DTS) region 1 

S9_54541738 chr 9 54541738 4.69E-07 0.055944 0.09 2.308838 6 
IA-
TX(DTA) region 1 

S9_70776582 chr 9 70776582 1.16E-05 0.356643 0.07 2.050711 5 
IA-
TX(DTS) region 2 

S9_74139024 chr 9 74139024 8.37E-07 0.076923 0.09 2.182172 6 
IA-
TX(DTS) region 2 

S9_74139024 chr 9 74139024 4.64E-06 0.076923 0.08 2.045525 5 
WI-
TX(DTS) region 2 

S9_74168868 chr 9 74168868 1.13E-05 0.059441 0.07 2.148722 5 
IA-
TX(DTS) region 2 

S9_74404914 chr 9 74404914 9.36E-06 0.353147 0.07 2.04275 5 
IA-
TX(DTS) region 2 

S9_74411757 chr 9 74411757 1.89E-05 0.367133 0.07 1.918999 5 
IA-
TX(DTS) region 2 

S9_74630038 chr 9 74630038 2.00E-05 0.339161 0.06 1.920806 5 
WI-
TX(DTS) region 2 

S9_74647394 chr 9 74647394 1.40E-05 0.374126 0.07 1.83045 5 
IA-
TX(DTS) region 2 

S9_74647394 chr 9 74647394 6.80E-06 0.374126 0.07 1.919763 5 
WI-
TX(DTS) region 2 

S9_74652044 chr 9 74652044 5.73E-06 0.374126 0.07 1.962952 5 
IA-
TX(DTS) region 2 

S9_74652044 chr 9 74652044 1.52E-05 0.374126 0.07 1.889956 5 
WI-
TX(DTS) region 2 

S9_74652100 chr 9 74652100 2.02E-06 0.370629 0.08 2.110069 6 
IA-
TX(DTS) region 2 

S9_74652100 chr 9 74652100 8.87E-06 0.370629 0.07 1.990156 5 
WI-
TX(DTS) region 2 

S9_74652141 chr 9 74652141 2.31E-06 0.374126 0.08 2.039388 6 
IA-
TX(DTS) region 2 

S9_74652141 chr 9 74652141 4.88E-06 0.374126 0.07 1.992637 5 
WI-
TX(DTS) region 2 

S9_74652227 chr 9 74652227 5.32E-07 0.370629 0.09 2.217618 6 
IA-
TX(DTS) region 2 

S9_74652227 chr 9 74652227 8.87E-06 0.370629 0.07 1.977282 5 
WI-
TX(DTS) region 2 

S9_74652286 chr 9 74652286 1.99E-05 0.384615 0.06 1.805769 5 
IA-
TX(DTS) region 2 

S9_74652286 chr 9 74652286 1.09E-05 0.384615 0.07 1.884576 5 
WI-
TX(DTS) region 2 
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S9_78461989 chr 9 78461989 1.72E-05 0.361888 0.07 1.898992 5 
IA-
TX(DTS) region 2 

S9_78461989 chr 9 78461989 2.61E-05 0.361888 0.06 1.877505 5 
WI-
TX(DTS) region 2 

S9_78461993 chr 9 78461993 1.72E-05 0.361888 0.07 1.898992 5 
IA-
TX(DTS) region 2 

S9_78461993 chr 9 78461993 2.61E-05 0.361888 0.06 1.877505 5 
WI-
TX(DTS) region 2 

S9_78462077 chr 9 78462077 2.14E-05 0.367133 0.06 1.869854 5 
IA-
TX(DTS) region 2 

S9_89222060 chr 9 89222060 2.61E-05 0.346154 0.06 -1.63086 5 
WI-
TX(DTS) region 2 

S9_89222088 chr 9 89222088 2.18E-06 0.358392 0.08 -1.80085 6 
WI-
TX(DTS) region 2 

S9_89222150 chr 9 89222150 1.95E-05 0.333916 0.06 -1.66382 5 
WI-
TX(DTS) region 2 

S9_89222423 chr 9 89222423 8.22E-06 0.328671 0.07 -1.74421 5 
WI-
TX(DTS) region 2 

S9_93804862 chr 9 93804862 1.10E-05 0.106643 0.07 1.762246 5 
IA-
TX(DTS) region 2 

S9_93804862 chr 9 93804862 2.02E-05 0.106643 0.06 1.725916 5 
WI-
TX(DTS) region 2 

S9_93804862 chr 9 93804862 2.84E-06 0.106643 0.08 1.663626 6 
IA-
TX(DTA) region 2 

S9_93815334 chr 9 93815334 1.73E-05 0.117133 0.07 1.476602 5 
IA-
TX(DTA) region 2 

S9_93815476 chr 9 93815476 2.85E-05 0.117133 0.06 1.6202 5 
IA-
TX(DTS) region 2 

S9_93815476 chr 9 93815476 7.72E-06 0.117133 0.07 1.754897 5 
WI-
TX(DTS) region 2 

S9_93815476 chr 9 93815476 5.61E-06 0.117133 0.07 1.558805 5 
IA-
TX(DTA) region 2 

S9_93815476 chr 9 93815476 2.34E-05 0.117133 0.06 1.494706 5 
WI-
TX(DTA) region 2 

S10_11176825
3 chr 10 1.12E+08 1.86E-05 0.089161 0.07 1.844335 5 

IA-
TX(DTS) region 1 

S10_11176825
3 chr 10 1.12E+08 1.01E-05 0.089161 0.07 1.925627 5 

WI-
TX(DTS) region 1 

S10_11183773
8 chr 10 1.12E+08 2.69E-07 0.096154 0.10 2.168484 7 

IA-
TX(DTS) region 1 

S10_11183773
8 chr 10 1.12E+08 1.58E-06 0.096154 0.08 2.040315 6 

WI-
TX(DTS) region 1 

S10_11183773
8 chr 10 1.12E+08 9.28E-07 0.096154 0.09 1.825276 6 

IA-
TX(DTA) region 1 

S10_11188430
5 chr 10 1.12E+08 1.48E-07 0.090909 0.10 2.231988 7 

IA-
TX(DTS) region 1 

S10_11188430
5 chr 10 1.12E+08 7.65E-06 0.090909 0.07 1.908814 5 

WI-
TX(DTS) region 1 

S10_11188430
5 chr 10 1.12E+08 3.13E-07 0.090909 0.09 1.91886 7 

IA-
TX(DTA) region 1 

S10_11188451
7 chr 10 1.12E+08 2.06E-07 0.096154 0.10 2.198075 7 

IA-
TX(DTS) region 1 

S10_11188451
7 chr 10 1.12E+08 1.26E-06 0.096154 0.08 2.067272 6 

WI-
TX(DTS) region 1 

S10_11188451
7 chr 10 1.12E+08 9.00E-07 0.096154 0.09 1.833689 6 

IA-
TX(DTA) region 1 

S10_11188454
7 chr 10 1.12E+08 1.46E-05 0.092657 0.07 1.84829 5 

IA-
TX(DTS) region 1 

S10_11188454
7 chr 10 1.12E+08 2.15E-05 0.092657 0.06 1.830955 5 

WI-
TX(DTS) region 1 

S10_11188470
4 chr 10 1.12E+08 2.06E-07 0.096154 0.10 2.198075 7 

IA-
TX(DTS) region 1 

S10_11188470
4 chr 10 1.12E+08 1.26E-06 0.096154 0.08 2.067272 6 

WI-
TX(DTS) region 1 

S10_11188470
4 chr 10 1.12E+08 9.00E-07 0.096154 0.09 1.833689 6 

IA-
TX(DTA) region 1 

S10_11188473
7 chr 10 1.12E+08 1.03E-07 0.09965 0.10 2.220947 7 

IA-
TX(DTS) region 1 
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S10_11188473
7 chr 10 1.12E+08 7.25E-07 0.09965 0.09 2.083911 6 

WI-
TX(DTS) region 1 

S10_11188473
7 chr 10 1.12E+08 4.78E-07 0.09965 0.09 1.853409 6 

IA-
TX(DTA) region 1 

S10_11188474
6 chr 10 1.12E+08 2.06E-07 0.096154 0.10 2.198075 7 

IA-
TX(DTS) region 1 

S10_11188474
6 chr 10 1.12E+08 1.26E-06 0.096154 0.08 2.067272 6 

WI-
TX(DTS) region 1 

S10_11188474
6 chr 10 1.12E+08 9.00E-07 0.096154 0.09 1.833689 6 

IA-
TX(DTA) region 1 

S10_11189525
8 chr 10 1.12E+08 1.20E-05 0.124126 0.07 1.613496 5 

IA-
TX(DTS) region 1 

S10_11189544
9 chr 10 1.12E+08 4.13E-06 0.146853 0.08 1.580242 5 

IA-
TX(DTS) region 1 

S10_11189544
9 chr 10 1.12E+08 7.60E-07 0.146853 0.09 1.72135 6 

WI-
TX(DTS) region 1 

S10_11189544
9 chr 10 1.12E+08 1.18E-05 0.146853 0.07 1.369344 5 

WI-
TX(DTA) region 1 

S10_11191648
4 chr 10 1.12E+08 1.59E-06 0.075175 0.08 2.196564 6 

IA-
TX(DTS) region 1 

S10_11191648
4 chr 10 1.12E+08 8.37E-06 0.075175 0.07 2.055889 5 

WI-
TX(DTS) region 1 

S10_11191648
4 chr 10 1.12E+08 2.35E-06 0.075175 0.08 1.90903 6 

IA-
TX(DTA) region 1 

S10_13066720
0 chr 10 1.31E+08 1.23E-07 0.06993 0.10 2.553994 7 

IA-
TX(DTS) region 2 

S10_13066720
0 chr 10 1.31E+08 3.76E-07 0.06993 0.09 2.476336 6 

WI-
TX(DTS) region 2 

S10_13066720
0 chr 10 1.31E+08 1.16E-06 0.06993 0.09 2.068337 6 

IA-
TX(DTA) region 2 

S10_13075392
3 chr 10 1.31E+08 2.58E-07 0.059441 0.10 2.636171 7 

IA-
TX(DTS) region 2 

S10_13075392
3 chr 10 1.31E+08 1.75E-05 0.059441 0.07 2.206329 5 

WI-
TX(DTS) region 2 

S10_13075392
3 chr 10 1.31E+08 2.35E-06 0.059441 0.08 2.128284 6 

IA-
TX(DTA) region 2 

S10_13075399
1 chr 10 1.31E+08 8.92E-07 0.066434 0.09 2.409553 6 

IA-
TX(DTS) region 2 

S10_13075399
1 chr 10 1.31E+08 2.73E-05 0.066434 0.06 2.067592 5 

WI-
TX(DTS) region 2 

S10_13075399
1 chr 10 1.31E+08 4.04E-06 0.066434 0.08 1.99344 5 

IA-
TX(DTA) region 2 

S10_13075422
7 chr 10 1.31E+08 4.32E-06 0.08042 0.08 2.06061 5 

IA-
TX(DTS) region 2 

S10_13075422
7 chr 10 1.31E+08 1.37E-05 0.08042 0.07 1.967651 5 

WI-
TX(DTS) region 2 

S10_13075456
6 chr 10 1.31E+08 4.32E-06 0.08042 0.08 2.06061 5 

IA-
TX(DTS) region 2 

S10_13075456
6 chr 10 1.31E+08 1.37E-05 0.08042 0.07 1.967651 5 

WI-
TX(DTS) region 2 

S10_13075527
0 chr 10 1.31E+08 5.28E-06 0.083916 0.07 2.010012 5 

IA-
TX(DTS) region 2 

S10_13075527
0 chr 10 1.31E+08 1.27E-05 0.083916 0.07 1.945471 5 

WI-
TX(DTS) region 2 

S10_13075555
2 chr 10 1.31E+08 1.43E-06 0.073427 0.08 2.27531 6 

IA-
TX(DTS) region 2 

S10_13075555
2 chr 10 1.31E+08 2.98E-05 0.073427 0.06 1.982115 5 

WI-
TX(DTS) region 2 

S10_13075555
2 chr 10 1.31E+08 1.28E-05 0.073427 0.07 1.814393 5 

IA-
TX(DTA) region 2 

S10_13075599
4 chr 10 1.31E+08 8.06E-07 0.076923 0.09 2.27241 6 

IA-
TX(DTS) region 2 

S10_13075599
4 chr 10 1.31E+08 7.00E-06 0.076923 0.07 2.085134 5 

WI-
TX(DTS) region 2 

S10_13075599
4 chr 10 1.31E+08 8.64E-06 0.076923 0.07 1.804646 5 

IA-
TX(DTA) region 2 

S10_13075722
7 chr 10 1.31E+08 2.74E-06 0.08042 0.08 2.125688 6 

IA-
TX(DTS) region 2 
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S10_13075722
7 chr 10 1.31E+08 5.09E-06 0.08042 0.07 2.088513 5 

WI-
TX(DTS) region 2 

S10_13075722
7 chr 10 1.31E+08 2.82E-05 0.08042 0.06 1.672018 5 

IA-
TX(DTA) region 2 

S10_13075735
2 chr 10 1.31E+08 2.74E-06 0.08042 0.08 2.125688 6 

IA-
TX(DTS) region 2 

S10_13075735
2 chr 10 1.31E+08 5.09E-06 0.08042 0.07 2.088513 5 

WI-
TX(DTS) region 2 

S10_13075735
2 chr 10 1.31E+08 2.82E-05 0.08042 0.06 1.672018 5 

IA-
TX(DTA) region 2 

S10_13286609
1 chr 10 1.33E+08 3.79E-08 0.083916 0.11 2.424389 7 

IA-
TX(DTS) region 2 

S10_13286609
1 chr 10 1.33E+08 3.03E-07 0.083916 0.09 2.274439 7 

WI-
TX(DTS) region 2 

S10_13286609
1 chr 10 1.33E+08 1.83E-06 0.083916 0.08 1.847157 6 

IA-
TX(DTA) region 2 

S10_13481215
3 chr 10 1.35E+08 1.38E-05 0.083916 0.07 1.925201 5 

IA-
TX(DTS) region 2 

S10_13481215
3 chr 10 1.35E+08 1.74E-05 0.083916 0.07 1.922688 5 

WI-
TX(DTS) region 2 

S10_13481228
0 chr 10 1.35E+08 5.29E-06 0.066434 0.07 2.248143 5 

IA-
TX(DTS) region 2 

S10_13481228
0 chr 10 1.35E+08 2.25E-05 0.066434 0.06 2.111429 5 

WI-
TX(DTS) region 2 

S10_13481228
0 chr 10 1.35E+08 1.85E-05 0.066434 0.07 1.865982 5 

IA-
TX(DTA) region 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

281 

 

APPENDIX B 

APPENDIX OF CHAPTER II 

 

Figure S1. GWAS Manhattan plots, linkage disequilibrium of SNPs, allelic effects and 

parental sequences of previous work confirmed by this study.  Previously, two SNPs 

were discovered for plant height as well as for yield using the plant height as a covariate 

in a GWAS study (Farfan et al. 2015) (a) Physical position of the two SNPs on 

Manhattan plot when plant height was included as a covariate in the model to predict 

yield. Zoom in figures of two SNPs on chromosomes 2 and 7 and lengths of the genes in 

kilobase pairs (Kb) (b) SNPs positions updated from maize-NAM reference genome 

version 5 were used to find linkage disequilibrium (LD) using R
2
 values and flanking 

regions of the genes for the two SNPs. (c) Effects sizes for the two SNPs (tonne per 

hectare) (d) Polymorphic SNPs colocalized in LD blocks and haplotype variants based 

on two SNPs and (e) segregations of two SNPs in parental genotypes, advanced 

populations used in this study as follows: [LAMA (recurrent parent) x LH82], [Ki3 x 

NC356 (recurrent parent)], [Ki3 (recurrent parent) x NC356] and [Tx740 (recurrent 

parents) x NC356]. Reprinted from Adak, Conrad, et al., 2021. 
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Figure S2. Illustrations of canopy height measurements (CHM) obtained by extracting 

the digital surface model (DSM) from digital terrain model (DTM). The orthomosaic 

obtained from the drone flight that was flown on 28.06.2019 is shown as an example in 

here. C2C (cloud to cloud) absolute distances (as meters unit) heatmap show the plant 

heights of HIFs in the point clouds of CHM after the extraction of point clouds of DSM 

from point clouds of DTM. Viridis color heatmap was used to illustrate the plant heights 

in the ranges and row plots as top view. The zoomed row plot illustrates the side view 

example of plant height differences between two heterogeneous inbred families 

developed from same population background comparatively; one of those has both 

favorable alleles (XX:XX; SNP1:SNP2), the other has unfavorable alleles (YY:YY; 

SNP1:SNP2). Reprinted from Adak, Conrad, et al., 2021. 
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Figure S3. The BLUEs of SNP1 (left) and SNP2 (right) for all three ruler measures of 

plant height. BLUEs were obtained by Equation 2 (𝑆𝑁𝑃𝑗  𝑡𝑒𝑟𝑚) demonstrating that 

favorable alleles (XX) contributed consistent taller height for all three ruler measures. 

TH, tip of tassel height; FH, flag leaf collar height; and EH, height of the first ear shank 

from ground on the x-axis. Whiskers represent the standard error. SNP1 was fixed as XX 

while SNP2 was segregating to be tested, SNP2 was fixed as XX while SNP1 was 

segregating to be tested in Equation 2. Reprinted from Adak, Conrad, et al., 2021. 
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Figure S4. Interaction of SNP1*populations (top) and SNP2*populations (bottom) for 

three ruler measures of  plant height.  TH, tip of tassel height; FH, flag leaf collar height; 

and EH, height of the first ear shank from ground on the x-axis. Plant height was 

obtained from Equation 2 ([𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃]𝑖𝑗 term) and show the largest differences for 

tassel height. Whiskers represent the standard error. Reprinted from Adak, Conrad, et al., 

2021. 

 

Figure S5. SNP1- and SNP2-population interactions for flowering DTA and DTS. 

Flowering BLUPs were obtained from Equation 2 ([𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃]𝑖𝑗 term) for days after 

planting to 50% anthesis (DTA) and days to 50% silking (DTS). These demonstrated a 

much larger effect size on population 3. Each call of SNP1 and SNP2 were orthogonally 

contrasted within population for DTA and DTS. Whiskers represent the standard error. *, 

**, *** are the significance level of 0.05, 0.01 and 0.001 respectively. Reprinted from 

Adak, Conrad, et al., 2021. 
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Figure S6. Interaction of SNP1-SNP2 [𝑆𝑁𝑃1 ∗ 𝑆𝑁𝑃2]𝑗𝑘 estimated by Equation 3 for 

each of three ruler height measurements. TH, tip of tassel height; FH, flag leaf collar 

height; and EH, height of the first ear shank from ground on the x-axis. Combined 

favorable SNP1 and SNP2 loci (XX-XX) was taller than YY-YY combination in TH by 

as much as 8.8cm. Whiskers represent the standard error. Reprinted from Adak, Conrad, 

et al., 2021. 

 

Figure S7. Combined interaction of SNPs with populations [𝑃𝑜𝑝 ∗ 𝑆𝑁𝑃1 ∗ 𝑆𝑁𝑃2]𝑖𝑗𝑘 

for three ruler height measurements. TH, tip of tassel height; FH, flag leaf collar height; 
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and EH, height of the first ear shank from ground on the x-axis. Whiskers represent the 

standard error. Reprinted from Adak, Conrad, et al., 2021. 

 

Figure S8. Pearson correlations (R) between UAS-PHT with ruler measured means 

(right) and medians (left) of HIF plots. Reprinted from Adak, Conrad, et al., 2021. 

 

 
Figure S9. Linkage disequilibrium decay plots for each chromosome. Y axis represents 

the R2 and x axis represents the distance as Megabases. Horizontal red dashed lines 

indicate the 0.2 R2 that was used as cutoff value in determining the LD decay distances 

for all chromosomes. Blue line shows the LD decay through the distances. LD decay 

was found to be rapid for all chromosome and fluctuated between 1 to 6 kb. Reprinted 

from Adak, Conrad, et al., 2021. 
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APPENDIX C 

APPENDIX OF CHAPTER III 

 

Supplemental Figure S1. Differences in growing degree day accumulation and 

photoperiod in the three trials. Reprinted from Adak, Murray, Anderson, et al., 2021. 

 

 

 

 

Supplemental Figure S2. Population structure of hybrids using 153,252 filtered SNPs 

belonging to the 158 hybrids with genotype information. Reprinted from Adak, Murray, 

Anderson, et al., 2021. 
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Supplemental Figure S3. Pearson correlation coefficients among the predicted plant 

heights (UASPEBVs) belonging to different flights of each trial. Reprinted from Adak, 

Murray, Anderson, et al., 2021. 
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Supplemental Table S1. contains the discovered SNPs (with p-values higher than FDR 

and Bonferonni threshold) in Manhattan plots in Figure 5 with their SNP names, 

chromosomes, physical positions (bp), p values, p values as -log100, minor allele 

frequencies (MAF), SNP effects, explained percent variances, flight times as DAP, 

trials, spanning regions, candidate genes and descriptions information respectively. 

Reprinted from Adak, Murray, Anderson, et al., 2021. 
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APPENDIX D 

APPENDIX OF CHAPTER V 

 

Supplementary Figure 1 The high throughput phenotyping platforms (HTP) that were 

conducted in 2017 and 2018 (both irrigated and drought). Drones equipped with RGB 

camera was flown over 2018 drought and irrigated trials with 16 flights. Drones 

equipped with multispectral camera was flown over 2017 with 10 flights and 8 flights 

over 2018 (both irrigated and drought) trials. Timeline of HTP shows the flight dates as 

days after planting times indicated by orange points with orange numbers. 
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Supplementary Figure 2 shows the 13 environmental parameters belonging to planting 

times to mean days to anthesis belonging to trials grown in 2016, 2017 and 2018. The X 

axis represents the days after planting, the Y axis represents the value of the 

environmental paraments that were collected at 10-minute increments. A smoothing 

function was applied to all environmental parameters to reveal the trend across growth.  

 

 

Supplementary Figure 3 correlation of the 13 environmental parameters for trials 

grown in 2016 (left), 2017 (middle) and 2018 (right). No significant correlation 

according to the 0.05 level is marked with an ‘×’. 
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Supplementary data 1. Stack bar plot shows the explained percent variation by each 

component in the nested design (equation 1, Eq. 1) for the RGB and multispectral 

phenomic data in 2017 and 2018. Left Y axis show the explained percent variation and 

right Y axis show the R-squared (black round) and temporal heritability (white square). 

X axis show the vegetation indices. A-) results of the multispectral data in 2017 trial, (B) 

the results of the  multispectral data in 2018_D trial, (C) the results of the multispectral 

data in 2018_I trial, (D) the results of the RGB phenomic data in 2018_D and (E) the 

results of the RGB phenomic data in 2018_I. 
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Supplementary data 2. Temporal breeding values for each RIL predicted by the pedigree 

nested within flight component in nested design (equation 1, Eq. 1). (A) Temporal 

breeding values of RILs for each VI in multispectral phenomic data in 2017, 2018_D 

and 2018_I. (B) temporal breeding values of RILs for each VI in RGB phenomic data in 

2018_I and 2018_D. 
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Supplementary data 3. Partial dependence plots between each temporal value (from 27 

to 127 days after planting) of GCC, NGRDI, VARI in RGB phenomic data and predicted 

days to anthesis (DTA) by ridge (blue line) and random forest (red line) regressions. 

Partial dependence plots between each temporal value (from 66 to 117 days after 

planting) of MNLI in multispectral phenomic data and predicted days to anthesis (DTA) 

by ridge (blue line) and random forest (red line) regressions. 
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Supplementary table 1 shows the vegetation indices used and their formulas along with 

references. 
Vegetation index Ratios References 

VIs derived from RGB bands 

Blue chromatic coordinate index 

(BCC) 

B/(R + G + B) (Woebbecke et al., 1995) 

Blue green pigment index (BGI) B/G (Zarco-Tejada et al., 2005) 

Brightness index (BI) sqrt((R^2 + G^2 + B^2)/3) (Richardson & Wiegand, 1977) 

Blue-red vegetation index (BRVI) (B − R)/(B + R) (Hunt et al., 2005) 

Color index of vegetation extraction 

(CIVE) 

0.441R − 0.811G + 

0.385B + 18.78745 

(Kataoka, Kaneko, Okamoto, & Hata, 

2003) 

Combined indices 1 (COM1) EXG + CIVE + EXGR + VEG (Guijarro et al., 2011) 

Combined indices 2 (COM2) 0.36EXG + 0.47CIVE + 0.17VEG (Guerrero, Pajares, Montalvo, Romeo, 

& Guijarro, 2012) 

Excessive green (EXG) 2G − R − B (Woebbecke et al., 1995) 

Normalized Excess green index 

(EXG2) 

2G − R − B

G + R + B
 

(Woebbecke et al., 1995) 

Excess green minus excess red index 

(EXGR) 

3G − 2.4R − B (G. E. Meyer & Neto, 2008) 

Excessive red (EXR) 1.4R − G (G. Meyer, Hindman, & Laksmi, 1998) 

Green minus blue index (G-B) G − B (Woebbecke et al., 1995) 

Green minus red index (G-R) G − R (Woebbecke et al., 1995) 

Green blue simple ratio index (G/B) G/B (Woebbecke et al., 1995) 

Green red simple ratio index (G/R) G/R (Woebbecke et al., 1995) 

Green chromatic coordinate index 

(GCC) 

G/(R + G + B) (Woebbecke et al., 1995) 

Green leaf index (GLI) (2G − R − B)/(2G + R + B) (Louhaichi et al., 2001) 

Modified excess green index (MExG) 1.262G − 0.884R 

−0.311B 

(Burgos-Artizzu, Ribeiro, Guijarro, & 

Pajares, 2011) 

Modified green red index (MGVRI) (G^2 − R^2)/(G^2 + R^2 ) (Bendig et al., 2015) 

Modified red chromatic coordinate 

index (MRCC) 

𝑅^3/(𝑅 + 𝐺 + 𝐵) Created in this study 

Normalized difference index (NDI) 128 ∗ ((((G − R))/((G + R))) + 1) (G. E. Meyer & Neto, 2008) 

Normalized difference red 

blue index (NDRBI) 

(R − B)/(R + B) (Golzarian & Frick, 2011) 

Normalized green-blue difference 

index (NGBDI) 

(G − B)/(G + B) (Hunt et al., 2005) 

Normalized green red difference index 

(NGRDI) 

(G − R)/(G + R) (Tucker, 1979) 

Normalized red minus blue index 

(NRMBI) 

(𝑅 − 𝐵)/𝐺 Created in this study 

Red minus blue index (R-B) R − B (Woebbecke et al., 1995) 

Red blue simple ratio index (R/B) R/B (Woebbecke et al., 1995) 

Red chromatic coordinate index (RCC) R/(R + G + B) (Woebbecke et al., 1995) 

Red green blue index (RGBVI) (G^2 − R ∗ B)/(G^2 + R ∗ B) (Bendig et al., 2015) 

Triangular greenery index (TGI) G − (0.39R − 0.69B) (Hunt, Daughtry, Eitel, & Long, 2011) 
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Visible atmospherically resistant index 

(VARI) 

(G − R)/(G + R − B) (Gitelson et al., 2002) 

Vegetativen (VEG) G/(R^0.667 ∗ B^0.334 ) (Hague et al., 2006) 

VIs derived from multispectral bands (RGB, red-edge and NIR bands) 

Chlorophyll vegetation index-green 

(CIG) 

NIR/G − 1 (Gitelson, Vina, Ciganda, Rundquist, & 

Arkebauer, 2005) 

Chlorophyll vegetation index-red edge 

(CIRE) 

NIR/RE − 1 (Gitelson et al., 2005) 

Chlorophyll vegetation index (CVI) (NIR ∗ R)/G^2  (Vincini, Frazzi, & D’Alessio, 2008) 

Difference vegetation index (DVI) NIR − RE (Tucker, 1979) 

Enhanced normalized difference 

vegetation index (ENDVI) 

(NIR + G − 2B)/(NIR + G + 2B) Maxmax 2015 

(http://www.maxmax.com/endvi.htm) 

Enhanced vegetation index (EVI) 2.5(NIR − R)/(NIR + 6R − 7.5B + 1) (A. Huete et al., 2002) 

Green difference vegetation index 

(GDVI) 

NIR − G (Tucker, 1979) 

Green normalized difference vegetation 

index (GNDVI) 

(NIR − G)/(NIR + G) (Gitelson, Kaufman, & Merzlyak, 1996) 

GNREI   

Green optimal soil adjusted vegetation 

index (GOSAVI) 

(1 + 0.16)(NIR − G)/(NIR + G

+ 0.16) 

(Rondeaux, Steven, & Baret, 1996) 

Green re-normalized different 

vegetation index (GRDVI) 

(NIR − G)/sqrt(NIR + G)  (Roujean & Breon, 1995) 

Green ratio vegetation index (GRVI) NIR/G (Buschmann & Nagel, 1993) 

Green soil adjusted vegetation index 

(GSAVI) 

1.5((NIR − G)/(NIR + G + 0.5)) (Sripada, Heiniger, White, & Meijer, 

2006) 

Green wide dynamic range vegetation 

index (GWDRVI) 

(0.12NIR − G)/(0.12NIR + G) (Gitelson, 2004) 

IPVI   

Modified Chlorophyll Absorption in 

Reflectance Index (MCARI) 

((RE − R) − 0.2 * (RE − G)) * (RE/R) (Daughtry, Walthall, Kim, De Colstoun, 

& McMurtrey Iii, 2000) 

Modified chlorophyll absorption in 

reflectance index 1(MCARI1) 

((NIR −  RE) −  0.2 ∗ (NIR −  G))

∗ (NIR/RE) 

(Daughtry et al., 2000) 

Modified chlorophyll absorption in 

reflectance index 2(MCARI2) 

(1.5(NIR − RE) − 1.3(NIR

− G))/√((2NIR

+ 1)^2 − (6NIR

− 5√RE) − 0.5) 

(Haboudane, Miller, Pattey, Zarco-

Tejada, & Strachan, 2004) 

Modified Nonlinear Index (MNLI) 1.5(𝑁𝐼𝑅^2 − 𝑅)/(𝑁𝐼𝑅^2 + 𝑅 + 0.5) (P. Gong, Pu, Biging, & Larrieu, 2003) 

Modified Red Edge Difference 

Vegetation Index (MREDVI) 

RE −  R (Q. Cao et al., 2013) 

Modified RESAVI (MRESAVI) 0.5(2NIR +  1 −  sqrt((2NIR +  1)2

−  8(NIR −  RE))) 

(J. Qi, Chehbouni, Huete, Kerr, & 

Sorooshian, 1994) 

Modified Soil-adjusted Vegetation 

Index (MSAVI) 

0.5  (2NIR +  1 −  sqrt((2NIR +  1)2

−  8(NIR −  R))) 

(J. Qi et al., 1994) 

Modified GSAVI (MGSAVI) 0.5[2NIR +  1 −  sqrt((2NIR +  1)^2

−  8(NIR −  G))] 

(J. Qi et al., 1994) 

Modified Simple Ratio (MSR) (NIR/R − 1)/sqrt(NIR/R + 1) (J. M. Chen, 1996) 

Modified green simple 

ratio (MSRG) 

((NIR/G − 1))/√((NIR/G + 1) ) (J. M. Chen, 1996) 

http://www.maxmax.com/endvi.htm
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Modified Simple Ratio Green and Red 

(MSRGR) 

√(𝐺/𝑅) (Tucker, 1979) 

Modified green simple 

ratio (MSRRE) 

((NIR/RE − 1))/√((NIR/RE + 1) ) (J. M. Chen, 1996) 

Normalized difference 

red edge (NDRE) 

(NIR −  RE)/(NIR +  RE) (Barnes et al., 2000) 

Normalized difference vegetation index 

(NDVI) 

(NIR −  R)/(NIR +  R) (Tucker, 1979) 

Nonlinear Index (NLI) (NIR2 − 𝑅)/(NIR2 + 𝑅) (Goel & Qin, 1994) 

   

Modified normalized difference index 

(MNDI) 

(NIR − RE)/(NIR − G) (Datt, 1999) 

Modified normalized difference red 

edge (MNDRE) 

[NIR − (RE − 2G)]/[NIR + (RE

− 2G)]  

(W. Wang et al., 2012) 

Normalized NIR-blue difference index 

(NNBDI) 

(NIR − B)/(NIR + B) In this study 

Normalized NIR index (NNIR) NIR/(NIR + RE +  G) (Sripada et al., 2006) 

Normalized Near Infrared Index 

(NNIRI) 

NIR/(NIR + RE +  R) (Lu, Miao, Shi, Li, & Yuan, 2017) 

Normalized red edge index (NREI) RE/(NIR + RE +  G) (Sripada et al., 2006) 

Normalized Red Index (NRI) R/(NIR + RE +  R) (Lu et al., 2017) 

Plant senescence reflectance index 

(PSRI) 

(R − G)/RE (Merzlyak, Gitelson, Chivkunova, & 

Rakitin, 1999) 

Red edge green difference vegetation 

index (REGDVI) 

RE − G (Tucker, 1979) 

Red edge green ratio vegetation index 

(REGRVI) 

RE/G (Q. Cao et al., 2013) 

Red edge normalized difference 

vegetation index (RENDVI) 

(RE − R)/(RE + R) (Elsayed, Rischbeck, & Schmidhalter, 

2015) 

Red edge optimal soil adjusted 

vegetation index (REOSAVI) 

(1 + 0.16)(NIR − RE)/(NIR + RE

+ 0.16) 

(Rondeaux et al., 1996) 

Red Edge Point Reflectance (REPR) (R + NIR)/2 (Dash & Curran, 2004) 

Renormalized difference vegetation 

index (RERDVI) 

(NIR − RE)/√(NIR + RE) (Roujean & Breon, 1995) 

Red Edge Ratio Vegetation Index 

(RERVI) 

NIR/RE (Gitelson et al., 1996) 

Red edge soil adjusted vegetation index 

(RESAVI) 

1.5[(NIR −  RE)/(NIR +  RE +  0.5)] (Sripada et al., 2006) 

Red Edge Simple Ratio (RESR)  𝑅𝐸/R (Erdle, Mistele, & Schmidhalter, 2011) 

Optimized Red Edge Vegetation Index 

(REVIopt) 

100 ∗ (𝑙𝑛(NIR) − 𝑙𝑛(RE)) (Jasper, Reusch, & Link, 2009) 

Red edge wide dynamic range 

vegetation index (REWDRVI) 

(0.12NIR − RE)/(0.12NIR + RE) (Gitelson, 2004) 

Ratio vegetation index (RVI) NIR/R (Jordan, 1969) 

Soil-adjusted vegetation index (SAVI) 1.5(NIR − R)/(NIR + R + 0.5) (A. R. Huete, 1988) 

SAVI*SR (NIR^2-R)/[(NIR+R+0.5)*R] (P. Gong et al., 2003) 

Transformed Chlorophyll Absorption 

in Reflectance Index (TCARI) 

3((RE-R)-0.2(RE-G)*(RE/R)) (Haboudane, Miller, Tremblay, Zarco-

Tejada, & Dextraze, 2002) 
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Triangular Chlorophyll Index (TCI) 1.2((RE-G)-1.5(RE-G)*sqrt(RE/R)) (Haboudane, Tremblay, Miller, & 

Vigneault, 2008) 

Transformed Normalized Vegetation 

Index (TNDVI) 

sqrt((NIR − R)/(NIR + R) + 0.5) (Sandham & Zietsman, 1997) 

Triangular vegetation index (TVI) 0.5 ∗ (120 ∗ (NIR − G) − 200

∗ (R − G)) 

(Broge & Leblanc, 2001) 

 

Supplementary data 4 is not included here as it is a very large table, includes GWAS 

results for each VI and is provided upon request by Texas A&M University Quantitative 

Genetic and Maize Breeding Program. 

 

Phenomic data and weather data are also very large excel files containing thousands of 

columns and rows and ~21,000 KB and ~3,259 KB. So that two files are also provided 

based provided upon request by Texas A&M University Quantitative Genetic and Maize 

Breeding Program. 
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APPENDIX E 

APPENDIX OF CHAPTER VI 

Supporting Information(SI) Materials and Methods 

Phenomic data extraction pipeline 

Detailed function settings of R/UAStools::plotshpcreate were set as follows: (i) 

nrowplot was set 2 since two consecutive row plots represent the one hybrid pedigree, 

multirowind was also set TRUE (T) to define two consecutive row plots indicates one 

pedigree; (ii) dimension of each polygon was defined by setting the functions of 

rangespc and rowspc as 7.62 and 0.76 meters respectively; (iii) buffer polygon was 

obtained by removing the alley distances from left, right, top and bottom sides using 

rangebuf and rowbuf functions; buffer polygon was obtained by setting rangebuf (for top 

and bottom sides) and rowbuf (for left and right sides) as 0.61 and 0.05 meters 

respectively. Buffer polygons covering each plot were used as shape files in data 

extraction pipelines to obtain better accuracy since walking alleys surrounding the plots 

were excluded (https://github.com/andersst91/UAStools/wiki/plotshpcreate.R). As a 

result, a shape file containing 594 buffer polygons (each contain two row plots) were 

created with the unique plot number in each. After constructing the shape file, each 

buffer polygon was visualized with tiff files for each time point in QGIS software 

(https://qgis.org/en/site) and checked manually; occasionally a small percentage of 

polygons was required to move slightly around the row plots to make each cover the row 

plots accurately because of the minor overlap issue for certain region of the mosaicked 

tiff files. 
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To extract the VIs, first, the tiff files were clipped into a trial level in QGIS, then 

the extraction pipeline was applied to each clipped tiff file in R. Extraction pipeline were 

explained briefly as follows: (i) aggregate function was first implemented to each tiff file 

consistently to reduce the computational time requirement by setting fact as 4 

[aggregate(“input tiff file”, fact = 4]; (ii) soil was removed from the tiff files by using the 

Hue index in R/FIELDImageR::fieldMask function; (ESCADAFAL 1993); (iii) 

additional VIs for both HTP platforms were defined in R/FIELDImageR::fieldndex 

function using the output tiff file of second step; (iv) previously constructed shape files 

were combined with the output of the third step to obtain the values of each VI for each 

row plot. The VIs calculated by using RGB bands were extracted from the images in 

first HTP platform while VIs calculated by using RGB, red edge and NIR bands were 

extracted from the images in second HTP platform. 

To construct the canopy height model (CHM), each 3D point cloud file (.las) was 

first clipped into trial level then the following steps of the custom batch code was 

applied to each point cloud to extract the plot based temporal plant height as follows: (i) 

sorting the clipped point clouds to facilitate further processing steps 

(LAStools/lasssort.exe); (ii) removing excessively noise points (blunders) located below 

ground and above canopy (LAStools/lasnoise.exe) of row plots; (iii) using the 

hierarchical robust interpolation algorithm (HRI) (KRAUS AND PFEIFER 1998) to 

determine the ground points (FUSION\GroundFilter.exe); (iv) detecting the key points 

from the ground filter to outline digital terrain model (DTM) (LAStools\lasthin.exe); (v) 

creating the DTM model using the key points from the previous step 
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(FUSION\GridSurfaceCreate.exe); (vi) generating the canopy surface model by 

extracting the digital terrain model (output of step v) from the digital surface model 

(output of step ii) (LAStools\lasheight.exe). Adjusting ‘Z’ values that account for plant 

height in the canopy surface model, merging with the ESRI shape file to clip the canopy 

surface model into plots (FUSION/PolyClipData.exe). As a last step, statistical metrics 

(e.g., plant height values based on different percentiles) for each clipped plot (pedigree 

row) were calculated (FUSION/CloudMetrics.exe). Predicted CHM for each pedigree by 

equation 2 (Eq. 2) was fit based on the Weibull sigmoidal growth model as follows: 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ =  𝑎 (1 − 𝐸𝑥𝑝 (− (
𝑓𝑙𝑖𝑔ℎ𝑡 𝑑𝑎𝑡𝑒

𝑥
)

𝑏

))  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1; 𝐸𝑞. 1 

Where, a is the asymptote; flight date is numeric values as days after planting of 

each flight date; x is the inflection point and b is the growth rate. Weibull fit CHM was 

used in further analysis. 

Experimental Design and Nested Model for Phenomic Data 

Following extraction of plot based temporal vegetation indices and CHM, a 

nested design predicted the temporal breeding values for each of 280 pedigrees to assess 

the temporal phenomic data jointly for optimal management (OM) and stressed 

management (SM, no irrigation, low fertilizer) using the “lmer” function in the “lme4” 

package in R. Each temporal vegetation index and temporal plant height was modelled 

for both HTP platform as follows: 

𝑌𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝛽𝑖 + 𝛺𝑖(𝑗) + 𝛿𝑖(𝑘) + 𝛹𝑖(𝑙) + 𝜃𝑖(𝑚) + ɛ𝑖𝑗𝑘𝑙𝑚 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2; 𝐸𝑞. 2) 
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where, 𝜇 = overall mean; 𝛽𝑖 = the random effect of 𝑖th flight time (as days after planting 

time, DAP) with 𝛽𝑖  𝑖𝑖𝑑
~

𝑁(0, 𝜎𝛽𝑖

2 ), 𝑖 ∈ [ 27, 34, 41, 48, 55, 59, 63, 69, 77, 82, 88, 97,

103, 105, 118; rotary-wing with RGB camera HTP platform]  and 𝑖 ∈ [27, 34, 52, 60, 

70, 73, 88, 105, 112, 118, 132, 144; tuffwing with multispectral camera HTP platform]; 

𝛺𝑖(𝑗)= the random effect of 𝑗th pedigree (maize hybrid) within the 𝑖th flight time with 

𝛺𝑖(𝑗)  𝑖𝑖𝑑
~

𝑁(0, 𝜎𝛺𝑖(𝑗)

2 ), 𝑗 ∈ [1, … , 280]; 𝛿𝑖(𝑘) = the random effect of 𝑘th range within the

𝑖th flight time with 𝛿𝑖(𝑘)  𝑖𝑖𝑑
~

𝑁(0, 𝜎𝛿𝑖(𝑘)

2 ), 𝑘 ∈ [1, … , 18]; 𝛹𝑖(𝑙)= the random effect of 𝑙th

row within the 𝑖th flight time with 𝛹𝑖(𝑙)  𝑖𝑖𝑑
~

𝑁(0, 𝜎𝛹𝑖(𝑙)

2 ), 𝑙 ∈ [1, … , 33]; 𝜃𝑖(𝑚)= the

random effect of 𝑚th replication within the 𝑖th flight time with 𝜃𝑖(𝑚)  𝑖𝑖𝑑
~

𝑁(0, 𝜎𝜃𝑖(𝑚)

2 ),

𝑚 ∈ [1, 2]; ɛ𝑖𝑗𝑘𝑙𝑚 is pooled error with ɛ𝑖𝑗𝑘𝑙𝑚
𝑖𝑖𝑑
~

𝑁 (0, 𝜎ɛ𝑖𝑗𝑘𝑙𝑚

2 ). 

Temporal repeatability (TR) was calculated using the genotypic variance 

containing the variation of the trait belonging to all flight times. Eq. 3 was applied to each 

vegetation index and canopy height separately. 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑇𝑅) =
𝜎𝛺𝑖(𝑗)

2

𝜎𝛺𝑖(𝑗)

2 +
𝜎ɛ𝑖𝑗𝑘𝑙𝑚

2

𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3; 𝐸𝑞. 3) 

Where, 𝜎𝛺𝑖(𝑗)

2  is genotypic variance containing joint genotypic variation occurring 

across the flights; 𝜎ɛ𝑖𝑗𝑘𝑙𝑚

2  is residual variance containing unexplained error. 

Grain yield (GY) was collected from each two adjacent row plots (per hybrid) via 

a plot combine harvester; days to anthesis (DTA) and silking (DTS) were collected when 
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fifty percent of plots displayed anthesis and silking emergence; manually measured 

terminal plant height was calculated from the ground to the tip of tassel. 

GY, DTA, DTS, PHT were used as predicted variables and modelled according to Eq. 2 

without flight time (denoted as 𝛽 in Eq. 2) component as follows: 

𝑌𝑗𝑘𝑙𝑚 = 𝜇 + 𝛺𝑗 + 𝛿𝑘 + 𝛹𝑙 + 𝜃𝑚 + ɛ𝑗𝑘𝑙𝑚 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4; 𝐸𝑞. 4) 

Traditional repeatability was calculated for all cumulative traits (GY, DTA, DTS, 

PHT) based on Eq. 3 with the nested effect by flight time removed (denoted as 𝛽 in Eq. 2) 

as follows:  

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜎𝛺𝑗

2

𝜎𝛺𝑗

2 +
𝜎ɛ𝑗𝑘𝑙𝑚

2

𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5; 𝐸𝑞. 5) 

As a result of 𝛺𝑖(𝑗) component in 𝐸𝑞. 2, 35 VIs and Weibull_CHM belonging to 

fifteen time points in TPP_RGB, and 89 VIs and Weibull_CHM belonging to twelve time 

points in TPP_Multi were predicted, resulting in 540 and 1080 phenomic data belonging 

to 280 maize hybrids respectively. Pearson correlation coefficients between each 

phenotype data at each time point of each temporal trait with GY were calculated using 

the “corrplot” package in R.  

Machine Learning Based Phenomic Prediction Models 

Caret package was used in R to run the prediction models.  

“Caret::trainControl()” function was used to set repeated cross validation 

(method=“repeatedcv”) with 10 folds and 3 repeats; this cross validation was used for 



306 

every model consistently inside the loop. Brief steps of the single loop were explained as 

follows: (i) partitioning the whole data set as 70 percent training and remainders test data 

set in TPP_RGB and TPP_Multi phenomic data belonging to optimal (OM) and stress 

(SM) managements, which were different in each loop, using the 

“caret::createDataPartition()” function, (ii) training the all prediction models using the 

train data set of OM (tested environment) in the “caret::train()” function, (iii) predicting 

the train data set in OM (cross validation 1; tested genotypes in tested environment; 

CV1), test data set in OM (cross validation 2; untested genotypes in tested environment; 

CV2), train data set in SM (cross validation 3; tested genotypes in untested environment; 

CV3) and test data set in OM (cross validation 4; untested genotypes in untested 

environment; CV4) using the trained model to obtain the predicted data using the 

“caret::predict()” function for each model, (iv) computing the correlation between actual 

data and predicted data to evaluate the prediction accuracy (r ̅) for four cross validation 

schemes in each model and (v) saving the correlation results along with the R-squared 

(R2), root mean square error (RMSE) and mean absolute error (MAE) as well as the 

variable importance scores of the predictors belonging to each model in each loop. 

Number of loops was set to 500. To define the prediction model inside the 

“caret::train()” function, method was set as “lm” for the linear model, method was set as 

“glmnet” for elastic net, lasso and ridge models and model was set as “rf” for random 

forest (RF) model separately. To tune the parameters of the elastic net, lasso and ridge 

regressions, “alpha” value was set as 0 for ridge and 1 for lasso regression while 

sequential numbers between 0 and 1 by ten equal increment numbers were searched to 
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find the best alpha for elastic net regression. Sequential “lambda” value between 0 and 1 

by ten equal increment numbers were also empirically searched to find the best 

“lambda” values for lasso, ridge, and elastic net regressions. To tune the parameters of 

RF model, “ntree” (number of trees to grow in the model) was set as 1000 while 

sequential “mtry” (number of variables randomly tested as candidates at each split) value 

between 1 and 50 by five equal increment number were empirically searched to find the 

best “mtry” based on highest accuracy metric of RF model.   

Association Mapping for Phenomic Data 

Cumulative AUC were calculated by using the below formula for each pedigree 

and each VI and Weibull_CHM: 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑈𝐶𝑖 = ∑ (
𝑉𝑡 + 𝑉𝑡+1

2
) (

𝑛−1

𝑡=1

𝐹𝑡+1 − 𝐹𝑡) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6;  𝐸𝑞. 6) 

Where, 𝑛 is the number of total observations referring to the fifteen flights times 

in TPP_RGB, 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑈𝐶𝑖 is the cumulative AUC value based on the total 

number of flights belonging to 𝑖𝑡ℎ pedigree for each trait, 𝑖 ∈ [1, … , 280]; 𝑉𝑡 is the value 

at 𝑡th flight time as DAP, 𝑡 ∈

[27, 34, 41, 48, 55, 59, 63, 69, 77, 82, 88, 97, 103, 105, 118]; 𝐹𝑡 is the 𝑡th flight time as 

number of DAP at which value of interest was taken in first HTP platform.  

The imputed ZeaGBSv2.7 with AGPv4 coordinates was used in this study, 

available in Panzea (https://www.panzea.org/genotypes) and Cyverse (Bridget A 

McFarland et al., 2020) platforms. In the genome wide association mapping study, 158 

https://www.panzea.org/genotypes
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maize hybrids with genotyping by sequencing (GBS) data of their parental lines were 

available in MaizeGBSv2.7 (Glaubitz et al., 2014), generated via the method based on 

digestion the DNA with the ApeKI restriction enzyme (Elshire et al., 2011). ZeaGBSv2.7 

was called in Tassel 5 software (Bradbury et al., 2007). Before association mapping, 

GBS data of the hybrid maize was created based on following step: (i) heterozygote calls 

belonging to any parental lines of the hybrids were set as missing, (ii) 

“create_hybrid_genotype” function in Tassel 5 software was used to create the GBS data 

of hybrid maize by merging the GBS data of parental lines of each hybrid and (iii) 

polymorphic markers were obtained by filtering the missing data that is more than ten 

percent and minor allele frequency that is lower than five percent. LD k-nearest neighbor 

algorithm (LD KNNi imputation) was implemented to GBS data to impute the missing 

calls in Tassel software (version 5) (Money et al., 2015). Finally, 101,100 polymorphic 

SNPs (single nucleotide polymorphism) remained and were used in the association 

mapping analysis.  

To control the population structure of the hybrid population, the first five 

principal components, which explained 49% of total variation, and kinship matrix were 

used in each model. Bonferroni corrections [− 𝑙𝑜𝑔10(𝑝 𝑣𝑎𝑙𝑢𝑒𝑠)  > 6.3; 0.01/(no. of

markers)] were considered as threshold in determining the GWAS hits in Manhattan 

plots, in addition to Bonferroni threshold, false-positive discovery rate was set 

[− 𝑙𝑜𝑔10(𝑝 𝑣𝑎𝑙𝑢𝑒𝑠) > 5] to detect same loci (if any) that were associated with multiple

traits with between the values of [− 𝑙𝑜𝑔10(𝑝 𝑣𝑎𝑙𝑢𝑒𝑠)  > 5] and [− 𝑙𝑜𝑔10(𝑝 𝑣𝑎𝑙𝑢𝑒𝑠) >

6.3]. MaizeGBD (http://www.maizegdb.org/) and the Gramene database 

http://www.maizegdb.org/
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(http://www.gramene.org) were used to determine corresponding candidate genes of the 

discovered SNPs and functions of genes. LD decay pattern was investigated in Tassel 5 

(LD windows size = 10 markers) and visualized in R for each chromosome separately 

(Fig. S1). Linkage disequilibrium (LD) was visualized using the LDheatmap package in 

R (Shin et al., 2006) to identify the candidate genes within the LD blocks (𝑅2 ≥ 0.8) of

colocalized SNPs. 

Genomic Prediction for Phenomic Data 

153,252 SNPs belonging to 158 maize hybrids were obtained merging the GBS 

data of their parental lines in Tassel software as described in the “Association mapping 

for phenomic data” section. After obtaining the hybrid GBS, SNPs were filtered if minor 

allele frequency was lower than 0.01 and missing values were higher than 10 percent per 

marker resulting in 153,252 SNPs. Missing values of 153,252 SNPs were imputed using 

the rrBLUP::Amat() function in R. Temporal genomic prediction for phenomic data in 

TPP_RGB was modeled using the rrBLUP package (Endelman, 2011) in R as follows: 

𝑦 = 1µ + 𝑍Ф + ɛ (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7; 𝐸𝑞. 7) 

Where, 𝑦 = is the vector (𝑛 × 1) of single phenotype data of 𝑛 maize hybrids (𝑛 

= is training data set of each loop) belonging to each single time point of each phenotype 

data in TPP_RGB , [

0.6
0.9

⋮
𝑛

]; 1 = vector of ones that are equal to numbers of 𝑛, [

1
1
⋮
𝑛

]; µ = 

overall mean of training data set;  𝑍 = the incidence matrix (𝑛 × 𝑝) of allelic states of 𝑝 

number of SNPs (153,252 SNPs) belonging to 𝑛 number of maize hybrids,  

http://www.gramene.org/
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[
0 1 ⋯ 0
⋮ ⋱ ⋮

−1 0 ⋯ 𝑛 × 𝑝
]; Ф = vector of calculated SNP effects (𝑝 × 1), [

4𝑒 − 05
−5𝑒 − 05

⋮
𝑝

] ; ɛ = 

vector of random residuals. RR-BLUP assumes Ф ~ 𝑀𝑉𝑁(0, 𝜎Ф 
2 ) indicating that marker

effects are normally distributed with equal marker variance (𝜎Ф 
2 ) throughout the

genome.  

Genomic prediction was modelled using training data accounting for seventy 

percent of total data while the remaining thirty percent data was used as validation data. 

The genomic prediction model (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7, 𝐸𝑞. 7) evaluated 500 iterations applied to 

each phenotype of 158 maize hybrids belonging to each VI and Weibull_CHM at fifteen 

time points (totally 540 phenotype data) in TPP_RGB; base R function called 

“sample()”was used to randomly determine training and test data set in each iteration. 

During the prediction, the same training and test data set for each phenotype of each trait 

at each time point was needed to obtain fair comparison of the genomic prediction 

accuracy. Genomic prediction accuracy was calculated based on correlation results 

between the genetic estimated breeding values and the true breeding value of test data 

set in each iteration.  

Phenomic Prediction versus Genomic Prediction 

118 maize hybrids whose parental lines had GBS info in MaizeGBSv2.7 

(Glaubitz et al., 2014) and grown in optimal (OM) and stressed (SM) managements were 

used. In genomic prediction, GBS data (GP) containing 153.252 SNPs that was 
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described in the “Genomic prediction for phenomic data” was used to predict grain yield 

(GY) using rrBLUP package in R (Endelman, 2011). TPP_RGB containing 540 

phenomic data, and TPP_Multi containing 1080 phenomic data were used to predict GY 

using the ridge regression in the caret package in R. Prediction accuracy was obtained 

from 1000 bootstraps for each model where the same training and test data set were used 

for genomic and phenomic prediction within each bootstrap. Genomic prediction and 

phenomic prediction steps were explained in the “Genomic prediction for phenomic 

data” and “Machine learning based phenomic prediction models” respectively. Four 

cross validation schemes, which were explained in “Machine learning based phenomic 

prediction models”, were applied in this section as well to compare the prediction 

accuracies of two phenomic predictions and genomic prediction.  

Table S1 shows the calendar days between March to July, 2017 containing the flight 

dates for rotary-wing UAS with RGB camera (above) and TuffWing UAS with 

multispectral camera (below) high throughput phenotyping platforms. Flight dates were 

shown under the months with corresponding days after planting times in parenthesis. 

Reprinted from Adak, Murray, & Anderson, 2021. 

Rotary-wing with RGB camera 

March April May June 

29th 

(27) 
5th 

(34) 
12th 

(41) 
19th 

(48) 
26th 

(55) 
30th 

(59) 
4th 

(63) 
10th 

(69) 
18th 

(77) 
23rd 

(82) 
29th 

(88) 
7th 

(97) 
13th 

(103) 
15th 

(105) 
28th 

(118) 

TuffWing with multispectral camera 

March April May June July 

29th 

(27) 
5th 

(34) 
23rd 

(52) 
1st 

(60) 
11th 

(70) 
14th 

(73) 
29th 

(88) 
15th 

(105) 
22nd 

(112) 
28th 

(118) 
12th 

(132) 
24th 

(144) 
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Table S2 shows the vegetation indices used and their formulas along with references. 

Reprinted from Adak, Murray, & Anderson, 2021. 

Vegetation index Ratios References 

VIs derived from RGB bands 

Blue chromatic coordinate index (BCC) B

R + G + B

(Woebbecke et al., 1995) 

Blue green pigment index (BGI) B

G

(Zarco-Tejada et al., 2005) 

Brightness index (BI) 
sqrt(

R2 + G2 + B2

3
) 

(Richardson & Wiegand, 1977) 

Color index of vegetation extraction 

(CIVE) 

0.441R − 0.811G + 

0.385B + 18.78745 

(Kataoka et al., 2003) 

Combined indices 1 (COM1) EXG + CIVE + EXGR + VEG (Guijarro et al., 2011) 

Combined indices 2 (COM2) 0.36EXG + 0.47CIVE + 0.17VEG (Guerrero et al., 2012) 

Additional blue index (EBI) B − G

B − R

(Golzarian & Frick, 2011) 

Additional green index (EGI) G − R

R − B

(Golzarian & Frick, 2011) 

Green-red index (ERI) R − G

R − B

(Golzarian & Frick, 2011) 

Excessive green (EXG) 2G − R − B (Woebbecke et al., 1995) 

Normalized Excess green index (EXG2) 2G − R − B

G + R + B

(Woebbecke et al., 1995) 

Excess green minus excess red index 

(EXGR) 

3G − 2.4R − B (G. E. Meyer & Neto, 2008) 

Excessive red (EXR) 1.4R − G (G. Meyer et al., 1998) 

Green minus blue index (G-B) G − B (Woebbecke et al., 1995) 

Green minus red index (G-R) G − R (Woebbecke et al., 1995) 

Green blue simple ratio index (G/B) G

B

(Woebbecke et al., 1995) 

Green red simple ratio index (G/R) G

R

(Woebbecke et al., 1995) 

Green chromatic coordinate index 

(GCC) 

G

R + G + B

(Woebbecke et al., 1995) 

Green leaf index (GLI) 2G − R − B

2G + R + B

(Louhaichi et al., 2001) 

Modified excess green index (MEXG) 1.262G − 0.884R 

−0.311B 

(Burgos-Artizzu et al., 2011) 

Modified green red index (MGVRI) G2 − R2

G2 + R2

(Bendig et al., 2015) 

Normalized difference index (NDI) 
128 ∗ [(

(G − R)

(G + R)
) + 1] 

(G. E. Meyer & Neto, 2008) 

Normalized difference red 

blue index (NDRBI) 

R − B

R + B

(Golzarian & Frick, 2011) 

Normalized green-blue difference 

index (NGBDI) 

G − B

G + B

(Hunt et al., 2005) 

Normalized green red difference index 

(NGRDI) 

G − R

G + R

(Tucker, 1979) 
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Red minus blue index (R-B) R − B (Woebbecke et al., 1995) 

Red blue simple ratio index (R/B) R

B

(Woebbecke et al., 1995) 

Red chromatic coordinate index (RCC) R

R + G + B

(Woebbecke et al., 1995) 

Red green blue index (RGBVI) G2 − R ∗ B

G2 + R ∗ B

(Bendig et al., 2015) 

Triangular greenery index (TGI) G − (0.39R − 0.69B) (Hunt et al., 2011) 

Visible atmospherically resistant index 

(VARI) 

G − R

G + R − B

(Gitelson et al., 2002) 

Vegetativen (VEG) G

R0.667 ∗ B0.334

(Hague et al., 2006) 

VIs derived from multispectral bands (RGB, red-edge and NIR bands) 

Modified chlorophyll absorption in 

reflectance index 1(MCARI1) 

[(NIR −  RE) −  0.2 ∗ (NIR −  G)]

∗ (
NIR

RE
) 

(Daughtry et al., 2000) 

Modified chlorophyll absorption in 

reflectance index 2(MCARI2) 

1.5(NIR − RE) − 1.3(NIR − G)

√(2NIR + 1)2 − (6NIR − 5√RE) − 0.5

(Haboudane et al., 2004) 

Chlorophyll vegetation index-green 

(CIG) 

NIR

G
− 1 

(Gitelson et al., 2005) 

Chlorophyll vegetation index-red edge 

(CIRE) 

NIR

RE
− 1 

(Gitelson et al., 2005) 

Chlorophyll vegetation index (CVI) NIR ∗ R

G2

(Vincini et al., 2008) 

Difference vegetation index (DVI) NIR − RE (Tucker, 1979) 

Enhanced normalized difference 

vegetation index (ENDVI) 

NIR + G − 2B

NIR + G + 2B

Maxmax 2015 

(http://www.maxmax.com/endvi.htm) 

Enhanced vegetation index (EVI) 2.5(NIR − R)

NIR + 6R − 7.5B + 1

(A. Huete et al., 2002) 

Green difference vegetation index 

(GDVI) 

NIR − G (Tucker, 1979) 

Green infrared percentage vegetation 

index (GIPVI) 

NIR

NIR + G

(Crippen, 1990) 

Green normalized difference 

vegetation index (GNDVI) 

NIR − G

NIR + G

(Gitelson et al., 1996) 

Green optimal soil adjusted vegetation 

index (GOSAVI) 

(1 + 0.16)(NIR − G)

NIR + G + 0.16

(Rondeaux et al., 1996) 

Green re-normalized different 

vegetation index (GRDVI) 

NIR − G

sqrt(NIR + G)

(Roujean & Breon, 1995) 

Green ratio vegetation index (GRVI) NIR

G

(Buschmann & Nagel, 1993) 

Green soil adjusted vegetation index 

(GSAVI) 
1.5 (

NIR − G

NIR + G + 0.5
) 

(Sripada et al., 2006) 

Green wide dynamic range vegetation 

index (GWDRVI) 

0.12NIR − G

0.12NIR + G

(Gitelson, 2004) 

Modified double difference index 

(MDD) 

(NIR − RE) − (RE − G) (Le Maire, Francois, & Dufrene, 2004) 

http://www.maxmax.com/endvi.htm
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Modified GSAVI (MGSAVI) 0.5[2NIR +  1 −  sqrt((2NIR +  1)2

− 8(NIR −  G))]

(J. Qi et al., 1994) 

Modified normalized difference index 

(MNDI) 

(NIR − RE)/(NIR − G) (Datt, 1999) 

Modified normalized difference red 

edge (MNDRE) 

[NIR − (RE − 2G)]

[NIR + (RE − 2G)]

(W. Wang et al., 2012) 

Modified RESAVI (MRESAVI) 0.5  [2NIR +  1 −  sqrt((2NIR +  1)2

− 8(NIR −  RE))]

(J. Qi et al., 1994) 

Modified RETVI (MRETVI) 1.2[1.2(NIR − G) − 2.5(RE − G)] (Haboudane et al., 2004) 

Modified simple ratio (MSR) (
NIR

R
− 1)

√(
NIR

R
+ 1)

(J. M. Chen, 1996) 

Modified green simple 

ratio (MSR_G) 
(

NIR
G

− 1)

√(
NIR

G
+ 1)

(J. M. Chen, 1996) 

Modified green simple 

ratio (MSR_RE) 
(

NIR
RE

− 1)

√(
NIR
RE

+ 1)

(J. M. Chen, 1996) 

Modified transformed 

CARI (MTCARI) 
3 [(NIR −  RE) −  0.2(NIR 

−  G) (
NIR

RE
)] 

(Haboudane et al., 2002) 

Normalized difference 

red edge (NDRE) 

NIR −  RE

NIR +  RE

(Barnes et al., 2000) 

Normalized difference vegetation 

index (NDVI) 

NIR −  R

NIR +  R

(Tucker, 1979) 

Normalized NIR index (NNIR) NIR

NIR + RE +  G

(Sripada et al., 2006) 

Normalized red edge index (NREI) RE

NIR + RE +  G

(Sripada et al., 2006) 

Normalized green index (NGI) G

NIR + RE +  G

(Sripada et al., 2006) 

Optimized soil-adjusted vegetation 

index (OSAVI) 

NIR − R

NIR + R + 0.16

(Rondeaux et al., 1996) 

Plant senescence reflectance index 

(PSRI) 

R − G

RE

(Merzlyak et al., 1999) 

Red edge green difference vegetation 

index (REGDVI) 

RE − G (Tucker, 1979) 

Red edge GNDVI (REGNDVI) RE − G

RE + G

(Gitelson et al., 1996) 

Red edge green ratio vegetation index 

(REGRVI) 

RE

G

(Q. Cao et al., 2013) 

Red edge optimal soil adjusted 

vegetation index (REOSAVI) 

(1 + 0.16)(NIR − RE)

NIR + RE + 0.16

(Rondeaux et al., 1996) 

Renormalized difference vegetation 

index (RERDVI) 

NIR − RE

√NIR + RE

(Roujean & Breon, 1995) 

Red edge soil adjusted vegetation 

index (RESAVI) 
1.5 [

𝑁𝐼𝑅 −  𝑅𝐸

𝑁𝐼𝑅 +  𝑅𝐸 +  0.5
] 

(Sripada et al., 2006) 
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Red edge transformed vegetation 

index (RETVI) 

0.5[120(NIR − G) − 200(RE − G)] (Broge & Leblanc, 2001) 

Red edge wide dynamic range 

vegetation index (REWDRVI) 

0.12NIR − RE

0.12NIR + RE

(Gitelson, 2004) 

Ratio vegetation index (RVI) NIR

R

(Jordan, 1969) 

Soil-adjusted vegetation index (SAVI) 1.5(NIR − R)

NIR + R + 0.5

(A. R. Huete, 1988) 

Triangular vegetation index (TVI) 0.5[120(NIR − G) − 200(R − G)] (Broge & Leblanc, 2001) 

Optimized vegetation 

index 1 (VIopt1) 

100(lnNIR – lnRE) (Jasper et al., 2009) 

Transformed Normalized Vegetation 

Index (TNDVI) 
sqrt (

NIR − R

NIR + R
+ 0.5) 

(Sandham & Zietsman, 1997) 

Modified Nonlinear Index (MNLI) 1.5(𝑁𝐼𝑅2 − 𝑅)

𝑁𝐼𝑅2 + 𝑅 + 0.5

(P. Gong et al., 2003) 

Red Edge Simple Ratio (RESR) 𝑅𝐸

R

(Erdle et al., 2011) 

Red edge normalized difference 

vegetation index (RENDVI) 

RE − R

RE + R

(Elsayed et al., 2015) 

Normalized NIR index2 (NNIR2) NIR

NIR + RE +  R

(Sripada et al., 2006) 

Normalized red edge index2 (NREI2) RE

NIR + RE +  R

(Sripada et al., 2006) 

Normalized red index (NRI) R

NIR + RE +  R

(Sripada et al., 2006) 

R, G, B, RE and NIR represent the red, green, blue, red-edge and near infrared reflectance bands 

respectively. Red, green, blue, red edge and NIR reflectance bands were also used in this study singly. 

SI Results 

Genome Wide Association Mapping Results 

Two close large effect locus 39,906,105 bp (chr2_2) and 39,906,547 bp (chr2_3) 

genomic locations was discovered for EXG2, GLI, RGBVI, VEG, Blue, GCC and 

NDRBI by all three GWAS models consistently and explained between 6 and 51 percent 

phenotypic variation depending on the traits and GWAS models (Dataset S1). 

GRMZM2G129493 (chr2: 39906034 to 39907044 bp) candidate gene covers chr2_2 

(39906105 bp) and chr2_3 (39906547 bp) GWAS peaks in its genomic region; known 

as polygalacturonase-inhibiting proteins (PGIPs) these encode plant defense related 

proteins (Ferrari, Vairo, Ausubel, Cervone, & De Lorenzo, 2003). Another candidate 
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gene (~2kb away from chr2_2 and chr2_3), GRMZM2G362362 (chr2: 39893309 to 

39904028), belongs to a family of glycoside hydrolases that hydrolase the glycosidic 

bonds in polysaccharide in cell wall (Minic, 2008).  

The 50,705,765 bp (chr2_4) genomic location in chromosome 2 was discovered 

for TGI, Blue, BI, Green and Red by all three models consistently and explained 6 to 7 

percent variation depending on the traits and models (Dataset S1). GRMZM2G018059 

(chr2: 50696420 to 50706825) candidate gene contains the chr2_4 GWAS peak in its 

genomic region and its function is related to U-box domain-containing protein kinase 

family protein that was discovered in previous association mapping studies as drought 

responsive genes (He et al., 2020; Xianglan Wang et al., 2016) as well as for yield 

related traits in maize (Z. Zhou et al., 2020).  

203,544,095 bp (chr4_1) genomic location in chromosome 4 was discovered for 

TGI, BCC, BGI, G/B, G/R, GCC, NDRBI, NGBDI, R/B, COM1, EXG2, GLI and 

RGBVI and explained between 3 to 44 percent variation depending on the traits and 

models (Dataset S1). The GRMZM2G001541 (chr4: 203544095 to 203547230 bp) 

candidate gene is closest \and ~30 base pairs away from the chr4_1 (203544095 bp). The 

homolog of this gene in Arabidopsis is responsible for encoding the inflorescence and 

root apices receptor-like kinase (IRK) protein that is crucial for maintaining the 

differentiation of meristem (Hattan, Kanamoto, Takemura, Yokota, & Kohchi, 2004). 

GRMZM2G001541 has been discovered by meta-QTL and GWAS analysis consistently 

and found to be highly expressed in developing tissues (e.g. primordia, developing 

leaves and ear) closely related to inflorescence development (X. Wu et al., 2016) 
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influencing yield performance directly in maize (Y. Wang, Wang, Wang, & Deng, 

2020). GRMZM2G001541 governs the expression level of Unbranched3 (UB3), which 

regulates the quantitative variation of kernel row number in maize (L. Liu et al., 2015). 

Figure S1 shows linkage disequilibrium decay (LD) patterns for each chromosome. The 

Y axis represents the R2 while X axis shows the distance as Megabases. Horizontal 

dashed line shows the 0.2 R2 LD while the vertical yellow color dashed line shows the 

15 kilo base pair (kb) threshold in each chromosome. LD decay was found to be rapid 

for all chromosome and changing between 1 to 15 kb. Reprinted from Adak, Murray, & 

Anderson, 2021. 
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Figure S2 stacked bar plots show the explained percent variation by each component in 

Eq. 2 for each temporal trait in TPP_RGB. Left y axis corresponds to the explained 

percent variation of the components in the stacked bar plots while the right y axis shows 

the temporal repeatability (red diamonds calculated by Eq 3) and R2 values (black round 

symbols). Gray and black horizontal dashed lines represent the values of 0.50 and 0.75 

where most of the temporal repeatability values of temporal traits accumulated. The 

table below shows the significance values of each component in Eq. 2 for each temporal 

trait; ***, **, * are the 0.001, 0.01 and 0.05 significance levels respectively while ns is 

not statistically significant. Reprinted from Adak, Murray, & Anderson, 2021. 
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Figure S3 stacked bar plots represent the explained percent variation by each component 

in Eq. 2 for each temporal trait in TPP_Multi. Left y axis corresponds to the explained 

percent variation of the components while right y axis shows the temporal repeatability 

(red diamonds calculated by Eq. 3) and R2 values (black round symbols). Reprinted from 

Adak, Murray, & Anderson, 2021. 

Figure S4 a-) stacked bar plots shows the explained percent variation by each 

component in Eq. 4 for each trait. Left y axis represents the explained percent variation 

of the components while left y axis shows the temporal repeatability (red diamonds 

calculated by Eq. 5) and Rsquared values (black round symbols). b-) The table shows the 

significance values of each component in Eq. 4 for each temporal trait; ***, **, * are the 

0.001, 0.01 and 0.05 significance levels respectively while ns is not statistically 

significant. c-) shows the histograms of the breeding values  of each trait with their 

means represented by vertical black lines. Reprinted from Adak, Murray, & Anderson, 

2021. 
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Figure S5 Pearson correlation coefficients between the phenotype values at each flight 

time point of the VIs in TPP_RGB. Whiskers shows upper and lower confident intervals 

of temporal correlation based on 95 percent confidence level. Above, middle, and below 

dashed lines represent the 0.5, 0 and -0.5 temporal correlation values. ***, **, * are the 

0.001, 0.01 and 0.05 significance levels respectively while ns is not statistically 

significant. Reprinted from Adak, Murray, & Anderson, 2021. 
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Figure S6 Pearson correlation between the phenotype values at each flight time point of 

the VIs in TPP_Multi. The title separated vegetation indices according to their derivation 

from multispectral bands and RGB bands. Whiskers show upper and lower confidence 

intervals of temporal correlation based on 95 percent confidence level. Above, middle, 

and below dashed lines represent the 0.5, 0 and -0.5 temporal correlation values. ***, **, 

* are the 0.001, 0.01 and 0.05 significance levels respectively; ns is not statistically

significant. Reprinted from Adak, Murray, & Anderson, 2021.
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Figure S7 temporal pedigree values of 280 maize hybrids predicted by Eq. 2 belonging 

to each vegetation indices and Weibull_CHM in TPP_RGB of optimal management. 

Each hybrid was colored according to their yield values that are low, average, and high 

yield values representing blue, white, and red respectively in the heatmap scale. Average 

yield was 10.5 t/ha. Reprinted from Adak, Murray, & Anderson, 2021. 

Figure S8 temporal pedigree values of 280 maize hybrids predicted by Eq. 2 belonging 

to each vegetation indices in TPP_Multi of optimal management. Each hybrid was 

colored according to their yield values that are low, average, and high yield values 
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representing blue, white, and red respectively in the heatmap scale. Average yield was 

10.5 t/ha. Reprinted from Adak, Murray, & Anderson, 2021. 

Figure S9 Heatmap illustration of correlation matrix of each phenomic data used in 

phenomic prediction. A-) correlation of the phenomic data of optimal management 

derived from RGB (red-green-blue) high throughput phenotyping(HTP) platform. B-) 

Correlation of the phenomic data of stress management derived from RGB HTP plant 

from. C-) Correlation of the phenomic data of optimal management derived from 

multispectral HTP platform. D-) Correlation of the phenomic data of stress management 

derived from multispectral HTP platform. Reprinted from Adak, Murray, & Anderson, 

2021. 
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Figure S10 R-squared, root mean square error (RMSE), and mean absolute error (MAE) 

values from top to bottom belonging to each model (on the x axis) and each predicted 

variable (from left to right). Log2() transformation was applied to RMSE and MAE 
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values to show the excessive values belonging to linear model. Reprinted from Adak, 

Murray, & Anderson, 2021. 

Figure S11 Variable importance scores belonging to each predicted variable (from top 

to bottom) and model (from left to right) when TPP_RGB phenomic data was used. X 

axis shows the VIs as well as Weibull_CHM and X axis shows the flight dates as days 

after planting times. The highlighted grey columns correspond to the range of flowering 

dates in this population. Reprinted from Adak, Murray, & Anderson, 2021. 
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Figure S12 Variable importance scores belonging to each predicted variable (from top 

to bottom) and model (from left to right) when TPP_Multi phenomic data was used. X 

axis shows the VIs as well as Weibull _CHM and X axis shows the flight dates as days 

after planting times. The highlighted grey columns correspond to the range of flowering 

dates in this population. Reprinted from Adak, Murray, & Anderson, 2021. 

Figure S13 Histograms of area under curve value of each VI and Weibull _CHM for 

each genotype calculated by Eq. 6 in TPP_RGB phenomic data belonging to optimal 

management. Area under curve values were divided into four equal bin categories based 

on yield value as shown in the legend and each histogram was colored based on these 

bins. Vertical dashed lines in each histogram show the mean values. Reprinted from 

Adak, Murray, & Anderson, 2021. 
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Figure S14 Combined Manhattan plots for each VI and Weibull _CHM (based on the 

right y-axis) in TPP_RGB. Below x-axis shows the genomic position of each 

chromosome (based on the above x-axis). Left y-axis shows the probability (-log10) of 

GWAS peaks between 6 to 26. Round, triangle and squares represent the Blink, 

FarmCPU and MLMM models results respectively. Reprinted from Adak, Murray, & 

Anderson, 2021. 
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Figure S15 LD blocks around Chromosome two loci, chr2_1, chr2_2, chr2_3, chr2_4 

(below) and chr4_1 (above) loci, nearby LD blocks of these loci within the 2.04 and 4.08 
genomic bin locations and candidate gene annotations.  Reprinted from Adak, Murray, & 
Anderson, 2021. 
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APPENDIX F 

APPENDIX OF CHAPTER VII 

Supplementary Figure 1 shows the 100 days after planting window of environmental 

parameters belonging to managements (late planting; LP and optimal planting; OI) in 

2017 and 2019. Note that LP is the same as OI but shifted based on the difference in 

planting date. 
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Supplementary Figure 2 shows the hierarchical clustering results of optimal (OI) and late 

(LP) planting trials in 2017 and 2019. Hierarchical clustering dendrogram revealed that 

similarity between optimal planting (tested environment) and late planting (untested 

environment) trials in 2017 is less than those in 2019. 




