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ABSTRACT

The electronic industry has evolved at a mindboggling pace over the last five decades.
Moore’s Law [1] has enabled the chip makers to push the limits of the physics to shrink
the feature sizes on Silicon (Si) wafers over the years. A constant push for power-
performance-area (PPA) optimization has driven the higher transistor density trends. The
defect density in advanced process nodes has posed a challenge in achieving sustainable
yield. Maintaining a low Defect-per-Million (DPM) target for a product to be viable with
stringent Time-to-Market (TTM) has become one of the most important aspects of the
chip manufacturing process. Design-for-Test (DFT) plays an instrumental role in enabling
low DPM. DFT however impacts the PPA of a chip. This research describes an approach
of minimizing the scan test overhead in a chip based on circuit topology heuristics. These
heuristics are applied on a full-scan design to convert a subset of the scan flip-flops (SFF)
into D flip-flops (DFF). The K Longest Path per Gate (KLPG) [2] automatic test pattern
generation (ATPG) algorithm is used to generate tests for robust paths in the circuit.
Observability driven multi cycle path generation [3][4] and test are used in this work to
minimize coverage loss caused by the SFF conversion process. The presence of memory
arrays in a design exacerbates the coverage loss due to the shadow cast by the array on its
neighboring logic. A specialized behavioral modeling for the memory array is required to
enable test coverage of the shadow logic. This work develops a memory model integrated
into the ATPG engine for this purpose. Multiple clock domains pose challenges in the path

generation process. The inter-domain clocking relationship and corresponding logic



sensitization are modeled in our work to generate synchronous inter-domain paths over
multiple clock cycles. Results are demonstrated on ISCAS89 and ITC99 benchmark

circuits. Power saving benefit is quantified using an open-source standard-cell library.
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1. INTRODUCTION

The electronics industry has seen rapid advancement in the fabrication process
over the last several decades. The push for power-performance-area (PPA) in all product
segments has resulted into the development of bigger and more complex chips. Device
variation in advanced process nodes has posed significant challenges for achieving
sustainable yield for viable product. Achieving low defect-per-million (DPM) quality is
of utmost important in enabling high yield. DFT plays a major role in ensuring product
quality and reliability by allowing the discovery of faults in the design throughout the
product life cycle. The DFT infrastructure however impacts product PPA. This research
describes the approach of minimizing the PPA impact of SCAN test infrastructure with
the help of circuit topology-based heuristics. This work extends the observability driven
multi cycle path generation described in [4] by augmenting the method to determine the
percentage of the scan flip-flops (SFFs) in the design that can be converted into D-type
flip-flops (DFFs) in order to save area, power and delay with minimal loss in fault
coverage. The heuristics to guide the conversion consider several aspects associated with
the SFFs viz. controllability and observability of the gates in the fan-in cone of the SFF
that are driven by SFFs in their respective fan-in cones, presence of memory arrays,
presence of feedback loops in the paths, clock gating and multiple clock domains for
clock-domain-crossing (CDC) aspects.

We use at-speed path delay test in our research for characterizing circuit
performance. At speed path delay test is used to characterize a circuit for its specification

frequency of operation. The operating frequency of a design is limited by the timing
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critical path. A timing critical path has the longest delay. The longest delay is determined
by the total number of gates on the path and the total accumulated delay of individual
stages along the path. The delay of each stage of the gates varies on Silicon due to the on-
die variation of the device and interconnect properties. It is essential to check timing on
such longest paths to detect faults caused by increased delay. The path delay test method
detects faults on longest paths by launching a logic transition at a sequential flip-flop and
capturing the transition at another sequential flip-flop. A path in the delay test is defined
as a set of connected gates, starting at a SFF output, which is a pseudo primary input (PPI)
and ending at a SFF input, which is a pseudo primary output (PPO). The total delay on a
path is the cumulative delay of individual gates on that path. Hence, the path generated for
the delay test is required to be longest to increase the probability of detecting a fault. A
delay metric called Esperance [5] is utilized to generate a longest path in this work.
Esperance is defined as the upper bound of the delay of a partial path which starts growing
from a PPI and has not reached a PPO to become a complete path. The number of paths
in a circuit grows exponentially with the size of the circuit. In order of keep the path
generation tractable, the K longest paths per gate (KLPG) ATPG algorithm is used [2]. In
order to be able to control and observe these flip-flops during test, the sequential elements
need to be scannable flip-flop (SFF) cells. The D (delay or data) flip-flop (DFF) elements
in the design are converted into SFF to enable path delay test. SFF cells are larger in area,
power and delay compared to the DFF cells. Hence, the scan test capability has an area,
power and delay impact on the functional design. Depending on the test infrastructure, the

PPA overhead can be quite significant [6].



In this work, we developed heuristics based on the circuit topology to convert a
full-scan design into a partial-scan [7][8][9] design by converting a subset of the SFFs into
DFFs. Any path ending at these DFFs cannot be observed in test mode. We consider these
paths to be false paths. These false paths result in test coverage loss. Observability driven
multi-cycle path extension is used in this work to reclaim the lost test coverage as a result
of the SFF conversion.

The KLPG algorithm is implemented in C++. The experiments are run on the
ISCAS89 and ITC99 benchmark circuits. We used a 130nm open-source process design
kit (PDK) and standard cell library [10] to quantify the leakage power benefit achieved by
the SFF conversion process at zero coverage loss for these benchmark circuits.

The key contributions of this research work are summarized here. The subsequent
chapters elaborate on the items summarized below.

e Topological heuristics for SFF Conversion: Circuit topology driven heuristics
are developed in this work that are used to guide the SFF conversion process.
SCOAP metrics and Path-Based-Analysis are used to determine the optimized
subset of the SFFs in the circuit that can be converted into DFFs to maximize
leakage power saving without resulting in coverage loss. Our work demonstrates
significant leakage power saving without reducing the test coverage, at the cost of
increased pattern count which is superior compared to the work done in [7].

e Memory Shadow Logic Test in KLPG: We developed a combinational memory
model (CRAM primitive) in our work. This model is used to determine memory

behavior in the at-speed path delay test. It allows generation of at-speed paths
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through the memory arrays and to sensitize logic gates driven by the memory data
port. This work is an improvement over the memory test developed in KLPG
described in [22] where logic synthesis was required to create a gate level netlist
of the memory array for delay test.

e Modeling of Clock Domain Crossing in KLPG: Our work enables handling of
the clock-domain-crossing in path delay test over multiple cycles in KLPG. We
only model synchronous clock domains in our work. The clock domain frequencies
can be different, while the edges are phase-aligned. We do not model asynchronous
domains in our work, where no phase relationship exists between the clock
domains. Our work is an improvement over the existing KLPG algorithm wherein
only one clock domain is assumed for at-speed path generation.

¢ Implementational Improvements: A regular expression-based circuit parser was
developed in this work. This parser is used to process circuits with embedded
memory instances and generate the RTL that is compatible with the KLPG on-the-
fly. We also implemented verbose logging in this work to help prove the validity
of the implementation and provide logging capabilities found in the industry
vendor tools. Both of these items are improvement over the existing solutions in
KLPG. The existing parser had specific spacing requirements to be able to parse
RTL files. The amount of logging was not sufficient to prove the validity of the
implementation.

The dissertation is organized as following. In chapter 2, we introduce the path

delay test and associated definitions. This chapter provides the background for our work
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and also alludes to the prior work done in this field. Chapter 3 elaborates on the motivation
of the research work and the implementation of the topological heuristics. Chapter 4
discusses the experimental results and chapter 5 concludes the research with directions for

future work



2. PATH DELAY TEST

In this chapter we introduce the basic concepts of the path delay test. We first
define the nomenclature used in delay tests. The KLPG algorithm is summarized in a
flowchart. The multi-cycle observability driven path extension concept is elaborated with
the help of illustrative examples. The definitions serve as the background of the heuristic
driven SFF conversion process described in the next chapter.
2.1. Path Delay Test

Delay test is used to characterize the performance of a circuit. The objective of the
delay test is to discover delay faults in a circuit. Delay faults cause degradation in the
circuit performance. The degradation in performance causes the delay tests to fail against
the specification frequency targets. The delay fault can be modeled in various ways. We
use the path delay fault model [11][12][13] in our work. Both localized and distributed
delay faults can be detected using this model. The delay is measured on a path in the
circuit. A path is defined as a set of connected gates between two sequential elements in
one sequential stage of the circuit. The starting point of a path can be a primary input (PI)
or a pseudo-primary input (PPI) which is the output of a sequential element, which are the
flip-flops (FF) in the circuit. The end point of a path can be a primary output (PO) or the
input of a FF. The delay test is a SCAN based test [14]. All the FFs in the design are
converted into SFFs. These SFFs provide direct controllability and observability of the

internal nodes in a design during the test mode. We consider the Pls in a design to be held



constant and the POs ignored during the test, as is the case in a low-cost tester setup. The
paths generated in our work start at a PPl and end at a PPO.

A logic transition is launched by the PPI and captured by the PPO. The input of a
gate on which such transition appears is called an on-path input. All the other inputs of the
gate are called the off-path inputs. For the launched transition to traverse through the gate,
all the off-path inputs need to be held at non-controlling values. This requirement is called
path sensitization. The path is said to have a delay fault if the arrival time of the transition
at the PPO exceeds the specification time. The delay of the path is the accumulated stage
delay of each gate on that path. It is intuitive that the longest paths are more susceptible to
delay faults. These long paths are termed timing critical paths. These paths determine the
maximum attainable frequency of a design. We generate such longest paths in our path
delay test. The number of paths in a circuit grows exponentially with the circuit size.
Identification of longest sensitizable paths through all the gates becomes extremely
challenging. In order to limit the search space and improve the tractability of the test, K
Longest Paths per Gate (KLPG) are generated. We can test local delay faults caused by a
slow gate and globally distributed delay faults caused by process variation on a chip.

We summarize some of the key concepts in the path delay test in the following
section.

2.1.1. Delay Test Problem
Figure 2.1 illustrates the delay fault in a combinational circuit. A set of vectors vi

and v are applied at the inputs (x1, X2, X3) of the circuit.
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Figure 2.1 Delay Fault in a Circuit. Reprinted from [15]
The vector v is called the initialization vector and the vector v; is called the test vector.

The (v1, v2) vector pair launches the transition at the inputs for the delay test. The launched
transition at the input of the circuit traverses through the gates in the design. The resulting
logic transition can be observed at the output (y) of the circuit. The specification delay of
each of the gates is written inside the gate symbols. The accumulated delay of the longest
path in the circuit is 7. The falling transition launched at the input x2 at t=0, generates a
rising transition at the output y at t=7. If any of the gates on this path has additional delay,
the value of the output at t=7 will remain zero. If the value of y is compared against the
specification value at t=7, the test will fail.

In industrial circuits, the logic connectivity is much more complex. The delay of
the critical path depends on the fan-in and fan-out of the logic gates, loading at every stage,
physical routing characteristics, device variation, etc.

Figure 2.2 illustrates a generic sequential stage in a circuit. FF1 and FF2 form the

single cycle sequential stage.
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Figure 2.2 Sequential Logic Stage

The logic gates U1, U2, U3 and U4 represent the gates on the critical path. The
fan-in logic cones of U2 and U3 gates are depicted as logic clouds in this figure. The clock
path is represented using generic buffers and logic cloud in this figure. In order for this
circuit to work correctly, the delay of the critical path cannot exceed the cycle time and

setup constraints of the circuit. Figure 2.3 illustrates the delay fault scenario for this circuit.
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Figure 2.3 Timing Diagram for Sequential Operation



The data path delay from Q1 to D2 is determined by the gates delays of U1, U2,
U3 and U4. If the rising transition at D2 arrives before the setup time of FF2 in the
capturing cycle, the value of Q2 is captured correctly. This is depicted by the earlier
transition on the D2 net in the figure. Any delay degradation along the critical path can
push the rising transition on the D2 net which is depicted by the rising transition in red. If
the rising transition reaches FF2 later than its setup time, the correct value will not be
captured at Q2 which is depicted by the red line representing the logic zero. In this

scenario, the sequential stage is said to have a delay fault.

2.1.2. Path Sensitization

A path can be tested for a delay fault only if it can be sensitized. For a logic
transition to propagate through a gate, the off-path inputs of that gate need to be set to
non-controlling values. For example, in Figure 2.2, the logic cone of U2 needs to set the
off-path input of U2 to a logic ‘1’ for the transition launched by FF1 to traverse through

it. Figure 2.4 illustrates a scenario wherein the critical path cannot be sensitized.

Ul

d
) O BE

Figure 2.4 Path Sensitization

The critical path in the circuit in Figure 2.4 is from the input a through net c to the

output d. In order to test the path a-c-d, the side input b of the gate U1 needs to be set to
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logic ‘0’ and the same input b needs to be set to logic ‘1’ for the gate U2. This requirement
cannot be fulfilled since b is the common net between the gates U1 and U2. Hence the

path a-c-d cannot be sensitized.

2.1.3. Robust and Non-Robust Path Delay Test

A path in delay test can be classified as “robustly testable” or “non-robustly
testable” depending on the sensitization criterion. Delay faults can be present on multiple
paths in a circuit. If the delay fault on a path can be tested irrespective of any delay faults
on any other paths, the test is termed as robust. If the delay fault on that path can be tested
only in absence of any other delay faults in the circuit, the test is termed as non-robust.
2.2. SCAN based Delay Test

SCAN based delay test is one of the most widely used delay test methods. In SCAN
based test, all the FFs in the design are converted into SFFs. A SFF is commonly formed
by adding a 2:1 multiplexer (MUX) on the data input pin D of a delay FF. The select signal
of the MUX is called Scan Enable (SE). The inputs of this MUX are called Scan-In (SI)
and Data-In (DI). The output of the SFF is called Q or Scan-Out (SO). The structure of a

SFF is illustrated in Figure 2.5.

Figure 2.5 SCAN FF Cell. Reprinted from [16]
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The use of these SFF cells results in PPA impact. The additional devices in the
MUX result in more area, power and delay.

The SFFs in the circuit are connected in a daisy chain fashion called SCAN chain.
The SO of an SFF is connected to the Sl of the next SFF in the chain. The DI input is used
in the functional mode to drive functional data into the SFF. Test vectors are driven from
the Sl input in the test mode. The low frequency test mode clock called scan clock is used
during the scan test. The SE signal is asserted to enable the scan mode test. The scan

architecture is illustrated in Figure 2.6.

Xi — Y
PI{ Xo ——> }PO
X;— Combinational logic —> Y2
ri{ [ — | }pPo
SFF, SFF, SFF,
— DI — DI DI
S sl aQ sl Q s Q SO
—{ SE — SE —SE
il e el s
SE
oK 1 I |

Figure 2.6 SCAN Architecture. Reprinted from [16]

The SFF outputs provide direct controllability to the internal circuit nodes and act
as PPIs. The inputs of the SFFs provide direct observability to the internal circuit nodes
and act as PPOs. The circuit operates in three modes. Normal, Shift and Capture. The SE
signal is asserted first to put the design in test mode. The test vectors are shifted into the
SFFs over several low-speed scan clock cycles. Once the vector is loaded into the chain,

SE is de-asserted to put the circuit into functional or normal mode of operation. The test
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vector is applied to the combinational logic of the circuit from the PPI inputs in this mode.
An At-Speed functional clock cycle is applied to generate the response of the test vector.
SE is asserted again to put the circuit back into test mode. The response of the circuit is
shifted out from the scan chain over several scan clock cycles.

Various SCAN architectures exist other than the Muxed-D scan design described
above. We use Muxed-D scan design in our work. Hence, we limit our discussion only to
this architecture.

2.3. Clocking Scheme in At-Speed Scan Test

The design under test (DUT) is tested at the specification frequency in the At-
Speed Scan Test. More than one clock domain can exist in a DUT. The clock domains can
either be synchronous or asynchronous with respect to each other. Two clock domains
are classified as synchronous if the triggering edges of the clocks from these domains
can be precisely aligned. In case this alignment is not possible, the clock domains are
said to be asynchronous.

Two primary clocking schemes for testing inter- and intra-clock-domain at-speed
delay faults are described below.

2.3.1. Launch On Shift (LOS)

In this clocking scheme, a capture clock pulse is applied right after the last shift
clock pulse. The capture clock pulse is clocked at the functional frequency. This scheme
requires the SE signal to switch at the functional speed. This poses significant challenge

in meeting the timing on the SE signal. Figure 2.7 illustrates this clocking scheme.
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Figure 2.7 Launch on Shift Clocking Scheme. Reprinted from [16]
2.3.2. Launch On Capture (LOC)

In this clocking scheme, two consecutive capture cycles are used to launch the test
vector and capture the response respectively. This clocking scheme does not impose any
stringent timing requirement on the SE signal, since dead cycles can be inserted to give
the SE signal time to settle. The SE signal can be de-asserted after the test vector has been
shifted into the scan chain. It is required to be asserted again only after the double capture
cycles. This clocking scheme typically requires more test vectors and provide relatively
lower test coverage compared to the LOS scheme. However, due to the relaxed timing
requirement, LOC is the preferred clocking scheme for high-speed circuits. Figure 2.8

illustrates the LOC clocking scheme.

Launch
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" Shift Shit Dead Shift
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=

Figure 2.8 Launch on Capture Scheme. Reprinted from [16]
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2.4. KLPG Algorithm

The total number of paths in a circuit grows exponentially with the size of the
circuit. In order to maintain the tractability of the path delay test, the KLPG algorithm
aims at generating K longest paths through a gate or a line in a combinational circuit. A
complete path starts at a Pl or a PPl and end at a PO or a PPO. In this work, we focus on
the paths between a PPl and a PPO. A path is called a partial path that has started at a PPI
but has not yet reached a PPO. Both rising and falling transition tests are performed. A
timing metric called Esperance (French for “hope”) is used to calculate the upper bound
of the delay of a partial path. Figure 2.9 illustrates the concept of growing the partial path

in KLPG.

Figure 2.9 Partial Path Growth. Reprinted from [16]

A path is generated by traversing through the fan-out cone of the logic gates in a
recursive manner. In each iteration, one gate is connected to the output of the gate in the
previous stage until a PPO is reached. In Figure 2.9, the traversal starts at gate go. Only
the gate gi is connected to the gate go. Hence, the fan-out (FO) of this gate is 1. The delay
of the stage go-gi is 5. The accumulated delay of this partial path becomes 5 at this stage.

In the next iteration, the gate g; is added to the partial path. The FO of gate g; is 2. In the

15



next iteration, the gate gr is added to the partial path instead of the gate gs because the
likelihood of the partial path that started at go becoming a longest path is more if gr is
added to the partial path since the stage delay of gj-gr is more than the stage delay of gj-gs.
The partial path growth continues from the FO of the gate gr in the same way described
above until a PPO is reached.

The flow chart of the KLPG algorithm is depicted in Figure 2.10. The KLPG
algorithm is divided into three main portions. Path initialization, Path growth and Path
justification. This work concentrates primarily on the path generation aspect of the path

delay test.

Preprocessing
v

Initialize partial paths from
launch points

»la

Pop the partial path with the Insert in the (sorted)
maximum esperance partial path store

Extend the partial path with

Update esperance
one more gate

Apply constraints and perform Apply false path
direct implications elimination techniques

N
Complete path?
Y
N L
Y
Enough paths?

Figure 2.10 KLPG Path Generation Flowchart. Reprinted from [2]

—| Delete the (partial) path

Y
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The Verilog of the circuit is read by a parser. The gate connectivity is stored into
the data structure. SCOAP metrics [20] are calculated for the gates in the design. The gates
are levelized [15] based on their distance from the Pl and PPI to ensure proper calculation
of the PERT delay [15] and the SCOAP metrics. The distance of a gate from the PI or PPI
is calculated as the maximum of distances of the gate from the PI or PPI through all its
inputs. Combinational Controllability (CC) and Observability (OBS) metrics are
calculated for all the gates. The Controllability is a measure of how easy it is to set the
logic state of a node in the circuit to ‘0’ or ‘1°. The Observability is a measure of how easy
it is to observe the logic state of a node in the circuit. The CC values are annotated to the
input pins of the gates and the OBS values are annotated to the output pins of the gates.
The CC increases with the increasing distance from the PI or the PPI. The OBS increases
with the increasing distance from the PO or the PPO. The CC of PI and PPI is ‘1°. The
OBS of PO and PPO is ‘0’. These metrics are calculated for the gates based on their rank
in the circuit. Lower-rank gates are processed for these metrics first before the higher-rank
gates in the design.

The path generation step begins after the circuit initialization step is complete. The
fan-out each of the gates is traversed recursively in this step. In each iteration of this
traversal, one gate is added to the output of the gate in the previous stage to grow the
partial path. The Esperance metric is used to ensure that the longest possible paths are
generated in this step. A partial path pool is maintained to store the partial paths during
the growth phase. This pool is sorted in the order of the calculated Esperance value. The

partial path with the maximum Esperance value is popped in each iterative step and a new
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gate is added to it to grow the path further. If a gate has multiple fan-outs, the partial path
splits at this point. With the addition of the new gate, Esperance is calculated, and the path
pool is sorted accordingly. Logical constraints are updated each time a new gate is added
to the partial path. In order to propagate the launched transition through the newly added
gate, non-controlling values on the side inputs are calculated. The logic sensitization
constraint is propagated throughout the circuit. If logical conflict prevents the partial path
to be sensitized, the path growth stops, and the partial path is discarded from the pool.
The next partial path with the maximum Esperance value is popped out from the pool and
the path growth continues in the same manner. When a PPO is reached during the path
growth process, the partial path is converted into a complete path and the path growth
process ends for that partial path. The path growth continues until enough paths are
generated which is bound by the value of K.

Justification is performed on the complete path by assigning logic values to the
gates on the path. The miniSAT [17] solver is used in this work for this purpose.
Compaction is run to reduce the number of the test patterns. Both static and dynamic
compaction can be used. The static compaction is the faster approach because it does not
require any circuit analysis. The dynamic compaction on the other hand has longer run
time due to the requirement of dynamically making sure that a pattern can test the set of
generated paths. The dynamic compaction also requires a pattern pool to be maintained
for the analysis. It however produces fewer patterns.

The flowchart described above is used to generate at-speed paths over single at-

speed cycles. Switching from the functional mode to the test mode causes high current
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demand from the SE signal switching. This can cause voltage droop in the circuit. The
voltage droop causes circuit delay degradation causing false test failures. A number of
low-speed cycles termed preamble cycles [18] are added before the at-speed test begins to
ramp the power supply currents back up to the functional level. This approach helps
eliminate non-functional states in the design. This test methodology is called pseudo
functional KLPG (PKLPG) [2]. In this research, we do not use any preamble cycles,
deferring them to future work.
2.5. Observability Driven Path Extension

During the scan test mode, the SFFs capture the logic response from the DUT to
derive test pass/fail. If any at-speed path ends at a DFF, the captured response cannot be
observed in the test mode. We consider these as false paths. The false paths result in
coverage loss. The multi-cycle path generation approach described in [3][4] utilizes the
observability metric to extend the at-speed paths that end at a DFF, over multiple lower
than at-speed cycles, called coda cycles, such that they terminate at a SFF element.

The objective of the at-speed cycle path generation is to generate longest paths.
The type of the capturing flop does not matter in this cycle. In the coda cycles, the OBS
metric is used to extend the path on an SFF. The first launching flop in these cycles need
not be an SFF. The at-speed paths captured at a DFF are extended through the most
observable fan-out cone to an SFF such that the data captured by the DFF can be observed
in the test mode. The extension of the at-speed paths onto SFFs regains the lost coverage.

The clocking scheme used for the multi cycle-based path extension is illustrated in

Figure 2.11.
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Figure 2.11 Multi Cycle Path Generation Clocking Scheme

The use of the coda cycles for path extension does not require any additional test
hardware. On-chip clock generators produce test mode clocks. We assume that no
additional design constraints are required in order to generate the coda cycle frequency.
The main goal of the coda cycles is path extension. Any existing lower than at-speed cycle
frequency can be used for this purpose. For simplicity, coda cycles can use the scan shift
frequency.

Figure 2.12 illustrates the OBS driven path extension for a generic circuit. The

combinational logic in a pipeline stage is depicted with a logic cloud.
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Figure 2.12 Multi Cycle Path Growth in KLPG. Reprinted from [4]
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The path generation in this example starts at the launching SFF at the left in the
figure. The capture FF is a DFF. This DFF fans out to three logic cones. All the FFs in the
upper and the lower fan-out cones are DFFs over all of their sequential depths. The FFs in
the middle fan-out cone are SFFs at a sequential depth of one, two and three. If a one coda
cycle clocking scheme is used, the at-speed path can be extended to the first SFF in the
middle fan-out logic cone. If this SFF would have been DFF, applying a second coda cycle
would extend the at-speed path to the second SFF in that logic cone. No coda cycle scheme
would be helpful in extending the at-speed path through the top and bottom fan-out logic
cone. The OBS driven path extension comprehends the likelihood of finding SFFs in the
fan-out logic cones in the circuit and attempts to traverse through the viable fan-out logic
cones only.

It should be noted that the efficiency of the coda cycle path extension depends on
the circuit topology. The path extension over multiple cycles needs to satisfy the logical
implication and justification related constraints. Although path traversal over multiple
coda cycles can discover SFFs in the fan-out cones, if the extended path cannot be
justified, the at-speed path cannot be extended through that fan-out cone. This scenario
would still result in coverage loss due to the presence of the DFF cells as the at-speed

capturing FFs.
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3. HEURISTIC BASED SFF CONVERSION FOR POWER RECOVERY

In this chapter, we describe the topological heuristics for the SFF conversion. We
first present the prior work. We describe the topological dependency of the test coverage
loss as a result of the SFF conversion. We then elaborate on the path-based analysis (PBA)
method and Sandia Controllability Observability Analysis Program (SCOAP) based
heuristics developed in this work. Later, we elaborate on the memory shadow logic test
and clock domain crossing (CDC) methods developed in this work.

3.1. Prior work

Partial scan architecture has been described in various literature. The work done
in [18] pre-selects the flip-flops in the design to be converted into SFFs. The process is
iterative and guided by fault coverage. The results show very high run time in order to
determine the right percentage of SFFs in the design on small benchmark circuits.
Application of this approach on large circuits is not practical. Other partial scan
approaches exist where multiple clocks are used to control the state of the DFF cells during
test. The work in [19] describes a method of achieving partial scan without the use of
multiple clocks. The work deploys a cycle breaking technique. However, it does not
include scenarios where cycle breaking is not required. Hence the solution is effective on
a specific circuit topology. The work done in [20] discusses topological checks that are
used to convert SFFs into DFFs. An SFF ranking procedure is described in [21]. This work
uses the LOS scheme for transition fault test using a commercial ATPG tool. A significant

percentage of the SFFs could be converted in this work, however, it reports sizable pattern
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count increase and coverage loss with increasing SFF conversion. The notion of partial
scan was originally introduced to incorporate as many SFFs in the design as possible
within a limited die area. It did not consider the power saving aspect of SFF conversion.
Our research focuses primarily on the PPA benefit of minimizing the scan test overhead
and demonstrates power saving while minimizing the test coverage impact.
3.2. Heuristic Driven SFF Conversion
3.2.1. Topological Properties of SCAN Design

The OBS driven multi-cycle path extension mechanism described in the previous
section can generate complete paths terminating at SFFs. For a given clocking scheme, all
the intermediate FFs on such paths can be DFFs. We utilize this property to convert a
subset of the SFFs in a design into DFFs. As mentioned before, the path extension over
multiple coda cycles does not guarantee test coverage loss recovery unless the extended
path can be justified. The logical constraints restricting the efficiency of the coda cycle-
based scheme is a strong function of the circuit topology. We elaborate the concept with

the help of Figure 3.1.
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Figure 3.1 Topological Characteristics in a Generic Circuit

We use the notation SFF" to denote multiple SFFs present in the fan-in/fan-out cone of the
logic clouds in the figure. We can observe that a large number of paths launched by the
SFF* in the top left corner of the figure terminate at SFF2 in this circuit. For SFF3 and
SFF4 on the other hand, only one at-speed path can be captured by SFF3 and SFF4 that is
launched by SFF1. We assume that all the complete paths can be justified through the
logic clouds. Since the circuit is full scan, we can achieve 100% test coverage.

If SFF3 or SFF4 is converted into a DFF, the test coverage impact would be small.
However, if SFF2 is converted into a DFF, it would result in significant coverage loss.
This clearly illustrates the dependency of the test coverage on circuit topology. The PBA
method developed in this work ranks all the SFFs in the design based on the coverage
impact resulting from their conversion, in order to guide the SFF conversion process to

minimize the coverage impact.
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If SFF3 and SFF4 are converted into DFF, we can apply one coda cycle to extend
the paths to SFF6 and SFF7 respectively. We represent these paths with blue arcs in the
figure. The justifiability of these paths would of course depend on the logic cloud on the
extended paths. If SFF6 and SFF7 are also converted into DFFs, a single coda cycle
scheme will not be able to reclaim the lost test coverage resulting from the SFF3 and SFF4
conversion. The number of FFs in the fan-out cones of SFF2-SFF4 is one in this figure. In
practical circuits, this number will be more. With the increasing breadth of the fan-out
cone of the SFFs, the likelihood of finding an SFF in subsequent stages increases
significantly. The coverage recovery may not correlate with the fan-out breadth due to the
logical constraints and inability to justify the paths over multiple cycles.

The following figure illustrates the issue in path justification using a simplified

Logic
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Figure 3.2 Topology Dependent Path Justification

example.

Path1 SFF2

It can be observed in Figure 3.2 that in order to justify the path from SFF1 to SFF2,
the off-path input of the AND gate needs to be held at logic ‘1’ and the off-path input of

the OR gate needs to be held at logic ‘0’. Both of these inputs are connected together and
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driven by the logic cloud. Clearly, both the gates cannot be sensitized at the same time. If
the AND gate is sensitized by setting a logic ‘1’ at its side input, Pathl would not be
justified. Assuming that the AND gate in the fan-in cone of SFF3 can be sensitized, only

Path2 can be justified in this circuit.

3.2.2. SFF Conversion Metrics
We elaborate on the SCOAP based SFF conversion method in this section using a

synthetic benchmark circuit in Figure 3.3.
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Figure 3.3 Synthetic Benchmark Circuit

Multiple rounds of SFF conversion are carried out to optimize the SFF cell
conversion process. In the first round of conversion, we perform backward traversal from
the input of all the SFFs through all the fan-in lines in the search of other SFFs. During
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this traversal, the controllability of each node is calculated as a guide to determine if an
SFF found during the backward traversal should be converted into DFF. During the path
delay test, off-path signals at a gate need to be held at non-controlling values to sensitize
the path. If the off-path signals are driven by DFFs, we lose the ability to control them in
test mode, causing coverage loss. Along with the controllability overhead, we use fan-in
threshold to control the conversion process as well. With a higher threshold, a larger
number of fan-in gates can be reached during the traversal.

The dotted line in Figure 3.3 represents two scenarios. When the line exists, a
feedback loop from the output of the SFF marked ‘2’ (U50006) to its input through the
gate AND gate (U6) marked ‘3’ exists. We use a fan-in threshold of 2 for this illustration.
In the following example, the backward traversal starts at the input of the SFF U50006
and finds the AND gate U6. When the feedback loop is absent, the traversal proceeds to
the input of U6 since the fan-in threshold is set to 2. Through the inputs of the gates U13
and U14, U50001 and U50002 are found. These SFFs are marked as viable SFFs that can
be converted into DFFs. The SFFs U50003, U50004 and U50005 can also be reached
starting from U50002. The traversal however stops at the fan-in cone of the gate U13 since
the fan-in threshold is set to 2.

The fan-in threshold models the controllability overhead for a node in the circuit.
It assumes a direct correlation between the fan-in width and the controllability of the node.
This is more pessimistic compared to the SCOAP controllability metric. We combine the
controllability metric with the fan-in threshold to determine whether the backtracking

should continue through the input of a gate. A high fan-in gate with low controllability
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values for its inputs can pass the heuristic threshold compared to a low fan-in gate with
much higher controllability values for its inputs. The controllability of the inputs of gate
U7 is smaller than the inputs of gate U6. The fan-in depth of U7 is however larger than
U6 in the above traversing example. When the controllability metric is combined with the
fan-in threshold, the traversal result will be altered for the above example. A large fan-in
width gate is likely to have a large number of SFFs in its fan-in cone. With increasing fan-
in depth of such a gate, even a larger number of SFFs can be reached during the backward
traversal from the inputs of such a gate. Converting the SFFs in such a fan-in cone would
severely impact the test coverage. The heuristic would mark such SFFs in the viable SFF
pool and not convert them into DFF.

After the first round of the SFF conversion is complete, subsequent rounds of
checks are performed to reconvert a subset of the SFFs to address specific scenarios. In
Figure 3.5, if the feedback loop from the output of U50006 to its input through gate U6
exists, U50006 will be excluded from the conversion list. The feedback loop in this figure
is a simplified representation of a real-life circuit wherein the feedback logic can be a lot
more complex and involve much wider and deeper logic cones.

It can be observed that U50001-U50005 in the example circuit act as launch-only
SFFs. Converting these into DFFs would severely impact the test coverage. Hence, we
exclude these SFFs as well. Other SFFs can be explicitly excluded from conversion due

to design intent, such as debug.
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Each of these reconversion steps can be individually controlled in the
implementation of this work. It helps configuring the ATPG tool based on the specific test
methodologies set by the design and test team.

In order to limit the search space in the SFF conversion process, we generate a
connectivity matrix to store SFF connectivity information in the circuit. The connectivity

matrix of Figure 3.3 is depicted in Figure 3.4.

N S| un|lo|lr~|0| 9
o|lo|lolo|lo|o|lo|o |G
|| o|o|o|c|o|S
Q|| o|o|o|o|o|S
D || Db|d|n|v|!d|!;m
OD|D|D|D|D|D|D|D|>

us0001f0| 0|0 0| 0|0]0|0 O

us0002/ 0| 0|0 000|000

us0003/ 0| 0|0 0|00 ]0]0 0

us0004/ 0| 0|0 0|00 ]0|0 O

us00050 | 0|0 000|000

usoooe| 111|111, 0;0;0,0
usooo7/ 00|11/ 1/,0]0;00
usooogl 111|111, 1,0;0,0

usooo9| 0011410100

Figure 3.4 Connectivity Matrix

A value of one in a box indicates that the SFF in the row index position can be
reached from the SFF in the column index position, e.g., U50008 can be reached from
U50001 through U50006, whereas U50007 can be reach from U50003 through U50005.
The entire row for the SFFs U50001 through U50005 is ‘0’ in the connectivity matrix.
This signifies that there are no SFFs in any of their fan-in cones. This indicates that these

SFFs are launch-only SFFs. These SFFs can be marked as launch-only by referring to this
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matrix. Similarly, U50008 and U50009 do not have any SFFs in their fan-out cones. This
can be derived from the entire column of zeros for these two SFFs in the connectivity
matrix. For a particular clocking scheme, if these two SFFs are converted into DFFs, test
coverage loss can be quite high since no further path extension is possible from the output
of these two SFFs. The conversion heuristic can use this information and exclude these
two SFFs from the conversion pool.

The connectivity matrix is further enhanced to store a distance attribute. This
attribute represents the sequential depth between a pair of SFFs. This attribute is utilized
by the PBA process to perform a what-if analysis to determine the optimal clocking
scheme for a circuit. E.g., the distance of U50007 and U50009 from U50005 is one and
two respectively. For a specific clocking scheme, the capturing SFF cannot be converted
into DFF. For a launch SFF, all the SFFs that can potentially be the capturing SFF for the
particular clocking scheme can be determined from the connectivity matrix. If the adjacent
column has a non-zero value, the clocking scheme can be modified to add an additional
coda cycle and extend the paths to the next SFF in the pipeline while converting the SFF
into DFF, which was the capturing SFF in the earlier clocking scheme. This analysis is
done during the PBA mode to determine the optimal clocking scheme to achieve
maximum SFF conversion.

In summary, the SFF conversion heuristics evaluate the impact of converting an
SFF on the test coverage using the SCOAP metric and the PBA method. The OBS driven

multi-cycle path extension reclaims the lost coverage by extending the at-speed path over

30



the coda cycles. The efficacy of the entire scheme in maximizing the SFF conversion
while minimizing the coverage impact is heavily dependent on the circuit topology.
The SFF conversion procedure is summarized with the help of pseudocode

depicted in Figure 3.5.

procedure HeurConvertSFF
begin

InitializeSFF Matrix;

foreach SFF;
begin
SFF Traverse(SFEF});
end

Annotate SFFs;

SFF Convert;
SFF ReConvert

end

Figure 3.5 SFF Conversion Pseudocode

The main procedure HeurConvertSFF calls all the subsequent procedures in the
code. The connectivity matrix is initialized first using the InitializeSFFMatrix procedure.
The backward traversal procedure SFF_Traverse is called on all the SFFs in the circuit.
All the SFFs are annotated with their topological and circuit intent attributes using the
Annotate_SFFs procedure. The multi-round conversion procedure SFF_Convert is called

followed by the reconversion procedure SFF_ReConvert.
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The pseudocode for all the procedures are described in Figure 3.6.

procedure InitializeSFF Matrix
begin
Connectivity_Matrixnm = 0;
end

procedure SFF_Traverse(Gate;)
begin
Jforeach fan-in net of Gate;
begin
if (fan-in Gate; == SFF)
Connectivity Matrix[i][j] = CalDistance(i,j);
else
SFF Traverse(Gatej)
end
end

procedure CalDistance(i,j)
begin
return(Number of FFs in fan-in cone between |
SFFi D-pin and SFF; OQ-pin + 1)
end

procedure Annotate SFFs
begin
Joreach SFF;
begin
Determine if self-loop exists
Determine if the SFF is Launch-only FF
Read SFF Attribute File and set IsProtected flag
end
end

procedure SFFF Convert
begin
Jforeach SFF;
Fanout&SCOAP _driven_conversion(SFI;)
PBA_driven conversion(SFFi)
end

procedire Fanout&SCOAP _driven_conversion(SFF;)
begin
foreach input pin of the driving Gate(SFF;)
begin

iftFanInThr < ThrFanin && Cntrl < ThrCntrl )
begin
Increment current fan-in depth traversed
Gate Traverse(Driving Gate of SFF;)

end

procedure Gate_Iraverse(Gate;)
begin
Joreach input pin pj of Gatei
if(Gate driving p; == SFF)
SFF _doConvert(Gate driving p;)
else
begin
iftFaninThr < ThrFanin && Cntrl < ThrCntrf )
begin
Increment current fan-in depth traversed
foreach input pin of Gate driving p;
Gate Traverse(Gate driving p;)

end
end
end
procedure PBA_driven conversion(SFI;)
begin

Jfor 0..n Coda Cycle Clocking Scheme
Count #-paths captured by SFF: (LC)
Count # paths SFFi is present as intermediate SFF; (1)

Hr=LC/A
iftHr < ThresholdHg)
SFFE_doConvert(SFFi)
end

procedure SFF_doConvert (SFFj)
begin
ifflsProtected == False)
begin
set IsSFFFlag = False
set ConvertedFlag = true
end
else
return
return

end

procedure SFF_ReConvert
begin
foreach SFF;
begin
iftConvertedFlag == True)
begin
if{Self Loop || LaunchOnlyFF || SFF:IsProtected)
IsSFFFlag = true
end

Figure 3.6 Pseudocode for SFF Conversion Procedures
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3.2.3. Memory Shadow Logic Coverage

Memory arrays are instantiated in a circuit as hard macros. A large percentage of
the chip area can be attributed to the embedded memory arrays. The ATPG tool needs to
handle the memory array behavior differently from a traditional logic gate. Unlike a
combinational logic gate, the memory array has sequential behavior. Several different
forms of memory arrays exist, e.g., SRAM, DRAM, Register File, ROM and CAM. These
memories can have single or multiple read and write access ports as well. The memory
arrays can either be a single or multi-clock cycle latency design. Depending on the
sequential depth of the memory, number of ports and the associated cross-port logical
constraints, the interface pins for the memory need to be controlled accurately during the
test. Figure 3.7 illustrates the problem statement of the path delay test in the presence of

memory arrays in the circuit.
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Figure 3.7 At-Speed Path Generation through a Memory Array

A potential longest path may start at any of the SFFs on the input side of the
memory array in the figure. The path traverses through the fan-out cone of these SFFs and

a subset of them may terminate at one of the memory inputs. Unlike a logic gate, the ATPG
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engine cannot determine the output value from the memory. In order to transfer the
transition at the input of the memory array to the output port of the array, the state of the
input ports and the functional behavior of the memory need to be defined accordingly.

The combinational logic that feeds into and out of a memory from scan cells is
called the shadow logic. When the memory is modeled as a ‘black box’, all of the logic
values that feed the memory are lost, and the outputs of the memory are unknown values.
As a result, the logic between the scan cells and memory cannot be tested. It is said to be
in the shadow of the memory.

Prior work in [22] used logic synthesis to generate a gate level representation of a
memory array. It used the gate level netlist of the memory to generate longest paths
through the memory. This work requires running a logic synthesis tool on the memory
RTL, which is not an integrated part of the ATPG engine. This synthesized netlist greatly
increased the size of the test model. Several software-based [23][24] and hardware-based
[25][26] memory test solutions exist in the literature. In our work, we develop a behavioral
model for the memory that is used to test the longest paths that terminate at the input of a
memory array and also to sensitize the gates in the shadow of the memory array (its output
logic-cone) to enable testing of the longest paths that pass through the gates driven by the
memory output pins. This approach can be integrated with the existing DFT infrastructure
and does not require additional hardware support. Use of LOC clocking scheme along
with enhanced scan [27] technique can achieve transition fault coverage for the memory
shadow logic. Utilizing bypass MUX at the output of the memory array circumvents the

coverage loss for the shadow logic. All of these techniques have additional test overhead.
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The behavioral modeling approach in our work minimizes the memory test overhead
without requiring any additional DFT capabilities.

We implemented a new regular expression (regex) based RTL parser to process
the memory instantiation in the design. The regex parser is a lot more generic compared
to the existing parser in the ATPG code and can process generic text with varied number
of white-spaces and delimiters in the design.

The memory test can be divided into two modes: RAM Sequential Test and Output
Shadow Logic Test. In RAM Sequential Test mode, the behavior of the memory array
instance in the RTL is modeled using a combinational logic representation, synchronized
with the memory clock. We assume single cycle latency for the memories in our work.
Only single ported Register File Array memories are considered in the experiments. The
memory model is called a CRAM (combinational RAM) primitive. This model
structurally defines the memory. During the path generation step of the test, the partial
path that reaches a memory input port, can be extended through the CRAM structure. The
red colored arc depicted in Figure 3.7 is modeled with multistage logic defined by the

behavior of the memory. A generic functional block diagram is illustrated in Figure 3.8.
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Figure 3.8 Memory Array Block Diagram

It is assumed that the input and output FFs are internal sequential elements and are
not accessible to the scan chain in the design under test. The address and enable FFs are
shown at the input of the decoder logic. The memory core block represents the two-
dimensional bit-cell array along with read data path logic including a sense amplifier or a
domino stage. Figure 3.8 depicts the block diagram of a single ported memory. For
multiple ports, the address, enable and data signals are replicated over all the ports in the
design. The test methodology for a multiport memory is similar to the process described

in this section. An additional set of signal constraints and clocking requirement may exist
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to process the data from all the ports of the memory. The CRAM primitive for the memory

array in Figure 3.8 is illustrated in Figure 3.9.
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Figure 3.9 Memory CRAM Primitive

The boundary of the CRAM primitive interacts with the FFs in the interface of the
memory. It can be observed that the sequential elements from the block diagram of the
memory are replaced with combinational delay chains inside the CRAM primitive. These
delay chains represent the internal sequential path delays of different memory sub-blocks
in their functional mode. The CRAM model is divided into two modules; the address-
decode and the memory-core. The address decode module consists of the decoder blocks
used to generate the read and write word-line signals. These word-line signals are

connected to the memory-core module. The memory-core module consists of the data-
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path logic. Buffer only representation of the bit cells is used in the figure for generality
and ease of depiction. The paths from the data-in pins are considered for the write mode
and the data-out pins are considered for the read mode. The word-line signals from the
decode module are combined with the read/write path logic to generate the bit-cell
selection logic for the corresponding mode of operation. The DFT infrastructure present
in the test suite needs to comprehend memory test methods developed with the CRAM
primitive to be able to control the read and the write operations on the memory array to
setup the path delay test through and around the memory array.

In the RAM Sequential Mode, the paths are generated through the memory. The
DFT associated with the memory array is used to put the memory into test mode. It also
controls the write and the read from the memory array to model the transition propagation
through the memory. This work uses a unit delay model for path generation. The delay
through the memory array is modeled as a multiple of the number of gate delay stages in
the CRAM model.

In the Output Shadow Logic Test mode, the memory array is used to sensitize the
gates in its fan-out cone to enable the paths passing through those gates. Unlike the RAM
sequential mode, the shadow logic test mode does not generate any path through the
internal data-path of the memory. Hence the CRAM primitive is used to determine the
logic state of the memory output ports to sensitize the gates present in the fan-out of the
memory array. In this mode, we first determine the sensitization criterion for the gates that
are driven by the memory output pins. A test vector is derived from this information. This

test vector has the width of the memory data port. This vector is written into the memory.
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Any random address can be chosen for this purpose. The same address location is then
read out and the enable pins are masked to initiate the shadow logic test. This back-to-
back write and read operations sensitize the gates driven by the memory data out port.
Disabling the enable pins of the memory ensures that the off-path input pins (memory fan-
out) do not change values during the shadow logic test. Figure 3.10 illustrates a custom
benchmark circuit used to verify the memory test feature. The logic clouds in the picture
represents random logic. The clouds on the functional and test address and enable paths
are identical. The fanout logic clouds on the output ports of the memory array are chosen
differently to cover all logic gate types. The logic clouds not interacting with the memory
periphery are random as well. These logic clouds can be modified to model different depth

of logic, logic cone width, etc.
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Figure 3.10 Synthetic Memory Benchmark Circuit
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The circuit contains one instance of an 8X4 1RW memory. The paths that are
generated for delay test can be categorized into three groups. One set of paths traverse
from a subset of Port<X:0> through the fan-logic to Port<Y:0> ports. These paths do not
interact with the memory array. The remainder of the paths are generated from the
functional and test ports of the memory array, through the memory array, to PortM ports
in the fanout logic. The third category of paths start at input ports and traverse through the
gates which are connected to the memory data ports, to end at the output ports of the
circuit. In the absence of a CRAM model, the paths that interact with the memory
boundary cannot be generated. The RAM sequential mode is used to cover the category 2
paths and the output shadow logic mode is used to sensitize the gates in the memory

array’s output ports to cover the category 3 paths.

3.2.4. Clock Domain Crossing

Several clocking domains can exist in a circuit. We assume a synchronous clocking
scheme in our work in which two clock domains can differ in their frequencies, but the
rising edges are synchronized. The path generation in KLPG so far assumed only one
clock domain. All the SFFs are assumed to be clocked by the same clock. We implement
multiple clock domains by using a clock-attribute file that is read during the RTL parsing
step. This file lists the SFFs per clock domain. In industrial circuits, individual clock
domains can be disabled with the help of clock gating for power saving and debug
purposes. Clock gating information is also captured in the clock-attribute file. We assume

Integrated Clock Gating (ICG) cells in the design.
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Path generation in a multi-clock circuit can be addressed in various ways. One
approach is to generate paths within the same clock domain. In this approach, separate
tests are run on the different clock domains in the circuit. Any paths with Clock Domain
Crossing (CDC) cannot be tested using this approach. Test generation methods for CDC
verification have been presented in the literature [28][29].

The path generation procedure used in our work remains unchanged from the
traditional KPG algorithm described earlier. We introduce the concept of clock domains
for all the SFFs in the design. In order to test CDC, the clock domain attribute needs to be
used while generating at-speed and coda cycle paths. We assume that the static timing
convergence across all the clock domains is ensured by design construction.

The CDC mode of path generation in this work is divided into two parts. The first
part involves path generation and SFF marking for viable conversion into DFF without
impacting the ability to generate inter clock domain paths. The second part involves clock
tree justification.

We illustrate the CDC mode of path generation using the Figure 3.11. The
synthetic circuit in this figure has three clock domains named CLK 1, CLK 2 and
CLK_3. We assume CLK_ 1 and CLK_3 domains are integer multiple faster than the
CLK_1 domain. Three kinds of clock domain crossing are modeled in this example.

CLK_1- CKK_2,CLK_1 - CLK_3and CLK3 - CLK_2.
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Figure 3.11 Path Generation in CDC Scenario

The clock tree paths for these domains are depicted in Figure 3.12. The AND gates
U100, U101 and U102 are the ICG cells. The clock-pin for the ICG cells is connected to
the clock grid of the clock tree. On-chip PLLs and clock dividers can generate these clocks.
The enable-pin of the ICG cells is driven from the clock-gating logic of these individual
clock domains. The * mark is the figure signifies the clock justification issue elaborated

below.
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Figure 3.12 Clock Path Justification

The clock path justification is run first to determine if a path can be launched or
captured in a clock domain. We perform a logic topology check on the fan-in cone of the
ICG cells to determine the justifiability of the clock domain controlled by the ICG cell. In
Figure 3.12, clock domain CLK_1 and CLK _3 can be justified. U60002 and U60003 drive
the clock-enable (CE) signals for these two domains respectively. Assuming that U28 and
U628 can be sensitized to propagate the test mode CE signal to the ICG inputs, these two
clock domains can be enabled in test mode. For clock domain CLK 2, clock justifiability
fails due to the presence of the logical conflict in the CE logic cone. The circuit topology
encircled with the dashed red line prohibits the propagation of the CE signal driven by
U60001 through the gates U24 and U25 to the ICG input. This logic cone is an

oversimplified depiction of real-life scenarios. A multi-clock domain circuit may be
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designed with two mutually exclusive clock-domains in the functional mode. Any CDC
between such domains would be functionally invalid. Hence, generating cross-domain
paths in the test mode between those clock domains must be prohibited. The clock path
justification would indicate the mutual exclusivity between the two domains. The path
generation procedure that follows the clock justification step can be guided with this
information.

An additional set of SFF conversion heuristics is developed to handle the CDC
scenario. We do not use synchronizers in our example. The conversion heuristics ensure
that the first SFF reachable in a clock domain is never converted into a DFF. This ensures
that the cross-domain data is properly captured in the receiving domain to maintain
intended functionality of the circuit. In the example circuit, U50200 and U50300 will be
protected from conversion. When the SFF conversion procedure is run individually in each
of the domains, U50200 and U50300 get marked as launch-only FFs. In industrial circuits,
more complex fan-in logic may exist for these SFFs. If these SFFs are not marked as the
launch-only FFs, the intra-domain conversion process may convert them into DFFs. It is
essential to maintain the correct sequence of the SFF conversion in the CDC scenario. We
assign higher priority to the CDC mode in the multi-round SFF conversion step. Even if
the intra-domain conversion would have converted any of those SFFs, the reconversion
steps run at the end of the SFF conversion process would convert these DFFs back to SFFs.
This priority can be controlled using configuration settings in the ATPG engine to allow

various design intents. Although the implementation can handle any number of clock
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domains in a design, we have verified the implementation with three clock domains in our
experiments.
The SFF conversion heuristics can be configured independently for the above-

mentioned scenarios. It helps configure the ATPG engine in a flexible manner.
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4. EXPERIMENTAL RESULTS

The KLPG algorithm and the SFF conversion heuristics are implemented in C++.
Experiments have been run on the ISCAS89 and ITC99 benchmark circuits on an Intel
Core i7 machine. Multiple values of K and number of coda cycles (#CY C) have been used
in the experiments to characterize the implementation. We assume that the Pls are held
constant and the value on the POs are ignored in our experiments, as in a low-cost
production tester. The values driven by the DFFs are assumed to be unknown. This is
conservative, since simulation of the test scan-in cycles would set most DFFs to known
values. Robust path sensitization criterion is used in all the experiments. We used the
Skywater 130nm open source PDK and cell library to analyze the leakage power benefit
of SFF conversion in the benchmark circuits. We developed synthetic benchmark circuits

to validate our memory array test and CDC scenarios.

4.1. Experimental Results on the Topological Heuristics
We use the ISCAS89 benchmark circuit s5378 to illustrate the findings in the
topological analysis of the benchmark circuits. Figure 4.1 illustrates the path profile in this

circuit.
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Figure 4.1 Path Profile in s5378 Benchmark Circuit
The red bars represent the number of paths either launched or captured by an SFF

(LC). The blue bars represent the number of paths where an SFF is present as an
intermediate SFF in a multi-cycle path (I) when we apply one or more coda cycles. The
value of LC is used to rank the SFFs in the design to determine the impact of converting
the SFFs on the test coverage. The ratio of the two parameters (Hr=LC/I) acts as a guiding
factor in the conversion process that we explain later in this section. It can be observed
that only a small number of the SFFs have a high LC value. A similar trend is observed in
the other benchmark circuits.

We observe different topological trend on different SFFs in the circuit. U50093
has a very large Hr value. Converting this SFF into DFF would result in a large coverage

loss. The number of paths captured by this SFF as the final SFF in a path drops to one in
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one coda cycle and to zero in two coda cycles. For all the higher number of coda cycles
scheme, this SFF always appears as an intermediate SFF. Hence, the coverage loss
resulting from converting this SFF into DFF can be fully regained by using the OBS driven
path extension. U50048 shows a different trend. This SFF has a low value of Hr. The OBS
driven path extension would not yield a lot of benefit if this SFF is converted into a DFF.

The graph in Figure 4.2 shows the coverage loss as a function of the percentage of
the DFFs in the design for s5378. Two subsets of the FFs in the design are used to derive
the graph. The FF subsets are derived from the ranking of the SFFs in the design. The rank
is defined as the number of at-speed paths captured by the SFF in the at-speed cycle. “FF
Set 1” contains the SFFs with fewest at-speed paths captured while “FF Set 2 contains

the SFFs with the most at-speed paths captured.
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Figure 4.2 Coverage Loss with Varying DFF%
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Coverage loss is defined as the percentage of the testable paths becoming false
paths as a result of the SFF to DFF conversion. For both SFF sets, the coverage loss
increases with an increasing percentage of DFFs in the design. The relative difference in
the coverage loss between these two sets is quite significant. A similar trend is observed
in the other benchmark circuits. The sensitivity of the coverage loss varies across all the
benchmark circuits because it is topology dependent.

The three data points on the X axis represents 10%, 15% and 20% DFFs in the
design. The coverage loss varies between 41% and 83%. In practical circuits, only a very
small amount of coverage loss is acceptable. If the sensitivity of the curve is quite high, a
small increase in the SFF conversion percentage can greatly impact the coverage loss. A
flatter curve on the other hand would result in incremental coverage loss for a much larger
additional SFF conversion percentage, which can yield much better PPA benefit. It should
be noted that OBS driven path extension needs to be used to bring down the coverage loss
in each of these scenarios for the SFF conversion result to be viable. Since the efficacy of
the OBS driven path extension depends on the circuit topology, the attainable PPA benefit
also is tied to the circuit topology.

Figure 4.3 illustrates the dependency of the attainable SFF conversion percentage

on the heuristic threshold used during the conversion process.
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Figure 4.3 SFF Conversion Statistics

The percentage of the converted SFFs increases with larger fan-in threshold for all
the benchmark circuits in this figure. A similar trend is observed on other benchmark
circuits. The sensitivity of the SFF conversion percentage is much higher for s5378
compared to s9234 and s35932. The absolute percentage of the conversion also varies
quite drastically among these circuits. The graph for s9234 is quite flat. Only 28% of the
SFFs could be converted with the fan-in threshold of 20. For the same threshold, we could
convert close to 90% of the SFFs in the other two circuits. It should be noted that no SFF
exclusions are performed to derive this sensitivity data. And the threshold for the
acceptable coverage loss is set to an arbitrarily large value. In practical application, the
upper bound of the SFF conversion percentage would most likely be clamped by the

coverage loss threshold before the upper bound of the fan-in threshold is reached.
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Figure 4.4 shows the result of multi-round conversion process on s5378 by
incorporating the SFF exclusions described earlier in chapter 3.
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Figure 4.4 Multi-Round Conversion in s5378

The round 1 conversion trend is the same as the one shown in Figure 4.3. When
we run the SFF reconversion step in round 2, the overall SFF conversion percentage comes
down compared to round 1 and saturates over the multiple fan-in threshold values.

We now elaborate on the PBA analysis. We use the data from s5378 captured in
Table 4.1 for the explanation. A subset of the SFFs in this circuit is captured in this table
for illustration purpose. Column 2 lists the number of paths on which an SFF is present as
the intermediate FF when coda cycles are used (1) . Column 3 lists the number paths an
SFF is present as a launch or capture FF (LC) . Column 4 lists the heuristic parameter Hg

which is defined as the ratio of LC and I. Column 5 captures the decision of the conversion

51



on the SFF based on the value of Hr. The final column lists the cumulative coverage loss
as a result of the SFF conversion up to the SFF listed in a row.

Table 4.1 SFF Conversion Matrix with One Coda Cycle Clocking Method

#PATHS | #PATHS Cumulative
SFF |Intermediate | LLaunch/Cap |Hg=LC/I Convert?| Coverage
(D ture (LC) Loss %
U50028 15 2 0.13]  Yes 0.81%
U50133 4 2 0.50/  Yes 1.61%
U50046 6 3 0.50/ Yes 2.82%
U50053 4 4 1.00, No 2.82%
U50083 5 2 0.40| Yes 3.63%
U50117 1 0 0.00/  Yes 3.63%
U50137 14 0 0.00/ Yes 3.63%
U50132 2 1 0.50/ Yes 4.03%
U50101 8 3 0.38)  Yes 5.24%
U50016 9 2 022  Yes 6.05%
U50093 14 114 8.14| No 6.05%
U50071 1 1 1.00, No 6.05%
U50038 17 2 0.12]  Yes 6.85%
U50048 27 2 0.07|  Yes 7.66%
U50058 16 2 0.13]  Yes 8.47%
U50102 10 0 0.00/  Yes 8.47%
U50082 19 2 0.11)  Yes 9.27%
U50092 10 7 0.70, No 12.10%
U50095 1 | 1.00, No 12.10%
U50128 24 2 0.08) No 12.90%
U50118 8 0 0.00 No 12.90%

The SFF conversion heuristic uses the ratio (Hr=LC/I) as threshold to determine
whether an SFF should be converted into a DFF. The value of Hr acts as a guide to
anticipate the potential coverage loss. A threshold of 0.5 is used to generate this table. The
first three SFFs in the table have an Hr value that is not greater than the threshold. As a
result, these three SFFs are marked for conversion. The cumulative coverage loss at this

point stands at 2.82%. The value of Hr for U50053 is 1.0 which is greater than the
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threshold. As a result, this SFF is not marked for conversion. The value of the cumulative
coverage loss remains unchanged. We use a threshold of 10% for the cumulative coverage
loss for the purpose of illustration. The cumulative coverage loss grows to 9.27% after
U50082 is marked. The cumulative coverage loss grows beyond 10% if any other SFFs
are converted into DFFs. As a result, when U50092 is evaluated, although its Hr value is
less than the threshold of 0.5, it is not marked. None of the subsequent SFFs are marked
since the cumulative coverage loss has already surpassed the threshold. The conversion
scheme can be further optimized if the SFFs are ranked according to their individual
impact to the test coverage. A higher percentage of ranked SFFs can be converted.

Combining the PBA scheme with the SCOAP based metrics and using the multi-
cycle path extension can maximize the SFF conversion percentage while limiting coverage
loss. Table 4.2 shows the cell capture statistics for a set of SFFs in the s5378 circuit. These
SFFs were chosen for representation purposes only. The second column shows the number
of at-speed paths that are captured by the corresponding SFFs in a full-scan design. The
SFFs in the first column are then converted into DFFs.

Table 4.2 Path Capture Statistics in s5378

#Paths Captured (cumulative)

SFF | #At-speed | #cycl | #cyc2 | #cye3 | #cycd | #cyed
U50046 16 9 11 13 15 16
U50016 35 22 31 33 35 -
U50082 66 32 39 44 56 56
U50038 72 72 - - - -

The at-speed paths become false paths resulting in coverage loss. We then apply

different numbers of coda cycles to reclaim the coverage. The subsequent columns show
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the cumulative number of paths that could be extended over the number of coda cycles
from the corresponding DFFs to SFFs. We see varied results across the FFs. For U50038,
a single coda cycle was sufficient to reclaim all the lost coverage. For U50046, five coda
cycles were required to reclaim the coverage. For U50082, 10 paths could not be extended
to SFFs even over five coda cycles. More coda cycles for this FF did not yield a better
result.

The data in Table 4.2 was generated with K=2 during path generation. A total of
921 paths could be generated in the at-speed cycle of the full-scan design. We could
convert 47% of the SFFs in the design with a fan-in threshold setting of 5. The PBA
analysis prevented conversion of 24 SFFs into DFFs because the multi-cycle clocking
method could not recover the coverage that would be lost if those SFFs were converted.
After the multi-round conversion, we were able to achieve 34% SFF conversion at no
coverage loss.

As alluded before, the efficiency of the SFF conversion scheme is dependent on
the circuit topology. There exists a tradeoff between the SFF conversion percentage
yielding to PPA benefit and the allowable coverage loss in a circuit. A higher value of
allowable coverage loss can yield a much better PPA benefit. The optimal point in this
tradeoff can be quite different from one circuit to another.

Table 4.3 summarizes the results on ISCAS89 and ITC99 benchmark circuits. This
table illustrates the topological dependency of the conversion efficiency and

corresponding coverage impact on the reported circuits.
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Table 4.3 Tradeoff between SFF Conversion and Test Coverage Loss

#At-Speed %SFF Coverage | Coverage Pattern#
Circuit | #Cgate |#SFF Conversion | Loss without Loss with [ncl:rease @
Coda 0%Coverage
Paths by Heuristic | Coda Cycles | Cycles Loss)
s1423 688 74 143 1% 1.40% 0.00% -
s1488 653 6 53 0% 0.00% 0.00% -
s1494 645 6 51 0% 0.00% 0.00% -
s5378 2788 179 921 38% 58.31% 0.00% 20.0%
$9234 5596 211 634 3% 10.47% 0.00% 13.6%
s13207 7951 638 1160 23% 29.05% 0.00% 13.8%
s15850 9772 534 1358 22% 32.11% 0.00% 75.0%
s38417 | 22179| 1636 5304 17% 27.15% 0.00% 18.5%
s38584 | 19253| 1426 5015 16% 21.77% 0.00% 63.6%
bl4 9767 245 544 22% 27.20% 0.00% 19.00%
bl5 8367, 449 1785 15% 20.10% 0.00% 17.10%
b17 30777 1415 7093 19% 21.70% 0.00% 16.20%
b18 111251] 3320 21895 16% 19.00% 0.00% 21.20%
b19 224634| 6642 36935 20% 28.40% 0.00% 24.00%
b20 19682 490 910 29% 32.80% 0.00% 22.00%
b21 20027 490 974 25% 28.00% 0.00% 23.00%
b22 29162 735 1616 23% 27.70% 0.00% 18.00%

Column 1 lists the benchmark circuit. Column 2 lists the number of combinational

gates. Column 3 lists the original number of SFFs. Column 4 lists the number of at-speed

paths generated with K=2, for full-scan circuits. Column 5 lists the percentage of SFFs

that could be converted to DFF with the fan-in threshold set to 5. Feedback loops are

protected from conversion in these experiments. SFF conversions that result in paths that

cannot be recovered by any of the clocking methods are also excluded as a part of the PBA

step. Column 6 lists the coverage loss resulting from these SFF conversions, assuming no

coda cycles. The coverage loss is defined as the percentage of the paths in column 4 that
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cannot be observed as a result of the SFF to DFF conversion. Column 7 shows the
coverage loss after we apply the coda cycles.

The percentage of the SFFs that could be converted varies between 13% and 38%
amongst these benchmark circuits except for the benchmark circuits s1423, s1488 and
s1494. These circuits have very few SFFs. The circuit topology of s1423 prohibits any
SFF conversion. These three circuits are excluded from all subsequent analysis.

The coverage loss as a result of the SFF conversion varies between 10.47% and
58.31%. We could recover the entire coverage loss on all of these benchmark circuits by
applying anywhere between 1 to 3 coda cycles. Hence, the 13-38% SFFs could be
converted into DFFs without any coverage impact. Column 8 shows the increase in the
pattern count for the 0% coverage impact. The increase in the pattern count is dictated by
the unknown values driven by the DFFs in the circuit that prohibits the ATPG from
compacting multiple path delay tests into one test pattern. As previously noted, assuming
unknown values is very conservative.

The CPU time to run the FF conversions is only a few seconds for even the largest
benchmark circuits.

Figures 4.5 and 4.6 show the pattern count increase as a function of the percentage

of the SFFs that could be converted in a benchmark circuit.
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All the benchmark circuits show a similar trend in these two figures. The pattern
count increases in s15850 and s38584 are higher compared to the other circuits. This
deviation can be attributed to the topological dependency of the test pattern compaction
process. Due to the unique fan-out configuration in a circuit, a larger pool of unique test
patterns may be required to test all the multi-cycle paths.

The pattern count increase reported in these figures is for maintaining 100% test
coverage. A tradeoff exists between the pattern count increase and the SFF conversion
percentage. The pattern count increase can be limited by constraining the SFF conversion
target in a circuit.

For comparison, the work in [8] reports test coverage loss as a result of the SFF
cell conversion on multiple designs. A design with 35% DFFs is reported to have transition
delay test coverage of 90.25%. The associated pattern count increase is also reported to be
almost double the pattern count used in the full scan design.

Results presented in this research shows that the multi cycle path generation
mechanism was able to maintain 100% test coverage for the path delay tests for all the
benchmark circuits with an average pattern count increase of 26%. A maximum of 38%
SFF conversion could be achieved at a pattern count increase of 20% in our experiments.

The SFF conversion percentage scales well over all the benchmark circuits. The
topological heuristics introduced in this work analyze the gates present in one sequential
pipeline stage, which allows it to scale well across all the benchmark circuits with different

gate counts.
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We now present leakage power improvement from the SFF conversion for the
larger benchmark circuits in Figure 4.7. The selected circuits cover the SFF conversion
range described in Table 4.3. We used the Skywater 130nm open source PDK and cell
library to analyze the leakage power benefit of converting the SFFs into DFFs. The leakage
power benefit reported in this study results from swapping the SFFs with the DFFs. We
do not perform re-placement and re-routing of the design after the SFF conversion step in
a Place-and-Route (PNR) tool. DFF cells have smaller foot-print and smaller stage delay.
The timing slack on the data-path increases when an SFF on a data-path is replaced with
a DFF. This additional slack can be traded for lowering the power of the circuit by using
higher-VT transistors on the data-path or by using smaller drive strength cells to achieve

lower dynamic power.
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Figure 4.7 Leakage Power Saving Statistics
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We were able to achieve 5%-10% reduction in leakage power saving from the SFF
conversion on the benchmark circuits, which is quite significant. It should be reiterated
that this power savings comes at no cost to the test coverage in these circuits. Hence, we
are able to maintain the quality of the test for these circuits during the SFF conversion
process.

The leakage power saving is directly proportional to the percentage of the leakage
power contributed by the SFFs in these circuits. As a result, the leakage power saving can
be identical across multiple circuits with varied amount of SFF conversion. We achieved
5% leakage power improvement on b17, b18 and s38417 while the SFF conversion
percentage was between 16% and 19% for these circuits. On the other hand, we could
achieve much higher percentage of leakage power saving with comparable or higher value
of the total number of gates per SFF (GC/SFF) in a circuit. The sizes (total number of
gates) of b20 and s38417 are comparable. The leakage power of s38417 is however much
larger compared to b20. This is due to the logic gate composition in these circuits and the
relative leakage power positioning of the gates in the PDK. As a result, the SFF leakage
power contribution is much higher in b20 than s38417. We achieved 10% leakage power

reduction for b20 compared to 5% in s38417, even with a higher value of GC/SFF for b20.

4.2. Memory Test Results

Table 4.4 summarizes the results obtained on the synthetic benchmark circuit

incorporating a memory instance depicted in Figure 3.10.
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Table 4.4 Memory Test Statistics
#SFF | #Paths without | #Paths with | Coverage #Memory | #Memory

MEMTEST MEMTEST | Loss without | Bits Words

MEMTEST

32 10 35 71% 4 8

A majority of the SFFs in this circuit are present in the fan-in cone of the memory
array. As a result, the coverage gain obtained by the memory test capability is quite high.
It should be noted that the lost coverage in this circuit could be completely recovered with
the help of 3 coda cycles. A different circuit topology may require a different clocking

scheme to recover coverage loss.

4.3. Experimental Results on Clock Domain Crossing

We developed synthetic benchmark circuits to validate the CDC implementation
in our code. Figure 4.8 depicts the synthetic benchmark that is created by stitching three
instances of the s27 benchmark circuit. This circuit consists of three clock domains marked
in the figure. The logic clouds in the figure are used to provide connectivity between the
output of clock domain 1 to the inputs of the clock domains 2 and 3 respectively. This
circuit has CDC paths between clock domains 1, 2 and 1, 3. This oversimplified circuit is
used for representation purpose only. Other experiments have been run on synthetic
benchmark circuits that have been created by stitching multiple instances of s1423 and

s5378 respectively.
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Clock Domain 1

Clock Domain 3

Figure 4.8 Synthetic Benchmark Circuit with Multiple Clock Domains

We developed verbose logging for the CDC test mode to prove the correctness of
the implementation. We verified the intended behavior of the CDC mode by reviewing the
converted list of the SFFs against the constraints of the CDC mode conversion described

earlier in this work.
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5. CONCLUSIONS AND FUTURE WORK

We presented a topological approach to convert SFFs into DFFs in a full-scan
circuit. The SFF conversion results in a PPA benefit. We quantified the leakage power
saving obtained by the SFF conversion process on the ISCAS89 and ITC99 benchmark
circuits. The percentage of SFFs that can be converted in a circuit with a specified level
of coverage loss is circuit topology dependent. We present SFF conversion percentage on
all the benchmark circuits at zero coverage loss. Observability driven multi-cycle path
extension was used to reclaim the lost coverage on the paths that terminate at a DFF. The
goal of the observability driven path extension is to make sure that the most observable
branch of a fan-out cone can be extended to an SFF. The primary benefit of using
observability is that it minimizes the sensitization requirements of the selected path in the
coda cycle from interfering with the sensitization of the at-speed test. The results showed
that 100% test coverage could be maintained by using one to three coda cycles. We
observe that some paths remain untestable, due to the inability to generate a path delay
test, due to X values in the DFFs, rather than the inability to find a coda path compatible
with the path delay test. We will explore whether test initialization sequences can be
applied during preamble cycles or scan shift to minimize the number of X values in the
DFFs, and to determine whether selective DFF set or reset could recover most of the fault
coverage.

As part of the future work, both long and short paths can be considered by

heuristics during the SFF ranking and conversion process. More properties of the SFF can
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also be considered while developing the conversion heuristics. In the current work, we
focused on the leakage power aspect of the PPA optimization. Incorporating the SFF
conversion step upstream in the synthesis, place and route flow can yield more benefits.
Using a vendor PNR tool to quantity the PPA benefit in the future can provide more insight
into the tradeoffs of the SFF conversion process. The memory array test and the CDC

solutions should be run on more standard benchmark circuits as a part of the future work.
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