
FASTER AND MORE PRECISE POINTER ANALYSIS ALGORITHMS FOR AUTOMATIC

BUG DETECTION

A Dissertation

by

PEIMING LIU

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jeff Huang
Committee Members, Guofei Gu

Jiang Hu
Riccardo Bettati

Head of Department, Scott Schaefer

May 2022

Major Subject: Computer Science

Copyright 2022 Peiming Liu

ABSTRACT

Pointer Analysis is a fundamental technique with enormous applications, such as value-flow

analysis, bug detection, etc. It is also a prerequisite of many compiler optimizations. However,

despite decades of research, the scalability and precision of pointer analysis remain to be an open

question. In this dissertation, I introduce my research effort to apply pointer analysis to detect

vulnerabilities in software and more importantly, to design and implement a faster and more precise

pointer analysis algorithm.

In this dissertation, I present my works on improving both the precision and the performance of

inclusion-based pointer analysis. I proposed two fundamental algorithms, origin-sensitive pointer

analysis and partial update solver (PUS), and show their practicality by building two tools, O2

and XRust, on top of them. Origin-sensitive pointer analysis unifies widely-used concurrent pro-

gramming models: events and threads, and analyzes data sharing (which is essential for static data

race detection) with thread/event spawning sites as the context. PUS, a new solving algorithm for

inclusion-based pointer analysis, advances the state-of-the-art by operating on a small subgraph

of the entire points-to constraint graph at each iteration while still guaranteeing correctness. Our

experimental results show that PUS is 2x faster in solving context-insensitive points-to constraints

and 7x faster in solving context-sensitive constraints. Meanwhile, the tool, O2, that is backed by

origin-sensitive pointer analysis was able to detect many previously unknown data races in real-

world applications including Linux, Redis, memcached, etc; XRust can also isolate memory errors

in unsafe Rust from safe Rust utilizing data sharing information computed by pointer analysis with

negligible overhead.

ii

DEDICATION

To my grandmother, Li Li.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Jeff Huang (ad-

visor), Guofei Gu and Riccardo Bettati of the Department of Computer Science and Engineering,

and Professor Jiang Hu of the Department of Electrical and Computer Engineering.

The work presented in Chapter 4 is co-first authored with Bozhen Liu, all other work conducted

for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by either Graduate Research Assistant or Graduate Teaching

Assistant from the Department of Computer Science, Texas A&M University.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES. viii

1. INTRODUCTION. 1

1.1 Overview . 1
1.2 Partial Update Solver for Inclusion-based Pointer Analysis. 2
1.3 Origin-Sensitive Pointer Analysis . 3
1.4 O2 and XRust . 4
1.5 Roadmap. 5

2. BACKGROUND AND RELATED WORKS . 6

2.1 Pointer Analysis . 6
2.1.1 Context-Sensitive Pointer Analysis . 6
2.1.2 Pointer Analysis Solving Algorithms. 8

2.2 Data Races and Data Race Detection . 10

3. PARTIAL UPDATE SOLVER FOR INCLUSION-BASED POINTER ANALYSIS 12

3.1 Inclusion-based Pointer Analysis. 15
3.2 Limitations of Existing Solving Algorithms . 16
3.3 Algorithm. 18

3.3.1 Structure of the Algorithm . 19
3.3.2 Detailed Algorithm . 21
3.3.3 Proof of Correctness. 25

3.4 Experiments . 28
3.4.1 RQ1: Reduction Achieved by PUS . 28
3.4.2 RQ2: The Performance Improvement Achieved by PUS. 32

3.4.2.1 Improvement when Running Context-Insensitive Pointer Analysis 32
3.4.2.2 Improvement when Running Context-Sensitive Pointer Analysis . . 34

v

3.5 Summary . 35

4. ORIGIN-SENSITIVE POINTER ANALYSIS AND O2. 36

4.1 Origin-Sensitive Pointer Analysis . 39
4.1.1 Identifying Origins . 39
4.1.2 Origin-Sensitivity Rules. 40

4.2 O2: Race Detection Algorithm . 44
4.2.1 Three Sound Optimizations . 45
4.2.2 Other Implementation Details . 46

4.3 Experiments . 47
4.3.1 Performance . 47

4.3.1.1 Origin-Sensitivity vs Other Pointer Analyses . 47
4.3.1.2 Race Detection Performance. 48

4.3.2 New Races Found in Real-World Software . 48
4.3.2.1 Linux Kernel . 48
4.3.2.2 Memcached . 49

4.4 Summary . 50

5. SECURING UNSAFE RUST PROGRAMS. 51

5.1 Overview . 53
5.1.1 Unsafe Rust in practice. 54
5.1.2 Observations behind XRust . 55
5.1.3 Protection Strength of XRust . 55
5.1.4 A Motivating Example . 56

5.2 Language Extensions . 58
5.2.1 Heap Allocation in Rust . 59
5.2.2 Language Support for Unsafe Region . 61

5.3 Multi-Region Heap Allocator . 62
5.3.1 Architecture of ptmalloc2 . 62
5.3.2 XRust Extensions on ptmalloc2 . 62

5.4 Cross-Region Reference Prevention. 64
5.4.1 Code Instrumentation . 64
5.4.2 Guard Page. 67

5.5 Evaluation . 68
5.5.1 Efficiency . 68
5.5.2 Allocation Statistics . 70
5.5.3 Performance of the Allocactor . 71
5.5.4 Effectiveness on Real Vulnerabilities . 72

5.6 Discussions and Limitations . 74
5.7 Summary . 74

6. CONCLUSION. 75

REFERENCES . 76

vi

LIST OF FIGURES

FIGURE Page

1.1 Connections between different tools/algorithms proposed in the dissertation 2

3.1 An example to illustrate the causality subgraph: with a new edge inserted after
iteration n − 1, node C is identified as a causal node in iteration n. Reprinted
From [1].
. 13

3.2 An overview of PUS: partial update solver. Reprinted From [1].. 14

3.3 The comparison between PUS, WP and DP. (a) the solving process of WP (the
entire graph need to be revisited) (b) the solving process of PUS (only marked
node need to be visited) (c) the solving process of DP (V1...Vn are visited twice)
(d) the solving process of PUS (V1...Vn are only visited once). Reprinted From [1]. . . 16

3.4 Further prune on the constraint graph during simple constraints processing phase.
Reprinted From [1]. 24

3.5 The footprint of the size of the causality subgraphs processed by PUS at each iter-
ation when analyzing curl and sqlite3. Reprinted From [1]. 31

4.1 An “origin” view of threads and events. 36

4.2 (a) The example code. (b) The origin-sensitive call graph, where each origin con-
sists of a sequence of calls of arbitrary length. The origin attributes precisely de-
termine the call chain executed in each origin. (c) The context-sensitive (2-CFA)
call graph without origin. 38

5.1 A technical overview of XRust (using instrumentation-based memory isolation).
Reprinted From [2]. 52

5.2 Memory layout of objects in C++ vs Rust. Reprinted From [2]. 56

5.3 Three key components of XRust. Reprinted From [2]. 59

5.4 Rust workflow for linking heap allocations. Reprinted From [2]. 60

5.5 A proof-of-concept attack performed on VecDeque. Reprinted From [2]. 71

vii

LIST OF TABLES

TABLE Page

2.1 Constraints for inclusion-based pointer analysis . 7

2.2 Constraints for unification-based pointer analysis . 7

3.1 Benchmarks and the constraint graph metrics (#Pointer, #Object and #Assign shows
the number of pointers, objects and assignment statements in the tested program
respectively). Reprinted From [1]. 28

3.2 The size of the causality subgraphs processed by PUS. Reprinted From [1]. 29

3.3 Performance of PUS comparing with wave propagation (WP) and deep propagation
(DP) when running context-insensitive pointer analysis (%↑ shows the speedup).
Reprinted From [1]. 32

3.4 Performance of PUS comparing with wave propagation (WP) and deep propagation
(DP) when running k-callsite sensitive (k = 1) pointer analysis (%↑ shows the
speedup). Reprinted From [1]. 33

4.1 The origin-sensitive analysis rules for Java. Consider the following statements are
in method m() with Origin Oi, denoted 〈m,Oi〉. The edges→ are in the PAG and
 in the call graph. Reprinted From [3]. 41

4.2 The time complexity of different pointer analyses. Reprinted From [3]. 43

4.3 SHB Graph with Origins: the following statements are in method m() with Origin
Oi. Reprinted From [3]. 44

4.4 Performance comparison on C/C++ benchmarks (in sec.). The slowdown (SD) is
normalized with 0-ctx as the baseline. Reprinted From [3]. 47

4.5 New Races Detected by O2 (Confirmed by Developers). Reprinted From [3]. 48

5.1 Unsafe Rust code in practice (Rust-lang contains the code for Rust compiler and
all the Rust standard libraries). 52

5.2 Performance of XRust and DFI on real-world Rust applications and standard Rust
libraries (grayed rows). Reprinted From [2]. 67

5.3 Allocation statistics in safe and unsafe heap regions. Reprinted From [2]. 70

viii

5.4 Performance of the heap allocator with different numbers of unsafe heap segments.
Reprinted From [2]. 71

ix

1. INTRODUCTION

1.1 Overview

Pointer alias analysis is a fundamental technique in an enormous amount of static analyzers,

such as value-flow analyses [4, 5, 6], deep bug detectors [7, 8, 9, 10], memory leak detectors [11,

12, 13, 14], etc. It is also the prerequisite of many compiler optimizations such as loop optimization

and dead code elimination. On one hand, having a precise pointer analysis can usually dramatically

eliminates the false positives reported by the static analyzer and/or strengthen the optimization

performed by the compiler to generate more efficient code; on the other hand, a precise (context-

and field-sensitive) pointer analysis are infamous for its poor scalability.

Although pointer analysis has been a focus of research for decades, it remains an open chal-

lenge to scale pointer analysis to large complex codebases. A crucial performance bottleneck is

in solving the pointer analysis constraints. While precise pointer analysis is known to be undecid-

able [15, 16], any practical solution must over-approximate the exact answer. A state-of-the-art

approach is the Andersen-style [17], a.k.a. inclusion-based pointer analysis, in which pointer as-

signments are constrained by inclusive relations. For example, a simple assignment q = p from

pointer p to q produces the contraint pts(p) ⊆ pts(q), meaning that the points-to set of p, denoted

as pts(p), is a subset of points-to set of q. For a complex assignment involving pointer dereference,

q = ∗p, it produces ∀v ∈ pts(p) : pts(v) ⊆ pts(q). These inclusive constraints, while ensuring

valid may-alias results, provide significantly higher precision than unification-based approaches

(e.g., Steensgaard-style [18]).

In this dissertation, I present my work on improving both precision and performance of inclusion-

based pointer analysis. The building stones are two new algorithms: 1) the origin-sensitive pointer

analysis and 2) the partial update solver for inclusion-based pointer analysis. Origin-sensitive

pointer analysis provides a new type of context abstraction that is much more precise when analyz-

ing data sharing information between different components of the programs. Partial update solver

1

Partial Update Solver

O2:
Precise Static Race

Detector

XRust:
Memory Isolation
between safe and

unsafe Rust

Origin-Sensitive Pointer Analysis
Solved By

Backed By

Figure 1.1: Connections between different tools/algorithms proposed in the dissertation

is a faster solving algorithm for inclusion-based pointer analysis that is more than 2x faster and 7x

faster than the state-of-the-art when analyzing context-insensitive and context-sensitive constraints

respectively. As shown in Figure 1.1, on top of these two fundamental techniques, we are able to

build two applications: O2 and XRust to illustrate the strength of the new techniques. O2 is a static

race detector that finds tens of previously unknown bugs in large complex systems including Linux

kernel and XRust is a memory protection technique that isolates the memory errors in unsafe Rust

with negligible overhead.

1.2 Partial Update Solver for Inclusion-based Pointer Analysis.

To mitigate the performance issue of inclusion-based pointer analysis, I present the partial

update solver (PUS), Unlike previous algorithms, PUS only processes a partial constraint graph

in each iteration, yet still guarantees the same global fixed point. The key insight behind our

approach is that during the constraint solving process in each iteration, only a very small causality

subgraph is subject to change due to the updates made in previous iterations. With the causality

subgraph, PUS prunes the constraint graph to only operate on a small subset of the constraints

in each iteration, which eliminates redundant computation across iterations, resulting in a much

2

faster algorithm. Compared to prior approaches [19, 20, 10] that apply general graph processing

techniques to pointer analysis, PUS is more efficient because it leverages two unique properties

of pointer analysis. First, the sparsity of the constraint graph, which leads to our definition of

causality subgraph. Second, the interconnections between different solving iterations provide the

necessary information to minimize the set of causal constraints in the next iteration. Our extensive

experiments show that PUS is more than 7× faster than the state-of-the-art WP (Wave Propagation)

and DP (Deep Propagation) algorithms [19] in solving context-sensitive pointer analysis, and more

than 2× faster in solving context-insensitive pointer analysis.

1.3 Origin-Sensitive Pointer Analysis

Most of the inter-procedural static analyses can be implemented in a context-sensitive way to

improve precision, pointer analysis is no exception. To be more concrete, the context used by

static analysis describes the calling environment when the analyzed function could be invoked.

By analyzing the same function separately in different contexts, context-sensitive static analysis

is able to infer the property of the target program more precisely. Especially for pointer analysis,

there are two most commonly used contexts by existing works, they are, namely, callsite- and

object-sensitive pointer analysis. Callsite-sensitive pointer analysis static computes the calling

stack (usually up to a fixed k depth for scalability) to distinguish different calling contexts for

the same function; object-sensitive pointer analysis uses the receiver object as the context and is

typically used for object-oriented programming languages. While these two general abstractions

might provide sufficient precision for certain types of tasks, they are not suitable for static data

race detection as they fail to provide accurate thread-sharing information to identify concurrent

data accesses (as discussed in Chapter 4).

Thus, we present origin-sensitive analysis, which instead uses origin as the context to analyze

the same function under different concurrent executions. Origin, at a high level, represents a set

of logical components of the program (for data race detection, it can threads/event handlers that

are triggered asynchronously). By analyzing the information at the origin level instead of at the

function level, origin-sensitive pointer analysis is more precise to analyze the connection between

3

different components in the same program.

1.4 O2 and XRust

O2: Data races are among the worst bugs in software in that they exhibit non-deterministic

symptoms and are notoriously difficult to detect. By utilizing the power of origin-sensitive pointer

analysis, O2 abstracts different threads in the program into origins and precisely reasons the thread-

sharing information between different threads. The experimental results provide strong evidence

on the practicality of origin-sensitive pointer analysis by finding tens of previously unknown races

in large complex systems.

XRust: Rust [21] is a rising language that tries to bridge the gap between memory safety

and low-level systems programming. With new language features such as ownership, borrowing,

and lifetime, Rust aims to guarantee that a program is memory safe if it could be compiled (in

the absence of unsafe Rust code). The type system of Rust and its encapsulation of low-level

operations have been formally proved to ensure memory safety [22, 23]. Despite the memory

safety guarantees provided by Rust, the existence of unsafe Rust opens a security hole to the

language. Unsafe Rust escapes from Rust’s static checks [24]. By using it, programmers are able to

manipulate raw pointers, perform unprotected type casting and other dangerous operations just like

in C/C++. Unsafe Rust is needed, however, because (1) by nature, static analysis is conservative

and will reject valid programs and (2) the underlying computer hardware is inherently unsafe and

certain operations could not be done with safe Rust [25].

To mitigate the issue, I present XRust, which utilizes pointer analysis to analyze the set objects

that could be potentially used by unsafe Rust (unsafe objects). Then by enforcing that unsafe

objects are allocated separately with safe objects, XRust ensures that safe objects (protected by

Rust’s type system) will not be corrupted even when there are memory errors in unsafe Rust. Our

experimental results show that XRust incurs only 0.15% median overhead on tested crates (2.8%

on Rust standard libraries) and it effectively defends against attacks that exploit known real-world

memory vulnerabilities in Rust.

4

1.5 Roadmap

The remainder of this dissertation is organized as follows. Chapter 2 introduces the background

knowledge and the prior work on pointer analysis and data race detection. Chapter 3 addresses the

scalability issue of inclusion-based pointer analysis by introducing partial update solver. Chapter

4 introduces origin-sensitive pointer analysis together with the static data race detector, O2, which

is implemented on top of it. Chapter 5 introduces our work on applying pointer analysis to secure

Rust programs due to the incorrect use of unsafe Rust. Last, Chapter 6 concludes the thesis and

discusses the future work.

5

2. BACKGROUND AND RELATED WORKS

In the chapter, I introduce the necessary background needed for the dissertation as well as

related works. I first introduce different types of pointer analysis and the previous attempts to

improve its precision/performance. I also introduce data races as well as existing works on data

race detection, where the origin-sensitive pointer analysis is applied.

2.1 Pointer Analysis

Pointer (points-to) analysis, which computes the set of potential objects that a pointer can

point to during execution, is the prerequisite for many inter-procedural program analyses, with an

enormous amount of applications in value-flow techniques [4, 5, 6], deep bug detectors [7, 8, 9, 10],

memory leak detectors [11, 12, 13, 14], etc. It is also crucial for many compiler optimizations such

as dead code elimination and loop optimization. Roughly, the problem can be modeled and solved

in two ways by inclusion-based (Andersen-style) [17] or unification-based (Steensgaard-style) [18]

pointer analysis. Each style abstracts programs into different types of constraints and computes

the result by computing the minimal fixed point that satisfies all the constraints. Inclusion-based

approach abstracts program according to the rules defined in Table 2.1, while unification-based

approach abstracts program according to the rules defined in Table 2.2. In this dissertation, all the

contributions are made on inclusion-based pointer analysis as it is more precise and more widely

adopted.

2.1.1 Context-Sensitive Pointer Analysis

Like many other inter-procedural static analyses, pointer analysis can be implemented in both

context-sensitive or context-insensitive ways. Context-sensitivity infers the property (the points-to

set) of a particular variable with context information, the analysis only collapses information of the

same variable over the possible executions that result in the same static context, while maintaining

different copies for different contexts [26].

Two of the main types of contexts being studied are callsite- [27] and object-sensitivity [28].

6

Table 2.1: Constraints for inclusion-based pointer analysis

Category Type Statement Constraints
Base Address Taken v1 ← &o loc(o)1∈ pts(v1)
Simple Assignment v1 ← v2 pts(v1) ⊇ pts(v2)
Complex Load v1 ← ∗v2 ∀v ∈ pts(v2) : pts(v1) ⊇ pts(v)
Complex Store ∗v1 ← v2 ∀v ∈ pts(v1) : pts(v) ⊇ pts(v2)

1 loc(o) denotes the memory location of object o.

Table 2.2: Constraints for unification-based pointer analysis

Category Type Statement Constraints
Base Address Taken v1 ← &o loc(o)1∈ pts(v1)
Simple Assignment v1 ← v2 pts(v1) = pts(v2)
Complex Load v1 ← ∗v2 ∀v ∈ pts(v2) : pts(v1) = pts(v)
Complex Store ∗v1 ← v2 ∀v ∈ pts(v1) : pts(v) = pts(v2)

1 loc(o) denotes the memory location of object o.

Callsite-sensitivity is probably the oldest and best-known type of context sensitivity. It is also

intuitive as it uses a sequence of call sites as the context. The sequence of the call sites, when

analyzed statically, simulates the potential call stack when the target function is invoked during

execution. Typically, the length of the call sites sequence is limited to a constant k for scalabil-

ity. On the contrary, object-sensitivity is introduced for object-oriented programming languages

such as Java, which uses object allocation sites as contexts. Specifically, the analysis qualifies a

method’s local variables with the allocation site of the receiver object of the method call. This

kind of context information is non-local: it cannot be gathered by simple inspection of the call site,

since it depends on what the analysis itself has computed to be the receiver object [26]. In most

cases, object-sensitivity is considered to be superior when analyzing object-oriented programs [28].

The reason is that the constant k-limiting imposed on callsite sensitivity always leads to precision

loss and different contexts will be merged when the length of the call sequence exceeds k, while

object-sensitivity can tolerate it as long as the receiver object remains the same. Origin-sensitive

is similar to object-sensitivity: it analyzes functions invoked in different origins (threads/events)

7

separately. But it is more general and can be applied to imperative language such as C. Recently,

selective context-sensitive techniques [29, 30, 31, 32, 33] have also been proposed. Although much

progress has been made, context-sensitive pointer analysis remains difficult to scale.

Developing different algorithms and abstractions for pointer analysis has been researched for

decades. For C programs, Steensgaard [18] proposed the first scalable pointer analysis based on a

unification-based algorithm. Das et al. then extended the unification-based approach to include one

level of context sensitivity [34]. For C program, Fahndrich et al [35] proposed an algorithm scale

to 200K-line programs in field-insensitive ways, the algorithm computes the call graph on-the-

fly. Whaley et al [36] proposed another context-sensitive pointer analysis by generating multiple

instances of a method for every distinct calling context to prevent information from one context to

flow to another. The approach uses the inclusion-based algorithm. It first computes a conservative

call graph using context insensitive analysis and then using the context insensitive call graph to

compute context-sensitive results. For Jave programs, Ruf et al [37] presented a summary-based

approach to model context sensitivity (based on the unification-based algorithm) in the context of

a specialized algorithm for synchronization, which requires a bottom-up traversal of the callgraph.

2.1.2 Pointer Analysis Solving Algorithms

Across the decades, Andersen’s inclusion-based pointer analysis has emerged as the most pop-

ular pointer analysis [17]. Many works have been proposed to improve Andersen’s analysis. Most

of the previous research abstracts pointer analysis as a constraint graph and propagates the points-

to information until a global fixed point. Heintze et al. [38] introduced a way to avoid the cost of

computing the full transitive closure of the constraint graph. Instead, a dynamic transitive closure is

computed on-demand and graph reachability queries are used to resolve points-to sets. As a result,

cycle detection is achieved essentially for free as a result of the graph reachability queries. How-

ever, this technique also introduces the potential for redundant work across reachability queries.

Later works [39, 40, 20] topologically sort the constraint graph to reduce redundant points-to set

propagation. Pereira et al. [19] proposed a new constraint solving algorithm, wave propagation, by

separating the algorithm into three phases; collapsing of cycles, points-to propagation and inser-

8

tion of new edges. These three phases are performed as a wave and repeated until a fixed point is

reached. PUS advances the state-of-the-art by performing SCC detection and points-to set propa-

gation on the causality subgraph, thus avoiding redundant computation in each iteration.

As the difficulty in developing an efficient constraint solving algorithm remains, researchers

recently turned their attention to tackle the problem at new angles. D4 [7] first introduced an

incremental algorithm for inclusion-based pointer analysis to enable differential pointer analysis

on code changes. The algorithm of D4 is orthogonal to ours and PUS can effectively integrate

with D4 to speed up its bootstrapping constraint solving process. DEA [41] introduced a faster

algorithm to deal with positive-weight cycle in field-sensitive pointer analysis, while it still relies

on wave propagation to compute the fixed point.

Another line of research formulates pointer analysis as a CFL-reachability problem. Reps et

al. [42] modeled the flow-insensitive pointer analysis into a CFL-reachability problem. Spath et

al. [43] proposed a flow- and context-sensitive demand-driven pointer analysis that models the

pointer analysis as an IFDS problem (which then can be solved by CFL-reachability). This line of

research is orthogonal to PUS and details are omitted.

Graph simplification techniques can be applied to both constraint-based and CFL-reachability-

based approaches to improve their scalability. Fahndrich et al. [44] first showed that collapsing

SCC components in the constraint graph can significantly improve the performance of inclusion-

based pointer analysis. Pearce et al. [39] introduced an algorithm for online cycle detection. By

keeping the constraint graph topologically sorted, cycle detection need only be run when a new

edge violates the existing topological ordering. Detecting cycles upon edge insertion proved to be

too costly, and so Pearce et al. [40] introduced an efficient field-sensitive PTA that occasionally

checks for and collapses cycles in the constraint graph. Hardekopf et al. [20] introduced Lazy

Cycle Detection (LCD) and Hybrid Cycle Detection (HCD). LCD reduces runtime overhead even

further by selectively triggering cycle detection only when identical points-to sets are discovered

during transitive closure computation. HCD introduces an offline linear-time graph preprocessing

stage that allows the online pointer analysis to detect cycles without the need for graph traversal at

9

all. PUS extends the above techniques by not only applying general graph optimization techniques

but also leveraging unique properties of constraint graph to only perform the SCC detection on

causality subgraph. Thus, PUS can dynamically prune off most ineffective edges to avoid redun-

dant points-to set propagation.

Recent work by Li et al. [45] proposed to simplify the input labeled graph in a CFL-reachability

problem by eliminating useless graph edges. PUS is similar to this work from a very high level.

However, this work primarily optimizes the labeled graph in CFL-reachability problems while PUS

focuses on simplifying the constraint graphs in pointer analysis.

Besides improving the solving algorithm, researchers have also proposed to use Datalog [46]

for fast and easy pointer analysis modeling. While the experimental result indicates a great po-

tential along the direction, fully customized pointer analysis solvers are still desired and used by

many of the most recent works [7, 6, 4] as they are easier to be extended and tailored for different

needs.

2.2 Data Races and Data Race Detection

In multithreaded programs, a data race occurs when 1. two or more threads in a single process

access the same memory location concurrently, and 2. at least one of the accesses is for writing,

and 3. the threads are not using any exclusive locks to control their accesses to that memory. Data

races are among the worst bugs in software in that they exhibit non-deterministic symptoms and

are notoriously difficult to detect. The problem is exacerbated by interactions between threads and

events in real-world software.

Due to its non-deterministic nature, race detection has been considered as an important research

topic for decades. Both static and dynamic algorithm has been proposed to tackle the problem. One

of the key challenges is how to compute and represent Happens-Before Relationships. Offset-span

labeling [47], which is an online scheme that labels threads in a fork-join graph, labels each task

with a vector of tuples. Vector Clock [48] records a clock for each thread in the system, and

the virtual clock is increased upon every synchronization event. Two events are considered to

be parallel if the two vector clock are not ordered. Flanagan et al [49] improve the vector clock

10

algorithm by replacing heavyweight vector clocks with adaptive lightweight representation as they

find the full generality of vector clocks is unnecessary in most cases.

Dynamic Race Detection Tools. Google’s Thread Sanitizer [50], also known as TSAN, pro-

posed a hybrid algorithm that uses both happens-before and lockset to detect data races. TSAN

has been used to find hundreds of races in real-world applications. Helgrind [51] is a tool based

on Valgrind [52]. Helgrind only detects happens-before relationships and it supports a subset o

the dynamic annotations in TSAN. Intel’s Inspector [53] is another dynamic data race detection

tool that uses Intel PT [54] to trace the program. It uses a Concurrent Provenance Graph to record

control, data and schedule dependencies.

Static Race Detection Tools. RacerD, developed at Facebook, is by far the most successful

static race detector [55]. It is regularly applied to Android apps in Facebook and has flagged over

2500 issues that have been fixed by developers before reaching production [55]. RacerD’s design

favors reducing false positives over false negatives through clever syntactical reasoning, but it does

not reason about pointers and thus can miss races due to pointer aliases. In contrast, O2 deals with

both Java pointers and low-level pointers in C/C++ such as indirect function targets and virtual

tables. Other classic static race detection tools (e.g., RacerX [56], RELAY [57]) have various

difficulties when applied to modern software. RacerX contains many heuristics and engineering

decisions, which are difficult to duplicate. RELAY depends on the CIL compiler front-end, which

supports only a subset of C and has not been actively developed. Technically, RELAY uses a

context- and field-insensitive pointer analysis, a major source of false positives. String-pattern-

based heuristics are used in RELAY to filter out false aliasing. These heuristics are effective in

reducing false positives, but are only specific to the code conventions in the target program and are

unsound.

11

3. PARTIAL UPDATE SOLVER FOR INCLUSION-BASED POINTER ANALYSIS*

Although pointer analysis has been a focus of research for decades, it remains an open chal-

lenge to scale pointer analysis to large complex codebases. A crucial performance bottleneck is

in solving the pointer analysis constraints. While precise pointer analysis is known to be undecid-

able [15, 16], any practical solution must over-approximate the exact answer. A state-of-the-art

approach is the Andersen-style [17], inclusion-based pointer analysis, in which pointer assign-

ments are constrained by inclusive relations. For example, a simple assignment q = p from pointer

p to q produces the contraint pts(p) ⊆ pts(q), meaning that the points-to set of p, denoted as

pts(p), is included in the points-to set of q. For a complex assignment involving pointer deref-

erence, q = ∗p, it produces ∀v ∈ pts(p) : pts(v) ⊆ pts(q). These inclusive constraints, while

ensuring valid may-alias results, provide significantly higher precision than unification-based ap-

proaches (i.e., , Steensgaard-style [18]). While the origin-sensitive pointer analysis introduced in

Chapter 4 mitigates the performance problem of pointer analysis to some degree, it still suffers

from the poor scalability inherent in inclusion-based pointer analysis.

As real-world programs often produce a huge number of constraints, quadratic to the number

of pointers, the key challenge remained is how to efficiently solve these c onstraints. There was

a significant effort over a decade ago by Pereira, Hardekopf, Pearce [19, 20, 40]. In their work,

a naïve fixed-point algorithm is improved by separating complex constraints and propagating the

points-to information into two stages; by applying different strongly connected component (SCC)

detection strategies, e.g., lazy cycle detection and hybrid cycle detection, to reduce the size of the

constraint graph [20]; or by sorting the constraint graph topologically to avoid redundant compu-

tation [40, 20]. More recently, Lei et al. [41] propose an efficient algorithm (DEA) for handling

positive weight cycles in field-sensitive p ointer a nalysis. L iu e t a l. [7] p ropose a n incremental

pointer analysis (D4) that only analyzes the updated code changes to dodge the performance over-
*Reprinted with permission from “PUS: A Fast and Highly Efficient Solver for Inclusion-based Pointer Analy-

sis” by Liu, Peiming and Li, Yanze and Swain, Brad, and Huang, Jeff, 2022. Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering, Copyright 2022 by Peiming Liu.

12

A

CB

{o1, o2}

{o1, o2, z}{o1, o2}

Causal

Node

A

CB

{o1, o2}

{z}{o1, o2}

Iteration n - 1 Iteration n

Figure 3.1: An example to illustrate the causality subgraph: with a new edge inserted after iteration
n− 1, node C is identified as a causal node in iteration n. Reprinted From [1].

head introduced by a whole-program pointer analysis. While these approaches further improve

the state-of-the-art in some specific aspects, their fundamental solving algorithm remains the same

(e.g., DEA still relies on WP [19] to solve the constraints).

We tackle this challenge with a new fundamental solving algorithm. Unlike previous algo-

rithms, our new algorithm, Partial Update Solver (PUS), only processes a partial constraint graph

in each iteration, yet still guarantees the same global fixed point. The key insight behind our ap-

proach is that during the constraint solving process in each iteration, only a very small causality

subgraph is subject to change due to the updates made in previous iterations. With the causality

subgraph, PUS prunes the constraint graph to only operate on a small subset of the constraints

in each iteration, which eliminates redundant computation across iterations, resulting in a much

faster algorithm. Compared to prior approaches [19, 20, 10] that apply general graph processing

techniques to pointer analysis, PUS is more efficient because it leverages two unique properties

of pointer analysis. First, the sparsity of the constraint graph, which leads to our definition of

causality subgraph. Second, the interconnections between different solving iterations provide the

necessary information to minimize the set of causal constraints in the next iteration.

As illustrated in Fig. 3.1, suppose a new edge A→ C is inserted in the previous iteration (due

to complex constraints), C is identified as a causal node because the points-to information carried

by A will take effect on C in the current iteration in order to satisfy the inclusive constraints.

13

Causal Complex

Constraints

Causal Copy

Constraints

Causal Graph
Computation

Points-to
Propagation

Process Simple Constraints

Process Complex Constraints

Selective
Complex Edges

Processing

Inserting new
Edges

Figure 3.2: An overview of PUS: partial update solver. Reprinted From [1].

However, B is not a causal node because its points-to information is not affected by the new

edge. Our empirical results show that, on average, the causality subgraph includes less than 4% of

the nodes and edges in the full constraint graph, indicating a dramatic performance optimization

opportunity.

Fig. 3.2 shows an overview of PUS. At a high level, PUS adopts a similar workflow to the

existing two-phase constraint solving algorithms [19], in which the constraints are processed it-

eratively between two stages (for processing simple constraints and complex constraints, respec-

tively). However, unlike the existing algorithms, which repeat the computation over the whole

graph in each iteration, PUS interactively invokes the two processing phases such that the first

phase computes a causality subgraph and selectively propagates the points-to information within

the causality subgraph (based on the information provided by the second phase). Meanwhile, as

new points-to information is propagated, the first phase also collects a subset of all the complex

constraints to be processed in the second phase. In PUS, in each iteration, one phase provides

necessary information for the other to infer a small set of causal constraints to be processed.

In principle, the time complexity of Andersen-stype pointer analysis is bounded by O(N2maxxD(x)+

14

NE) on a k-sparse program [58], where maxxD(x) is the maximal number of statements deref-

erencing a pointer x, N /E is the number of nodes/edges in the constraint graph. The value of

maxxD(x) is bounded by a constant k (i.e., maxxD(x) ≤ k) for real-world applications. The first

portion, O(N2maxxD(x)), summarizes the complexity for handling complex constraints and the

second portion, O(NE), summarizes the complexity for propagating points-to information on the

constraint graph. As PUS propagates points-to information only on the causality subgraph, it re-

duces the second portion to O(N2maxxD(x)+N∗E∗), where N∗/E∗ is the number of nodes/edges

in the causality subgraph. In practice, this reduction leads to significant performance improvements

because typically N∗ � N and E∗ � E in real-world programs.

3.1 Inclusion-based Pointer Analysis

The inter-procedural inclusion-based pointer analysis abstracts different program statements

into the constraints listed in Table 2.1. It first scans the target program and generates three types

of constraints: base, simple and complex [20]. It then abstracts the target program into a constraint

graph (Definition. 2.1). Inclusion-based pointer analysis can then be solved by computing the

transitive closure of the constraint graph such that for every pair of nodes v1, v2 ∈ V , if there is

an edge e = {v1 → v2} ∈ E , then pts(v1) and pts(v2) are the minimal points-to sets that ensure

pts(v1) ⊆ pts(v2).

The global fixed point is reached when all complex constraints and simple constraints are satis-

fied (complex constraints are satisfied by inserting new edges into the constraint graph): For each

load constraint (v1 ← ∗v2) and every v ∈ pts(v2), we added a new edge v → v1 into the constraint

graph; for each store constraint (∗v1 ← v2) and every v ∈ pts(v1), we added a new edge v1 → v

into the constraint graph; and for each offset constraint (v ← &s.field) and every v ∈ pts(s), we

insert loc(v.field) into pts(v).

Definition. 2.1: The constraint graph (CG) of a program is an attributed graph G = {V , E , pts},

in which V is a set of vertices, each of which corresponds to a variable v in the program; E ⊆

(V × V) is a set of directed edges (constraints) between vertices in V , each of which represents a

15

2

5

7 8

1

6

9 10

2

5

7 8

1

6

(a) WP

visited

node

skipped

node

preexisting

edge

new

edge

x y

V1

Vn

x y

V1

Vn

❶ ❷

❸

❶ ❷

(b) PUS (c) DP (d) PUS

updated

node

traversing

order

9 10

Figure 3.3: The comparison between PUS, WP and DP. (a) the solving process of WP (the entire
graph need to be revisited) (b) the solving process of PUS (only marked node need to be visited)
(c) the solving process of DP (V1...Vn are visited twice) (d) the solving process of PUS (V1...Vn are
only visited once). Reprinted From [1].

simple constraint between two nodes (in the following text, the word ‘edge’ and ‘constraint’ are

used interchangeably); and pts: V → P (O) (where P (O) is the power set of the set of objects

created by memory allocation operations in the program) is a function from v ∈ V to s ∈ P (O)

that maps a node (pointer) to its points-to set.

3.2 Limitations of Existing Solving Algorithms

We divide the existing constraint solving algorithms for inclusion-based pointer analysis roughly

into two categories and summarize their limitations as follows respectively.

Methods that process constraints in topological order: Performing a topological sorting on the

constraint graph ensures that constraints are processed in the optimal order by guaranteeing that

the points-to sets of all the predecessors of a node n have been updated before processing n. In this

way, the points-to sets of the predecessors are the most recently updated before propagating to node

n. Many algorithms [44, 39, 40, 38] adopt the topological sorting approach to boost the constraint

solving time. Despite the benefits brought by it, performing SCC detection and topological sorting

on large constraint graphs itself is time-consuming and could easily become a bottleneck that slows

down the solving process.

Fig. 3.3 (a) and Fig. 3.3 (b) shows the solving process of WP and PUS on the example constraint

16

graph respectively, as a new edge (2 → 5) is inserted, WP revisits the entire graph in topological

order, on the other hand, PUS computes the same result by only visiting the three nodes in the

causal subgraph (marked in grey).

Methods that process constraints in undetermined order: Methods that do not enforce SCC

detection and topological order on the constraint graph (e.g., Deep Propagation (DP) [19], Lazy

Cycle Detection (LCD) and Hybrid Cycle Detection (HCD) [20]) at each iteration unavoidably

waste resources on redundant computation due to a sub-optimal order of constraint processing.

Fig. 3.3 (c) and Fig. 3.3 (d) show the solving process of DP and PUS on the example constraint

graph respectively. When both pts(x) and pts(y) are updated, DP adopts a depth-first search to

propagate from x → · · · → vn and from y → · · · → vn separately. As a result, the nodes and

constraints between v1 → · · · → vn are visited twice. However, PUS shows that when analyzing

the graph in topological order (i.e., x → v1, y → v1 and then v1 → · · · → vn), every constraint

only needs to be visited once.

The comparison between the existing two categories of algorithms reveals the dilemma of cur-

rent algorithms: On one hand, full SCC detection and topological sorting are desired to eliminate

redundant computation and to reduce the number of nodes by collapsing nodes in the same SCC in

the constraint graph; on the other hand, applying a complete SCC detection on a large graph itself

can introduce an unbearable overhead.

We found that the common problem for those works is that they all take a holistic view to-

wards constraint graphs. Instead, PUS works on causality subgraphs. By only working on a small

subgraph in each iteration, PUS can enjoy the benefit brought by topological sorting without in-

troducing too much performance overhead. The rationale behind causality subgraphs are rooted in

inherent properties of pointer analysis and the unique interconnection between different phases of

a solving process summarized as follows:

• Constraint graphs for real programs are, by nature, sparsely connected. The sparsity of

constraint graphs is a result of modularization of modern software (thus fewer connections

17

between different modules) as well as the locality 2 of program statements (thus fewer con-

nections between different statements). As constraint graphs are abstracted from programs,

an update on one specific node in the constraint graph will likely only affect a limited num-

ber of neighboring nodes. Thus, in each iteration during the solving process and with limited

nodes whose points-to sets are updated, only a very small subset (usually≤ 4% according to

our experiments) of the nodes (casual nodes) are required to be processed, which means that

topological sorting and points-to set propagation only need to be done on a small causality

subgraph of the entire constraint graph in each iteration.

Being able to precisely infer a small subgraph in each iteration, PUS discovers another memory

optimization opportunity: One of the most widely adopted optimization techniques used in existing

methods and frameworks (e.g., WALA [59]) is to maintain a cached points-to set for every node

in the constraint graph (Wave Propagation [19] even requires an additional cached points-to set for

every edge in the graph). The cached points-to set is used to filter out non-causal nodes whose

points-to sets do not get updated in the current iteration and to only process diffed points-to infor-

mation. However, if the causality subgraph can be accurately inferred and most of the constraints

in the subgraph are effective, i.e., by processing which, the points-to set will get updated, then

the cached points-to set can be (optionally) eliminated to improve the memory efficiency without

causing significant performance overhead.

3.3 Algorithm

In this section, we describe the detailed algorithm for PUS. We first present the overall structure

of PUS in Algorithm 1, we then explain each component separately in detail in Algorithm 2, Al-

gorithm 3 and Algorithm 4. For simplicity, we describe PUS under the context of field-insensitive

pointer analysis. PUS can be extended for field-sensitive pointer analysis (as we implemented for

experiments) by adding another type of constraint, the offset constraint, into complex constraints

similar to the previous work [40].

2The locality here has a different meaning from the spatial/temporal locality in computer architecture. Here, it is
used to explain that most of the statements in the program are irrelevant (e.g., a++; and b++;).

18

Algorithm 1: Partial Update Solver
Input : A unsolved constraint graph G = {V , E , pts}
Result: The points-to information for every pointer in the program

1 Lcomp← ∅;
2 Lcopy ← ∅;
3 for each v ∈ V do
4 if pts(v) 6= ∅ then

// Nodes with address taken constraints have non-empty
points-to set

5 Ccopy ← v.getCopyConstraints();
// get simple constraints started from the node and

insert them into Lcopy

6 Lcopy.insert(Ccopy);
// insert the node into Lcomp

7 Lcomp.insert(v);
8 end
9 end

10 while Lcopy 6= ∅ do
// SCC detection on subgraphs of G based on Lcopy

11 SCC Collapse and TopoSort on subgraphs of G (Algorithm 2);
12 Lcomp ← Partially Process Simple Constraints (Algorithm 3);
13 Lcopy.clear();
14 Lcopy ← Partially Process Complex Constraints (Algorithm 4);
15 Lcomp.clear();
16 end

3.3.1 Structure of the Algorithm

At a high level, PUS has a similar structure to WP [19] that separates the insertion of new

constraints (handling complex constraints) from the propagation of points-to sets (handling simple

constraints). However, PUS distinguishes itself by connecting the two constraint solving phases

using two separate work lists:

• Lcopy:{E} – A subset of simple constraints that is used to compute the causality subgraph

used in the following stages.

• Lcomp:{V} – A subset of nodes on which the complex constraints need to be recomputed.

At a high level, Algorithm 1 can be divided into initialization phase (from line 3 to 9), SCC

19

detection and topological sort phase (line 11), Simple constraint processing phase (line 12) and

Complex constraint processing phase (line 14), which are explained in detail in the following

sections. We also relies on the following conventions to describe our algorithm: We refer to any

edge e ∈ Lcopy used in Algorithm 1 as an essential edge and refer to any node v ∈ Lcomp used in

Algorithm 1 as an unsaturated node. We use dst(E) to denote the set of destination nodes for all

edges e ∈ E ; we use src(E) to denote the set of source nodes for all e ∈ E ; we use in(n) to denote

the set of incoming edges to node n; we use out(n) to denote the set of outgoing edge from n; we

use pred(n), where n is a node, to denote the set of predecessor nodes of n; we use succ(n) to

denote the set of the successor nodes of n.

Algorithm 2: SCC Collapse and TopoSort on SubGraphs of G
Input : A constraint graph G = {V , E , pts}

A list of starting edges Lcopy = {E}
Output: A toposorted vector V of SCCs that are reachable from at least one of e ∈ Lcopy

1 V ′ ← ∅;
2 E ′ ← ∅;
3 pts′ ← pts;
4 G ′ ← {V ′, E ′, pts′};
// prune the graph G to a subgraph G ′

5 while Lcopy 6= ∅ do
6 e← Lcopy.pop();
7 if visited(e) then
8 continue ; // skip covered edges
9 end

10 setVisited(e);
11 E ′.insert(e);

// add source and destination nodes of e into G ′
12 V ′.insert({e.src, e.dst});
13 E ′.insert({e′ | e′ ∈ v.outgoing_edges() ∧ reachable(e.dst, v) = true});
14 V ′.insert({v′ | reachable(e.dst, v) = true});
15 end
// perform SCC detection on the subgraph G ′
// also sort the graph internally

16 V← Tarjan(G ′);
// return the toposorted vector V

17 return V;

20

3.3.2 Detailed Algorithm

In this section, we describe the detailed algorithms of all sub-components that are used in

Algorithm 1.

Subgraph SCC Detection: As shown in Algorithm 2, the SCC detection is performed on

the subgraph G ′ instead of the original graph G. The set of edges and nodes in G ′ is computed

according to the reachability from the constraints in Lcopy.

The node set N ′ of G ′ consists of 1. the source and destination nodes of every constraints

in Lcopy and 2. all the nodes that are reachable for at least one of the destination nodes of the

constraints in Lcopy . The edge set E ′ of G ′ consists of 1. all the edges in Lcopy and 2. all the outgoing

edge of node n that are reachable from a least one of the destination nodes of the constraints in

Lcopy.

After SCC detection, a vector of nodes in topological order is returned by Algorithm 2 and used

as one of the inputs for Algorithm 3. Note that although Algorithm 2 presents the computation of

G ′ as a separate step, G ′ can be computed along with SCC detection utilizing the DFS traversal

performed by Tarjan’s algorithm internally.

The graph processed by Algorithm 3 defines the causality subgraphs in each iteration. In

addition, we introduced the following definition to formally define the causality subgraph.

The graph processed by Algorithm 3 defines the causality subgraphs in each iteration. In

addition, we introduced the following definition to formally define the causality subgraph.

Propagating points-to set on the causality subgraph: Algorithm 3 describes the procedure

for processing simple constraints. Algorithm 3 takes a subgraph G ′ of G and a topologically sorted

vector of nodes as the inputs. The topologically sorted vector of nodes ensures that simple con-

straints are processed in the optimal order to avoid redundant computation. Lcopy is also passed in

and used at line 5 to perform further pruning on the causality subgraph.

There are two important details that are worth noting in Algorithm 3:

1. During the points-to set propagation, the algorithm also computes and eventually outputs a

21

Algorithm 3: Partially Process Copy Constraints
Input : A constraint graph: G ′ = {V ′, E ′, pts′}

A sorted vector of SCCs: V = {N}
A list of effective copy constraints: Lcopy

Output: A set of node S whose complex constraints need to be processed
1 Lcomp ← ∅;
2 while V.isNotEmpty() do
3 n← V.pop();
4 for each e = {src, dst} ∈ n.getCopyConstraits() do
5 if e = {src, dst} ∈ Lcopy ∨ src ∈ Lcomp then
6 changed← PropagatePointsTo(src, dst);
7 if changed then
8 Lcomp.insert(dst);
9 end

10 else
// Prune the graph, skip unchanged subgraph

11 continue;
12 end
13 end
14 end
15 return Lcomp;
/* Process a simple constraint between src and dst, return

true if the points-to information is updated */
16 Function PropagatePointsTo(src, dst):
17 pts(dst)← pts(dst) ∪ pts(src);
18 if dst.changed then
19 return true;
20 end
21 return false;
22 End Function

list of nodes, Lcomp, to be used in Algorithm 4, which contains all the nodes on which the

complex constraints need to be processed.

2. At line 11, the algorithm performs another pruning on the causality subgraph to further

reduce the number of constraints processed by PUS.

The computation on Lcomp is straightforward, Algorithm 3 simply inserts a node into Lcomp if

the points-to set of the node has been updated during the current iteration.

22

Algorithm 4: Partially Process Complex Constraints
Input : The constraint graph: G = {V , E , pts}

Nodes with effective complex constraints: Lcomp

Output: A set of processed: Lcopy

1 while Lcomp.isNotEmpty() do
2 V ← Lcomp.pop();
3 for each {l← ∗V } ∈ V.getLoadConstraints() do

// process load constraints
4 newEdges← processLoad(l, V);
5 Lcopy.insert(newEdges);
6 end
7 for each {∗V ← r} ∈ V.getStoreConstraints() do

// process store constraints
8 newEdges← processStore(V, l);
9 Lcopy.insert(newEdges);

10 end
11 end
12 return Lcopy;

The graph processed by Algorithm 3 defines the causality subgraphs in each iteration. In

addition, we introduced the following definition to formally define the causality subgraph.

Definition. 4.1: Given a constraint graph G = {V , E , pts} and a set of essential edges

E+ ⊆ E , the essential-edge-covered graph G ′ = {V ′, E ′, pts′} is a subgraph of G, where V ′ = V1∪

src(E+) and V1 = {v | ∃s ∈ dst(E+),v is reachable from s}; E ′ = E+∪{e | e = out(n) ∧ n ∈ V1}

and pts′ = pts.

Definition 4.2: Given an essential-edge-covered graph G ′ = {V ′, E ′, pts′} and its corre-

sponding essential edge set E+ ⊆ E ′, the set of ineffective edges E− and the set of ineffective

nodes V− are determined dynamically during the points-to set propagation process. For node n,

if ∀p ∈ pred(n), pts(p) does not get updated in the current iteration, then n ∈ V−. Similarly,

E− = {e | e ∈ out(n) ∧ n ∈ V− ∧ e /∈ E+}.

Definition 4.3: Given an essential-edge-covered graph G ′ = {V ′, E ′, pts′} and a set of in-

effective edges E−, the causality subgraph G∗ = {V∗, E∗, pts∗} ,which is processed by PUS, is a

23

Figure 3.4: Further prune on the constraint graph during simple constraints processing phase.
Reprinted From [1].

subgraph of G ′, where V∗ = V ′ − V−, E∗ = E ′ − E−, and pts∗ = pts′.

Intuitively, definition 4.2 defines the set of nodes and edges that are pruned in Algorithm 3 at

line 11, and the causality subgraph is defined by excluding the pruned nodes and edges from the

essential-edge-covered graph. Fig. 3.4 offers an example that explains the rationale behind the

graph pruning. In Fig. 3.4, the grey nodes and solid edges are within the essential-edge-covered

graph G ′ for the current iteration. The corresponding points-to set is marked beside each node.

In this example, the incoming update ({O1}) to be propagated within the causality subgraph is

already included in pts(C) due to B → C. To further propagate the points-to set from C does

not make any update to C’s successors (D and E in the example), thus the causality subgraph

can be pruned by skipping C → D and C → E. In Algorithm 3, since nodes are processed in

topological order and all the nodes whose points-to sets have been updated in the current iteration

are in Lcomp, the test on src ∈ Lcomp at line 5 returns true only when pts(src) gets updated in the

current iteration. For node dst, if all the predecessors of dst are not included in Lcomp and thus

have not been updated, the outgoing edges of dst will be pruned.

By the end of the computation, Algorithm 3 outputs Lcomp after draining the inputted node

vector and passes Lcomp to Algorithm 4.

Processing complex constraints: Algorithm 4 provides detailed information on how PUS

24

handles complex constraints. The algorithm takes Lcomp, the list of nodes provided by Algorithm 3,

and locates all the nodes on which the complex constraints need to be processed.

The processing of the complex constraints follows a standard procedure by inserting new edges

into the constraint graph. Algorithm 4 inserts all the newly added edges into the Lcopy and eventu-

ally passes Lcopy to both Algorithm 2 and Algorithm 3.

Note that whether or not a cached points-to set should be maintained so that PUS is able to

process only the diffed points-to set [19] for complex constraints can be optionally applied. We

omit the cached points-to set in our algorithm description as well as our implementation for better

memory efficiency and our experimental results show that PUS is still much faster than techniques

which apply the cached points-to set optimization.

3.3.3 Proof of Correctness

We prove that PUS will reach the global fixed point by the end of the computation in this

section.

Definition. 4.4: We say that a constraint graph G = {V , E , pts} is points-to saturated or

reaches a points-to saturated state iff for any pair of nodes v1, v2 ∈ V , if there is a path from v1 to

v2, we have the minimal sets for pts(v1) and pts(v2) and pts(v1) ⊆ pts(v2).

Definition. 4.5: We say that a constraint graph G = {V , E , pts} is constraint saturated or

reaches a constraint saturated state iff for any node v ∈ V , if there is a load constraint (p =

*v) on v then there is an edge e = {v′ → p} ∈ E for every v′ ∈ pts(v); and if there are store

constraints (*v = p) on v, then there is an edge e = {p→ v′} ∈ E for every v′ ∈ pts(v).

By definition, the global fixed point is reached when the constraint graph is both points-to

saturated and constraints saturated.

Lemma 4.1: Given an acyclic constraint graph, it will reach a points-to saturated state after

processing the nodes once in topological order. �

Lemma 4.2: The ineffective edge set E− is empty during the first iteration in Algorithm 1. �

Theorem 4.1: At every iteration in Algorithm 1, the constraint graph ¶ is points-to saturated

25

after processing simple constraints (line 13) and · is constraint saturated after processing complex

constraints on unsaturated nodes (line 14). �

Proof: We prove the theorem by induction.

For the first iteration ¶: By Lemma 4.2, the first iteration processes the entire essential-edge-

covered graph G ′ = {V ′, E ′, pts′} with an essential edge set E+ = {e | e ∈ out(n)∧ pts(n) 6= ∅}.

By Lemma 4.1, the subgraph G ′ will reach a points-to saturated state after simple constraints

processing. To prove the whole graph G will also be points-to saturated, it is equivalent to show

that for nodes n /∈ V ′, pts(n) = ∅: By contradiction, if there exists a node n /∈ V ′ ∧ o ∈ pts(n),

by the transitivity of constraint graph [7], there exists a path from address taken node of o to node

n. However, since E+ includes all the address taken nodes’ outgoing edges, node n should also

be included in V ′ by definition, which contradicts with n /∈ V ′. ·: According to Algorithm 1, the

unsaturated node set V+ = {v | pts(v) 6= ∅} after processing simple constraints at line 13. It is

obvious that the graph reaches a constraint saturated state after processing complex constraints on

V+ as no edge needs to be inserted for node n whose points-to set is empty.

Combining ¶ and ·, theorem 5.1 holds at the first iteration.

Suppose theorem 4.1 holds for the n-th iteration.

For the n+1-th iteration. We denote the constraint graph at n-th iteration before inserting

new edges as Gn = {Vn, En, ptsn} , the constraint graph at current iteration before inserting new

edges as Gn+1 = {Vn+1, En+1, ptsn+1} and the causality graph processed at current iteration as

G∗n+1 = {V∗n+1, E∗n+1, pts
∗
n+1}

¶: According to Algorithm 1 and Algorithm 4, the essential edge set E+n+1 = En+1 − En. To

prove that a points-to saturated state will be reached, we prove the following two conditions hold:

1. for node v ∈ Vn+1 − V∗n+1, ptsn(v) = ptsn+1(v) and thus need not to be processed, and

2. the pruning on G∗n+1 by removing ineffective constraints in E−n+1 is sound.

For (1), assume there exists a node v ∈ Vn+1 − V∗n+1 and ∆n+1 = ptsn+1(v) − ptsn(v) 6= ∅.

By the transitivity of constraint graph, for o ∈ ∆n+1, there exists a path from the address taken

26

node o′ to v (denoted as a set P = {o′ → v1, v1 → v2, ..., vx → vy, vy → v}).

Case 1: If for every e ∈ P , e /∈ E+n+1, then e ∈ En. By induction hypothesis, the n-th iteration

reached the points-to saturated state, thus o ∈ ptsn(v) since there is a path P between o′ and v,

which is contradictory to the assumption o ∈ ∆n+1.

Case 2: If there exists a e ∈ P , and e ∈ E+n+1, then by definition v ∈ V∗n+1 and v is in the

causality graph, which is contradictory to the assumption v ∈ Vn+1 − V∗n+1.

For (2), assume there exists an edge e ∈ E−n+1 and by processing it, which is to compute

ptsn+1(e.dst) = ptsn+1(e.src) ∪ ptsn(e.dst), ∆n+1 = ptsn+1(e.dst) − ptsn(e.dst) 6= ∅. Since,

by definition, ptsn+1(e.src) − ptsn(e.src) = ∅ as e is an ineffective edge. To satisfy ∆n+1 6= ∅,

we have ptsn(e.src) * ptsn(e.dst). However, since e ∈ E−n+1, by definition e /∈ E+n+1, which

equals En+1 − En. We can conclude that e ∈ En. By induction hypothesis, we have ptsn(e.src) ⊆

ptsn(e.dst) and e.dst is reachable from e.src by e ∈ En and G is points-to saturated, which is

contradictory to the assumption ptsn(e.src) * ptsn(e.dst).

·: According to Algorithm 3 and Algorithm 1, the set of unsaturated nodes V+
n+1 = {v | ptsn+1(v)−

ptsn(v) 6= ∅}. It is obvious that the algorithm will reach constraint saturated state after process-

ing v ∈ V+
n+1. By induction hypothesis, in the previous iteration after inserting new edges, the

constraint graph is constraint saturated and thus for v′ ∈ {v | ptsn+1(v) = ptsn(v)}, they need not

to be processed in the current iteration.

Combining ¶ and ·, Theorem 4.1 holds at the n + 1-th iteration provided that Theorem 4.1

holds in n-th iteration.

Theorem 4.2: Algorithm 1 guarantees the global fix point. �

Proof: We denote the constraint graph in the final iteration before inserting new edges as

Gf = {Vf , Ef , ptsf} and the constraint graph in the final iteration after inserting new edges as

G ′f = {Vf , E ′f , ptsf} Since Algorithm 1 returns when the essential edge set E+f = E ′f − Ef = ∅,

no edge is inserted by processing new complex constraints. Thus Gf = G ′f . By Theorem 4.1, Gf is

points-to saturated and G ′f is constraint saturated and since Gf = G ′f , the final output G ′f are both

points-to saturated and constraint saturated.

27

Table 3.1: Benchmarks and the constraint graph metrics (#Pointer, #Object and #Assign shows
the number of pointers, objects and assignment statements in the tested program respectively).
Reprinted From [1].

.

Benchmark #LoC #Pointer #Object #Assign
memcached 18.9K 15.2K 3.8K 6.0K
darknet 30.1K 91.3K 26.0K 44.1K
flatbuffers 156.1K 210.2K 83.5K 2659.5K
nfs-ganesha 251.5K 114.1K 33.5K 768.6K
curl 142.2K 70.0K 14.1K 578.5K
sqlite3 245.4K 129.3K 23.6K 1024.4K
keydb-server 259.1K 78.9K 20.0K 230.1K
vim 334.9K 267.9K 51.1K 1826.9K
cpython 564.9K 171.5K 52.2K 1770.0K
postgreSQL 1.0M 496.7K 106.3K 4677.6K

3.4 Experiments

The goal of our evaluation is to answer the following research questions.

• RQ1: How much reduction can PUS achieve by only processing the causality subgraph in

each iteration? In other words, how large is the causality subgraph for real-world applica-

tions when compared to the entire constraint graph?

• RQ2: In terms of performance, how much faster is PUS when compared with state-of-the-art

algorithms, namely WP and DP?

Table 3.2 and Fig. 3.5 provide strong evidence to support our key observation: The size of

causality subraphs are small and updates on the points-to information of certain nodes only affect

very limited set of neighboring nodes. From these experiments, we can easily understand why

PUS is able to achieve such a dramatic reduction by analyzing small causality subgraphs instead

of the entire constraint graph at each iteration.

3.4.1 RQ1: Reduction Achieved by PUS

To answer the first research question, we ran context-insensitive PUS on the benchmarks in

Table 3.1 and collected statistics about the size of the causality subgraph processed by PUS in

28

Table 3.2: The size of the causality subgraphs processed by PUS. Reprinted From [1].

Benchmark
Constraint Graph causality Subgraph

#Node #Edge #Node %ratio #Edge %Ratio

memcached 19,033 14,792
min 1 0.01% 2 0.02%
max 3,538 18.59% 11,175 75.53%
avg. 197 1.04% 703 4.74%

darknet 117,272 110,622
min 1 0.00% 1 0.00%
max 15,365 13.10% 34,406 31.10%
avg. 1,990 1.70% 7,171 6.48%

flatbuffers 293,737 9,061,966
min 7 0.00% 11 0.00%
max 48,533 16.52% 230,758 2.54%
avg. 6,679 2.27% 16,212 0.18%

nfs-ganesha 147,550 824140
min 1 0.00% 2 0.00%
max 28,865 20.07% 62,491 16.61%
avg. 726 0.50% 2,590 0.69%

curl 84,311 646,020
min 2 0.00% 2 0.00%
max 14,743 17.48% 51,365 7.95%
avg. 3,341 3.96% 17,688 2.74%

sqlite3 152,919 1,114,272
min 1 0.00% 2 0.00%
max 34,642 23.32% 120,412 10.79%
avg. 9,113 5.97% 30,938 2.77%

keydb-server 99,015 270,497
min 2 0.00% 2 0.00%
max 21,147 21.36% 44,993 16.60%
avg. 4,865 4.91% 12,229 4.51%

vim 319,056 2,087,531
min 2 0.00% 6 0.00%
max 68,600 21.50% 235,240 12.42%
avg. 10,512 3.29% 39,570 2.09%

cpython 223,675 2,129,505
min 16 0.00% 16 0.00%
max 52,424 23.44% 139,810 7.53%
avg. 9,885 4.42% 33,676 1.81%

postgreSQL 603,061 4,988,935
min 1 0.00% 1 0.00%
max 114,410 18.97% 333,764 6.90%
avg. 13,241 2.20% 46,621 0.96%

avg. - - - 3.02% - 2.69%

each iteration. The detailed report is listed in Table 3.2. Table 3.2 compares the size of different

causality subgraphs and analyzes the relative sizes of the causality subgraphs compared with the

entire constraint graph.

We report the minimal, maximum and average number of nodes and edges processed by PUS

29

to summarize the characteristics of the causality subgraph because a different causality subgraph

is computed by PUS in each iteration.

As shown in Table 3.2, on average a causality subgraph only contains around 3% of the nodes

and 2.7% of the edges in the respective whole constraint graph. For most of the benchmarks,

the size of the causality subgraph can be as small as just 1 or 2 nodes and edges, even for large

benchmarks (e.g., cpython and postgreSQL) with more than 500K nodes and 300K edges. The

minimal causality subgraph is usually observed in the last few iterations when the points-to sets

of most of the nodes in the constraint graph are saturated. The result gives us more confidence on

the performance improvement can be achieved by PUS, as algorithms like WP would still need to

re-sort the entire constraint graph even when the number of effective nodes can be as low as 1.

The result also shows that for most of the benchmarks, even the largest causality subgraph

usually contains no more than 30% of the nodes and 30% of the edges in the complete constraint

graph. More importantly, according to our observation, large causality subgraphs do not occur

frequently, which is also why the average number of nodes and edges in the causality graph is

still low despite the existence of some relatively large subgraphs. Our experiments shows that

large causality graphs normally occur in the first few iterations at the beginning of the computation

and/or after indirect calls are resolved and new nodes are inserted. These observations are validated

in Fig. 3.5 and will be elaborated in the following paragraphs.

In order to gain insights into the entire ‘lifetime’ of the causality subgraphs and to understand

how it ‘evolves’ as the analysis proceeds, we include two complete (also typical) footprints that

show how the sizes of causality subgraphs fluctuate in each iteration of the whole solving pro-

cess. The two data sets are collected by evaluating PUS on curl and sqlite3 and are visualized in

Fig. 3.5 (a) and Fig. 3.5 (b) respectively. It is clear that Fig. 3.5 (a) and Fig. 3.5 (b) exhibit several

common patterns:

• The size of the causality graph normally increases greatly as new indirect calls are resolved.

This is because each time when an indirect call is resolved, the newly resolved target func-

tions introduce many unprocessed nodes and constraints into the constraint graph. Those

30

(a) The footprint of curl

(b) The footprint of sqlite3

New Indirect
Targets Resolved

New Indirect
Targets Resolved

Figure 3.5: The footprint of the size of the causality subgraphs processed by PUS at each iteration
when analyzing curl and sqlite3. Reprinted From [1].

unprocessed nodes are likely to invalidate a large portion of the constraint graph, which in

turn increases the size of the causality subgraph for the next iteration.

• After new nodes are inserted, the size of the causality subgraph normally reduces sharply

after several iterations. The size then remains small until another set of new indirect calls

get resolved. This indicates that the solving process converges quickly after a few iterations

on most of the nodes, and then gradually approach the fixed point by only processing a very

small number of nodes at each iteration.

31

Table 3.3: Performance of PUS comparing with wave propagation (WP) and deep propaga-
tion (DP) when running context-insensitive pointer analysis (%↑ shows the speedup). Reprinted
From [1].

Benchmark PUS
WP DP

time %↑ time %↑
memcached 0.04s 0.35s 775.00% 0.1s 150.45%
darknet 0.34s 1.82s 435.29% 1.00s 194.12%
flatbuffers 95.9s 195.72s 104.08% 124.87s 30.28%
nfs-ganesha 11.17s 48.83s 327.15% 26.48s 137.06%
curl 18.45s 29.45s 59.62% 28.29s 53.27%
sqlite3 46.48s 98.77s 125.50% 128.73s 176.96%
keydb-server 4.84s 7.58s 56.61% 5.76s 19.00%
vim 81.17s 183.81s 126.41% 193.70s 138.55%
cpython 400.66s 619.55s 54.61% 655.91s 63.70%
PostgreSQL 1,381.2s 1,757.9s 27.27% 2,001.6s 44.91%
avg. - - 3.09× - 2×

Table 3.2 and Fig. 3.5 provide strong evidence to support our key observation: The size of

causality subraphs are small and updates on the points-to information of certain nodes only affect

very limited set of neighboring nodes. From these experiments, we can easily understand why

PUS is able to achieve such a dramatic reduction by analyzing small causality subgraphs instead

of the entire constraint graph at each iteration.

3.4.2 RQ2: The Performance Improvement Achieved by PUS

PUS was evaluated in both context-insensitive and context-sensitive (k-callsite, with k = 1)

settings. and compared with WP and DP. The experimental results are elaborated in Section 3.4.2.1

(when running context-insensitive analysis) and Section 3.4.2.2 (when running context-sensitive

analysis).

3.4.2.1 Improvement when Running Context-Insensitive Pointer Analysis

In the context-insensitive setting, the execution time of each algorithm when running on differ-

ent benchmarks is given in Table 5.2.

In summary, PUS achieves a significant performance improvement compared to WP and DP,

32

Table 3.4: Performance of PUS comparing with wave propagation (WP) and deep propagation
(DP) when running k-callsite sensitive (k = 1) pointer analysis (%↑ shows the speedup). Reprinted
From [1].

Benchmark PUS
WP DP

time %↑ time %↑
memcached 0.08s 0.68s 708.33% 0.26s 210.71%
darknet 1.09s 6.36s 484.30% 5.33s 389.81%
flatbuffer 673.39s 4580.5s 580.22% 2542.8s 277.62%
nfs-ganesha 33.28s 367.97s 1005.82% 459.54s 1281.0%
curl 37.58s 266.98s 610.40% 258.3s 587.31%
sqlite3 112.44s 639.64s 468.88% 961.3s 754.96%
keydb-server 20.38s 77.51s 280.42% 79.66s 290.98%
vim 367.62s 2587.1s 603.75% 3647.1s 892.09%
cpython 367.33s 3358.9s 814.43% 9559.7s 2502.5%
PostgreSQL OOM OOM -% OOM -%
avg. - - 7.17× - 8.99×

with more than 2× speedup on average. For certain benchmarks, namely memcached and darknet,

PUS can be 4× as faster than WP. When compared with DP, PUS is 2× faster on more than half

of the tested benchmarks (namely memcached, darknet, nfs-ganesha, vim and sqlite3). Even in the

worst cases, PUS can still be more than 20% faster than DP and WP.

In our experiments, we also made a similar observation as found in the original WP and DP pa-

per [19]. The original paper observes that WP has an advantage over DP when analyzing relatively

large program as WP is faster than DP on sqlite3, vim and cpython and DP is faster than WP on

relatively smaller programs such as memcached, redis-server and nfs-ganesha. The one exception

is flatbuffer, which has a relatively small number of lines of code (48.9K) while its corresponding

constraint graph is nearly as big as that of large programs such as vim. However, unlike WP and

DP, which have different advantages when analyzing programs of different scales, PUS outper-

forms both WP and DP on all the tested benchmarks with the sizes ranging from 18K to over 1M

lines of code. PUS can be 8× faster and achieves at least a 19% speedup. The fact that PUS is able

to outperform both WP and DP on benchmarks of varying sizes (both large and small) indicates

that is a much more general algorithm that can be applied to all kinds of programs.

33

3.4.2.2 Improvement when Running Context-Sensitive Pointer Analysis

In the context-sensitive setting (k-callsite, with k = 1), the execution time of each algorithm

when running on different benchmarks is given in Table 5.2.

Surprisingly, PUS even achieved much higher speedups when solving context-sensitive con-

straints when compared to context-insensitive constraints. The results shows that on average, PUS

is almost 7× and 9× faster than WP and DP respectively. For certain benchmarks, PUS can be

more than 10× faster than WP and DP (ganesha) and more than 25× faster than DP (python). On

all benchmarks, PUS is at least 2× faster than both WP and DP. The result indicates that PUS has

a great potential to be adopted widely as the computing power becomes stronger and stronger and

more precise pointer analysis is desired in the future.

The reason why PUS is able to significantly outperform the state-of-the-art algorithms, es-

pecially when solving context-sensitive pointer analysis, is still rooted in our key insight that

constraint graphs are sparsely connected. This property becomes even more essential in context-

sensitive pointer analysis as one node in context-insensitive pointer analysis can correspond to

multiple nodes in context-sensitive pointer analysis because the same variable is now analyzed sep-

arately under different contexts. This makes the constraint graph sparser. Thus, the effect brought

by the update of one node becomes more local as it can only affect nodes under some particular

contexts whereas one node can affect many neighbors in context-insensitive pointer analysis, even

when the neighboring nodes represent variables in a mismatched context.

Despite all kinds of optimizations made when designing PUS, we still found it challenging

to run context-sensitive pointer analysis on extremely large benchmarks using only commodity

hardware. As the k-limiting for context-sensitive pointer analysis increases, the complexity of the

algorithm and the size of the constraint graph grows exponentially, which makes the algorithm

hard to scale on large benchmarks. During the experiments, we observed that more than 5 million

nodes were created in the constraint graph for PostgreSQL in the first 5 minutes, which rapidly

drains the memory of our machine. A more powerful machine is needed for evaluating PUS on

PostgreSQL.

34

3.5 Summary

We have presented Partial Update Solver (PUS), a new constraint solving algorithm for inclusion-

based pointer analysis. PUS significantly advances the state-of-the-art in reducing the time com-

plexity by a quadratic factor. The key insight is that only a small portion of the constraint graph

is effective for the points-to set propagation, which can be extracted efficiently into a subgraph,

called causality subgraph. We have formally proved the correctness of and extensively evaluated

the performance of on a wide range of real-world large complex programs. Our experimental re-

sults indicate that is high scalable and significantly more efficient than the state-of-the-art WP/DP

algorithms. PUS achieves more than 7× (2×) speedups when comparing to WP/DP in solving

context-sensitive and context-insensitive pointer analyses respectively.

35

4. ORIGIN-SENSITIVE POINTER ANALYSIS AND O2*

Data races are among the worst bugs in software in that they exhibit non-deterministic symp-

toms and are notoriously difficult to d etect. The problem is exacerbated by interactions between

threads and events in real-world applications, which are two predominant programming abstrac-

tions for modern software such as operating systems, databases, mobile apps, and so on as they

both lead to non-deterministic behaviors due to various types of race conditions.

Races in event-driven programs have attracted much attention in recent years [60, 61, 62, 63].

Event-based races can be more challenging to detect than thread-based races because most events

are asynchronous and the event handlers may be triggered in many different ways. Moreover, the

difficulty in detecting event-based races is exacerbated by interactions between threads and events,

which are common in real-world software such as distributed systems. The state-of-the-art race

detectors [50, 55] do not perform well in detecting event-based races, also due to the large space

of casual orders among event handlers and threads.

Origin(entry, attr)

pthread_create(..., foo, data)

handle_event(data)

new thread(foo, data)

Figure 4.1: An “origin” view of threads and events.

To mitigate the challenge, we preposed O2, a new system for detecting data races in complex

multithreaded and event-driven applications. We show that conventional thread-sensitive static
*Reprinted with permission from “When threads meet events: efficient and precise static race detection with ori-

gins” by Liu, Bozhen* and Liu, Peiming* and Li, Yanze and Tsai, Chia-Che and Da Silva, Dilma and Huang, Jeff,
2021. Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Copyright 2021 by Peiming Liu.

36

analysis (with some tuning and care) is highly effective for finding races. A key concept behind O2

are origins, an extended notion of threads and events that unify them through two parts: 1) an entry

point that represents the beginning of a thread or an event handler, and 2) a set of attributes that

capture additional semantics, such as thread ID, event type, or pointers to memory objects that will

be used in the thread or event handler. Figure 4.1 depicts an “origin” view for threads and events

in C/C++. The origin attributes can be specified or inferred automatically at the origin’s entry

point. Rather than a straightforward unification, origins enables origin-sensitive pointer analysis,

in which the conventional call-string-based or object-based context abstractions are replaced by

origins. This has several advantages:

• Functions within the same origin share the same context, therefore the computation com-

plexity inside an origin does not grow with the length of the call chain; and

• Computing k-most-recent calling contexts at every call site is redundant in many applica-

tions [29], e.g., when determining which objects are local to or are shared by which threads.

• The crucial origin entry point is preserved, not discarded as a trivial context in k-limiting [64]

when the call stack’s depth exceeds the context depth k.

To illustrate these advantages, consider an example in Figure 4.2. In this example, threads

T1 (line 5) does not share objects with T2 and Tmain, while T2 (line 6) and Tmain shares the

same object o2. When marking thread_create as an origin entry points, the origin-sensitive

callgraph (in Figure 4.2 (b)) is computed. It is clear that the same call chain are distinguished based

on the origin ID, and the date flow within the same origin are analyzed separately with each other.

Thus, origin-sensitive pointer analysis is able to conclude the correct sharing information between

different threads. On the other hand, conventional k-call-site analysis (denoted k-CFA) can also

be performed, in which k is the depth of the call chain [65] (in this example k is set to 2) used

as the context to distinguish the same function when invoked in different context. When using

this method, only 2 most recent calls are considered to analyze the function context-sensitively.

As the result, it can only distinguish up to function util_1. Following functions after util_2

37

void main() {

int *o1 = malloc();

int *o2 = malloc();

thread_create(foo, o1); //Origin: T1

thread_create(foo, o2); //Origin: T2

foo(o2);

}

void foo(int *ptr) {

util_1(ptr);

}

void util_1(int *ptr) {

util_2(ptr);

}

...

void util_N(int *ptr) {

 *ptr = ... //do something

}

Origin:Tmain

thread_create
thread_create

|
foo
|

util_1
|

util_2
|

...
|

util_N

Origin:T1

foo
|

util_1
|

util_2
|

...
|

util_N

Origin:T2

foo
|

util_1
|

util_2
|

...
|

util_N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

ctx:<>
main

ctx:<5>
foo

ctx:<6>
foo

ctx:<8>
foo

ctx:<5,12>
util_1

ctx:<6,12>
util_1

ctx:<8,12>
util_1

ctx:<6,12>
util_2

ctx:<*,*>
util_N

...

Object
 Accessed By Meaning

O1 T1 O1 is local to T1

O2 Tmain, T2
O2 is shared by
Tmain and T1

Both O1 and O2 are shared by
Tmain, T1 and T2

(a) (b) (c)

Figure 4.2: (a) The example code. (b) The origin-sensitive call graph, where each origin consists
of a sequence of calls of arbitrary length. The origin attributes precisely determine the call chain
executed in each origin. (c) The context-sensitive (2-CFA) call graph without origin.

then become indistinguishable as their 2 most recent call context is identical. Sine the data flow

information will also be merged at util_2, 2-CFA will conservatively assume that both o1 and

o2 are shared among T1, T2 and Tmain.

In addition to origin-sensitive analysis, there are a few important design choices we made in

O2 that together make static race detection highly effective. First, O2’s race detection engine

is highly optimized to achieve scalability and precision. We construct a static happens-before

graph (SHB) and use static “happens-before” instead of static “may-happen-in-parallel" as the

foundational concept of the analysis. This allows pruning many infeasible race pairs by checking

only graph reachability. Second, we develop several sound optimizations that scale race detection

to large code bases, including:

• An efficient representation of origin-local happens-before relations, which further enables

efficient checking and caching the happens-before relation between memory accesses;

• A compact representation of locksets, which enables a fast check of common locks and an

38

efficient cache policy of the intermediate results;

• A lock-region-based race detection that allows effectively merging many memory accesses

into a representative one, which reduces the number of race checks significantly.

Note that the original work covered implementation details for both C/C++ and Java. While in

this dissertation, the tool is introduced in the context of C/C++ as the implementation for Java is

mainly accomplished by the other author.

4.1 Origin-Sensitive Pointer Analysis

In this section, we first present origin-sensitive pointer analysis, the use of which enables a

more precise pointer analysis and identification of shared- and local-memory accesses by threads

and events. Beyond race detection, it can benefit any analysis that requires analyzing pointers or

ownership of memory accesses, e.g., deadlock, over-synchronization, and memory isolation.

4.1.1 Identifying Origins

In general, a program can conceptually be divided into many different origins, each represents

a unit of the program’s functionality. At the code level, an origin is a set of code paths all with the

same starting point (i.e., the entry point) and data pointers (i.e., the origin attributes). In this way,

origins divide a program into different sets of code paths according to their semantics where each

origin represents a separate semantic domain. While origins can be specified by code annotations,

we aim to extract them automatically from common code patterns in multithreaded and event-

driven programs. Our system identifies two kinds of origins automatically by default: threads and

event handlers. Finding static threads is not difficult in practice because threads are almost always

explicitly defined, either at the language level or through common APIs such as POSIX Threads

(Pthreads). Finding event handlers relies on code patterns such as Linux system call interfaces (all

with prefix __x86_sys_). In cases where threads or events are implicit, such as customized user-

level threads, developers may be willing to provide annotations to mark origins, since customized

threads are likely to be an important aspect of the target application.

For pthread and std::thread-based and C/C++ programs, we automatically identify the

39

APIs as the origin entry points, which are frequently used to run code in parallel. We then reason

about the origin attributes in order to distinguish different origins with the same entry point but

different data. The origin attributes can be inferred at two places:

• Origin Allocation is the allocation site of a receiver object of an origin entry point. The

attributes include the arguments passed to the allocation site. are the origin attributes of T1.

• Origin Entry Point may be invoked with parameters, of which pointers are also included

in the attributes. For example, calls to pthread_create must specify the data pointer

needed by the thread to share memory objects.

4.1.2 Origin-Sensitivity Rules

Pointer analysis typically uses the pointer assignment graph (PAG) [66] to represent points-to

relations between pointers and objects. To achieve good precision, the PAG constructed by origin-

sensitive PTA is built together with the call graph (a.k.a. on-the-fly pointer analysis [66]). The

key difference is that the context of pointers in origin-sensitive PTA is represented by origins. The

rules of origin-sensitive PTA for Java are summarized in Table 4.1. A set of similar rules can be

inferred for other programming languages.

Intra-Origin Constraints: Statements ¶-¼ are in method 〈m,Oi〉, and all the program

elements created by them share the same origin Oi to indicate where they are originated from.

For example, the allocated object by statement ¶ is represented as 〈o,Oi〉 and assigned to pointer

〈x,Oi〉, and their relation is represented by a points-to edge 〈o,Oi〉 → 〈x,Oi〉 in the PAG .

An object field pointer is distinguished by the origin of its receiver object. For statement ¹,

each receiver object 〈o,Ok〉 corresponds to an object field pointer 〈o,Ok〉.f that points to 〈x,Oi〉.

Note that a pointer and its points-to objects may have different origins, which shows how data

flows across origins.

Although there exists a large body of work that can infer the content of arrays, analyzing array

index idx in statements º» is statically undecidable and expensive. Hence, we do not distinguish

different array indexes: array objects are modeled as having a single field ∗ that may point to any

40

Table 4.1: The origin-sensitive analysis rules for Java. Consider the following statements are in
method m() with Origin Oi, denoted 〈m,Oi〉. The edges → are in the PAG and in the call
graph. Reprinted From [3].

Statement Points-to Edge & Call Edge

¶ x = malloc() 〈o,Oi〉 → 〈x,Oi〉

· x = y 〈y,Oi〉 → 〈x,Oi〉

¸ ∗x = y
∀〈o,Ok〉 ∈ pts(〈x,Oi〉)
〈y,Oi〉 → 〈o,Ok〉

¹ x = ∗y ∀〈o,Ok〉 ∈ pts(〈y,Oi〉)
〈o,Ok〉 → 〈x,Oi〉

º x[idx] = y
∀〈o,Ok〉 ∈ pts(〈x,Oi〉)
〈y,Oi〉 → 〈o,Ok〉.∗

» x = y[idx]
∀〈o,Ok〉 ∈ pts(〈y,Oi〉)
〈o,Ok〉.∗ → 〈x,Oi〉

∀〈o,Ok〉 ∈ pts(〈y,Oi〉)
〈f ′,Oi〉 = dispatch(〈o,Ok〉, f)

¼ x = y.f(a1, ..., an) 〈o,Ok〉 → 〈f ′this,Oi〉
//non-origin entry 〈ah,Oi〉 → 〈ph,Oi〉, where 1 ≤ h ≤ n

〈f ′ret,Oi〉 → 〈x,Oi〉
add call edge 〈m,Oi〉 〈f ′,Oi〉

Compute new origin: Oj

〈init,Oj〉 = dispatch(−, init)
〈o,Oj〉 → 〈initthis,Oj〉

½ x = new thread(b1, ..., bn) 〈o,Oj〉 → 〈x,Oi〉
//origin allocation 〈bh,Oi〉 → 〈ph,Oj〉, where 1 ≤ h ≤ n

add call edge 〈m,Oi〉 〈init,Oj〉

∀〈o,Oj〉 ∈ pts(〈x,Oi〉)
¾ x.entry(c1, ..., cn) 〈entry′,Oj〉 = dispatch(〈o,Oj〉, entry)
//origin entry point 〈o,Oj〉 → 〈entry′this,Oj〉

〈ch,Oi〉 → 〈ph,Oj〉, where 1 ≤ h ≤ n
add call edge 〈m,Oi〉 〈entry′,Oj〉

value stored in the array, e.g., x[idx] = y is modeled as x.∗ = y. This model simply captures

objects allocated by different origins that flow to an array without any complex index analysis.

Besides, our algorithm can be easily integrated with existing array index analysis algorithms with

no conflict.

41

¼ specifies how a complete callgraph can be computed in presence of virtual function call.

When a non-origin entry method call ¼ invokes a target method f’ within the same origin Oi as

its caller, even though its receiver object 〈o,Ok〉 might be allocated from a different origin Ok. To

determine a virtual call target and its context, we use the type of its receiver object o and the origin

Oi of which thread/event-handler executes the target. The target’s origin must be consistent with

its caller’s, regardless of whether it is an entry point or not.

Inter-Origin Constraints: We switch contexts from current origin Oi to a new origin Oj for

an origin allocation ½ and an origin entry point ¾.

Note that, to avoid false aliasing introduced by thread creations, we analyze every origin allo-

cation in its new origin instead of its parent origin where it should be executed. Figure ?? shows

two origins (Ta and Tb) allocated in Origin Tmain. The two origin allocations share the same

super constructor T(). If we analyze them in their parent origin Tmain, only one object of will

be allocated for field f on line 14. This will cause pts(oa.f) = pts(ob.f) = {〈of , Tmain〉}, which

introduces false aliasing. To eliminate such imprecision, origin-sensitive analysis creates two ob-

jects, 〈of , Ta〉 and 〈of , T b〉, for each f under each origin by forcing the context switch at origin

allocations on lines 2 and 3.

To identify origin allocations on-the-fly, we check the type of the allocated object, if it is

a subclass of std::thread or event handler handleEvent(). Context switch on ½ can

efficiently separate data flows to the same origin constructor but from different allocation sites,

Specifically, in this example a new and unique origin Oj is created for this new allocation 〈o,Oj〉.

Both ½ and ¾ designate the attributes for the new origin Oj , including constructor arguments

(b1, ..., bn) and method parameters (c1, ..., cn), which reveal significant information of the accessed

data and the origin behavior. To reflect the ownership, the actual parameters use Oi as their contexts

and the formal ones use Oj . Meanwhile, call edges are added in the call graph, e.g., 〈m,Oi〉

〈init,Oj〉 for ½ and 〈m,Oi〉 〈entry′,Oj〉 for ¾.

Wrapper Functions and Loops: In practice, both ½ and ¾ may be hidden in a wrapper

function (e.g., cross-platform thread wrappers) invoked by multiple call sites. To efficiently sepa-

42

Table 4.2: The time complexity of different pointer analyses. Reprinted From [3].

Analysis Worst-Case
Complexity

0-context O(p× h2)
heap O(p3 × h2)
2-CFA + heap O(p5 × h2)
2-obj + heap O(p5 × h2)

1-origin + heap O(p3 × h2)

rate such origins, we can extend the entry point of an origin to also include its k-call-site. In our

tools, we set k=1. Meanwhile, for an origin allocated in a loop, we always create two origins with

identical attributes but different origin IDs.

K-Origin-Sensitivity: In the same spirit as k-CFA and k-obj, a sequence of origins can be

concatenated, denoted as k-origin. For example, a method m() can be denoted as follows:

〈m, [O1,O2, ...,Ok−1,Ok]〉

where m() is invoked within Origin Ok that has a parent origin Ok−1, etc. k-origin can further

improve the precision when a pointer propagates across nested origins, and we observed such

cases in many of our evaluated programs (e.g., Redis) where thread creations are nested.

Time Complexity: Table 4.2 summarizes the worst-case time complexity of different pointer

analysis algorithms according to [67], where p and h are the number of statements and heap al-

locations, respectively. The complexity of k-CFA and k-obj varies according to the context depth

k. However, their worst-case complexity can be doubly exponential [68]. The selective context-

sensitive techniques [30, 31, 32, 33, 69] are also bounded by the context depth and have the same

worst-case complexity as their corresponding full k-CFA and k-obj algorithms.

The 1-origin has the same complexity as 1-call-site-sensitive heap analysis (denoted heap). But

the number of operations is increased linearly by a factor (#O×O%), where #O is the number of

origins and O% is the ratio between the average number of statements within an origin and the total

number of program statements, which is usually small (<10%) for most applications, according to

43

Table 4.3: SHB Graph with Origins: the following statements are in method m() with Origin Oi.
Reprinted From [3].

Intra-Origin Happen-before Rules
Statement Intra-Origin Node & HB Edge

¸ ∗x = y ∀〈o,Ok〉 ∈ pts(〈x,Oi〉), write(〈o,Ok〉)
¹ x = ∗y ∀〈o,Ok〉 ∈ pts(〈y,Oi〉), read(〈o,Ok〉)
º x[idx] = y ∀〈o,Ok〉 ∈ pts(〈x,Oi〉), write(〈o,Ok〉)
» x = y[idx] ∀〈o,Ok〉 ∈ pts(〈y,Oi〉), read(〈o,Ok〉)
¼ x = y.f(a1, ..., an) ∀〈f,Oi〉 ∈ dispatch(〈y,Oi〉, f),

add HB edge: call(〈f,Oi〉)⇒ ffirst(〈f,Oi〉),
flast(〈f,Oi〉)⇒ callnext(〈f,Oi〉)

c synchronized(x){ ∀〈o,Ok〉 ∈ pts(〈x,Oi〉), lock(〈o,Ok〉),
. . . } unlock(〈o,Ok〉)

Inter-Origin Happen-before Rules
Statement Inter-Origin Node & HB Edge

¾ x.entry(c1, ..., cn) ∀〈entry,Oj〉 ∈ dispatch(〈x,Oi〉, entry),
add HB edge: entry(Oi,Oj)⇒ originfirst(Oj)

¿ x.join() ∀〈join,Oj〉 ∈ dispatch(〈x,Oi〉, join),
add HB edge: originlast(Oj)⇒ join(Oj ,Oi)

our experiments.

4.2 O2: Race Detection Algorithm

In O2, we model both threads and events statically as functional units, each represented by a

static trace of memory accesses and synchronization operations. Our race detection engine uses hy-

brid happens-before and lockset analyses similar to most prior work on dynamic race detection [70]

(although ours is static). More specifically, our detection represents happens-before relations by

a static happens-before (SHB) graph [71], which is designed to efficiently compute incremental

changes from source code.

We modify the graph with origins as shown in Table 4.3. We record the field/array read and

write accesses for statements ¸-» by creating read and write nodes. For statement ¼, we create

a method call node (call) with two happens-before (HB) edges (denoted⇒): one points from the

call node to the first node (ffirst) of its target method f within the same origin Oi, the other points

44

from the last node (flast) of 〈f,Oi〉 to the next node after the call (callnext). Intra-origin HB edges

are created by pointing from one intra-origin node to another in their statement order.

For lock operation c, we create lock and unlock nodes to maintain the current lockset. For

Java programs, we consider synchronized blocks and methods. For C/C++ programs, O2

currently only considers monitor-style locks (including both standard pthread mutexes and cus-

tomized locks through configurations). And we aim to support atomics (e.g., std::atomic)

and semaphores in our future work, by adding new happens-before rules from different origins to

the atomic/semaphore operations.

For calls to an origin entry point ¾, we create an origin entry node (entry) to represent the start

of a new origin Oj from its parent origin Oi. And we add an inter-origin HB edge pointing to the

first node (originfirst) of Oj . For thread join statement ¿, we create a join node (join) to indicate the

end of Oj that finally joins to Oi. An inter-origin HB edge is created from the last node (originlast)

of current origin (Oj) to the join node.

Existing static race detection (such as [72]) typically checks each pair of two conflict accesses

from different threads: run a depth-first search (or breadth-first search) starting from one access

and vice versa to check their happens-before relation on the SHB graph, and compute the locksets

for both accesses to check whether they have common lock guards.

However, the efficiency is limited by the redundant work in graph traversals and lockset re-

trievals for all pairs of memory accesses. The straw man approach cannot scale to real-world

programs which can generate large SHB graphs with millions of memory accesses.

4.2.1 Three Sound Optimizations

To address the performance challenges, we develop the following sound optimizations:

Check Happens-Before Relation: We only create inter-origin HB edges in the SHB graph.

Instead of creating intra-origin HB edges, we assign a unique integer ID to each node, which

is monotonically increased during the SHB construction. Therefore, we convert the traversal of

visiting all intra-origin nodes along HB edges to a constant time integer comparison.

Check Lockset: Intuitively, a list of locks is associated with each memory access node in the

45

SHB graph in order to represent the mutex protection. We observe that the number of different

combinations among mutexes is much smaller than the number of conflict memory accesses we

need to check. Therefore, we assign each combination of mutexes (including the empty lockset) a

canonical ID and associate each access node with such an ID. This not only reduces the memory

for storing the SHB graph, but also speeds up the lockset checking process. All memory accesses

with an identical lockset ID, or different IDs corresponding to overlapping locksets, are protected

by the same lock(s), and the intersection of the IDs between two locksets can be cached for later

checks.

Lock-Region-based Race Detection: We observe that a synchronization block or method

often guards a large sequence of memory accesses on the same origin-shared object(s) (os), which

incurs redundant race checking. Instead, we treat all the memory accesses on os within the same

lock region as a single memory access on os, and check races on that single access once. This is

sound because their happens-before relations and locksets are exactly the same. This optimiza-

tion significantly boosts O2’s performance by reducing the number of memory access pairs for

detecting data races.

4.2.2 Other Implementation Details

Sequential and Relaxed Memory Models: Different from sequential consistency, a relaxed

memory model may reorder certain reads and writes in the same thread and different threads may

see different orders. O2 works for both sequential and relaxed memory models. The reason is that

the SHB graph captures inter-origin happens-before relations at synchronization sites, and it does

not assume a global ordering of reads and writes. Hence, our happens-before relations already

relax the ordering constraints for reads and writes from the same origin.

Cross-Module and External Pointers: For C/C++, O2 always links the IR files into a single

LLVM module and performs the analysis based on the whole module. Meanwhile, there is always

a default origin (starting from the main entry point), so we do not have to deal with cross-module

pointers. For JVM applications, O2 extends WALA’s ZeroOneCFA to analyze all bytecode-level

pointers loaded by the application classloader. When a pointer is passed from an external function

46

Table 4.4: Performance comparison on C/C++ benchmarks (in sec.). The slowdown (SD) is nor-
malized with 0-ctx as the baseline. Reprinted From [3].

App #KLOC Metrics 0-ctx O2 2-CFA

20.4

Time/SD 5.3 5.8/9% 7.5/41%
Memcached #Pointer 8,400 12,883 15,772
(#O = 12) #Object 2,420 2,468 2,765

#Edge 5,395 10,415 17,116

116

Time/SD 9.3 15.0/61% 275.9/28x
Redis #Pointer 44,535 54,690 281,524
(#O = 15) #Object 14,458 14,913 32,401

#Edge 598,981 963,654 13,530,084

245

Time/SD 213 273/28% OOM
Sqlite3 #Pointer 57,657 61,796 -
(#O = 3) #Object 10,093 10,310 -

#Edge 7,909,626 8,879,155 -

Avg. 126 Time/SD 75.8 97.9/30% -

call for which the IR file does not exist, we will create an anonymous object for that pointer.

4.3 Experiments

4.3.1 Performance

4.3.1.1 Origin-Sensitivity vs Other Pointer Analyses

Table 4.4 reports the performance for three C/C++ applications (Memcached, Redis and Sqlite3).

The tested program covers small to large code bases that results in PAG ranging from 5 thousand

7 million edges. origin-sensitive analysis achieves upto 17x speedup over 2-CFA on Redis while

only incurring 61% slowdown compared with context-insensitive analysis. Moreover, 2-CFA got

killed when running on Sqlite3 due to out of memory (OOM, 32GB) while origin-sensitive anal-

ysis only imposes 28% slowdown. On average, origin-sensitive analysis is only 30% slower than

context-insensitive analysis while is able to produce much more accurate information for data race

detection.

47

Table 4.5: New Races Detected by O2 (Confirmed by Developers). Reprinted From [3].

Linux TDengine Redis/RedisGraph OVS cpqueue mrlock Memcached Firefox ZooKeeper HBase Tomcat

#Races 6 6 5 3 7 5 3 2 1 1 1

4.3.1.2 Race Detection Performance

We also tested RacerD on the three C/C++ programs in Table 4.4. However, RacerD could not

run successfully on Memcached and Redis, and it reports no violations on Sqlite3.

4.3.2 New Races Found in Real-World Software

O2 has detected new races in every real-world code base we tested on, as summarized (par-

tially) in Table 4.5. Most of them are due to a combination of threads and events. If considering

events only or threads only, or considering them separately, these races will be missed. In the fol-

lowing, we elaborate the races found in several high-profile C/C++, Android apps, and distributed

systems.

4.3.2.1 Linux Kernel

We evaluated O2 on the Linux kernel (commit 5b8b9d0c as of April 10th, 2020), compiled

with tinyconfig64, clang/LLVM 9.0. We define four types of origins: system calls with func-

tion prefix: __x64_sys_xx, driver functions over file operations (owner, llseek, read,

write, open, release, etc), kernel threads with origin entries kthread_create_on_-

cpu() and kthread_create_on_node(), and interrupt handlers with origin entries re-

quest_threaded_irq() and request_irq()). There are 398 system calls included in

our build. For each system call, we create two origins representing concurrent calls of the same

system call, and a shared data pointer if the system call has a parameter that is a pointer (e.g.,

__x64_sys_mincore). In total, 1090 origins are created, including 796 from system calls and

294 from others.

In total, O2 detects 26 races in less than 8 minutes. We manually inspected all these races and

confirmed that 6 are real races, 7 are potential races, and the other 13 are false positives. The 6

48

real races are all races to the linux kernel bugzilla, and all of them have been confirmed at the

time of writing. The 7 potential races are difficult to manaully inspect due to very complex code

paths involving the races. For the false positives, a majority of them are due to mis-recognition

of spinlocks (such as arch_local_irq_save.38) or infeasible branch conditions which O2

does not handle. The code snippet below shows a real bug found by O2, which detects concurrent

writes on the same element of array vdata (with array index CS_HRES_COARSE).

void update_vsyscall_tz(void){//in class time.vsyscall
struct vdso_data *vdata = __arch_get_k_vdso_data();
vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest; //RACE
vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime; //RACE
...

}

In addition, we found that among the 71459 allocated objects by the kernel (within the con-

figured origins), 329 of them are origin-shared. And 1051 accesses are on origin-shared memory

locations from a total of 36321 memory accesses. The result indicates that the majority of memory

used by the kernel is origin-local, which can be beneficial to region-based memory management.

We also discovered that the system call paths do not create any new kernel threads or register

interrupts. However, driver functions can do both operations. For example, the driver of GPIO

requests a thread to read the events by the kernel API request_threaded_irq 2. And the

interrupt requests can create kernel threads by API kthread_create 3.

4.3.2.2 Memcached

Memcached is a high performance multithreaded event-based key/value cache store widely

used in distributed systems. We applied O2 to commit 14521bd8 (as of May 12th, 2020). O2 is

able to finish analyzing memcached within 5s, and reports 16 new races in total. All these races

are previously unknown. We manually confirmed that 11 of them are real and the rest of them

are potential races. A majority of the real races are on variables such as stats, settings,

time_out, or stop_main_loop. There are also three races that are not on these variables

but look more harmful. We reported the three races to the developers and all of them have been

2/linux-stable/drivers/gpio/gpiolib.c@1104:8
3/linux-stable/kernel/irq/manage.c@1279:7 and @1282:7

49

confirmed. The other five potential races all involve pointer aliases on queued items. One of the

reported races is shown below with the simplified code snippet:

void *do_slabs_reassign(){ ... //event
if (slabsclass[id].slabs > 1){

return cur;//RACE: missing lock
}

}
void *do_slabs_newslabs(){ ... //thread

pthread_lock();
p->slab_list[p->slabs++] = ptr;//with lock
pthread_unlock() ...

}

The listed bug is related to Memcached’s slab-base memory allocation, which is used to avoid

memory fragmentation by storing different objects using different slab classes based on their size.

Since the accesses in the event handler is not protected by the lock, there is a data race between

the event handler and all the running threads that try to allocate new slabs. Although another lock-

protected check on the same variable is made later in the function, the data race can still lead to

undefined behaviors. This case is interesting as it shows that unlike previous tools, which only

reason about inter-thread races, O2 is able to unify events and threads to find races in complex

programs that leverage both concepts for concurrency.

4.4 Summary

We have presented O2, a new system for static race detection. O2 is powered by a novel ab-

straction, origins, that unifies threads and events to effectively reason about shared memory and

pointer aliases. Our extensive evaluation with Java and C/C++ programs demonstrates the poten-

tial of O2, finding a large number of new races in mature open-source code bases and achieving

dramatic performance speedups and precision improvement over existing static analysis tools. O2

has been integrated into Coderrect, a commerical static analyzer [73].

50

5. SECURING UNSAFE RUST PROGRAMS*

In this chapter, we show that XRust uses pointer analysis to secure unsafe Rust programs.

Long-existing systems programming languages such as C/C++ offer programmers the ability to

manipulate low-level resources but in error-prone ways. Countless severe bugs have been found

due to the unsafe nature of these languages [74, 75, 76]. Rust [21] is a rising language that tries to

bridge the gap between memory safety and low-level systems programming. With new language

features such as ownership, borrowing, and lifetime, Rust aims to guarantee that a program is

memory safe if it could be compiled (in the absence of unsafe Rust code). The type system of

Rust and its encapsulation of low-level operations have been formally proved to ensure memory

safety [22, 23].

However, the static restrictions of Rust can be too strict to admit many valid programs due to

reasons including (1) by nature, static analysis is conservative and (2) the underlying computer

hardware is inherently unsafe and certain operations could not be done with safe Rust [25]. This

problem is addressed by unsafe Rust, which escapes from Rust’s static checks [24]. With unsafe

Rust, programmers are able to manipulate raw pointers, perform unprotected type casting and other

dangerous operations just like in C/C++. Therefore, a Rust program is free of memory errors only

when its unsafe code is correctly implemented and does not violate memory safety properties [22].

However, requiring all the unsafe Rust code to be correctly implemented is difficult. Bugs in unsafe

Rust code may result in severe vulnerabilities, as witnessed by several memory errors discovered

recently [77, 78, 79]. What is worse is that a memory error in unsafe Rust may corrupt arbitrary

data in the whole address space, e.g., bugs in unsafe Rust can be exploited to hijack function

pointers or steal sensitive data in safe Rust.

To understand how the unsafe portion of Rust is used in real-world applications, we randomly

selected 500 crates from crates.io and counted the number of lines of unsafe code (shown
*Reprinted with permission from “Securing unsafe rust programs with XRust” by Liu, Peiming and Zhao, Gang and

Huang, Jeff, 2020. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Copyright
2020 by Peiming Liu.

51

crates.io

1 // using VecDeque as an example

2 pub fn exploit() {

3 //target object to corrupt (on stack)

4 let t = target_trait_obj;

5 let mut a = VecDeque::with_capacity(num);

6 {

7 // allocated just below deque

8 let mut b = Vec::with_capacity();

9

10 // overflow here (in Section 6.4.1);

11 deque.reserve();

12 // corrupt metadata

13 prepare_to_attack();

14 deque.push_back(&t);

15 } // free of b

16 }

1 pub fn main() {

2 let buf = Vec::new_in_unsafe();

3 let password = String::new();

4

5 unsafe {

6 // offset is out of bound

7 let ptr = buf.as_ptr().offset(NUM);

8 if (!in_unsafe_region(ptr))

9 raise error;

10 let v = *ptr;

11 }

12 }

1 pub fn main() {

2 let buf = Vec::new_in_unsafe();

3 let password = String::new();

4

5 unsafe {

6 // offset is out of bound

7 let ptr = buf.as_ptr().offset(NUM);

8 // out-of-bound read

9 let v = *ptr;

10 }

11 }

1

Address Space

Original Program Protected Program

Heap
Stack

Global

buf

password

Address Space

Heap
Stack

Global

unsafe region

safe region

buf

password

(a) (b)

DENY

DENY

DENY

Identify objects that
are processed
by unsafe Rust code

Acquire heap
memory in a
separate region

Runtime checks to
prevent cross-region
memory references

1 // using VecDeque as an example

2 pub fn exploit() {

3 //target object to corrupt (on stack)

4 let t = target_trait_obj;

5 let mut a = VecDeque::with_capacity(num);

6 {

7 // allocated just below deque

8 let mut b = Vec::with_capacity();

9

10 // overflow here (in Section 6.4.1);

11 deque.reserve();

12 // corrupt metadata

13 prepare_to_attack();

14 deque.push_back(&t);

15 } // free of b

16 }

1 pub fn main() {

2 let buf = Vec::new_in_unsafe();

3 let password = String::new();

4

5 unsafe {

6 // offset is out of bound

7 let ptr = buf.as_ptr().offset(NUM);

8 if (!in_unsafe_region(ptr))

9 raise error;

10 let v = *ptr;

11 }

12 }

1 pub fn main() {

2 let buf = Vec::new_in_unsafe();

3 let password = String::new();

4

5 unsafe {

6 // offset is out of bound

7 let ptr = buf.as_ptr().offset(NUM);

8 // out-of-bound read

9 let v = *ptr;

10 }

11 }

1

Instrument on
unsafe objects

Figure 5.1: A technical overview of XRust (using instrumentation-based memory isolation).
Reprinted From [2].

Table 5.1: Unsafe Rust code in practice (Rust-lang contains the code for Rust compiler and all the
Rust standard libraries).

LoC LoC (unsafe) unsafe %
collected crates 2,480,761 18,490 0.75%
Rust-lang 327,792 3,163 0.96%

in Table 5.1). The result indicates that most real-world Rust programs only rely on a very small

fraction of unsafe code (< 1%) on average. Although in practice most memory objects in Rust are

statically protected by Rust’s type system, a bug residing in unsafe Rust code could simply ruin

the entire effort and put the whole program at the risk of being attacked!

In this paper, we present XRust, a novel approach to mitigate the security threat brought by

unsafe Rust while imposing minimal overhead to Rust programs. While there exist several prior

attempts [80, 81, 82, 83, 84] on C/C++ to retrofit full memory safety of the language (which is

often expensive), our goal is not to bring memory safety to unsafe Rust, but to ensure the integrity

of data in safe Rust (in the presence of memory errors in unsafe Rust code). In XRust, the heap

is logically divided into two mutually exclusive regions: an unsafe region and a safe region. The

set of memory objects created in and/or accessed by unsafe Rust (referred to as unsafe objects)

52

are recognized by pointer analysis and are placed in the unsafe region and can be corrupted. All

other safe objects are stored in the safe region and can never be corrupted. The separation between

safe and unsafe objects can be enforced by in-process memory isolation techniques [85, 86]. In

this work, we explore two methods using instrumentation and memory guard pages respectively to

achieve in-process isolation.

As depicted in Figure 5.1, XRust works as follows:

• In the original code, the two objects buf and password are treated equally and are placed

in the same heap region. A heap-based attack exploiting a memory corruption of buf in

unsafe Rust code can cause arbitrary write to the whole address space, including corrupting

password;

• In the XRust-protected code, buf is placed in the unsafe region separated from password,

because buf is used in unsafe Rust. When using instrumentation, runtime checks are in-

serted to prevent cross-region data flows from the unsafe region to the safe region. When

using guard pages, isolation is enforced by placing inaccessible memory pages between the

two regions.

We note that XRust does not attempt to guarantee full memory safety of Rust, but only the

safety of memory objects in safe Rust. The main goal of XRust is to provide effective protection

while imposing negligible overhead. Also, XRust only targets memory corruption on heap objects

but not stack corruption. Stack protection techniques such as stack canaries [87] and SafeStack [88]

have been deployed widely in real systems. Proposals [89, 90] to support SafeStack in Rust have

also been implemented.

5.1 Overview

In this section, we first discuss the rationale behind the design of XRust. We then illustrate how

XRust works on a motivating example based on a real vulnerability in Rust.

The clear separation between safe and unsafe Rust naturally divides heap objects into two

mutually exclusive sets: the sets of safe and unsafe objects, based on whether they are used in

53

unsafe Rust. At a high-level view, since only unsafe objects are under the risk of being corrupted in

Rust programs, the memory isolation enabled by XRust ensures that potential memory corruptions

can only impact the unsafe objects and can never cross the boundary to corrupt safe objects.

In this subsection, we first discuss how unsafe Rust is used in practice, and then discuss the

protection strength of XRust with respect to both spatial and temporal memory safety.

5.1.1 Unsafe Rust in practice

We studied several popular open-source Rust projects as well as Rust’s standard libraries to

understand the usage of unsafe Rust in the real world.

As summarized in Table 5.1, Rust programs only contain less than 1% unsafe code on average,

and unsafe Rust is typically used only for low-level operations and optimizations. The statistics

provide strong evidence that most objects are only processed by safe Rust and by isolating the

side-effect of unsafe Rust, XRust is able to protect all of them. In addition, we also conducted

in-depth inspections of the source code with respect to the usage of unsafe Rust. We summarize

our findings into three categories:

Unbounded Memory Accesses. Instead of using object references, programmers sometimes

use raw pointers and unchecked pointer arithmetic to access a piece of consecutive memory. E.g.,

in base64, instead of using a vector, the developers access the encoding buffer directly through

a raw pointer and iterate over the memory by adding offsets to the pointer. This pattern is normally

used to access an internal buffer and to skip default bound checkings (in image, base64, vec,

etc)

Unchecked Conversions. This includes both type conversion as well as data format conver-

sion (e.g., utf-8 to utf-16). This is mainly used for developing low-level functionalities such as

decoding/encoding binary data and serialization as in string, byteorder, bytes, etc.

Internal States Override. When using safe API, the internal states of an object is normally

maintained internally by Rust (e.g., pushing an element into a vector increases the size of the

vector). However, when developers access an object in unexpected ways, the internal states need

to be manually adjusted. E.g., after initializing the buffer of a vector using raw pointers, the

54

size of the vector needs to be overridden accordingly. The operation is unsafe as programmers

are responsible to provide the correct value and unmatched internal states may lead to undefined

behaviors. This is typically used for the purpose of low-level optimizations as in vecdeque, vec,

etc.

5.1.2 Observations behind XRust

Based on the empirical studies above, we make two observations:

Observation #1: Being aware that unsafe Rust code is not checked by the compiler, Rust

programmers tend to avoid heavy usage of unsafe Rust in practice and only rely on unsafe features

to perform necessary low-level operations [91]. This indicates that in reality, it is likely that most

objects in a Rust application are safe objects, and critical data such as password (with high-level

semantics) is unlikely to be processed in unsafe Rust.

Observation #2: Unlike C++ which stores the virtual function table (vtable) pointers of an

object adjacent to its data members [92], Rust stores them separately. Internally, Rust achieves

polymorphism and dynamic dispatching by transforming objects into trait objects [93]. As illus-

trated in Figure 5.2, the reference to a trait object is a fat pointer consisting of two pointers: one

points to the data members of the object and the other points to the vtable. This implicitly puts

the heap data and vtable pointers into two regions. For unsafe objects, only its data members are

allocated in the unsafe heap region. Thus, overflow to corrupt vtable pointers is a cross-region

reference and will be prevented by XRust.

5.1.3 Protection Strength of XRust

The two observations above lead to the following properties of XRust:

Spatial Memory Safety The observations imply that by preventing cross-region references,

XRust can efficiently defend Rust programs against:

1. Non-control data attacks in unsafe Rust code that corrupt objects outside the unsafe region;

2. Control-oriented attacks in unsafe Rust code that corrupt the vtable pointer of a trait object

or raw function pointers outside the unsafe region, e.g., to hijack control flow to malicious

55

data *

vptr *

fn getX()->int

fn getY()->int

…

struct Point{
int x;
int y;

}

ptr *

int getX()

int getY()

…

struct Point{
int x;
int y;

}

vptr *
C++ Rust

Figure 5.2: Memory layout of objects in C++ vs Rust. Reprinted From [2].

code.

These protections are valuable in practice because (1) there is a high chance that most sensitive

data in Rust applications are safe objects (Observation #1), and (2) vtable pointers of trait objects

are the major source of indirect jumps in Rust and they are protected by XRust (Observation #2).

Temporal Memory Safety XRust is able to prevent temporal memory errors from corrupting

safe objects as well. In Rust, temporal errors can only happen on unsafe objects because safe

Rust code statically eliminates all temporal errors by analyzing the lifetime of references and the

ownerships of objects. So, when a temporal error (e.g., use after free) occurs, the pointer used

to access memory must point to an unsafe object. Since our multi-region allocator will not reuse

memory previously used for unsafe objects to allocate any safe object (Section 5.3.2), the freed

memory of an unsafe object will only be used to hold another unsafe object. When a temporal

error occurs, the memory access on the freed pointer will still be within the unsafe heap region so

that the temporal error cannot escape the unsafe region to corrupt safe objects.

5.1.4 A Motivating Example

Listing 5.1 shows a code fragment simplified from the rust-base64 library. For versions

before 0.5.1, the library contains an integer overflow bug that eventually leads to a heap buffer

overflow. On line 4, the vulnerable function first tries to reserve a buffer on the heap and the

size of the buffer is calculated by the vulnerable function encoded_size containing an integer

56

1 pub fn encode_config_buf<T>(buf: &T, ..) {

2 // reserve a large enough buffer to

3 // store the encoded string

4 buf.reserve(encoded_size(len));

5 // using unsafe operation to store encoded

6 // string to buffer

7 unsafe {

8 // buf object is used in unsafe code!

9 let mut output_ptr = buf.as_mut_ptr();

10 while condition {

11 // do pointer arithmetic and accessing

12 // memory directly

13 ptr::write(output_ptr.offset(..), ...);

14 ...

15 }

16 }

17 }

Listing 5.1: A real buffer overflow in rust-base64 due to unsafe Rust code (CVE-2017-

1000430).

overflow2. A heap overflow can happen when the integer overflow leads to a smaller buffer and

this vulnerability can be exploited to overwrite data in safe Rust. For Rust applications using this

library, the unsafe code may only account for a small fraction of the entire code. However, this bug

can still result in memory corruptions in the entire address space.

XRust significantly mitigates this vulnerability. It first identifies buf as an unsafe object be-

cause it is used in unsafe Rust (line 9), by analyzing the data flow from the safe Rust to unsafe

Rust. Then instead of reserving heap memory for the objects normally (line 4), it reserves the

2Note that Rust checks integer overflows for the debugging build by default, but does not check in the optimized
release build.

57

memory for buf in the unsafe region, by rewriting the function to call an extended API. Finally,

accesses to buf, which is an unsafe object, are restricted in the unsafe memory region. When

using instrumentation, the memory reference on line 13 will be instrumented as follows:

1 let ptr = output_ptr.offset(..);

2 if (!in_unsafe_region(ptr))

3 panic!("cross region data flow detected");

4 write(ptr, ...);

At runtime, attempts to access addresses outside the unsafe heap region will be detected by

XRust, thus the vulnerability cannot be exploited to perform attacks on safe objects.

We observe that, even with instrumentation which often imposes high overhead for other lan-

guages such as C/C++ by other techniques, XRust is still fast (3.6% overhead on median). This is

because XRust only checks memory references on unsafe objects, which avoids heavy instrumen-

tation to propagate the meta information as required by techniques such as SoftBound [80], and

it avoids the expensive whole-program reaching definition analysis as required by DFI [81] to de-

termine valid data flows. Moreover, XRust checks only cross-region data flow (rather than object

bounds), which can be achieved in constant time with the help of our heap allocator (Section 5.3.2).

In our design, we also leverage guard pages to protect cross-region references (Section 5.4.2),

which is even more efficient than using instrumentation.

Figure 5.3 shows the technical design of XRust, which consists of three key components: 1)

extensions made to Rust and the Rust compiler to provide high-level APIs for allocating objects

in the unsafe regions; 2) a new heap allocator that supports an unsafe heap region; and 3) runtime

protections to prevent cross-region memory references. In the next three sections, we present the

details of each component.

5.2 Language Extensions

In this section, we first introduce necessary background on how Rust encapsulates its heap

allocation interfaces and then present our extensions.

58

Extended Language APIs

__alloc_in_unsafe()

__alloc_in_safe()

✎ instrumentation

M
ulti-Region H

eap A
llocator

or
⚠ guard pages

Runtime Protections

Safe
Region

Unsafe
Regionmain.rs

Cross-Region
Reference❌

Figure 5.3: Three key components of XRust. Reprinted From [2].

5.2.1 Heap Allocation in Rust

Instead of allowing programmers to acquire and release heap memory directly through mal-

loc and free, Rust provides high-level abstractions on heap memory through encapsulation on

heap operations. The release of a heap object is automatically inserted by Rust compiler and pro-

grammers are not allowed to free the memory manually to avoid errors like double frees. It also

gives Rust the flexibility of changing the allocator globally (even for pre-compiled libraries) with-

out recompiling the code by defining a global allocator 3 [94]. These encapsulations and the loose

connection between the language and the allocator implementation require extra abstraction layers

between these two components.

There are two ways to acquire a piece of heap memory in Rust4. In most cases, this can be

achieved by creating a Box<T> object. For low-level library developers, it could be done by

directly interacting with the Alloc trait (trait is similar to Java’s interface). The Box<T> objects

are wrapped pointers that can only point to heap objects and are internally created using box

expressions5. For example, the expression box 42 allocates four-byte heap memory that stores a

3The feature of switching allocators globally is not in a stable state yet. The description in this paper is based on
the latest Rust (version 1.32) by the time of writing.

4Calling malloc-like function through FFI is out of the scope.
5box expression is an unstable feature as well.

59

fn main() {
let b: Box<i32> = box 42;

}

fn main() {
let b = exchange_malloc(4);
*b = 42;

}

#[lang = "exchange_malloc"]
unsafe fn exchange_malloc(size) {

return __rust_alloc(size);
}

link to lang item
__rdl_alloc

__rde_alloc

__rg_alloc

ptmalloc2

jemalloc

global
allocator

generated
code

Original code
Compiler-expanded code

Figure 5.4: Rust workflow for linking heap allocations. Reprinted From [2].

32 bit integer of value 42, and it returns a Box<i32> object pointing to the allocated heap object

as the result. Those Box<T> objects will be dropped later by the compiler-inserted code when

their owners go out the scope, i.e., the owner function returns or the owner block terminates. In

Rust’s standard libraries, neither box expressions nor the default implementation of the Alloc

trait is bounded to a specific allocator. They both rely on the Rust compiler to generate glue code

to bind the program to a specific allocator during code generation phase.

For heap allocation through the Alloc trait, the default implementation delegates all its tasks

to a set of functions with the __rust prefix. Specifically, __rust_alloc() for heap alloca-

tion, __rust_dealloc() for heap deallocation, and __rust_realloc() for heap reallo-

cation, etc. These functions do not have actual implementations, but are treated as special internal

symbols by the Rust compiler and implemented by compiler generated code to invoke different

allocators, e.g., the allocator for static libraries and for executable binaries.

For heap allocation through box expressions, it requires two lang items: “exchange_mal-

loc” for allocation and “box_free” for deallocation. Lang items [95] are pluggable features in

Rust whose functionalities are not hard-coded into the language but are implemented in libraries,

using a special marker (#[lang = "..."]) to indicate their existence. Figure 5.4 illustrates the

workflow. At compile time, for each box expression, the Rust compiler searches all the dependent

libraries to find functions marked by these two lang items. The compiler then generates code by

60

calling the function marked as exchange_malloc to allocate heap memory, and inserts calls to

the function marked as box_free to drop Box<T> objects. In Rust’s standard libraries, the de-

fault implementation of exchange_malloc delegates heap allocation to __rust_alloc().

5.2.2 Language Support for Unsafe Region

To support a different heap region, we add corresponding “unsafe” interfaces for each of

the allocation functions. For example, we add __rust_unsafe_alloc as the entry point for

allocating heap memory in the unsafe region. The compiler is also extended to generate code to

invoke these extended functions for handling the unsafe heap region.

We then build high-level APIs for the extended interfaces by extending Rust’s standard library.

Additional methods are added to the Alloc and GlobalAlloc traits to deal with the unsafe heap

region. For example, the function unsafe_alloc() is added to the Alloc trait to provide

interfaces for allocating memory in the unsafe region. Based on this, high-level classes in the

standard libraries can be extended as well. For example, Vec::unsafe_with_capacity()

is added to the Vec structure to create a vector that puts the internal memory buffer in the unsafe

heap region, which allows programmer to interact with unsafe allocation interfaces on their own

demands.

The newly added interfaces are backward compatible with existing Rust programs. By default,

calls to the extended interfaces (e.g., unsafe_alloc()) are delegated to the pre-existing func-

tions (e.g., alloc()). The compiler-generated code also delegates the requests from __rust_-

unsafe_alloc to the standard API if the underlying allocator does not support a separate unsafe

region. In this way, all existing Rust programs can be compiled without modification. When pro-

grammers use the extended interfaces but with an allocator that does not support the unsafe region,

the allocation can still be completed, but the allocated heap chunks will not be placed in a separate

unsafe heap region. The default implementation is then overridden by our extended allocator and

linked properly by the compiler. Invocations on them are passed to the proper API to allocate and

free heap memory in the unsafe region.

For box expressions, we add a new operator unsafe_box to create a Box object in the unsafe

61

heap region. The grammar of unsafe_box expressions is identical to box expressions, and the

result of unsafe_box expressions has the same type (Box<T>) as the result of box expressions.

Generating the same type ensures that the unsafe_box operator can fit into the existing Rust type

system. The only difference between Box objects created by box and unsafe_box expressions

is that internally they are put into different heap regions, but all other operations (dereference,

type casting, pattern matching, etc.) are identical. Similarly, unsafe_box will be linked to a

new lang item unsafe_exchange_malloc at compile time, which handles the allocation of

unsafe objects.

5.3 Multi-Region Heap Allocator

Our allocator implementation is based on ptmalloc2 [96] and supports multi-threading. We

first introduce the architecture of ptmalloc2 and then present our extensions.

5.3.1 Architecture of ptmalloc2

ptmalloc2 was forked from dlmalloc [97] and later merged into glibc with threading

support. ptmalloc2 maintains separate heap segments and freelist data structures using multiple

per-thread arenas, such that threads can rely on different arenas to perform heap allocation/deal-

location simultaneously without synchronization.

In ptmalloc2, each arena can manage a list of heap segments (except for the main arena,

which only has one heap segment). A heap segment is a large piece of mmapped memory from

where free chunks are retrieved and returned to users. Arenas also keep the freelist data structures

of their heap segments (i.e., bins) used to hold free chunks. Bins are divided into four different

types based on chunk sizes: fast, unsorted, small, and large, and each is handled differently. To

handle a heap allocation, ptmalloc2 chooses the appropriate bins based on the requested size.

More details can be found in [98].

5.3.2 XRust Extensions on ptmalloc2

In our design to extend ptmalloc2 for handling heap (de)allocation in the unsafe region,

we followed most of its current design. The interactions with the unsafe heap region are achieved

62

through extended APIs such as unsafe_malloc(). These APIs are merged into Rust and linked

with extended language APIs. The data structures used by the unsafe region are lazily initialized

upon the first request for allocating memory in the unsafe region. For applications that do not

use the unsafe region, the extended allocator acts the same as unmodified ptmalloc2 and no

overhead is imposed.

Unsafe Region in Heap. In our heap allocator, the set of arenas for handling allocations in

unsafe region and those for allocations in safe region are disjoint, i.e., the unsafe arenas will not be

reused for allocating objects in safe region and vice versa. This ensures that for every internal heap

segment managed by the allocator, it only contains the objects in the same region so that overflow

originated from unsafe objects will not corrupt safe objects.

We extend the architecture of ptmalloc2 to enable fast checks on cross-region errors. In-

tuitively, cross-region references can be checked by determining whether the pointer is within the

range of any unsafe heap segment. This could lead to huge runtime overhead since the number of

unsafe heap segments is unbounded (especially for multi-thread programs). To address the issue,

we use a pre-allocated bitmap to record the type of heap segments (safe or unsafe), which can be

quickly indexed by the start addresses of heap segments. This introduces negligible memory over-

head since the heap segments in ptmalloc2 is 1 megabytes aligned by default, thus the memory

overhead is 1 bit per megabyte. The bitmap is protected by PROT_READ and can only be accessed

inside the allocator upon the creation of an unsafe heap segment. Under this design, checking an

memory reference takes only constant time regardless how many unsafe heap segments have been

allocated.

Multi-thread Support. To maximize the performance of multi-thread programs, we adopt the

per-thread arena mechanism to allow accessing the free lists for unsafe heap region concurrently.

For multi-thread programs, threads are assigned with different arenas to allocate heap memory.

Since every arena manages a disjoint set of heap segments, they can be accessed concurrently

without synchronization.

Our design of the multi-region heap allocator also renders time-of-check-to-time-of-use (TOCT-

63

TOU) attacks almost impossible. To trigger such an attack, an unsafe pointer needs to be verified

to be within unsafe region first (time of check) and later be used to corrupt a safe object (time of

use) because the unsafe object is first freed and the same address is reused for a safe object by other

threads before the time of use. However, since unsafe heap segments are maintained separately by

different arenas in our allocator, a freed unsafe chunk will only be reused to hold another unsafe

object, which makes the attack difficult. Besides, Rust prohibits programmer from calling drop

manually to deallocate objects to avoid errors, which makes it even harder to launch the attack.

Cross-Region References inside Allocator. To fully prevent cross-region memory references,

the allocator need to be free of cross-region errors as well. For example, memory errors can

be exploited to corrupt the metadata of heap chunks because ptmalloc2 stores the metadata

adjacent to user data [99].

To address this problem, we insert runtime checks to ensure that the unsafe region inside the

allocator would never be able to reference data outside the region. For example, the free chunks in

the unsafe region would only be linked to other free chunks within the unsafe region. Whenever

the allocator attempts to access the metadata of chunks in the unsafe region, checks are added to

ensure that the allocator can never perform cross-region references based on corrupted data.

5.4 Cross-Region Reference Prevention

Cross-region memory references can be prevented by in-process memory isolation techniques,

which have already been widely studied. It has been shown that isolation can be enforced with

negligible overhead through hardware-based protection, e.g., by using Intel MPK [85] or ARM

memory domain [86, 100]. In our prototype implementation, we explored two schemes to detect

cross-region references: 1) instrumenting memory references on unsafe objects; and 2) utilizing

memory protection pages (i.e., guard pages) to detect overflows.

5.4.1 Code Instrumentation

We first perform an inter-procedural data flow analysis to identify the allocation sites of unsafe

objects in Rust programs, based on a recent data flow framework [101]. Any allocated object that

64

is later accessed by unsafe code is considered as an unsafe object. Every allocation site is a taint

source, and every unsafe instruction is a taint sink. We record every object that flows from a source

to a sink. Based on the results, we rewrite the program to allocate objects in the unsafe memory

region.

Shared Unsafe Objects in Safe Rust. We also revealed a crucial technical caveat during

the process of developing XRust: To completely isolate the side effect of unsafe Rust code, the

instrumentation should be applied not only on unsafe Rust code but all unsafe objects, which means

that not only the data directly touched by unsafe code, but also everything transitively reachable

from such data needs to be instrumented.

The following code creates a vector of length 3 on line 1 and calls an unsafe function set_-

len() on line 3 to set the length of the vector to 10 manually (without resizing the buffer).

1 let v = vec![1,2,3];

2 unsafe {

3 v.set_len(10);

4 }

5 let elem = v[9];

The memory reference on line 5 is an out-of-bound read because the vector has only allocated

the memory space for storing three integers. The code passes the Rust compiler because the vector

length is changed by unsafe code. Moreover, no exception will be thrown at runtime by the asser-

tion inserted for the memory reference on line 5, which only checks if the vector index is less than

the vector length.

The example above shows how unsafe Rust can be used to override the internal states of an

object, which can lead to a memory corruption outside unsafe Rust (but on unsafe objects). There-

fore, to provide complete protection, all memory references on unsafe objects (inside or outside

unsafe Rust) need to be checked. In fact, one of the real vulnerabilities in Rust (VecDeque, see

Section 5.5.4) belongs to this category. This also indicates that the existing work (FC [102]) fails

to provide a complete isolation from unsafe Rust code because it only protects unsafe Rust code.

For instrumentation, we apply a context-insensitive pointer analysis [4] to identify memory ref-

65

1 let mut ptr;

2 if (condition) {

3 ptr = __rust_alloc();

4 shadow[ptr] = SAFE;

5 } else {

6 ptr = __rust_unsafe_alloc();

7 shadow[ptr] = UNSAFE;

8 }

9 if (shadow[ptr] == UNSAFE) {

10 if(!in_unsafe_region(ptr))

11 raise error;

12 }

13 let v = *ptr;

Listing 5.2: An example for distinguishing between safe and unsafe objects.

erences on unsafe objects (a further improvement might be using origin-sensitive pointer analysis

instead to improve the precision of the pointer analysis). Since static pointer analysis is conser-

vative, the points-to set of a pointer can contains both safe and unsafe objects. To address this

issue, we use shadow memory to mark the types of pointers and only perform checks on pointers

of unsafe objects at runtime.

Listing 5.2 shows an example. The points-to set of ptr contains both safe and unsafe objects.

To check only references on unsafe objects, a shadow memory is allocated and indexed by the

pointer’s address. This method is inspired by SoftBound [80], but instead of storing bound infor-

mation of a pointer in shadow memory, we only use 1 bit to store whether a pointer points to an

unsafe object at runtime. Compared to SoftBound, this method incurs much lower space overhead:

As heap objects managed by ptmalloc2 are 16 bytes aligned, XRust imposes at most 1 bit over-

head for 16 bytes memory, thus the memory overhead is < 1%. The protection on shadow memory

can be done by using approaches discussed in CPI [88] with negligible overhead.

66

Table 5.2: Performance of XRust and DFI on real-world Rust applications and standard Rust
libraries (grayed rows). Reprinted From [2].

App Ver. LoC #Dow-
nload

Native
(ms/iter)

XRust DFI
g-page overhead inst. overhead exec. overhead

base64 0.5.1 2K 2.32M 3527.72 3529.59 0.06% 7167.63 103.15% 9721.60 175.58%
byteorder 1.2.7 2.3K 4.70M 25.91 26.01 0.03% 26.76 3.28% 64.53 149.05%
json 0.11.13 4.3K 0.39M 2213.17 2260.96 2.16% 2298.91 3.87% 12985.72 486.75%
bytes 0.4.10 7.9K 1.80M 6.24 6.84 9.62% 7.25 16.19% 33.471 436.39%
image 0.20.1 13.3K 0.54M 2151.26 2152.87 0.07% 2189.92 1.77% 13426.83 524.14%
regex 1.0.6 48.1K 6.03M 2157.80 2162.48 0.22% 2187.68 1.17% 15251.78 606.82%
Median - - - 2154.53 2157.68 0.15% 2188.80 3.6% 11353.66 461.57%
Average - - - 1680.35 1689.79 2.03% 2313.03 21.57% 8580.66 396.46%
vec 1.30.0 - - 0.40 0.42 4.08% 0.90 123.08% 4.32 555.00%
string 1.30.0 - - 2.00 2.03 1.52% 4.16 108.30% 5.57 178.50%
linked-list 1.30.0 - - 0.16 0.17 6.76% 0.20 13.70% 0.52 225.00%
vec-deque 1.30.0 - - 0.71 0.71 1.13% 0.72 2.26% 4.01 464.79%
btree 1.30.0 - - 21.97 22.58 2.80% 23.88 8.69% 114.81 422.58%
Median - - - 0.71 0.71 2.80% 0.90 13.70% 4.32 422.58%
Avg. - - - 5.05 5.18 3.26% 5.92 51.21% 25.85 369.17%

5.4.2 Guard Page

A more efficient approach can be implemented by imposing two guard pages below and above

each heap segment. Since the guard pape cannot be accessed, cross-region references can be

detected when it touch the guard page. To bypass this protection, cross-region references must

stride across an entire guard page to avoid being detected.

This approach is often more efficient than code instrumentation, though in theory guard page

is incomplete (e.g., a direct long jump from the unsafe region to the safe region without touching

the guard page). There are reports on how the Linux’s stack guard page can be bypassed to launch

attacks [103], and it could be mitigated by enlarging the size of guard pages [104]. Nevertheless,

complete and efficient hardware-based techniques such as Intel MPK and ARM memory domains

can also be integrated into XRust, as explored in recent work [85, 86].

Using guard pages also avoids pointer analysis needed by instrumentation. Unlike instrumen-

tation, which requires pointer analysis to locate unsafe objects to insert assertions before memory

accesses on them, guard page enforces isolation automatically after the objects are allocated into

different regions. If a cross-region data flow occurs on an unsafe object, the guard page will be

67

accessed and a segment fault will be issued automatically by the operating system.

5.5 Evaluation

We have conducted extensive experiments to evaluate the effectiveness and efficiency of XRust.

To evaluate the efficiency, we deployed XRust on six widely-used real-world applications. We also

studied five core components of Rust’s standard library where unsafe Rust is used ubiquitously

to examine XRust in extreme cases. We measured the overhead of XRust under two protection

schemes: guard page and instrumentation. Our experimental results show that XRust incurs 0.15%

overhead on median (2% on average) when applying guard pages and 3.6% overhead on median

(21% on average) when using instrumentation. We also compared XRust with DFI [81] to under-

stand the overhead that could be introduced by imposing a full protection of data-flow integrity.

To evaluate the effectiveness, we studied all the three publicly reported memory corruption

errors that we could find in real Rust programs [77, 78, 79]. We designed attacks to exploit these

errors and applied XRust to defend against them.

The experiments ran on an AMD Ryzen 2600X with 6 cores@3.6GHz processor in 64 bit mode

with 32GB RAM. All experiments were done on Ubuntu Bionic Beaver (18.04 LTS).

5.5.1 Efficiency

All the real-world Rust applications are popular projects (with more than one million down-

loads) collected from crates.io, the official package central repository of Rust, and they all

contain unsafe Rust code. We use their built-in benchmarks to measure the performance of XRust

for fairness. All the Rust standard libraries are measured using the benchmarks from the Rust

compiler. The results are reported in Table 5.2 (averaged over 50 runs).

When using guard page, the overhead comes from the inserted checks performed in the heap

allocator to avoid errors caused by corrupted metadata in the unsafe region (discussed in Sec-

tion 5.3.2). Most cross-region references outside the heap allocator are automatically detected and

reported by the operating system upon illegal accesses on guard pages. This approach also intro-

duces 8 KB (two pages) memory overhead for each unsafe heap segment to place guard pages right

68

crates.io

below and above every unsafe segment.

As reported in Table 5.2, the overhead is negligible for most real-world applications (less than

0.5% for base64, byteorder, image and regex). One important factor that affects the

performance is the frequency of heap allocations performed in the unsafe heap region. The highest

overhead (9.6%) is reported on bytes, which heavily relies on unsafe heap allocation. We discuss

the allocation statistics in Section 5.5.2.

When using instrumentation, the overhead is higher than using guard pages, because it re-

quires a region check before each memory reference on unsafe objects. Nevertheless, the overhead

is still low in most cases (less than 5% for base64, byteorder, image and regex, and 16%

for bytes). The highest overhead (103%) is reported on base64 (different from that of using

guard pages). By analyzing the instrumented program, we found the reason is that in base64 the

checks are inserted into a performance-critical function, which occupies over 98% execution time

of the program.

For the Rust standard libraries, the overhead is slightly higher than the real Rust applications,

with approximately 3% for guard pages and 50% for instrumentation. The reason is that to bridge

between unsafe low-level operations and high-level Rust language features, Rust’s standard library

typically uses more unsafe Rust code, which increases the number of inserted runtime checks.

Also, the performance overhead is highly-related to the tests performed on the benchmarks. Since

we used the original test suites (for evaluation fairness) and the tests examine different aspects of

the benchmarks, it could lead to different performance numbers. For example, one of the four test

cases for vec-deque aims at testing the speed of allocating new objects, which imposes little

overhead as no memory references need to be instrumented. It explains the differences between

the overhead reported in Table 5.2.

Comparison to data-flow integrity (DFI). DFI [81] provides a strong protection against con-

trol and data attacks, by ensuring the integrity of data flows at runtime with respect to a statically

computed data-flow graph. Unfortunately DFI incurs prohibitive overhead in practice (e.g., around

69

Table 5.3: Allocation statistics in safe and unsafe heap regions. Reprinted From [2].

App #allocation
(safe)

#allocation
(unsafe) % unsafe

allocation
base64 57.50M 25.41M 30.64%
byteorder 13.47K 4 0.02%
json 18.07M 0.39M 2.11%
bytes 34.06M 126.98M 78.85%
image 9.21M 10 0.00%
regex 19.83M 675 0.00%
Avg. 23.11M 25.46M 18.60%
vec 611.89M 37.49M 5.78%
string 516.80M 40.69M 7.21%
linked-list 2.93K 68.70M 99.95%
vec-deque 1.40K 12.54M 99.98%
btree 2.99K 20.51K 87.28%
Avg. 115.21M 42.26M 60.04%

4X runtime overhead on average in our experiments6). In their original work, Castro et al. use a

static reaching definition analysis to determine the set of write instructions for each memory read,

and maintain a runtime definition table (RDT) to record the last write instruction to each memory

location at runtime. This incurs both large runtime overhead (for checking all reads and writes) and

space overhead (for storing the RDT) even after several optimizations. Differently, XRust ensures

the data-flow integrity from unsafe Rust to safe Rust by isolating the unsafe memory region, thus

it is much faster (over an order of magnitude) than the full DFI, as reported in Table 5.2.

5.5.2 Allocation Statistics

Table 5.3 reports the statistics of heap allocations in safe and unsafe regions in our experiments.

For most applications, they only use unsafe Rust in limited locations and thus the allocations in

the unsafe region only account for a small fraction of the total amount of heap allocations. One

exception is bytes, which has around 80% allocations in unsafe code. It is because bytes is a

library that deals with low-level data structure. It relies on unsafe Rust heavily to access the low-

level binary data. For other applications such as regex and json, almost all objects are safe.

6The DFI prototype was implemented by ourselves on top of LLVM following the paper [81], since DFI is not
available.

70

Table 5.4: Performance of the heap allocator with different numbers of unsafe heap segments.
Reprinted From [2].

Size
(byte)

#Thread: 1 #Thread: 2 #Thread: 4 #Thread: 8 Avg.
ptm- unsafe over- ptm- unsafe over- ptm- unsafe over- ptm- unsafe over- over-

alloc 1 ext. head alloc ext. head alloc ext. head alloc ext. head head
16∼1k 25.9M 24.5M 5.3% 5.2M 5.1M 1.3% 3.8M 3.5M 6.6% 2.3M 2.2M 3.9% 4.3%
32∼2k 25.6M 23.7M 7.8% 4.3M 4.2M 3.7% 2.7M 2.7M 0.5% 2.2M 2.2M 0.3% 3.1%
64∼4k 16.0M 15.5M 3.1% 1.7M 1.6M 5.5% 1.3M 1.2M 8.3% 1.9M 1.8M 5.3% 5.6%

128∼8k 14.9M 13.8M 7.9% 1.4M 1.3M 11.4% 1.0M 1.0M 3.8% 1.8M 1.7M 7.9% 7.7%
256∼16k 13.7M 12.9M 6.5% 1.1M 1.1M 3.3% 1.2M 1.1M 7.9% 1.7M 1.6M 6.4% 6.0%

Avg. 19.2M 18.1M 6.1% 2.8M 2.7M 5.0% 2.0M 1.9M 5.4% 2.0M 1.9M 4.7% 5.3%

1 // using VecDeque as an example

2 pub fn exploit() {

3 //target object to corrupt (on stack)

4 let t = target_trait_obj;

5 let mut a = VecDeque::with_capacity(num);

6 {

7 // allocated just below deque

8 let mut b = Vec::with_capacity();

9

10 // overflow here (in Section 6.4.1);

11 deque.reserve();

12 // corrupt metadata

13 prepare_to_attack();

14 deque.push_back(&t);

15 } // free of b

16 }

1

⓵

a

b

metadata

Heap

FD

BK

a

b

metadata

Heap

FD

BK

overflow

⓶

a

b

metadata

Heap

FD

BK

⓷

Stack

fn *

fn malcode
{

}

a

b

metadata

Heap

FD

BK

⓸

Stack

fn *

fn malcode
{

}

macro unlink {
*(FD + off)
= BK

}

⓵

⓶

⓷
⓸

Figure 5.5: A proof-of-concept attack performed on VecDeque. Reprinted From [2].

The data also confirms our observation that in high-level user applications, programmers typically

avoid heavy use of unsafe Rust.

For the standard Rust libraries, the statistics are the opposite. For three out of the five libraries,

almost all the objects are unsafe. However, this is not surprising since unsafe Rust is widely used

in standard libraries to deal with low-level operations.

5.5.3 Performance of the Allocactor

The customized heap allocator is a core part of XRust and the checks inserted inside the al-

locator can affect performance. To quantify its performance, we have heavily tested the allocator

using a benchmark from rpmalloc [105] and compared with unmodified ptmalloc2. In our

settings, the benchmark iterates 20,000 times in total and in each iteration it allocates and frees

71

30,000 heap objects of various sizes. In addition, all the objects are allocated via extended in-

terfaces and placed in the unsafe region. This experiment could be viewed as a worst case stress

testing since the only functionality of the benchmark is to allocate and deallocate heap memory,

and hence provides insights on the worst case performance of the allocator.

The results are reported in Table 5.4. The overall performance of the extended allocator is

about 5% slower than ptmalloc2 on average when tested with 1, 2, 4 and 8 threads.

5.5.4 Effectiveness on Real Vulnerabilities

By the time of writing, we found three reported memory corruption errors in real-world Rust

programs. We carefully studied each of them and found that XRust is capable of preventing all

these errors.

Corruption in VecDeque: VecDeque is a double-ended queue implemented with a grow-

able ring buffer and it is a part of Rust’s standard library. A buffer overflow vulnerability (CVE-

2018-1000657) was discovered inside the VecDeque::reserve function only recently. The

simplified code is listed below:

1 pub fn reverse(&mut self, additional: usize) {

2 let new_cap = used_cap + additional;

3 if new_cap > self.capacity() {

4 self.buf.reserve(..);

5 unsafe {

6 self.handle_cap_increase(..);

7 } } }

The root cause of the bug is on line 4, where the function mixes up its internal capacity with

its user-visible capacity. Because the user-visible capacity is one element smaller than the actual

size of the buffer, The unsafe function handle_cap_increase can cause the pointer to point

to out-of-bound memory address and upon next push, a value can be written outside the buffer.

The vulnerability can be exploited to overflow one element outside the buffer, Because there

is no public attack on this vulnerability, we manually built a proof-of-concept case with a vul-

72

nerable program using the function, and performed an unsafe unlink exploit [106] to make

an arbitrary write to vtable pointers as in Figure 5.5. This attack would fail on recent glibc since

extra security checks were added into the library. Workaround to bypass the checks could be found

in [106]. The result shows that XRust is able to detect the attack consistently because both the

stack and the data segment are outside the unsafe heap region. A cross-region write to corrupt the

stack data and vtable pointers is detected by the heap allocator since the metadata is corrupted by

the overflow.

Corruption in str::repeat: A buffer overflow bug was reported in the function str::repeat

(CVE-2018-1000810), which is also a part of Rust’s standard library. The root cause of the bug is

an instance of integer overflow to buffer overflow bugs. The simplified code is listed below:

1 pub fn repeat(&self, u: usize) -> Vec<T> {

2 let mut buf = Vec::with_capacity(n * len);

3

4 while condition {

5 unsafe {

6 ptr::copy(buf.as_ptr(),

7 buf.as_ptr().add(len),

8 len);

9 ...

10 } } }

The function is used to create a string that repeats a fixed number of times. On line 2, when

calculating the capacity of the Vec to hold the string by n ∗ len, an integer overflow could happen,

which in turn results in a smaller buffer and causes an overflow when using unsafe code to store

the value on line 6. We similarly conducted the same proof-of-the-concept attack on it as on

VecdDeque, and XRust can detect the overflow as well.

Corruption in Base64: The details of this error (CVE-2017-1000430) have been presented

in Section 5.1.4. Attacking this vulnerability is more difficult than the previous two cases, because

it requires triggering an overflow on a 64 bit integer. To perform a proof-of-concept attack, we

73

changed the Base64 code to use 16 bit integer. The experiment setting is similar to the other two

cases, and XRust is able to defend the attack in this case as well.

5.6 Discussions and Limitations

We note that XRust targets memory safety issues brought by unsafe Rust only. XRust assumes

Rust’s memory safety guarantees to be valid, which requires a correct design and implementation

of Rust and its framework (including its standard libraries) so that no memory error will occur in the

absence of unsafe Rust code. This is essential because safe abstractions provided by programming

languages are inherently encapsulations on unsafe operations. Attackers cannot modify the code

segments since they are unwritable and they cannot control the program’s loading process. These

requirements ensure that the integrity of the instrumented dynamic checks and the heap allocator

can safely set up the isolation between safe and unsafe memory regions.

XRust does not handle dynamic code generation. This is a difficult problem because the new

code cannot be analyzed or instrumented statically by a compiler. This limitation is shared by

techniques relying on static analysis, e.g., SoftBound [80], DFI [81], and CPI [88]. A potential

solution is to track dynamically generated code and continue the analysis at runtime. We leave it

as future work.

5.7 Summary

We have presented XRust, a novel approach to protect safe memory objects in Rust from being

corrupted by unsafe Rust code. The key idea is to separate the address space of a Rust program

into two non-overlapping regions with a customized heap allocator, and then automatically insert

runtime checks to efficiently detect cross-region references on unsafe objects. Our extensive eval-

uation on both popular real-world Rust applications and standard Rust libraries shows that XRust

is highly effective and efficient: it prevents attacks on the all the known Rust vulnerabilities while

exhibiting small or negligible overhead. We stress that it is promising to apply XRust to secure

Rust applications in practice.

1Measured by the number of memory operations per CPU second.

74

6. CONCLUSION

This thesis makes contribution to improving precision and performance of inclusion-based

pointer analysis. For precision, this thesis proposed origin-sensitivity as a new context for data race

detection, which is able to compute the thread-sharing information accurately. For performance,

this thesis proposed partial update solver, a new solving algorithm for inclusion-based pointer anal-

ysis. Both of techniques leads to promising experimental results: O2, origin-sensitivity enabled

race detector, was able to find tens of previously unknown bugs in popular real-world applications

including Linux. PUS, the new solver, was able to achieve over 2x speedup for context-insensitive

pointer analysis and 7x speedup for context-sensitive (1-CFA) analysis.

Compared to existing context-sensitive abstractions, origin-sensitivity provides better precision

and performance when used for static race detection (and potentially other applications that need

data sharing information between components). We observed that instead of spawning different

contexts on each call site, it is more precise to use only crucial contexts (origin entry points) to

distinguish functions statically.

Compared to existing inclusion-based pointer analysis solving algorithms, PUS significantly

improve the performances by only operates on a small causality subgraph at each iteration. We

observed that only a small portion of the constraint graph are subject to update at each iteration

and topological sort needs only to be done on the small subgraph to boost the performance.

Lastly, we proposed XRust, which relies on the information computed by pointer analysis to

forbid illegal data flows between safe and unsafe Rust. Our evaluation showed that only negligible

overhead was imposed on the target program and XRust can effectively protect against previously

found memory corruption CVEs.

75

REFERENCES

[1] P. Liu, Y. Li, B. Swain, and J. Huang, “Pus: A fast and highly efficient solver for inclusion-

based pointer analysis,” in Proceedings of the ACM/IEEE 44nd International Conference on

Software Engineering, 2022.

[2] P. Liu, G. Zhao, and J. Huang, “Securing unsafe rust programs with xrust,” in Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering, pp. 234–245,

2020.

[3] B. Liu, P. Liu, Y. Li, C.-C. Tsai, D. Da Silva, and J. Huang, “When threads meet events:

efficient and precise static race detection with origins,” in Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementa-

tion, pp. 725–739, 2021.

[4] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in llvm,” in Proceedings

of the 25th international conference on compiler construction, pp. 265–266, 2016.

[5] R. Bodík and S. Anik, “Path-sensitive value-flow analysis,” in Proceedings of the 25th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 237–

251, 1998.

[6] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint: Fast and precise sparse

value flow analysis for million lines of code,” in Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 693–706, 2018.

[7] B. Liu and J. Huang, “D4: fast concurrency debugging with parallel differential analysis,”

ACM SIGPLAN Notices, vol. 53, no. 4, pp. 359–373, 2018.

[8] Y. Li, B. Liu, and J. Huang, “Sword: A scalable whole program race detector for java,”

in 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), pp. 75–78, IEEE, 2019.

76

[9] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta, “Fast and accurate static data-

race detection for concurrent programs,” in International Conference on Computer Aided

Verification, pp. 226–239, Springer, 2007.

[10] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for java,” in Proceedings

of the 27th ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pp. 308–319, 2006.

[11] Y. Sui, D. Ye, and J. Xue, “Static memory leak detection using full-sparse value-flow analy-

sis,” in Proceedings of the 2012 International Symposium on Software Testing and Analysis,

pp. 254–264, 2012.

[12] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang, “Smoke: scalable path-sensitive

memory leak detection for millions of lines of code,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), pp. 72–82, IEEE, 2019.

[13] Y. Xie and A. Aiken, “Context-and path-sensitive memory leak detection,” in Proceedings

of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT

international symposium on Foundations of software engineering, pp. 115–125, 2005.

[14] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak detection using guarded

value-flow analysis,” in Proceedings of the 28th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pp. 480–491, 2007.

[15] S. Horwitz, “Precise flow-insensitive may-alias analysis is np-hard,” ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 19, no. 1, pp. 1–6, 1997.

[16] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 16, no. 5, pp. 1467–1471, 1994.

[17] L. O. Andersen, Program Analysis and Specialization for the C Programming Language.

PhD thesis, University of Cophenhagen, 1994.

[18] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the 23rd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 32–41, 1996.

77

[19] F. M. Q. Pereira and D. Berlin, “Wave propagation and deep propagation for pointer analy-

sis,” in 2009 International Symposium on Code Generation and Optimization, pp. 126–135,

IEEE, 2009.

[20] B. Hardekopf and C. Lin, “The ant and the grasshopper: fast and accurate pointer analysis

for millions of lines of code,” in Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation, pp. 290–299, 2007.

[21] S. Klabnik and C. Nichols, The Rust Programming Language. No Starch Press, 2018.

[22] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt: Securing the foundations

of the rust programming language,” Proceedings of the ACM on Programming Languages,

vol. 2, no. POPL, p. 66, 2017.

[23] E. Reed, “Patina: A formalization of the rust programming language,” University of Wash-

ington, Department of Computer Science and Engineering, Tech. Rep. UW-CSE-15-03-02,

2015.

[24] Rust-Team, “Unsafe rust,” 2017. https://doc.rust-lang.org/book/

second-edition/ch19-01-unsafe-rust.html.

[25] cmr, “Unsafe rust,” 2018. https://doc.rust-lang.org/book/

ch19-01-unsafe-rust.html.

[26] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Found. Trends Program. Lang.,

vol. 2, pp. 1–69, Apr. 2015.

[27] M. Sharir, A. Pnueli, et al., Two approaches to interprocedural data flow analysis. New

York University. Courant Institute of Mathematical Sciences . . . , 1978.

[28] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts well: Understanding

object-sensitivity,” in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’11, (New York, NY, USA), pp. 17–30,

ACM, 2011.

78

https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

[29] T. Tan, Y. Li, and J. Xue, “Making k-object-sensitive pointer analysis more precise with still

k-limiting,” in Static Analysis (X. Rival, ed.), (Berlin, Heidelberg), pp. 489–510, Springer

Berlin Heidelberg, 2016.

[30] Y. Li, T. Tan, A. Møler, and Y. Smaragdakis, “Scalability-first pointer analysis with self-

tuning context-sensitivity,” in Proc. 12th joint meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engi-

neering (ESEC/FSE), November 2018.

[31] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analysis: context-

sensitivity, across the board,” in ACM SIGPLAN Notices, vol. 49, pp. 485–495, ACM, 2014.

[32] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Precision-guided context sensitivity for

pointer analysis,” Proceedings of the ACM on Programming Languages, vol. 2, no. OOP-

SLA, p. 141, 2018.

[33] S. Z. Guyer and C. Lin, “Client-driven pointer analysis,” in Proceedings of the 10th Interna-

tional Conference on Static Analysis, SAS’03, (Berlin, Heidelberg), pp. 214–236, Springer-

Verlag, 2003.

[34] M. Das, “Unification-based pointer analysis with directional assignments,” Acm Sigplan

Notices, vol. 35, no. 5, pp. 35–46, 2000.

[35] M. Fähndrich, J. Rehof, and M. Das, “Scalable context-sensitive flow analysis using instan-

tiation constraints,” in Proceedings of the ACM SIGPLAN 2000 conference on Programming

language design and implementation, pp. 253–263, 2000.

[36] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams,” in Proceedings of the ACM SIGPLAN 2004 conference on Pro-

gramming language design and implementation, pp. 131–144, 2004.

[37] E. Ruf, “Effective synchronization removal for java,” in Proceedings of the ACM SIG-

PLAN 2000 Conference on Programming language design and implementation, pp. 208–

218, 2000.

79

[38] N. Heintze and O. Tardieu, “Ultra-fast aliasing analysis using cla: A million lines of c code

in a second,” ACM SIGPLAN Notices, vol. 36, no. 5, pp. 254–263, 2001.

[39] D. J. Pearce, P. H. Kelly, and C. Hankin, “Online cycle detection and difference propagation

for pointer analysis,” in Proceedings Third IEEE International Workshop on Source Code

Analysis and Manipulation, pp. 3–12, IEEE, 2003.

[40] D. J. Pearce, P. H. Kelly, and C. Hankin, “Efficient field-sensitive pointer analysis of c,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 30, no. 1,

pp. 4–es, 2007.

[41] Y. Lei and Y. Sui, “Fast and precise handling of positive weight cycles for field-sensitive

pointer analysis,” in International Static Analysis Symposium, pp. 27–47, Springer, 2019.

[42] T. Reps, “Program analysis via graph reachability,” Information and software technology,

vol. 40, no. 11-12, pp. 701–726, 1998.

[43] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden, “Boomerang: Demand-driven

flow-and context-sensitive pointer analysis for java,” in 30th European Conference on

Object-Oriented Programming (ECOOP 2016), Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik, 2016.

[44] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken, “Partial online cycle elimination in inclusion

constraint graphs,” in Proceedings of the ACM SIGPLAN 1998 conference on Programming

language design and implementation, pp. 85–96, 1998.

[45] Y. Li, Q. Zhang, and T. Reps, “Fast graph simplification for interleaved dyck-reachability,”

in Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation, pp. 780–793, 2020.

[46] Y. Smaragdakis and M. Bravenboer, “Using datalog for fast and easy program analysis,” in

International Datalog 2.0 Workshop, pp. 245–251, Springer, 2010.

80

[47] J. Mellor-Crummey, “On-the-fly detection of data races for programs with nested fork-join

parallelism,” in Supercomputing’91: Proceedings of the 1991 ACM/IEEE conference on

Supercomputing, pp. 24–33, IEEE, 1991.

[48] F. Mattern et al., Virtual time and global states of distributed systems. Citeseer, 1988.

[49] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise dynamic race detection,”

ACM Sigplan Notices, vol. 44, no. 6, pp. 121–133, 2009.

[50] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection in practice,” in

Proceedings of the Workshop on Binary Instrumentation and Applications, WBIA ’09, (New

York, NY, USA), pp. 62–71, ACM, 2009.

[51] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy, “Helgrind+: An efficient dynamic race

detector,” in 2009 IEEE International Symposium on Parallel & Distributed Processing,

pp. 1–13, IEEE, 2009.

[52] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary

instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[53] J. Thalheim, P. Bhatotia, and C. Fetzer, “Inspector: data provenance using intel processor

trace (pt),” in 2016 IEEE 36th International Conference on Distributed Computing Systems

(ICDCS), pp. 25–34, IEEE, 2016.

[54] A. Kleen and B. Strong, “Intel processor trace on linux,” Tracing Summit, vol. 2015, 2015.

[55] “Infer : Racerd.” http://fbinfer.com/docs/racerd.html, 2021.

[56] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race conditions and dead-

locks,” in Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

SOSP ’03, (New York, NY, USA), pp. 237–252, ACM, 2003.

[57] J. W. Voung, R. Jhala, and S. Lerner, “Relay: Static race detection on millions of lines of

code,” in Proceedings of the the 6th Joint Meeting of the European Software Engineering

81

http://fbinfer.com/docs/racerd.html

Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineer-

ing, ESEC-FSE ’07, (New York, NY, USA), pp. 205–214, ACM, 2007.

[58] M. Sridharan and S. J. Fink, “The complexity of andersen’s analysis in practice,” in Inter-

national Static Analysis Symposium, pp. 205–221, Springer, 2009.

[59] WALA, “Wala.” http://wala.sourceforge.net/wiki/index.php/Main_

Page, 2018.

[60] C.-H. Hsiao, S. Narayanasamy, E. M. I. Khan, C. L. Pereira, and G. A. Pokam, “Asyncclock:

Scalable inference of asynchronous event causality,” in Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’17, (New York, NY, USA), p. 193–205, Association for Comput-

ing Machinery, 2017.

[61] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A. Pokam, P. M. Chen, and

J. Flinn, “Race detection for event-driven mobile applications,” in Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’14, (New York, NY, USA), p. 326–336, Association for Computing Machinery, 2014.

[62] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for android applications,” in Pro-

ceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’14, (New York, NY, USA), p. 316–325, Association for Computing

Machinery, 2014.

[63] X. Fu, D. Lee, and C. Jung, “nadroid: Statically detecting ordering violations in android

applications,” in Proceedings of the 2018 International Symposium on Code Generation

and Optimization, CGO 2018, (New York, NY, USA), p. 62–74, Association for Computing

Machinery, 2018.

[64] M. Sharir, A. Pnueli, et al., Two approaches to interprocedural data flow analysis, ch. 8,

p. 189–233. New York University. Courant Institute of Mathematical Sciences, 1978.

[65] O. Shivers, “Control-flow analysis of higher-order languages,” tech. rep., 1991.

82

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

[66] O. Lhoták, “Spark: A flexible points-to analysis framework for Java,” Master’s thesis,

McGill University, December 2002.

[67] K. T. Tekle and Y. A. Liu, “Precise complexity guarantees for pointer analysis via datalog

with extensions,” CoRR, vol. abs/1608.01594, 2016.

[68] M. Sagiv, T. Reps, and R. Wilhelm, “Solving shape-analysis problems in languages with

destructive updating,” ACM Trans. Program. Lang. Syst., vol. 20, pp. 1–50, Jan. 1998.

[69] S. Z. Guyer and C. Lin, “Error checking with client-driven pointer analysis,” Sci. Comput.

Program., vol. 58, pp. 83–114, Oct. 2005.

[70] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,” in Proceedings of

the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’03, (New York, NY, USA), p. 167–178, Association for Computing Machinery,

2003.

[71] B. Liu and J. Huang, “D4: Fast concurrency debugging with parallel differential analysis,”

in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2018, (New York, NY, USA), pp. 359–373, ACM, 2018.

[72] S. Zhan and J. Huang, “Echo: Instantaneous in situ race detection in the ide,” in Proceedings

of the ? International Symposium on the Foundations of Software Engineering, FSE ’16,

2016.

[73] “Coderrect race detector.” https://coderrect.com/download/, 2021.

[74] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian,

V. Paxson, M. Bailey, et al., “The matter of heartbleed,” in Proceedings of the 2014 confer-

ence on internet measurement conference, pp. 475–488, ACM, 2014.

[75] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data attacks are realistic

threats.,” in USENIX Security Symposium, vol. 5, 2005.

83

https://coderrect.com/download/

[76] J. Pincus and B. Baker, “Beyond stack smashing: Recent advances in exploiting buffer

overruns,” IEEE Security & Privacy, vol. 2, no. 4, pp. 20–27, 2004.

[77] R. base64 project, “Cve-2017-1000430,” 2017. https://www.cvedetails.com/

cve/CVE-2017-1000430/.

[78] P. Sampaio, “Cve-2018-1000657,” 2018. https://bugzilla.redhat.com/show_

bug.cgi?id=1622249.

[79] P. Sampaio, “Cve-2018-1000810,” 2018. https://bugzilla.redhat.com/show_

bug.cgi?id=1632932.

[80] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly compatible

and complete spatial memory safety for c,” ACM Sigplan Notices, vol. 44, no. 6, pp. 245–

258, 2009.

[81] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing data-flow integrity,”

in Proceedings of the 7th symposium on Operating systems design and implementation,

pp. 147–160, USENIX Association, 2006.

[82] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets: compiler enforced tempo-

ral safety for c,” in ACM Sigplan Notices, vol. 45, pp. 31–40, ACM, 2010.

[83] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe retrofitting of legacy code,”

in ACM SIGPLAN Notices, vol. 37, pp. 128–139, ACM, 2002.

[84] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang, “Cyclone: A

safe dialect of c.,” in USENIX Annual Technical Conference, General Track, pp. 275–288,

2002.

[85] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, P. Druschel, and D. Garg, “Erim:

Secure, efficient in-process isolation with memory protection keys,” arXiv preprint

arXiv:1801.06822, 2018.

84

https://www.cvedetails.com/cve/CVE-2017-1000430/
https://www.cvedetails.com/cve/CVE-2017-1000430/
https://bugzilla.redhat.com/show_bug.cgi?id=1622249
https://bugzilla.redhat.com/show_bug.cgi?id=1622249
https://bugzilla.redhat.com/show_bug.cgi?id=1632932
https://bugzilla.redhat.com/show_bug.cgi?id=1632932

[86] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-grained execution units

with private memory,” in 2016 IEEE Symposium on Security and Privacy (SP), pp. 56–71,

IEEE, 2016.

[87] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang,

and H. Hinton, “Stackguard: Automatic adaptive detection and prevention of buffer-

overflow attacks.,” in USENIX Security Symposium, vol. 98, pp. 63–78, San Antonio, TX,

1998.

[88] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-pointer

integrity.,” in OSDI, vol. 14, p. 00000, 2014.

[89] Rust-Team, “issue 26612,” 2015. https://github.com/rust-lang/rust/

issues/26612.

[90] japaric, “issue 39699,” 2017. https://github.com/rust-lang/rust/issues/

39699.

[91] B. Smith, “Stop using unsafe code,” 2017. https://github.com/alicemaz/

rust-base64/issues/29.

[92] S. B. Lippman, Inside the C++ object model, vol. 242. Addison-Wesley Reading, 1996.

[93] Rust-team, “Trait objects,” 2011. https://doc.rust-lang.org/book/

trait-objects.html.

[94] A. Crichton, “Tracking issue for changing the global, default allocator (rfc 1974),” 2015.

https://github.com/rust-lang/rust/issues/27389.

[95] R. team, “Lang items,” 2015. https://doc.rust-lang.org/1.5.0/book/

lang-items.html.

[96] W. Gloger, “Wolfram gloger’s malloc homepage,” 2006. http://www.malloc.de/

en/.

85

https://github.com/rust-lang/rust/issues/26612
https://github.com/rust-lang/rust/issues/26612
https://github.com/rust-lang/rust/issues/39699
https://github.com/rust-lang/rust/issues/39699
https://github.com/alicemaz/rust-base64/issues/29
https://github.com/alicemaz/rust-base64/issues/29
https://doc.rust-lang.org/book/trait-objects.html
https://doc.rust-lang.org/book/trait-objects.html
https://github.com/rust-lang/rust/issues/27389
https://doc.rust-lang.org/1.5.0/book/lang-items.html
https://doc.rust-lang.org/1.5.0/book/lang-items.html
http://www.malloc.de/en/
http://www.malloc.de/en/

[97] D. Lea, “A memory allocator,” 1996. http://g.oswego.edu/dl/html/malloc.

html.

[98] splotifun, “Understanding glibc malloc,” 2015. bhttps://sploitfun.wordpress.

com/2015/02/10/understanding-glibc-malloc/.

[99] andigena, “ptmalloc fanzine,” 2016. https://lwn.net/Articles/725832/.

[100] A. documentation, “Arm memory domain.” http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html.

[101] Phasar-Team, “Phasar framework,” 2018. https://github.com/

secure-software-engineering/phasar.

[102] H. M. Almohri and D. Evans, “Fidelius charm: Isolating unsafe rust code,” in Proceedings

of the Eighth ACM Conference on Data and Application Security and Privacy, pp. 248–255,

ACM, 2018.

[103] J. Corbet, “The stack clash,” 2017. https://blog.qualys.com/securitylabs/

2017/06/19/the-stack-clash.

[104] J. Corbet, “Preventing stack guard-page hopping,” 2017. https://lwn.net/

Articles/725832/.

[105] M. Jansson, “rpmalloc-benchmark,” 2017. https://github.com/

rampantpixels/rpmalloc-benchmark.

[106] Shellphish, “unsafe unlink,” 2011. https://github.com/shellphish/

how2heap/blob/master/glibc_2.26/unsafe_unlink.c.

86

http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
bhttps://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
bhttps://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://lwn.net/Articles/725832/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0056d/BABBJAED.html
https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar
https://blog.qualys.com/securitylabs/2017/06/19/the-stack-clash
https://blog.qualys.com/securitylabs/2017/06/19/the-stack-clash
https://lwn.net/Articles/725832/
https://lwn.net/Articles/725832/
https://github.com/rampantpixels/rpmalloc-benchmark
https://github.com/rampantpixels/rpmalloc-benchmark
https://github.com/shellphish/how2heap/blob/master/glibc_2.26/unsafe_unlink.c
https://github.com/shellphish/how2heap/blob/master/glibc_2.26/unsafe_unlink.c

	ABSTRACT
	DEDICATION
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Overview
	Partial Update Solver for Inclusion-based Pointer Analysis.
	Origin-Sensitive Pointer Analysis
	O2 and XRust
	Roadmap

	Background and Related Works
	Pointer Analysis
	Context-Sensitive Pointer Analysis
	Pointer Analysis Solving Algorithms

	Data Races and Data Race Detection

	Partial Update Solver for Inclusion-based Pointer Analysis
	Inclusion-based Pointer Analysis
	Limitations of Existing Solving Algorithms
	Algorithm
	Structure of the Algorithm
	Detailed Algorithm
	Proof of Correctness

	Experiments
	RQ1: Reduction Achieved by PUS
	RQ2: The Performance Improvement Achieved by PUS
	Improvement when Running Context-Insensitive Pointer Analysis
	Improvement when Running Context-Sensitive Pointer Analysis

	Summary

	Origin-Sensitive Pointer Analysis and O2
	Origin-Sensitive Pointer Analysis
	Identifying Origins
	Origin-Sensitivity Rules

	O2: Race Detection Algorithm
	Three Sound Optimizations
	Other Implementation Details

	Experiments
	Performance
	Origin-Sensitivity vs Other Pointer Analyses
	Race Detection Performance

	New Races Found in Real-World Software
	Linux Kernel
	Memcached

	Summary

	Securing UnSafe Rust Programs
	Overview
	Unsafe Rust in practice
	Observations behind XRust
	Protection Strength of XRust
	A Motivating Example

	Language Extensions
	Heap Allocation in Rust
	Language Support for Unsafe Region

	Multi-Region Heap Allocator
	Architecture of ptmalloc2
	XRust Extensions on ptmalloc2

	Cross-Region Reference Prevention
	Code Instrumentation
	Guard Page

	Evaluation
	Efficiency
	Allocation Statistics
	Performance of the Allocactor
	Effectiveness on Real Vulnerabilities

	Discussions and Limitations
	Summary

	CONCLUSION
	REFERENCES

