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ABSTRACT 

 

As technologies have been used in education, data have been generated within technologies 

or collected outside. How educators can utilize data has become a challenge. Therefore, a 

systematic literature review was conducted in the first study. The review noted the impact from 

previous learning analytics and educational data mining studies uncovering sample and 

methodological characteristics of the studies. The findings showed every aspect of the studies, 

including research objectives, learning environments, education levels, data preprocessing tasks, 

data analysis methods, data tools, sample sizes, and feature information. Additionally, big data in 

education can support the application of learning theories into practices. The design and 

improvement of technologies can use these theories as underpinnings.  

The second study applied mixed effects Random Forest (MERF), the random effects 

expectation-maximization recursive partitioning method (RE-EM Tree), hierarchical linear 

modeling (HLM), and regular Random Forest (RF). The comparison results of these methods have 

shown that MERF generated the most accurate models. RE-EM Tree and HLM achieved similar 

accuracy. The advantages and disadvantages of each method were explained. The results indicated 

that MERF was more appropriate than RF in clustered data and choosing which method depended 

on a research or project purpose. When the purpose is to predict students’ learning performance, 

MERF can be the optimal method choice. When the purpose is to detect the relationship between 

predictor and response variables and examine each variable’s impact, RE-EM Tree and HLM will 

better serve the purpose. Whether we should select RE-EM Tree or HLM can depend on the size 

of data dimension.  
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Considering the data dimension, HLM was applied in the third study to examine the 

relationship between student information and communications technology (ICT) related factors 

and learning performance in mathematics and science moderated by school-level factors. The 

results showed the importance of ICT related factors and indicated that schools with higher 

students’ socio-economic status yielded better learning outcomes in mathematics and science as 

well as better supported ICT use. The shortage of school resources had an interaction effect with 

students’ ICT use at school. School size was also important for students’ mathematics 

achievements.  
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CHAPTER I 

INTRODUCTION 

 

 In the past decade, Learning Analytics (LA) and educational data mining (EDM) have been 

greatly impacting the education field. Many research institutions have collected various types of 

data and technologies used in classrooms or online courses have started tracking users’ actions. 

How to handle the data to reveal the pattern beneath the data has raised great concerns. Therefore, 

the first goal of this dissertation is to provide a comprehensive review through the lens of how LA 

and EDM have been impacting education and discover the value and potential of the LA/EDM 

field. The first study includes the analyses of 113 articles selected from nine peer-review journals 

with high impact factors in the educational technology field. The study aims to reveal the impacts 

of these studies and detailed information of their sample and methodological characteristics.  

Previous educational studies have adopted different data mining algorithms to solve 

research questions and practical issues. However, most data mining algorithms currently only 

consider single data levels (e.g., Martínez-Abad et al., 2018) and few studies using data mining 

algorithms in clustered educational data have considered different data levels and mixed effects. 

When the data has clustered structures, the methods without considering different data levels may 

yield misleading results. Therefore, the second goal of this dissertation is to overcome the 

drawbacks of traditional data mining methods such as Decision Tree (DT) and Random Forest (RF) 

and apply the mixed effects tree models to the clustered data. The study compares the results of 

RF, mixed effects Random Forest (MERF), the random effects expectation-maximization 

recursive partitioning method (RE-EM Tree), and hierarchical linear modeling (HLM). The study 

aims to reveal the optimal methods applied to certain circumstances in clustered data.   
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Considering each method’s advantages and disadvantages, the third goal of the dissertation 

is to apply HLM to examine the relationship between students’ information and communications 

technology (ICT) related factors and their learning achievements in mathematics and science 

moderated by the school-level factors. Previous studies focused more on student-level and country-

level information. A few studies reported school-level analysis, but selected school-level factors 

based on research interests or preferences (e.g., Gómez-Fernández & Mediavilla, 2018). Therefore, 

the study applies DT method to select school-level factors in an unbiased and data-driven fashion. 

Two separate DT models are generated based on students’ mathematics and science achievements. 

Accordingly, two separate HLM models are generated to uncover the relationships among 

predictor and response variables as well as moderators.  
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CHAPTER II  

LEARNING ANALYTICS AND EDUCATIONAL DATA MINING: A SYSTEMATIC 

LITERATURE REVIEW 

 

Introduction 

In the past decade, big data is becoming ubiquitous in many fields. Educational data mining 

(EDM) and Learning Analytics (LA) are growing interdisciplinary fields of studies. EDM was 

defined by the International Educational Data Mining Society as “an emerging discipline, 

concerned with developing methods for exploring the unique types of data that come from 

educational settings, and using those methods to better understand students, and the settings which 

they learn in” (p. 601). EDM projects build models to improve teaching and learning experiences 

as well as institutional effectiveness (Dutt et al., 2017). EDM can also be adopted to evaluate 

educational systems so as to improve education (Macarini et al., 2020). EDM deploys statistical 

and data mining techniques to various educational data sets from different educational settings 

(Romero & Ventura, 2020). As technologies have been integrated into education, those educational 

settings and supportive tools, such as Massive Open Online Courses (MOOCs) and Learning 

Management Systems (LMSs), show great advantages in data analytics. For example, these tools 

can capture and store data information of students’ learning process and interaction (e.g., Castro 

et al., 2007). The overall EDM procedure to reveal information from educational data sets mainly 

includes data preprocessing, data analysis, and post processing (Romero et al., 2004).  

Respectively, LA has historical roots that are related to academic analytics, action analytics, 

and predictive analytics (Weng et al., 2021). The first international Conference on Learning 

Analytics and Knowledge (LAK 2011) defined LA as “the measurement, collection, analysis and 
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reporting of data about learners and their contexts, for purposes of understanding and optimizing 

learning and the environments in which it occurs” (https://tekri.athabascau.ca/analytics/).  LA aims 

to gain insights, improve decision-making to resolve educational issues, and provide interventions 

in the learning process based on data information (Siemens, 2011). Like EDM, LA also follows a 

three-step procedure: data gathering, information processing, and knowledge application (Elias, 

2011).  

EDM and LA communities share common interests and similar goals, which are to help 

and promote data-driven decision-making in education (Papamitsiou & Economides, 2014; 

Siemens & Baker, 2012). The overall procedures of EDM and LA both focus on data collection, 

analysis, interpretation, and report of results in order to eventually improve individual or 

organizational performance (Papamitsiou & Economides, 2014). Baker and Yacef (2009) 

summarized five major analysis techniques in the fields of LA/EDM, which include 1) prediction, 

2) clustering, 3) relationship mining, 4) distillation of data for human judgement, and 5) discovery 

with models. Although the communities share these commonalities, they still retain differences in 

several aspects, such as the fields of emphasis, the types of discovery, and the adaptation focus 

(Siemens & Baker, 2012). Research in LA considers leveraging human judgement, while EDM 

focuses more on automated discovery. LA emphasizes the understanding of the whole system, 

whilst EDM has a greater focus on the individual component. LA research aims to empower 

instructors and learners, while EDM research emphasizes automated adaptation of educational 

tools. Siemens and Baker (2012) also mentioned the differences in analysis methods for these two 

communities. For example, Siemens and Baker (2012) listed social network analysis as the main 

techniques and methods in the LA field, while classification was listed as the main techniques in 

the EDM field.  
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Several literature reviews of LA/EDM were conducted from a different perspective. For 

example, Dutt et al. (2017) conducted a three-decade long literature review focusing on clustering 

algorithm and its usability in the EDM studies. Other data mining algorithms are out-of-scope for 

this review work. Papamitsiou and Economides (2014) highlighted four major directions of the 

LA/EDM research through 40 selected articles, which were pedagogy-oriented issues, learning 

context, networked learning, and recommending educational resources. Although this review 

categorizes the types of data analysis methods for the studies, the review does not provide detailed 

information about those methods. Sin and Muthu (2015) reviewed 90 publications in the LA/EDM 

field and reported findings separately in the LA and EDM fields. However, the findings reported 

from this review are lacking clear organization, which mix data mining methods, research purposes, 

and learning contexts together. Romero and Ventura (2010) conducted a review about EDM and 

provided comprehensive information from the study data type to the research questions.  

The fast development of the LA/EDM field in the last decade has motivated us to conduct 

this systematic literature review to reveal the latest trend in this field. This paper aims to carry out 

a comprehensive analysis of the empirical research studies in LA/EDM and answer the following 

two specific questions: 

RQ1: What is the impact of applied LA/EDM research on education? 

RQ2: What are the sample and methodological characteristics of applied LA/EDM 

studies? 

The first research question intends to indicate how LA/EDM projects help improve data-

driven decision making, teaching services, and development and implementation of technology 

tools in education. The synthesis of this information can provide educators or researchers with a 

perspective about the way of utilizing data mining algorithms to achieve their research or 
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instructional purposes. The second research question aims to reveal characteristics of previous 

LA/EDM related studies based on the research objectives, studies’ learning environments, data 

preprocessing and analysis, and other related elements. Interpreting these results can indicate the 

research trends in the EMD/LA field and give insight about the further development of the field. 

Method 

This review protocol is refined based on the guidelines by Hart (1998) and Tranfield et al. 

(2003), which consist of five stages: 1) definition of research questions; 2) key terms for search; 

3) data selection based on the inclusion and exclusion criteria and databases; and 4) data procedure; 

and 5) data synthesis and report. Search database and search criteria for this review are noted below.  

Data Collection 

Search Database 

A comprehensive search was conducted in two stages. In the first stage, we used the key 

search terms “Educational data mining” OR “Learning analytics” to search through various 

databases, such as IEEE Xplore, ScienceDirect, JSTOR, EBSCO, ERIC, SpringLink, Google 

Scholar, and Web of Science and identified journals that published articles in the LA/EDM field. 

Based on the findings in this stage, we targeted the most influential journals in the educational 

technology field. These journals are peer-reviewed and have high impact factors according to the 

citation indexes (i.e., social science citation index). In the second search stage, we narrowed 

down our focus on these selected journals (Table 2), applied our inclusion and exclusion criteria, 

and assessed full-text articles to further confirm the eligibility and determined the final selected 

articles. 

Data Inclusion and Exclusion Criteria  

The inclusion criteria included: 
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1)  Publications from 2008 to September 2020 in the selected journals. 

2)  Publications must address K12 or higher education level. 

3)  Publications report empirical studies that involve technology use in teaching or 

learning. 

4)  Publications used data mining techniques to the gathered information.  

The exclusion criteria included: 

1)  Articles were published earlier than 2008 or later than September 2020 in the selected 

journals. 

2)  Articles were published in the unselected journals. 

3)  Research studies were conducted beyond K12 or higher education scope such as for 

the professional development. 

4)  Publications focused on literature review or any other types of review. 

5)  Publications did not apply or report any use of data mining algorithms in any phase of 

research. 

6) Publications included studies which were irrelevant to the topic of LA/EDM. 

Initially, we found 4,171 publications from 2008 to September 2020 from those 

databases. After narrowing down our search to the selected journals and using the key search 

terms, we extracted 688 articles ready for applying the inclusion and exclusion criteria and full-

text scanning. Eventually, we selected 113 articles for the coding procedure and excluded the rest 

of articles that did not meet the inclusion criteria. Table 1 shows the search process for this 

review, and Table 2 gives the information of the selected journals names, initial search results, 

and the number of final selected articles.   
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Table 1 

PRISMA Chart Exhibiting the Search Process 
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Table 2 

Selected Journals and Search Results 

Journal Name Number of 

Articles from 

Initial Search 

Number of 

Selected 

Articles for 

Coding 

The Internet and Higher Education 32 14 

Computers & Education 105 14 

IEEE Transactions on Learning Technologies 44 15 

British Journal of Educational Technology 138 14 

Journal of Computer Assisted Learning 64 9 

Journal of Computing in Higher Education 10 4 

Educational Technology & Society 145 23 

Educational Technology Research and 

Development 

44 3 

Interactive Learning Environments 106 17 

Total 688 113 

 

Data Analysis 

Content analysis technique (Krippendorff, 2018) was applied to this study; moreover, this 

technique can use both quantitative and qualitive inquiries to reveal the content of 

communication from verbal discourse, written documents, and visual presentations 

(Krippendorff, 2018). This study applies both quantitative and qualitative content analysis, which 

presents the number of occurrences of the specific parameters within the selected articles to 

reveal the research topics, analysis methods, and other relevant information in the field of 

LA/EDM. The content analysis procedure for this study includes 1) developing a data encoding 

system, 2) implementing the encoding system to the selected articles, 3) organizing the coded 
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information, and 4) interpreting the results. There are several main parameters included in the 

encoding system based on our research interests, which are 1) research objective, 2) learning 

environment, 3) education level, 4) data preprocessing methods, 5) data analysis methods, 6) 

data analysis tools, 7) sample size, and 8) variable information. 

Research Objective 

The research objectives are categorized and refined upon Papamitsiou and Economides 

(2014). These objectives include 1) discovering student engagement, 2) predicting student 

learning performance, 3) identifying student learning behavior, 4) enhancing assessment and 

feedback services, 5) increasing (self-) reflection and (self-) awareness, 6) building adaptive or 

recommender systems, and 7) improving the educational system.    

Learning Environment 

The learning environment refers to the context and environment where the learning 

experiences occur, which is mainly classified as below:  

1)   LMS. The LMS is an online portal that enables instructors to share classroom 

materials and support students to conduct online learning activities and virtually 

interact with each other (Adzharuddin & Ling, 2013). 

2)   MOOC. MOOCs provide learners with free and open online courses, involving open 

curricula and open-ended learning results (McAuley et al., 2010). 

3)   Intelligent systems. Intelligent systems refer to adaptive computer technology in 

education which scaffolds and supports student learning.  

4)   Games and simulations. Games and simulations refer to computer technology that 

provide students with learning experiences via gameplay or virtually simulated 

scenarios.  
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5)   Other e-learning environments. Other e-learning environments include online 

assessment and scoring systems, e-book learning systems, recommender systems, 

standalone Wiki platforms, online learning communities outside of LMS, and other 

online e-learning platforms for different purposes. 

6)   Face-to-face classes. Attending face-to-face classes is the most common type for 

student learning. 

Educational Level 

 The educational level for the selected studies focuses on either K12 or higher education. 

Data Preprocessing 

Data preprocessing is known as data preparation, which can be carried out through 1) 

attribution selection, 2) data cleaning, 3) transforming continuous attributes, and 4) data 

integration (Romero et al., 2004). Considering the complexity and different needs of data 

preprocessing, we further detail various data preprocessing activities as the following: 

1) Balancing data. This activity refers to the handling of the imbalanced data where the 

number of observations is unequally distributed.  

2) Normalization/standardization. It includes normalizing or standardizing the raw data 

points as well as transforming categorical or continuous attributes. 

3) Dimension reduction. It refers to reducing the dimension via selecting features in a 

high dimensional data set.  

4) Missing data. This activity refers to the approach of handling the missing data points.  

5) Natural language preprocessing. This activity is an important step for natural 

language processing technique, which involves any tasks transforming text into a sort 

of features for the later analysis.  
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6) Generating new features. This includes aggregating or categorizing events, jointing 

all the data from multiple sources, and using other calculations to generate new 

features.   

7) Outlier or noisy data removal. This activity removes outliers and other noisy data 

points before starting the analysis. 

8) Absolute/relative measures. The original data feature was converted into the 

absolute/relative forms.  

Studies which did not include any information about the data pre-processing tasks were 

marked as ‘Not specified.’ 

Data Analysis Methods  

Data analysis methods mainly include classification, clustering, regression, association 

rule mining, sequential pattern mining, text mining, and social network analysis. The basic 

definitions of these methods are listed below.  

1) Classification – Classification is a supervised machine learning technique to 

categorize data to a given set of classes. Logistic regression is categorized into 

classification, considering its purpose of assigning observations to a discrete set 

(Wright, 1995). 

2) Clustering – Clustering is an unsupervised machine learning technique that involves 

grouping of a set of objects based on their similarities through identifying the 

distance between them.  

3) Regression – Regression is a supervised machine learning method that aims to 

predict values of a continuous response variable by examining the relationship with 

the input features. 
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4) Association rule miming – Association rule mining aims to discover correlations 

between variables from data sets. 

5) Sequential pattern mining – Sequential pattern mining specializes in revealing 

sequential patterns in a sequence database.  

6) Text mining – Text mining is a data mining technique to transform unstructured text 

data so as to identify the underlying patterns. 

7) Social network analysis – Social network analysis is to identify behavior patterns 

and social structures of individuals based on the relation with each other on common 

interests. 

Data Tools  

Data tools used in data preprocessing and analyses are noted according to the selected 

articles. Several popular data mining tools are as the following:  

1) R. R is a programming language and a free access software environment for statistical 

analyses and visualizations (Team, 2013).  

2) Python. Python is a programming language and free open source that has been widely 

used for different purposes. In data science, Python greatly supports data analyses and 

applications (Van Rossum & Drake Jr, 1995).  

3) SPSS. SPSS (Statistical Package for the Social Sciences) is a popular statistical 

program used in social sciences (Nie et al., 1975).  

4) WEKA. WEKA (Waikato Environment for Knowledge Analysis) is a free access data 

mining software written in JavaScript developed at the University Waikato (New 

Zealand). This tool supports comprehensive data mining solutions and visualizations 

(Witten & Frank, 2002).  



 

 

14 

 

 

5) RapidMiner. RapidMiner is a data science platform written in JavaScript supporting 

multifaceted functions such as data preprocessing, data mining, prediction models 

development, and visualizations (Mierswa et al., 2006).  

Sample Size 

 Sample size is the number of observations included in a study. We focus on the number 

of students participated in the research studies. When an article includes multiple case studies, 

the sample size is calculated using the average count of all the case studies.  

Feature Information 

 Feature information relates to the type of input variables used for the analysis. User 

information includes user’s personal data, such as demographics, characteristics, and previous 

academic records. User learning activity tracks user’s learning actions occurring in the LMS or 

other learning environments, such as number of submitted assignments. User system action 

focuses on the interactions between the user and any tools used (e.g., times of login, total clicks). 

User dispositional data relates to emotions, motivation, self-regulation, perceptions, and attitudes 

during the learning process (Tempelaar et al., 2017).   

Results 

Quantitative Analysis  

Distribution of the Publications 

 113 publications were selected and analyzed (Table A in Appendix). Figure 1 shows that 

the number of publications in the LA/EDM field has grown in the past few years. Specifically, 

most articles were published in the past five years. These research studies are conducted across 

28 different locations. The top four locations for the studies are the United States (29%), Taiwan 

(10%), Australia (9%), and Spain (9%) (Table 3). 
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Figure 1. Number of Publications Included Each Year (n = 113). 

 

Table 3 

Top 4 Locations of the Studies 

Study Location Number of Studies Ratio 

United States 29 26% 

Taiwan 11 10% 

Australia 10 9% 

Spain 10 9% 

 

Educational Level and Sample Size 

 82% studies target higher education as the educational level (n = 93) and 15% studies 

focus on K-12 (Table 4). 3% studies are conducted both in higher education and K-12. 
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Table 4 

Educational Levels of the Selected Studies 

Educational Level Number of Studies Ratio 

Higher Education 93 82% 

K-12 17 15% 

Both Higher Education & K-12 3 3% 

 

Among the 113 publications, 107 studies reported sample sizes. Descriptive statistics of 

the studies’ sample sizes is shown in Table 5. Although the range of sample sizes for the studies 

is large, 75% studies had 1,136 or fewer participants. The study with the largest number of 

observations is from Macarini et al. (2020), which used the data from the secondary school in 

Uruguay, reaching up to about 135,000 students. In contrast, the study of Shen et al. (2009) only 

had one single subject for the study but gathered data across many weeks of time.  

 

Table 5 

Descriptive Statistics of the Studies’ Sample Sizes 

 Average 

Value 

Standard 

Deviation 

25% 

Quantile 

50% 

Quantile 

75% 

Quantile 

Number of 

Observations 

4,545 16,171 97 238 1,136 

 

Data Tool and Preprocessing 

 43% studies (n = 49) note the data tools used in the preprocessing or analysis stage 

(Figure 2). The popular data tools that researchers utilized include R (30%), SPSS (14%), and 

Python (13%). Other (27%) mainly included WEKA, RapidMiner, MATLAB, Java, and 
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JavaScript. Some studies used more than one tool to preprocess and analyze data sets (e.g., 

Lemay & Doleck, 2020).  

 

 

 

Figure 2. Data Tools. 

 

76% studies (n = 86) reported their data preprocessing activities (Figure 3). In those 

studies, 35% studies (n = 39) used a combination of several preprocessing activities. The top 3 

preprocessing activities are 1) generating new features (33%), 2) excluding outliers or noisy data 

(22%), and 3) normalizing or standardizing data before starting analysis (17%). Dimension 

reduction (10%) is also helpful, especially when the data size is large. Natural language 

preprocessing (10%) is an important step when the data set is in the text format.  
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Figure 3. Data Preprocessing Tasks. 

 

Qualitative Analysis  

Research Objective 

 The majority of studies have focused on prediction of student learning performance, 

discovery of student learning engagement, and identification of student learning behavior (Table 

6). Prediction of student learning performance includes 1) predicting dropout rates from a course 

(Olivé et al., 2020), 2) generating early alert from identifying at-risk students (Hung et al., 2019), 

and 3) forecasting achievements at different time points (Kostopoulos et al., 2019). Discovering 

student engagement includes 1) measuring student collaboration with peers to facilitate learning 

(Viswanathan & VanLehn, 2018), 2) revealing learner interests through the interactions with 

learning resources (Wu et al., 2018) or technology tools (Cerezo et al., 2016), and 3) examining 

student participation level in a course via assessing the communication structure with each other 

(Ergün & Usluel, 2016). The purposes of identifying student learning behavior are to 1) detect 

unusual behavior such as cheating (Ruiperez-Valiente et al., 2019), disengagement (Cocea & 
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Weibelzahl, 2011), procrastination (You, 2015); 2) unveil patterns indicative of learning 

strategies underlying the behavior (Fincham et al., 2019); and 3) develop adaptive computer-

mediated systems to respond to learners based on their learning behavior (Chih-Ming & Ying-

You, 2020).  

The objective of increasing self-reflection and self-awareness is to increase teachers’ or 

students’ awareness on learning preferences (Clewley et al., 2011) and understand cognitive or 

affective states (Shen et al., 2009) in order to provide adaptive support and improve learning 

design. This objective can be pursued through the exploration of learning experiences in LMS, 

MOOCs, intelligent systems, or other technology tools. Enhancing assessment and feedback 

services aims to provide appropriate types of feedback to students or improve assessment for the 

purpose of increasing student learning success (Xing et al., 2015). This can be achieved through 

computer-mediated adaptive intelligent learning systems (Holmes et al., 2018) or in-game 

assessments (Cheng et al., 2017). Building adaptive or recommender systems is to adapt learning 

or provide recommendations tailored to learners’ abilities with respect to their personalized 

activities (Khribi et al., 2009), recommended links to visit (Romero et al., 2009), content to 

review (Albatayneh et al., 2017), books to read (Chien et al., 2017), searching strategies (Liu, et 

al., 2013), and the selection of courses (Xu & Zhou, 2020). 

Improving the educational system promotes data driven decision making and educational 

policies through the invaluable information retrieved from educational data sets. For example, a 

nationwide dataset was analyzed to detect the relationship between students’ persistence in 

schools and learning performance on different subjects, such as History, Biology, Spanish, and 

English (Macarini et al., 2020). The visualizations of results in this study have shown the 

changes of students’ performance for each year. These findings can be used to improve the 
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educational authorities’ decision making and implementation of policies. In addition, overlaps 

may occur between these research objectives. Therefore, some studies have two or more research 

objectives at the same time (e.g., Hu et al., 2018; Zhang et al., 2018).  

 

Table 6 

Research Objectives 

Research Objective Count Author and Publication Year (Article 

Reference) 

Discovering student engagement  21 Alario-Hoyos et al., 2016; Angeli & 

Valanides, 2013; Cerezo et al., 2016; 

Chen et al., 2018; Dawson, 2010; Ergün 

& Usluel, 2016; Hershkovitz & 

Nachmias, 2011; Howard et al., 2018; Hu 

et al., 2018; Khalil & Ebner, 2017; 

Mirriahi et al., 2016; Moon et al., 2020; 

Moore et al., 2019; Niemelä et al., 2020; 

Shibani et al., 2017; Sun et al., 2019; 

Viswanathan & VanLehn, 2018; Wu et 

al., 2018; Xie et al., 2018; Xie et al., 

2014; Zhu et al., 2019 

Predicting student learning performance 34 Abdous, Wu, & Yen, 2012; Alonso‐

Fernández et al., 2020; Asif et al., 2017; 

Bernacki et al., 2020; Cano & Leonard, 

2019; Choi et al., 2018; Conijn et al., 

2018; Conijn et al., 2017; Ellis et al., 

2017; Er et al., 2019; Gašević et al., 2016; 

Gkontzis et al., 2019; Gray & Perkins, 

2019; Huang et al., 2020; Hung et al., 

2012; Hung et al., 2019; Junco & Clem, 
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2015; Kostopoulos et al., 2019; Lee, 

2015; Lemay & Doleck, 2020; Lu et al., 

2018; Marbouti, Diefes-Dux, & 

Madhavan, 2016; Mubarak et al., 2020; 

Olive et al., 2019; Olivé et al., 2020; 

Ortigosa et al., 2019; Ruiz et al., 2018; 

Sandoval et al., 2018; Soffer & Cohen, 

2018; Wakelam et al, 2020; Wu et al., 

2020; Xing et al., 2019; Yu et al., 2017; 

Zacharis, 2015 

Identifying student learning behavior 24 Abdous & He, 2011; Aguilar et al., 2019; 

Ahmad Uzir et al., 2020; Botelho et al., 

2019; Brooks et al., 2014; Chang et al., 

2015; Chih-Ming & Ying-You, 2020; 

Cocea & Weibelzahl, 2011; Codish et al., 

2019; de Barba et al., 2020; Fincham et 

al., 2019; Geng et al., 2020; Howard et 

al., 2018; Jovanović et al., 2017; Kim et 

al., 2018; Li et al., 2020; Paquette & 

Baker, 2019; Park et al., 2016; Pereira et 

al., 2020; Riofrio-Luzcando et al., 2017; 

Ruiperez-Valiente et al., 2019; 

Valsamidis et al., 2012; Wang et al., 

2017; Xia, 2020 

Enhancing assessment and feedback 

services 

7 Araya et al., 2012; Cerezo et al., 2020; 

Cheng et al., 2017; Holmes et al., 2018; 

Lin et al., 2013; Mensink & King, 2020; 

Xing et al., 2015 

Increasing self-reflection and self-

awareness 

5 Cho & Yoo, 2017; Clewley et al., 2011; 

Li & Chen, 2009; Martín‐García et al., 

2019; Mouri et al., 2018 
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Building adaptive or recommender 

systems 

9 Albatayneh et al., 2018; Chien et al., 

2017; Hooshyar et al., 2018; Khribi et al, 

2009; Liu et al., 2013; Mahnane, 2017; 

Romero et al., 2009; Shen et al., 2009; Xu 

& Zhou, 2020 

Improve the educational system 1 Macarini et al., 2020 

Multiple objectives 12 Chung & Paredes, 2015; Cela et al., 2016; 

Kim et al., 2016; Jo et al., 2016; Baker et 

al., 2016; Chen et al., 2019; You, 2015; 

Poitras et al., 2019; Schwarzenberg et al., 

2020; Tempelaar et al., 2017; You, 2016; 

Zhang et al., 2018 

 

Learning Environment 

 As shown in Table 7, most studies were conducted related to LMSs. Those studies 

collect log data from LMSs including students’ learning activities and interactive actions within 

the platform systems. The popular research interests using LMS data include prediction of 

students’ learning performance, identification of student learning behavior, and discover student 

engagement. For example, Hung et al. (2019) proposed a predictive modeling method to identify 

at-risk students who took the fully online courses hosted on the LMS. Fincham et al. (2019) 

collected learning trace data from a LMS to examine the relationship between students’ 

behavioral patterns indicative of learning strategies and their academic performances. Kim et al. 

(2016) used log data to predict student performance and investigate student engagement in the 

online discussion.  

Other e-learning environments are also noted by previous studies. For example, Abdous 

and He (2011) investigated problems that students encountered when using live video streaming. 
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Pereira et al. (2020) used an online evaluation platform CodeBench to score students’ 

programme assignments. Some studies focus on recommender systems, which aim to provide 

learners with effective recommendations to improve their learning performance (e.g., Albatayneh 

et al., 2018; Romero et al., 2009). Online assessments and scoring systems can support 

researchers to understand students’ learning behavior, interaction with the software, or predict 

student learning performance (e.g., Baker et al., 2016; Holmes et al., 2018). More examples of 

other e-learning environments include computer-mediated communication (e.g., Chih-Ming & 

Ying-You, 2020; Ergün & Usluel, 2016), hypermedia systems (e.g., Howard et al., 2018; 

Mirriahi et al, 2016), e-book learning systems (e.g., Mouri et al., 2018), and Wiki context (e.g., 

Hu et al., 2018). Another popular learning environment is MOOCs. The extensive amounts of 

data collected in MOOCs can be used to predict student learning performance (Conijn et al., 

2018), identify students at risk of dropout (Olivé et al., 2020), discover student engagement using 

social tools in a MOOC (Alario-Hoyos et al., 2016), detect cheating behavior in MOOCs 

(Ruiperez-Valiente et al., 2019), and investigate learners’ implicit learning attitudes (Geng et al., 

2020).  

Games and simulations, intelligent systems, and face-to-face classes can also be used in 

the LA/EDM studies. In the game and simulations context, previous studies deliver different 

research topics, such as tracking learners’ engagement within the game (Moon et al., 2020), 

identifying student learning behavior (Li et al., 2020), predicting students’ knowledge after 

gameplay (Alonso‐Fernández et al., 2020), and building an adaptive system for the student 

learning (Hooshyar et al., 2017). Studies related to intelligent systems focus on modeling student 

behavior within the system (Paquette & Baker, 2019) and detecting any issues of student 

learning behavior when using the online tutoring system (Cocea & Weibelzahl, 2011). Some 
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researchers have conducted LA/EDM studies via collecting data directly through face-to-face 

classes. For example, Choi et al. (2018) used the in-class students’ responses data and student 

academic information to identify at-risk students. Gray and Perkins (2019) utilized students’ 

weekly class attendance information to predict learning outcomes. Additionally, Codish et al. 

(2019) conducted two case studies: one used a gamified course on a LMS and the other used a 

MOOC. Martín‐García et al. (2019) adopted an online survey to examine the stages of 

instructors’ intentions of implementing the blended learning modality.  

 

Table 7 

Learning Environment of the Studies 

Learning Environment Count Authors and Publication Year (Article Reference) 

Face-to-face classes 10 Araya et al., 2012; Asif et al., 2017; Choi et al., 2018; 

Gray & Perkins, 2019; Macarini et al., 2020; Marbouti et 

al., 2016; Wakelam et al., 2020; Wang et al., 2017; Wu et 

al., 2020; Yu et al., 2017 

Games and simulations 7 Alonso‐Fernández et al., 2020; Cheng et al., 2017; 

Hooshyar et al., 2018; Li et al., 2020; Moon et al., 2020; 

Niemelä et al., 2020; Xing et al., 2019 

Intelligent systems 5 Botelho et al., 2019; Cocea & Weibelzahl, 2011; Lee, 

2015; Paquette & Baker, 2019; Riofrio-Luzcando et al., 

2017 

LMS 47 Aguilar et al., 2019; Ahmad Uzir et al., 2020; Bernacki et 

al., 2020; Brooks et al., 2014; Cano & Leonard, 2019; 

Cela et al., 2016; Cerezo et al., 2020; Cerezo et al., 2016; 

Chen et al., 2019; Chen et al., 2018; Cho & Yoo, 2017; 

Chung & Paredes, 2015; Clewley et al., 2011; Conijn et 

al., 2017; Dawson, 2010; Ellis et al., 2017; Fincham et al., 

2019; Gašević et al., 2016; Gkontzis et al., 2019; 
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Hershkovitz & Nachmias, 2011; Howard et al., 2018; 

Hung et al., 2012; Hung et al., 2019; Jo et al., 2016; 

Jovanović et al., 2017; Kim et al., 2016; Kim et al., 2018; 

Kostopoulos et al., 2019; Mensink & King, 2020; 

Mubarak et al., 2020; Olive et al., 2019; Olivé, Huynh, 

Reynolds, Dougiamas, & Wiese, 2020; Ortigosa et al., 

2019; Park et al., 2016; Sandoval et al., 2018; Soffer & 

Cohen, 2018; Sun et al., 2019; Tempelaar et al., 2017; 

Valsamidis et al., 2012; Xia, 2020; Xie et al., 2018; Xie et 

al., 2014; Xu & Zhou, 2020; You, 2015; You, 2016; 

Zacharis, 2015; Zhang et al., 2018 

MOOC 13 Alario-Hoyos et al., 2016; Chang et al., 2015; Conijn et 

al., 2018; de Barba et al., 2020; Er et al., 2019; Geng et al., 

2020; Huang et al., 2020; Khalil & Ebner, 2017; Lemay & 

Doleck, 2020; Lu et al., 2018; Moore et al., 2019; 

Ruiperez-Valiente et al., 2019; Schwarzenberg et al., 2020 

Other e-learning 

environments 

29 Abdous & He, 2011; Abdous et al., 2012; Albatayneh et 

al., 2018; Angeli & Valanides, 2013; Baker et al., 2016; 

Chien et al., 2017; Chih-Ming & Ying-You, 2020; Ergün 

& Usluel, 2016; Holmes et al., 2018; Howard et al., 2018; 

Hu et al., 2018; Junco & Clem, 2015; Khribi et al., 2009; 

Li & Chen, 2009; Lin et al., 2013; Liu et al., 2013; 

Mahnane, 2017; Mirriahi et al., 2016; Mouri et al., 2018; 

Pereira et al., 2020; Poitras et al., 2019; Romero et al., 

2009; Ruiz et al., 2018; Shen et al., 2009; Shibani et al., 

2017; Viswanathan & VanLehn, 2018; Wu et al., 2018; 

Xing et al., 2015; Zhu et al., 2019 

LMS & MOOC 1 Codish et al., 2019 

None 1 Martín‐García et al., 2019 
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Feature Information and Analysis Method  

The studies gathered data from various sources, including log files extracted from the 

software, questionnaires, open data sets, and student records. Most studies use information 

retrieved from student learning activities (46%), student interaction with the software (30%), and 

personnel basic information (15%) (Figure 4). Some studies gathered student dispositional data 

(8%) that involve student cognitive and emotional states, sentiment information from self-

evaluations, and learning motivation and perception (e.g., Moon et al., 2020; Yu et al., 2017). 

75% studies (n = 85) used the combination of different types of information, such as collecting 

students’ information, learning activities data and how they use the tools for learning (e.g., 

Howard et al., 2018). Other data information includes students’ self-reported questionnaires 

about their online learning experiences (Ellis et a l., 2017). 

 

 
 

Figure 4. Feature Information Types. 
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Data analysis methods is another important parameter (Table 8). In the LA/EDM field, 

the most popular analysis method is classification, followed by clustering and regression. Other 

main methods include sequential pattern mining, association rule mining, social network 

analysis, and text mining. Some studies adopt only one analysis method (e.g., Lin et al., 2013; 

Ruiz et al., 2018), while some adopt two or more methods to achieve their research purposes 

(e.g., Martín‐García et al., 2019; Pereira et al., 2020). Aside from these methods, Cerezo et al. 

(2020) applied Inductive Miner algorithm in process mining to discover student self-regulation 

learning process in an online course.  

Classification. Classification algorithms have been used in previous studies to achieve 

different research objectives. For example, Neural Networks technique has been used to train 

models to predict at-risk students in the courses (Olive et al., 2019), identify learners’ cognitive 

states (Holmes et al., 2018), and classify students posted messages (Wu et al., 2020). Logistic 

Regression (LR) can be used to predict student academic success (Lee, 2015) and completion of 

learning assignments (Lemay & Doleck, 2020). K-Nearest Neighbors (KNN) and Support Vector 

Machine (SVM) methods can also be used to predict student emotions during learning (Shen et 

al., 2009), forecast student achievement (Chen et al., 2019), and identify at-risk students 

(Marbouti et al., 2016). Decision Tree (DT) has been applied to predict student online 

persistence in the web-supported courses (Hershkovitz & Nachmias, 2011), student academic 

success (Asif et al., 2017), and dropout risks (Ortigosa et al., 2019). Besides learning 

performance prediction (Hung et al., 2019), Random Forest (RF) can be used to detect student 

online cheating behavior (Ruiperez-Valiente et al., 2019). 

A comparison of different classification algorithms has been carried out to identify at-risk 

students in higher education and K-12 online courses (Hung et al., 2019). Hung et al. (2019) 
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reported that Neural Networks and RF predict more accurately than SVM. Another comparison 

from Marbouti et al. (2016) noted that Naïve Bayes Classifier outperforms LR, SVM, DT, KNN, 

and Neutral Networks in the early prediction of at-risk students using standards-based grading 

information. Other classification algorithms comparisons are conducted to predict the possibility 

of student dropouts (Ortigosa et al., 2019); to predict student wheel spinning in the intelligent 

tutoring system (Botelho et al., 2019); to detect student disengagement in online learning (Cocea 

& Weibelzahl, 2011); and to classify collaboration ways with peers (Viswanathan & VanLehn, 

2018). 

Regression. Regression techniques have been used to solve different research questions. 

For example, Conijn et al. (2018) used multiple linear regression to predict students’ final exam 

grades in a graduate-level MOOC. Zacharis (2015) employed a stepwise multivariate regression 

to predict student outcomes in the blended learning courses. Chih-Ming and Ying-You (2020) 

compared linear regression with other algorithms to model student learning behavior in order to 

predict computer-mediated communication competences. Tempelaar et al. (2017) predicted 

student use of digital tools via student dispositional information using hierarchical linear 

regression. Kostopoulos et al. (2019) predicted undergraduate students’ final exam grades of a 

distance course using linear regression and classification algorithms. A comparison among 

Random Forest, linear regression and robust linear regression was conducted to predict student 

performance using LMS usage data, student information and academic records (Sandoval et al., 

2018). Choi et al. (2018) compared the results of identifying at-risk students by using 

hierarchical linear regression versus hierarchical logistic regression. The findings have suggested 

that using hierarchical linear regression can provide more information about students’ exam 

scores and yield better prediction models to detect at-risk students.  
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Clustering and sequential pattern mining. Studies have applied clustering solutions to 

group the subjects based on their learning behavior (e.g., Cerezo et al., 2016; de Barba et al., 

2020). Clustering methods have been adopted to build recommendation systems (Khribi et al., 

2009). Expectation Maximization (EM) algorithm and K-means are the two representative 

clustering algorithms used in previous studies (e.g., Brooks et al., 2014; Chang et al., 2015). 

Cerezo et al. (2016) claimed that EM and K-means could yield similar clustering results. Riofrio-

Luzcando et al. (2017) compared three clustering algorithms (i.e. Xmeans, Expectation 

Maximization, Microsoft Sequence Clustering) versus without using clustering. The findings 

have shown that the differences between these methods are small but using sequence clustering 

method can yield the best outcome to divide students into groups. Different tutoring feedback 

can be accordingly provided to the clustered groups (Riofrio-Luzcando et al., 2017).  

Other clustering algorithms include hierarchical clustering, Markov Clustering, and K-

medoids. Ellis et al. (2017) used hierarchical clustering based on Ward’s method (HCW) to find 

out two cluster solutions as the optimal to detect the association between student learning 

experience and academic performance. Fincham et al. (2019) also used the HCW approach, 

which generated four clusters to identify student learning strategies and the associations with 

academic success. Valsamidis et al. (2012) used Markov Clustering algorithm to separate 39 

courses into two clusters, which were high activity courses and low activity courses. Kim et al. 

(2018) performed K-medoids clustering to identify three types of students’ self-regulated 

learning profiles. 

Sequential pattern mining can be used to understand student learning traces and examine 

the patterns of learning behavior. It can be applied with clustering analysis in the studies 

(Fincham et al., 2019; Jovanović et al., 2017). For example, Jovanović et al. (2017) used student 
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learning sequences and their underlying learning strategies to cluster students via the HCW 

approach.  

Association Rule Mining. This data mining approach is to reveal relationships between 

variables in a data set and present the patterns in the form following the “if-then” rules (Zhang & 

Zhang, 2002). Association rule miming has been applied to identify students’ comment 

categories in Wiki in order to suggest appropriate early interventions and improve students’ 

higher order thinking skills (Hu et al., 2018). Pereira et al. (2020) employed association rules 

analysis to identify effective learning behavior. Howard et al. (2018) applied this approach to 

identify students’ use patterns of different mobile applications as to understand how this 

influenced their learning. 

Social Network Analysis and Text Mining. Social network analysis (SNA) and Text 

mining are analytical techniques applied in social learning analytics (Buckingham et al., 2012). 

SNA aims to probe the relationship among individuals who build a social network with others. 

SNA employs visualizations to show the magnitude and density of interactions among nodes, 

which indicates the interactions among users (Zhang et al., 2018). The higher density of the 

network indicates its cohesiveness, which means individuals are more closely connected with 

others (Xie et al., 2014). SNA has been successfully deployed to detect interactive behavior 

when using the online communication tools. For example, SNA has been adopted to establish 

students’ interactive modes using online forums (Zhang et al., 2018). Ergün and Usluel (2016) 

used SNA to detect student interactivity over a 14-week period discussion data and noted that 

instructors’ participation greatly increased student interactivity.  

A study has shown the development of a toolkit which used SNA to reveal student social 

interactions in the LMS discussion forums and provided visualizations of these interactions 
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(Chen et al., 2018). A learning analytics tool (VASCORLL 2.0) was built using SNA to bridge 

the gap between the eBook learning and the real-life scenarios as to help students better apply 

their knowledge into the practical situations (Mouri et al., 2018).  

Another method is text mining which is the process of extracting the invaluable 

information from written resources. Text mining can help identify learning activities and tools 

preferred by the students based on students’ posts on the social media (Aguilar et al., 2019). 

SNA and text mining have been adopted together to analyze the text data in the studies in order 

to measure and detect team leadership (Xie et al., 2018), probe the influence of students’ 

interactions via the online posts (Aguilar et al., 2019), and examine students’ cognitive and 

emotional engagements in learning (Geng et al., 2020). 

 

 

Table 8 

Classification of Data Analysis Methods 

Data Analysis Method Count Authors and Publication Year, Article Reference;  

Regression 10 Alario-Hoyos et al., 2016; Chih-Ming & Ying-You, 2020; 

Conijn et al., 2018; Conijn et al., 2017; Junco & Clem, 

2015; Lu et al., 2018; Moore et al., 2019; Sandoval et al., 

2018; You, 2015; You, 2016 

Classification 39 Asif et al., 2017; Baker et al., 2016; Bernacki e t al., 2020; 

Botelho et al., 2019; Cano & Leonard, 2019; Chen et al., 

2019; Cheng et al., 2017; Clewley et al., 2011; Cocea & 

Weibelzahl, 2011; Er et al., 2019; Gašević et al., 2016; 

Gkontzis et al., 2019; Gray & Perkins, 2019; Hershkovitz & 

Nachmias, 2011; Holmes et al., 2018; Hooshyar et al., 2018; 

Huang et al., 2020; Hung et al., 2019; Kim et al., 2016;  

Lee, 2015; Lemay & Doleck, 2020; Li & Chen, 2009; Lin et 

al., 2013; Marbouti et al., 2016; Mensink & King, 2020; 
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Mubarak et al., 2020; Olive et al., 2019; Olivé et al., 2020; 

Ortigosa et al., 2019; Paquette & Baker, 2019; Poitras et al., 

2019; Ruiperez-Valiente et al., 2019; Ruiz et al., 2018; Shen 

et al., 2009; Viswanathan & VanLehn, 2018; Wakelam et 

al., 2020; Xing et al., 2019; Xu & Zhou, 2020; Yu et al., 

2017 

Clustering 15 Brooks et al., 2014; Cerezo et al., 2016; Chang et al., 2015; 

de Barba et al., 2020; Ellis et al., 2017; Howard et al., 2018; 

Khalil & Ebner, 2017; Li et al., 2020; Liu et al., 2013; 

Mirriahi et al., 2016; Niemelä et al., 2020; Park et al., 2016; 

Riofrio-Luzcando et al., 2017; Valsamidis et al., 2012; Xing 

et al., 2015  

Association rule 

mining 

2 Hu et al., 2018; Xia, 2020 

Sequential pattern 

mining 

6 Chien et al., 2017; Fincham et al., 2019; Jovanović et al., 
2017; Sun et al., 2019; Wang et al., 2017; Zhu et al., 2019 

Social network analysis 8 Cela et al., 2016; Chen et al., 2018; Chung & Paredes, 2015; 

Dawson, 2010; Ergün & Usluel, 2016; Mouri et al., 2018; 

Xie et al., 2014; Zhang et al., 2018 

Text mining  4 Abdous & He, 2011; Albatayneh et al., 2018; Geng et al., 

2020; Wu et al., 2018 

Other, i.e., Process 

mining;  

1 Cerezo et al., 2020 

Multiple methods 30 Abdous et al., 2012; Aguilar et al., 2019; Ahmad Uzir et al., 

2020; Alonso‐Fernández et al., 2020; Angeli & Valanides, 

2013; Araya et al., 2012; Cho & Yoo, 2017; Choi et al., 

2018; Codish et al., 2019; Fincham et al., 2019; Howard et 

al., 2018; Hung et al., 2012; Jo et al., 2016; Jovanović et al., 

2017; Khribi et al., 2009; Kim et al., 2018; Kostopoulos et 

al., 2019; Macarini et al., 2020; Mahnane, 2017; Martín‐

García et al., 2019; Moon et al., 2020; Pereira et al., 2020; 
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Romero et al., 2009; Schwarzenberg et al., 2020; Shibani et 

al., 2017; Soffer & Cohen, 2018; Tempelaar et al., 2017; 

Xie et al., 2018; Wu et al., 2020; Zacharis, 2015 

   

 

 

Discussion 

RQ1: What is the impact of applied LA/EDM research on education? 

The knowledge discovered from the studies in this review shows three main benefits of 

implementing LA/EDM: 1) improving institutions’ decision making, 2) enhancing teaching 

services, and 3) improving the development of educational technology tools. First, these studies 

can help institutions consider how to utilize data and employ data mining methods to achieve 

data-driven decision making. Data-driven decision making is the systematic procedure of 

collecting, analyzing, and applying various data sets in order to improve student academic 

success and institutional effectiveness (Marsh et al., 2006). It has been recognized by the 

regulation such as the American Recovery and Reinvestment Act of 2009 (Act, 2009), which 

illustrates its expectation of using data to inform policy and practice.  

Previous studies have shown the factors that are most significant for students’ academic 

success (e.g., Baker et al. 2015). Although there is no one-size-fits-all prediction model, the 

studies have shown the impact of the early prediction on the instruction and administration. 

Specifically, it can trigger instructors to adopt early interventions to avoid student learning 

failure, which eventually can help meet institutional retention goals (Gray & Perkins, 2019). The 

results of the early prediction can also reveal the most relevant factors that institutional 

stakeholders should consider when making any curriculum change or improving course design as 

well as pedagogical practices (van Leeuwen, 2018; Weng et al., 2020). Besides predicting 



 

 

34 

 

 

student performance, other research purposes in the LA/EDM studies, such as identifying 

learning behavior or discovering engagement, can also support instructors to better understand 

students’ learning states and detect more reasons regarding student success (e.g., Schwarzenberg 

et al., 2020).  

On the other hand, the implementation of LA/EDM can help improve the development of 

educational technology tools internally or externally. Educational technology tools include but 

are not limited to data warehouses, student records systems, LMSs, assessment systems, 

educational games, intelligent systems, and other systems that help teachers and students. From 

an internal approach, for example, an adaptive personalization system can be developed and 

integrated with a recommender engine using students’ learning sequences data (Romero et al., 

2009). In this situation, student usage data was systematically applied to develop the system, 

refine the system’s adaptivity performance, and improve its recommendation accuracy. From an 

external approach, the implementation of LA/EDM evaluates the effectiveness of using a tool in 

learning. For instance, previous studies have predicted student learning performance after using 

tutoring systems (e.g., Lee, 2015). The prediction results can evaluate how the tutor has 

supported learning as well as provide an insight on what improvement the tutor still needs in 

order to provide a more effective automatic tutoring service.  

Additionally, LA/EDM information can provide data-driven perspective of integrating 

the existing learning theories and technologies in practice. The findings from previous LA/EDM 

studies can be integrated into course design practices and help develop or improve educational 

technologies in the field. For example, previous studies have analyzed student learning 

interaction with each other in discussion forums via social network analysis to detect their course 

participation levels (e.g., Ergün & Usluel, 2016). Students who were in the low participation 
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level can be identified through this analysis, so that instructors would be able to provide timely 

intervention. Increasing student learning interactions with each other is supported by a new 

learning theory, Connectivism, proposed by Siemens (2017). Connectivism notes the significant 

trends in learning in the last two decades since technologies have changed every aspect of living, 

communicating, and learning. Connectivism addresses learners’ abilities of critical thinking, 

information search and discernment, decision-making, building connections between ideas and 

concepts, and corporations in activities (Siemens, 2017). Instructors and instructional designers 

can think of different methods to increase student learning interactions in the course design 

process. Previous findings from LA/EDM studies also support the learning framework called 

Community of Inquiry (Garrison et al., 2010). This framework introduces three elements of 

generating educational experiences, which include social, cognitive, and teaching presence 

(Garrison et al., 2010). The social element shows the importance of learning interactions between 

students and with instructors. The cognitive element shows student cognitive process during the 

learning experience, from trigging a problem to applying the knowledge to real scenarios. The 

teaching presence consists of providing different methods of learning content and conducting 

learning activities. These three elements can be used as underpinnings not only for pedagogy, but 

also for developing an educational game, intelligent tutoring system or other adaptive learning 

system. Previous LA/EDM findings have noted the adaptive systems used to support student 

learning (e.g., Albatayneh et al., 2018). These systems were data-driven and developed by 

considering students’ learning behavior and cognitive process in learning. The data collected 

within the systems can be evidence of supporting the existing theoretical frameworks as well as 

updating the theories with new findings.  
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RQ2: What are the sample and methodological characteristics of applied LA/EDM 

studies? 

The above results have shown that LA/EDM studies cover varieties of research 

objectives. Among those research purposes, most studies have focused on predicting student 

learning performance. This prediction is beneficial for stakeholders, including institutions, 

instructors, and students (Weng et al., 2020). Other research objectives can also help understand 

student learning from a different perspective. For instance, some LA/EDM studies have explored 

based on their log trace data how students interact with learning tools and how they react to 

learning when using the tools (Chih-Ming & Ying-You, 2020). These studies have collected data 

from LMSs, MOOCs, games, intelligent tutoring systems, face-to-face classes, and other e-

learning environments. Regarding data collection, the range of sample sizes based on the 

previous studies is quite large, which indicates that there is no restrict requirement on sample 

sizes when conducting LA/EDM studies.  

Unlike other fields emphasizing the big data’s volume, big data for education mainly 

refers to school administrative data and student learning process data (National Academy of 

Education, 2017). It aims to mine student learning information and provide insights of learning 

performance and approaches (West, 2012). After data collection, data preprocessing techniques 

are applied before analyses. The most popular data preprocessing tasks include generating new 

features, excluding outliers, and normalizing or standardizing data. Data preprocessing is an 

important step, which has shown its benefits on improving the analysis accuracy (Chandrasekar 

et al., 2017).  

From the results above, data mining algorithms have been used to support various 

research needs in education. The most popular data mining methods are classification, clustering, 
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and regression. These methods can be applied to different student data, ranging from student 

academic data including learning activity and interaction using tools to personal records such as 

previous academic performance before enrollment. Student dispositional information (e.g., 

student cognitive and emotional states, learning attitude) is also considered in the previous 

studies (e.g., Clewley et al., 2011). Different data mining algorithms have their own advantages 

and disadvantages that should be considered when being applied to research. For instance, RF is 

a well-known “black-box” data mining method in which the predictors in a model are not 

transparent in their impact direction but usually outperforms than the “white-box” methods that 

make the models more visible (Villagrá-Arnedo et al., 2017). This limitation indicates that RF 

models cannot provide a full insight on the relationships among predictors and response 

variables. Therefore, it poses a challenge of identifying the exact reasons behind learning issues 

and developing appropriate interventions to improve student success even after identifying at-

risk students or the possible course dropout. Another algorithm, Neural Networks, is a deep 

learning solution that has demonstrated predictive power in the LA/EDM studies. This technique 

normally requires big data sets and may lead to mislabeling errors in adversarial data (Szegady et 

al., 2013).  

Overall these LA/EDM studies have shown great potentials of this field and revealed the 

directions of educational research. More institutions may focus on data-driven decision making 

to improve academic programs in terms of increasing student retention and enrollment. On the 

other hand, educational technologies will be more adaptive to support student learning. To 

achieve these goals, future studies in the field may address several concerns regarding data 

collection, data analysis, and data management. First, as more data are generated and collected, 

data quality based on project goals needs assurance. Currently, few studies in LA/EDM field 
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have addressed and generated a comprehensive standard metric measuring data quality. The 

unknown status of data quality may yield inaccurate results and undermine data value. Second, 

current algorithms may need further development to fit education contexts. Big data in education 

has its uniqueness and complexity compared with other fields. For example, educational data can 

be multilevel, such as individual level, school level, and country level. Student learning 

performance can be influenced by not only student-level factors, but also factors in other levels. 

However, most data mining algorithms currently only consider one level of data, which could 

overestimate or underestimate the results. Therefore, studies developing advanced data mining 

algorithms fitting education contexts are expected. Additionally, a great concern has been raised 

in terms of data management and governance. Data ownership, privacy and security need clearly 

addressing. Will students be able to access their data? How long will students’ data remain? 

Those related questions should be addressed when planning and implementing any LA/EDM 

projects. Although some studies have mentioned these concerns (e.g. Rubel & Jones, 2016), few 

empirical studies have noted the practical and consistent solutions for these questions. Future 

research is expected to provide a comprehensive standard practical guideline or template 

regarding data management and governance. 
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CHAPTER III 

DATA MINING TECHNIQUES AND MIXED EFFECTS METHODS 

  

Introduction 

 Hierarchical or clustered data has multilevel sampling with observations, including the 

lower-level units (individuals) nested within the higher-level units (clusters). This type of data 

involves individual-level attributes and cluster-level attributes to probe the variations among 

individuals within and between different clusters. Observations within the same cluster tend to 

have more similarities than from different clusters. Understanding both similarities and differences 

across clusters may lead to more accurate results. Clustered data sets are common in educational 

research. For example, Programme for International Student Assessment (PISA) data, measuring 

fifteen-year-old students’ reading, mathematics, and science achievements, has a clustered 

structure and has been studied by scholars (e.g., Hu et al., 2018; Park & Weng, 2020). 

 Tree-based methods were proposed known as classification and regression trees (i.e., 

CART) by Breiman et al. (1984). CART is non-parametric and allows to handle big data with 

infinite attributes without being selected in advance. CART can robustly handle outliers, compared 

to some traditional statistical methods such as linear regression. However, CART may yield 

unstable results in some circumstances (e.g., the modification of observations), which can lead to 

high variability and poor predictive performance (Hastie et al., 2009). To improve this situation, a 

tree-based ensemble method was proposed – Random Forest (RF) by Breiman (2001). RF 

ensembles a large number of regression trees to improve predictions as its goal. RF has been 

applied to educational research to predict students’ learning performance (e.g., Sandoval et al., 

2018). However, RF only considers fixed effects of attributes even when the data structure is 
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clustered. Considering this situation, a new method established upon the CART was proposed, 

which was called the random effects expectation minimization recursive partitioning method (RE-

EM tree) (Sela and Simonoff, 2012). Later, another mixed effects Random Forest approach 

(MERF) was proposed, which adds random effects to RF (Hajjem et al., 2014). 

 This paper focuses on a survey of various tree-based data mining algorithms and 

hierarchical linear modeling (HLM), one of the most popular approaches applied to clustered 

educational data sets. The comparative study explores non-mixed effects tree models (i.e., RF) 

versus mixed-effects tree models (i.e., RE-EM tree, MERF) as well as HLM approach. This 

comparison will reveal advantages and disadvantages of each method, which can provide insights 

into the selection and adoption of these methods in clustered educational data sets. 

 In the following sections of the paper, I briefly cover non-mixed-effects tree-based method 

(i.e., RF), mixed-effects tree-based methods (i.e., RE-EM tree, MERF), and HLM approach. I then 

present a comparative study to discover the optimal method using PISA 2018 clustered data set. 

Finally, I report the results, discuss the findings, implications, and limitations.  

Theoretical Framework 

Tree-based Method: Random Forest 

Random Forest (RF), introduced by Breiman (2001), has been widely used for prediction 

and classification (e.g., Fernández-Delgado et al., 2014), even in high-dimensional settings 

(Chen & Ishwaran, 2012). RF is a forest of regression trees that integrate the bagging procedure 

with randomization in splitting variables. Bagging (Breiman, 1996) generates random bootstrap 

samples from the original data. The bootstrap samples are repeatedly drawn from the original 

data pool and have the same length as the original data. Each tree is established upon selecting 

random features from bootstrap samples. The RF predictions are decided by averaging the output 
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of the trees. The biggest challenge of RF is its difficult interpretation due to the combination of 

regression trees. However, RF can still indicate the relevance of input attributes. The out-of-bag 

observations are not part of the bootstrap sample when training a model. These observations 

yield the out-of-bag error to evaluate the accuracy of a RF and to select optimal values for tuning 

parameters, such as the number of candidate attributes that are randomly drawn for a split 

(Breiman, 1996). 

Mixed Effects Methods 

Hierarchical Linear Modeling 

 Hierarchical linear modeling (HLM), also referred to multilevel modeling, is widely 

employed in clustered data which has individuals (lower-level units) nested within clusters 

(higher-level units). This approach is frequently used in educational research, where sampling 

individuals are nested within classes and schools (e.g., Winitzky-Stephens & Pickavance, 2017). 

In a two-level model, one level examines the relationship among the lower-level units, and the 

other detects how this relationship is varying across higher-level units (Woltman et al., 2012). 

Take a random intercept model as an example. The model can be written as: 

 𝑦𝑖𝑗  =  𝛽0𝑗 + 𝛽1𝑋𝑖𝑗 + 𝜀𝑖𝑗 (1) 

where: 

𝑦𝑖𝑗 = response variable value for the individual 𝑖 nested within the 𝑗th cluster unit; 

𝛽0𝑗 = intercept for the 𝑗th cluster unit; 

𝛽1 = regression slope associated with the attribute 𝑋𝑖𝑗 for the 𝑗th cluster unit; 

𝑋𝑖𝑗 = attribute value of X for the individual 𝑖 in the 𝑗th cluster unit; 

𝜀𝑖𝑗 = random error for the individual 𝑖 in the 𝑗th cluster unit. 
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In the model formula (1), 𝛽0𝑗 can be written as: 

 𝛽0𝑗  =  𝛾00 + 𝑈0𝑗 (2) 

where:  

 𝛾00 = mean intercept across all clustered units, which is a fixed effect;  

𝑈0𝑗 = a random effect of the 𝑗th cluster unit on the intercept. 

   

A combined model can be created using Equation (1) and Equation (2):  

 𝑦𝑖𝑗  =  𝛾00 + 𝑈0𝑗 + 𝛽1𝑋𝑖𝑗 + 𝜀𝑖𝑗 (3) 

 𝜀𝑖𝑗  ~ 𝑁 (0, 𝜎𝜀
2) 

𝑈0𝑗 ~ 𝑁 (0, 𝜎𝑈
2) 

 

In this random intercept only model, the parameters are estimated via the variance 

components 𝜎𝜀
2 and 𝜎𝑈

2. 𝜎𝜀
2 represents the unexplained variation at the lower level when 

controlling the attribute 𝑋𝑖𝑗, while 𝜎𝑈
2 is the unexplained variation at the higher level.  

RE-EM Tree 

The random effects expectation-maximization recursive partitioning method (RE-EM 

tree) was proposed by Sela and Simonoff (2012) specializing for clustered and longitudinal data 

using CART (Breiman et al., 1984) as the underlying regression tree. In Sela and Simonoff 

(2012), we have sampling individuals or objects i = 1, ..., I at times t = 1, ..., Ti. An observation 

of an individual for a single time is referred as (i, t). An individual can have multiple 

observations across different times. For each observation, we have a vector of j attributes, 𝑥𝑖𝑡  =

 (𝑥𝑖𝑡1, . . . , 𝑥𝑖𝑡𝑗)′. The attributes may be constant among individuals over time or differ across 

time and individuals. To detect differences for individuals over time, we have a known design 
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matrix 𝑄𝑖𝑡 and a vector of unknown individual-specific random effects intercept w𝑖 being 

uncorrelated with the attributes. A general effects model can be written as: 

 y𝑖𝑡  =  𝑄𝑖𝑡w𝑖 + ƒ(𝑥𝑖𝑡1, . . . , 𝑥𝑖𝑡𝑗) + 𝑒𝑖𝑡 (1) 

 
(

𝑒𝑖1

⋮
𝑒𝑖𝑇𝑖

) ~ Normal (0, 𝑅𝑖) 
(2) 

and   

 w𝑖  ~ Normal (0, 𝐷) (3) 

𝑇ℎ𝑒 𝑒𝑖𝑡 are random errors that are independent and not associated with the random 

effects, w𝑖. 𝑅𝑖 is a non-diagonal matrix that allows an autocorrelation structure within the errors 

for an individual. The RE-EM tree uses a tree structure to estimate ƒ as well as the individual-

specific random intercept w𝑖. Compared with a linear mixed effects model (where ƒ = 𝑥𝛽), the 

RE-EM tree has more flexible assumptions, which admit that the functional form of ƒ is 

normally unknown. The RE-EM tree can also better handle with missing values and overfitting 

issues. The estimation process of a RE-EM tree is shown as below (Sela and Simonoff, 2012): 

1. Initially set the estimated random effects, ŵ𝑖  to zero.  

2. Run iterations through the steps a–c until the estimated random effects, ŵ𝑖, converge by 

considering change in the likelihood or restricted likelihood function being less than the 

tolerance value. 

a. Fit a regression tree to the data to predict the response variable using the 

attributes, (𝑥𝑖𝑡1, . . . , 𝑥𝑖𝑡𝑗), for objects i = 1, ..., I at times t = 1, ..., T𝑖. The tree 

includes a set of indicator features, I (𝑥𝑖𝑡 ∈ 𝑔𝑝), where 𝑔𝑝 ranges over all of the 

terminal nodes in the tree.  
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b. Estimate the linear mixed effects model, y𝑖𝑡  =  𝑄𝑖𝑡w𝑖 + 𝐼 (𝑥𝑖𝑡  ∈  𝑔𝑝)𝜇𝑝 + 𝑒𝑖𝑡 

using the response variable and the attributes.  

c. Extract the estimated random effects ŵ𝑖 from the estimated linear mixed effects 

model. 

3. Replace the predicted values of the response variable at each terminal node of the tree in 

the step 2a with the population-level predicted mean response �̂�𝑖 from the linear mixed 

effects model in step 2b.  

Any tree algorithm can be applied to step 2a. Sela and Simonoff (2012) implemented the 

CART tree algorithm based on the R package – rpart in the step 2a and developed the R package, 

REEMtree. The RE-EM tree algorithm maximizes the reduction in sum of squares when splitting 

a node. Maximum likelihood or restricted maximum likelihood (REML) can be used in step 2b. 

The splitting process continues as long as the improvement in proportion of variability accounted 

for by the tree (termed complexity parameter), which determines the optimal size of the tree. In 

the example of Sela and Simonoff (2012), the value of complexity parameter (cp) was set at least 

0.001, and the number of observations in the node was set at least 20. A 10-fold cross validation 

was applied to prune the tree once the initial tree was settled. The final split of the tree had the 

largest cp value and obtained the minimized validation error that was less than one standard error 

above the minimized value. The RE-EM tree allows for autocorrelation within individuals, which 

may yield more effective models comparing with no autocorrelation structure (Sela and 

Simonoff, 2012).  

Mixed Effects Random Forest 

 Hajjem et al. (2011) extended the CART algorithm (Breiman et al., 1984) and proposed 

a mixed effects regression tree (MERT) approach for a continuous outcome to handle clustered 
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data. MERT is to estimate the random components using the expectation-maximization (EM) 

algorithm and then apply a standard tree to estimate the fixed effects after removing the random 

component. This approach allows to examine the non-linearity between the fixed components 

and response values. To improve the prediction accuracy, Hajjem et al. (2014) developed a 

mixed effects Random Forest (MERF) where a regression tree is replaced by a Random Forest. 

Later, Hajjem et al. (2017) extended the MERT approach to non-Gaussian response variables 

and proposed a generalized mixed effects regression tree (GMERT) to solve classification 

problems.  

The MERF algorithm can be defined as follows: 

 y𝑖  =  ƒ(𝐴𝑖) + 𝑍𝑖𝑤𝑖 + 𝑒𝑖 (4) 

 𝑤𝑖~ 𝑁(0, 𝐷),   𝑒𝑖~ 𝑁(0, 𝑅𝑖) (5) 

 𝑖 =  1, . . . , 𝑛𝑖  ,  (6) 

where y𝑖 = [y𝑖1, . . . , y𝑖𝑛𝑖
]𝑇 is the 𝑛𝑖 1 vector of responses for the 𝑛𝑖 observations in the cluster 𝑖, 

𝐴𝑖 = [A𝑖1, . . . , A𝑖𝑛𝑖
]𝑇 is the matrix of fixed effects attributes, and ƒ(𝐴𝑖) is estimated using 

Breiman's Random Forest (2001). 𝑍𝑖  = [Z𝑖1, . . . , Z𝑖𝑛𝑖
]𝑇 represents the 𝑛𝑖 𝑞 matrix of random 

effects attributes for the cluster 𝑖, 𝑤𝑖  =  (w𝑖1, . . . , w𝑖𝑛𝑖
)𝑇 is the 𝑞  1 matrix of random effects 

coefficients for the cluster 𝑖, and 𝑒𝑖 =  (e𝑖1, . . . , e𝑖𝑛𝑖
)𝑇is the 𝑛𝑖 1 vector of errors. D is the 

covariance matrix of 𝑤𝑖, while 𝑅𝑖 is the covariance matrix of 𝑒𝑖. In the MERF algorithm, 𝑍𝑖𝑤𝑖 is 

assumed linear with the response variable, the random component 𝑍𝑖𝑤𝑖 𝑎𝑛𝑑 𝑒𝑖 is assumed to be 

independent and normally distributed. The covariance matrix of the response is assumed to be V𝑖 

= Cov(𝑦𝑖) = 𝑍𝑖𝐷𝑍𝑖
𝑇+ 𝑅𝑖, and V = Cov(y) = diag(V1,…, V𝑛), where y = [𝑦1

𝑇 , … , 𝑦𝑛
𝑇] 𝑇. Another 

assumption is the between-clusters are independent. Fitting the MERF allows us to predict new 

observations in the clusters considering the cluster-level random effects. The correlation is 
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assumed to occur only via the between-cluster variations, where 𝑅𝑖 is diagonal (𝑅𝑖 =  2𝐼𝑛, i = 

1,…, n).  

The overall steps of the MERF algorithm, as described in Hajjem et al. (2014), can be 

outlined as follows: 

1. Set r = 0 and the initial values for the parameters, which are �̂�𝑖(0) =  0,  ̂(0)
2 =  1, 

�̂�(0) =  𝐼𝑞. 

2. Set r = r + 1. Update the response corrected for the random effects 𝑦𝑖(𝑟)
∗ , random forest 

of the fixed effects ƒ̂(𝐴𝑖)(𝑟), the random component �̂�𝑖(𝑟): 

(i) Set 𝑦𝑖(𝑟)
∗ =  𝑍𝑖�̂�𝑖(𝑟−1), i = 1,…, n. 

(ii) Build a RF with 𝑦𝑖𝑗(𝑟)
∗  as the response and 𝑎𝑖𝑗 as the corresponding training set of 

attributes, i = 1,…, n, j = 1,…, 𝑛𝑗 . The bootstrap training samples are repeatedly 

drawn from the training set (𝑦𝑖𝑗(𝑟)
∗ , 𝑎𝑖𝑗). 

(iii) Estimate ƒ̂(𝐴𝑖)(𝑟) using the out-of-bag prediction of the RF, that is, estimate each 

ƒ̂(𝑎𝑖𝑗) using the bootstrap samples to build the trees not containing observation 𝑎𝑖𝑗. 

(iv) Set �̂�𝑖(𝑟) = �̂�(𝑟−1)𝑍𝑖
𝑇�̂�𝑖(𝑟−1)

−1 (y𝑖-ƒ̂(𝐴𝑖)(𝑟)), i = 1,…, n, where �̂�𝑖(𝑟−1) = 

𝑍𝑖�̂�(𝑟−1)𝑍𝑖
𝑇+̂(𝑟−1)

2 𝐼𝑞, for i = 1,…,n. 

3. Update ̂(𝑟)
2

 and �̂�(𝑟) following 

̂(𝑟)
2 =  

1

𝑁
∑{�̂�𝑖(𝑟)

𝑇

𝑛

𝑖=1

�̂�𝑖(𝑟) + ̂(𝑟−1)
2 [𝑛𝑖 −  ̂(𝑟−1)

2  𝑡𝑟(�̂�𝑖(𝑟−1))]} 

�̂�(𝑟) =  
1

𝑁
∑ {�̂�𝑖(𝑟)

𝑇𝑛
𝑖=1 �̂�𝑖(𝑟) + [�̂�(𝑟−1) −  �̂�(𝑟−1) 𝑍𝑖

𝑇�̂�𝑖(𝑟−1)
−1 𝑍𝑖�̂�(𝑟−1)]}, 

where �̂�𝑖(𝑟) =  y𝑖 −  ƒ̂(𝐴𝑖)(𝑟) −  𝑍𝑖�̂�𝑖(𝑟). 
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4. Iterate the previous steps until convergence. Apply the generalized log-likelihood 

(GLL) criterion to confirm the convergence: 

 

GLL(f, 𝑤𝑖 |y) = ∑ {[𝑛
𝑖=1 y𝑖 − ƒ(𝐴𝑖) −  𝑍𝑖𝑤𝑖]

𝑇𝑅𝑖
−1[y𝑖 −  ƒ(𝐴𝑖) − 𝑍𝑖𝑤𝑖] +  𝑏𝑖

𝑇𝐷−1𝑤𝑖 +

log|𝐷| + log|𝑅𝑖|}. 

When predicting a new observation j from known cluster i, we can use the population-

averaged RF prediction ƒ̂(𝐴𝑖𝑗) and the random component 𝑍𝑖�̂�𝑖. If a new observation is from an 

unknown cluster not included in the sample, we use only the population-averaged RF prediction. 

Methods 

Data  

This study employed the PISA 2018 data set from Organization for Economic Co-

operation and Development (OECD). The PISA 2018 survey focused on 15-year-old students’ 

knowledge and skills in the domains of mathematics, reading, and science across 79 participating 

countries and regions. Additionally, 52 countries distributed a questionnaire about student 

familiarity with the use of information and communications technologies (ICT). In this study, we 

merely focused on student reading competencies (PV1READ) as the response variable. After 

cleaning the missing values, two countries with different number of observations were chosen for 

this study. These countries were Kazakhstan (𝑛1 = 10,040) and the United States (𝑛2  = 2,592).  

The study used 31 attributes including ICT related attributes, reading attributes, and other 

student relevant information to probe their relationships with student reading competencies. 

Table 9 lists these attributes and their brief descriptions.  
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Table 9 

Attributes Information 

Attribute Name Description 

PV1READ Student reading performance score (WLE) 

ICTHOME ICT available at home 

ICTSCH ICT available at school 

ICTRES ICT resources (WLE) 

INTICT Student interest in ICT (WLE) 

COMPICT Perceived ICT competence (WLE) 

AUTICT Perceived autonomy related to ICT use (WLE) 

SOCIAICT ICT as a topic in social interaction (WLE) 

ICTCLASS Subject-related ICT use during lessons (WLE) 

ICTOUTSIDE Subject-related ICT use outside of lessons (WLE) 

ENTUSE ICT use for leisure outside of school (WLE) 

HOMESCH Use of ICT for schoolwork activities outside of school 

(WLE) 

USESCH Use of ICT at school in general (WLE) 

PERFEED Perceived Feedback from teachers (WLE) 

EMOSUPS Parental emotional support perceived by student 

(WLE) 

LMINS Learning time (minutes per week) 

ESCS Index of economic, social and cultural status (WLE) 

UNDREM Meta-cognition: understanding and remembering 

METASUM Meta-cognition: summarizing 

METASPAM Meta-cognition: assess credibility 

HEDRES Home educational resources (WLE) 

STIMREAD Teachers' stimulation of reading engagement 

perceived by student (WLE) 

ADAPTIVITY Adaptation of instruction (WLE) 

TEACHINT Perceived teacher's interest in teaching (WLE) 

JOYREAD Joy/Like reading (WLE) 

SCREADCOMP Self-concept of reading: Perception of competence 

(WLE) 

SCREADDIFF Self-concept of reading: Perception of difficulty 

(WLE) 

PISADIFF Perception of difficulty of the PISA test (WLE) 

PERCOMP Perception of competitiveness at school (WLE) 

PERCOOP Perception of cooperation at school (WLE) 
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ATTLNACT Attitude towards school: learning activities (WLE) 

BELONG Subjective well-being: Sense of belonging to school 

(WLE) 

 

Some attributes in PISA 2018 were generated by adopting the transformed weighted 

likelihood estimates (WLE) (Warm, 1989). The formula of transformation is as below: 

 

𝑊𝑡
′ =  

𝑊𝑜 − �̅�𝑂𝐸𝐶𝐷

𝜎𝑊𝑂𝐸𝐶𝐷

 

 

where 𝑊𝑡
′ is the final metric of the WLE scores after transformation, 𝑊𝑜is the original WLEs in 

logits,  �̅�𝑂𝐸𝐶𝐷 is the mean score based on the equally weighted OECD country samples, and 

𝜎𝑊𝑂𝐸𝐶𝐷
 is the standard deviation of the initial WLEs for the OECD samples.  

The PISA 2018 applied plausible values for each student reading competency. Plausible 

values refer to a possible range of student competencies. Wu (2005) noted that " instead of 

obtaining a point estimate for , a range of possible values for a student's , with an associated 

probability for each of these values, is estimated. Plausible values are random draws from this 

(estimated) distribution for a student's . This distribution is referred to as the posterior 

distribution for a student's ." (p. 116).  

Some attributes adopted in this study were related to student engagement with teachers. 

For example, these attributes included teachers' stimulation of reading engagement 

(STIMREAD), the perceived teacher feedback (PERFREED), and the teacher's interest in 

teaching as perceived by the students (TEACHINT). Other attributes were related to student 

meta-cognition of reading, such as understanding and remembering (UNDREM), summarizing 
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(METASUM), assessing credibility (METASPAM), and student enjoyment of reading 

(JOYREAD). The learning related attributes also included learning time spent in test language 

(LMINS), student adaptivity of instruction in test language lessons (ADAPTIVITY), and student 

self-concept of reading (i.e. perception of competence in reading - SCREADCOMP, perception 

of difficulty in reading - SCREADDIFF). The student perception of difficulty of the PISA 2018 

test (PISADIFF) was considered as well. 

Regarding students’ background information, several attributes were included in the 

analysis. For example, the index of student economic, social, and cultural status (ESCS) in PISA 

2018 data set was computed by considering three aspects about family background. These 

aspects involve (1) parents' highest level of education, (2) highest occupational status (HISEI), 

and home possessions (e.g., number of books in the home). Other attributes included the 

household possessions such as home educational resources (HEDRES) and parental emotional 

support (EMOSUPS). 

Considering the school effect on student learning, the attributes representing student 

perception of school environment were considered. These attributes were student perception of 

school competitiveness (PERCOMP), school cooperation (PERCOOP), attitude towards school 

(ATTLNACT), and school climate assessed with the scale on student sense of belonging to 

school (BELONG). 

Data Analysis  

Two countries’ information were retrieved from the raw data set and separated as 

individual data sets. Two data sets were cleaned before analyses, including removing missing 

and noisy data points. Each sampling data set was then partitioned into 70% training and 30% 

testing datasets using random resampling without replacement within clusters. The training data 
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sets were used to build RF regression, RE-EM tree, MERF, and HLM. The testing data sets were 

not involved in the model development phase but used to evaluate the models built in the training 

step. To apply RF regression, RE-EM tree, MERF, and HLM, each clustered sampling data set 

considered the fixed effects of all the selected attributes as well as the variation based on the 

schools.  

Building a RF model 

The randomForest package (Liaw & Wiener, 2002) in R (version 3.5.2) was applied to 

implement the RF algorithm. The following hyperparameters of RF were applied in the tuning 

process:  

1) Number of trees (ntreeTry). The default setting of number of trees (ntreeTry = 500) 

was adopted. In this study, 500 trees were sufficient to produce solid results.  

2) The stepFactor is the value by which the number of features sampled when 

constructing each tree (mtry) is inflated or deflated. This value was set as 1.5. 

3) The improvement value in the minimum out-of-bag (OOB) error (improve) to continue 

the search was set as 0.01. 

4) Number of features sampled when constructing each tree (mtry). The default value of 

mtry was calculated using the formula, mtry = number of attributes / 3. The starting value of mtry 

follows mtry = default value / stepFactor. The ending value of mtry follows mtry = default value 

* stepFactor. Therefore, we used tuneRF function to confirm the best value of mtry based on the 

OOB error. In both the Kazakhstan and USA data sets, the tuning process showed that mtry = 7 

was the optimal value. 

Building a RE-EM model 
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 The REEMtree package (Sela & Simonoff, 2021) in R (version 3.5.2) was applied in the 

analyses. In the RE-EM tree analyses, 10-fold cross validation was applied when building the 

models, and complexity parameter (cp) was set as 0.01 for pruning the trees in order to select the 

optimal tree size based on the lowest cross validation error.  

Building a MERF model 

The merf package in Python (version 3.8) was used to run the MERF regression. In this 

study, we set 300 trees generated in the random forest and 50 as the maximum number of 

iterations until convergence for both sampling data sets.  

Applying HLM 

The HLM method was conducted in R (version 3.5.2) using the package lme4 (Bates et 

al., 2015). The adjusted and conditional Intraclass Correlation Coefficient (ICC) was first run for 

each data set to estimate the variance explained by the school clustered structure. A random 

intercept model was employed for this study. 

Evaluation Criteria 

 After generating the estimated models by running RF regression, RE-EM tree, MERF, 

and HLM, the testing data sets were used for evaluating the performance of the models.  The 

measures, including the mean square error (MSE), mean absolute error (MAE), the mean 

absolute percent error (MAPE), and Accuracy (i.e. 100%*(1−MAPE)), were used to report the 

differences between the actual values and the predicted values and compare different model 

performance. These measures were successfully adopted in previous research studies (e.g. De 

Myttenaere, Golden, Le Grand, & Rossi, 2016). Below are the formulas of MSE, MAE, and 

MAPE: 
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where n is the sample size, 𝑦𝑞 is the actual value,  𝑦𝑞
^is the predicted value. The smaller values of 

MSE, MAE, and MAPE refer to the smaller differences between the estimated model and the 

actual situation, which indicates a better model performance.   

Results 

According to the results, the intraclass correlations in the baseline models for Kazakhstan 

and the United States are 0.387 and 0.15 accordingly. 38.7% of the variation in student reading 

achievement is attributable to school effects using the Kazakhstan dataset, and 15% of the 

variation in student reading scores is attributable to school effects using the United States 

dataset. According to the result of the random intercept model for the United States, seven ICT-

related attributes showed significant effects on student reading achievement. These attributes 

were HOMESCH, INTICT, AUTICT, SOIAICT, ICTCLASS, ICTHOME, and ICTSCH. Three 

teacher related attributes were significant, which included PERFEED, STIMREAD, and 

TEACHINT. The significant impacts on student reading were caused by student reading-related 

attributes including UNDREM, METASUM, METASPAM, SCREADCOMP, and JOYREAD. 

Other significant attributes were EMOSUPS, HEDRES, ESCS, PISADIFF, PERCOOP, and 

BELONG. The overall HLM model reached 88.22% accuracy. Compared with the United States, 

the HLM model based on the Kazakhstan showed different significant attributes. For example, 
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ENTUSE, USESCH, COMPICT, and ICTRES significantly influenced student reading scores, 

while HOMESCH, AUTICT, and ICTSCH were unsignificant. In addition, other attributes such 

as LMINS, ADAPTIVITY, and SCREADDIFF were significant when predicting Kazakhstan 

students’ reading performance, while these attributes were unsignificant in the United States 

dataset. ESCS and BELONG were insignificant for Kazakhstan students’ reading performance. 

Overall, the HLM model for Kazakhstan reached 89.8% accuracy. 

According to the results of the RF models, 49.43% variance were explained by the model 

using the United States dataset, and 53.17% variance were explained in the Kazakhstan dataset. 

The top five most important attributes in the RF model using the United States dataset were 

METASPAM, PISADIFF, ESCS, JOYREAD, and METASUM. The RF model for Kazakhstan 

showed that METASUM, UDREM, PISADIFF, METASPAM, and SCREADDIFF were most 

important. The accuracy of the RF models for the United States and Kazakhstan were 92.61% 

and 93.72% respectively. The RF models performed better than the RE-EM Tree models, which 

were only 86.72% and 89.03% in accuracy for the United States and Kazakhstan datasets. Figure 

5 and Figure 6 showed the RE-EM Tree models. The RE-EM Tree structure for the United States 

dataset were simpler than the Kazakhstan dataset. METASPAM, PISADIFF, and METASUM 

were the significant attributes contributing to the modeling structures for both datasets.  



 

 

55 

 

 

 

Figure 5. RE-EM Tree Model Result for the United States Data 
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Figure 6. RE-EM Tree Model Result for the Kazakhstan Data 

Regarding the MERF models, the models performed the best compared with other 

methods in both datasets (see Table 10 and Table 11). The MERF model using the United States 

dataset predicted students’ reading performance with the accuracy of 93.16%, and the MERF 

model for Kazakhstan was 94.38% in accuracy. Other evaluation metrics for the MEFF models 

were the lowest values compared with other methods, which were consistent with the accuracy 

comparison results.  
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Table 10 

The Evaluation Metrics Result of Each Model for the United States Data 

 MSE MAE MAPE ACCURACY 

RF 2371.006 34.6963 0.0739 92.61% 

RE-EM Tree 6238.66 62.8526 0.1328 86.72% 

MERF  2207.5367 20.2245 0.0684 93.16% 

HLM 4956.902 56.0686 0.1178 88.22% 

 

Table 11 

The Evaluation Metrics Result of Each Model for the Kazakhstan Data 

 MSE MAE MAPE ACCURACY 

RF 1295.416 25.6777 0.0628 93.72% 

RE-EM Tree 3227.529 45.0954 0.1097 89.03% 

MERF  1143.1682 14.6682 0.0562 94.38% 

HLM 2837.556 42.138 0.102 89.8% 

 

As the Figure 7 and Figure 8 indicated, METASPAM, PISADIFF, and METASUM 

influenced students’ reading performance among top five important attributes for both datasets. 

These results were consistent with the results from the RF models, though the MERF models 

slightly improved the accuracy in both datasets compared with the RF models. 
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Figure 7. The Importance of Predictors in MERF Model for the United States Data. 
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Figure 8. The Importance of Predictors in MERF Model for the Kazakhstan Data. 

Discussion 

MERF generated the most accurate models among all the methods applied to both the 

United States dataset and Kazakhstan dataset. MEFR inherits the advantages of RF method, 

which include 1) reducing the overfitting issue, 2) being less sensitive to data outliers, 3) easily 

setting parameters, and 4) automatically generating variable importance (Horning, 2013). MERF 

is more suitable and accurate than RF in clustering data because MERF considers both fixed 



 

 

60 

 

 

effects and random effects of variables. Overall MERF using bagging scheme improves the 

accurate predictions, which can be helpful in predicting students’ learning outcomes. Previous 

study by Pellagatti et al. (2021) developed a method of generalized mixed-effects Random Forest 

(GMERF) for classification and demonstrated the successful adoption of this method on 

predicting university student dropout.  

However, MERF has a major disadvantage as RF, which is its ‘black box’ nature causing 

difficult interpretations of the relationships examined between predictor and response variables. 

The assembling tree structures confound the interpretation of each tree that does not allow to 

differentiate the exact directions and magnitudes of variables’ impacts, though the model result 

can show the information of variable importance. Considering this major drawback, CART-

based RE-EM Tree method is more friendly on interpreting the results of relationships among 

variables. RE-EM Tree inherits the advantages of both a regression tree algorithm and a linear 

mixed effects regression algorithm (Sela & Simonoff, 2012). RE-EM Tree method is robust to 

outliers because its tree splitting process can isolate outliers in individual tree nodes (Timofeev, 

2004). In a high dimensional dataset, RE-EM Tree does not require preselected variables, which 

allows flexibility of data capturing. However, RE-EM Tree method may generate unstable 

decision trees due to different splitting ways that the tree structure can adopt.  

Comparing data mining methods with HLM in the clustering educational data setting, 

data mining methods such as MERF and RE-EM Tree perform better for high dimensional data 

because they do not require specification of any functional form and can better handle missing 

data values. Depending on the purposes of research studies or applications, MERF and RE-EM 

Tree can be used in different settings. For example, when developing an early alert system of 

identifying student dropout or course grades, MERF or GMERF can be used in the system to 
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yield accurate prediction results. MERF or GMERF may also have great potentials of being used 

in other related systems in the future. Previous studies have noted several technologies to predict 

students’ learning performance, such as intelligent tutoring systems (e.g., Baker et al., 2011), 

educational games (e.g., Tadayon et al., 2021), and recommender systems (e.g., Thai-Nghe et al., 

2010). On the other hand, when the main purpose is to examine the relationships among 

variables from a big data for education collected in technology systems or from multiple 

resources, RE-EM Tree can be more appropriate for being applied.  

In addition, HLM is still a useful method for educational clustering data, especially when 

the data is not high dimensional and does not have serious issues of outliers or missing values. 

For example, Xu et al. (2018) applied HLM to detect the relationship between students’ ICT and 

learning performances in mathematics, science and reading. Hew et al. (2020) adopted HLM to 

predict student satisfaction with massive open online courses. In a non-high dimensional dataset, 

this study has proved the advantage of applying HLM, which even showed a slightly higher 

accuracy than the RE-EM Tree model.  
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CHAPTER IV 

EXPLORING THE INFLUENCE OF STUDENTS’ ICT USE ON MATHEMATICS AND 

SCIENCE MODERATED BY SCHOOL RELATED FACTORS 

 

Introduction 

 In the last decades, Information and Communication Technology (ICT) has dramatically 

influenced the way of sharing information and communicating with each other (OECD, 2005). 

The development of ICT has extended its impact to the realm of education by equipping 

classrooms and individuals with ICT tools to promote student achievement as well as enhance 

equal access to educational resources (UNESCO, 2015). The prevalence of ICT in education has 

increased the overall education quality (Murthy et al., 2015), stimulates initiative and creativity 

(Wheeler et al., 2002), and enables student learning personalization (Abell, 2006). These changes 

have motivated educators and researchers to explore the relationship between the use of 

technology and student learning. Previous studies have addressed the impacts of ICT related 

factors, such as students’ interests in technology, frequent use of technology, ICT competence 

(e.g., Park & Weng, 2020; Skrybin et al., 2015). However, no consensus has been reached 

regarding the impacts of ICT related factors on student learning performance. For instance, some 

studies reported the positive correlation between using ICT for entertainment and learning 

achievements (e.g., Gumus & Atalmis, 2011), whilst other studies showed an insignificant 

impact (Bulut & Cutumisu, 2017). 

 Moreover, most of those studies emphasized on identifying student-level or country-level 

ICT factors (Park & Weng, 2020). Although school-level factors were considered in some 

studies (e.g., Gómez-Fernández & Mediavilla, 2018), those studies selected school-level factors 
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based on researchers’ subjectivity and interests, which can lead to the lack of full consideration 

in terms of school’s background. Such selection bias can cause misleading causal inferences 

(Berk, 1983). Therefore, it is crucial to use a less subjective method in feature selection when 

considering school’s background to examine the impacts of ICT factors on student academic 

performance. In this study, a data mining approach was used to select school-level factors based 

on their importance on student academic performance. The goal of this feature selection is to 

yield higher accuracy in the subsequent data analysis, which can accurately reveal hidden 

relationships.  

Thus, this study aims to estimate the relationship of ICT related factors and student 

academic performance in mathematics and science and the moderating effects of school-level 

factors on the relationship based on the results of the Program for International Student 

Assessment (PISA) in 2018. Particularly, (1) each ICT-related factor effect on student 

mathematics and science achievement, (2) impacts of school-level significant factors on student 

learning achievement, and (3) the cross-level interaction effects will be probed. 

Theoretical Framework 

The Relationship Between Students’ ICT Use and Academic Performance 

ICT use at school or classroom addresses students’ use of computers or other 

technologies for the educational purposes or to communicate with peers. Some studies have 

found the positive influence regarding the relationship between students’ usage of ICT for 

education and their learning achievements (e.g., Luu & Freeman, 2011), while others reported 

negative or no significant relationships (e.g., Chiao & Chiu, 2018).  

ICT interest refers to the attitude, emotion, and motivation of using ICT tools (Zylka et 

al., 2015). Although previous research showed that ICT interest is positively correlated with 
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student engagement of using ICT (Hu et al., 2018), researchers have reported mixed findings 

regarding the impact of ICT interest on learning achievement. For example, some research 

reported that student ICT interest had positive influence on students’ mathematics and science 

achievements (e.g., Hu et al., 2018; Meng et al., 2018). Nevertheless, some research reported that 

ICT interest was not a significant attribute on student learning scores (e.g., Juhaňák et al., 2018).  

ICT competence is related to ICT knowledge and skills to perform the ICT tasks (Meng 

et al., 2018). Previous research showed conflicting findings of ICT competence and student 

learning performance. For example, positive relations between ICT competence and student 

mathematics scores were found in some studies (Hu et al., 2018; Martínez-Abad et al, 2018), 

whereas others revealed a null relationship (Meng et al., 2018; Juhaňák et al., 2018) or negative 

impacts between ICT competence and student academic achievement (Xiao et al., 2019).  

ICT autonomy is the student control in the use of ICT (Fu, 2013). The relationship 

between student ICT autonomy and academic achievement was found to be consistent based on 

previous research findings. Research revealed positive associations between student ICT 

autonomy and learning performance (e.g., Hu et al., 2018; Juhaňák et al., 2018). 

ICT as a topic in social interaction is one aspect of ICT engagement addressing “the 

extent to which students make ICT a subject of interpersonal communication and interaction” 

(Zylka et al., 2015, p. 151). This factor refers to the development of ICT skills in the informal 

learning contexts (Kunina-Habenicht & Goldhammer, 2020). Previous studies have reported 

contradictory findings between this ICT inclusion in social interaction factor and student learning 

performance. For example, a positive association was found between this ICT inclusion in social 

interaction and Spanish student mathematics scores in PISA 2015 studies (Martínez-Abad et al., 
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2018), while several other studies reported negative impacts of social interactions involving ICT 

on the mathematics scores (e.g., Hu et al., 2018; Juhaňák et al., 2018).  

School’s ICT Readiness, Background, and Students’ Academic Performance  

 The effects of school’s ICT readiness on student academic performance have been 

analyzed in previous literature. However, these studies have not reach agreement on whether 

school’s ICT readiness affects student academic performance. School’s ICT readiness is any 

investment in ICT, especially the availability of computers in schools. Some studies have 

claimed a positive correlation between the investment in ICT and student academic performance 

(e.g., Machin et al., 2010), while other studies have shown no significant effects observed in the 

student academic performance when increasing the investment in ICT (e.g., Cristia et al., 2014). 

School’s internet access is part of school ICT infrastructures, which has been reported having the 

conflicted findings regarding its impact on student academic performance (Zhang & Liu, 2016). 

Research concerning the relationship between school’s background and students’ 

academic performance focuses on school average socio-economic status and schools’ 

educational resources. School average socio-economic status has been reported to have 

significantly impacts on student math and science achievement (Zhang & Liu, 2016), as well as 

students’ ICT use (Aypay, 2010). The high socio-economic status groups performed better in 

learning than the low socio-economic status groups (Ahmar & Anwar, 2013). Educational 

resources measures school principals’ perceptions of the potential factors regarding human 

resources or educational material as obstacles for school instructions. The findings have reported 

that the impacts of educational resources on students’ academic performance can be mixed 

(Zhang & Liu, 2016). 

 



 

 

66 

 

 

Methods 

Data  

This study employed PISA 2018 dataset from Organization for Economic Co-operation 

and Development (OECD) including 79 participating countries and regions. PISA is a large-scale 

assessment globally delivered every three years to measure fifteen-year-old students' abilities in 

reading, mathematics, and science by the Organization for Cooperation and Development 

(OECD). The PISA 2018 study also collected participants’ contextual data, such as their 

demographic information, students’ learning attitude, and information related to their parents and 

schools. A questionnaire about student familiarity with the use of information and 

communications technologies (ICT) was administered as an additional survey in PISA 2018. In 

this study, we focused on students’ learning performance in mathematics and science in the 

United States. After cleaning the missing values, the data had 2,592 observations.  

Data Preprocessing  

In this study, the data preprocessing was to select the most influential school-level 

variables. A Decision Tree (DT) approach was applied to investigate the relationships of school 

related variables and student learning performance in mathematics and science. DT is a 

multivariate and non-parametric supervised learning approach to examine the associations 

between attributes and response variables. This technique can handle continuous or categorical 

response variables and accordingly build regression or classification trees. It is a top-down 

recursive partition starting from a root node (also known as top decision node) that can be 

understood by following the IF-THEN rules (Romero et al., 2008). A root node is split to form 

internal nodes (also known as decision nodes) and further split the instance space into sub-spaces 

with leaf nodes (also known as terminal nodes). These nodes are the attributes selected using 
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attribute selection measures (ASM) such as Information Gain (Quinlan, 1986) or Gini Index 

(Steinberg & Colla, 2009), which are the popular splitting criterion to partition data in the best 

way. The DT tree model generated process includes two stages: 1) tree building and 2) tree 

pruning. The R package rpart (Therneau et al., 2013) was applied to generate the DT models. 

Although a single DT could yield an unstable model, there are multiple advantages of 

applying the DT approach. The main advantages include 1) its easy interpretability through its 

tree structure, 2) its comprehensibility to reveal data structure for both large and small data 

(Shahiri & Husain, 2015), and 3) its efficient computation (Singh & Gupta, 2014).  

Variables 

Considering the applied dataset having a clustered structure, variables include two levels, 

student level and school level, to examine the relationship between students’ ICT use and their 

learning achievement in mathematics and science. The response variables are students’ 

mathematics and science scores. Therefore, separate models and analyses were conducted for 

each response variable. The student-level and school-level variables are described in detail 

below.  

Student-level Variables 

 Six ICT use related variables were included at the student level (see Table 12). On the 

PISA ICT questionnaire, students were asked their general use of ICT at school (USESCH), ICT 

usage for their daily social life (SOIAICT), their perceived autonomy related to ICT usage 

(AUTICT), their perceived competence in ICT usage (COMPICT), and the subject-related use of 

digital devices during their classroom lessons (ICTCLASS), and ICT resources regarding the 

household possessions (ICTRES). 
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Table 12 

ICT Use Related Variable Information 

Variable 

Name 

Description 

COMPICT Students’ Perceived ICT competence. This index includes five questions on a 

four-point Likert scale: strongly agree, agree, disagree, and strongly disagree. 

 

IC014: Thinking about your experience with digital media and digital devices: 

to what extent do you disagree or agree with the following statements? 

IC014Q03. I feel comfortable using digital devices that I am less familiar with. 

IC014Q04. If my friends and relatives want to buy new digital devices or 

applications, I can give them advice. 

IC014Q06. I feel comfortable using my digital devices at home. 

IC014Q08. When I come across problems with digital devices, I think I can 

solve them. 

IC014Q09. If my friends and relatives have a problem with digital devices, I can 

help them. 

AUTICT Students’ perceived autonomy related to ICT use. This index is scaled based on 

the five questions on a four-point Likert scale: strongly agree, agree, disagree, 

and strongly disagree. 

 

IC015. Thinking about your experience with digital media and digital devices: 

to what extent do you disagree or agree with the following statements?  

IC015Q02. If I need new software, I install it by myself. 

IC015Q03. I read information about digital devices to be independent. 

IC015Q05. I use digital devices as I want to use them. 

IC015Q07. If I have a problem with digital devices I start to solve it on my own. 

IC015Q09. If I need a new application, I choose it by myself. 

SOIAICT Students’ ICT use for social networking was measured specifically via five 

statements on a four-point Likert scale: strongly agree, agree, disagree, and 

strongly disagree. 

 

IC016. Thinking about your experience with digital media and digital devices: 

to what extent do you disagree or agree with the following statements?  

IC016Q01. To learn something new about digital devices, I like to talk about 

them with my friends. 

IC016Q02. I like to exchange solutions to problems with digital devices with 

others on the Internet. 

IC016Q04. I like to meet friends and play computer and video games with 

them.  

IC016Q05. I like to share information about digital devices with my friends. 
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IC016Q07. I learn a lot about digital media by discussing with my friends and 

relatives. 

ICTCLASS Subject-related use of digital devices during classroom lessons. It included nine 

items. The response format is a five-point Likert scale: “No time”, “1-30 

minutes a week”, “31-60 minutes a week”, “More than 60 minutes a week”, and 

“I do not study this subject”. 

 

IC150. In a typical school week, how much time do you spend using digital 

devices during classroom lessons? 

(Test language lessons/ Mathematics/ Science/ Foreign language/ Social 

sciences/ Music/ Sports/ Performing arts/ Visual arts) 

USESCH Use of ICT at school in general. This index is calculated based on 10 questions 

on a five-point Likert scale: “Never or hardly ever”, “Once or twice a month”, 

“Once or twice a week”, “Almost every day”, and “Every day”. 

 

IC011. How often do you use digital devices for the following activities at 

school? 

 

IC011Q01. Chatting online at school 

IC011Q02. Using email at school.  

IC011Q03. Browsing the Internet for schoolwork.  

IC011Q04. Downloading, uploading or browsing material from the school’s 

website  

IC011Q05. Posting my work on the school’s website. 

IC011Q06. Playing simulations at school.  

IC011Q07. Practicing and drilling, such as for foreign language learning or 

mathematics 

IC011Q08. Doing homework on a school computer. 

IC011Q09. Using school computers for group work and communication with 

other students.  

IC011Q010. Using learning apps or learning websites. 

ICTRES ICT resources. This index measured the availability of six household items at 

home.  

 

(Educational software/ A link to the Internet/ Cell phone with Internet access/ 

Computers/ Tablet computers/ ebook readers) 

 

School-level Variables 

 We initially considered seven school-level variables to build the DT models. These 

variables contain five primary aspects, which are school-level socio-economic status, school size, 
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ICT development, school resources, and teacher human resources. School-level socio-economic 

status was calculated by averaging student-level socio-economic status based on schools 

(AverageofESCS). School-level ICT development is shown via the availability of computers at 

school (AverageofRATCMP1) and the ratio of computers connected to the internet 

(AverageofRATCMP2). School resources is represented by the shortage of educational materials 

(AverageofEDUSHORT), which considers both the amount and the quality of educational 

resources and physical infrastructure at school. A positive value of this index means that the 

school’s amount and/or quality of human or educational resource could hinder instruction at 

school. Teacher human resources refer to the total number of teachers at school 

(AverageofTOTAT) and the student-teacher ratio (AverageofSTRATIO).  

When building the DT models, the dataset was randomly split into 70% train dataset and 

30% test dataset. The models were built through the train dataset and evaluated using the test 

dataset. The results have shown that the DT model predicting students’ mathematics 

performance reached the accuracy at 95.53% (RMSE = 21.1436), and the DT model predicting 

students’ science performance reached 95.82% accuracy (RMSE = 20.9972). According to the 

model results displayed in Figure 9 and Figure 10, school-level socio-economic status is 

important when predict students’ mathematics and science performance. The shortage of 

educational material can significantly influence students’ science performance. Additionally, the 

DT results have also shown that the availability of computers at school, total number of teachers, 

and school size are influential variables regarding student learning performance in mathematics. 

Therefore, these important variables were included and centered at the school level in the 

subsequent data analysis. 
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Figure 9. The DT Model to Predict Student Learning Performance in Science. 
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Figure 10. The DT Model to Predict Student Learning Performance in Mathematics. 

 

Data Analysis  

Hierarchical linear modeling (HLM) was used to build models with school- and student-

level variables. Since students within the PISA 2018 were nested within schools, the intercepts- 

and slopes-as-outcomes models were conducted to analyze both all level predictors and 

interactions among two-level variables while considering variances of each level predictors. All 

student-level variables were group-centered, and the school-level variables were grand-centered 
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for the analysis. The HLM analyses were carried out using the lme4 package (Bates et al., 2007) 

in R (version 3.6.1).  

First, the null models with random effects were created to partition the variance of the 

outcome variable in within-and between-group components (Raudenbush & Bryk, 2002). Then, 

include all the predictors at the student-level in the models. Lastly, we added all school-level 

predictors in the models. According to the results of the DT models, we selected the influential 

school-level variables and applied them into the HLM. We ran two separate HLM focusing on 

students’ mathematics and science accordingly. The first level model for both HLM can be 

written as:  

 

𝑌𝑚𝑛 = 𝛽0𝑛 + 𝛽1𝑛*(𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛) + 𝛽2𝑛*(𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛) + 

𝛽3𝑛*(𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛) + 𝛽4𝑛*(𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛) + 𝛽5𝑛*(𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛) + 

𝛽6𝑛*(𝑆𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝑅𝐸𝑆𝑚𝑛) +  𝑒𝑚𝑛 

 

Where 

𝑌𝑚𝑛  are the mathematics or science scores for the 𝑚𝑡ℎ unit of the 𝑛𝑡ℎ school, 

𝛽0𝑛is the constant term, 

𝛽1𝑛, 𝛽2𝑛,…, 𝛽6𝑛 represents the slope parameters for the first level and is estimated by the second 

level sub-models. 𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛, 𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛, 𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛, 

𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛, 𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛, and 𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝑅𝐸𝑆𝑚𝑛 are the predictors for the 

𝑚𝑡ℎunit of the 𝑛𝑡ℎgroup.  

𝑒𝑚𝑛is the error term. 
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The second level sub-models which focus on student mathematics can be written as:  

𝛽0𝑛 = 𝛾00+𝛾01*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾02*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾03 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾04 ∗ 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝑢0𝑛 

𝛽1𝑛 = 𝛾10+𝛾11*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾12*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾13 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛 +𝛾14 ∗ 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛 

𝛽2𝑛 = 𝛾20+𝛾21*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾22*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾23 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛 +𝛾24 ∗ 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛 

𝛽3𝑛 = 𝛾30+𝛾31*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾32*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾33 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛 +𝛾34 ∗ 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛 

𝛽4𝑛 = 𝛾40+𝛾41*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾42*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾43 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛 +𝛾44 ∗ 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛 

𝛽5𝑛 = 𝛾50+𝛾51*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾52*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾53 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾54 ∗ 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛 

𝛽6𝑛 = 𝛾60+𝛾61*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾62*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛 +𝛾63 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾64 ∗ 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛 

Where 

𝛾00, 𝛾10,..., 𝛾60are the constant terms, 

𝛾01, 𝛾02,…, 𝛾62 are the slope parameters of the sub-models.  

𝑐_𝐸𝑆𝐶𝑆𝑛, 𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛, 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛, 𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛 represent the value of second-level 

predictors.  

𝑢0𝑛is the error term.  

 

Overall, the combined model for student mathematics can be written as: 

𝑌𝑚𝑛 =𝛾00 + 𝛾01*𝑐_𝐸𝑆𝐶𝑆𝑛 + 𝛾02 ∗ 𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+ 𝛾03*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾04 ∗

𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝛾10*𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛+𝛾11*𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾12*

𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾13*𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛*𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾14 ∗

𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛*𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝛾20*𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛+𝛾21*𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛*

𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾22*𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾23*𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛*𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾24*

𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛*𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝛾30*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛+𝛾31*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛*

𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾32*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾33*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛*𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾34



 

 

75 

 

 

*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛*𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝛾40*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛+𝛾41*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛*

𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾42*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾43*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛*𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾44

*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛*𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝛾50*𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛+𝛾51*𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛*

𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾52*𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾53*𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛*𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾54*

𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛*𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝛾60*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝑅𝐸𝑆𝑚𝑛+𝛾61*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝑅𝐸𝑆𝑚𝑛*𝑐_𝐸𝑆𝐶𝑆𝑛 +

𝛾62*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝑅𝐸𝑆𝑚𝑛*𝑐_𝑅𝐴𝑇𝐶𝑀𝑃1𝑛+𝛾63*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝑅𝐸𝑆𝑚𝑛 

*𝑐_𝑇𝑂𝑇𝐴𝑇𝑛+𝛾64*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝑅𝐸𝑆𝑚𝑛 *𝑐_𝑆𝐶𝐻𝑆𝐼𝑍𝐸𝑛+𝑢0𝑛+𝑒𝑚𝑛 

 

The second level sub-models which focus on student science can be written as:  

𝛽0𝑛 = 𝛾00+𝛾01*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾02*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛+𝑢0𝑛 

𝛽1𝑛 = 𝛾10+𝛾11*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾12*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛  

𝛽2𝑛 = 𝛾20+𝛾21*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾22*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛 

𝛽3𝑛 = 𝛾30+𝛾31*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾32*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛 

𝛽4𝑛 = 𝛾40+𝛾41*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾42*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛 

𝛽5𝑛 = 𝛾50+𝛾51*𝑐_𝐸𝑆𝐶𝑆𝑛+𝛾52*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛 

𝛽6𝑛 = 𝛾60+𝛾61*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾62*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛 

Where 

𝛾00, 𝛾10,..., 𝛾60are the constant terms, 

𝛾01, 𝛾02,…, 𝛾62 are the slope parameters of the sub-models.  

𝑐_𝐸𝑆𝐶𝑆𝑛, 𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛 represent the value of second-level predictors.  

𝑢0𝑛is the error term.  

 

Overall, the combined model for student science can be written as: 
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𝑌𝑚𝑛 =𝛾00 + 𝛾01*𝑐_𝐸𝑆𝐶𝑆𝑛 + 𝛾02 ∗ 𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛+ 

𝛾10*𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛+𝛾11*𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾12*𝑙𝑒𝑣𝑒𝑙1_𝑈𝑆𝐸𝑆𝐶𝐻𝑚𝑛*

𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛+𝛾20*𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛+𝛾21*𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾22*

𝑙𝑒𝑣𝑒𝑙1_𝑆𝑂𝐼𝐴𝐼𝐶𝑇 𝑚𝑛*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛+𝛾30*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛+𝛾31*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛*

𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾32*𝑙𝑒𝑣𝑒𝑙1_𝐶𝑂𝑀𝑃𝐼𝐶𝑇𝑚𝑛*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛+𝛾40*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛+𝛾41*

𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾42*𝑙𝑒𝑣𝑒𝑙1_𝐼𝐶𝑇𝐶𝐿𝐴𝑆𝑆𝑚𝑛*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛+𝛾50*

𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛+𝛾51*𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛*𝑐_𝐸𝑆𝐶𝑆𝑛 +𝛾52*𝑙𝑒𝑣𝑒𝑙1_𝐴𝑈𝑇𝐼𝐶𝑇𝑚𝑛*𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛
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𝑐_𝐸𝐷𝑈𝑆𝐻𝑂𝑅𝑇𝑛+𝑢0𝑛+𝑒𝑚𝑛 

 

Results 

Student-Level ICT Variables 

Table 13 and Table 14 report the estimation results of the HLM regarding students’ 

science and mathematics achievements. At the within-school level, holding school-level 

variables (i.e. ESCS, EDUSHORT) constant, all ICT-related variables showed significant effects 

on students’ science achievement. Both USESCH (-12.3401) and SOIAICT (-14.9715) 

negatively associated with students’ science achievement at the within-school level. On the other 

hand, students’ ICTCLASS (9.268), COMPICT (6.4155), AUTICT (13.0166), and ICTRES 

(4.692) showed significantly positive relationships with students’ science achievement. Since 

there were significant interaction effects of ESCS and EDUSHORT, the effects of ICTCLASS 

and USESCH on science achievement were conditional. Regarding students’ mathematics 

achievement, students’ ICT competence showed an insignificant effect, but all other ICT-related 

variables had significant effects. Among these significant ICT-related variables, USESCH and 

SOIAICT negatively influenced students’ mathematics achievement, while others had positive 
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associations with mathematics achievement. The coefficients for these ICT-related variables 

were -10.04 (USESCH), -9.461 (SOIAICT), 8.286 (ICTCLASS), 14.22 (AUTICT), and 8.601 

(ICTRES). The impact of ICTCLASS on mathematics achievement was conditional because 

there was an interaction effect with ESCS.  

School-Level Factors  

 Socio-economic status showed significantly positive impacts on students’ science and 

mathematics achievements with the coefficients 58.9521 and 57.25 accordingly. School size also 

had a significant relationship with students’ mathematics achievement. Its coefficient was 0.012. 

However, other school-level variables showed insignificant impacts on students’ science or 

mathematics achievements. For example, the shortage of school materials had no significant 

impact on students’ science achievement. The total number of teachers at school and the 

availability of computers at school showed no significant impacts on students’ mathematics 

achievement.  

 In terms of cross-level interactions, socio-economic status exhibited significantly positive 

interaction effects on the relationships between ICT use during the class (ICTCLASS) and 

students’ mathematics (10.39) and science achievements (11.0974). School resource shortage 

had a significantly negative interaction effect on the relationship between ICT use at school and 

students’ science achievements (-6.0222). However, other interaction effects between the school-

level variables and ICT-related variables on students’ mathematics and science achievements 

were insignificant.  
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Table 13 

The HLM Results Regarding Student Science Achievement 

 Within-School Model 

 Estimate SD Error p value 

USESCH -12.3401 2.6611 <.0001 

SOIAICT -14.9715 2.3316 <.0001 

COMPICT 6.4155 2.8814 .0277 

ICTCLASS 9.268 2.4062 .0001 

AUTICT 13.0166 2.5711 <.0001 

ICTRES 4.692 1.886 .0138 

 Between-School Model 

 Estimate SD Error p value 

ESCS 58.9521 5.0328 <.0001 

EDUSHORT -0.3014 2.8468 0.9159 

ESCS*USESCH -0.511 5.0746 0.9199 

EDUSHORT *USESCH -6.0222 2.8993 .0397 

ESCS*SOIAICT -0.5202 4.4629 0.9073 

EDUSHORT*SOIAICT 1.1691 2.3274 0.6162 

ESCS*COMPICT -4.1173 5.4885 0.4544 

EDUSHORT*COMPICT -3.068 2.8904 0.291 

ESCS*ICTCLASS 11.0974 4.7962 .0213 

EDUSHORT*ICTCLASS -0.8834 2.5858 0.7329 

ESCS*AUTICT 2.5036 4.9813 0.6154 



 

 

79 

 

 

EDUSHORT*AUTICT -0.5015 2.5129 0.8419 

ESCS*ICTRES -2.345 3.5768 0.5128 

EDUSHORT*ICTRES 0.025 1.9539 0.9898 

 

Table 14 

The HLM Results Regarding Student Mathematics Achievement 

 Within-School Model 

 Estimate SD Error p value 

USESCH -10.04 2.65 .0003 

SOIAICT -9.461 2.149 <.0001 

COMPICT 2.753 2.653 0.3017 

ICTCLASS 8.286 2.183 .0002 

AUTICT 14.22 2.287 <.0001 

ICTRES 8.061 1.644 <.0001 

 Between-School Model 

 Estimate SD Error p value 

ESCS 57.25 4.709 <.0001 

RATCMP1 -1.016 1.841 0.5822 

SCHSIZE 0.012 0.0042 .0052 

TOTAT 0.1377 0.0806 0.0906 

ESCS*USESCH -1.468 5.104 0.7743 

RATCMP1 *USESCH -0.7482 1.785 0.6766 

SCHSIZE*USESCH -0.004 0.0048 0.3982 
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TOTAT*USESCH 0.0701 0.0959 0.4658 

ESCS*SOIAICT -0.5955 4.214 0.8878 

RATCMP1*SOIAICT -0.8421 1.591 0.5972 

SCHSIZE*SOIAICT -0.0023 0.0034 0.5009 

TOTAT*SOIAICT 0.0062 0.0653 0.9241 

ESCS*COMPICT -3.627 5.181 0.4851 

RATCMP1*COMPICT -1.481 1.884 0.4336 

SCHSIZE*COMPICT 0.0034 0.0043 0.4336 

TOTAT*COMPICT -0.0557 -0.084 0.5009 

ESCS*ICTCLASS 10.39 4.485 .021 

RATCMP1*ICTCLASS 1.324 1.533 0.3883 

SCHSIZE*ICTCLASS 0.0037 0.0038 0.3302 

TOTAT*ICTCLASS -0.0947 0.0762 0.2146 

ESCS*AUTICT 5.92 4.575 0.1959 

RATCMP1*AUTICT 1.145 1.709 0.5031 

SCHSIZE*AUTICT -0.0026 0.0036 0.4726 

TOTAT*AUTICT 0.0858 0.0698 0.2193 

ESCS*ICTRES -4.793 3.202 0.1352 

RATCMP1*ICTRES 0.2636 1.154 0.8195 

SCHSIZE*ICTRES -0.0045 -0.0026 0.0859 

TOTAT*ICTRES 0.1045 0.0541 0.0543 
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Discussion 

Student-Level ICT-Related Variables and Learning Performance 

At the within-school level, students’ use of ICT at school negatively influenced their 

mathematics and science achievements. This finding supports previous studies that reported 

negative impacts on students’ academic performance due to using ICT at school (Chiao & Chiu, 

2018; Park & Weng, 2020). Although some studies reported positive relationships between 

students’ ICT use at school and their academic performances (e.g., Luu & Freeman, 2011), these 

studies analyzed other countries’ data of which could have different situations from the United 

States. Therefore, it is highly likely that students’ use of ICT at school can negatively influence 

their academic achievement across different schools at the United States. The possible reason of 

the negative impact could be the higher frequency of using ICT for the non-learning activities at 

school rather than using ICT for the learning purposes. Similarly, students’ use of ICT for social 

interactions had negative impacts on their mathematics and science achievements. This finding 

aligns with previous studies (Hu et al., 2018; Meng et al. 2018), whilst Martínez-Abad et al. 

(2018) claimed a positive relation between students’ ICT use for social interactions and their 

mathematics performance. The possible reason of the negative impacts can be that students 

perhaps used digital devices for entertainment or leisure to support their social interactions 

instead of conducting learning related activities, such as learning discussion with their peers. 

The results showed that students’ perceived ICT autonomy had significantly positive 

effects on students’ mathematics and science achievements. This finding agrees with previous 

literature (e.g., Meng et al., 2019; Xiao et al., 2019). Students’ perceived ICT autonomy indicates 

their self-regulation in learning and usage of ICT in their learning process (Fu, 2013). ICT 

autonomy can have more powerful impacts on student learning performance than other ICT-
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related factors (Park & Weng, 2020). Therefore, it is important for students to increase their 

autonomy in ICT use in order to improve their learning performance by using technologies. 

Meanwhile, students’ use of ICT in classes also showed significantly positive impacts on their 

mathematics and science performance. This finding agrees with previous literature, which 

indicates that the more use of ICT in classes can yield better learning results (KAYA & Sibel, 

2021). In contrast with this finding, Erdoğdu and Erdoğdu (2015) reported negative relationships 

between this ICT factor and students’ performance and claimed students’ learning distraction 

probably due to using ICT at school. Overall using ICT in classes can be beneficial if ICT is used 

effectively in learning.  

The availability of students’ ICT resources at home can significantly improve their 

mathematics and science achievements. However, previous literature findings have shown a 

negative relationship (Hu et al., 2018) or mixed impacts (Gubbels et al., 2020; Lee & Wu, 2012). 

The possible reason is that the availability of students’ ICT resources does not equal to how 

students utilize these resources for their learning. The students in previous literature may utilize 

these ICT home resources less than the students in this study. More specific data will be needed 

to investigate the details and other possible reasons behind. 

Students’ ICT competence showed a significantly positive impact on their science 

achievement but had no relationship with their mathematics achievement. Previous literature also 

reported mixed findings (Hu et al., 2018; Xiao et al., 2019). The possible reasons causing the 

mixed findings depend on students’ other covariates, such as demographics or prior academic 

performance. As students enter to higher grade levels, they tend to be more competent overall 

and the impact of their ICT competence on their learning performance may reduce (Selwyn & 

Husen, 2010).  
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Main and Moderating Effects of School-Level Factors  

 According to the results above, school size has a significantly positive main effect on 

students’ mathematics achievement. School size has been an important factor to be considered in 

educational research when investigating its relationship with student learning performance. This 

study finding is in agreement with some existing studies (e.g., Luyten,m 2014; Scheerens et al., 

2014). However, the bulk of studies have noted that school size could yield negative impacts on 

student outcomes in mathematics and reading (e.g., Egalite & Kisida, 2016). The reasons causing 

the inconsistency of the findings regarding the impact of school sizes can be complicated. One 

possible reason could be due to different samplings. For example, we included 118 schools 

attending PISA 2018 across the United States in our study, while Egalite and Kisida (2016) 

covered 2,679 unique schools from 2007 through 2011. Apparently, more data samples can yield 

more robust findings, but the differences among school districts also remained and might 

influence the results. Other reasons may include school types (i.e. private schools versus public 

schools), different grade levels, impacts on certain subjects, and schools’ resources.   

 The shortage of school resources had only the moderating effect on student science 

achievement. Considering the interaction effect of students’ ICT use at school with the shortage 

of school resources, lacking school resources could worsen students’ ICT use at schools. Hence, 

increasing school resources including ICT resources can provide students more support of using 

ICT at schools. Although previous literature has claimed the benefits of adding school resources 

(e.g., Smanova, 2021), how students utilize the resources, especially the ICT resources, is the 

key for their learning improvement. Setting and implementing clear policies and strategies of 

using school resources can be helpful in terms of regulating students’ learning behavior at 

school.  
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Socio-economic status (ESCS) had significant both main effects and moderating effects 

on student mathematics and science achievements. PISA measures ESCS through several aspects 

including parental educational attainment (in years), parental highest occupational status on the 

“International Socio-Economic Index” (ISEI) scale (OECD, 2019), and household possessions. 

The findings of ESCS at the school level indicates that schools having students from families 

with higher economic, social, and cultural backgrounds in average performed better in 

mathematics and science than schools having students from families with lower economic, 

social, and cultural backgrounds in average. Previous studies also have claimed that students’ 

ESCS can positively impact their learning outcomes (e.g., Luu & Freeman, 2011). First, students 

from high-ESCS families tend to attend better schools which have more advantages in different 

aspects (Schulz, 2005). Second, schools with higher ESCS are highly likely to have more school-

level ICT resources such as ICT infrastructure, ICT support, and ICT use with subscriptions of 

educational technologies. This impact is also noted from the interaction effect between students’ 

ESCS and ICT class use in our study. In addition, students with higher levels of ESCS may start 

using technologies in their earlier ages and be more competent in using ICT than students with 

lower levels of ESCS (Luu & Freeman, 2011). To better support students’ ICT use in 

classrooms, improving teachers’ ICT skills can be helpful. Teachers’ professional development 

from district and school support can provide useful resources to build their ICT skills (Wayne, 

2002). 
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CHAPTER V 

CONCLUSIONS 

   

 This dissertation provided a comprehensive insight of LA/EDM and statistical methods in 

clustered educational data.  Previous LA/EDM studies were analyzed from several aspects from 

impacts to methodological characteristics. The information from this dissertation can provide 

educators a better understanding of potential topics that can be supported from LA/EDM, the 

benefits of implementing LA/EDM into practices, and a statistical lens of method selection.  

 The dissertation noted the potentials of applying different statistical methods, including 

RF, RE-EM Tree, MERF, and HLM in clustered educational data. The comparison results of 

these four different statistical methods indicated the advantages and disadvantages of each 

statistical method and the optimal selection of these methods in certain circumstances. 

Particularly, RE-EM Tree and MERF are rarely used in clustered educational data. The 

dissertation showed the possibility of applying these mixed effects methods in educational 

research. Among all four methods, MERF yielded the most accurate result. RE-EM Tree and 

HLM reached similar accuracy. Although RF yielded more accurate results than RE-EM Tree 

and HLM, it is recommended to adopt MERF instead of RF because RF only considers single 

data level.  

Although mixed effects tree methods can perform well in clustered educational data, 

HLM is still a very useful statistical method in a non-high dimensional data. Therefore, the 

dissertation adopted HLM to examine the relationship between students’ ICT and their learning 

achievements in mathematics and science moderated by school-level factors. The study selected 

school-level factors using DT to ensure an unbiased and data-driven process. The findings 
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indicated that students’ learning performance in mathematics and science were influenced by 

certain ICT related factors. ESCS was found to be a significant moderator that influenced some 

of ICT related factors and students’ learning achievements in mathematics and science. The 

interaction effect between the shortage of school resources and ICT use at school also showed a 

significantly negative impact on student learning performance in science. Schools’ 

administration may consider formulating policies and processes of how students use ICT tools to 

best support their learning at school. School size was found to be important regarding students’ 

mathematics achievement. This school-level factor has been greatly noted due to its significance 

in previous literature. Those studies reported both positive and negative impacts of school size 

on student learning achievement. The mixed findings indicated the importance of increasing data 

samples or using school size with other school related covariates (e.g., school types) when 

examining the effects of school factors.    
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