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ABSTRACT 

 The mitochondrion goes beyond just the “powerhouse of the cell”. As incredibly 

important as this organelle is, there is still much about its biology that remains unclear. 

Mitochondrial variation, historically, has often been treated as a neutral player in the game of 

evolution, but a growing amount of evidence has made it apparent that mitochondria have played 

a very active role in eukaryotic evolution. Questions on the mitochondria’s role in topics, such as 

speciation, adaptation, and disease, are more frequently being investigated. The high mutability 

of most animal mitochondrial DNA (mtDNA) allows for heteroplasmies to arise and cause mito-

nuclear conflict. This genomic conflict has been known to lead to various problems. One such 

problem is the prevalence of selfish mitochondria that lead to disease. Mitochondrial disease is 

quite common in humans, so there is particular interest in studying the dynamics of selfish 

mitochondria. Another issue that can arise is sexual antagonism due to mitochondrial mutations. 

Due to the maternal inheritance pattern (generally) of mitochondria, it is theorized that males 

will experience worse fitness costs compared to females. This pattern does exist in various plants 

and animals, however much of how this phenomenon works is unknown. Typically, animal 

studies dedicated to the study of sexual antagonism in the context of mitochondrial mutations are 

conducted in dioecious species, leaving a lack of understanding how this concept might work in 

hermaphroditic systems. Here we present another selfish mitotype found in C. elegans and 

explore potential sex-specific consequences of the mutant mitochondria.  
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CHAPTER I 

INTRODUCTION 

Mitochondria are essential organelles for eukaryotic life and play an integral role in various 

cellular functions and metabolism. Most animal mitochondria have a high mutation rate which 

gives rise to mitochondrial variants and chances for mito-nuclear conflict (Levin et al., 2014). 

Furthermore, mutations can lead to mitochondrial dysfunction which often lead to disease 

(Duchen, 2004; McBride et al., 2006). Many mitochondrial diseases are associated with 

mutations in the mitochondrial genome (mtDNA) either arising de novo or inherited, generally 

from the mother (Alston et al., 2017) and can vary widely in how the disorder manifests 

(DiMauro et al., 2013). Moreover, studies have shown that mtDNA diseases are quite common, 

affecting in one in 5000 humans (Chinnery et al., 2000; Gorman et al., 2015) and appearing in 

one in 200 human births (Elliot et al., 2008). The majority of mitochondrial diseases affect 

multiple systems, typically ones that require high energy, such as muscles or the nervous system 

(DiMauro and Schon, 2001). By studying mitochondrial diseases, we gain deeper insight into the 

aspects of mitochondrial biology and mito-nuclear evolution that have yet to be elucidated.  

The transmission and manifestation of mitochondrial pathologies greatly depends on varying 

factors, such as genetics, environment, and species. Mutant homoplasmic mtDNA (all mtDNA 

contain the same mutation within an individual) is inherited by all the maternal offspring, but 

disease may not always occur. For example, a human mitochondrial disease called Leber 

hereditary optic neuropathy (LHON) is mainly caused by three mtDNA point mutations and 

results in blindness for those affected (Mackey et al., 1996). LHON is fairly common. ~1 in 8500 

individuals have one of the primary point mutations, but about 50% of men and about 10% of 

women will be affected (Man et al., 2003). Moreover, studies have shown an association 
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between two of the primary mutations and the mitochondrial haplogroup J (Torroni et al., 1997; 

Brown et al., 2002). Another well-known example is found in sensorineural hearing loss 

(SNHL). Most of SNHL cases are caused by a homoplasmic point mutation in the mitochondrial 

12S rRNA gene and the level of hearing loss in patients ranges from mild to severe (Prezant et 

al., 1993; Ballana et al., 2008). Like LHON, presence of the point mutation does not guarantee 

disease onset and studies have shown that there is an association with loss of hearing due to the 

combination of the mutation and administration of amino-glycoside antibiotics (Taylor and 

Turnbull, 2005). These two examples demonstrate that clinical expression is not solely 

dependent on harboring a disease associated mtDNA mutation, and that genetic background and 

environment can play a large role in the onset of mitochondrial disease.  

Mitochondrial heteroplasmies (more than one mitotype within an individual) have a complex 

transmission pattern and phenotypic expression. Heteroplasmies arise in a variety of ways and 

are found across eukaryotic taxa (Parakatselaki and Ladoukakis, 2021). As part of mitochondrial 

biology, mitochondria are almost universally inherited maternally and undergo a genetic 

bottleneck during oogenesis and embryogenesis (Jenuth et al. 1996; Cree et al., 2008; Wai et al., 

2008), enabling for variable levels of mtDNA mutations to be transmitted to offspring (Brown et 

al., 2001; Sullins et al., 2019). Different species experience different transmission patterns of 

mitochondrial mutations. For example, in humans, mtDNA deletions are rarely inherited 

(Chinnery et al., 2004). However, in Caenorhabditis species, only one duplication has been 

documented to have occurred (Howe and Denver, 2008) while mtDNA deletions have been 

found to be inherited by offspring and rise to high frequencies (Clark et al., 2012; Konrad et al., 

2017; Katju et al., 2022). Heteroplasmies can also start off at low levels but increase in 

frequency due to replicative advantage, genetic drift, or new mutations. This phenomenon has 
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been linked to aging and onset of disease after the deleterious mtDNA reaches a certain 

threshold, also referred to as a threshold effect (Rossignol et al., 2003; Li et al., 2015). The 

threshold effect is an important aspect in the expression of a mitochondrial disease. If the 

heteroplasmy is below a certain frequency within an individual, then the individual will not 

display symptoms, but if a threshold frequency (at least 60%) is reached, then the disease 

phenotype will be expressed (Rossignol et al., 2003).  

Detrimental mitotypes with a replicative advantage over wildtype mtDNA can be considered 

selfish mitochondria, in that they can increase in frequency while reducing individual fitness. To 

designate a mitochondrial variant as selfish, two criteria must be met: 1) it must have negative or 

neutral fitness effects, and 2) a replicative/transmission advantage (Hurst and Werren, 2001; 

Phillips et al., 2015). Selfish mitochondria have been recorded in several species including yeast 

(MacAlpine et al., 2001; Taylor et al., 2002), nematodes (Howe et al., 2010; Dubie et al., 2020), 

plants (Barr et al., 2005), Drosophila (Ma and O’Farrell, 2016), and mammals (Frank and Hurst, 

1996). Studies in yeast and nematodes are most notable for easily manipulating population sizes 

to determine the transmission patterns of putative selfish mitochondria. These studies have 

demonstrated that under relaxed individual selection, selfish mitochondria increase in frequency 

more readily each generation, and in some cases, can be maintained in large populations without 

competition from other fitter mtDNA (Dubie et al., 2020). mtDNA undergo selection at the intra- 

and intercellular levels regardless of population size, and very few studies have explored the 

mutation-drift-selection balance in terms of selfish mitochondria proliferation.   

It has been proposed that the uniparental inheritance of mitochondria serves as a mechanism 

for suppressing the transmission of selfish mitochondria is the evolution of uniparental 

inheritance (Radzvilavicius, 2021). Uniparental inheritance reduces intracellular selection by 
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only allowing one parent to transmit their mtDNA, increasing the possibility of homoplasmic 

mtDNA in offspring and decreasing mito-nuclear disruptions caused by heteroplasmies. This 

also implies there is unisexual selection against whichever sex is not passing on their 

mitochondria. The maternal inheritance pattern for mitochondria opens the possibility for sexual 

antagonism against males (Trivers and Burt, 2009). Indeed, this has been observed in Drosophila 

(Patel et al., 2016), humans (Wallace et al., 1988), mice (Nakada et al., 2006), and flowering 

plants (Schnable and Wise, 1998). Changes in male fitness due to mtDNA is best understood 

through cytoplasmic male fertility (CMS) in plants (Schnable and Wise, 1998). CMS is caused 

by a mtDNA variant that reduces pollen production and increases seed production. Because the 

mitochondria are inherited through the seed, the pollen production diminishes or stops. In wild 

populations, compensatory mutations in the nuclear genome have been found to rescue pollen 

production revealing insights into genomic conflict and how mito-nuclear conflicts can be 

resolved (Budar et al., 2003). In animal cases, how mitochondrial variants affect male fitness, 

but not female fitness is largely unknown (Havird et al., 2019).  

C. elegans is a useful model organism that allows us to test for selfish mtDNA and their 

evolutionary implications. C. elegans are well known for being hermaphrodites that can self-

fertilize and facultatively outcross with males. The ability for self-fertilization enables us to 

eliminate individual selection by maintaining small population sizes via bottlenecking each 

generation over time in what is known as a mutation accumulation (MA) experiment. In this 

thesis I explore a spontaneous 1034 bp deletion that arose in the cox-3/nd-4 gene region and a 

nonsynonymous point mutation in nd4L (henceforth Δnd-4) of the C. elegans mitochondrial 

genome to a frequency of 81.7% and 93.7%, respectively, in less than 35 generations during an 

MA experiment (Katju et al., 2022). I will discuss the fitness impacts of Δnd-4 at both the 
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individual and large population levels, as well as the proliferation and maintenance of the 

deletion. Finally, I will also examine any possible sex-specific effects that the Δnd-4 mutation 

might express.    
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CHAPTER II 

 ANOTHER ONE FOR THE BOOKS: THE FITNESS CONSEQUENCES OF A SELFISH 

MITOCHONDRIA IN CAENORHABDITIS ELEGANS 

2.1 Introduction 

Mitochondria are essential to life, providing a secondary genome for eukaryotes that 

plays a key role in the evolution of life. The mitochondrial genome (mtDNA) varies across 

species, ranging in size and the number of polypeptides it encodes for (Lang et al., 1999). In 

most animal mtDNA, there are 13 protein-coding genes which only encode for a fraction of 

mitochondrial function. While it is most easily recognized for ATP production, the mitochondria 

has played a critical role in the evolution of eukaryotes by impacting fitness (James and Ballard 

2003; Chang et al., 2016; Dubie et al., 2020), speciation (Webb et al., 2011; Burton et al., 2013; 

Telschow et al., 2019), evolution of sex (Havird et al., 2015; Guerra et al., 2017; Nagarajan-

Radha et al., 2020), and aging (Pinti et al., 2014; Dolcini et al., 2020).  

The mitochondrial genome has interesting population dynamics. Multiple mtDNA exist 

at the organellar, cellular, individual, and population level in what is called a “nested hierarchy”, 

creating an important mutation-drift-selection balance (Rand 2001). The spontaneous mutation 

rate of most mtDNA is high (ranging between 0.76 and 1.6 x 10-7 per site per generation), which 

produces heteroplasmies within individuals and are passed to the next generation even at low 

frequencies (Payne et al., 2012; Konrad et al., 2017). Heteroplasmies cause variation on which 

selection can act.  Moreover, due to the mitochondria’s general matrilineal inheritance pattern, 

drift occurs each generation, creating multiple rounds of bottlenecking: during oogenesis (Jenuth 

et al., 1996; Wai et al., 2008) and embryogenesis (Cree et al., 2008). Interestingly, the 
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bottlenecking of mitochondria works to improve host fitness and increase population variation, 

while reducing the effects of Muller’s Ratchet at large population sizes (Bergstrom and Pritchard 

1998). Essentially, as mutations occur, mtDNA variation will increase, allowing for selection to 

act from the cellular to the individual level as the mtDNA segregates into oocytes and is 

eventually passed onto the next generation. Studies on the relationship between selection and 

mutation reveal that directional evolution of the mtDNA is both prevented and occurring. As 

heteroplasmies occur, purifying selection will remove the mutant genomes before they can be 

inherited (Wei et al., 2019), and positive selection can drive directional evolution through 

adaptation (Mishmar et al., 2003; Cheviron and Brumfield 2009; Lajbner et al., 2018).  

Heteroplasmies may also classify as “selfish” variants in which certain mitotypes 

increase in frequency and have a replicative advantage when compared to the wild type (WT) 

molecules despite them being neutral or deleterious to the individual (Hurst and Werren 2001; 

Phillips et al., 2015). One of the first studies of selfish mtDNA was done in Saccharomyces 

cerevisiae. The petite mutation in yeast is a disadvantageous mitochondrial mutation that rose to 

high frequency in yeast cells at low population sizes, and selection was observed to act both 

within and among cells (MacAlpine et al., 2001; Taylor et al., 2002). In a study on 

Caenorhabditis briggsae, novel mitochondrial mutations were more frequent in smaller 

population sizes, but the specific strain affected transmission patterns of certain mitotypes, 

suggesting that certain nuclear backgrounds are more susceptible to mutant mitotypes (Phillips et 

al., 2015). Deletions in the Caenorhabditis mitochondrial genome are interesting to study 

because they have been found to persist for multiple generations and display selfish 

characteristics (Howe and Denver 2008; Estes et al., 2011; Dubie et al., 2020). More 
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importantly, they allow scientists to elucidate the possible replicative mechanisms of selfish 

mtDNA that are still not well understood (Havird et al., 2019). 

As we attempt to understand mitochondrial heteroplasmies and the impacts they have on 

the individual level as well as the inter- and intra-cellular level, it is important to study how 

selfish genetic elements can escape negative selection and persist in populations. C. elegans 

provides a model system that allows for this type of study because of the ability to explore mito-

nuclear interactions through spontaneous deletions that accumulate during a bottlenecking 

regime (Konrad et al., 2017). In the current study, a large 1034 bp frameshift deletion 

spontaneously occurred in an MA C. elegans fog-2 line (Figure II-1A, B; Katju et al., 2022) that 

spans the 3’ end of cox-3, a tRNA-thr, and the 5’ end of nd-4. This heteroplasmic deletion rose 

to 81.7% frequency as did a nonsynonymous point mutation in nd4L (henceforth Δnd-4). Here 

we analyze the mitotype’s impacts on fitness, population dynamics, and test for selfishness.  

2.2 Material and Methods  

2.2.1. Isolation of Δnd-4 mitochondria into an N2 background  

 To directly test phenotypic effects of the mutant mitochondria, the Δnd-4 mitotype was 

backcrossed into a WT N2 nuclear background. N2 C. elegans are self-fertilizers, but can 

facultatively outcross, and act as the WT reference strain in C. elegans studies (Nigon and Felix, 

2017). Four fog-2 lines bearing the Δnd-4 mitotype were generated and progeny from three of 

these lines (A, B and C) were backcrossed for four generations with three WT N2 males to move 

from outcrossing to selfing. Fog-2 strains result from a loss-of-function mutation [fog-2(lf)] in 

the fog-2 gene, disrupting the genetic pathway for spermatogenesis in hermaphrodites. Mating 

fog-2 females with N2 males over a couple of generations will remove the fog-2(lf) and restore 
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the ability for individuals to self-fertilize. Utilizing hermaphroditic lines allows for simplicity 

when performing experiments. Frozen lines were thawed, and for ten generations, a 

hermaphrodite was crossed with three fog-2 males. Each generation, the parent worms were 

screened via PCR (forward primer: 5’-AGTACCAGTACACGAGTTGGG-3’, reverse primer: 

5’-AGAAGGTGGTACACCCCTATTTG-3’) to confirm the Δnd-4 mitotype was still present. 

The PCR products were run on a 1% agarose gel (250 ml 1x tris-acetate EDTA; 1g agarose; 1µl 

GelRed) at 105V for 45 minutes. The expected band sizes were 490 bp for the mutant band and 

~1500 bp for the WT.  

2.2.2. Fitness Assays   

Four fitness assays were performed on three backcrossed lines with the Δnd-4 mutation. 

The four life-history traits tested were developmental rate, survivorship to adulthood 

(survivorship), productivity, and longevity. Before the fitness assays were conducted, frozen 

stocks of WT N2 (control) and the experimental lines (A, B and C) were thawed, and a parental 

generation was established for all lines. Four days later, the F1 generation was established by 

setting up 20 replicates for four control N2 lines (n = 80) and 15 replicates for each of the three 

experimental lines (A-C) (n = 45). This was done by placing a single L4 hermaphrodite on a 

35mm NGM agar plate seeded with E. coli OP50. To rid the worms of potential freezer effects, 

an L4 hermaphrodite was transferred for each replicate onto a new plate every four days for three 

generations. The F4 generation was used to conduct the assay.  

For the survivorship assay, ten L1s were sequestered onto a 35mm NGM agar plate 

seeded with E. coli OP50. This was done for each replicate. 48 hours later, the number of worms 

that were L4 or older were considered to have survived to adulthood. To assess survivorship, the 
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number of adult worms was divided by the total number of worms on the plate. Survivorship 

values can range between 0 and 1.   

To measure development rate, a single L1 was placed on a 35mm NGM agar plate seeded 

with E. coli OP50. For each line 15 individuals were used. 36 hours later each worm was 

assessed every two hours for 24 hours or until the individual reached adulthood. Adulthood was 

counted at the observation of the first egg entering the uterus. After the first 24 hours, any worms 

that had not reached adulthood were checked every four hours. Development rate was calculated 

by taking the inverse of time in hours starting from the L1 larval stage for a worm to reach 

adulthood.   

To measure productivity, the worms from the developmental rate assay were used. Each 

worm was placed on a 35mm NGM agar plate seeded with E. coli OP50 and allowed to lay eggs. 

The next day the mother worm was transferred to a new plate and then to another the next day. 

This was repeated each day for eight days. After the mother worm was removed from each plate, 

the plate was kept in a 20˚C incubator for 24 hours. After 24 hours, the plate was put in a 4˚C 

refrigerator. The plates were kept at 4°C for three weeks, after which the progeny were counted. 

Counting was facilitated by adding 200μL of 0.075% Toluidine blue to the plate and, which 

stains the agar but not the worms.  

The same worms used for the development rate and productivity assay were used for 

longevity. After the last day of productivity, the worm was moved to a new NGM agar plate 

seeded with E. coli OP50 and kept there. Each worm was checked every day until the worm died. 

An individual was considered dead when the worm was no longer moving after being lightly 

prodded or there was no pharyngeal activity observed. Longevity was calculated by the number 

of days the worm was alive, from the L1 larval stage to death.  
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2.2.3. Fitness Data Analysis  

For each of the four fitness assays, data analysis was done using the program R. The 

relative fitness values for each trait in the mutant lines were calculated according to the mean 

absolute fitness of the N2 control lines which were normalized to 1. The fitness measurements 

were determined by dividing the mean fitness of each trait observed in the mutant lines by the 

mean fitness observed in the control lines.  

2.2.4. Competition Assays  

Frozen stocks of three backcrossed lines bearing the Δnd-4 mtDNA in a WT nuclear 

background (A, B and C) and N2 WT lines were thawed. To remove freezer effects, individual 

worms were transferred to NGM agar seeded with E. coli OP50 plates for two generations. The 

F3 generation were used to set up 12 populations. 

To explore the fitness consequences of the Δnd-4 mitotype under competitive conditions 

we conducted a competition experiment. We established six competed populations (A1, A2, B1, 

B2, C1, C2) that consisted of equal Δnd-4:WT ratios (50 Δnd-4 and 50 WT individuals) onto 

100mm NGM plates seeded with an E. coli OP50 lawn (1 mL). We also established six 

uncompeted populations (NCA1, NCA2, NCB1, NCB2, NCC1, NCC2) of 100 Δnd-4 bearing 

individuals onto 100mm NGM plates seeded with an E. coli OP50 lawn (1 mL). Every four days, 

each population underwent the standard C. elegans bleaching protocol with a 30% bleach and 

15% 5M NaOH solution. The bleaching regimen allowed us to synchronize each generation by 

only transferring the eggs, thus prevent previous-generation adult worms from contributing to the 

gene pool. We continued to bleach each population every four days for 15 generations. The 
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uncompeted populations were maintained for a total of 60 generations following the same 

bleaching protocol.  

To determine the frequency of Δnd-4 bearing individuals present in the 12 populations, 

30 adult C. elegans were randomly selected each generation for a total of 15 generations and 

subjected to a single worm lysis protocol to extract DNA. The single worm lysis product was 

used for genotyping via PCR. Three primers were used to determine the presence of the Δnd-4 

mutation, one forward and two reverse, with the second reverse primer located within the 

deletion: 5’-AGTACCAGTACACGAGTTGGG-3’, 5’-AGAAGGTGGTACACCCCTATTTG-

3’, and 5’-AATTCTAACAAAGCTACTAGAAACCTT-3’ respectively. Individuals bearing the 

mutation were expected to display both the mutant band (490 bp) and the WT band (350 bp) 

since Δnd-4 bearing worms are heteroplasmic for the mutant mitotype. WT individuals were 

expected to display only the WT band (350 bp). The PCR products were run on a 1.5% agarose 

gel (250 ml 1x tris-acetate EDTA; 3.75g agarose; 1µl GelRed) at 105V for 45 minutes.  

2.2.5. Calculating relative fitness of Δnd-4 at high population 

 In addition to calculating the frequency of Δnd-4 bearing individuals per generation, the 

composite relative fitness, w, was also calculated. The ratio p/q, where p is the average frequency 

of Δnd-4 bearing individuals and q is the average frequency of WT individuals is equal to w. The 

log of the ratio (p/q) per generation (t) for each plate was calculated. The log of the ratio was 

taken for each generation and a linear regression was performed as a function of generational 

time. The slope of the regression line, b, equals log(w). By taking 10b, we can solve for w.  

2.2.6. Testing for Replicative Advantage 
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To test for selfish drive, we measured the Δnd-4 frequency of 15 (n = 45) individuals 

randomly selected from the uncompeted populations, NCA1, NCA2, NCB2, NCC1, and NCC2. 

Individuals that had an intermediate Δnd-4 frequency (30-40%) would be used in the experiment. 

Only one individual from population NCA1 was found to have an intermediate frequency of 

34%. The progeny were bottlenecked via single worm transfer each generation for ten 

generations. On generations one, five, and ten, the mothers (n = 15) were allowed to lay eggs for 

a couple of days and then lysed to determine its mutation frequency via digital droplet PCR 

(ddPCR). For ddPCR, the single worm lysates were diluted 1:50 and prepped in a 96-well plate. 

Two Bio-Rad ddPCR fluorescent probes (FAM and HEX) were used to determine frequency of 

WT to Δnd-4 mtDNA in each sample. The FAM probe targeted Δnd-4 mtDNA, by amplifying a 

mtDNA segment inside the deletion and the HEX probe targeted WT mtDNA. Probe designs are 

proprietary but see Table II-1 for the amplicon context to build the probes. Δnd-4 mtDNA 

frequency was calculated by dividing the concentration of FAM by the concentration of HEX 

and subtracting that value from one. 

2.3 Results  

2.3.1. A deletion spanning two genes was detected at high frequency 

A 1034 bp frameshift deletion (Figure II-1A) starting in the 3’ end of the cox-3 gene and 

ending in the 5’ end of nd-4 gene was observed to arise spontaneously in a fog-2 C. elegans line 

during an MA experiment (Katju et al., 2022). The deletion was estimated to have risen to a 

frequency of 81.7% and included 11.4% of cox-3, 100% of tRNA-thr, and 68.2% of nd-4 (Figure 

II-1B). The complete loss of a tRNA could cause translation disruption during mitochondrial 

protein production. Along with the deletion, there was also a nonsynonymous point mutation 
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(Leu → Pro) in the nd4L gene that rose to a 93.7% frequency (Katju et al., 2022). Together, we 

refer to this mitotype as Δnd-4.  

2.3.2. The Δnd-4 deletion causes significant fitness reduction 

To test for fitness effects due to the Δnd-4 mutation, four fitness assays were used: 

development rate, longevity, productivity, and survivorship to adulthood (also referred to as 

survivorship). These four assays were tested in three mutant lines, A, B, and C (n = 45), and four 

wild type control lines (n = 80). The relative fitness of the three mutant lines was found to be 

significantly decreased relative to the wild type (Figure II-2). 

Development rate is determined by taking the inverse of time in hours that it takes for an 

individual to grow from the L1 larval stage to adulthood.  The Δnd-4 bearing nematodes had a 

significant decrease in development rate compared to the WT N2 (Figure II-2; Wilcoxon Rank 

Sum, z = -7.07, d.f. = 1, p < 0.0001). The average development time (hours) of Δnd-4 bearing 

lines and WT lines was 66.25 hrs and 47.57 hrs, respectively. This means that mutant bearing 

worms took, on average, 18.7 hours longer to reach adulthood, representing a 39.3% increase in 

development time. Moreover, the development rate of the Δnd-4 bearing worms dropped by 

29%. There was no significant difference between the three mutant lines (Kruskal-Wallis Rank 

Sum, X2 = 0.7631, d.f. = 2, p = 0.69).  

Based on the longevity assay, the life span of mutant-bearing lines was determined to be 

significantly lower than the WT control lines (10.98 days versus 14.81 days, respectively) 

(Figure II-2; Wilcoxon Rank Sum, z = -3.12, d.f. = 1, p = 0.0018). The mutant worms lived, on 

average, 3.83 fewer days than the WT control worms. This corresponds to 25.9% decrease in 
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longevity. There was no significant difference in longevity between the mutant lines (Kruskal-

Wallis Rank Sum, X2 = 0.6174, d.f. = 2, p = 0.73).  

For productivity, the mutant lines were significantly different from the WT control lines 

(Figure II-2; Wilcoxon Rank Sum, z = -8.43, d.f. = 1, p < 0.0001). The mutant lines had, on 

average, a 63.7% decrease in productivity compared to the WT control lines. Δnd-4 bearing lines 

productivity ranged between 96.8 and 133.64 progeny over the course of eight days. There was 

no significant difference between the three mutant lines (Kruskal-Wallis Rank Sum, X2 = 2.498, 

d.f. = 2, p = 0.29).  

The mutant lines’ survivorship was significantly different from the WT control lines 

(Figure II-2, Wilcoxon Rank Sum, z = -9.12, d.f. = 1, p < 0.0001). The survivorship of the 

mutant lines, on average, was about 34% lower than the wild type controls. On average, only 

49% of L1 larvae survived to adulthood in Line C, whereas survivorship in Lines A and B 

ranged from 71-75%. Line C was significantly different from lines A and B, but A and B were 

not significantly different from each other (Kruskal-Wallis Rank Sum, X2 = 9.5233, d.f. = 2, p = 

0.01).  

2.3.3. Severe fitness decrease in Δnd-4 bearing worms when maintained at high population sizes  

 To explore the population dynamics of Δnd-4, a competition assay was performed on the 

three backcrossed lines with two replicates (six assays), competing Δnd-4 harboring worms with 

worms containing wild type mtDNA. In addition, two replicates of each backcrossed line were 

maintained for 60 generations at large population sizes. There was a sharp decrease in frequency 

of Δnd-4 bearing worms in all six competition experiments (Figure II-3A). Individuals with the 

Δnd-4 mitotype went extinct in lines B1, B2, C1 and C2, while individuals with the mutation in 
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lines A1 and A2 persisted at low frequencies until the end of the competition experiments 

(Figure II-3A).  

 Along with the competition plates, six lines of uncompeted plates were maintained at 

high population sizes. Unlike the mutation-bearing worms in the competition plates, the Δnd-4 

was maintained at 100% frequency across all uncompeted lines each generation, suggesting that 

the extinction or decrease of mutant-bearing worms in the competitive populations was due to a 

decrease in fitness of the Δnd-4 carrying worms and not due to loss of Δnd-4 within worms 

(Figure II-3B).  

We calculated the relative fitness, w, by taking the log of the ratio (p/q) over each 

generation, t, and performed a linear regression as a function of generational time (Figure II-

3B). The log(p/q)t had a sharp decrease across each generation and the slope of the regression 

line, b, was -0.23. The slope is equal to log(p/q), so w was ~0.60. From w we were able to 

calculate the negative selection coefficient to be 0.40. This means that the Δnd-4 bearing worms 

had a 40% composite fitness decrease in a competitive environment. Interestingly, by generation 

60, a majority of the uncompeted populations (NCA1, NCA2, NCB1, NCB2, NCC1, NCC2) 

exhibited a decrease in Δnd-4 to extremely low frequencies, with only NCA1 and NCC2 

maintaining a median frequency of ~24% and 17%, respectively (Table II-2). 

2.3.4. Selfish Drive 

 

To test whether genetic drift or selfish drive explains the rise of Δnd-4, we established a 

parental generation with a 34% Δnd-4 frequency. We generated 15 lines from these intermediate 

frequencies and propagated them via single worm transfer. We calculated the change in 

frequency over the course of ten generations and found the mutation to have risen to an average 
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of 77%. The 43% increase from the parental generation is significantly different (Student’s: t = -

16.4, p < 0.0001). These results suggest the mutant mitotype has a replicative advantage.  

2.4 Discussion  

The coevolution of the mitochondrial and nuclear genomes has led to tight mito-nuclear 

interactions that are important to eukaryotic life (Lang et al., 1999). Mitochondrial mutations 

introduce heteroplasmies into the mitochondrial population and disrupt these interactions when 

the variant reaches a high enough frequency leading to varying phenotypic effects (Dowling et 

al., 2008). Selfish mitochondria are important for understanding the evolution of mitochondria 

and how mitochondrial disease can persist in eukaryotes.  The Δnd-4 mitotype rose to a high 

frequency of 81.7% during a mutation accumulation experiment that used an obligately 

outcrossing fog-2 C. elegans line. The main focus of this study was to determine whether or not 

the Δnd-4 mutation is selfishly acting.   

  The Δnd-4 indel created a frameshift in the cox-3/nd-4 gene region in the mtDNA as 

well as deleting a tRNA-thr. The deletion removed 11.4% of the cox-3 gene, a tRNA-thr, and 

68.2% of the nd-4 gene (Fig.  II-1B). The Δnd-4 mitotype also contained a nonsynonymous 

point substitution (Leu → Pro) in the nd4L gene that rose to a frequency of 93.7% (Katju et al., 

2022). According to known thresholds for point mutations, pathogenesis is reached at ~90% 

(Rossignol et al., 2003). This means that the point substitution could contribute to the decline in 

fitness. However, due to the experimental lines being frozen only at the start and end of the MA, 

there is no way to determine how much the nd4L point mutation adds to the fitness effects 

independent of the deletion since it is not possible to determine if the point substitution arose 

before or after the deletion. As stated earlier, both mutations are considered as the Δnd-4 

mitotype, and we found that there was a significant decrease in fecundity, survivorship, 
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longevity, and developmental rate (Fig. II-2). Individuals harboring Δnd-4 are also rapidly 

outcompeted in mixed populations with WT worms and have a 40% decrease in composite 

fitness (Fig. II-3A, B).  

The uncompeted populations were able to maintain the mutation for a short period of 

time. During the experiment, we observed that the uncompeted populations went through 

periodic crashes that would take a few generations to reach very large population sizes again. 

Eventually, the uncompeted populations maintained a stable large population size. After 60 

generations, we found that the Δnd-4 heteroplasmy ranged from very low frequencies to high 

frequencies in five out of six populations (NCA1, NCA2, NCB2, NCC1, and NCC2). However, 

population NCB1 maintained a median 90% heteroplasmic frequency (Table II-2). One 

explanation for these results could simply be that at consistently higher population sizes, the 

power of selection increases and can more efficiently reduce the level of detrimental mitotypes. 

Alternatively, compensatory mutations in the nuclear genome could have arisen to ameliorate the 

detrimental effects of the mutant mitochondria. It is important to note that availability of 

resources, such as nutrients, could account for the drastic change in Δnd-4 frequency for most of 

the uncompeted populations. A recent study by Gitschlag et al. (2020) found that initial nutrient 

abundance may unintentionally promote detrimental mitotypes to replicate in the germline, but 

overall lack of nutrients promotes WT mtDNA replication over the selfish genotype, meaning 

that over time the deleterious mtDNA can decrease in frequency (Gitschlag et al., 2020). In the 

case of the Δnd-4 uncompeted populations, we could be observing a similar scenario. During the 

experiment, if the uncompeted population did not experience a population crash, then the NGM 

plates would be starved by day three in the four-day bleach transfer cycle. It is possible that the 

nutrient depletion occurred around the time the worms reached sexual maturity. Hence, embryos 
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that have a lower frequency of the Δnd-4 mitotype would be selected for and result in a 

frequency reduction of the mutant mitotype over time. Because NCB1 conserved a high Δnd-4 

mitotype frequency, it is possible that the population crashes occurred often enough to maintain a 

consistent nutrient abundance that kept the Δnd-4 mitotype frequency within individuals high. 

Overall, this may give insight into how nutrition impacts how efficient selection acts upon large 

populations in which all members share selfish mitochondrial genotypes.  

 The second criteria for selfish mitochondria are that the genotype must have a replicative 

advantage over the WT. We took individuals from generation 60 of the uncompeted populations 

that had a reduced Δnd-4 frequency and conducted another MA experiment. We found that 

within ten generations of bottlenecking via single worm transfer, Δnd-4 increased from an initial 

average 34% heteroplasmic frequency to 77% (Fig. II-4), consistent with a replicative advantage 

over WT. Replication mechanisms of selfish mitochondria are not well understood, but one 

explanation could simply be faster replication or preferential use of replication machinery 

(Havird et al., 2019). Faster replication or preferential transmission of selfish mitochondria have 

been implicated in yeast (MacAlpine et al., 2001; Taylor et al., 2002), nematodes (Clark et al., 

2012; Phillips et al., 2015), humans (Diaz et al., 2002; Russell et al., 2018), and Drosophila (Ma 

and O’Farrell, 2016). With such a large deletion in the Δnd-4 genotype, it is possible that the 

deleterious mitochondria can replicate faster in the germline and then accumulate over the 

lifespan of the individual.  

 In conclusion, we report the identification of another selfish mitotype in the C. elegans 

species. As stated earlier, two conditions need to be fulfilled for a mitotype to be deemed selfish: 

1) it must have either negative or neutral fitness impacts, and 2) it must have 

replicative/transmission advantage. The Δnd-4 genotype has been shown to satisfy both criteria. 
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Hence, we can include this mitotype in the growing list of selfish mitochondria. Furthermore, 

exploring the relationship between selection and mutations in the context of “selfishness” can 

lead to better understanding how mitochondrial disease spreads and persists across generations.  
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2.5 Tables 

Table II-1: Description of the ddPCR probes used to calculate the frequency of the Δnd-4 

mitotype within individuals. Probes were designed by Bio-Rad. 

 

Fluorescent Tag Amplicon Context Gene Amplicon Length 

FAM 

TTTTTACATCTTTGATTACCTA

AAGCTCATGTAGAGGCTCCTA

CAACAGCTAGAATACTTTTAG

CTGGATTACTATTAAAATTAG

GCACAGCGGGATTTTTACGTA

TTTTAGGTAGTTTAAGA 

nd-4 89 bp 

HEX 

GTCATTTATTGGGAAGAAGAC

AAAATCGTCTAGGGCCCACCA

AGGTTACATTTATGGGATTAG

CACAAGCTTTATTGGATGGGG

TTAAACTTTTAAAAAAAGAAC

AAATAACACCCTTAAATT 

nd-1  97 bp 

 

Table II-2: Average fitness of Δnd-4 bearing lines in a WT background. 20 replicates for each 

four N2 control lines (n=80) and 15 replicates for three Δnd-4 bearing lines (n=45) were assayed. 

Means for each trait was calculated across all control and experimental lines, as well as for each 

individual line. 

 

 

 

 

 

 Fitness Traits 

Line  Development 

Time (hrs) 

Longevity (days) Productivity  Survivorship 

Δnd-4 bearing lines 66.25 10.98 111.67 0.65 

N2 Control 47.57 14.81 307.95 0.99 

A 66.83 10.92 104.57 0.71 

B 64.92 11.2 96.8 0.76 

C 67 10.83 133.64 0.49 

N2.1 47.26 16.1 295.79 0.995 

N2.2 47.79 14.45 293 0.99 

N2.3 47.33 15.35 326.5 0.99 

N2.4 47.89 13.35 317.47 0.985 
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Table II-3: Range and median of Δnd-4 frequencies for uncompeted populations, NCA1, NCA2, 

NCB1, NCB2, NCC1, NCC2. 15 individuals for each population were lysed via single worm 

lysis and Δnd-4 frequency was determined via ddPCR.  

LINE  RANGE  MEDIAN 

NCA1 0.0-0.905 0.247 

NCA2 0.0-0.048 0.0 

NCB1 0.812-0.921 0.9 

NCB2 0.0-0.0417 0.0 

NCC1 0.0-0.0493 0.0 

NCC2 0.0-0.922 0.177 
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2.6 Figures  

Figure II-1. Observance and location of Δnd-4 in C. elegans line. A) The read depth of Δnd-4 

from Illumina whole-genome sequencing mapped to the cox-3/nd-4 gene region. B) A map of C. 

elegans mtDNA (adapted from Okimoto et al., 1992).  

Figure II-2. The mean relative fitness for four fitness traits: developmental rate, longevity, 

productivity, and survivorship. All four fitness assays were conducted across three backcrossed 

C. elegans lines (dark blue) with 15 replicates each (n=45) and four N2 control lines (red) with 

20 replicates each (n=80). The mean relative fitness was calculated for the N2 control lines and 

normalized to 1 to compare fitness effects. There was a significant decrease in fitness among all 

Δnd-4 bearing lines compared to the N2 WT lines. **p≤0.01, **** p≤0.0001. 

Figure II-3. Competition assays were conducted to determine population fitness effects of the 

Δnd-4 mutation. For each line, two competed replicates were established with an equal Δnd-4 

:WT ratio and two uncompeted replicates with 100% Δnd-4 frequency were generated for each 

line. A) The frequency of the deletion bearing worms had a sharp decline in most competed 

lines. Over seven generations Δnd-4 bearing worms went extinct or near extinct. The 

uncompeted plates maintained the 100% frequency across each generation. B) A linear 

regression was calculated based on the log (Δnd-4/WT). Each point (orange diamond) represents 

the average per generation across each competed line (A1, A2, B1, B2, C1 and C2). The relative 

fitness of the Δnd-4 mitotype was calculated from the slope of the regression line and was 

estimated to be  -0.23.   

Figure II-4. Offspring from an individual with a 34% Δnd-4 heteroplasmy (dotted line) 

underwent MA via single worm transfer for ten generations. Generation one (red) had an average 
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frequency of 34%, generation five (blue) 58%, and generation ten (orange) 77%. There was a 

43% increase in the Δnd-4 deletion from generation one to generation ten. 
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Figure II-1: Observance and location of Δnd-4 in C. elegans line. 
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Figure II-2: The mean relative fitness for four fitness traits: developmental rate, longevity, 

productivity, and survivorship.  
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Figure II-3: Competition assays were conducted to determine population fitness effects of the 

Δnd-4 mutation. 

A) 

 

 

 

 

 

 

 

 

 

 

B)  

 

 

 

 

 

 

 

 



32 
 

Figure II-4: Offspring from an individual with a 34% Δnd-4 heteroplasmy underwent MA via 

single worm transfer ten generations. 
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CHAPTER III 

WHAT ABOUT SEX? POSSIBLE SEX-SPECIFIC EFFECTS 

 DUE TO ΔND-4 IN FOG-2 CAENORHABDITIS ELEGANS 

3.1 Introduction  

 Sexual reproduction is ubiquitous and is a major contributor to the diversification and 

evolution of eukaryotic life (Payne and Krakauer, 1997; De Aguiar et al., 2009). The 

maintenance of sexual reproduction is a topic that many scientists have explored for decades as it 

has created various conundrums in the theory of evolution for multicellular eukaryotes. Notably, 

the twofold cost of males, which states that the birthrate of an asexual individual is twice that of 

a sexual individual, implying that asexual populations should have a competitive edge over 

sexual populations (Smith, 1971, 1978). Yet, this is not what we observe. There are many 

examples of species that have asexual and sexual lineages coexisting in populations (Case and 

Taper, 1986; Jokela et al., 1997; Schon et al., 2000; Stelzer, 2011; Combosch and Vollmer, 

2013) and sexual reproduction, in its many forms, is found in all major eukaryotic branches 

(Heitman, 2015). Breeding mode proportions are heavily influenced by population size, 

mutation-selection balance, and recombination rate in which asexual or sexual reproduction can 

gain advantage over the other (Takahata, 1982; Kondrashov 1988; Schon et al., 2000). 

 Sexual reproduction has both advantages and disadvantages. The most obvious advantage 

being that sexual reproduction has the added benefit of recombination, which can separate 

detrimental allele combinations and increase the population’s ability to adapt to changing 

environments (Barton and Charlesworth et al., 1998) whereas asexual reproduction suffers from 

the effects of Muller’s Ratchet via mutation accumulation (Lynch et al., 1995). However, the 

advantage of recombination decreases if a population has reached equilibrium and is at its fittest, 
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because segregating linked alleles can actually cause a reduction in fitness (Otto and Lenormand, 

2002). Other disadvantages in sexual reproduction are found in harmful mating behaviors that 

can result in death or injury (Andrade, 2003; Morrow et al., 2003), and sexual selection that 

reinforces maladapted traits (West and Packer, 2002; Candolin et al., 2008; Martinossi-Allibert 

et al., 2018) and exacerbates sexual antagonism (Holland and Rice, 1998; Connallon and Clark, 

2014). Hermaphroditism helps to alleviate some of the disadvantages of outcrossing, such as 

dangerous mating behaviors, but increases inbreeding depression and can still maintain sexual 

antagonism (Abbott, 2011; Jordan and Connallon, 2014).  

 Sexual selection acts differently on males and females, generally acting stronger on males 

than females (Agrawal, 2001). Sex-specific morphologies in dioecious species are extremely 

well studied and are foundational in the sexual antagonism coevolution theory (Perry and Rowe, 

2015) and sex-specific genetic asymmetries have distinct effects on how strong natural selection 

is acting on males and females (Connallon et al., 2019). However sexual antagonism is less 

obvious in hermaphroditic systems and relies more on intra-locus sexual conflict. This is because 

in hermaphrodites, sexual antagonistic alleles are more readily exposed to selection; thus, intra-

locus conflict becomes the limiting factor in hermaphrodites as compared to species with distinct 

sexes (Bedhomme et al., 2009; Abbott, 2011). 

 Another interesting aspect of sexual antagonism is how genomic conflict can affect the 

evolutionary trajectories of males and females or sex-specific functions. Genomic conflict is an 

extremely important aspect in evolutionary theory because the study of genetics boils down to 

how DNA (nuclear and cytoplasmic) interacts, and this conflict is the cornerstone for creating 

the diversity we see in eukaryotic life (Rice, 2013). Mito-nuclear conflict is of great interest 

because of strict matrilineal inheritance found in most plants and animals and the sex-specific 
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effects that can arise subsequently (Cosmides and Tooby, 1981). Simply put, because females are 

transmitting the mitochondria to the next generation, selection will act on female mitochondrial 

DNA (mtDNA) potentially leaving males to suffer from mitochondrial mutations that arise to the 

benefit/detriment of females/males (Frank and Hurst, 1996).  

We see this phenomenon manifest in a variety of ways. For example, Innocenti et al. 

(2011) used Drosophila to test the hypothesis that male mtDNA should have a higher mutation 

load and that the degree of fitness effects would be more apparent in species with higher levels 

of sexual dimorphism because selection will not be acting on male mitochondria (Innocenti et 

al., 2011). They found that the mitochondrial strain greatly influenced the differential expression 

of genes associated with male tissues and that selection is less efficient at purging mutation 

build-up that have male-specific effects. Moreover, they found that male sterility was higher 

when a specific mitochondrial haplotype was paired with an w1118 isogenic nuclear background, 

but males were fertile when that same haplotype coexisted with the original coevolved nuclear 

background. Selfish mitochondria introduce mito-nuclear conflict that led to well established 

reproductive manipulation tactics (i.e. cytoplasmic male sterility [CMS]) and less established 

hypotheses, such as the Mother’s Curse (Dowling and Adrian, 2019; Havird et al., 2019). CMS 

is a well-documented case for the Mother’s Curse hypothesis in plants and occurs from mtDNA 

variants reducing the amount of pollen a hermaphrodite can produce and effectively turning it 

female. Mitochondrial variants skewing the sex ratio has yet to be documented in animals 

(Havird et al., 2019).  

In animals, the Mother’s Curse is less clear. Vaught and Dowling conducted a meta-

analysis on studies involving the Mother’s Curse. They found that there is a research bias 

towards males and results suggesting Mother’s Curse dynamics could be more of an artefact of 
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not exploring female-specific effects rather than evidence for the hypothesis (Vaught and 

Dowling, 2018). However, they do discuss some putative evidence for the Mother’s Curse 

hypothesis. In Drosophila, studies on reproductive traits in males and females found that mtDNA 

mutations in the cytochrome b, and cytochrome oxidase I and II genes result in lowered male 

fertility but not in females (Xu et al., 2008; Clancy et al., 2011; Patel et al., 2016). Other animal 

examples can be found in hares (Smith et al., 2010), mice (Trifunovic et al., 2004; Ma et al., 

2016), and humans (Martikainen et al., 2017).  

The study of sexual antagonism due to selfish mitochondrial variants is little understood 

(Havird et al., 2019). Studies have shown sexual antagonism in a variety of Caenorhabditis 

species due to nuclear background or mutations, but under the context of mtDNA driven sexual 

antagonism, they have been underused (Ancell and Pires-daSilva, 2017). Here we look at 

possible sex-specific effects of a selfish mitochondrial mitotype that rose to high frequency 

during a bottlenecking experiment using a line of fog-2 C. elegans (Katju et al., 2022). The 

mitotype contained a 1034 bp deletion spanning the 3’ end of the cox-3 gene, a tRNA-thr, and 

the 5’ end of the nd-4 gene and a nonsynonymous point substitution in the nd4L gene (henceforth 

Δnd-4). The current study elucidates possible sex-specific fitness effects due to the Δnd-4 

mitotype via reproductive assays (productivity and male mating ability) as well as sex ratio and 

longevity.  

3.2 Materials and Methods  

3.2.1. Isolation of Δnd-4 in fog-2 C. elegans strain 

 Four lines bearing the Δnd-4 deletion (A-D) were thawed and transferred onto 35 NGM 

agar plates seeded with E. coli OP50. For ten generations, a single fog-2 female bearing the Δnd-

4 mutation was crossed with three fog-2 WT mtDNA males. Because mitochondria are 
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maternally inherited, this backcrossing regime allows us to isolate the mutant mtDNA into a fog-

2 nuclear background and remove possible line-specific nuclear mutations that coevolved with 

the Δnd-4 mitotype and affect fitness. Each generation, Δnd-4 presence was confirmed via PCR. 

Four separate Δnd-4 bearing C. elegans lines (A-D) with a fog-2 nuclear background were 

generated.  

3.2.2 Survivorship to adulthood and Sex Ratio  

 Four backcrossed fog-2 lines bearing the Δnd-4 deletion (A-D) and a WT mtDNA fog-2 

control were thawed onto individual 35mm NGM agar plates seeded with E. coli OP50. For two 

generations, a single L4 female and two L4 males were transferred to a new plate to remove 

possible freezer effects. There were 12 replicates for the control F1 and F2 generations. For each 

mutant-bearing subline (A-D), there were three replicates each for a total of 12 replicates 

representing the Δnd-4 mutation. Ten L1 progeny from the F3 generation were transferred to 

35mm NGM agar plate seeded with E. coli OP50 for each F2 cross (n = 120). The plates were 

checked 36 hours later to determine the sex ratio and survivorship to adulthood (survivorship).  

3.2.3. Sex-Specific Longevity  

 We conducted a longevity assay to compare the lifespan of males versus females. The 

siblings of the individuals used in the survivorship assay were used for the longevity assay. 

Because sex is visually indeterminate from the L1 to L3 larval stages, F3 individuals were 

selected for this experiment at the L4 larval stage when sex can be visually distinguished. For 

each F2 cross, five males and five females were transferred to individual plates (WT mtDNA 

males n = 60, WT mtDNA females n = 60, Δnd-4 males n = 53, Δnd-4 females n = 54). The 

worms were observed each day until death. Death was determined when all movement ceased 

and there was no reaction to gentle prodding on and around the worm.  
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3.2.4. Sex-specific Productivity 

 Backcrossed Δnd-4 fog-2 lines (A-D) and WT mtDNA fog-2 control lines were thawed 

and populations established on NGM plates seeded with E. coli OP50. For two generations, a 

single L4 female and two L4 males were transferred to a new plate to remove freezer effects. 

Generation F3 individuals were used to set up four different crosses: fog-2 female x fog-2 males 

(WT mtDNA control), Δnd-4 female x Δnd-4 males (mutant mtDNA control), Δnd-4 female x 

fog-2 males, and Δnd-4 female x fog-2 males. Note that for each cross two males and one female 

were paired. Each cross type had 20 replicates. For each of eight consecutive days, the 

male/female pairs were transferred to a fresh 35mm NGM agar plate seeded with E. coli OP50. 

The plates were stored in an incubator at 20°C for 24 hours before being placed in a 4°C 

refrigerator for three weeks. After the three weeks, the number of offspring were counted. 

Counting consisted of pipetting ~200µl of 0.075% Toluidine blue and then counting the number 

of worms on the plate under a dissecting microscope. Toluidine blue makes it easier to count the 

worms as it stains the agar, not the worms.  

3.2.5. Male Mating Ability Assay  

 The male mating ability (MMA) assay enabled us to determine the success rate of male 

mating and fertilization. Four backcrossed fog-2 lines (A-D) bearing the Δnd-4 mutation and a 

WT mtDNA fog-2 control were thawed and placed on 35mm NGM agar plates seeded with E. 

coli OP50. The lines were propagated for two generations to remove freezer effects. The F3 

generation was used for the experiment. Virgin WT mtDNA fog-2 L4 females (n = 400) and 

males (WT mtDNA n = 40, Δnd-4 n = 40) were isolated onto separate NGM agar plate seeded 

with E. coli OP50 24 hours before the start of the mating experiment. Ten males were used for 

each of the Δnd-4 fog-2 lines (A-D). This is to ensure that the females have not been mated with 
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or fertilized prior to being paired with a male and that males retain all their sperm. Because we 

aimed to measure how the Δnd-4 mutation effects male mating ability, all the females used in 

this assay were WT mtDNA fog-2. After 24 hours, a single male and five females were 

transferred to a 35mm NGM agar plate with an E. coli OP50 bacterial lawn. The worms were 

allowed to mate for eight hours and then the females were isolated to individual plates. The next 

day the females were checked for fertilization. If there were eggs or offspring on the plate or if 

the female had fertilized eggs in her uterus, then the female was marked as fertilized.  

3.3 Results  

3.3.1. Δnd-4 does not impact survivorship in a fog-2 nuclear background nor the sex ratio  

 To test for survivorship, we established 24 35mm NGM agar plates seeded with OP50 E. 

coli each hosting ten L1 C. elegans (one Δnd-4 plate only had eight L1s). Twelve plates were for 

WT mtDNA fog-2 individuals and the other 12 were for Δnd-4-bearing worms (Nfog-2 = 120, Nnd-

4 = 118). Of the 118 mutant individuals and 120 WT individuals, only 110 (93%) and 118 (98%) 

worms reached adulthood, respectively. We found that there was no significant difference in 

survivorship to adulthood (Fig III-1; Wilcoxon Rank sum test, z = -1.41, p = 0.15). The lack of 

statistical significance could reflect reduced power due to limited replication. To determine any 

alterations to the sex ratio, we established the sex of individual worms when they reached the L4 

larval stage. After a chi-square analysis, we observed no change in the sex ratio in the mutant 

worms (Table III-1; X2 = 0.145, d.f. = 1, p = 0.702).  

3.3.2. Δnd-4-bearing females have reduced longevity  

 To examine possible differences in lifespan between the two sexes, we observed isolated 

males and females starting from the L4 larval stage until their death. In general, longevity for 

individuals with the Δnd-4 mutation significantly decreased by ~11% (Fig. III-1; Wilcoxon 
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Rank Sum Test z = -2.18, p-value = 0.03). An ANOVA analysis revealed that there was a 

significant difference between the sex and the number of days an individual was alive (Fig III-2; 

F3-value = 6.24, p < 0.001). Surprisingly, we found that mutant females suffered a significant 

longevity cost when compared to the WT mtDNA fog-2 males (Tukey HSD, p-value = 0.015, 

95% C.I. = [0.35-4.57]) and females (Tukey HSD, p < 0.001, 95% C.I. = [-5.24 - -1.01]) and 

mutant males (Tukey HSD, p = 0.002, 95% C.I. = [0.87-5.22]). On average, Δnd-4 bearing 

females and males lived for 9.26 and 12.3 days, respectively. The lifespan of WT mtDNA 

females and males was 12.4 and 11.72 days, respectively. Note that longevity was calculated as 

number of days individuals lived past isolation at the L4 stage; it does not include how many 

days it took for the worms to develop from the L1 to L4 larval stage.  

3.3.3. Productivity is reduced in crosses involving Δnd-4-bearing individuals 

 Four crosses (fog-2 female x fog-2 males (WT mtDNA control), Δnd-4 female x Δnd-4 

males (mutant mtDNA control), Δnd-4 female x fog-2 males, and Δnd-4 female x fog-2 males) 

were made to quantify how the Δnd-4 mitotype influenced productivity. Using an ANOVA 

analysis, we found that there was a significant decrease in the number of offspring produced over 

the course of eight days (F-value = 12.54, p < 0.0001). Further analysis revealed that, in general, 

if a cross involved a Δnd-4-bearing individual (regardless of sex), then ~62% fewer offspring 

were produced (Fig III-1; Wilcoxon Rank Sum Test, z = -5.00, p < 0.0001). When comparing 

the crosses involving mutant individuals (fog-2 female x Δnd-4 males, and Δnd-4 female x fog-2 

males), there was no significant difference in the fertility between the sexes (Fig III-3A; Tukey 

HSD, p = 0.60, 95% C.I. = [-106.48-297.08]). While not significantly different from each other 

(Fig III-3B), Δnd-4 female x fog-2 males crosses produced fewer progeny on average (189.6 

offspring) when compared to the Δnd-4 female x Δnd-4 males (215.65 offspring), fog-2 female x 
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Δnd-4 males (284.9 offspring) crosses. The WT mtDNA fog-2 control crosses produced an 

average of 606.5 offspring (Fig III-3B).   

3.3.4 Δnd-4 males are not less successful at fertilizing females 

 The male mating ability (MMA) assay was conducted to determine the mating success of 

Δnd-4 males. For every male (WT mtDNA fog-2 or Δnd-4), five virgin WT mtDNA fog-2 

females were plated and allowed to move around the plate for eight hours. Next the females were 

isolated to their own plates and checked for the presence of larval progeny or eggs the next day. 

We found that Δnd-4- bearing males were not significantly less successful at fertilizing females 

relative to WT males (Fig III-4; Student’s: t = 1.32, p = 0.19). An ANOVA analysis found there 

was significant difference between mutant lines (F-value = 3.25, d.f. = 3, p = 0.033) and post hoc 

analysis revealed that males from the B line did significantly worse than A males (Tukey HSD, p 

= 0.033, 95% C.I. = [-4.57- -0.14]), but not significantly different from males from lines C 

(Tukey HSD, p = 0.16, 95% C.I. = [-0.45- 3.85]) and D (Tukey HSD, p = 0.1, 95% C.I. = [-0.25- 

4.05]). Lines A, C, and D were not significantly different from each other.  

3.4 Discussion  

 Sexual reproduction is very complex. An important aspect to the evolution of eukaryotic 

life, sex is universal and creates important genetic dynamics that have puzzled scientists for 

decades (Smith, 1971, 1978). Sex is a risky endeavor in that it can lead to sexual antagonism and 

genomic conflict within and among species (Connallon and Clark, 2014; Havird et al., 2019). 

Genomic conflict can be seen in a variety of ways; here we focus on mito-nuclear conflict and 

how it can create sexual antagonism. The basis of this idea comes from the uniparental 

inheritance of the mitochondria in eukaryotes. Asymmetric inheritance allows for the possibility 

of one sex to suffer more consequences due to deleterious mutations that arise because selection 
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is only acting on the sex that is responsible for transmission. In the case of mitochondria, most 

plants and animals pass on the organelle maternally, meaning that males are more likely to pay 

the consequences of detrimental mitochondrial mutations (Frank and Hurst, 1996). Sexual 

antagonism is a widely studied topic, but C. elegans are an underutilized system in the context of 

mito-nuclear conflict and reproductive manipulation (Havird et al., 2019). However, sexual 

antagonism in aging has been well established to occur in the species (Tower, 2015). Here, we 

explore possible sex-specific effects due to a selfish mitotype, Δnd-4 (see Chapter II). This 

mitotype contains a 1034 bp deletion spanning the 3’ end of the cox-3, a tRNA-thr, and the 5’ 

end of the nd-4 gene, as well as a nonsynonymous point mutation in nd4L.  

 One hypothesis that attempts to explain sexual antagonism created by mitochondrial 

variants is called the Mother’s Curse, which posits that mutations that are neutral or nearly 

neutral in females but deleterious in males (weak form) can become fixed or rise to high 

frequency in a population due to genetic drift. Alternatively, mutations that are highly harmful to 

males, but beneficial to females can rise to fixation or high frequency because of selection acting 

on them (strong form; Havird et al., 2019). Only a few species have provided evidence for the 

Mother’s Curse hypothesis (Vaught and Dowling, 2018) and it is considered rather controversial 

(Dowling and Adrian, 2019). This study tests the Mother’s Curse in fog-2 C. elegans. While C. 

elegans are typically hermaphroditic, fog-2 individuals are obligately outcrossing. This allows us 

to differentiate sex-specific consequences due to the Δnd-4 mitotype.  

We performed three fitness assays (survivorship/sex ratio, longevity, and productivity) 

directly comparing males and females to each other. Overall, we found no difference in 

survivorship, but we did find a significant decrease in longevity and productivity (Fig III-1). The 

sex ratio was not altered due to mutant mitotype (Table III-1). This is not surprising since sex 
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ratio skew due to mitochondrial mutations have yet to be documented in animals (Havird et al., 

2019). Interestingly, it was Δnd-4 bearing females that had significantly shorter lifespans than 

Δnd-4 bearing males and WT mtDNA fog-2 individuals (Fig III-2). Moreover, aging studies in 

C. elegans have shown that males are the longer-lived sex due to pheromone (ascaroside) 

secretion (McCulloch and Gems, 2003; Maures et al., 2014). Because males secrete ascaroside 

throughout development (Kaplan et al., 2011; Izrayelit et al., 2012) and the worms used for the 

longevity assay were isolated at the L4 stage, it is possible that the significant decrease in Δnd-4 

females was due to exposure to ascarosides before adulthood. However, considering that there 

was no difference between the WT mtDNA fog-2 males and females, it could be that the reduced 

Δnd-4 female lifespan is due to a combination of pheromones and the detrimental mitotype or 

just the exposure to ascarosides. Alternatively, while ascarosides are harmful to hermaphrodites, 

males’ lifespans are dependent on the number of males found in a population. Simply put, when 

males are surrounded by other males, the secreted ascarosides can significantly shorten their 

lifespan (Shi et al., 2017). Because individuals were isolated at the L4 larval stage, the longevity 

results suggest that the Δnd-4 mitotype more negatively effects females. Furthermore, it is 

possible that there was a difference between the sexes in the intracellular frequency of the Δnd-4 

mitotype. The productivity assay consisted of four crosses: fog-2 female x fog-2 males (WT 

mtDNA control), Δnd-4 female x Δnd-4 males (mutant mtDNA control), Δnd-4 female x fog-2 

males, and Δnd-4 female x fog-2 males. We found that any cross involving Δnd-4 individuals 

saw a significant decrease in productivity, but there was no significant difference among Δnd-4 

crosses (Fig III-3A). While not significant, Δnd-4 female x fog-2 males crosses produced the 

least number of offspring on average (Fig III-3B). Given that there is either no conclusive 

evidence (longevity) or no difference between Δnd-4 males and females in survivorship and 
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productivity, we do not find evidence to support the Mother’s Curse hypothesis in the context of 

this mutant mitotype in C. elegans.  

C. elegans males are notoriously inefficient at mating (Chasnov and Chow, 2002), so we 

next explored how Δnd-4 impacted male mating ability (MMA). We paired single virgin males 

with five virgin females and allowed them to mate for eight hours. After isolating the females 

and observing which ones were successfully fertilized, we found that the Δnd-4 mitotype has no 

significant effect on fertilization success (Fig III-4). We did observe that Δnd-4 line B had the 

fewest successful fertilization events. This might be due to differences between lines in the 

intracellular frequency of Δnd-4. It is also possible that there are slight differences in the nuclear 

genetic background of the lines since they are from independent crosses between the original 

MA lines and the WT mtDNA fog-2 controls. Although the crosses were designed to minimize 

the number of nuclear mutations from the original MA line that could be transferred to the fog-2 

nuclear background, it is conceivable that some of the original MA line nuclear mutations were 

nonetheless crossed into the fog-2 background along with the Δnd-4 mitotype. 

Overall, our results indicate that there are no sex-specific fitness effects due to the Δnd-4 

mitotype. Sex-specific consequences from mitochondrial mutations are found in plants (Schnable 

and Wise, 1998) and animals (Beekman et al., 2014). There could be some explanations for the 

lack of sex-specific consequences. First, male-specific genes not associated with sperm 

production are highly conserved in C. elegans, so it is possible that there is no male-specific 

mito-nuclear conflict (Cutter and Ward, 2005). Second, males play an important role in 

maintaining genomic integrity by reducing inbreeding depression, and selection will may be 

strong for males with efficient mating ability (Anderson et al., 2010; Chasnov, 2013). It is 

important to note that despite selection for efficient males, selection acts very weakly on males in 
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general because they are so rare in nature (Chasnov, 2013). Other Caenorhabditis species have 

shown mito-nuclear interactions (Zhu et al., 2015; Wernick et al., 2019) and mito-nuclear 

epistasis (Chang et al., 2016). This leaves room for the possibility of more inquiry into sexual 

antagonism due to variant mitochondria.  
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3.5 Tables  

Table III-1: Chi-square analysis of the sex ratio in C. elegans lines comparing Δnd-4 (Ntotal = 

110) to WT (Ntotal = 118). X2 = 0.145, d.f. = 1, p = 0.702 

 

Line 
Observed Sex 

(M/F) 

Expected Sex 

(M/F) 
Total X2 Value 

fog-2 59/59 59/59 118 0 

Δnd-4 53/57 55/55 110 0.145 
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3.6 Figures 

Figure III-1: Comparison of the mean relative fitness between fog-2 (orange) and Δnd-4 (green) 

lines. All individuals used in the longevity (Nfog-2 = 120, Nnd-4 = 120), survivorship assays (Nfog-2 

= 120, Nnd-4 = 118) and offspring from productivity crosses (fog-2 female x fog-2 males (WT 

mtDNA control), Δnd-4 female x Δnd-4 males (mutant mtDNA control), fog-2 female x Δnd-4 

males, and Δnd-4 female x fog-2 males) were used in calculating the mean relative fitness. *p < 

0.05, ****p < 0.0001, n.s. = not significant 

Figure III-2: Boxplot comparing the longevity of males (blue) and females (red) within and 

among lines (WT mtDNA fog-2 and Δnd-4). Individual longevity was determined from time of 

isolation (L4 larval stage) to the time of death. The black lines in each boxplot represents the 

median lifespan of the individuals in each group. There was no significant difference in 

longevity between the Δnd-4 males and WT mtDNA fog-2 males and females. Mutant females’ 

longevity significantly decreased compared to Δnd-4 males (p = 0.002) and WT mtDNA fog-2 

males (p = 0.015) and females (p < 0.001).  

Figure III-3A: The number of offspring produced after eight days between different crosses: 

fog-2 male x fog-2 female (WT mtDNA control, dark grey), Δnd-4 male x Δnd-4 female (mutant 

mtDNA control, light grey), Δnd-4 female x fog-2 male (red), and Δnd-4 male x fog-2 female 

(blue). The black lines in each boxplot indicate the median number of offspring per group. Note 

for each cross, two males and one female were paired. The Δnd-4 mitotype lowered productivity 

significantly for all crosses that involved a Δnd-4 bearing worm (p < 0.0001), but there were no 

significant sex-specific consequences (p = 0.60).  

Figure III-3B: Bar graph of the average productivity of the different cross types: fog-2 male x 

fog-2 female (WT mtDNA control, dark grey), Δnd-4 male x Δnd-4 female (mutant mtDNA 
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control, light grey), Δnd-4 female x fog-2 male (red), and Δnd-4 male x fog-2 female (blue). The 

averages were taken from the total number of offspring produced per replicate per cross.   

Figure III-4: Comparison of fog-2 males (dark grey) and four lines (A[purple], B[green], 

C[brown], D[dark yellow]) of Δnd-4 bearing males mating ability. Every male (Nfog-2 = 40, Nnd-4 

= 40) was paired with five fog-2 females (N = 400) and allowed to mate for eight hours. Females 

were determined as fertilized the next day upon the observation of offspring or eggs present. 

There was no difference in the success of fertilizing females between the WT mtDNA and Δnd-4 

worms. p = 0.19  
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Figure III-1: Comparison of the mean relative fitness between fog-2 (orange) and Δnd-4 (green) 

lines. 
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Figure III-2: Boxplot comparing the longevity of males (blue) and females (red) within and 

among lines (fog-2 and Δnd-4). 
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Figure III-3A: The number of offspring produced after eight days between different crosses: 

fog-2 male x fog-2 female (WT mtDNA control, dark grey), Δnd-4 male x Δnd-4 female (mutant 

mtDNA control, light grey), Δnd-4 female x fog-2 male (red), and Δnd-4 male x fog-2 female 

(blue). 
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Figure III-3B: Bar graph of the average productivity of the different cross types: fog-2 male x 

fog-2 female (WT mtDNA control, dark grey), Δnd-4 male x Δnd-4 female (mutant mtDNA 

control, light grey), Δnd-4 female x fog-2 male (red), and Δnd-4 male x fog-2 female (blue). 
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Figure III-4: Comparison of fog-2 males (dark grey) and four lines (A[purple], B[green], 

C[brown], D[dark yellow]) of Δnd-4 bearing males mating ability. 
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CONCLUSIONS 

 Mito-nuclear interactions are incredibly important to the evolution of eukaryotic life. 

Heteroplasmies are found very frequently ranging from low to high frequencies causing mito-

nuclear disruptions and leading to disease (Parakatselaki and Ladoukakis, 2021). Heteroplasmies 

that rise to high frequencies and have neutral or deleterious fitness effects are considered selfish 

mitochondria and can have different evolutionary effects on species (Hurst and Werren, 2001). 

For example, selfish mitotypes can persist long enough for nuclear compensatory mutations to 

arise and showcase the coevolutionary process between the nuclear and mitochondrial genomes 

that have carried eukaryotes through evolutionary history (Zhu et al., 2015; Wernick et al., 

2019). There could also be sex-specific effects due to aberrant mitochondria and exacerbate 

sexual antagonism in species (Connallon and Clark, 2014). In this thesis, we explore these very 

topics utilizing a spontaneous deletion that arose in the mitochondrial genome of the nematode 

C. elegans.  

 The Δnd-4 mitotype contains a 1034 bp deletion spanning the 3’ end of cox-3, a tRNA-

thr, and the 5’end of nd-4, and a nonsynonymous point mutation in nd4L. The deletion rose 

>80% and the substitution rose >90% during a previous mutation accumulation experiment in 

which fog-2 male-female sib pairs were bottlenecked for <35 generations (Katju et al., 2022).  

 In Chapter II, we sought to confirm whether Δnd-4 was indeed selfish. Utilizing four life-

history trait assays (development rate, productivity, survivorship to adulthood, and longevity), 

we found that there was a significant fitness decrease in all four traits for individuals bearing the 

Δnd-4 mitotype. Productivity decreased the most out of the life-history traits (63.7%). When 

competing with WT C. elegans, Δnd-4 bearing worms rapidly went extinct in large populations. 

However, when not competing with WT worms, Δnd-4 bearing individuals were maintained at 
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large population sizes for several generations. Interestingly, most of the uncompeted populations 

saw a drastic decrease in the intra-individual Δnd-4 mitotype frequency after 60 generations, 

with some individuals fully losing the mutant mitotype and one line maintaining the Δnd-4 

mitotype at ~90%. Lastly, we tracked the proliferation of Δnd-4 from a starting frequency of 

34% over a bottlenecking regime for ten generations and found a rapid increase in the mitotype 

frequency. This result paired with the decrease in fitness confirmed that the Δnd-4 mutant 

mitotype was, indeed, selfish.  

 In Chapter III, we examined possible sex-specific effects due to a selfish mitochondrion. 

For these experiments, we used Δnd-4 bearing individuals with a fog-2 nuclear background along 

with WT mtDNA fog-2 nematodes. We tested three life-history traits (survivorship/sex ratio, 

longevity, and productivity), comparing males to females. We found no sex ratio skew, that Δnd-

4 bearing females had significantly shorter lifespans, and Δnd-4 bearing individuals all had 

significantly lowered productivity. Because C. elegans females/hermaphrodites live shorter lives, 

it is difficult to tell in the Δnd-4 female longevity decrease is truly due to Δnd-4 or not (Ancell 

and and Pires-daSilva, 2017). When looking at how male mating ability is affected, we find no 

difference in mating success between WT mtDNA fog-2 and Δnd-4 individuals.  

 This thesis builds on methods used to test for selfishness as well as expand upon ideas 

that have been underutilized in C. elegans (Gitschlag et al., 2016; Havird et al., 2019; Dubie et 

al., 2020). The number of selfish mitochondria in C. elegans is growing and with that so is the 

need to understand the inter- and intra-cellular dynamics of them. While that is not the focus of 

these studies, we do capitalize on the little research that has gone into sex-specific effects of 

mitochondrial mutations on C. elegans. 
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 The interaction between harmful mitochondria and sexual antagonism is important, not 

only for evolutionary study, but also for mitochondrial disease research. It is well established that 

in systems which the mitochondria are strictly maternally inherited, males are more likely to 

suffer from detrimental mitotypes (Frank and Hurst, 1996). There are not many studies on the 

possible sexual antagonism brought on by mitochondrial mutations in C. elegans. However, this 

model system is incredibly useful to exploring Mother’s Curse or other sexual antagonistic 

dynamics because C. elegans have multiple breeding systems. This will allow scientists to 

explore more deeply sexual antagonism not only in a dioecious line, but also in a hermaphroditic 

line as well. Sexual antagonism in hermaphrodites is less obvious. However, in C. elegans, male-

specific genes are highly conserved (Cutter and Ward, 2005). A useful way of elucidating sex-

specific effects of mitochondrial heteroplasmies in hermaphrodites is to look at the gene 

expression in male-specific and female-specific genes and compare that to compensatory 

mutations that might arise in the sex-specific genes.  

Sperm and oocyte studies would also be useful in determining sex-specific outcomes of 

mitochondrial mutations. Of the fitness consequences that were discussed in Chapters II and III, 

C. elegans fertility was the most effected life-history trait. Furthermore, there were slight 

differences between males and females in sex-specific effects. It could be possible that there was 

a difference in sperm and oocyte quality. The mitochondria play a major role in the quality of 

oocytes (Cummins, 2002) and mitochondrial dysfunction increases with age (Quesada-Candela 

et al., 2021). On the other hand, C. elegans sperm triggers proteostasis enhancement when 

prepping the oocyte for fertilization. Dysfunctional mitochondria in the sperm could play a role 

in disrupting this interaction and cause lowered fertility (Bohnert and Kenyon, 2017). In the 

context of studying sex-specific effects of mitochondrial mutations in hermaphrodites, C. 
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elegans is a useful model system due to the ease of experimental manipulation. In a broader 

sense, there is still not much known about the mechanisms of mitochondrial dysfunction and 

sexual antagonism. Examining related questions will give further insight on how mitochondrial 

diseases spread as well as illustrate aspects of the evolution of sex that are still puzzling 

scientists.  
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