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ABSTRACT 

 

 Substances of unknown and variable composition, complex reaction product and 

biological material (UVCB) are one of the most challenging areas in regulatory science 

and risk assessment. The obscured compositional characterization and understanding of 

these substances, such as petroleum products, have relied in broad physical-chemical 

properties to deduce their toxicological fate and behavior. This study aims to advance the 

risk assessment of UVCB substances through high-resolution mass spectrometry to 

comprehensively deconvolute their inherently complex and variable chemical 

composition at a molecular level. Ion mobility coupled with quadruple-time of flight- mass 

spectrometer (IMS-MS) was employed to rapidly screen petroleum UVBC substances to 

define the value of petroleomic characterization in regulatory decision making. First, we 

employed comprehensive IMS-MS acquired compositional profiles of crude oil for 

categorization based on their geographical source. We compared high-resolution 

information with that from conventional methods, establishing IMS-MS as a high-

throughput and highly informative tool for the evaluation of UVCB substances. Then, we 

demonstrated the value of isobaric and isomeric characterization afforded by IMS-MS to 

comprehensively define molecular compositional profiles of petroleum refined products. 

High-resolution qualitative and semi-quantitative compositional information served to 

measure the degree of commonality across production cycles and between categories of 

UVCB substances to assist read-across and forensic fingerprinting assessments. Lastly, 

we assessed the environmental fate and behavior of weathered and photooxidized oil slick 



 

iii 

 

with high-resolution characterization of the dissolved organic matter from a mesocosm 

experiment. Through evaluation of molecular compositional trends, we determined that 

the physicochemical transformations of the composition of UVCBs correlated with 

sunlight irradiation achieving a better understanding of the environmental fate of an oil 

slick due to weathering to define the potential exposures and hazards. Together, this work 

demonstrated the utility of IMS-MS for rapid and comprehensive structural and molecular 

characterization of petroleum UVCB substances at a qualitative and semi-quantitative 

level. Through this dissertation we contribute a novel approach for the characterization of 

UVCB substances ensuring no underestimation of related human health and 

environmental hazards to support regulatory science and safeguard the risk assessments. 
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UVCB   Unknown or Variable composition, Complex reaction products, or 

   Biological materials 

REACH  Registration, evaluation, authorization and restriction of chemicals 

CAS   Chemical Abstract Service 

ASTM   American Society of Testing and Materials 

MS   Mass Spectrometry 

FTICR-MS  Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer 

Orbitrap-MS  Orbitrap Mass Spectrometer 

TOF-MS  Time of Flight Mass Spectrometer 

IMS-MS  Ion Mobility Mass Spectrometer 

GC-MS  Gas Chromatography Mass Spectrometer 

m/z   Mass-to-Charge 

DTCCSN2  Nitrogen gas-filled drift tube collisional cross section 

ESI   Electrospray Ionization 

APPI   Atmospheric Pressure Photoionization 

APCI   Atmospheric Pressure Chemical Ionization 

FM   Fowlkes-Malow 

PAHs Polycyclic Aromatic Hydrocarbons 

KMD Kendrick Mass Defect 

DBE Double Bond Equivalent 
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1. INTRODUCTION  

 

1.1. Overview 

 Crude oils are naturally occurring complex and variable substances composed of 

thousands of constituents and hydrocarbon molecules. Billions of barrels of crude oils are 

processed yearly yielding a wide variety of refined petroleum substances (Kaiser 2017; 

Salvito et al. 2020). The intrinsic composition of petroleum substances is defined by the 

crude oil from which it is derived and the manufacturing and refining processes it 

undergoes (i.e. distillation streams, boiling point). The inherent compositional complexity 

and variability of petroleum substances that define these products classify them as 

substances of unknown, variable composition, complex reaction products, or biological 

materials (UVCBs). The indefinite and unpredictable molecular composition of UVCBs 

presents unique challenges for substance assessment and regulation (Clark et al. 2013; 

ECHA 2017a). The broad range in compositional properties of petroleum UVCBs 

challenges the standard testing paradigm designed for single substances. Therefore, 

hazard, risk and exposure assessment of petroleum substances have heavily relied on 

substance grouping and read-across. Additionally, new approach methods such as in silico 

and in vitro methods, have been proposed in the assessment of UVCBs.   

 The complex composition of petroleum substances influences the fate and 

concentration of each of its constituents. Therefore, a comprehensive understanding of the 

chemical composition of petroleum substances is needed to be enable appropriate risk 

assessment. 
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1.2. Regulatory framework for assessment of UVCB substances 

 International regulatory frameworks have historically (Figure 1.1) attempted to 

address petroleum UVCB substance registration through supplementary information, such 

as physical-chemical properties, distillation/manufacturing processes, and chemical 

fingerprint (Dimitrov et al. 2015; ECHA 2008; Rasmussen et al. 1998). Naming 

conventions, developed by American Petroleum Institute and US Environmental 

Protection Agency to be included in the Toxic Substance Control Act inventory, were 

based on the substances manufacturing processes (API 1983; EPA 1995; U.S. EPA 1978). 

Substance categories were first defined through the High Production Volume Challenge 

Program with the compiling of substance information, physical-chemical properties, and 

human and environmental hazards, voluntarily provided by industry (Group 2017). The 

European Union Regulation No 1907/2006 Registration, Evaluation, Authorization, and 

Restriction of Chemicals (REACH) was implemented in 2007, shifting responsibility to 

industry partners in the safeguarding of assessing the potential risk posed by chemicals. 

By 2010, all petroleum products, 8,000 individual registrations, were registered in the 

Europe under REACH deadline for substances produced at >100 tones (Concawe 2022). 

Of the 191 substances registered a limited amount have complete hazard assessment data 

sets (Concawe 2021). 

 Based on the available guidance and intrinsic composition of petroleum 

substances, industry has relied on categorization of substances through extrapolation of 

available information to fill in data gaps without the need for further testing (Clark et al. 

2013; Pusyn et al. 2009). Categorization of substances has been defined through broad 
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compositional commonalities and predicting a correlation to similar physiochemical and 

toxicological properties (Clark et al. 2013; McKee et al. 2015; OECD 2014).  

Representative substances known as “worst-case scenario” are used to read-across data 

for substances in the cohort, ensuring no underestimation and focusing on constituents that 

are known to drive the hazard potential of the substance (Clark et al. 2013; McKee et al. 

2015; Salvito et al. 2020). Additionally, recent amendments to Annex XI, S.1.5 of the 

REACH regulation state that for the application of grouping “Structural similarity for 

UVCB substances shall be established on the basis of similarities in the structures of the 

constituents, together with the concentration of these constituents and variability in the 

concentration of these constituents” (European Commission 2021).  

1.3. Standardized methods for the characterization of UVCB substances 

 The developed and validated methods for characterization of UVCB substances 

enable appropriate substance description for determining product quality and assessing 

potential human health and environmental hazards. Industry partners follow standardized 

methods in the characterization of substances for registration to satisfy the requirements 

established by regulatory agencies. Information for substance registration following 

REACH should be sufficient to enable substance identification. Therefore, European 

Chemical Agency’s guidance is that analytical data of a substance for registration should 

provide: source/feedstock; refining history; boiling and carbon range; identification and 

concentration of constituents present at >10%, of relevant hazard classification or/and 

PBT assessment; identification of additives; identification of unknown constituents 

through generic description; chromatographic or spectral information; flash point and 
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viscosity (CONCAWE 2012; ECHA 2017a). Additionally, Article 7(2) and 33 of REACH 

have defined a concentration threshold of 0.1% w/w for constituents classified as 

“substance of very high concern” to be notified or communicated in safety data sheets 

(ECHA 2017b). 

 Due to the broad range of UVCB substances with widely different compositions, 

volatilities and polarities it is not possible to define a one size fits all technique. Therefore, 

characterization of UVCB substances has been an active research area in analytical 

chemistry and the continuous advances in technology and methods have contributed to a 

more detailed understanding of these highly complex substances (Onel et al. 2019; Stout 

and Wang 2007; Wang et al. 2011). The analytical information for REACH registration 

dossiers has been defined to that achievable by standardized methods (CONCAWE 2014). 

Accordingly, industry partners have relied on a battery of standardized tests to characterize 

substances. The first established methods characterized petroleum substances by their  

specific gravity, ASTM D287 Standard Method for API Gravity of Crude Petroleum and 

Petroleum Products (Giles 2016). Further physical-chemical information such as boiling 

and carbon range description can be deduced through physical distillation (ASTM D86, 

D1160 and D2892) or simulated distillation methods (CONCAWE 2019a; 2020a). 

Likewise, elemental analysis has been fundamentally applied for the characterization of 

petroleum UVCBs measuring the concentrations of major elements ranging from organics 

to metals (CONCAWE 2019a). 

 Spectroscopic techniques have been widely employed to obtain broad 

compositional information for regulatory characterization and identification of UVCB 



 

5 

 

substances; nevertheless the value of this information has been challenged (CONCAWE 

2020a). Ultra-violet spectroscopy analysis quantifies compounds by detecting unsaturated 

bonds such as those in olefins and aromatic bonds, ketonic and heteroatom groups. 

Through infra-red spectroscopy measurements the presence of functional groups can be 

determined allowing one to define the degree of saturation in the constituents 

(CONCAWE 2012). Nuclear magnetic resonance methods (IP392, ASTM D5292) 

measure the percent of carbon or hydrogen atoms in an aromatic ring (CONCAWE 

2020a).  

Chromatographic based methods have been used to separate constituents providing 

information on the total content of those present. Liquid chromatography separation is 

dependent on the polarity of the constituents present, predominantly used to characterize 

polar compounds. High-performance liquid chromatography is used to quantify mono-, 

di- and tri-aromatic hydrocarbons. Meanwhile, thin layer  or liquid column 

chromatography (ASTM D2007) separation generates information on basic chemical 

functionalities present (CONCAWE 2012; 2019a).  Gas chromatography analysis of 

hydrocarbons was first applied by Eggerston in 1960, and later published by Green in 

1964, leading to the standardized method ASTM 2887-84 for Boiling Range Distribution 

of Petroleum Fractions by Gas Chromatography (Giles 2016). Gas chromatography has 

been a powerful tool used for the separation and semi-qualitative assessment of non-polar 

constituents such as hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) 

(CONCAWE 2012). Gas chromatography-mass spectrometry (GC-MS) detection based 

methods have been heavily applied to forensic fingerprinting methods (US EPA 8270 and 
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8051B) to characterize the composition of petroleum UVCBs (US EPA 1996; 2014). 

Flame ionization detection has been coupled with various liquid and gas chromatography 

methods for the detection and quantification of hydrocarbons  (CONCAWE 2012). 

Otherwise coupled with MS providing molecular structure information, the efficient 

separation of liquid and gas chromatography methods facilitate qualitative and 

quantitative characterization of the substances measured. The information generated 

through gas chromatography with mass spectrometry for quantitative characterization has 

demonstrated it as a valuable tool throughout production, regulatory assessment, and 

emergency response of petroleum substances. 

1.4. Novel analytical methods for the characterization of UVCB substances 

 Advancements in mass spectrometry technology in the past 80 years (Figure 1.1) 

have spawned the application of high-resolution mass spectrometry for the study of 

petroleum substances at a molecular level, a field defined as petroleomics. Mass resolution 

has been defined as the minimum mass difference between two spectral peaks (m2 – m1 = 

Δm50%). The performance of a mass analyzer is usually expressed based on its resolving 

power (m2/ m2 – m1).  The resolving power of high-resolution mass spectrometry 

instruments, measured by full width at half maximum (FWHM), typically greater than 

10,000 FWHM results in increased mass accuracy allowing one to differentiate closely 

spaced peaks. The high resolution and increased mass accuracy ensure peak resolution for 

molecular formula assignment to observed masses. The comprehensive characterization 

of the molecular composition of petroleum has defined the field known as “petroleomics” 

yielding information to predict the behavior and reactivity of petroleum substances (Hsu 
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et al. 2011; Marshall and Rodgers 2004; Niyonsaba et al. 2019; Palacio Lozano et al. 

2019a; Palacio Lozano et al. 2019b; Palacio Lozano et al. 2020; Xian et al. 2012). 

 The Fourier-transform ion cyclotron resonance mass spectrometer (FTICR-MS) 

has an ultra-high resolving power of ~106 FWHM offering state-of-the-art mass resolution 

and accuracy. Orbitrap-MS, another Fourier-transform MS instrument offers a resolving 

power of ~105 FWHM. Recent advancements in time of flight mass spectrometer (TOF-

MS) technology render a resolving power of 54-104 FWHM. Unlike FTICR-MS and 

Orbitrap-MS which offer ultra-high-resolution, TOF-MS rapid acquisition time allows for 

coupling with various separation techniques such as two-dimensional gas chromatography 

and ion mobility spectrometry (Palacio Lozano et al. 2019a). The high-resolution and mass 

accuracy offered by FTICR-MS, Orbitrap-MS, and TOF-MS, can completely separate 

coeluting mass spectral peaks present in complex substances allowing to calculate the 

exact molecular mass for the mass spectrum peak detected (Palacio Lozano et al. 2019b; 

Rodgers and McKenna 2011). 

 Petroleomic analysis afforded by high-resolution mass spectrometry has proven to 

be a powerful approach in the evaluating UVCB substances through its application in over 

1,000 studies (Figure 1.2). The expanded window of analysis available by high-resolution 

mass spectrometry makes it possible to characterize less volatile and non-volatile,  as well 

as polar and non-polar compounds within a  broad mass range (>50 m/z) (Staš et al. 2017). 

High-resolution mass spectrometry technique’s resolving power and mass accuracy can 

resolve closely spaced mass peaks in complex substances, resulting in useful molecular 

level characterization. The ability to detect a compound’s exact molecular mass allows to 
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determine its molecular composition (Cc Hh Nn Oo Ss) (Staš et al. 2017). The application of 

Kendrick Mass Defect (KMD) has aided the molecular characterization through the 

conversion of the observed mass to the proposed Kendrick mass (Kendrick 1963). As a 

result, compounds of the same base units with different degree of alkylation (CH2) would 

differ by 14.0000Da and would have the same defect in Kendrick Mass, making it possible 

to recognize homologous series of compounds of the same class and aromaticity (Figure 

1.3A) (Hughey et al. 2001; Marshall and Rodgers 2004; 2008; Palacio Lozano et al. 2020). 

1.5. Challenges in the regulatory assessment of UVCB substances 

 International regulatory frameworks have addressed the assessment of the 

potential hazards and risk related to petroleum substances based on their broad physical-

chemical properties and manufacturing descriptors (Salvito et al. 2020).  Regulators and 

industry partners have heavily relied on substance categorization and read-across 

assessment to extrapolate information for predicting a correlation to a substance with 

similar physiochemical and toxicological properties (Clark et al. 2013; McKee et al. 2015; 

OECD 2014; Pusyn et al. 2009; Salvito et al. 2020). Nevertheless, the chemical 

information has been limited to that requested by regulators, with broad compositional 

information for commercial purposes and no comprehensive information on individual 

constituents (ECHA 2020). 

 Conventional standardized methods recommended by regulatory agencies and 

industry partners for compositional characterization of UVCB substances are known to be 

impaired by the complex composition of UVCB substances. Therefore, it is currently 

necessary to carry-out a battery of assays, large sample quantities, specialized sample 
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preparation and considerable expenditures to acquire sufficient information for substance 

characterization. Despite the multiple available standardized methods and recent 

advancements in analytical technology, conventional analytical practice is still limited in 

the mass resolving power and struggles to separate the coeluting and isomeric compounds. 

Spectroscopic techniques are limited to bulk information and “most substances [petroleum 

UVCBs] cannot be effectively differentiated from each other by UV, IR, 1H-NMR or 13C-

NMR spectroscopies” (CONCAWE 2020a). Chromatographic base methods provide 

sufficient information for qualitative and quantitative characterization of compounds 

within UVCB substances. Characterization of nonpolar and relative volatile compounds 

present in complex substances has readily relied on GC-methods such as ASTM D2134, 

D6729, D6730, among others (CONCAWE 2012). GC coupled with flame ionization 

detection and MS provide information on the aliphatic and aromatic fraction of complex 

substances readily applied for substance identification (Reddy and Quinn 1999; Wang and 

Fingas 2003b).  Nevertheless, due to the limited resolution, compounds in heavy 

petroleum UVCBs are known to co-elute resulting in a hump defined as unresolved 

complex mixture (Wang et al. 2011; Weng et al. 2015). Characterization of constituents 

in the substances is also limited to prior selected compounds for analysis (i.e. biological 

markers) (Fernandez-Lima et al. 2009). 

Risk assessment of UVCB substances has been under-characterized due to the 

substance’s intrinsic composition and reliability on broad substance measurements. The 

European Chemical Agency in 2020 challenged the assumptions made by industry through 

the application of read-across for new substance registration, questioning the 
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uncharacterized “broadly similar [chemical] composition” and raising the need for 

additional chemical compositional descriptors to justify the correlation with currently 

available data.  The European Chemical Agency stated the need of “qualitative and 

quantitative information on composition to allow assessment of whether predictions are 

compromised” (ECHA 2020). At the time, Annex XI, S.1.5 of the REACH regulation 

established that substances with chemical similarity driving their respective 

physicochemical, toxicological and ecotoxicology may be defined as a category (ECHA 

2020). The amendments published in 2021 define the application of read-across to be 

justified by defined qualitative and quantitative structural similarity of constituents 

between substances resulting in the likelihood of similar toxicological properties 

(European Commission 2021). 

1.6. Addressing regulatory challenges with high-resolution mass spectrometry  

 High-resolution mass spectrometry has provided detailed compositional 

characterization on petroleum UVCB substances (Hsu and Shi 2013; Niyonsaba et al. 

2019; Palacio Lozano et al. 2019a; Palacio Lozano et al. 2019b; Palacio Lozano et al. 

2020; Rodgers and McKenna 2011; Xian et al. 2012). The information available through 

high-resolution characterization of the chemical composition of UVCB substances can 

address the shortcomings with regards to the prediction of toxicological properties when 

practicing read-across assessment. Comprehensive characterization can provide sufficient 

information on the molecular composition and their relative abundance within a substance 

to define the commonality between substances and their similarity at a molecular level. 
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With this information, it is then possible to determine key constituents that have the 

potential of driving the human health hazard properties of the substance. 

 High-resolution mass spectrometry accompanied with petroleomic analysis of 

UVCB substances has generated information on “individual chemical constituents, their 

structural features and quantitative variation” addressing the challenges presented by 

ECHA (Figure 1.2) (ECHA 2020).  The mass accuracy and resolving power afforded by 

FTICR-MS, Orbitrap-MS, and TOF-MS instrumentations have provided comprehensive 

isobaric information of the constituents in UVCB petroleum substances with high-

resolution and mass accuracy (Niyonsaba et al. 2019; Palacio Lozano et al. 2019a; Palacio 

Lozano et al. 2019b; Palacio Lozano et al. 2020; Staš et al. 2017).The ultra-high-resolution 

analysis offered by FTICR-MS and Orbitrap-MS delivers an expanded mass-to-charge 

region, accurate mass measurements, and relative ion abundances allowing to visualize 

the compositional characteristics of light to heavy fractions of petroleum UVCBs (Kim et 

al. 2015; Miles et al. 2020; Palacio Lozano et al. 2020).  The mass accuracy afforded by 

having ultra-high-resolution generates isobaric information of the constituents in a 

complex substance. Previous studies have benefited from the ability to distinguish 

compounds with the same nominal mass but different elemental compositions to 

comprehensively characterize the molecular formula of >95% of the compounds 

detected(Walters et al. 2015). Untargeted high-resolution mass spectrometry analysis has 

provided insight on specific compounds of interest to assess the compositional traits and 

behaviors of various substances (Cho et al. 2014; Walters et al. 2015). 
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 In contrast, to other high-resolution mass spectrometers TOF-MS offers lower 

resolution, but a faster analysis time in the millisecond time scale. Therefore, facilitating 

the combination with various separation techniques such as two-dimensional gas 

chromatography and ion mobility spectrometry enhancing peak capacity and separation 

power (Palacio Lozano et al. 2019a). Ion mobility provides multidimensional separation 

of ions based on their mobility across a stationary buffer gas under the influence of an 

electric field (Dodds and Baker 2019). Mobility measurements are converted to collisional 

cross section values defining the spatial conformation of the ions and enabling isomeric 

measurement. Ion mobility spectrometry multidimensional separation with TOF-MS has 

been applied for the identification and characterization of structural isomers in complex 

substances (Hoskins et al. 2011; Lalli et al. 2015; Lalli et al. 2017; Mahmoud and Dabek-

Zlotorzynska 2018). In comparison, two-dimensional gas chromatography orthogonal 

separation offers qualitative and semi-quantitative characterization of compound classes 

(Damasceno et al. 2014; O'Reilly et al. 2019; Stewart et al. 2021). The secondary retention 

time offers narrow separation resolving isomeric compounds and compounds that would 

otherwise coelute (Ball and Aluwihare 2014; Luna et al. 2014; Ngo et al. 2012; Rowland 

et al. 2011; Scarlett et al. 2008). The multidimensional gas chromatography separation 

coupled with high-resolution detection in TOF-MS has been widely employed to map out 

the composition of complex substances (Alam et al. 2018; Frenzel et al. 2010; Gabetti et 

al. 2021; Luna et al. 2014; Muller et al. 2020; O'Reilly et al. 2019; Qian and Wang 2019; 

Ristic et al. 2018; Zhu et al. 2020). Notably, physical characteristics (i.e. density) have 
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been directly correlated based on the detailed chemical composition defined through two-

dimensional gas chromatography high-resolution mass spectrometry (Vozka et al. 2019).  

 As post-ionization separation techniques, high-resolution mass spectrometry 

instruments offer detection of non-polar and polar compounds through different ionization 

sources. The application of electrospray ionization (ESI) and atmospheric pressure 

photoionization (APPI) sources have expanded the characterization of polar and non-polar 

compounds, respectively (Oldenburg et al. 2014; Oldenburg et al. 2017; Walters et al. 

2015). ESI has a higher selectivity to ionize polar compounds such as heteroatom 

containing constituents. On the other hand, APPI and atmospheric pressure chemical 

ionization (APCI) have been employed for the characterization of non-polar compounds, 

such as hydrocarbons and sulfur-containing compounds (Dong et al. 2019). 

 The comprehensive molecular characterization made possible by high-resolution 

mass spectrometry instruments and petroleomics analysis yields elemental and structural 

information (Figure 1.3). The broad information can be readily summarized to show the 

relative distribution of compounds through heteroatom classes (HC#, O#, N#, O#, S#, etc.). 

It is also possible to better understand the structural composition and degree of aromaticity 

of the constituents by plotting DBE (DBE= C# - H#/2 + N#/2 + 1) versus carbon number 

(Figure 1.3B) (Marshall and Rodgers 2008; Palacio Lozano et al. 2020). Van Krevelen 

diagrams allow one to define the degree of oxidation of the constituents by plotting the 

H/C versus O/C ratio of the organic compounds (Kim et al. 2003; van Krevelen 1950; 

1984). Structural data such as that offered by two-dimensional gas chromatography or ion 

mobility spectrometry can complement the molecular information for compositional 
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categorization by hydrocarbon block method through grouping structurally related 

compounds by their carbon chain length and hydrocarbon class (Figure 1.3C) 

(CONCAWE 1996; 2019b). 

 The expanded analytical window offered by high-resolution mass spectrometry 

has improved the current understanding of the chemical profile of UVCB substances. The 

feasibility to readily evaluate heavy fuel oils (Elbaz et al. 2015) and trace molecular 

compositional changes of the heteroatomic compounds (Silva et al. 2021) has not been 

feasible until the application of high-resolution mass spectrometry. Compositional profiles 

of UVCB substances have been comprehensively evaluated through signature 

characteristics in the general mass spectrum, as well as relative abundance distributions at 

a molecular level (Castiblanco et al. 2020; Covas et al. 2020; Liu et al. 2020; Vanini et al. 

2020). Comprehensive analysis of the chemical composition of UVCBs has provided 

information on the nature, genesis, and processes of a substance, therefore defining its 

intrinsic characteristics (Benassi et al. 2013; Mennito and Qian 2013; Oldenburg et al. 

2014; Oldenburg et al. 2017; Orrego- Ruíz 2018; Silva et al. 2020; Walters et al. 2015; 

Wang et al. 2020). Additionally, the ability to study molecular trends has generated a novel 

understanding of the compositional transformations and variabilities within and across 

UVCB substances (Hosseini and Sachsenhofer 2021; Rocha et al. 2018; Silva et al. 2020).  

In summary, high-resolution mass spectrometry is a valuable tool in understanding the 

fate and behavior of UVCB substances (Jaggi et al. 2019; Li et al. 2022; Wozniak et al. 

2019).  
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1.7. Application of ion mobility mass spectrometry for comprehensive assessment of 

UVCB substances 

 Ion mobility enables multidimensional measurements on the millisecond timescale 

through a post-ionization separation of ions as they travel across an inert gas under the 

influence of an electric field. The mobility measurements of each ion is directly correlated 

to their collisional cross section values, a  descriptor of the ion’s unique structural 

conformation (Dodds and Baker 2019). The fast screening capabilities and high sensitivity 

of ion mobility instruments coupled with the high-resolution of TOF-MS enables 

multidimensional information for a complete characterization of complex substances 

(Fernandez-Lima et al. 2009; Ibrahim et al. 2016). Combination of isomeric separation 

with high-resolution isobaric information is a promising aid to the deconvolution of 

UVCB substances (Fernandez-Lima et al. 2009; Grimm et al. 2017). Therefore, the 

application of ion mobility mass spectrometer (IMS-MS) is a valuable tool during the 

assessment and characterization of UVCB substances by defining “individual chemical 

constituents, their structural features, and quantitative variation” (ECHA 2020).  

   In addition to understanding the comprehensive characterization of UVCB 

substances, translation of the information to practitioners is another critical challenge. 

Petroleomic analysis has yielded molecular level information from high-resolution mass 

spectrometry data(Hsu et al. 2011; Marshall et al. 2010; Marshall and Rodgers 2004; 2008; 

Palacio Lozano et al. 2020; Santos et al. 2015). Chemometric approaches such as principal 

component analysis or hierarchical clustering have been applied to translate the molecular 

level information and to define the compositional trends and relationships between 
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samples (Hur et al. 2010). Principal component analysis aids the visualization of 

compositional variance by summarizing the dimensionality of a comprehensive profile 

(Corilo et al. 2013). Unsupervised classification of the compositional profiles through 

hierarchical clustering analysis allows one to visualize the commonality between 

substances in the generated clusters (Guillemant et al. 2019). Fowlkes-Mallow (FM) Index 

measures the similarity between clusters, to evaluate the concordance of experimental 

data-derived clustering to that of the pre-defined sample classification. FM index values 

can range from 0 (no correspondence) to 1 (perfect correspondence) (Fowlkes and 

Mallows 1983).  

 Novel analytical advances, such as IMS-MS presented here, have greatly increased 

our ability to access valuable information on the composition of UVCBs. The ability to 

characterize petroleum UVCB substances at a molecular level with multidimensional, 

high-resolution petroleomics addresses the major challenges encountered during risk 

assessment (Salvito et al. 2020). Therefore, through the implementation of petroleomics 

analysis within a comprehensive assessment framework to screen the chemical 

composition and complement other available information, IMS-MS can serve as a rapid 

and high-resolution tool to aid read-across and safeguard the practice of risk assessment. 

Through the application of non-targeted, high-resolution IMS-MS analysis we aim to shed 

light on relevant compositional information of UVCB substances previously thought 

unattainable. The work presented in this dissertation establishes a paradigm shift to the 

risk assessment of UVCB substances when applying read-across analysis providing 

information on “structural similarity between substances which result in a likelihood that 
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the substances have similar physicochemical, toxicological and ecotoxicological 

properties” (ECHA 2020).  

1.8. Specific Aims 

 Throughout the work presented herein, we aimed to safeguard the hazard and risk 

assessment of UVCB substances with comprehensive chemical profiles.  The overall 

objective is to develop high-resolution mass spectrometry methods for compositional 

characterization at a molecular level for comprehensive characterization, identification, 

and grouping of UVCB substances to safeguard proper hazard and risk assessment. 

 Specific Aim 1: To establish ion mobility spectrometry-mass spectrometry 

(IMS-MS) as a rapid and highly informative technique for the categorization of 

UVCB substances. Through this aim, the comprehensive compositional profiles acquired 

by high-resolution mass spectrometry were evaluated as qualitative information for 

geochemical categorization of crude oils. Crude oil samples from neighboring areas in the 

Gulf of Mexico region were analyzed using high-throughput IMS-MS and standardized 

GC-MS methods. The generated chemical profiles were used to group samples based on 

their geographical origin. The data was presented to practitioners through a table-top 

exercise to define the value and drawback of high-resolution IMS-MS as a decision-

making tool. 

 Specific Aim 2: To define the composition of UVCB substances at a molecular 

level to define the degree of commonality across production and categories. In this 

aim, the molecular composition of petroleum refined products was deconvoluted through 

IMS-MS and petroleomic analysis. Accurate mass measurements, structural composition, 
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and relative abundances allowed to define the molecular composition and chemical 

profiles of each substance. The comprehensive characterization of the composition as a 

whole and its constituents then validated the intrinsic compositional variabilities and 

similarities between production cycles and across manufacturing categories. 

 Specific Aim 3: To characterize compositional transformations and their role 

on the fate and behavior of UVCB substances.  With this aim, the role of photooxidation 

as a weathering process affecting the physical-chemical composition of the oil was 

investigated. By conducting an outdoor mesocosm experiment with a crude oil slick on 

seawater, we measured the direct effect of sunlight irradiation on the fate and behavior of 

the oil through IMS-MS analysis. Comprehensive molecular characterization of the water-

soluble fraction allowed us to identify photooxidation products and describe 

physicochemical transformations as an effect of sunlight irradiation across time. 

 In summary, this dissertation provides a comprehensive understanding of the 

molecular composition of UVCB substances and defines the role of high-resolution mass 

spectrometry information in read-across approaches, therefore enabling risk assessment to 

better safeguard human health and the environment. 
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Figure 1.1 Evolution of the main developments in high-resolution analytical technology, 
petroleomic analysis and international regulatory frameworks regarding UVCB 
substances. 



 

20 

 

 
Figure 1.2 High-resolution mass spectrometry application throughout literature to 
address the regulatory needs established in the amendments of  REACH Annex XI, 
S.1.5. (ECHA 2020). 
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Figure 1.3 Petroleomic assessment of high-resolution mass spectrometry data. (A) 
Kendrick Mass Defect plot generating homologous series, (B) Double Bond Equivalent 
versus carbon number for hydrocarbon constituents and (C) hydrocarbon block 
assignment based on class and carbon range for a hydrotreated heavy paraffinic petroleum 
distillate. 
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2. A COMPARATIVE ANALYSIS OF ANALYTICAL TECHNIQUES FOR RAPID 

OIL SPILL IDENTIFICATION* 

 

2.1. Overview 

 The complex chemical composition of crude oils presents many challenges for 

rapid chemical characterization in the case of a spill. A number of approaches are currently 

used to “fingerprint” petroleum-derived samples. Gas chromatography coupled with mass 

spectrometry is the most common, albeit not very rapid, technique; however, with limited 

resolution to resolve the complex substances in crude oils. This study examined the 

potential application of IMS-MS, coupled with chem-informatic analyses, as an alternative 

high-throughput method for the chemical characterization of crude oils. We analyzed 19 

crude oil samples from on- and off-shore locations in the Gulf of Mexico region in the 

United States using both GC-MS (biomarkers, gasoline range hydrocarbons, and alkanes) 

and IMS-MS (untargeted analysis). Hierarchical clustering, principal component analysis, 

and nearest-neighbor-based classification were used to examine sample similarity and 

geographical groupings. We found that direct injection IMS-MS performed either equal 

or better than both GC-MS in the classification of the origins of crude oils. In addition, 

IMS-MS greatly increased the sample analysis throughput (minutes versus hours per 

                                                 

*Reprinted with permission from “A Comparative Analysis of Analytical Techniques for 
Rapid oil Spill Identification” by Alina Roman-Hubers, Thomas McDonald, Erin Baker, 
Weihsueh Chiu and Ivan Rusyn, 2020. Environmental Toxicology and Chemistry, 40, 
1034-1049, Copyright 2020 by Wiley Online Library. 
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sample). Finally, a tabletop science-to-practice exercise, utilizing both the GC-MS and 

IMS-MS data, was conducted with emergency response experts from regulatory agencies 

and the oil industry. This activity showed that the stakeholders found the IMS-MS data to 

be highly informative for rapid chemical fingerprinting of complex substances in general, 

and specifically advantageous for accurate and confident source-grouping of crude oils. 

Collectively, this study shows the utility of IMS-MS as a technique for rapid fingerprinting 

of complex samples and demonstrates its advantages over traditional both GC-MS based 

analyses when used for decision-making in emergency situations. 

2.2. Introduction 

Large quantities of crude oil and petroleum refining products are released into the 

environment each year due to accidental spills or natural seeps; however, both exposure 

and hazard evaluation of these releases remain a formidable challenge to both the industry 

and the regulators (Laffon et al. 2016). One of the major confounding factors in oil spill 

response is the complexity of substance composition, making it excessively difficult to 

both characterize chemical constituents and identify their source (Bejarano and Michel 

2016). Chemical analysis of petroleum has been an active area of the analytical chemistry 

for over 50 years and continuous advances in the methods for sample collection, 

extraction, analytical detection and data analysis have contributed to improvements in the 

accuracy of exposure characterization after oil spills (Aeppli et al. 2013; Corilo et al. 2013; 

McKenna et al. 2013; Onel et al. 2019; Stout and Wang 2007; Ventura et al. 2011; Wang 

et al. 2011; White et al. 2020). A number of novel analytical methods have been applied 

to these “petroleomic measurements” with the goal to achieve a more detailed chemical 
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characterization of the constituents, as well as derive characteristic signatures, or 

“fingerprints,” of the particular oils or refining products (Fernandez-Lima et al. 2009; 

Marshall and Rodgers 2004; 2008). These methods typically couple several analyses 

together and the multi-dimensional datasets are then processed with various classification 

and regression methods to determine the similarities and differences in compositional 

patterns among samples (de Carvalho Rocha et al. 2017; Juahir et al. 2017; Onel et al. 

2019). 

Chemical fingerprinting of petroleum and other complex substances has 

traditionally relied on gas chromatography separations followed by high selectivity 

detection with mass spectrometry or flame ionization detection. For example, methods 

established by the United States Environmental Protection Agency 8051B “Non-

Halogenated Organics Using Gas Chromatography-Flame Ionization Detection” is a 

common fingerprinting approach for qualitative forensic fingerprinting, and 8270 “Semi-

Volatile Organic compounds by Gas Chromatography-Mass Spectrometry” is the 

employed for forensic fingerprinting of petroleum and complex mixtures. Both of these 

methods are widely used for characterization of complex samples and their individual 

constituents (Hantao et al. 2012). In addition, two-dimensional gas chromatography 

analyses have been shown to hold promise for oil fingerprinting (Aeppli et al. 2013; 

Ventura et al. 2011). However, while gas chromatography based analytical techniques 

provide useful and quantitative information, the chemical complexity of oil far exceeds 

the separation capacity of gas chromatography alone. In addition, gas chromatography 

methods are generally time-consuming (requiring at least an hour or more per sample) and 
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also face difficulties with identification of low abundance and/or high molecular weight 

compounds. Therefore, even though they are widely used for forensic fingerprinting of 

oil, gas chromatography methods are not considered to be most information-rich or fast 

techniques  (de Carvalho Rocha et al. 2017; Fernandez-Lima et al. 2009; Marshall and 

Rodgers 2004; Onel et al. 2019; Stout and Wang 2007). 

Several high-resolution mass spectrometry techniques have been also used for oil 

fingerprinting. Most used technique is Fourier-transform ion cyclotron resonance mass 

spectrometry (Corilo et al. 2013; McKenna et al. 2013; Purcell et al. 2007a; Purcell et al. 

2007b). Other methods, such as X-ray fluorescence and attenuated total reflectance - 

Fourier transform infrared spectroscopy (White et al. 2020) and IMS-MS (Ibrahim et al. 

2015; Santos et al. 2015) have also been explored for untargeted chemical fingerprinting 

of petroleum substances. IMS-MS is a rapid post-ionization technique that separates ions 

based on shape, charge and mass (Dodds and Baker 2019; Luo et al. 2020a). Furthermore, 

the ion mobility dimension allows the derivation of collisional cross section, a value for 

each chromatographic feature that is related to its rotationally-averaged area of interaction 

with the buffer gas in a drift tube (Dodds et al. 2020). IMS-MS may be coupled with 

different ionization sources, such as electrospray ionization (ESI), atmospheric pressure 

photoionization (APPI) or atmospheric pressure chemical ionization (APCI), depending 

on the molecular classes of interest. Previous studies with IMS-MS have shown promise 

in providing faster and information-rich content for complex substances; however, this 

technique is not as familiar to practitioners in oil spill response as gas chromatography-

mass spectrometry (Fernandez-Lima et al. 2009; Grimm et al. 2017; Santos et al. 2015). 
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In this study, we tested the utility of IMS-MS as a high-throughput, untargeted 

screening method for characterization of crude oil’s complex composition. While gas 

chromatography-mass spectrometry and other traditional techniques are used routinely for 

characterization the composition of key constituents in oils, we hypothesized that IMS-

MS may be a sensible alternative for rapid analysis and identification of the origins of 

unknown samples in emergency situations. To test this, we performed a comparative 

analysis of IMS-MS and gas chromatography-mass spectrometry data for grouping of 19 

crude oil samples from 6 distinct areas of the Gulf of Mexico region. The translational 

utility of each dataset was evaluated through a science-to-practice tabletop exercise with 

the stakeholders from the industry and regulatory agencies who were asked to make rapid 

assessment of the origins of two blinded samples. 

2.3. Materials and Methods 

2.3.1. Sample selection 

 Crude oil samples (n=19) from on- and off-shore locations in the Gulf of Mexico 

region were obtained from a repository of crude oil samples at Texas A&M University 

(Kennicutt II et al. 1992). Oil samples were stored at -20оC until analyzed. The samples 

originate from two regions and three areas in the United States (Figure 2.1). Detailed 

geographical information about each sample is provided in Table S2.1. Sample labels 

correspond to the region and area of genesis. On-shore samples were identified by their 

State of origin (TX=Texas, LA=Louisiana, AL=Alabama) and a unique sample ID. Off-

shore samples are identified with the letter “G” (for Gulf of Mexico), geographical area of 
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genesis (HI=High Island, ST=South Timbalier, EC=East Cameron) and a unique sample 

ID. 

2.3.2. Sample preparation 

 To prepare the samples for analytical evaluation, the following solvents (all HPLC 

grade and >99.8% pure, Sigma Aldrich, St. Louis, MO) were used: toluene (CAS 108-88-

3; Cat #34866), methanol (CAS 67-56-1; Cat #34860) and dichloromethane (CAS 75-09-

2; Cat #34856). For GC-MS analyses, all oil samples were weighed and dissolved in 

dichloromethane (no precipitate was visible and it is assumed that the samples dissolved 

completely) to a final dilution of 1 mg of oil per 1 mL of dichloromethane. For the IMS-

MS analyses, the same dichloromethane-diluted oil samples were used, but they were 

solvent exchanged from dichloromethane to 1:1 v/v toluene:methanol. (Grimm et al. 2017; 

Purcell et al. 2007a) 

2.3.3. GC-MS instrumental parameters 

 The modified version of the established United States Environmental Protection 

Agency method 8270 was used for the analyses using an Agilent 7890 gas chromatograph 

(Agilent Technologies, Santa Clara, CA) interfaced with a Hewlett-Packard 5976 Mass 

Spectrometer (Agilent Technologies). HP-5ms Ultra Inert Column (30 m × 0.25 µm × 

0.25 mm; Cat. #G3900-63001, Agilent Technologies) was used to chromatographically 

separate petroleum hydrocarbons. Instrumental operating conditions were as follows: 

mass range 45-500 m/z, split-less injector, injection volume of 2 µL, column flow 

1mL/min, helium carrier gas. Initial temperature of the injection port was held at 250oC. 

The oven was initially set to 50°C with a hold time of 4 min, then the oven was 
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programmed at a rate of 6°C/min until it reached the final holding temperature of 300°C 

with a final hold time of 20 min. The petroleum hydrocarbons were determined using full 

scan mode (45 to 500 m/z). Full scan utilizes computer libraries to compare unknown 

analyte spectrums within the entire range of ions generated, providing information to 

resolve or confirm peaks qualitatively, pattern recognition, and structural elucidation 

(Wang et al. 2006). 

2.3.4. GC-MS data analysis 

Full-scan chromatograms were analyzed using ChemStation (Agilent) software for 

identification and detection of individual n-alkanes, selected isoprenoids and parent and 

alkylated polycyclic aromatic hydrocarbons (PAH). See the list of compounds analyzed 

by gas chromatography-mass spectrometry and their abbreviations in Table S2.2. Raw 

data was exported to a table containing the specific abundances of each sample. Each 

sample’s data was normalized as follows - each peak’s area was divided by the sum of the 

individual peak areas in that sample and multiplied by 100. 

2.3.5. IMS-MS instrumental analysis 

 Samples were directly injected into the Ion Mobility Spectrometry Quadrupole-

TOF Mass Spectrometer (Agilent, model G6560A; serial# SG1711C002) at 50 µL/min. 

Each sample was analyzed in triplicate through independent injections of the same sample, 

due to the instrument’s high-throughput capacity for running and analyzing samples. 

Initial ionization was carried out with an APPI source (Agilent, model# G1917C). 

Instrumental and source parameters were as follows: APPI positive ion mode, sample 

analysis time 1.5 minutes; source parameters: gas temperature 325oC, vaporizer 350oC, 
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drying gas 10 l/minute, nebulizer 30 psi, VCap 3000, fragment 400V, 110 RF Vpp 750. 

The following acquisition parameters were defined in each instrumental run: mass range 

50-1,700 m/z, frame rate 1 frames/s, IM transient rate 18 transients/frame, max drift time 

60 ms, TOF transient rate 600 transients/IM transients, trap fill time 20,000 µs and trap 

release time 300 µs. QTOF parameters were as follows: firmware version 18.723, Rough 

Vac 2.71Torr, Quad Vac 3.68×10-5 Torr, TOF Vac 3.47×10-7 Torr, drift tube pressure 

3.940 Torr, trap funnel pressure 3.790 Torr, chamber voltage 5.96 µA and capillary 

voltage 0.076 µA. Data was obtained using the MassHunter Acquisition software (Agilent, 

v.08.00). 

2.3.6. IMS-MS data analysis 

 The IMS-MS raw files were uploaded to the MassProfiler software (Agilent, 

v.08.00) for feature analysis and identification. Raw data were recalibrated using 

MassHunter Browser Acquisition Data software (Agilent, v.08.00) to derive nitrogen 

gas-filled drift tube collisional cross section (DTCCSN2) values of the detected features. 

Data filters were set at abundance ≥1,000 and Q-Score >75. The individual and grouped 

feature data matrices containing m/z, drift time, DTCCSN2, and abundance for each 

sample were then exported to Microsoft Excel for further evaluation. All IMS-MS 

features were first combined across the samples, comprising a dataset of 23,639 features 

(referred to as “IMS-MS all features”). Then, these data were further filtered based on 

observed frequency (>1) among all samples and among triplicates (2/3) within the same 

sample. This step yielded a total of 4,133 features across the samples (referred to as 

“IMS-MS untargeted” dataset). The final filtering step was based on selection of the 
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features that had predictions of their molecular formula by Agilent MassHunter 

MassProfiler software; this dataset included 939 features across all samples (referred to 

as “IMS-MS targeted” dataset). Abundances were then normalized to 

log10(abundance+1) fraction of the features in each sample. 

2.3.7. Petroleum biomarker assay 

 The biomarker data used in this study was originally reported in (Kennicutt II et 

al. 1992). Approximately 100 mg of crude oil was spiked with a surrogate mixture (5β-

cholane, d10-phenanthrene, ad d12-chrysene), and the mixture was then fractionated into 

its saturated and aromatic fractions using high performance liquid chromatography, as 

detailed elsewhere (McDonald and Kennicutt II 1992). The saturated fraction was then 

used for a gas chromatography-based petroleum biomarker analyses using the Hewlett-

Packard 5890 gas chromatography coupled with Hewlett-Packard 5790A MSD. The 

compounds that were used for generating the chemical fingerprint (biomarker ratios) data 

in samples from the gas chromatography- mass spectrometry data were diasteranes, 

steranes (C27-C29), hopanes, tricyclics and moretanes (see Table S2.3-8 for the data). 

2.3.8. Data integration and hierarchical clustering 

 Data matrices from the gas chromatography- mass spectrometry (n-alkanes and 

biomarkers) and IMS-MS analyses were then used to carry out data integration and 

hierarchical clustering to group crude oil samples based on their chemical profile. For each 

dataset, several different data transformations were evaluated, including log-

transformation, normalization to percent abundance, and log-transformation after 

normalization. Unbiased hierarchical clustering analysis was performed using hclust 
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package in R studio (version R-3.6.2) with the default “complete linkage” method for 

similarity. The product of this analysis was a dendrogram summarizing the correlation 

among the chemical profiles for the samples analyzed with both analytical methods. 

Principal component analyses were then utilized to translate data matrixes and determine 

the variance between the chemical profiles among samples in order to evaluate their 

genesis. These analyses were carried out using prcomp and scatterplot3d packages in R.  

For nearest neighbor analyses, a distance matrix was calculated using the stats package in 

R applying either Euclidean distance (all methods except “IMS-MS all features” dataset) 

or a binary metric (for the “IM-MS all features” dataset). Then, for each sample, the 

nearest neighbor was defined as the sample with the smallest distance, and an accurate 

classification was defined as the sample having the same geographic region as its nearest 

neighbor. The percentage of accurate classifications (i.e., correctly identified with respect 

to the region and area of genesis) was calculated for each dataset and data transformation 

combination. In addition, the number of incorrect classifications across all dataset/ 

transformation combinations was tabulated.  

To evaluate the outcome of the clustering, we derived a quantitative metric to 

assess the correspondence of the outcome to the original groups of each sample. The 

details of the unsupervised analysis workflow are described elsewhere (Onel et al. 2019). 

The Fowlkes-Mallows (FM) index (Fowlkes and Mallows 1983), a measure of similarity 

of two clusters, was calculated to enable quantitative comparative assessment between 

groupings achieved using each dataset to the known origins of each sample. The higher 

the FM index, the more similar the grouping to the a priori determined grouping as shown 
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in Table S2.1. The FM index ranges from 0.0 (no correspondence) to 1.0 (perfect 

correspondence). One-sided p-values for the FM index (using the null hypothesis of 

random assignment) were obtained using a standard z-statistic (Fowlkes and Mallows 

1983) that compares the observed value to the null expectation. 

2.3.9. Table-top exercise 

 A half-day meeting was held with a diverse group of oil spill response experts from 

petrochemical companies (Chevron Phillips Chemical Company, ConocoPhillips, 

ExxonMobil, Occidental Petroleum, Shell, Chevron), and state regulatory agencies (Texas 

General Land Office and Texas Commission on Environmental Quality). Pre-table top 

exercise orientation of the participants consisted of a series of short presentations covering 

the overall goals for the table top exercise, an overview of the traditional analytical 

methods and IMS-MS, and a summary of the data to be evaluated. The participants were 

asked to consider a scenario in which several different forensic fingerprinting analyses 

were used to identify the source of the recently spilled oil by comparing two blinded crude 

oil samples to a library of crude oils from known locations. Specifically, the data package 

presented to the participants included information on the samples from six on- and off-

shore Gulf of Mexico oil production regions of which 2 samples were blinded with respect 

to their origins. The identities of the two blinded samples were US_AL_L7256 (sample 1) 

and US_G_HI_L7291 (sample 2). Both “traditional” data on bulk composition (such as 

selected sterane, triterpene and hopane peaks, selected gasoline range hydrocarbons, data 

on n-alkane and isoprenoid alkanes, full scan GC-MS chromatograms, and tabular data 
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representative of n-alkane abundance), and “new” data (IMS-MS 2-dimensional plots and 

clustering diagrams) were provided.  

 The participants were divided into three groups of 5 individuals, all representing 

different companies/agencies, and were given 60 minutes to review, discuss and compare 

the data and predict the genesis of the unknown samples. Each group reached an 

independent conclusion on the origins of two blinded samples and also provided answers 

to the following general questions: (i) How easy/difficult was it to identify the “unknown” 

samples using petroleum biomarker, GC-MS, or IMS-MS data? (ii) How did the different 

data types compare in terms of their performance/quality/timeliness? (iii) What is needed 

to increase the use and application of IMS-MS data to facilitate the transition from 

research to practice? and (iv) Overall, what is your impression of the IMS-MS and its 

proposed application to oil spill response? 

2.4. Results 

The oil samples selected for this study (Supplemental Table 1) represented distinct 

oil-producing geographical regions in the Gulf of Mexico from both on- and off-shore 

locations (Figure 2.1). For each region, samples from wells located in close proximity to 

each other were included to test how well GC-MS and IMS-MS perform for rapid 

characterization of the region/area of origin.  

2.4.1. Compositional analysis 

Traditional methods of petroleum fingerprinting rely on petroleum biomarkers, 

organic molecules that are highly conserved and representative of the geographical origins 

and genesis of each oil sample (Radovic et al. 2012). The presence of petroleum 
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biomarkers, such as steranes (m/z 217) and triterpanes (m/z 191), indicates historical 

geological organic matter and deposits in crude oil; these molecules are most useful 

geological information for forensic fingerprinting (El-Sabagh et al. 2018). Oil sample 

biomarker data were available for 15 of 19 crude oils samples included in this study; for 

samples from TX and LA, regular steranes and triterpanes were below detection limit 

(Supplemental Tables 3-6). The relative fractions of regular steranes and triterpanes, 

shown in Figure 2.2A, indicate strong qualitative and quantitative similarities among the 

compositional of the samples in each region. For example, the characteristic feature of the 

on-shore AL samples was the relatively low abundance of diasteranes and high abundance 

of C29 steranes, a biological marker indicating carbonate rock source. The off-shore 

samples, as expected for the marine organic source oil, contained a relatively high 

abundance of diasteranes and high abundance of tricyclic terpanes. Among triterpanes, 

hopanes were the most predominant species in all samples.  

The data on sample-specific patterns in C27, C28, and C29 regular steranes (Figure 

2.2B) was used to distinguish the sources of organic matter in each sample. The ternary 

diagram gives some indication of the source-specific differences among samples. On-

shore AL samples exhibited low abundance of C27 and C28 steranes, and a considerably 

higher abundance of C29 steranes, features that provided some separation from the off-

shore samples. The off-shore oil samples were characterized by abundance of C27 steranes 

and lower abundance of C28 and C29 steranes, indicating a marine organic source; 

however, it was largely impossible to distinguish the individual regions among the off-

shore samples with these data alone.  
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GC-MS full scan chromatograms (Figure 2.3) showed the characteristic patterns 

of the chemical constituents in the samples. The GC-MC analysis used in this study was 

carried out to simulate a typical rapid analysis approach for identification of the crude oil’s 

fingerprint. These chromatograms demonstrated some location-specific differences in the 

n-alkane distributions and the extent of the unresolved complex mixture (UCM) “hump”. 

Semi-quantitative datasets were derived from GC-MS runs for gasoline-range 

hydrocarbons (Table S2.9 and Figure S2.1-3), n-alkanes (Table S2.10 and Figure S2.4-6), 

the GC-MS alkanes data (Table S2.11 and Figure S2.7-9), or parent and alkylated PAHs 

(Table S2.13 and Figure S2.10-12).  

Visual examination of the chromatograms and data plots is a common method for 

evaluation of the hydrocarbon patterns. In the gasoline-range hydrocarbons dataset (Table 

S2.9 and Figure S2.1-3), some characteristic patterns were evident among samples from 

different regions and areas. For example, benzene was highly abundant in on-shore 

samples from TX; 2-methylhexane and 3-methylhexane were highly abundant in samples 

from LA; and n-C3 to n-C6 range hydrocarbons were highly abundant in samples from 

AL. The off-shore samples were largely similar to each other and no characteristic patterns 

were observed to distinguish among the three areas, which is largely expected because the 

oil originates form the same source rock in the Gulf of Mexico region. 

The data on composition of C3-C32 alkanes (Supplemental Table 10 and Figure 

S2.4-6) is useful to establish whether sample degradation may have occurred, such as the 

relatively low abundance of n-alkanes compared to isoalkanes (Wang and Stout 2010). 

Specifically, we found that some of the off-shore samples from HI area (L5356, L5361, 
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L7281, and L7291) had a relatively low n-alkane to isoalkane ratio, a sign of possible 

degradation in these samples which is concordant with a greater UCM hump in these 

samples as compared to the other two samples from this area (L5346, L5351).  Uneven 

sample degradation in the HI set may present challenges with correct grouping of these 

samples based on these data alone. However, these data are useful for distinguishing 

between on- and off-shore samples. Specifically, the pristane-to-phytane ratio is 

characteristic of the crude oil’s source rock. On-shore samples exhibited low 

pristane/phytane ratio and a preponderance of C5-C12 n-alkanes, while the off-shore 

samples displayed higher pristane/phytane ratio.  

The graphs generated from the GC-MS alkanes data (Table S2.11 and Figure S2.7-

9) demonstrate that some of the area-specific samples did have similar analytical profiles. 

For example, the hydrocarbon profiles of on-shore samples from AL and LA were very 

similar within their respective group, but different between groups. Similarly, ST area off-

chore samples were very similar to each other. However, these data were largely 

uninformative with respect to grouping of the samples from other areas. While some of 

the HI area samples may have been partially degraded which would be explaining the 

dissimilarities in this dataset, other area samples (EC and TX) showed no evidence of 

degradation. Overall, the data from GC-MS were informative for oil fingerprinting in our 

dataset, but it is also evident that for full confidence in grouping, further analytical 

characterization of target analytes for a detailed compositional analysis may be required. 

Evaluation of the GC-MC chromatograms for peak areas of the selected PAHs 

(Table S2.12 and Figure S2.10-12) showed presence of characteristic petrogenic 2- and 3-
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ring PAHs in on-shore samples from LA and AL, the fingerprints generated from TX 

samples demonstrated high abundance of 2-ring PAHs.  Off-shore samples exhibited 

predominance of 2-ring PAHs and traces of 3-ring PAHs. 

Next, we examined the utility of IMS-MS data for sample grouping (Figure 2.4). 

Representative 2-dimensional plots (selected from 3 technical replicates obtained for 

every sample because of the speed of the analysis) show drift time versus mass-to-charge 

(m/z) nested spectra derived from APPI-assisted sample ionization analyses of the samples 

(see Table S2.13-14 for the numerical data). APPI was utilized here to focus on the non-

polar compounds (e.g., polycyclic aromatic compounds, PAC). Visual inspection of the 

IMS-MS nested spectra most clearly demonstrated the differences between samples from 

on- and off-shore regions. The compositional complexity of the on-shore samples was 

greater than that of off-shore samples, as evident from the greater abundance of the high 

molecular weight features in the former. In addition, the 2-dimensional nested spectra also 

illustrated visual trendline differences; the on-shore samples have 3 clear trendlines, but 

the off-shore samples only had 1 main trendline. A difference in the feature abundances 

was also noted for the different trendlines based on the region, allowing visual separation 

and easy grouping.  

2.4.2. Chemical-data integrative compositional fingerprinting 

 While the visual inspection of the raw spectra/chromatograms and plots from some 

of the chemical components constitutes a useful approach to data analysis and sample 

characterization, a formal statistical evaluation was conducted to determine the ability of 

each dataset to distinguish among regions and areas. First, we used the data from both GC-
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MS and IMS-MS to conduct hierarchical clustering analysis (Figure 2.5) which is an 

unsupervised method for grouping samples. With GC-MS alkanes data, correct grouping 

was evident for on-shore samples from AL and LA, and off-shore samples from ST. 

However, these data did not distinguish between on- and off-shore samples; in addition, 

the samples from other regions were interspersed. With GC-MS PAH data, in many 

regions, samples clustered together; however, on- and off-shore samples were interspersed 

and LA samples did not cluster together. Using the biomarker data, this analysis achieved 

the separation between on- and off-shore samples. Among on-shore samples, AL samples 

clustered together, but LA and TX samples were interspersed. Among off-shore samples, 

ST samples formed a cluster, but other samples did not group correctly. When IMS-MS 

data were used, regardless of whether the untargeted or targeted lists (Supplemental Table 

14) were used, all samples were grouped correctly into their region and then area.  

A quantitative metric for how well unsupervised clustering corresponded to the 

actual groupings (Table S2.1), a Fowlkes-Mallows (FM) index was calculated (Table 

S2.15). For the ability of these data to group samples into two regions (off- or on-shore), 

the highest FM index of 1.0 resulted from the clustering using IMS-MS (either untargeted 

or targeted) data. The biomarker data yielded FM index of 0.64 (p=0.04), while GC-MS 

data were uninformative (for alkanes: FM=0.48, p=0.37; for PAH: FM=0.51, p=0.42). 

When grouping into 6 specific areas was examined, again, IMS-MS data were most 

informative (FM=0.56-0.66, p<0.001), followed by full scan GC-MS data (FM=0.34, 

p=0.01). The biomarkers data classification was not significantly different from random 

assignments of samples into groups (FM=0.28, p=0.06). 
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Next, we used principal component analysis as an alternative widely-used 

unsupervised data visualization method (Figure 2.6). Similar to the outcome of the 

hierarchical clustering analysis, data from GC-MS, either alkanes or PAH, demonstrated 

inadequate separation among areas and regions. When using all features IMS-MS dataset, 

we found distinct grouping of the samples between on- and off-shore locations; however, 

even in the first three principal components the principal component analysis showed 

considerable overlap among the samples from the off-shore areas. The targeted IMS-MS 

dataset was superior in distinguishing between both areas and regions. 

Lastly, we used a nearest-neighbor classification analysis (Table 2.1) to evaluate 

the ability of the different datasets to predict the region and area from which each sample 

originated. With GC-MS alkanes data (Table S2.11, Figure S2.13-16), on-shore samples 

from AL and off-shore samples from ST and EC can be classified into their respective 

region/area with high accuracy; these data were far less informative for classification of 

the samples from other areas. Interestingly, GC-MS PAH data (Table S2.12, Figure S2.17-

20) afforded more accuracy in classification, in the range of 74 to 95% with only one mis-

classified sample (LA L7186) for the log-transformed abundance data. The biomarkers 

data (Table S2.-8, Figure S2.21-22) had comparable accuracy to that of GC-MS alkanes 

data; off-shore HI samples L5346 and L7291 were most challenging to classify accurately. 

Gasoline range hydrocarbon and % composition alkanes C3-C32 datasets (Table S2.9 and 

10, Figure S2.23-24 and 25-26, respectively) were least accurate in classification 

accuracy, mis-predicting about half of all samples. Interestingly, when the data acquired 

through GC-MS (Table S2.3-11, Figure S2.27-28) were used, higher accuracy of 
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classification (84%) was achieved, but off-shore HI samples L5346, L5356 and L7291 

remained difficult to classify. IMS-MS data were far more informative for accurate 

classification of these samples. Most of the datasets or data transformation methods 

yielded perfect classification accuracy (Table S2.13-14, Figure S2.29-37). 

2.4.3. Science-to-Practice translation 

To determine whether the data and analyses detailed above can be used by 

practitioners responding to an oil spill, we conducted a table top exercise with the 

simulated case scenario of the oil pipeline burst. Experts from oil industry and government 

agencies with expertise in oil spill response were invited to participate in this exercise. 

The participants were given a brief tutorial on the analytical methods used to generate the 

data and then asked to review the totality of the information and identify the geographical 

origins of two blinded crude oil samples (sample 1: US_AL_L7256 and sample 2: 

US_G_HI_L7291) by comparing their analytical profiles to a library of profiles of crude 

oils from known locations (the remaining 17 samples, Table 2.2). Participants were 

divided into three groups balanced with respect to their employer (industry vs government 

and ensuring that no individuals from the same company/agency were in the same group) 

to ensure the diversity of experiences, opinions and perspectives. Each group had to 

review all data, identify the samples based on each dataset separately, and come up with 

the recommendations in 60 minutes. Scientists with the knowledge of the analytical 

techniques were available to all groups to answer technical questions that arose during the 

discussion and decision-making. 
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All three groups correctly identified sample 1 as a sample from an on-shore AL 

area. Interestingly, both GC-MS and IMS-MS data were found to be equally informative 

for this sample’s identification, because correct identifications were made using each 

dataset independently. However, sample 2 presented a more formidable challenge. All 

groups correctly predicted that this sample originated from the off-shore region; this 

outcome was achieved with either dataset. Traditional GC-MS data, either petroleum 

biomarkers or hydrocarbons, were found to be least informative by the participants; no 

group was able to correctly identify the sample’s origins with confidence, except for group 

1 with hydrocarbons GC-MS data. When using IMS-MS data, all three groups correctly 

identified this sample’s origins as from the off-shore HI area.  

2.5. Discussion 

Crude oils are fossil fuels generated under immense pressure and high 

temperatures from deposited layers of the remains of prehistoric organisms. Because of 

the variability in the environment and type of deposits, crude oils have both complex and 

variable composition that depends on their geographical origins. Crude oil samples have 

a unique chemical fingerprint due to the geological conditions and the age of formation 

(Pang et al. 2015; Wang et al. 2006). The inherent chemical complexity and variability of 

crude oils create a unique challenge for their source characterization. Traditional analytical 

methods, primarily GC-MS, have been used widely for chemical fingerprinting of 

petroleum-derived samples by measuring n-alkanes, acyclic isoprenoids, PAC (including 

alkylated and sulfur-containing substances), as well as biomarkers (Daling et al. 2002; 

Stout and Wang 2007). High resolution mass spectrometry, such as IMS-MS-based 
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method, has been used to improve both analytical efficiency and resolution through 

incorporation of feature separation by shape and size (Grimm et al. 2017; Ibrahim et al. 

2015; Ponthus and Riches 2013). 

In this study, we aimed to compare and contrast traditional GC-MS-based 

petroleum fingerprinting to that performed using IMS-MS. Specifically, we evaluated the 

ability of each technique to identify the differences among, and similarities within, oil 

samples from several geographically close regions/areas of production. Petroleum 

biomarkers are commonly used for distinguishing the origins of oil samples because these 

compounds originate from once-living organisms and they persist in oil spills and in 

refined products (Peters et al. 2005). Biomarker-based fingerprinting of oil is mostly 

successful when applied to samples from distant locations (Hansen et al. 2007; Peters et 

al. 2005). In our case, oil samples were from the locations that were relatively 

geographically close, even if they were still distinct in terms of their formation and age 

(Table S2.1). Thus, even though we addressed a more difficult question of distinguishing 

among the samples from neighboring regions and areas, this challenge is not unusual in 

real-life oil spill response. Indeed, we observed some chemical similarities in biomarkers’ 

distribution and abundance in crude oils originating from on- or off-shore regions 

(Kennicutt II et al. 1992). Biomarker content revealed most pronounced differences in 

sample composition between two regions (on- and off-shore); however, these data were 

not informative for distinguishing among the individual areas within each region. 

Similarly, the chromatograms generated by GC-MS did reveal the samples’ chemical 

complexity. Still, the data on n-alkanes, isoprenoids and the UCM hump were not 
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sufficient to provide sufficiently detailed characterization of crude oil’s composition, 

limiting the ability to distinguish the samples and identify their source. While we show 

the challenges in using conventional analytical methods for rapid assessments, further 

characterizations with time-consuming follow-up analyses may provide additional data 

that can aid in source identification.  

In contrast to the traditional data, IMS-MS dataset demonstrated its utility for 

classification and grouping of all samples with higher degree of confidence. Prior studies 

(Grimm et al. 2017; Santos et al. 2015) of oil or products of petroleum refining utilized 

ESI-coupled IMS-MS, which is best suited for identification of heteroatoms (Purcell et al. 

2007b; Zhan and Fenn 2000). In this study, we used APPI(+) IMS-MS to focus on the 

hydrocarbon molecules of  higher carbon unsaturation than those produced by ESI 

(D'Andrilli et al. 2010). Indeed, IMS-MS chemical profiles were more effective in 

breaking down the complexity of crude oils for qualitative characterization and grouping. 

In addition, the ability to run technical replicates because of the short run times (less than 

1 minute/sample), provided additional confidence in detection of the individual features 

in each oil samples. Not only two-dimensional IMS-MS spectra showed characteristic 

signature patterns for specific regions, with consistent distribution and abundance of 

constituents, but also the inclusion of feature separation by shape, size and mass allowed 

for detection of hydrocarbons that may have been previously unresolved due to co-elution 

in GC. Indeed, the data from IMS-MS were highly informative in the nearest-neighbor 

classification analysis where all datasets, either full feature list, or a reduced dataset with 

only features with predicted molecular formula, yielded perfect classification accuracy. 
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This finding is especially noteworthy because other datasets had challenges with 

classifying several samples correctly and it also appeared that there may have been some 

challenges with sample integrity. 

The advantages of IMS-MS for rapid oil identification notwithstanding, we note 

that this study did not attempt detailed feature identification. Even though for over 900 

chromatographic features in IMS-MS dataset a molecular formula could be assigned, 

verification of those assignments and precise feature identification still remain to be major 

technical challenges for the use of this and other untargeted analytical techniques for 

characterization of complex petroleum substances. Therefore, it is difficult to determine 

which individual features were most informative for classification. In addition, this study 

used a limited number of samples that may have handicapped our ability to classify them; 

however, this study’s number of samples is very similar to that used by other groups to 

fingerprinting and source identification of oil (Corilo et al. 2013; de Carvalho Rocha et al. 

2017; Ventura et al. 2011).  

Another challenge with incorporating new analytical methods into practice of oil 

spill response is the lack of familiarity with these techniques in the industry and 

government agencies (National Research Council 1999; 2014). The GC- flame ionization 

detection and GC-MS methods are used widely and are familiar to all stakeholders, there 

is a greater operational experience with using these during spills over past few decades 

(Daling et al. 2002). Confidence in their performance and utility has been developed not 

only through various government guidelines, but also through collaborative studies that 

aim at both method standardization and building confidence among the stakeholders 
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(Faksness et al. 2002). The primary goal of such collaborations is to demonstrate the 

potential for a particular methodology to be both technically feasible and to generate 

scientifically defensible data useful in oil spill identification. The ability of a particular 

technique to distinguish qualitatively similar oils from a spill and any available candidate 

source is critically important for future implementation of the technology into practice.  

 Indeed, this study aimed to achieve science-to-practice translation of the benefits 

afforded by IMS-MS as a potential analytical method for oil spill response. We conducted 

a stakeholder workshop that included both traditional and IMS-MS data on the same 

samples as the first step toward qualification of this technique for oil spill response. We 

invited a diverse group of relevant practitioners, the participants represented different 

companies and government agencies and had varying levels of technical expertise and 

may have had different perspectives on oil spill response. Interestingly, not only all of the 

participants recognized the challenges with current “best practice” in forensic 

fingerprinting of complex substances such as crude oils, but also, some biased views 

notwithstanding, all of them were open to learning about new technologies.  

 In a relatively short time, about 60 minutes, the participants were able to evaluate 

different datasets. Both graphical and numerical data were provided; because of the 

compressed timeline, most of the discussion revolved around graphical data and clustering 

analysis. Two blinded samples were selected to represent a spectrum of difficulty with 

respect to identification.  The on-shore AL sample was correctly identified by all groups 

with each dataset. The exercise of reviewing the data for the “easy” sample allowed 

participants to become comfortable with the data and also to compare and contrast the 
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information among datasets. The “difficult” off-shore HI sample presented a formidable 

challenge for identification with traditional data, but not IMS-MS data. Interestingly, the 

participants were consistent in their classification based on IMS-MS across all three sub-

groups.  

 In addition to the exercise of sample identification, the participants were asked to 

comment on several general questions (Table 2.3). The responses provide additional 

insights into the strengths and weaknesses of each methodology, as well as they highlight 

the needs for additional IMS-MS method development before application in oil spill 

response. First, the participants found IMS-MS data most informative overall, especially 

with respect to the ability to appreciate patterns in features on the 2D plots and sample 

groupings on the clustering diagrams. Lack of clear groupings among named samples 

based on the data from traditional methods was a considerable impediment to reaching 

confident conclusions about the identity of blinded samples. Still, the participants 

commented that the information from each technique separately was not as powerful as 

the combination of the data form different sources. Second, the participants identified the 

speed of IMS-MS analysis, as compared to other data presented to them, to be a clear 

advantage. The short sample run times allowed for the analysis of technical replicates; the 

evidence that the replicates cluster closely with each other was a considerable positive 

factor in assigning greater confidence to IMS-MS data as compared to other datasets that 

lacked replicates. Still, the participants were unsure as to how the data quality is to be 

judged for the IMS-MS data as this technique is least known and the criteria assessing the 

quality of the features was found somewhat difficult to understand through a short 
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presentation. The fact that GC-MS data are more regulatory acceptable and familiar to the 

practitioners was mentioned as an advantage. As a follow up to this sentiment, the third 

question pertained to defining the barriers for the use of IMS-MS, or any other novel 

analytical technique, for oil spill response. The participants were uniform in their advice 

to prioritize feature identification, through the use of standards and other chemometric 

analyses such as Kendrick Mass Defect (Hughey et al. 2001), and investigation of the 

weathered oil samples. The analysis of reproducibility and lab-to-lab comparisons were 

also deemed important before this technology may become more widely accessible 

through contract laboratories. Lastly, the participants were very positively impressed with 

IMS-MS as a technique that is suitable for oil spill response. Again, the rapid analysis 

time was the primary identified benefit that would allow for this technique to be used as a 

method for triage of samples and focusing subsequent analyses with more traditional 

methods for confident feature identification. The combination of IMS-MS with other 

analytical techniques was identified as the most likely path to early adoption.  

 Overall, this study demonstrates that IMS-MS methodology is useful for grouping 

complex crude oils based on their genesis, even though it is currently insufficient for 

comprehensive feature identification and quantitative analysis. Solutions to address these 

challenges are the analysis of a wider range of chemical standards, a process that will 

enrich current IMS-MS libraries (Metz et al. 2017) with DTCCSN2 information for feature 

identification. The use of additional ionization sources, such as ESI and APCI, is needed 

for deeper characterization of the heteroatoms and aliphatic hydrocarbons in oils. Finally, 
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the application of IMS-MS to source identification of weathered oil samples should be the 

focus of future studies. 
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Table 2.1 Nearest-neighbor classification analysis to evaluate the ability of the different 
datasets to predict the region and area from which each sample originated. See Table S2.1 
for detailed information on each sample. 
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GC-MS (Abundance) 37 None E 63 T T T T T F F F F F T F T F T T T T T 
GC-MS (Abundance) 37 Log E 74 T T T T T F F T T T T F F F T T T T T 
GC-MS (Frac) 37 Norm. E 74 T T T T T F F F T T T T T F F T T T T 
GC-MS (Frac) 37 Norm.& Log E 68 T T T T T F F T T F F T T F F T T T T 
Biomarkers (All)a 78 None E 63 T T T T F F F T T F F F T T F T T T T 
Biomarkers (All)a 78 Log E 89 T T T T T T T T T F T T T T F T T T T 
Gasoline Range Hydrocarbonsa 27 None E 58 F T T T T T T F F F F T T F F T T T F 
Gasoline Range Hydrocarbonsa 27 Log E 47 F T T T T T T F T F F F T F F T F F F 
%Composition Alkanes C3-C32a 37 None E 42 F T T T T F F F T F F F F F F T T T F 
%Composition Alkanes C3-C32a 37 Log E 63 T T T T T F F T T T T F T T F F F T F 
GC-MS (Biomarkers) 115 Norm. E 68 T T T T F T F T T F F F T T F T T T T 
GCMS (Biomarkers) 115 Norm.& Log E 84 T T T T T T T T T F T F T T F T T T T 
IMS-MS (All)b 23,639 None B 100 T T T T T T T T T T T T T T T T T T T 
IMS-MS (All)b 23,639 Log E 89 T T T T T F F T T T T T T T T T T T T 
IMS-MS (All)b 23,639 Norm.& Log E 89 T T T T T F F T T T T T T T T T T T T 
IMS-MS (Targeted)c 939 None B 100 T T T T T T T T T T T T T T T T T T T 
IMS-MS (Targeted)c 939 Log E 100 T T T T T T T T T T T T T T T T T T T 
IMS-MS (Targeted)c 939 Norm.& Log E 100 T T T T T T T T T T T T T T T T T T T 
IMS-MS (Untargeted)c 4,133 None B 100 T T T T T T T T T T T T T T T T T T T 
IMS-MS (Untargeted)c 4,133 Log E 100 T T T T T T T T T T T T T T T T T T T 
IMS-MS (Untargeted)c 4,133 Norm.& Log E 100 T T T T T T T T T T T T T T T T T T T 
# of False Classified: 3 0 0 0 2 9 10 5 2 9 6 8 2 7 10 1 2 1 4 

T = Nearest neighbor is from the same geographic region. 
F = Nearest neighbor is from a different geographic region. 
a, Datasets were already normalized as percentages. 
b, Each technical replicate was treated as a separate sample. 
c, Data were filtered and with technical replicates averaged. 
d, Data transformation type: Norm., normalized; Log, log 10 transformed. 
e, Distance metric: E, Euclidian; B, binary. 
*, Sample #1 for which its identity information was withheld from the tabletop exercise 
participants. 
**, Sample #2 for which its identity information was withheld from the tabletop exercise 
participants. 
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Table 2.2 Stakeholder meeting table top exercise sample identification results. 
Sample Data type Group 1 Group 2 Group 3 

Sample 1 
(US_AL_L7256) 

Petroleum 
biomarkers AL AL AL 

GC-MS AL AL AL 
IMS-MS AL AL AL 

Sample 2 
(US_G_HI_L7291) 

Petroleum 
biomarkers G_EC G_HI or G_EC G_HI or G_EC 

GC-MS G_HI G_HI or G_EC G_HI or G_EC 
IMS-MS G_HI G_HI G_HI 
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Table 2.3 Table-top exercise general discussion questions and group-specific responses. 
 Group 1 Group 2 Group 3 

(i) How easy/difficult was it to identify the “unknown” samples using petroleum biomarker, GC-MS, or IMS-MS 
data? (on a scale from “1” = easy to “5” =difficult) 

Petroleum 
biomarker data 2 

• Easier to see overall 
patterns 

• Not sufficient alone 

• Unknown Sample 2 was difficult 
to distinguish 

GC-MS data 4 

• Easy when same well but 
different depths 

• Difficult because it is more 
information to compare 

• Not sufficient alone 

• Unknown Sample 2 was difficult 
to distinguish 

IMS-MS data 1 

• Easy to recognize patterns 
• Dendrograms were very 

informative 
• Not sufficient alone 

• Consistent grouping, known 
samples cluster better (additional 
confidence in the method) 

(ii) How did the different data types compare in terms of their performance/quality/timeliness? 

Performance 
• IMS-MS data were easier 

to inspect for patterns 
visually 

• Traditional data 
(biomarkers and GC-MS) 
is regulatory accepted 

• IMS-MS is rapid, but 
unclear if there is easy 
access contract labs 

• IMS-MS cost and 
regulatory acceptance are 
unclear 

• Alkanes data was least useful 

Quality • Data quality is hard to 
judge 

• Data quality is hard to 
judge • Data quality is hard to judge 

Timeliness 
• IMS-MS is most rapid 
• Multiple samples can be 

analyzed quickly 

• Difficult to compare 
because IMS-MS is a new 
technique 

• IMS-MS is most rapid 
• Rapid analysis enables analysis 

of technical replicates to increase 
confidence 

(iii) What is needed to increase the use and application of IMS-MS data to facilitate the transition from research to 
practice? 

 

• Combining IMS-MS with 
bioactivity data, not just 
GC-MS and biomarkers 

• Weathered sample 
analysis examples 

• Broader representation of 
the IMS-MS library 
standards for identification 
of the components of 
petroleum samples 

• Database on weathered 
samples 

• Availability of the contract 
labs 

• Commercial availability and 
standardization 

• Concurrence with traditional 
methods (GC-MS and 
biomarkers) 

(iv) Overall, what is your impression of the IMS-MS and its proposed application to oil spill response? 

 

• IMS-MS can be used as a 
quick scan because of its 
rapid sample processing 
and instrumental analysis 

• Great potential, not as 
much training is needed to 
review the data outputs 

• Can be useful in emergency 
response situations 

• Availability is not clear, are 
there contract labs that use 
this technique? 

• Great line of evidence in 
combination with other methods 

• Can be used for rapid screening 
of many samples then narrow 
down to fewer samples for 
further analyses 

• Useful for mixtures, analysis of 
degradation products 
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Figure 2.1 Crude oil samples (n = 19) were selected from 6 areas in 2 regions (onshore 
and offshore). Forensic fingerprinting analyses used GC-MS and IMS-MS technologies 
to evaluate the grouping of chemical profiles based on geographical extraction genesis. 
LA = Louisiana; TX = Texas; AL = Alabama; G = Gulf of Mexico; HI = High Island; EC 
= East Cameron; ST = South Timbalier. 
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Figure 2.2 Gas chromatographic–mass spectrometric data processed for identification and 
quantification of biomarkers. (A) Distribution of regular sterane and triterpane biomarker 
ratios. (B) Ternary diagram of the relative distribution of C27, C28, and C29 regular 
steranes for crude oil samples. Asterisks identify blinded samples (*US_AL_L7256, 
**US_G_HI_L7291). N/D = not detected; 
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Figure 2.3 Gas chromatographic–mass spectrometric chromatograms (time vs abundance) 
for crude oil samples, a tool used for visual and qualitative analysis for forensic 
fingerprinting. 
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Figure 2.4 Ion mobility spectrometry–mass spectrometric spectra (m/z vs drift time, 
abundance is represented by color intensity) for crude oil samples, a tool used for visual 
and qualitative analysis for forensic fingerprinting. x‐axes are m/z, and y‐axes are drift 
time. Individual features are shown as dots. Density histograms of the features are shown 
at top (for m/z) and right (for drift time) on each plot.  
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Figure 2.5 Unsupervised hierarchical clustering of crude oil samples from on‐ and 
offshore Gulf of Mexico region using data from different analysis methods. Each 
clustering diagram shown is labeled with the data set corresponding to Table 1. Number 
of features used for clustering is also identified. Gas chromatographic–mass spectrometric 
data sets were normalized and log‐transformed. Other data were log‐transformed. 
Asterisks identify blinded samples (*US_AL_L7256, **US_G_HI_L7291). See 
clustering diagrams for all comparisons included in Table 1 as Figure S2.13–37.  
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Figure 2.6    Principal component analysis grouping of crude oil samples (symbols 
indicate the area of origin as shown in the top left inset) from on‐ and offshore Gulf of 
Mexico region using data from different analysis methods. Each diagram shown is labeled 
with the data set corresponding to Table 1. Number of features used for analysis is 
also identified. Gas chromatographic–mass spectrometric data sets were normalized and \ 
log‐transformed. Other data sets were log-transformed. Asterisks identify blinded samples 
(*US_AL_L7256, **US_G_HI_L7291). 



 

 

3. CHARACTERIZATION OF COMPOSITIONAL VARIABILITY IN PETROLEUM 

SUBSTANCES* 

 

3.1. Overview 

In the process of registration of substances of Unknown or Variable Composition, 

Complex Reaction Products or Biological Materials (UVCBs), information sufficient to 

enable substance identification must be provided. Substance identification for UVCBs 

formed through petroleum refining is particularly challenging due to their chemical 

complexity, as well as variability in refining process conditions and composition of the 

feedstocks. This study aimed to characterize compositional variability of petroleum 

UVCBs both within and across product categories. We utilized ion mobility spectrometry 

(IMS)-MS as a technique to evaluate detailed chemical composition of independent 

production cycle-derived samples of 6 petroleum products from 3 manufacturing 

categories (heavy aromatic, hydrotreated light paraffinic, and hydrotreated heavy 

paraffinic). Atmospheric pressure photoionization and drift tube IMS-MS were used to 

identify structurally related compounds and quantified between- and within-product 

variability. In addition, we determined both individual molecules and hydrocarbon blocks 

that were most variable in samples from different production cycles. We found that 

                                                 

*Reprinted with permission from “Characterization of compositional variability in 
petroleum substances” by Alina Roman-Hubers, Alexandra Cordova, Arlean Rohde, 
Weihsueh Chiu, Thomas McDonald, Fred Wright, James Dodds, Erin Baker, and Ivan 
Rusyn, 2022. FUEL, 317, , Copyright 2022 by Elsevier. 
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detailed chemical compositional data on petroleum UVCBs obtained from IMS-MS can 

provide the information necessary for hazard and risk characterization in terms of 

quantifying the variability of the products in a manufacturing category, as well as in 

subsequent production cycles of the same product. 

3.2. Introduction 

Crude oil refining involves complex physical and chemical processes such as 

distillation, cracking, isomerization, reforming, alkylation and hydrodesulphurization, 

ultimately yielding petroleum products of certain performance characteristics that are 

subsequently used for a variety of applications (Kaiser 2017; Salvito et al. 2020). Because 

of the chemical complexity and variability of the oil feedstocks, as well as differences in 

the refining process conditions within and across manufacturing sites, it is expected that 

the types and quantities of hydrocarbons and other constituents present in downstream 

products may vary both within and between manufacturers, even for the same refining 

processes and products (CONCAWE 2012). This inherent compositional complexity and 

variability of petroleum substances, products that fall into the class known as substances 

of unknown, variable composition, complex reaction products, or biological materials 

(UVCBs), presents unique challenges for their registration and evaluation (Clark et al. 

2013; ECHA 2017a). Current naming conventions and grouping of petroleum UVCBs into 

manufacturing categories is based on the information on their general composition such 

as carbon chain length and boiling point ranges, other physicochemical properties, 

performance characteristics, and proposed use(s) (Clark et al. 2013; Salvito et al. 2020). 

While Chemical Abstract Service (CAS) and European Inventory of Existing Commercial 
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Chemical Substances (EINECS) identifications have been assigned to petroleum products, 

they are further grouped into broad manufacturing categories for registration and 

regulatory evaluation (CONCAWE 2020b). The existing nomenclature for petroleum 

UVCBs, either for the individual product identifiers or for broad manufacturing 

categories, is deemed generally sufficient for the purpose of naming and identification of 

these products (Clark et al. 2013; ECHA 2017a; Salvito et al. 2020).  

Once identified, petroleum substances must be registered following the laws and 

regulations of the jurisdiction where they are to be manufactured or used. The European 

Union REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) 

regulation (Williams et al. 2009) specifies human health and the environment hazard data 

requirements that must be met before authorization is given for their use. Most petroleum 

UVCBs have considerable data gaps that need to be addressed in the process of registration 

either through additional testing or read-across to another substance, or other members in 

a group of substances, that have the requisite information for registration purpose 

(CONCAWE 2019c). Recent proposals for grouping of “similar” petroleum UVCBs into 

manufacturing categories, in part based on the “broadly similar [chemical] composition,” 

have been questioned by the regulatory bodies as suitable for read-across, such as the 

European Chemicals Agency (ECHA). Concerns were raised about the strength of the 

justification for the proposed grouping and read-across (ECHA 2020). Recently, the 

European Commission  has  amended Annex XI of REACH clarifying that for the 

application of read-across/grouping, “structural similarity for UVCB substances shall be 

established on the basis of  similarities in the structures of the constituents (…) and 
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variability in the concentration of these” (European Commission 2021). Indeed, the 

chemical variability in petroleum products is one well-appreciated concern, because 

petroleum substances “are UVCBs and are manufactured to specifications based on 

performance characteristics rather than chemical composition, analysis of the same 

substance manufactured in the same location at different times could show a considerable 

variation in composition” (CONCAWE 2019a). 

To address the challenge of quantifying the variability of the petroleum UVCBs, a 

number of analytical approaches have been used to characterize their composition ranging 

from physicochemical analyses to detailed mass spectrometry (MS)-based methods 

(CONCAWE 2012; 2019a). Despite recent advances in petroleomics including novel 

high-resolution (HR) MS methods (Palacio Lozano et al. 2020), the ability to thoroughly 

assess the chemical composition of petroleum UVCBs, including the analysis of isomeric 

species, in the context of REACH has yet to be shown due to the similarity of the 

hydrocarbon components (i.e., presence of isomeric species). In addition, the incomplete 

understanding of variability (i.e., among samples from independent production cycles) 

represents a key barrier to the application of read-across between products in the same 

category, as any quantification of substance-to-substance similarity must be informed by 

within-substance variability. Accordingly, we set out to quantify both within- and 

between-product variability for representative petroleum UVCBs. We used both GC-MS 

IMS-MS techniques, because recent studies have demonstrated the utility of IMS-MS for 

determining the composition of petroleum UVCBs (Farenc et al. 2016; Ibrahim et al. 2016; 

Roman-Hubers et al. 2021a; Roman-Hubers et al. 2021b; Ruger et al. 2021). We identified 
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structurally related hydrocarbon and heteroatom compounds, examined hydrocarbon 

blocks, and characterized within-product variability. 

3.3. Materials and Methods 

3.3.1. Samples of petroleum products 

 A total of six refined petroleum products (Table 3.1) were used in this study. For 

evaluation, we selected three products from three broad manufacturing categories of 

“Solvent naphtha, heavy aromatic products” (marked as AR) and “Petroleum distillates, 

hydrotreated [light or heavy] paraffinic” (marked as BO). Sample selection was meant to 

be representative of a wide range of expected chemical complexity of petroleum UVCBs. 

For each product, samples were obtained from 2-3 independent production cycles at the 

same refinery (samples were collected 2-3 months apart), resulting in a total of 16 samples 

(Table S3.1). For GC‐MS analyses, samples were weighed and dissolved in 

dichloromethane (CAS no. 75‐09‐2, catalog no. 34856; Sigma‐Aldrich, St. Louis, MO) to 

a final concentration of 1 mg/mL. For the IMS‐MS analyses, 1 mg of each sample was 

first dissolved in 9 mL of 1:1 (v/v) mixture of toluene (CAS no. 108‐88‐3, catalog no. 

34866; Sigma-Aldrich) and methanol (CAS no. 67‐56‐1, catalog no. 34860; Sigma-

Aldrich). Next, 25 µL of the solution was mixed with 300 µL of the same mixture of 

toluene and methanol and injected directly.   

3.3.2. GC-MS instrumental analysis and data processing 

The modified United States Environmental Protection Agency (US EPA) method 

8270 was carried out in full scan analysis mode using an Agilent 7890 GC (Agilent 

Technologies, Santa Clara, CA) interfaced with a Hewlett‐Packard (HP) 5976 MS. 
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Additionally, a HP‐5ms Ultra Inert Column (30 m × 0.25 μm × 0.25 mm; catalog no. 

G3900‐63001; Agilent Technologies) was used to chromatographically separate the 

petroleum hydrocarbons. Instrumental operating conditions were as follows: mass range 

40 to 500m/z, splitless injector, injection volume of 2 μL, column flow 1 mL/min, helium 

carrier gas. Initial temperature of the injection port was held at 250°C. The oven was 

initially set to 50°C with a hold time of 4 min; then, the oven was programmed at a rate of 

6°C/min until it reached the final holding temperature of 300°C with a final hold time of 

20 min. Individual full‐scan total ion chromatograms for each sample were processed 

using ChemStation Data Analysis Software (Agilent). Raw data consisted of 10,127 scans 

at 1 atomic mass unit (amu) bins from 40 to 500 amu. Data for each amu bin across all 

scans was averaged and the final data matrix consisted of an average abundance value for 

each amu bin for one sample. The data for 16 samples were combined into a two-

dimensional data matrix of mass range versus average fragment ion intensities. See Table 

S3.2 for the resulting GC-MS data matrix and Figure S3.1 for the GC-MC chromatograms 

for each sample.  

3.3.3. IMS-MS instrumental analysis and data processing 

For the IMS-MS analyses, we utilized an Agilent Technologies G6560A platform 

coupling drift tube IMS (resolving power (RP) ≈ 60) and a quadrupole time-of-flight 

(QTOF) mass spectrometer (RP ≈ 25 000). In all experiments, the drift tube was filled 

with nitrogen gas and the samples were ionized with an atmospheric pressure 

photoionization (APPI) source (model G1917C; Agilent Technologies). The instrument 

was calibrated prior to running samples according to the Agilent protocol for 50-1,700 m/z 
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range, using the atmospheric pressure chemical ionization (APCI)-L Low Concentration 

tuning mix solution (part #G1969-85010, Agilent Technologies). The petroleum samples 

(200 µL) were then infused directly at a flow rate of 50 µL/min, and analysis included 

three technical replicates for each sample. Instrumental and source parameters were as 

follows: APPI positive ion mode, sample analysis time 1.5 min; source parameters: gas 

temperature 325 °C, vaporizer 350 °C, drying gas 10 L/min, nebulizer 30 psi, VCap 3000, 

fragment 400 V, 110 RF Vpp 750. The following acquisition parameters were defined for 

each instrumental run: mass range 50 to 1700 m/z, frame rate 1 frames/s, IM transient rate 

18 transients/frame, maximum drift time 60 ms, time‐of‐flight transient rate 600 

transients/IM transient, trap fill time 20 000 μs and trap release time 300 μs. QTOF 

parameters were as follows: firmware Ver 18.723, Rough Vac 2.71 torr, Quad Vac 3.68 × 

10−5 torr, TOF Vac 3.47 × 10−7 torr, drift tube pressure 3.940 torr, trap funnel pressure 

3.790 torr, chamber voltage 5.96 μA, and capillary voltage 0.076 μA. Data were obtained 

using the MassHunter Acquisition software (Agilent; ver. 08.00). Each sample was 

analyzed in triplicate in three independent experimental batches using the instrument and 

setting as detailed above. Two of these experiments were conducted at Texas A&M 

University on separate days (about 1 month apart) by different individuals. One of the 

experiments was conducted at North Carolina State University. These replication studies 

were using the same model IMS-MS instrument and experimental conditions, but were 

conducted by three different individuals. 

IMS-MS raw data files from each instrumental run were processed using 

MassHunter Browser Acquisition Data software (Agilent Technologies, ver. 08.00) to 



 

65 

 

derive nitrogen gas-filled drift tube collisional cross section (DTCCSN2) values for all 

detected features (Stow et al. 2017). In this manuscript, a feature is defined as a potential 

molecule’s isotopic envelope and by having both MS and IMS dimensions, all isotopes 

must occur at the same IMS drift time. Next, data files for all samples and their respective 

technical replicates (16 samples × 3 technical replicates = 48 files) were uploaded to 

Agilent MassProfiler software (Agilent Technologies, B.08.00) for feature alignment 

based on drift time (±5.0%) and mass (±15ppm+5mDa). Finally, aligned raw data matrices 

for each experimental batch (Table S3.3) were filtered to select features with abundance 

>5,000 in two out of three technical replicates for each sample. These filtered data (Table 

S3.4) include information on the constituents present in high abundance that would be of 

most relevance with regards to hazard evaluation of petroleum UVCBs (McKee et al. 

2005). The filtering parameters were selected based on the general consideration of the 

presence of 13C isotopic partner for individual features and previous data analyses 

(Roman-Hubers et al. 2021a) that showed erosion in confidence for molecular formulae 

assignments for the features of low abundance; however, alternative thresholds may be 

selected using the datasets provided in Table S3.3. 

After alignment and filtering as detailed above, the data (Table S3.4), including 

technical replicates (n=3), was used for feature identification using an IMS-MS data 

processing workflow detailed elsewhere (Roman-Hubers et al. 2021a). Briefly, each 

feature was cross-referenced to a DTCCSN2 standard library containing a number of 

hydrocarbon standards (Baker 2021). Features were deemed matching to a molecule in the 

database at a DTCCSN2 tolerance of ±1% and an m/z tolerance of ±5 ppm and ±2 mDa. 



 

66 

 

Then, the Kendrick Mass Defect (KMD) was calculated for each feature using base units 

of CH2 (14.01565) and H (1.00783) to identify features that fall into homologous series 

(±1.00 parts per thousand, ppt). Next, the elemental composition was assigned to each 

feature if it was in homologous series using the DTCCSN2 library matched features as 

reference points, as well as based on the KMD-H analyses as detailed in (Roman-Hubers 

et al. 2021a) (Table S3.5). Carbon chain length and double bond equivalency (DBE) of 

each feature were calculated from the elemental composition (McLafferty F.W. and F. 

1993). Based on the elemental formula and other properties, each feature was assigned a 

carbon chain length and hydrocarbon class.  

3.3.4. Data analysis 

We reasoned that quantifying overall similarity among samples would be 

instructive to illustrate the informativeness of the data. Thus, the GC-MS and IMS-MS 

data matrices of all samples (Table S3.2-4) were used for hierarchical clustering (Everitt 

1980) based on Spearman correlation and average linkage using the hclust package in R 

Studio (ver. R-4.1.0). The correlation among samples was then visualized in a 

dendrogram. In order to assess the similarity between clusters, the Fowlkes-Mallows (FM) 

index (Fowlkes and Mallows 1983) was used to evaluate the concordance of experimental 

data-derived clustering to that of the pre-defined manufacturing categories, products, 

independent production cycles, and technical replicates of each sample. The technical 

replicates and independent production cycles were considered as separate instances of the 

same substance, and the FM index was compared between the pre-defined categories and 

the hierarchical clustering having a number of clusters equal to the number of 
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manufacturing categories, using the cuttree command on the clustered tree. FM index 

values can range from 0 (no correspondence) to 1 (perfect correspondence). Principal 

components analysis was carried out to evaluate similarity between the products and 

samples using the prcomp and ggplot packages in R Studio (4.1.0) and based on 

characterized features, carbon chain length, hydrocarbon class and heteroatom species. 

For analysis at the individual ion level (i.e., full dataset of 55,466 features), the differences 

in abundance of each feature in samples from the independent production cycles were 

quantified as the maximum of the absolute value (if at least 3 samples were available) of 

the fold change difference when comparing across all pairs of samples from independent 

production cycles. For each feature, a p-value for variability was assessed by a one-way 

analysis of variance, using production cycle as a factor. Correction for multiple 

comparisons across features was performed using the Benjamini-Hochberg q-value 

computed in R using p.adjust (Table S3.6). For the analysis at the level of carbon chain 

length, hydrocarbon class and heteroatom profile, the variability in chemical composition 

among samples of independent production cycles was evaluated based on the relative 

abundance of the molecules in each aggregated set of features using two-way ANOVA 

with Sidak’s multiple comparison test (GraphPad Prism 9.0, San Diego, CA) followed by 

the Bonferroni correction (Dunn). 

3.4. Results 

This study evaluated 16 samples of 6 oil refining-derived products that fall into 

three broad manufacturing categories of petroleum UVCBs (Table 3.1). We began by 

analyzing samples using conventional GC-MS technique. Figure 3.1A shows 
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superimposed GC-MS full-scan chromatograms for representative samples of each 

product (see Table S3.1 for the similar chromatograms of each sample). These data clearly 

demonstrate the difference among samples from diverse manufacturing categories and the 

“cuts” of hydrocarbons varied considerably among samples as evidenced by the retention 

time differences. The “solvent naphtha (petroleum), heavy aromatic” products AR150 and 

AR200 were readily separated by GC-MS. The “distillates (petroleum), hydrotreated” 

light (BO60), or heavy (BO100, BO220 and BO600) products were more complex as they 

yielded characteristic unresolved complex mixture (UCM) “humps” on the GC-MS 

chromatograms. To visualize the similarity among products in the GC-MS data, we used 

the data matrix of averaged intensities for each of the amu bins (from 40 to 500 amu) to 

conduct unsupervised hierarchical clustering analysis. Figure 3.1B shows that samples 

from independent production cycles of the same product clustered together, except for one 

BO220 sample (production cycle 1). Moreover, solvent naphtha samples and the 

hydrotreated paraffinic distillate samples also formed distinct groups commensurate with 

their manufacturing category and CAS# groupings (Table 3.1). Samples of product BO60 

from independent production cycles were most dissimilar to each other, yet they still 

clustered into their own group. Based on GC-MS data, the concordance in the clustering 

of the samples, as compared to pre-determined manufacturing category assignments for 

each sample, was modest (FM index of 0.49).  

Samples were next analyzed using the IMS-MS platform. Figure 3.2 shows 

representative two-dimensional nested spectra for representative samples of each product 

where they are plotted by m/z (x-axis) and drift time (y-axis, parameter used to calculate 
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DTCCSN2) with feature abundance represented by color intensity. Figure S3.2 shows IMS-

MS nested spectra for each sample analyzed. These plots illustrate the differences in both 

complexity (total number of features) and changes in m/z and structural sizes (IMS) of the 

individual constituents in the samples. For example, samples of solvent naphtha 

(petroleum) heavy aromatic products AR150 and AR200 contained compounds in the 

mass range of 50-400 m/z. The hydrotreated distillates light (BO60) product contained 

lower m/z range species as compared to the hydrotreated distillates heavy (BO100, BO220 

and BO600) products that spanned a mass range of up to 700 m/z.  

Unsupervised hierarchical clustering utilizing m/z, DTCCSN2 and feature 

abundance data from the IMS-MS analyses was then used to compare composition 

similarity among the samples.  For these analyses, both the full data matrix (Table S3.3) 

and filtered (i.e., most abundant features) data was assessed (Table S3.4). Figure 3.3 

illustrates the full and filtered abundance dendrograms where the technical replicates were 

averaged for the analyses. When the full IMS-MS data was used (Table S3.3A), samples 

from independent production cycles of the same manufacturing category clustered 

together resulting in three main clusters. For example, samples of BO60 product clustered 

closer to the AR150 and AR200 products and not with the other products (BO100, BO220 

and BO600). Additionally, the concordance in sample clustering for pre-determined 

manufacturing category assignments was excellent (FM index of 1.0). When the IMS-MS 

datasets were filtered for only highest abundance features (Table S3.4A), similar 

clustering was observed, and the FM index for this analysis was also 1.0. Furthermore, 

when technical replicate samples were included in these analyses, similar results were 
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obtained (Table S3.3). Specifically, technical replicates of each sample clustered together, 

and then with the samples from different production cycles for each product, and finally 

with other products within a manufacturing category.  

Our next assessment was to determine how well petroleum UVCBs group using 

IMS-MS data obtained in independent experiments by distinct operators and in a different 

laboratory. For these studies, the samples were analyzed at Texas A&M on the same 

instrument but by a different operator and then at North Carolina State University by 

another operator and instrument, but the same model of IMS-MS platform (G6560) and 

an identical experimental protocol. In all cases, samples were prepared independently 

from the neat stocks of each product (see Methods) before each instrumental analysis. 

Abundance-filtered data (Table S3.4), where technical replicates were averaged, were 

used for the following comparisons. Irrespective of the laboratory or operator, strong 

correlation between samples from independent production cycles was evident as products 

clustered within their manufacturing category and CAS# (Figure 3.4 and Table S3.7). The 

FM index values for clustering were 1.0 for two experiments (Figures 3.4A-B) and 0.86 

for the third one (Figure 3.4C). These results indicate high reproducibility of the IMS-MS 

technique for the analysis of similarities in samples of complex-composition petroleum 

UVCBs. 

 While clustering using multidimensional data from untargeted IMS-MS is useful 

to establish the overall similarity of the samples for the purpose of substance identification 

(Roman-Hubers et al. 2021b), this information may not be adequate for product 

registration because it does not provide sufficient detail on the chemical composition of 
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each sample. To address this challenge, we identified structurally related compounds 

(Roman-Hubers et al. 2021a) in analyzed petroleum products to obtain molecular formula 

assignments to the high abundance features. Because each of three independent IMS-MS 

experiments (Figure 3.4) yielded similar clustering of the samples, filtered IMS-MS data 

from one of the experiments was used herein (Table S3.4A). Molecular formulas for each 

feature in the 16 samples are provided in Table S3.5. Similar to our previous findings of 

analysis of refined products or crude oils (Roman-Hubers et al. 2021a), we were able to 

assign molecular formulas to 93% of the high abundance features across all samples.  

 Because the composition of petroleum UVCBs is typically presented using the 

hydrocarbon block method which groups closely related compounds by their carbon chain 

length and hydrocarbon class (CONCAWE 1996; 2019b), we used the assigned molecular 

formulas and other information from the KMD analysis (i.e., homologous series and 

double bond equivalence) to aggregate the data into hydrocarbon blocks (Table S3.8). We 

also determined whether any of the identified molecules were heteroatoms (Table S3.9). 

With these data, we performed principal component analysis to visualize the similarities 

between samples of independent production cycles, as well as differences among products 

across manufacturing categories (Figure 3.5). When all high abundance features with 

assigned molecular formulas (n=1,417, Figure 3.5A) or carbon chain length (Figure 3.5B) 

were used for the principal component analysis, four groups were discernable in the first 

two principal components. Group 1 and Group 2 distinguished between two heavy 

aromatic products (AR150 and AR200), while Group 3 separated the light (BO60) and 

Group 4 contained the heavy (BO100, BO220 and BO600) hydrotreated paraffinic 
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distillate products. Interestingly, the latter group appeared more homogenous even though 

it contained samples from three different products. Additionally, samples from 

independent production cycles were closely aligned to each other. The molecular formula-

level data showed tighter grouping between samples of the same product, while the data 

on hydrocarbon blocks (Figure 3.5C) or heteroatom profiles (Figure 3.5D) allowed fewer 

distinctions among product groups, there was wider separation between samples from 

production cycles. 

 To further evaluate the variability in petroleum UVCBs, we analyzed the relative 

abundance of the molecules in hydrocarbon blocks or heteroatoms between samples from 

independent production cycles of the same product (Table S3.8-9). Figure 3.6 shows an 

example of this analysis for product BO220. Figures 3.6A-C show the relative abundance 

of each hydrocarbon block, as well as total abundance for each carbon chain length and 

hydrocarbon class. It is evident that while the overall ranges in carbon chain length and 

hydrocarbon classes were largely concordant, the abundances of the constituents in each 

hydrocarbon block varied. Significant differences were observed in most highly abundant 

hydrocarbon blocks (Figures 3.6D-E). In addition, the relative proportion of O1-containing 

heteroatoms was also significantly different between production cycles (Figure3 3.6F).  

 Similar analyses were performed for each product and the quantitation of the 

variability is presented in Figure 3.7. For the carbon chain length data (Figure 3.7A), 

product BO220 was most variable in terms of the number and range of molecules that 

were significantly different between production cycles. Even though product BO600 was 

equally complex in terms of the overall range of hydrocarbons, only C35-containing 



 

73 

 

molecules varied significantly between production cycles. Products AR150 and AR220 

showed variability in about one-third of the hydrocarbon blocks. Product BO60 showed 

no variability, and product BO100 showed variability in only a few blocks; however, there 

were only two samples available for those products and therefore limited variability should 

be interpreted with caution. Similar findings were observed with the hydrocarbon class 

data (Figure 3.7B). Most production cycle-associated variability was found in mono-, di- 

and tri-aromatic compounds. For the heteroatom data (Figure 3.7C), only products AR150 

and BO220 showed variability with O1-containing molecules, these were the most 

abundant and variable heteroatoms.  

 Even though the analysis of within-product variability based on the hydrocarbon 

block method has broad utility, such data are deemed insufficient in terms of satisfying 

the regulatory need for “detailed chemical characterization” of petroleum UVCBs for 

product registration purposes. Therefore, we also used the data on high abundance features 

to characterize the variability between samples of each product that were derived from 

independent production cycle. For this, we examined (i) the degree to which the individual 

features varied between samples from different production cycles (i.e., p-values for each 

molecule), and (ii) the average relative abundance of each feature in a product across 

production cycles (Table S3.10). Figure 3.8 shows the results of this analysis for each 

product. The figure shows that the feature abundance threshold set during data processing 

was concordant with the REACH Regulation threshold of 0.1% abundance for constituents 

of concern in complex substances (ECHA 2017b). It is evident that there are hundreds of 

constituents in each examined product that are present in quantities above 0.1%. These 
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included expected abundant amounts (5-10%) of naphthalene and related mono- and di-

aromatic hydrocarbons (Table S3.11). However, few constituents were significantly 

different between samples (using a cutoff based on the Bonferroni-corrected p-value 

which was a false discovery rate of 5% corrected for the total number of features) of the 

same product from independent production cycles. We found no constituents that are both 

significantly different and reasonably abundant in products BO60, BO100 and BO600, 

even though these products spanned the degree of complexity of the entire dataset in terms 

of the number of high abundance features. Product AR200 had the largest number of 

constituents identified as variable and abundant. To the contrary of the results with a 

hydrocarbon block method data analysis (Figures 3.6-7), product BO220 only had 3 

constituents above the variability and abundance thresholds, even though the total number 

of constituents with suggestive significance was large. Product AR150 had only one 

constituent above the thresholds. Table 3.2 lists the constituents for each product that were 

identified as above the thresholds in Figure 3.8. A number of the constituents identified in 

these analyses are currently listed by ECHA as Annex III substances, which are substances 

predicted to likely present health or environmental hazard (ECHA 2016). One constituent 

in product AR200, anthracene, a feature whose identity was identified using IMS-MS data 

from a chemical standard, is identified by ECHA as a substance of very high concern. 

3.5. Discussion 

The analytical chemistry challenges in petroleomics are many (Marshall and 

Rodgers 2004; 2008), and the potential solutions range from well-established 

physicochemical and analytical methods (CONCAWE 2012; 2019a) to novel high-
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resolution mass spectrometry techniques (Cho et al. 2015; Islam et al. 2012; Palacio 

Lozano et al. 2020; Santos et al. 2015; Terra et al. 2014). However, there appears to be a 

growing chasm between the research-driven advances in high-resolution mass 

spectrometry for petroleomics, and the needs of the practitioners in the industry and 

regulatory agencies. “Sufficient” characterization of highly complex petroleum UVCBs as 

products allowed into commerce and trade at various economic areas, such as the 

European Union where REACH  defines data requirements (Williams et al. 2009), is a 

pressing regulatory need. As recently as 10 years ago, it was noted in a report by a major 

trade association of the petroleum refiners in Europe that conventional MS-derived “data 

obtained by direct analysis of a petroleum UVCB substance, in which all constituents are 

ionized and fragmented simultaneously, would be too complex to allow meaningful 

interpretation” (CONCAWE 2012). Indeed, regulatory submissions of petroleum UVCBs 

do not typically use conventional MS-based data, or more contemporary high-resolution 

mass spectrometry data, but rather include information that defines chemical composition 

broadly, for example into hydrocarbon blocks (CONCAWE 1996; 2019b). The typical 

substance identity information provided to the regulators such as ECHA consists of the 

manufacturing process description, various physicochemical data (boiling point and 

carbon chain length ranges, etc.), relative proportions of constituents in major hydrocarbon 

classes (saturates, aromatics, resins, asphaltenes, etc.), and relative content of various 

polycyclic aromatic compounds (by the number of aromatic rings). Invariably, regulators 

express dissatisfaction that the individual chemical constituents, their structural features, 

and quantitative metrics for the intrinsic variability of the products that are being 
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registered are not attainable using the analytical methods on which the industry is relying 

heavily. For example, in a recent decision from ECHA on a testing proposal for grouping 

of substances in the “Residual aromatic extracts” manufacturing category, the agency 

concluded that chemical similarity between products has not been established for the 

purpose of registration (i.e., read-across), because “no qualitative or quantitative 

comparative assessment of the compositions of the different category members” has been 

presented (ECHA 2020). This representative ECHA decision further noted that because 

of the intrinsic compositional variability of petroleum UVCBs, detailed information in 

support of the “chemical similarity” argument would need to include (i) detailed data on 

the composition of the test sample(s) (both individual constituents and "major 

hydrocarbon classes"), as well as (ii) data on intrinsic chemical variability among products 

in a category (ECHA 2020), these requirements were recently added to Annex XI of 

REACH (European Commission 2021).  

A number of recently developed multidimensional high-resolution mass 

spectrometry techniques, including IMS-MS, when applied to the analysis of petroleum 

samples, demonstrated excellent molecular resolution and the ability to characterize high 

molecular weight hydrocarbons, including isomeric species (Fernandez-Lima et al. 2009; 

Grimm et al. 2017; Guillemant et al. 2019; Hsu et al. 2011; Marshall and Rodgers 2004; 

Niyonsaba et al. 2019; Palacio Lozano et al. 2019b; Ponthus and Riches 2013; Roman-

Hubers et al. 2021b; Santos et al. 2015). In addition, a number of chemometric methods 

have been proposed in conjunction with high-resolution mass spectrometry data on oil and 

petroleum products for fingerprinting and source identification (de Carvalho Rocha et al. 
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2017; Niyonsaba et al. 2019; Onel et al. 2019; Palacio Lozano et al. 2020), as well as the 

capability of the molecular and structural identity of chemical constituents and 

hydrocarbon blocks (Gabelica et al. 2019; Koch et al. 2007; Roman-Hubers et al. 2021a). 

Therefore, we reasoned that the opportunity exists to demonstrate the value of 

multidimensional high-resolution mass spectrometry petroleomics as a solution to current 

challenges in chemical characterization of petroleum UVCBs for regulatory decision-

making purpose. To this effect, this study aimed to demonstrate how one of the 

multidimensional high-resolution mass spectrometry petroleomics techniques, IMS-MS, 

can be used to address the regulatory challenges by (i) providing qualitative and 

quantitative information on the composition of representative complex petroleum 

substances, and (ii) using this information to characterize the variability of the constituents 

in the substances manufactured in different production cycles or those grouped into the 

same broad category. Our choice of APPI ionization in positive mode with IMS-MS as an 

analytical technique was informed by prior studies demonstrating improved resolution of 

isomeric aromatic species in petroleum samples (Borsdorf et al. 2006; Roman-Hubers et 

al. 2021a). Specifically, we aimed to take advantage of the IMS-MS technique-derived 

data on the differences in drift time among various hydrocarbons of the same atomic 

composition (i.e., isomeric species), rather than focus on increasing the resolution in the 

m/z dimension, a common goal in petroleomics studies afforded by ultrahigh resolution 

Fourier transform ion cyclotron resonance (FTICR) MS (Marshall et al. 2010) and other 

high-resolution mass spectrometry techniques (Niyonsaba et al. 2019). Recent studies 

demonstrated the utility of IMS-MS for determining the chemical composition of 
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petroleum substances and crude oils (Farenc et al. 2016; Ibrahim et al. 2016; Roman-

Hubers et al. 2021b; Ruger et al. 2021) and we proposed a chemometric method for 

deducing the chemical compositional information for both refined products and crude oils 

that uses DTCCSN2 information to increase confidence in the evaluation of the chemical 

composition of the features in homologous series (Roman-Hubers et al. 2021a). Overall, 

we hypothesized that high resolution untargeted IMS-MS analysis, in conjunction with a 

petroleomics data processing workflow and chemometric evaluation, would enable 

detailed characterization of the most abundant ionizable molecules in petroleum UVCBs, 

providing quantitative data on substance-to-substance variation that will inform overall 

hazard assessment. To test this hypothesis, we evaluated both a range of petroleum 

products, and samples from independent production cycles of the same product.  

Overall, we highlight four major advances afforded by this study. First, we 

demonstrate how IMS-MS data can be used to evaluate broad similarity among substances 

while also identifying the degree of variability within a class or between production 

batches of the same substance. By comparing and contrasting the IMS-MS data to that 

from GC-MS, we confirm advantages in both resolving power, and coverage of the high 

molecular weight compounds. GC-MS is used widely to characterize the composition of 

various fuels and to classify and group the fuels (de Carvalho Rocha et al. 2017). In 

addition, GC×GC-flame ionization detection technique (CONCAWE 2019b; Frysinger et 

al. 2003; Gaines et al. 1999; Van De Weghe et al. 2006) is also commonly used for 

petroleum analyses to derive “hydrocarbon blocks” for substance identification purposes 

(Bierkens and Geerts 2014; CONCAWE 1996). It was previously shown that the 



 

79 

 

multidimensional data from these techniques can be used for fingerprinting of oils or 

grouping petroleum UVCBs, but that IMS-MS data typically affords greater classification 

and fingerprinting accuracy (Onel et al. 2019; Roman-Hubers et al. 2021b). In this study, 

we found a similar pattern, with IMS-MS data superior to that from GC-MS for grouping 

and classification of the samples.  

Second, this study goes farther than grouping and classification as we were able to 

assign confident molecular formulas to most (on average 93% across all samples) of the 

high abundance features from IMS-MS data. To achieve this, we selected only the highest 

quality abundant features at the expense of focusing on a relatively small fraction (~2%) 

of all detected features. While the process of dimensionality reduction may seem counter 

to the desire to provide as detailed chemical characterization of the UVCBs as possible, 

the following considerations support our approach: (i) the confidence in molecular 

formula assignments for the features beyond those with highest abundance erodes rapidly 

(Roman-Hubers et al. 2021a), (ii) even though IMS-MS is able to resolve tens of thousands 

of features in petroleum UVCBs, numerous molecules are still undetected either due to 

ion suppression or instrument sensitivity (Hawkes et al. 2020; Santos et al. 2015), and (iii) 

if these chemical composition data are to be used for regulatory decisions, it is 

acknowledged that the priority shall be given to the highest abundance constituents in 

complex substances. For example, according to Articles 7(2) and 33 of REACH 

Regulation (ECHA 2017b), the abundance threshold of 0.1% (w/w) is set (for the purposes 

of either notification of substances in articles, or communication of information on 

substances in articles) for constituents that are classified as substances of very high 
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concern. This implies that the focus on the highest abundance features when analyzing 

detailed chemical composition of petroleum UVCBs would be responsive to REACH 

Regulation requirements, because other molecules in each sample are likely present at 

amounts far below the 0.1% threshold.  

Third, a very important consideration for the use of an analytical method for 

regulatory decision-making is its accessibility and reproducibility. Both GC-MS and 

GC×GC with flame ionization detection are used to generate data for regulatory 

submissions because these methods have been standardized (ASTM International 2011; 

US EPA 2014). In this regard, commercialization of the drift tube IMS-MS made these 

instruments available in a standard configuration leading to a growing number of 

publications demonstrating their use for petroleomics (Roman-Hubers et al. 2021a; 

Roman-Hubers et al. 2021b; Santos et al. 2015). In addition, studies of reproducibility of 

IMS-MS-derived experimental parameters such as standardized drift tube, nitrogen CCS 

values (DTCCSN2) were conducted using hundreds of molecules across multiple 

laboratories and illustrated the potential of this technique for providing confident 

molecular identifiers for a broad range of discovery-based analyses (Baker 2021; Stow et 

al. 2017). This study, while not a formal cross-laboratory standardization analysis, does 

demonstrate that samples can be confidently compared across operators in the same 

laboratory and across laboratories. Therefore, this technique and approach have promise 

for wider application as they are based on a commercially-available instrument and also a 

fairly rapid analysis based on gas phase separations and direct injection that does not 

require extensive sample preparation.  
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Finally, because of the ability to deduce molecular identifications for hundreds of 

molecules in complex petroleum UVCBs, a number of existing challenges with chemical 

characterization of petroleum UVCBs for hazard assessment are potentially resolved. 

Specifically, it is possible to identify constituents and determine their abundance for 

consideration as potential substances of concern. Because the hydrocarbon block method 

(Bierkens and Geerts 2014) is widely used for the characterization of human health and 

environmental hazards of petroleum UVCBs, the IMS-MS data with molecular identifiers 

can be used to construct data matrices similar to those generated in GC×GC with flame 

ionization detection, but where the identity of the constituents in each block are known. 

In addition, the variability between independent production cycles and among samples in 

the same product category can be quantitatively characterized; if it is found that samples 

are significantly variable, it is now possible to determine whether such variability may 

impact potential hazardous properties of the entire substance and reduce uncertainty in 

grouping. 

One limitation of this study, similar to other analytical studies of petroleum 

UVCBs, is that the complete chemical characterization of petroleum UVCBs is 

unattainable. The extent of the molecular resolution depends on the type of ionization and 

detection methods and instruments, as well as sample processing and other factors (Palacio 

Lozano et al. 2019a). For example, the APPI ionization used herein, albeit a preferred 

method for characterization of nonpolar petroleum fractions (Kauppila et al. 2002; Purcell 

et al. 2007a), is not applicable to the analysis of paraffins. Still, our method is suitable for 

evaluation of polycyclic aromatic compounds, which include polycyclic aromatic 
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hydrocarbons and heteroatoms, substances that have been associated with carcinogenic 

activity (Ayala-Cabrera et al. 2021; McKee and White 2014). We also note that other high-

resolution mass spectrometry methods can be used for characterization of chemical 

composition of petroleum UVCBs (Palacio Lozano et al. 2020; Rodgers and McKenna 

2011). In this regard, by coupling high-resolution mass spectrometry with additional 

separation techniques, such as GC-APCI (Barrow et al. 2014) or ion mobility (Maillard et 

al. 2021; Ruger et al. 2021), additional characterization of isomers can be achieved. It is 

important to distinguish and characterize structural isomers in petroleum UVCBs to 

understand potential variability in the manufacturing process chemistry and the effects of 

different oil feed stocks (Lalli et al. 2015). 

3.6. Conclusion 

 This study evaluated samples of 6 petroleum products (heavy aromatic, 

hydrotreated light paraffinic, and hydrotreated heavy paraffinic) from 2-3 production 

cycles using GC-MS and APPI(+) IMS-MS. The resulting data were used for classification 

and grouping using several unsupervised algorithms as either untargeted data, or after 

structurally related compounds in each sample were identified with confidence using 

multidimensional data analysis workflow. Between- and within-substance variability was 

quantified and the types of hydrocarbon blocks, and individual molecules, that were 

variable in samples of different production cycles were identified. Sample analysis was 

conducted in different laboratories to examine reproducibility of the grouping and 

classifications. Overall, these data show that IMS-MS can be used to provide chemical 

compositional data on petroleum UVCBs, information that is needed to characterize the 



 

83 

 

variability in substances from different production cycles. Such chemical characterization 

can be used to support hazard evaluations and address the regulatory need for qualitative 

and quantitative comparative assessment of the chemical composition of petroleum 

UVCBs.  
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Table 3.1 Petroleum refining products used in this study. Samples of the same product 
(identified by sample ID) are numbered consecutively based on their date of collection. 
See Table S3.1 for additional information. 

Sample ID CAS # Name Substance Definition 
AR150 [1] 

64742-94-5 

Solvent 
naphtha 

(petroleum), 
heavy 

aromatic 

A complex combination of hydrocarbons obtained from 
distillation of aromatic streams. It consists predominantly of 
aromatic hydrocarbons having carbon numbers 
predominantly in the range of C9 through C16 and boiling in 
the range of approximately 165°C to 290°C (330°F to 554°F). 

AR150 [2] 
AR150 [3] 
AR200 [1] 
AR200 [2] 
AR200 [3] 

BO60 [1] 
BO60 [2] 64742-55-8 

Distillates 
(petroleum), 
hydrotreated 

light 
paraffinic 

A complex combination of hydrocarbons obtained by treating 
a petroleum fraction with hydrogen in the presence of a 
catalyst. It consists of hydrocarbons having carbon numbers 
predominantly in the range of C15 through C30 and produces a 
finished oil with a viscosity of less than 100 SUS at 100°F 
(19cSt at 40°C). It contains a relatively large proportion of 
saturated hydrocarbons. 

BO100 [1] 

64742-54-7 

Distillates 
(petroleum), 
hydrotreated 

heavy 
paraffinic 

A complex combination of hydrocarbons obtained by treating 
a petroleum fraction with hydrogen in the presence of a 
catalyst. It consists of hydrocarbons having carbon numbers 
predominantly in the range of C20 through C50 and produces a 
finished oil of at least 100 SUS at 100°F (19cSt at 40°C). It 
contains a relatively large proportion of saturated 
hydrocarbons. 

BO100 [2] 
BO220 [1] 
BO220 [2] 
BO220 [3] 
BO600 [1] 
BO600 [2] 
BO600 [3] 
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Table 3.2 A list of features that that exceeded the thresholds for both abundance of 0.1% and significance (multiple testing-
corrected p-value) in three tested products. See Figure 3.8 for additional details. 

Product 
Name 

Feature 
ID* 

Relative 
abundance, % 

total (mean±SD) 

Fold 
Difference** 

-Log10 (p-
value)*** 

Inferred 
formula# 

Hydro-
carbon 
class 

Putative feature identity† REACH indication 
of concern¶ 

AR150 8 4.3±2.6 3.01 7.89 C12H8 
 TriAr Acenaphthylene Annex III substances 

AR200 

37 1.6 ± 1.4 10.6 6.28 C15H11 TriAr Methyphenantrene or 
methylanthracene Annex III substances 

121 0.80 ± 0.22 26.5 7.66 C17H14 NTriAr Cyclopenteno-phenanthrene - 
26 0.77 ± 0.39 2.97 6.75 C14H10 TriAr Anthracene PBT, SVHC 
90 0.66 ± 0.14 1.51 6.22 C12H6 MonoAr Triethynylbenzene - 
77 0.35± 0.074 7.94 6.66 C16H18

# DiAr Diphenylbutane - 
341 0.32 ± 0.10 10.6 8.75 C16H16

#
 TriAr Propylfluorene - 

340 0.28 ± 0.080 5.03 8.53 C15H14
# TriAr Ethylfluorene - 

73 0.24 ± 0.63 11.6 6.78 C17H16 TriAr Trimethylphenanthrene Annex III substances 

475 0.19 ± 0.049 12 6.34 C17H18
# NDiAr Benzyl-tetrahydronaphthalene, or 

ethyl-methyl-dihydroanthracene - 

501 0.13 ± 0.033 1.56 6.23 C13H12
# DiAr Methyl-phenylbenzene Annex III substance 

BO220 
334 0.42 ± 0.095 1.57 6.29 C17H22 DiAr Heptylnaphthalene - 
32 0.27 ± 0.086 1.65 6.12 C31H50 DiAr Henicosanylnaphthalene - 

213 0.13 ± 0.0012 12.3 6.27 C14H8
# DiAr Diethynylnaphthalene - 

*, See Supplemental Table 5A for additional information on each feature. 
**, The maximum of the absolute value (if at least 3 samples were available) of the fold difference when comparing across all pairs of samples from 
independent production cycles. 
***, The minimum p-value (converted to a -Log10) from unequal variance t-test for comparing the differences in abundance of a feature between 
samples from independent production cycles of a product. 
#, Table 5A lists these features in their radical form (-H) 
†, Putative identification based on the data analysis workflow as detailed in Methods, or based on a match to a library standard (i.e., anthracene). 
¶, The indications of concern for each putatively identified molecule based on the information in ECHA database (https://echa.europa.eu/). PBT, 
persistent, bioaccumulative, or toxic; SVHC, substance of very high concern; -, no information was included in the database as of 10/2021. 



 

 

 

Figure 3.1 GC-MS full scan analysis of petroleum UVCB products included in this 
study. (A) Superimposed GC-MS total ion chromatograms (time vs. abundance) for 
representative samples (see Table 3.1 for sample annotations). Individual 
chromatograms for each sample are shown in Supplemental Figure 1. (B) Hierarchical 
clustering analysis of the average abundance of the detected compound ion fragments in 
a mass range of 40-500 amu in 10,127 scans (see Table S3.2 for the raw data). 
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Figure 3.2 Representative nested APPI(+) IMS-MS spectra for petroleum UVCB products 
included in this study. Representative samples (see Table 1 for sample annotations) are 
shown, data for other samples are shown in Supplemental Figure 2. Individual features are 
shown as dots in the 2D scatterplot where x‐axes are m/z, y‐axes are drift time, and feature 
intensities are indicated by the color intensity. The density histograms of the features are 
shown at the top (for m/z) or on the right (for drift time) of each plot.   
 



 

89 

 

 

Figure 3.3 Unsupervised hierarchical clustering of petroleum UVCB products using IMS-
MS data. Shown are heatmaps (illustrating relative feature abundance) that were products 
of hierarchical clustering analysis (Spearman correlation, average linkage method) for 16 
samples (see Table 3.1 for sample annotations) analyzed in one of the experimental runs. 
Technical replicates of each sample were averaged for each feature. (A) Full dataset (Table 
S3.3A; 55,466 features). (B) Filtered dataset (Table S3.4A; 1,530 features). 
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Figure 3.4 Inter- and intra-laboratory reproducibility of grouping petroleum UVCB 
products using untargeted IMS-MS analyses conducted in independent experiments. The 
samples were analyzed using an identical experimental protocol either at Texas A&M on 
the same instrument but by a different operator (A and B) or at North Carolina State 
University by another operator and instrument, but the same model of IMS-MS platform 
(C). Correlation values are listed in Table S3.7 and shown using a color gradient as 
indicated in the legend at the bottom of the figure. 
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Figure 3.5 The Principal Component Analysis grouping of petroleum UVCB products. 
(A) Grouping based on the relative abundance of all features with assigned molecular 
formulas (Table S3.5).  (B) Grouping based on the carbon chain length distribution (Table 
S3.8). (C) Grouping based on the hydrocarbon class (Table S3.8). (D) Grouping based on 
the heteroatom profile (Supplemental Table 9). Colors represent individual samples of the 
same product as indicated in the legend at the bottom of the figure. 
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Figure 3.6 Hydrocarbon block matrix for samples from independent manufacturing cycles 
of product BO220.  (A-C) Dot plots representing the relative abundance (each sample is 
scaled to 100%) of the constituents in different hydrocarbon blocks (hydrocarbon class vs 
carbon chain length) in three independent samples (see Table S3.8-9 for data on each 
product). (D-F) Relative abundance distribution for the carbon chain length (D), 
hydrocarbon class (E) and heteroatom content (F) where symbols represent individual 
technical replicates (same color) of the samples from independent manufacturing cycles 
(shades of gray). Red vertical lines are mean and whiskers are min-max range. Asterisks 
(*) denote blocks with statistically significant (padj-value <0.05, Table S3.10) variability 
among samples of product BO220 from independent manufacturing cycles.  
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Figure 3.7 Variability in hydrocarbon blocks (A-B) and heteroatom content (C) for 
independent manufacturing cycles of petroleum UVCB products. Heatmaps show whether 
relative abundance of the constituents in different hydrocarbon blocks or heteroatom 
classes were significantly variable (padj<0.05, see Table S3.9) among samples from 
independent manufacturing cycles. Colors represent significance (see legend at the bottom 
of the figure, white indicates that there were no constituents in that hydrocarbon block). 
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Figure 3.8 Identification of the individual features that are both abundant and significantly 
variable among samples from independent manufacturing cycles of each petroleum UVCB 
product. The scatted plots show features that were present in each product based on their 
relative abundance (x-axis) and significance in variability (y-axis, p-values were 
converted to -Log10(values). Vertical dotted lines indicate the 0.1% relative abundance 
threshold. Horizontal lines indicate product-specific (red dotted line corresponding to the 
p-value at false discovery rate of 5%) and global (across all samples, -Log10(p-value) = 
6.05, blue dotted lines) thresholds for multiple-corrected significance values. Black 
diamonds indicate features that were exceeding both global variability significance and 
abundance thresholds (see Table 3.2 for the complete list). Open circles (features with 
molecular formulae assigned) and “x” symbols (no molecular formulae assigned) indicate 
features that were not significant based on the global variability significance threshold. 
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4. DEFINING THE ROLE OF PHOTOOXIDATION AS A WEATHERING PROCESS 

THROUGH A TIME-COURSE ANALYSIS OF THE WATER-SOLUBLE FRACTION 

OF AN SUNLIGHT IRRADIATED OIL SLICK 

 

4.1. Overview 

Understanding of the contribution of photooxidation to oil weathering is a topic of 

great interest in both chemistry and regulatory science. Most previous studies evaluated 

the chemical composition of photooxidized water-soluble fraction of weathered oil under 

artificial laboratory conditions which presents challenges to translating these findings to 

real-life oil spill conditions. Therefore, this study used an outdoor mesocosm experiment 

with crude oil on natural seawater that was constantly circulated under an oil slick (loading 

of 0.5 g of oil/L of water) and exposed to natural sunlight irradiation. Molecular 

composition of dissolved organic content from irradiated and non-irradiated samples was 

quantified over 8 days. Both ion mobility spectrometry mass spectrometry (IMS-MS) and 

biomimetic extraction-solid phase microextraction followed by gas chromatography-

flame ionization detection were used. The results show that oil irradiation led to increased 

dissolution of oxygenated hydrocarbon fractions in water, primarily O1-containing 

molecules. 

4.2. Introduction 

Crude oil may enter aquatic environments as a result of both natural seeps and 

accidents. Upon exposure to the natural elements, including solar irradiation and 

microorganisms, chemicals in oil can evaporate, dissolve, disperse, emulsify, biodegrade, 
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and be photooxidized (National Research Council 2003). Decades of study have been 

devoted to characterizing oil weathering  because these processes influence potential spill 

impacts and the “window of opportunity” for response decisions (NASEM 2020). 

Photooxidation is one important weathering process because oil on the water surface is 

typically exposed to abundant solar radiation; it may involve direct photolysis in which 

aromatic hydrocarbons absorb light and degrade to photoproducts. Alternatively, a wide 

variety of hydrocarbons, including non-aromatic components, undergo transformation 

through reactions with reactive oxygen species produced by solar radiation (Shankar et al. 

2015). Recent studies demonstrated that the rate of photooxidation is comparable to other 

weathering processes (Ward and Overton 2020) and may contribute to an increase in slick 

oil density that reduces the effectiveness of chemical dispersants (Aeppli et al. 2022; 

NASEM 2020). In addition, weathering is an important pathway in modulating potential 

exposures that may result in environmental and human health effects of oil spills because 

this process can degrade some oil components and generate photoproducts that are more 

soluble (Wang and Fingas 2003a; Zito et al. 2020). Elucidating how photooxidation alters 

the composition of oil and its water-soluble fraction is an important research topic since 

the nature and temporal evolution of this mixture dictates the potential hazards and risks 

of a spill (Chen et al. 2021; Payne and Phillips 1985; Tarr et al. 2016). 

The extent of oil photooxidation depends on the spectrum and irradiance of the 

light, the light transparency of the surface water, the hydrocarbon composition of the oil, 

the presence of photo-reactants and scavengers, and the natural movements of the water 

(National Research Council 2003). Given the complexity of factors that may impact oil 
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photooxidation in natural environments, studies of chemical reactions and products are 

difficult. Most published studies of oil photooxidation reproduced sunlight using artificial 

light sources in the laboratory and lack water movement in their experiments; therefore, 

there are a number of potential challenges with extrapolating these data to the field 

(Shankar et al. 2015). In addition, most studies use limited-resolution analytical methods 

(King et al. 2014; Wang and Fingas 2003a); these analyses provide information on the 

overall fate of general classes of oil constituents following photoirradiation. Detailed 

characterization of the water-soluble substances formed from oil during photooxidation 

has been achieved recently using both high-resolution (Chen et al. 2021; McKenna et al. 

2021) and multi-dimensional (Snyder et al. 2021) mass spectrometry approaches.    

Indeed, the advancements in analytical petroleomics, such as the use of high-

resolution mass spectrometry, have improved understanding of how photooxidation 

affects the fate and transport of potentially harmful constituents in water (Prince and 

Walters 2022). For example, Fourier transform ion cyclotron resonance mass spectrometry 

(FTICR-MS) enables detailed chemical characterization of petroleum substances and has 

been used to characterize formation of water-soluble polar heteroatom species during 

photooxidation of oil under laboratory conditions (Benigni et al. 2017; Griffiths et al. 

2014; McKenna et al. 2021; Ray et al. 2014; Vaughan et al. 2016; Zito et al. 2020). 

Improvements in acquisition, processing and analysis of the data from FTICR-MS showed 

promise for increased throughput of this method (Kooijman et al. 2019), this may be 

especially critical for analysis of field samples during or after oil spills. Tandem gas 

chromatography coupled with time of flight mass spectrometry (GC×GC-TOF-MS), a 
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technique that has good throughput and resolution, has also been used to characterize both 

non-polar polycyclic aromatic compounds and polar heteroatoms formed upon 

photooxidation (Lübeck et al. 2020; Snyder et al. 2021). In addition, ion mobility 

spectrometry coupled to quadrupole-TOF-MS (IMS-MS) is a rapid method for high-

throughput analytical characterization of petroleum substances (Fernandez-Lima et al. 

2009; Roman-Hubers et al. 2021b; Santos et al. 2015); however, it is yet to be applied to 

studies of the water-soluble fraction of petroleum substances subjected to photooxidation.   

Additional important limitation of previous studies that characterized the complex 

nature and dynamics of components in the water-soluble fraction of photooxidized oil is 

lack of anchoring to potential toxicity. Passive sampling methods are commonly used to 

characterize the bioavailability of various organic contaminants (Gobas et al. 2018). For 

example, biomimetic extraction using solid phase microextraction fibers coated with 

polydimethylsiloxane has been used for estimating hazard potential of complex petroleum 

substances (Hedgpeth et al. 2019; Letinski et al. 2014; Redman et al. 2018b). This method 

can quantitatively assess the bioavailability of both neutral and acidic compounds in water, 

an advantage for investigating oil photooxidation because previous studies have 

demonstrated the formation of both un-ionized (e.g. alcohols, ketones, aldehydes, 

sulfoxides), as well as carboxylic and sulfonic acid photoproducts (Fathalla and Andersson 

2011; Sydnes et al. 1985). 

The present work compliments a recent report of temporal changes in slick oil 

properties and composition using an outdoor mesocosm in the absence and presence of 

natural sunlight (Aeppli et al. 2022). In this study we aimed to characterize the 
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composition of the water-soluble photoproducts of oil slick under natural sunlight 

irradiated. We determined formation of photooxidation products over 8 days using 

untargeted high-throughput IMS-MS technique with atmospheric pressure 

photoionization (APPI), followed by identification of structurally-related hydrocarbons 

and heteroatoms (Roman-Hubers et al. 2021a). Furthermore, the analytical study was 

augmented with passive sampling analysis using solid phase microextraction biomimetic 

extraction to gain insights on the ecotoxicity potential of the water-soluble component 

mixtures that resulted over time.  

4.3. Materials and Methods 

4.3.1. Mesocosm experiment 

The mesocosm experiment was performed at the Ohmsett Oil Spill Testing Facility 

of the Bureau of Safety and Environmental Enforcement (Leonardo, NJ). The experiment 

set-up is described in detail elsewhere (Aeppli et al. 2022). Briefly, approximately 1,500 

L of seawater (salinity 30 ppt) that was collected in June 2019 from Manasquan Inlet, NJ, 

USA (40.103166°N, 74.035986°W; South of the Inlet) was continuously re-circulated 

through a series of six connected polyethylene reservoirs (117 cm long, 51 cm wide, 34 

cm deep, grey 65-gal tote BC-4721, Bayhead Products Corp, NH) at a flow rate of 

approximately 2 L min-1. Each reservoir was divided into four sections (29 cm × 51 cm × 

34 cm) with polyethylene dividers that did not fully reach the bottom to prevent wind from 

pushing all the oil to one side, while allowing water to flow underneath the oil slicks. The 

reservoirs were connected to a pump and a 330-gal (1.25 m3) high-density polyethylene 

intermediate bulk container. Inside the contained, temperature was controlled with a 
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chiller and an air bubbler was used to prevent anoxic conditions. Hoover Offshore Oil 

Pipeline System crude oil blend (API gravity 35.2) was applied to seawater at a 0.5 g/L 

loading to form an oil film with a thickness of ~270 µm. The irradiated treatments were 

placed on the deck of the Ohmsett wave reservoir where they were exposed to natural 

sunlight (“Irradiated” conditions) at an average daily irradiance of 6.6 kWh m-2 day-1 

(Aeppli et al. 2022) for up to eleven days. During rain events, the irradiated treatments 

were covered with non-transparent polyethylene lids to avoid disturbance and limit the 

formation of emulsions. An identical concurrent experimental setup was conducted in an 

adjacent covered loading dock. These non-irradiated treatments were also covered with 

non-transparent polyethylene lids which prevented exposure to ambient light (“Non-

Irradiated” conditions). Water samples (n=42; 3-4 replicates per time point) were collected 

from each reservoir through a polyvinylchloride pipe using a glass pipette (to not 

contaminate water samples with residues of the oil slick) from underneath the floating 

slick. Water samples were collected at six different time points representing days 0, 1, 4, 

5, 6 and 8 after addition of the oil to seawater (Table S4.1). Multiple samples per time 

point were collected in 20 and 40 mL glass volatile organic analysis-certified amber vials 

for IMS-MS and biomimetic extraction solid phase microextraction analysis, respectively. 

Samples for IMS-MS analysis were frozen upon collection and shipped to Texas A&M 

University. Samples for biomimetic extraction solid phase microextraction were split into 

two groups for immediate preservation where an equal number were either poisoned (50 

ppm HgCl2) or acidified (H3PO4 to a pH = 2) then sealed with Teflon® faced septum screw 
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caps and transported to ExxonMobil Biomedical Sciences Lab in Annandale, NJ where 

they were refrigerated (4°C) until analysis. 

4.3.2. IMS-MS instrumental analysis 

Analysis of the water samples was carried out using IMS-MS drift tube-type 

instrument filled with nitrogen gas (model G6560A; Agilent Technologies, Santa Clara, 

CA) coupled with an APPI ionization source (model G1917C; Agilent Technologies). The 

instrument was calibrated prior to sample injections according to the Agilent protocol for 

50 – 1,700 m/z range using the atmospheric pressure chemical ionization (APCI)-L Low 

Concentration tuning mix solution (part #G1969-85010, Agilent Technologies). Water 

samples (1.5 mL) were centrifuged for 5 minutes and the top clear layer (1 mL) was added 

to 1 mL of methanol (CAS no. 67‐56‐1, Sigma-Aldrich, St. Louis, MO) mixed with 0.05% 

of acetic acid (CAS no. 64-19-7, Sigma-Aldrich). Samples were thoroughly vortexed and 

200 µL of each sample (n=42) was infused (50 µL/min) directly into the APPI source. 

Each sample was injected in triplicate and solvent (methanol:acetic acid) washes were 

conducted between samples to prevent carryover. The ion mobility spectrometry 

instrumental and ionization source parameters were as follows: APPI positive ion mode, 

sample analysis time 1.5 min; source parameters: gas temperature 325 °C, vaporizer 350 

°C, drying gas 10 L/min, nebulizer 30 psi, VCap 3000, fragment 400 V, 110 RF Vpp 750. 

The following acquisition parameters were defined for each instrumental run: mass range 

50 to 1700 m/z, frame rate 1 frames/s, IM transient rate 18 transients/frame, maximum 

drift time 60 ms, time‐of‐flight transient rate 600 transients/IM transient, trap fill time 

20,000 μs and trap release time 300 μs. QTOF parameters were as follows: firmware Ver 
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18.723, Rough Vac 2.71 torr, Quad Vac 3.68 × 10−5 torr, TOF Vac 3.47 × 10−7 torr, drift 

tube pressure 3.940 torr, trap funnel pressure 3.790 torr, chamber voltage 5.96 μA, and 

capillary voltage 0.076 μA. 

4.3.3. IMS-MS data processing 

Raw data files from each experimental run were processed using MassHunter 

Browser Acquisition data software (ver. 08.00; Agilent Technologies) to derive the 

nitrogen gas-filled drift tube collisional cross section (DTCCSN2) values for all detected 

features (Stow et al. 2017). The data files for all samples with their respective technical 

replicates were then uploaded to Agilent MassProfiler software (ver. B.08.00) for feature 

alignment based on drift time (±5.0%) and mass (±15ppm+5mDa). The aligned raw data 

matrix (n=6892 features across 42 samples×3 replicates and solvent blank runs) is 

included as Table S3.2. Then, the raw data for all samples were (i) filtered to remove 

features with low abundance (i.e., a feature was retained if it had an abundance of >500 in 

at least two of the three replicates in at least one sample), (ii) the average intensity of each 

feature present in solvent blank samples was subtracted; and (iii) the average intensity of 

each feature present in the samples from day 0 was subtracted. If the values resulting from 

steps (ii) and (iii) above were negative, a small constant (0.001) was entered for that 

feature. Overall 759 high-abundance features were retained for further analyses after these 

steps for 34 experimental samples (Days 1-8) and the data from experimental replicates 

for each of these samples was averaged. These data are available in Table S4.3.  

Elemental composition of high-abundance features was further evaluated as 

follows. First, features were crossed-referenced to a DTCCSN2 standard library (Baker 
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2021); features were assigned a match to a standard in the database with a m/z tolerance 

of ±5 ppm and ±2 mDa and DTCCSN2 tolerance of ±1%. Second, we used Kendrick mass 

defect (KMD) analyses based on CH2 and H functional units to enable compositional 

analyses as detailed elsewhere (Roman-Hubers et al. 2021a). Overall, putative molecular 

formulas were assigned using these methods to ~85% (648 out of 759) of the high-

abundance features (Table S4.3). Carbon number range and double bond equivalent 

(DBE) were calculated for each feature that had an assigned putative molecular formula. 

Feature abundance data were used to evaluate correlations across samples, time and 

exposure conditions through hierarchical clustering (Euclidean correlation and complete 

linkage) using the hclust package in R studio (Ver. R-4.1.0). Significance of the 

differences between groups and conditions was evaluated using 2-way ANOVA followed 

by Sidak’s multiple comparison test in GraphPad Prism (ver. 9.0.0; GraphPad Software, 

San Diego, CA). 

4.3.4. Biomimetic extraction analysis 

Automated biomimetic extraction-solid phase microextraction analysis was 

performed on a Perkin Elmer Autosystem gas chromatograph with flame ionization 

detector. The gas chromatography was equipped Rtx-1 15 m x 0.53 mm x 1.5 µm capillary 

column with (Catalog# 10167, Restek, Bellefonte, PA) or equivalent and interfaced with 

a Gerstel MultiPurpose Sampler (CTC Analytics, Zwingen, Switzerland) configured for 

automated solid phase microextraction injections. The GC inlet was maintained at 280 °C 

and contained an empty 1 mm id (narrow bore) liner (no glass wool). Automated solid 

phase microextraction fiber injections were made in the splitless mode with a split time of 
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3 min. The carrier gas was helium at a constant flow rate of 17 mL/min. The gas 

chromatography oven was temperature programed from 40 °C for 3 min up to 300 °C at a 

rate of 45 °C/minute. The flame ionization detector temperature was 300 °C and the 

detector signal attenuation was set to the -3.   

Water samples were automatically extracted with a 1 cm, 30 µm 

polydimethylsiloxane (0.132 µL polydimethylsiloxane) solid phase microextraction fiber 

(CAT No. 57309; Sigma-Aldrich, St. Louis, MO) for 100 min at 30 °C with orbital 

agitation at 250 rpm prior to injection. The fiber was automatically thermally desorbed for 

3 min directly in the gas chromatography injection port. The solid phase microextraction 

fiber was thermally cleaned for at least 60 min at 280 °C and blank temperature-

programmed gas chromatography runs were acquired to ensure that a clean 

chromatographic baseline prior to sample analysis. Calibration was performed by injecting 

0.5 µL liquid (solvent) injections using the air-gap technique at three concentration levels, 

of 2,3-dimethylnaphthalene (20, 100 and 200 mg/mL). The average molar response factor 

of 2,3-dimethylnaphthalene (CAS no. 581-40-8) was used to convert the measured gas 

chromatography-flame ionization detection response (total integrated area) to nanomoles 

of constituents normalized to the volume of PDMS fiber desorbed. Chromatograms were 

acquired and processed using Perkin Elmer Total Chrom software. Integration parameters 

were optimized specifically for each sample type to integrate the area under the curve 

attributable to the SPME extracted sample.  This method has a practical quantification 

limit of 0.5 µmol/mL polydimethylsiloxane. The data from these analyses are included as 

Table S3.4. 
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4.4. Results 

To closely represent field conditions of a marine oil spill, photooxidation was 

studied using an open, recirculating outdoor mesocosm. The physical and chemical 

changes in properties and composition of the oil under these conditions are described in 

(Aeppli et al. 2022); as previously reported, oxygenation content progressively increased 

in slick oil during weathering under irradiated conditions. The IMS-MS analyses of the 

weathered oil showed an increase in ketones and alcohols, consistent with the increase in 

bulk oxygen content and presence of ketone and carboxyl photo-products that were 

identified using GC-MS. In this study, IMS-MS analyses were applied to the water 

samples that were collected over 8 days of this experiments under both irradiated and non-

irradiated conditions. Representative IMS-MS nested spectra (Figure 4.1) of these water 

samples showed presence of numerous chemical species in all analyzed samples. Because 

natural seawater used in these experiments contains organic molecules before oil was 

added (Figure 4.1A), these “background” features were subtracted from all experimental 

samples where weathered oil was present (Days 1 to 8). See Figure S4.1 for the IMS-MS 

nested spectra for each sample. A large number of high-abundance features were detected 

in both non-irradiated (Figure 4.1B) and irradiated (Figure 4.1C) samples, even though no 

organic extraction or sample concentration was performed prior to analysis. This is 

noteworthy because this study used an open test system at a lower oil loading (0.5 g/L), 

as compared to other laboratory-based studies of water-soluble fraction under 

photooxidation conditions that used closed systems with oil loading ranging from ca. 1 to 

100 g/L. (Benigni et al. 2017; Griffiths et al. 2014; McKenna et al. 2021; Ray et al. 2014; 
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Vaughan et al. 2016; Zito et al. 2020). It was observed that the number of molecules 

detected in irradiated samples, predominantly in the 150-300 m/z range, was about twice 

that in non-irradiated samples (Figure 4.1D), at and beyond day 4.  

 The patterns in organic molecules detected in water samples were visualized using 

unsupervised hierarchical clustering (Figure 4.2). High-abundance molecules (n = 759, 

Table S4.3) observed in at least one of the samples were included in this analysis. The 

heatmap (higher color intensity indicates greater abundance) shows general concordance 

in the compositional profiles of the samples that were experimental replicates (i.e., 

collected at the same time from different parts of the experimental setup). Specifically, 

replicates of the same condition (day of collection and presence of solar irradiation) 

clustered together for all groups. Also, three major clusters were evident – samples from 

all days under non-irradiated condition, those after 1 day of exposure to sunlight, and those 

that have been exposed to sunlight for 4 to 8 days. Of note is that irradiated samples from 

day 1 and non-irradiated samples across all days clustered together, indicating higher 

similarity in their chemical composition. Based on this grouping of samples, several 

clusters of compounds were identified – those that were highly abundant regardless of 

solar irradiation (cluster A, 46 features), those that were enriched in non-irradiated 

samples (cluster D, 9 features), and those that were enriched in irradiated samples (cluster 

L, 54 features). Molecular composition assignment of these compounds is included in 

Table S4.3.  

Next, the putative molecular formulas of all compounds included in Figure 4.2 

were determined using several petroleomic approaches as detailed in the methods. Among 
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the 759 compounds selected for further analysis, the molecular formula of 648 was 

assigned with confidence (85.4%, Table S4.3). Overall, most abundant of these were 

heteroatoms, especially O1- and O2-containing molecules (Figure 4.3A). The fraction of 

O1-containing molecules was significantly greater in irradiated samples even after 1 day 

of exposure and further increased by day 8. A similar trend is observed for O2-containinig 

compounds detected in the irradiated samples significantly increasing from day 1 of 

exposure to day 8. By contrast, non-irradiated samples significantly lost O2-containing 

molecules from day 1 to 8 the relative abundance of O2-containing molecules was greatest 

in non-irradiated samples and showed a decrease from day 1 to day 8. Interestingly, when 

the compounds that comprised the L cluster (Figure 4.2) were examined (51 of 54 species 

could be identified), it was observed that O1- and S1- containing compounds significantly 

increase from day 1 of exposure, this can be correlated back to the innate composition of 

the evaluated crude oil (Figure 4.3B). Abundance of dissolved hydrocarbons and O2- and 

S1-containing molecules also significantly increased after 8 days of irradiation time. The 

temporal trends in these four chemical classes were examined (Figure 4.4). It was found 

that water soluble fraction for the molecules that are discriminating features for solar 

irradiation conditions (cluster L in Figure 4.2) is significantly different from non-irradiated 

conditions after day 1 of exposure. The exception was O1-containing molecules that were 

significant as early as day 1. The temporal analysis also shows that all of these classes 

rapidly reached equilibrium because no significant differences were observed among 

samples collected on days 4 through 8 of exposure to sunlight.  
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The distribution of double bond-equivalents (DBE) and carbon number ranges was 

analyzed for hydrocarbons and O1-containing molecules. Figure 4.5 shows the plots for 

samples collected at days 1 and 8 under either non-irradiated or irradiated conditions. 

Among hydrocarbon molecules present in water samples (Figure 4.5A), few changes 

(>18.6% from day 1 non-irradiated) were found over time under non-irradiated conditions, 

consistent with data shown in Figure S4.2. However, in irradiated samples from day 8, the 

influence of sunlight was evident as an increase (>113.3% from day 1 non-irradiated) in 

presence of higher carbon- and DBE-containing molecules. Among O1-containing 

molecules (Figure 4.5B), most noticeable differences were an increase with time in the 

fraction of C10- to C20-containing molecules in both conditions; however, in irradiated 

samples, there was also an increase in higher DBE-containing species. Additionally, it can 

be observed that the O1-containing compounds in the water-soluble fraction increases 

around 4.5-fold (>443.2% from day 1 non-irradiated) after irradiation for 8 days. These 

data collectively confirm previous laboratory-based observations (Ray et al. 2014) that oil 

photooxidation results in solubilization of higher DBE-containing species. 

To compare H/C and O/C ratios for O-containing compounds present in weathered 

oil and water-soluble fraction thereof, van Krevelen diagrams (Kim et al. 2003; van 

Krevelen 1950; 1984) were used (Figure 4.6). For weathered slick oil samples at day 11 

(Figure 4.6A, data from (Aeppli et al. 2022)), solar irradiation resulted in appearance of 

both non-aromatic (H/C>1) heteroatoms, as well as generation of progressively more 

aromatic compounds (H/C<1). Neither slick oil weathered with or without irradiation 

showed evidence of higher oxygenated molecules consistent with the expected limited oil 
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solubility of these products and favorable removable via partitioning into the water 

column, also observed when plotting O/C versus carbon number (Figure S4.2.). By 

contrast, a higher and wider range O-containing compounds was observed in the water 

column at day 8 (Figure 4.6B). For the compounds that were present in both irradiated and 

non-irradiated samples, the majority were alkylated-aromatic (1.0<H/C<1.5) molecules. 

Solar irradiation exposure was associated with an increase in presence of oxygenated 

compounds (greater O/C ratio), in accord with previous laboratory-based studies of oil 

photooxidation (Ray et al. 2014).  

To provide hazard anchoring to the analytical data, the bioavailability of neutral 

and negatively charged acid extractable organic acids was evaluated using solid phase 

microextraction biomimetic extraction.  Raw data from these studies are presented in 

Table S4.4 and summarized in Figure 4.7. Figure 4.7A shows representative 

chromatograms from biomimetic extraction solid phase microextraction analysis of 

acidified samples. These plots demonstrate a temporal enrichment of mixture components 

absorbed to polydimethylsiloxane from the water-soluble fraction of irradiated samples, 

which appears in the form of a characteristic unresolved complex mixture “hump”.  

Further, the rate of water-soluble components that partition to the fiber over the 8-day test 

occurred two-fold faster in irradiated samples as compared to non-irradiated acidified 

samples (Figure 4.7B).  By contrast, a similar increase in fiber concentrations that reflects 

only neutral mixture components was observed in both irradiated and non-irradiated 

conditions (Figure 4.7C).  The lack of difference in biomimetic extraction solid phase 

microextraction results for non-acidified (i.e., poisoned) samples likely reflects the large 
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fraction of components that share common features (Figure 4.2) which are present due to 

oil dissolution and biodegradation processes that are occurring irrespective of light 

exposure.  These results also suggest that the factor of two difference in bioavailability 

associated with irradiation is attributable to the formation and subsequent partitioning of 

acidic photoproducts to the fiber. Examination of Figure 4.7B suggests that the 

contribution of these photoproducts in enhancing fiber concentrations appear to have 

peaked by day 6.  Based on the maximum average fiber concentrations achieved at this 

time point of 4.9 µmol/mLPDMS (Table S4.4), the mixture components in irradiated water 

samples would not be expected to cause >50% acute toxicity given the fiber concentrations 

corresponding to 50% effect, depending on species and endpoint sensitivity, range from 

13.6 to 240 µmol/mLPDMS (Redman et al. 2018b). 

4.5. Discussion 

Response to an oil spill is time-sensitive, therefore understanding the role of 

weathering process will define the “window of opportunity”(NASEM 2020). 

Understanding the physical-chemical transformations on the oil composition has been an 

area of intensive research to elucidate the potential hazards and risks of a spill.  Oil spill 

modeling has limited the role of sunlight irradiation inducing photooxidation, nevertheless 

during the Deepwater Horizon spill of 2010 photooxidation appeared to play a major role 

on the physical-chemical composition of the surface oil at a greater rate than expected 

influencing the oil’s environmental fate (Keramea et al. 2021; Ward and Overton 2020). 

In this present study, we characterized the composition and bioavailability of the dissolved 

organic constituents from an irradiated oil slick in a mesocosm exposure experiment. 
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Therefore, defining the role of photooxidation and addressing the correlated exposures 

characterized through high-resolution IMS-MS and hazards measured with biommetic 

extraction to define the related risk.  

Petroleomic analysis afforded by high-resolution mass spectrometry, when applied 

to evaluate complex petroleum substances have generated comprehensive molecular 

compositional information (Palacio Lozano et al. 2020). Compositional transformations 

of the water-soluble fraction photo-enhanced oil under laboratory conditions have been 

characterized by FTICR-MS (Benigni et al. 2017; Griffiths et al. 2014; McKenna et al. 

2021; Ray et al. 2014; Vaughan et al. 2016; Zito et al. 2020) summarizing the increase in 

oxygen containing compounds. Rapid and high-resolution characterization afforded by 

IMS-MS improves analytical efficiency and resolution through multidimensional 

separation in a millisecond timescale for rapid elemental characterization of the chemical 

profiles (Grimm et al. 2017; Ibrahim et al. 2015; Ponthus and Riches 2013; Roman-Hubers 

et al. 2021b). Therefore, this studied aimed to demonstrate high-throughput isobaric and 

isomeric characterization of the dissolved organic compounds of a photooxidized oil slick. 

Our choice of APPI (+) IMS-MS measure the temporal transformations of polycyclic 

aromatic compounds in the water-soluble fraction across eight days of exposure. The 

comprehensive molecular profiles demonstrated compositional changes after one day of 

sunlight irradiation. The photo-enhanced dissolution of the oil slick into the water-soluble 

fraction was characterized through the increase of oxygen and sulfur compounds. The 

increase of Ox containing species concords with previous laboratory-controlled studies 

that expose oil slicks to light, highlighting that photooxidation process is dependent on the 
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oil and thickness of the slick (Keramea et al. 2021). Nevertheless, compositional photo-

transformations were observed to stabilized by day 4. By comparing and contrasting, the 

non-irradiated and irradiated IMS-MS chemical profile, the activity of other weathering 

processes can be observed to be affecting the physical-chemical composition of the oil 

slick and therefore, the water-soluble fraction. Based on the observe trends of water-

soluble fraction it is derived that photooxidation effects take place rapidly with an increase 

in water solubility of dissolved organic components and by day four of exposure other 

physical-chemical transformations are being induced due to exposure to light. 

Second, biomimetic extractions measurements serve as surrogate measurements of 

the total bioavailable hydrocarbons in the water-soluble fraction which can be translated 

to a defined critical effect concentration for hazard assessment (Redman et al. 2018a). This 

passive sampling method is based on the premise that partitioning of oil components 

between water and the site of toxic action in test organisms (i.e. target lipid) is proportional 

to partitioning between water and polydimethylsiloxane. Thus, when solid phase 

microextraction fibers are equilibrated with a water sample containing a complex mixtures 

of oil components, the resulting amount and composition of components absorbed into the 

fiber serves as a surrogate for internal concentrations in target lipid of biota that dictates 

toxicity. Further, the total amount of components sorbed to polydimethylsiloxane, 

regardless of the specific chemical nature and when expressed on molar basis, provides a 

quantitative measure of the toxic potency of the sample the aqueous concentration, 

bioavailability and bioconcentration potential of all mixture components are considered.  

This method has also been extended to quantify and successfully predict the toxicity of 
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complex mixtures of acid extractable organics (e.g. naphthenic acids) in oil sands process 

waters (Redman et al. 2018b).  This is accomplished by first acidifying water samples 

prior to SPME analysis in order to protonate these species into the neutral form and 

promote partitioning to the fiber.  While previous work has demonstrated the applicability 

of passive sampling methods to investigate photoproducts (Forsberg et al. 2014; Llompart 

et al. 2019) biomimetic extraction has not been applied as an analytical tool to predict the 

toxicity of photo-irradiated oil.  To this effect, this study aimed to demonstrate the 

relationship between established temporal photooxidation and potential toxicity. The 

correlation between temporal irradiation and the calculated accumulation in the fiber 

allowed to establish the progressive bioavailability of dissolved organic acids. This data 

supports extensive evidence that has shown the photo-enhanced toxicity of oil at low 

concentrations to aquatic organisms (Barron et al. 2003; Barron et al. 2005; Calfee et al. 

1999; Kim et al. 2019; Maki et al. 2001; Pelletier et al. 1997). 

This work presents the unique advantages of untargeted IMS-MS analysis in 

tandem with biomimetic extraction solid phase microextraction gas chromatography-

flame ionization detection as major tools for a rapid screening for exposure and risk 

assessment during the event of an oil spill. The physical-chemical changes such as the 

dissolution of oil slick therefor change in viscosity, observed in this mesocosm exposure 

and characterized through IMS-MS will directly affect the selection of response plan and 

the “window-of-opportunity” for response of an oil spill. Biomimetic extraction solid 

phase microextraction measurements confirm the composition and the associated 
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bioavailable hazards in the environment and the contribution of sunlight irradiation and 

photooxidation.  

4.6. Conclusion 

Photooxidation has been considered as a secondary weathering process, the events 

of the Deepwater Horizon oil spill proved the contrary. The present study, evaluates the 

role of photooxidation as a weathering process and its effect on the environmental fate of 

an oil spill. Our results are consistent with previous studies evaluating the fate of an oil 

slick after irradiation. In addition, untargeted IMS-MS provides new evidence of the role 

of photooxidation on the environmental fate of an oil slick through characterization of the 

water-soluble fraction. High-resolution data differentiates the elemental composition 

distribution across eight days of exposure between Non-Irradiated and Irradiated samples. 

The application of biomimetic extraction solid phase microextraction measurements 

served as a model for defining the total bioavailable fraction through exposure. The 

positive trend observed shows the contribution of photooxidation to increase 

bioavailability, nevertheless the relative changes do not warrant concern of potential 

aquatic toxicity.  By carrying out a mesocosm exposure, this work allowed for the 

translation of various variables in the process of weathering and highlights the role of 

photooxidation. Nevertheless, the rate of photooxidation and/or solubilization cannot be 

defined due to the limited exposure time and scattered sample collection. This work 

resembled the conditions field conditions during the event of an oil spill even though the 

process of emulsification of oil was prevented during the exposure. Overall, this study 
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addresses the practical limitations of an oil spill response through rapid risk assessment of 

the effect of photooxidation on the realistic oil spill experiment.   
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Figure 4.1 APPI (+) IMS-MS spectra (m/z on the x-axis and drift time, parameter used to 
calculate DTCCSN2, on the y-axis) of representative water samples. Two-dimensional 
spectra are shown for samples collected on (A) Day 0 (before addition of oil), or (B-C) 
Day 8 (B, non-irradiated; C, irradiated). Shown are high abundance (see Methods) features 
that remained after normalization for solvent (in all figures) and water (panels B and C) 
controls. (D) Total number of unique features with an abundance greater than 500 across 
all time points (mean and standard deviation for each group as indicated). Asterisks (****) 
indicate significant difference (p<0.0001) between groups. 
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Figure 4.2 Hierarchical clustering analysis of the APPI(+) IMS-MS features. The heatmap 
shows all high-abundance features (n=759) that were detected in at least one of the 
samples. Both samples (columns) and features (rows) were subject to hierarchical 
clustering (Euclidean correlation and complete linkage). Feature abundance was z-scaled 
(see legend inset) for each sample with lower abundance features indicated by light blue 
and higher abundance features indicated by dark blue colors. Distinct clusters of samples 
and features are indicated by color bars. Features that are most discriminating between 
non-irradiated (D) and irradiated (L) conditions are indicated by the red box. A cluster of 
most abundant (A) features is also indicated. 
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Figure 4.3 Relative abundance in hydrocarbon (HC) and heteroatom class distribution in 
water samples from days 1 and 8. (A) All high-abundance molecules with putative 
molecular formulas, or (B) molecules that were present in cluster L (Figure 2), were 
included in these analyses. Mean and standard deviation is shown for each group (see 
legend inset for colors). Presence of a symbol above each bar denotes significant (2-way 
ANOVA with Sidak’s multiple comparison analysis, padj<0.05) differences from non-
irradiated day 1 (#), non-irradiated day 8 (*), or irradiated day 1 ($). 
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Figure 4.4 Time-dependent changes in relative abundance of hydrocarbon (HC) and 
heteroatom (O1-, O2- and S1-containing molecules) constituents. Included in these 
analyses were molecules with putative formula identification (n=51) from cluster L in 
Figure 2. Feature abundance was averaged for each group (line is mean, error bars are 
standard deviation and dots are values from the individual samples). Presence of a symbol 
above each group denotes significant (2-way ANOVA with Sidak’s multiple comparison 
analysis, padj<0.05) differences from irradiated day 1 (#), or non-irradiated group for the 
same day (*). 
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Figure 4.5 Plots of double bond equivalents (DBE) versus carbon number for water-
soluble hydrocarbons (A) or O1-containing molecules (B) detected on day 1 or day 8. The 
relative abundance of the molecules corresponding to each DBE/carbon number in each 
condition is visualized by the size and color of the circle (see legend) and scaled to the 
average total abundance of the species in day 1 non-irradiated samples. 
 



 

121 

 

 

 

Figure 4.6 Van Krevelen diagrams for molecules generated in (A) oil at day 11, or (B) in 
water at day 8. Molecules are colored according to their presence in each condition (black 
circles, present in non-irradiated conditions; yellow circles, present in irradiated 
conditions; white circled, present in both conditions). 
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Figure 4.7 BE-SPME analysis of the water samples. (A) Representative GC with flame 
ionization detection chromatograms for irradiated and non-irradiated samples at various 
days as indicated. (B-C) SPME fiber concentrations of dissolved organic matter in 
acidified (B) or poisoned (C) water samples from irradiated (yellow circles) or non-
irradiated (gray circles) conditions over the time course of analysis. Shown are mean and 
standard deviation for each group (see Supplemental Table 4 for numerical values). Linear 
fit equations and correlations are shown for time-trends in each group.



 

 

5. DISCUSSION 

 

5.1. Summary 

The inherent compositional complexity and variability of UVCB substances 

presents challenges when evaluating their hazards, therefore resulting in ambiguous 

information used to inform substance categories and deduce toxicological properties 

(Clark et al. 2013; ECHA 2017a). Regulatory agencies and industry partners have raised 

concern for the need of a deeper compositional understanding of UVCBs for the 

application of product categorization and read-across in risk assessments (ECHA 2020; 

European Commission 2021). Advances in analytical high-resolution mass spectrometry 

technology and petroleomic analysis employed for the characterization of petroleum 

UVCB substances have efficiently deconvoluted the complex composition at a molecular 

level resulting in comprehensive molecular information (Headly et al. 2015; Palacio 

Lozano et al. 2019a; Palacio Lozano et al. 2020). Nevertheless, there is a growing chasm 

in incorporating comprehensive compositional information afforded by high-resolution 

mass spectrometry in the assessment of UVCB substances. The work presented in this 

dissertation aimed to address the prevailing regulatory challenges regarding UVCB 

substances, by providing an enhanced compositional characterization through novel high-

resolution analytics to safeguard appropriate assessment and decision making.  

In Specific Aim 1, we evaluated the potential application of IMS-MS as a high-

throughput technology for the qualitative geochemical characterization and forensic 

fingerprinting of crude oils. In the event of an oil spill, rapid analytical methodology must 
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be employed in order to characterize the potential exposures and hazards and identify the 

source (Stout and Wang 2016; Wang and Stout 2010; Wang and Fingas 2003b; Yang et 

al. 2015). We directly compared the information generated through GC-MS and IMS-MS 

for 19 crude oil samples from onshore and offshore areas in the Gulf of Mexico region. In 

the case of biomarker, gasoline range hydrocarbons and n-alkane measurements obtained 

through GC-MS analysis each, served to distinguish samples from different regions, but 

not for samples from neighboring areas. Nearest-neighbor analysis on the chemometric 

evaluations recognized the additional level of confidence that the rapid, high-resolution 

IMS-MS data provided. The translational utility of the comprehensive assessment and the 

value of each data set was evaluated through a science‐to‐practice tabletop exercise with 

stakeholders from industry and regulatory agencies. The high-throughput and 

comprehensive qualitative characterization of IMS-MS was highly praised, likewise the 

limitations of application of novel method in a real-world scenario were highlighted.  

Throughout Specific Aim 2, we demonstrate the application of IMS-MS to 

produce comprehensive molecular profiles of refined petroleum substances addressing the 

compositional commonalities across products. Regulatory classification of petroleum 

UVCBs relies on categorization of substances based on physical-chemical commonalities 

and extrapolation of available information for hazard and risk predictions (Clark et al. 

2013; Pusyn et al. 2009). Nevertheless, the broad assumptions of similar chemical 

composition in the defined categories for read-across practice have been heavily 

challenged by regulators (ECHA 2020). We demonstrated the ability to assign molecular 

formulas through the development of a processing workflow combining DTCCSN2 and 
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KMD analysis using CH2 and H functional units (Roman-Hubers et al. 2021a). By 

applying the developed and validated molecular characterization workflow, we generated 

detailed data on the composition of the whole substance and its constituents, as well as 

data on intrinsic chemical variability of refined petroleum substances. Specifically, in this 

study we evaluated the compositional information for six petroleum substances obtained 

from independent production cycles (2-3) from three different manufacturing categories 

(heavy aromatic, hydrotreated light paraffinic, and hydrotreated heavy paraffinic). 

Through the identification of structurally related hydrocarbons and heteroatoms, detailed 

characterization of the most abundant ionizable molecules in a substance was enabled, 

providing data on between and within-product variability that may inform overall potential 

hazard. This study demonstrates the application of comprehensive isobaric and isomeric 

characterization to evaluate broad similarity among substances while also identifying the 

degree of variability within a class or between production cycles of the same substance. 

In addition, this study addresses instrumental reproducibility of IMS-MS across operators 

in the same laboratory and across laboratories, as an analytical method for regulatory 

decision-making. 

In Specific Aim 3 the environmental fate and behavior of sunlight irradiated oil in 

a mesocosm experiment was studied through high-resolution characterization of the 

dissolved organic matter. Millions of gallons of oil enter the ocean and once the oil is 

exposed to environmental conditions it undergoes several weathering processes inducing 

physical and chemical changes that define its effects in the environment (Keramea et al. 

2021; Nicodem et al. 1997; Payne and Phillips 1985; Tarr et al. 2016). Previous studies 
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had suggested photooxidation to play a minor role in the weathering of an oil slick; 

nevertheless, recent data demonstrates it to be an equally active process in the physical 

and chemical transformations (Nicodem et al. 2001; Payne and Phillips 1985; Ward and 

Overton 2020). Defining the physical-chemical alterations resulting from photooxidation 

plays a role in understanding the potential hazards and risk of an oil spill(Chen et al. 2021; 

Payne and Phillips 1985; Tarr et al. 2016). Through the application of high-resolution 

IMS-MS we evaluated the physical-chemical changes induced by photooxidation through 

comprehensive molecular characterization of the oil slick and water-soluble fraction. 

Furthermore, the ecotoxicity potential of the water-soluble fraction and the impact of 

photooxidation was identified through biomimetic extraction-solid phase microextraction 

and measured through gas chromatography-flame ionization detection. In summary, this 

work showed that sunlight irradiation increases the dissolution of the oil slick resulting in 

an increase of dissolved organic compounds in the water, primarily, HC and O1 

compounds. Together, this suggest that untargeted approaches, such as molecular-level 

IMS-MS characterization in tandem with biomimetic extraction-solid phase 

microextraction gas chromatography-flame ionization detection, are significant tools for 

rapid screening for exposure and risk-assessment during the event of an oil spill. 

5.2. Significance 

UVCB substances have presented a unique regulatory assessment challenge due to 

their intrinsic chemical composition (Clark et al. 2013; Salvito et al. 2020). Petroleum 

substances are prototypical UVCBs, the complex and variable nature of crude oil is further 

differentiated through manufacturing processes. The inherent UVCB composition of 
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petroleum substances has been a confounding factor in the assessment of their respective 

hazards, exposure and risk (Bejarano and Michel 2016; Clark et al. 2013; ECHA 2017a). 

The limited compositional understanding of petroleum substances has resulted in the 

reliance on broad physical-chemical and manufacturing properties as commonalities 

between substances for categorization and toxicological predictions (Grimm et al. 2016). 

A recent amendment to the to Annex XI, S.1,5 of REACH European Regulation (EC) No 

1907/2006 requires that “Structural similarity for UVCB substances shall be established 

on the basis of similarities in the structures of the constituents, together with the 

concentration of these constituents and variability in the concentration of these 

constituents” (European Commission 2021). The restricted physical-chemical information 

defining the “broadly similar [chemical] composition” applied for substance 

categorization and read-across has left a gap in ensuring sound-science risk assessment 

(ECHA 2020). While much progress has been made in the development of novel analytical 

technology, there is a growing gap in the application of comprehensive chemical-

analytical data in aiding the challenges facing regulatory decision making of UVCB 

substances. The work presented herein defines a paradigm shift to address the chasm of 

compositional information regarding UVCB substances through the application of high-

resolution analytical data.   

5.2.1. Addressing analytical limitations for characterization of UVCB substances 

through high-resolution mass spectrometry 

Chemical analysis of petroleum has been a historically active area of the analytical 

chemistry and continuous advances have contributed to a better understanding of these 
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complex substances (Onel et al. 2019; Stout and Wang 2007; Wang et al. 2011).  

Conventional analytical techniques have been defined through standardized practice for 

compositional characterization. Nevertheless, these approaches lack the resolving power 

and sensitivity needed for a comprehensive characterization of UVCB substances 

(CONCAWE 2012; 2019a). Conventional techniques are limited by resolution capacity 

and their mass-to-charge range often result in unresolved coeluting compounds; the 

composition of UVCB substances far exceeds the separation capacity afforded through 

standardized methods (Wang et al. 2005; Zadro et al. 1985). Additionally, conventional  

methods rely on extensive sample preparation and large sample quantities prior to lengthy 

analysis (Stout and Wang 2016). Due to the range in variability of petroleum UVCBs it is 

not feasible to define a single method for compositional characterization. Therefore, a 

multi-tier approach has been practiced to facilitate the assessment of these substances. The 

plethora of assays practiced is also limited to bulk characteristics and volatile organic 

compounds. Identification of compounds in these complex substances has been limited to 

prior selected compounds, such as biological markers for oil spill characterization. These 

limitations have resulted in incomplete understanding of the compositional complexity 

and variability of UVCBs.  

To address these challenges, the advances in high-resolution mass spectrometry 

have played a critical role in the deconvolution of the complex chemical composition of 

UVCBs. With the application of IMS-MS resolving power of ~25,000 FWHM and an 

extensive mass range (>50 m/z), we demonstrate across this dissertation the feasibility of 

acquiring comprehensive chemical profiles for substance categorization and 



 

129 

 

characterization (Aeppli et al. 2022; Roman-Hubers et al. 2021a; Roman-Hubers et al. 

2021b). The separation power afforded by IMS-MS allowed us to resolve closely spaced 

peaks and heavy molecular weight compounds, which are known to result in unresolved 

complex mixtures through conventional methods (Fernandez-Lima et al. 2009; Ibrahim et 

al. 2015; Ponthus and Riches 2013). The post-ionization separation based on drift time 

enables correlation of the observed mass of an ion to its spatial conformation defined as 

collisional cross section value (Dodds and Baker 2019). Furthermore, this work 

collectively demonstrates the general application of high-throughput APPI (+) IMS-MS 

analysis for the deconvolution of non-polar compounds in crude oil, refined petroleum 

substances and dissolved organic material (Borsdorf et al. 2006). With little to minimal 

sample preparation, we demonstrate the application of IMS-MS capacity for qualitative 

and semi-quantitative characterization of the chemical profile of UVCBs(Grimm et al. 

2017). DTCCSN2, ion-specific conformational data allowed us to distinguish isomeric 

compounds such as branched or linear alkanes and aromatic hydrocarbons (Stow et al. 

2017). Incorporation of molecular level characterization, isomeric separation and 

structural characterization was demonstrated for compositional categorization through 

hydrocarbon block method (CONCAWE 1996). 

5.2.2. Comprehensive time-sensitive characterization for emergency response 

Additionally, the significance of high-resolution technology for deducing 

comprehensive chemical profiles of petroleum of UVCBs was evaluated as an asset for 

hazard and risk assessment during emergency response. It is well recognized that large 

quantities of crude oil are released into the environment each year due to accidental spills 
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or natural seeps; however, both exposure and hazard evaluation of the oil slick and water-

soluble fraction remains a formidable challenge to both the industry and the regulators 

(Laffon et al. 2016). The spilled oil undergoes immediate weathering processes resulting 

in physical-chemical compositional transformations which will define its environmental 

fate and effects (Keramea et al. 2021; Nicodem et al. 1997; Nicodem et al. 2001; Payne 

and Phillips 1985; Tarr et al. 2016; Ward and Overton 2020). Standardized geochemical 

profiling of crude oil has been assessed through measurement of biological markers to 

define the compositional environment (Daling et al. 2002; El-Sabagh et al. 2018; Radovic 

et al. 2012). Therefore, through the work presented herein we present the advancements 

in petroleomics and chemometrics through IMS-MS for the comprehensive 

characterization of petroleum substances to aid forensic fingerprinting and fill in the 

chasm in understanding how weathering affects the fate and transport of oil. Collectively, 

this work defines the utility of high-throughput, untargeted qualitative analysis for forensic 

fingerprinting and geochemical profiling of petroleum substances. Narrowing down to the 

context of compositional differences, chemometric approaches can translate molecular 

level information to define compositional trends and relationships. This work 

demonstrates the feasibility to define depositional environments and compositional 

changes through unsupervised clustering of the comprehensive IMS-MS chemical profile. 

Moreover, the rapid and high-resolution capacity of IMS-MS for molecular 

characterization provides detailed information when developing action plans for 

emergency response.  
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5.2.3. Improving regulatory assessments through comprehensive compositional 

information 

Likewise, the use of high-resolution IMS-MS for comprehensive chemical 

profiling of UVCBs can aid regulatory decision making. Regulatory registration of 

UVCBs has relied on pragmatic approach for assessment of the potential risk and hazards 

through the categorization of petroleum substances defined by their compositional 

similarities correlating to similar physiochemical and toxicological properties (Clark et al. 

2013; McKee et al. 2015; OECD 2014).  The broad physical-chemical properties used for 

substance categorization were recently challenged by the European Chemical Agency in 

the application of read-across for new substance registration (ECHA 2020). Throughout 

this dissertation we demonstrate the value of multidimensional IMS-MS data as a solution 

to current challenges in chemical characterization of UVCBs for regulatory decision-

making purpose. This work demonstrated the feasibility of providing qualitative and 

quantitative information on the composition of representative complex substances. As 

well, it shows the translation of comprehensive molecular characterization of the 

composition of UVCBs to measure variability across substances through chemometric 

approaches. By summarizing the comprehensive molecular data based on structurally 

related compounds, the multidimensional chemical profiles enable data translation for 

sound science decision making (Bierkens and Geerts 2014; CONCAWE 1996; 2019b). 

 Collectively, this dissertation defines a pragmatic approach for advancing 

regulatory decision making of UVCB substances through high-resolution analytical 

chemistry. Comprehensive substance characterization and identification is a critical first 
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step in validating commonalities between substances for the purpose of read-across 

predictions. Through the work presented, we demonstrate high-resolution IMS-MS 

enabled analysis provided molecular level composition characterization of petroleum 

UVCBs used to establish sufficient information on the composition, as well as to measure 

trends in compositional changes. Through the integration of novel analytical techniques, 

we aimed to address the ongoing challenges in the compositional and toxicological 

evaluation of UVCBs, aid regulatory decision making and safeguard the quality of human 

health risk assessment.  

5.3. Limitations 

 The studies compiled in this dissertation have successfully evaluated the complex 

chemical composition of petroleum UVCB substances through the application of IMS-

MS. Implementation of this technique and approach for emergency response and risk 

assessment requires the optimization of current experimental limitations. 

In Chapter II (Specific Aim 1), we carried out untargeted chemical 

characterization of 19 crude oil samples from the Gulf of Mexico region. Considering the 

worldwide upstream industry, the samples screened in this study were limited by source 

rock and geographical genesis. This study evaluated the chemical profiles for forensic 

fingerprinting through qualitative chemometric analysis, but lacked a comprehensive 

feature identification and quantitative analysis. To address these challenges, a library of 

chemical standards (i.e. biomarkers) with their corresponding DTCCSN2 would enrich 

current feature characterization and identification. Semi-quantification analysis of 
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constituents in a sample can narrow the gap between current qualitative analysis and 

desired quantification. 

In Chapter III (Specific Aim 2), comprehensive molecular characterization of 

petroleum refined products aimed to measure the degree of commonality across 

production and substance categories. Due to the complex nature of petroleum substance 

and the limited range of APPI (+) for ionization non-polar compounds, this study was 

based on the aromatic (i.e. PAHs) composition. The analysis conducted did not, for the 

most part, yield data on constituents of low molecular weight or polar composition. Future 

experimental designs might address the aliphatic and/or heteroatomic sample fractions 

through the application of other sample ionization techniques (i.e. APCI and ESI) (Zheng 

et al. 2018). Likewise, additional evaluation on low abundance constituents could provide 

a deeper insight on overall composition considering the work presented here focused on 

high quality features based on the REACH abundance threshold of 0.1% (w/w) for 

notification of constituents classified as “very high concern (ECHA 2017b) . 

In Chapter IV (Specific Aim 3), the effect of sunlight on the fate of a spilled oiled 

was assessed through a mesocosm experiment and characterization of the water-soluble 

fraction through high-resolution IMS-MS. Photooxidation of surface oil and its 

partitioning to the water column as a function of exposure of time was studied for a period 

of eight days. As photooxidation has been a slow weathering process, the limited exposure 

time-frame might have missed ongoing reactions (Nicodem et al. 2001; Payne and Phillips 

1985; Ward and Overton 2020). Additionally, sample collection was irregular, not 

allowing one to define a trend of compositional changes. This study did not include a day-
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to-day comparison of the oil slick versus water soluble fraction composition, due to limited 

samples. In contrast to real-world scenarios, this study was performed under calm 

conditions, without wave or energy input reducing the potential of emulsification of the 

oil. Future mesocosm experimental designs could address these gaps by extending 

experimental period, daily sample collection of water and oil slick and observation of other 

weathering patterns. 

5.4. Future Directions 

The intrinsic complex and variable composition of crude oils and petroleum 

substances is a prominent challenge faced by industry and regulators in decision making. 

The studies in this dissertation, as well as previously published literature have applied 

petroleomics to successfully access the previously limited characterization of petroleum 

substances at a molecular level. Our studies have provided an insight on the capacity of 

IMS-MS and future applications of these technologies to answer the remaining challenges 

presented by UVCB substances. 

5.4.1. Automation of data analysis workflow to develop a user-friendly software 

application 

 IMS-MS data offers an untargeted and multidimensional analysis that when 

combined with Kendrick Mass Defect (KMD) enables compositional characterization of 

UVCB substances. Throughout the studies addressed in this dissertation, chemometric and 

statistical analysis have been defined to summarize IMS-MS data. Our second study 

presents a data processing workflow that can be applied to characterize the molecular 

composition through application of a standard reference library, KMD and DTCCSN2. In 
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contrast of IMS-MS rapid assay capacity, these data visualization tools have proven to be 

time consuming.  

 The automation of the proposed data analysis workflow would facilitate the high-

throughput IMS-MS deliverables. Subsequent use of the scripts created through R Studio 

(ver. R-4.1.0) using the Shiny package would enable multiuser analysis of IMS-MS data 

through an interactive app. An automated platform can be utilized to provide elemental 

composition assignment through (KMD) calculations, data visualization (i.e. hydrocarbon 

block plots), chemometric analysis (i.e. heatmaps) and statistical analysis (i.e. principal 

component analysis). This contribution would give access to a diverse background of users 

to rapid decision-making data on the complex composition of UVCB substances. 

5.4.2. Comprehensive chemical profile library of petroleum substances for source 

identification 

 Through our first specific aim we presented IMS-MS methodology for grouping 

complex petroleum substances based on their geochemical profile. Nevertheless, due to 

the millions of barrels of oils that enter the environment due to natural seeps or accidents, 

the application of this methodology is limited to the samples we compared with.  To 

employ high-throughput categorization there is a need of a comprehensive library of 

petroleum substances for direct comparison.  

The comprehensive molecular information afforded by high-resolution mass 

spectrometry allows one to measure the degree of variability across samples and correlate 

substances by their chemical profiles. Therefore, through a global library encompassing 

>300 crude oils and refined petroleum products, there is the ability to confidently 
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characterize and categorize unknown petroleum substances. Molecular characterization 

through petroleomic analysis can facilitate compositional information for qualitative and 

quantitative screening of compositional distributions. The comprehensive insights 

combined with chemometric analyses will allow one to define compositional trends and 

relationships across samples for thorough comparison for source identification 

5.4.3. Application of IMS-MS to source identification of weathered crude oil 

The first study of this dissertation carried out forensic fingerprinting of crude oils, 

to demonstrate its high-throughput capacity for chemical characterization. However, once 

oil is released to the environment it goes through several transformation processes known 

as weathering. As a result, the ability of IMS-MS to confidently categorize fresh crude oil 

and the weathered oil from a spill has to be evaluated. 

Evaluation of the chemical composition of fresh versus weathered crude oil 

through IMS-MS will address this limitation. A direct solution is the ability to generate 

high-resolution diagnostic compositional patterns of the weathered sample for comparison 

to the crude oil. Furthermore, the application of chemometric analysis of the acquired 

profiles can be used for qualitative nontargeted grouping and identification of the source 

oil. Alternatively, the characterization and semi-quantification of biological markers 

through their corresponding DTCCSN2 can provide information on the oil’s depositional 

environment, organic matter origin, maturity and degree of weathering (Wang and Stout 

2010). Measurements of the degree of weathering can also lead to more accurate forensic 

fingerprinting. 
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5.4.4. High-resolution IMS-MS data and high-content in vitro read-across for 

categorization of bioactivity 

 Hazard characterization of UVCB substances is predicted based on its physical-

chemical correlation to defined substance categories. A representative substance known 

as “worst case scenario” is used to extrapolate hazard data for substances in a defined 

category. The detailed chemical composition data achieved through high-resolution mass 

spectrometry facilitate a novel understanding on the potential drivers of hazards in a 

substance and can define the degree of compositional similarity in a substance category. 

Nevertheless, the hazard characterization still relies on extrapolated data from in vivo 

studies when no data are available for a specific substance. 

 High-resolution mass spectrometry data can be coupled with high-content in-vitro 

data for rapid hazard evaluation of UVCB substances. Such approaches have been 

demonstrated using a compendium of induced pluripotent stem cell derived in-vitro 

models representing various tissues of interest (i.e. hepatocytes, cardiomyocytes) for a 

phenotypic screening of dimethyl sulfoxide soluble extracts (Chen et al. 2020; Grimm et 

al. 2016; House et al. 2021). ToxPi integration offers data translation of the bioactivity 

trends observed for quantitative clustering of petroleum substances (Marvel et al. 2018). 

Therefore, combining bioactivity parameters across multiple cell types with high-

resolution mass spectrometry data can reduce data gaps and improve grouping of 

petroleum substances for hazard evaluation and regulatory approval. 
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5.4.5. Alternative dosing methods for in-vitro assessment of UVCB substances 

 While much progress has been made in the development of alternative testing 

methods to traditional in vivo assays, the hydrophobic characteristics of petroleum 

substances among its inherent complexity and variability has presented a considerable 

challenge for standardized in vitro methods (i.e. IP 346). Petroleum substances have been 

subjected to dimethyl sulfide extraction to concentrate the biological fraction (House et al. 

2021; Luo et al. 2020b). However, Luo et al showed that dimethyl sulfoxide selectively 

extracts the polycyclic aromatic compounds, limiting the compositional profile for 

bioactivity testing (Luo et al. 2020b). 

 The Organization of Economic Cooperation and Development has provided 

guidance on “difficult-to-test substances” for aquatic ecotoxicity assays with standardized 

alternatives for sample dosing (OECD 2019). The methods readily applied from a large-

scale ecotoxicity testing, such as water accommodated fraction and passive dosing, can be 

modified and translated in to a small-scale in vitro assay. Therefore, through the 

application of alternative dosing methods for cell-base assessment, it may be feasible to 

determine the final bioavailable bioactive constituents of UVCBs. 

5.5. Conclusion 

In summary, the work presented in this dissertation established IMS-MS as a 

useful novel analytical tool that can be used for the comprehensive molecular 

characterization of petroleum UVCB substances. We showed that IMS-MS provides 

information that can be used not only to evaluate broad similarities among complex 

samples, but also to determine the molecular composition with high confidence. Together, 
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these data address the various needs of decision-makers, such as the need for rapid 

fingerprinting and the need for characterizing the variability in composition.  By exploring 

the advantages and limitations of IMS-MS as an approach for chemical characterization 

of petroleum UVCBs, we present a sensible strategy that may be implemented within a 

tiered risk assessment framework designed to ensure sufficient protection from potential 

human health and environmental hazards. We show that this technique, while not the most 

high-resolution mass spectrometry technology, can provide sufficient comprehensive 

molecular compositional information that can identify hazardous constituents, define 

molecular level commonality, and determine relevant physical-chemical properties of 

complex substances. Collectively, these data will increase confidence in read-across and 

the use of other new approach methodologies (i.e. in vitro bioactivity data) for risk 

assessment purposes.  
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APPENDIX A 

SUPPLEMENTAL FIGURES 

 

Figure S2.1 Gasoline range hydrocarbon data for on-shore crude oil samples analyzed 
with GC-MS. Sample identifiers are shown above each plot. The bars indicate relative 
abundance (% abundance) for each feature as compared to the features listed on the x-
axis. Abbreviations are: n-C3, propane; i-C4, isobutane; n-C4, butane; i-C5, isopentane; 
n-C5, pentane; 22DMC4, 2,2-dimethylbutane; CYC5, cyclopentane; 2MC5, 2-
methylpentane; 3MC5, 3-methylpentane; n-C6, hexane; MCP, methylcyclopentane; 
DMP, dimethylcyclopentane; BENZ, benzene; CYC6, cyclohexane; UNK#1, unknown 
peak; 2MC6, 2-methylhexane; 3MC6, 3-methylhexane;  1CI3 DMCP, 1,cis-3-
dimethylcyclopentane; 1TR3 DMCP, 1,trans-3-dimethylcyclopentane; 1TR2 DMCP, 
1,trans-2-dimethylcyclopentane; n-C7, hepatane; MCH; methylcyclohexane; TOLU, 
toluene; n-C8, octane; ETHYLBENZ, ethylbenzene; M-&P-XYL, meta- and para-xylene; 
O-XYL, ortho-xylene. 
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Figure S2.2 Gasoline range hydrocarbon data for off-shore crude oil samples (East 
Cameron and South Timbalier areas) analyzed with GC-MS. Sample identifiers are shown 
above each plot. The bars indicate relative abundance (% abundance) for each feature as 
compared to the features listed on the x-axis. Abbreviations are indicated in the legend to 
Supplemental Figure 1. 
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Figure S2.3 Gasoline range hydrocarbon data for off-shore crude oil samples (High Island 
area) analyzed with GC-MS. Sample identifiers are shown above each plot. The bars 
indicate relative abundance (% abundance) for each feature as compared to the features 
listed on the x-axis. Abbreviations are indicated in the legend to Supplemental Figure 1. 
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Figure S2.4 Composition of Alkanes from C3-C32 (on-shore samples from TX, LA and 
AL). The bars indicate relative abundance (% abundance) for each feature as compared to 
the features listed on the x-axis. 
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Figure S2.5 Composition of Alkanes from C3-C32 (off-shore samples from HI). The bars 
indicate relative abundance (% abundance) for each feature as compared to the features 
listed on the x-axis. 
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Figure S2.6 Composition of Alkanes from C3-C32 (off-shore samples from EC and ST). 
The bars indicate relative abundance (% abundance) for each feature as compared to the 
features listed on the x-axis. 
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Figure S2.7 GC-MS analysis of n-alkane and isoprenoids (on-shore samples from TX, 
LA and AL). The bars indicate relative abundance (% abundance) for each feature as 
compared to the features listed on the x-axis. Abbreviations are: i-C13, isotridecane; i-
C14, isotetradecane; i-C15, isopentadecane; i-C16, isohexadecane; i-C18, iso-octadecane. 

 
  



 

163 

 

Figure S2.8 GC-MS analysis of n-alkane and isoprenoids (off-shore samples from HI). 
The bars indicate relative abundance (% abundance) for each feature as compared to the 
features listed on the x-axis. Abbreviations are indicated in the legend to Supplemental 
Figure 7. 

 
  



 

164 

 

Figure S2.9 GC-MS analysis of n-alkane and isoprenoids (off-shore samples from EC and 
ST). The bars indicate relative abundance (% abundance) for each feature as compared to 
the features listed on the x-axis. Abbreviations are indicated in the legend to Supplemental 
Figure 7. 
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Figure S2.10 GC-MS analysis of PAHs in on-shore samples (TX, LA, AL). The bars 
indicate relative abundance (% abundance) for each feature as compared to the features 
listed on the x-axis. 
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Figure S2.11 GC-MS analysis of PAHs in off-shore samples (EC and ST). The bars 
indicate relative abundance (% abundance) for each feature as compared to the features 
listed on the x-axis. 
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Figure S2.12 GC-MS analysis of PAHs in off-shore samples (HI). The bars indicate 
relative abundance (% abundance) for each feature as compared to the features listed on 
the x-axis. 
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Figure S2.13 Euclidean cluster dendrogram of all samples with GC-MS n-alkane and 
isoprenoids dataset (Table S1.11). 
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Figure S2.14 Euclidean cluster dendrogram of all samples with GC-MS n-alkane and 
isoprenoids dataset log-transformed (Table S1.11). 
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Figure S2.15 Euclidean cluster dendrogram of all samples with GC-MS n-alkane and 
isoprenoids dataset fractionated abundance (Table S1.11). 
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Figure S2.16 Euclidean cluster dendrogram of all samples with GC-MS n-alkane and 
isoprenoids dataset fractionated abundance log-transformed (Table S1.11). 
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Figure S2.17 Euclidean cluster dendrogram of all samples with GC-MS PAHs dataset 
(Table S1.12). 
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Figure S2.18 Euclidean cluster dendrogram of all samples with GC-MS PAHs dataset 
(Table S1.12). 
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Figure S2.19 Euclidean cluster dendrogram of all samples with GC-MS PAHs dataset 
(Table S1.12). 
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Figure S2.20 Euclidean cluster dendrogram of all samples with GC-MS PAHs dataset 
(Table S1.12). 
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Figure S2.21 Euclidean cluster dendrogram of all samples with all biomarker datasets 
(Table S1.3-8). 
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Figure S2.22 Euclidean cluster dendrogram of all samples with all biomarker datasets log-
transformed (Table S1.3-8). 
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Figure S2.23 Euclidean cluster dendrogram of all samples with Gasoline Range 
Hydrocarbon dataset (Table S1.9). 
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Figure S2.24 Euclidean cluster dendrogram of all samples with Gasoline Range 
Hydrocarbon dataset log-transformed (Table S1.9). 
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Figure S2.25 Euclidean cluster dendrogram of all samples with %Composition Alkanes 
C3-C32 dataset (Table S1.10). 
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Figure S2.26 Euclidean cluster dendrogram of all samples with %Composition Alkanes 
C3-C32 dataset log-transformed (Table S1.10). 
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Figure S2.27 Euclidean cluster dendrogram of all samples with all GC-MS data generated 
measurements (n-alkanes, biomarkers, etc.) dataset log-transformed (Table S1.3-11). 
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Figure S2.28 Euclidean cluster dendrogram of all samples with all GC-MS data generated 
measurements (n-alkanes, biomarkers, etc.) datasets log-transformed (Table S1.3-11). 
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Figure S2.29 Binary cluster of samples in replicates with all features detected through 
IMS-MS (Table S1.13). 
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Figure S2.30 Binary cluster of samples in replicates with all features detected through 
IMS-MS log-transformed abundance (Table S1.13). 
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Figure S2.31 Binary cluster of samples in replicates with all features detected through 
IMS-MS normalized log-transformed abundance (Table S1.13). 
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Figure S2.32 Binary cluster of samples with features detected through IMS-MS targeted 
dataset log-transformed abundance (Table S1.14). 
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Figure S2.33 Euclidean cluster of samples with features detected through IMS-MS 
targeted dataset log-transformed abundance (Table S1.14). 

 
  



 

189 

 

Figure S2.34 Euclidean cluster of samples with features detected through IMS-MS 
targeted dataset normalized log-transformed abundance (Table S1.14). 
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Figure S2.35 Binary cluster of samples with features detected through IMS-MS 
untargeted dataset log-transformed abundance (Table S1.14). 
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Figure S2.36 Euclidean cluster of samples with features detected through IMS-MS 
untargeted dataset log-transformed abundance (Table S1.14). 
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Figure S2.37 Euclidean cluster of samples with features detected through IMS-MS 
untargeted dataset normalized log-transformed abundance (Table S1.14). 
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Figure S3.1 GC-MS full scan TIC for all of the petroleum substances evaluated. 

 

 
 
  



 

194 

 

Figure S3.2 IMS-MS spectra for all of the petroleum substances evaluated. 
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Figure S3.3 Hierarchical clustering dendogram of the petroleum refining products with 
their technical triplicates based on their chemical profile acquired through IMS-MS-
APPI(+). 
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Figure S4.1 IMS-MS spectra for water samples for all time points and conditions. 
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Figure S4.2 O/C versus carbon number plots generated in (A) oil at day 11, or (B) in water 
at day 8. Molecules are colored according to their presence in each condition (black 
circles, present in non-irradiated conditions; yellow circles, present in irradiated 
conditions; white circled, present in both conditions). 
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APPENDIX B 

SUPPLEMENTAL TABLES 

Table S2.1. Identifiable information for the samples evaluated in this study.  Samples 
were selected from the Gulf of Mexico onshore and offshore regions. Onshore samples 
from Texas (TX), Louisiana (LA), and Alabama (AL). Samples from offshore were from 
High Island (HI), East Cameron (EC), or South Timbalier (ST). 
 
Table S2.2. Compounds characterized through GC-MS, biomarker and IMS-MS 
analysis with their corresponding abbreviations. 
 
Table S2.3. Peak Areas of Regular Steranes (m/z=217) 
 
Table S2.4. Selected Ratios of Regular Steranes (m/z=217) 
 
Table S2.5. Peak Areas of Regular Triterpanes (m/z=191) 
 
Table S2. 6. Selected Ratios of Triterpanes (m/z=191) 
 
Table S2. 7. Raw Areas of Mono-aromatized Steranes (m/z 253). 
 
Table S2.8. Selected ratios of Mono- and Triaromatized steranes and Methyl 
phenanthrene indices. 
 
Table S2.9. Gasoline range hydrocarbon data for on-shore crude oil samples analyzed 
with GC-MS. Sample identifiers are shown above each plot. The bars indicate relative 
abundance (% abundance) for each feature as compared to the features listed on the x-
axis 
 
Table S2.10. Percent composition of alkanes from C3-C32 
 
Table S2.11. GC-MS alkanes data (% fraction of each identified feature). 
 
Table S2.12.  Raw areas of the characterized parent and alkyl polycyclic aromatic 
hydrocarbons. 
 
Table S2.13. Complete data matrix for IMS-MS analysis of the 19 crude oil samples in 
triplicates. 
 
Table S2. 14. Filtered data matrix for IMS-MS data analysis.  Features were filtered 
based on a frequency of >1, average of triplicates > 1,000 and overall abundance of 
>1,000. Features that were etected with same mass-to-charge and CCS values, the 
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abundance of all features was summed. The fully filtered data set, features 1-939 were 
selected. 
 
Table S2.15. Fowlkes-Mallow (FM) index measurement of hierarchical clusters (Figure 
5) to measure the similarity among clusters based on region (n=2) or areas (n=6). 
 
Table S3.1.  Basic compositional and date of collection information of the samples. 
 
Table S3.2. GC-MS full scan data for a mass range of 40 to 500 amu and the normalized 
abundance of the fragmented ions for the sum of 10,127 scans. 
 
Table S3.3A. IMS-MS Run 1 raw data matrix with experimental triplicates. 
 
Table S3.3B. IMS-MS Run 2 raw data matrix with experimental triplicates. 
 
Table S3.3C. IMS-MS Run 3 raw data matrix with experimental triplicates. 
 
Table S3.4A. IMS-MS Run 1 filtered data matrix with experimental triplicates (1,530 
features). See Methods for filtering criteria. 
 
Table S3.4B. IMS-MS Run 2 filtered data matrix with experimental triplicates (4,470 
features). See Methods for filtering criteria. 
 
Table S3.4C. IMS-MS Run 3 filtered data matrix with experimental triplicates (4,662 
features). See Methods for filtering criteria. 
 
Table S3.5. KMD analysis of IMS-MS (run 1 filtered data from Supplemental Table 
4A), with molecular formula, carbon number and DBE assignment. 
 
Table S3.6. Normalized averaged abundance for each sample using IMS-MS (run 1, see 
raw data in Supplemental Table 3A) with their corresponding mean, standard deviation, 
fold change, p-value and q-value. 
 
Table S3.7A. Correlation values IMS-MS Run 1 of the filtered data (Table S3.4A). 
 
Table S3.7B. Correlation values IMS-MS Run 2 of the filtered data (Table S3.4B). 
 
Table S3.7C. Correlation values IMS-MS Run 3 of the filtered data (Table S3.4A). 
 
Table S3.8. Hydrocarbon block (carbon chain length and molecular class) data matrix 
for each sample. Shown are relative abundances for each block. 
 
Table S3.9. Heteroatom species composition for all refined petroleum substances tested. 
 



 

200 

 

Table S3.10. Padj-values representative of the difference in carbon number, hydrocarbon 
class and heteroatom composition profiles among the samples of different production 
cycles. 
 
Table S3.11.  The most abundant features (>1% of total feature abundance in each 
sample) for products AR150, AR200, BO100 and BO220 with their putative molecular 
formula assignment and name assignment. 
 
Table S4.1. Sample identification and information on exposure and collection. 
 
Table S4.2. Raw IMS-MS data matrix (n = 6,892) of the 42 water samples and solvent 
blank with their corresponding technical replicates (T.R.). 
 
Table S4.3.  IMS-MS data matrix (n = 759) with filtering criteria of abundance greater 
than 500, instrumental and experimental (Day 0) blanks subtracted and instrumental 
replicates averaged with molecular characterization based on KMD and discriminating 
feature clustering information. 
 
Table S4.4. Biomimetic Extraction-Solid Phase Microextraction Gas Chromatography-
Flame Ionization Detection measurements [µmol as 2,3 dimethylnaphthalene/mL 
PDMS] for acidified and poisoned water samples. 
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