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ABSTRACT

The broadening of scope in Operations Management (OM) has facilitated new opportunities to

study resource utilization and planning in service organizations for higher operational efficiency. In

this dissertation, I investigate operational issues in online retailing logistics, healthcare, and social

media. In my first essay, I focus on supply logistics in online retailing by analyzing safety stock

allocation and transshipments to minimize their operational cost. Using a stochastic optimization

framework, my proposed approach solves the problem optimally for smaller networks and offers a

decomposition method for larger networks. I demonstrate its potential to save significant outbound

shipping costs for an online retailer.

In my second essay, I examine Accountable Care Organizations (ACO), a network of healthcare

providers who collaborate to offer high-quality care at a reduced cost. To address their performance

issues, I analyze the role of provider composition in delivering primary care and ACO experience

on performance. Using a dataset of ACOs under Medicare, I find that (i) ACOs achieve better

performance by utilizing more nurse practitioners, (ii) having more primary care services delivered

by specialists does not result in better quality and (iii) high performing ACOs focus more on

savings in the initial phases under any risk model and consider quality initiatives in the higher risk

model. Collectively, the results provide guidelines on improving ACO performance.

In my third essay, I examine how firms can deliver better content to their target audience via

social media posts and maximize user engagement. Developing social media posts with compelling

features that capture users’ attention is a vital task, albeit a challenging one. I propose a data-

driven optimization framework for analyzing and publishing social media posts across multiple

platforms. This framework captures users’ preferences via analytics to develop better content for

planning horizon under a firm’s limited budget. In that regard, I identify the number of features

for each platform to be included in social media posts and schedule them throughout the planning

horizon in the context of maximizing user engagement. The models and results in the third chapter

can help firms improve their social media campaign and achieve higher user engagement.
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1. INTRODUCTION AND LITERATURE REVIEW

Operations management (OM), as a community, has seen significant changes in the last few

decades and has improved substantially in its effort to find effective solutions to complex prob-

lems. Currently, scholars in the OM discipline are looking beyond the traditional manufacturing

domain and applying operation research in service organizations. From networks of e-commerce

fulfillment centers to patient-centric healthcare units to user-focused social media platform adver-

tisements, organizations constantly deal with complex processes to make their decisions. Though

there are substantial differences in different industries’ operations, all are faced with one common

challenge: operational efficiency in utilizing and planning resources.

In this dissertation, I analyze operational issues in online retailing, healthcare, and social me-

dia advertising. The first essay focuses on safety stock management and transshipments in the

online retailing industry. In the second essay, I study the issues associated with accountable care

organizations (ACO). More specifically, in the second essay, I provide an empirical analysis of

ACO characteristics based on a sample of ACOs in the US. Finally, in the third essay, I provide an

optimization framework to help firms develop better advertising content on social media platforms

by utilizing social media analytics.

1.1 Safety Stock Allocation in an Online Retailing Network: A Stochastic Optimization

Approach

Ecommerce, or online retailing, is the buying or selling of goods or services on the Internet.

However, amidst the growth in sales figures, e-commerce firms are falling short on profit margins

compared to other industries. In 2020, Amazon spent approximately $61.1 billion on shipping, up

from around $21.7 billion in 2017 (Statista 2021). This high cost can be attributed to the expensive

outbound shipments to customer locations. Online retailers often utilize lateral transshipments to

meet the immediate shortfall at a location by moving stocks from another location with a surplus.

Such transshipments are expensive and depend on the inventory level of the location having surplus
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stocks. One way to reduce such expensive transshipments is to hold additional safety stocks across

the network.

In this chapter, I study the allocation of safety stocks in a large network of multiple fulfillment

centers to minimize the total cost composed of transportation, inventory holding, and lost sales.

This chapter finds an optimal and robust solution for a network consisting of one to six fulfillment

centers using a stochastic optimization method. For larger networks, I propose a decomposition

method that (i) groups nearby fulfillment centers (FC) into a number of clusters, (ii) connects

those clusters by using a Minimum Spanning Tree algorithm, and (iii) forms a hub-and-spoke

network where safety stocks are allocated first in the clusters and then in the hub and spoke FCs.

This chapter contributes to the existing literature on transshipments by providing a safety stock

allocation strategy. I offer an implementable solution procedure to manage an extensive network

of FCs to the practice. Additionally, by solving a network of 6 FCs, this chapter significantly

advance the current research paradigm that limits solutions to networks with 3 FCs.

1.1.1 Policy Implications

I address the following questions for the management of an online retailer: (i) what is an

efficient mechanism to allocate safety stock in a network that reduces expensive transshipment, (ii)

how does the performance of the allocation mechanism vary substantially across networks, and iii)

how robust is the allocation mechanism for changes in the demand. The safety stock allocation is

an important problem for an online retailer since an insufficient quantity of safety stock, combined

with expensive transshipments, can significantly increase the cost of meeting customer demand.

Wei et al. (2021) is the most recent work that examines the order fulfillment process of an

omnichannel retailer but considers only two nearby stores to deliver customer orders. Glazebrook

et al. (2015) is another study on hybrid transshipments in a multi-node network that considers three

locations and extends to 10 and 50 locations via simulations. I employ a stochastic optimization

approach and solve a network of up to six FCs optimally by incorporating a large number of

sample paths representing uncertain demands. This chapter is the first to solve a network of 6 FCs

optimally to the best of my knowledge. I employ the Sample Average Approximation approach
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(SAA) to show the robustness of the approach for a network with 166 FCs. The incorporation of

such a huge number of FCs is a first in the online retailing inventory literature.

1.2 ACO Service Delivery and Experience on Financial and Quality Performance - An Em-

pirical Examination

In this chapter, I examine Accountable Care Organizations (ACOs) and their performance im-

plications on reduced healthcare cost and increased care quality. ACOs consist of primary care

physicians (PCPs), specialists, nurse practitioners (NPs), hospitals, and other healthcare providers

and facilities, who provide coordinated healthcare to their patients for reducing healthcare costs

and improving care coordination. ACOs that meet both financial and quality standards are incen-

tivized by their payers through financial rewards. Currently, there are nearly 1000 ACOs across the

US, operating with commercial, Medicare, and Medicaid contracts (Solutions 2021). In the rising

cost of healthcare in the United States which has reached $3.8 trillion in 2019, or 17.7 percent of

the gross domestic product (GDP) (Martin et al. 2021), ACOs are touted as attractive options to

reduce healthcare costs. Despite ACOs’ efforts to curb spending and improve quality of care, the

Centers for Medicare and Medicaid Services (CMS) do not consider that the financial and quality

performance have been enhanced by the ACOs (CMS 2021).

I examine (i) provider composition in delivering primary care services, namely specialists and

nurse practitioners (NPs) as a proportion to primary care providers (PCP) and (ii) ACO experience

on ACO performance. Using a dataset of ACOs, comprising 1908 observations between 2016 and

2019, I perform an empirical analysis and present important findings. The results suggest that

ACOs achieve better performance by utilizing more NPs. Additionally, having more primary care

services delivered by specialists is financially unsustainable in the long term and does not result

in better quality. High performing ACOs focus more on savings in the initial phases under any

risk model and consider quality initiatives in the higher risk model. Additionally, I explore the

geographical and behavioral aspects of care by including the Center of Disease Control (CDC)

annual data in a post-hoc analysis. First, the findings suggest that providing access to care at

non-urban and underserved areas may not negatively impact the cost and quality performance of
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ACOs. The addition and analysis of behavioral variables suggest that ACOs in states with poor

routine check-up times and cost of care are negatively associated with quality performance.

1.2.1 Policy Implications

This chapter makes practical contributions to the healthcare operations management (HOM) lit-

erature by exploring the ACO characteristics associated with the financial and quality performance

of ACOs. Service providers (or providers) play a critical role in population health management in

service operations, especially in HOM. Their actions determine the quality of care and the cost of

healthcare. Payers such as CMS push providers to take more accountability in reducing healthcare

costs while increasing access to care and quality. The ACO model is a vital program started by

the CMS and later adopted by other payers to achieve the triple aim of healthcare and motivate

providers to transition from a volume-based to a value-based approach. ACOs are PCP-focused

organizations that manage the care episodes of patient populations. However, they often deliver

services through non-PCP and non-physicians. The findings in this chapter offer guidelines on

how ACOs service delivery via provider composition and experience affect their performance.

1.3 Know Your Users Before You Spend: A Data-Driven Optimization to Enhance User

Engagement using Visual Analytics

With the increasing presence of social media platforms, delivering attractive posts to advertise

products on these platforms has become crucial for firms to engage their target audience. Firms are

expected to spend almost $225 billion on social media advertising in 2024, surpassing paid search

and television advertising (IndiaPartner 2021). However, creating content with compelling features

in posts that match what their users prefer to engage with is challenging. Content development for

posts has implications for firms’ objectives; a recent industry report (Gary 2021) finds that posts

failing to attract the users attention have negative implications on a brand’s reputation. Even though

content development via social media analytics is essential for firms, it has not been examined

rigorously in the literature. To bridge this important gap, in essay 3, I propose an optimization

framework for analyzing and publishing social media posts across multiple platforms. I incorporate

4



social media analytics to obtain user information and guide content development efforts using those

insights for a planning horizon under a firm’s limited budget.

I consider a planning horizon where the firm wants to develop and publish posts on single or

multiple social media platforms. The firm requires information on users’ preferences and analyzes

their own and competitors’ data to understand relevant image features. Social media marketing

campaigns require firms to operate across multiple platforms, resulting in more resources and

higher costs. However, users across platforms differ in their attributes. Thus, understanding the

relationship between features included in a post and the corresponding user engagement becomes

crucial at each platform. This chapter explores the relationship between engagement and features

using empirical analysis and data on social media posts on Facebook and Instagram and model it

in the optimization framework. I combine and run advanced analytical and econometric methods

on the dataset to explore the relationship between features and engagement.

This chapter provides structural results for the two platforms - Facebook and Instagram and of-

fer insights on content development activities. In this regard, I identify the number of features that

contribute to the maximum and minimum engagement levels on Instagram and Facebook, respec-

tively. I establish the relationship between user engagement and the number of features included

in the content. Further, I also illustrate the higher performance of the approach that combines both

user-base and engagement intensity against the user-base budget allocation approach; it shows a

difference of 11-12% in engagement. Additionally, I offer managerially relevant guidelines on

other aspects of media posts.

1.3.1 Policy Implications

In this chapter, I analyze how social media analytics and content development activities can

be jointly utilized to deliver better posts for users to achieve higher engagement. This chapter

fills an important gap in the literature by analyzing social media content development strategies

using a data-driven optimization framework and offering valuable insights. I develop an optimiza-

tion model that maximizes user engagement under a limited budget. The model parameters and

the functional form of user engagement are estimated via an empirical analysis based on the data
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from Facebook and Instagram. This chapter develops insights into the following aspects: (i) the

relationship between user engagement and image features across platforms, (ii) the budget allo-

cation for the competing costs of social media analytics and content development activities in the

model, and (iii) the budget allocation and content development strategies on single and multiple

platforms. This chapter has substantial managerial implications for designing social media content

development strategies.

In summary, my dissertation develops managerially relevant guidelines to address the resource

planning and utilization issues in service organizations in e-commerce, healthcare, and social me-

dia advertising. Utilizing state-of-the-art empirical and analytical tools and existing theories in

management science, I develop a research portfolio that extends the current stock of knowledge in

these domains and offer policy implications to both academia and practitioners.

The reminder of the dissertation is organized as follows. Chapter 2 examines the allocation

safety stock in an e-commerce fulfillment center network. Chapter 3 analyzes the performance

implications of ACOs. Chapter 4 proposes an optimization framework that guides a firm’s so-

cial media content development by utilizing analytics. Chapter 5 concludes the dissertation by

summarizing the chapters.
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2. Safety Stock Allocation in an Online Retailing Network: A Stochastic Optimization

Approach

2.1 Introduction

Online retailing or E-tailing refers to the sale of goods and services through the Internet and the

shipment of goods directly to customer locations. Product pricing, website management, market-

ing, and order fulfillment are the key decisions for an online retailer, with the latter being one of the

most expensive and critical operations (Maltz et al. 2004). Order fulfillment encompasses the entire

process of receiving, processing, packaging, and shipping orders, with shipping cost dominating

the total order cost. Online shoppers expect free or cheaper shipping with fast delivery, forcing

e-commerce retailers to absorb a large part of the shipping cost. Fast delivery requires expensive

shipments and product availability at the right place and at the right time. When a shortage occurs

at one location, an online retailer may fulfill that order from a different fulfillment center (FC) at a

higher shipping cost, a strategy known as lateral transshipment. This chapter addresses the prob-

lem of allocating safety stock to multiple locations in an online retailing network while allowing

lateral transshipment and demand uncertainty. The problem is computationally quite challenging.

We provide several strategies to bring the problem to a manageable level.

Having an efficient distribution network is paramount in online retailing to ensure shorter wait

times for customers to receive their orders. A fulfillment center represents a node in a distribution

network. On-time delivery is a crucial driver of consumer repurchase, and any failure or delay in

delivery may lead to diminished repurchases (Reichheld and Schefter 2000). Thirty-eight percent

of shoppers with poor delivery experience will never shop with the retailer again (Lopienski 2018).

To fulfill customer expectations (e.g., Amazon’s recent introduction of a one-day prime shipping

policy), online retailers keep the shipping charges as low as possible. Lopienski (2018) also reports

that 61% of shoppers will abandon their carts if shipping charges are too high. In 2020, Amazon

spent approximately $61.1 billion on shipping, up from around $21.7 billion in 2017 (Statista
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2021). This enormous expenditure can be attributed to their almost free or low-cost shipping

strategies. For example, Amazon, the largest online retailer, ships products to its Prime customers

for a minimal charge (currently $119 annually or $12.99 monthly), which totaled $25.21 billion

in 2020 (Digital360 2021). Walmart charges a flat shipping fee of $5.99 per order under $35 to

most locations in the US 1. While customers prefer free shipping, they are less reluctant to pay for

expedited delivery (ProShip 2017).

Shipping cost is a variable cost in that it increases with the quantities sold. One component

of the rising shipping cost is the cost resulting from expensive transshipments. While traditional

retailers transship items within the network of stores and warehouses, online retailers use lateral

transshipment (hereafter transshipment for simplicity) to fulfill customer orders directly from FCs.

They may transship directly to a customer location or indirectly via a customer’s nearest FC. The

safety stock allocation in this chapter covers both of these options for transshipment with the

primary goal of ensuring the customer demand is met while keeping the total cost down.

Ideally, an online retailer would satisfy the demand from an FC nearest to the customer. How-

ever, in the event of a stockout at the local FC, the retailer may use a distant FC with surplus inven-

tory to fulfill customer demand. Acimovic and Graves (2017) explain this as a demand spillover

phenomenon. Consider a situation with three FCs. If a stockout occurs at FC 1, FC 2 will serve

Customer Region 1, whose closest facility is FC 1. Following Acimovic and Graves (2017), a

local stockout leads to higher outbound shipping costs. With higher demand uncertainty, outbound

shipping costs tend to increase as online retailers transship more from distant FCs. The expensive

transshipments may be avoided by storing a sufficient amount of safety stock at each FC to prevent

local stockouts.

Safety stock represent a level of insurance to help mitigate the risk of stockouts due to uncer-

tainty in supply and demand. We focus only on demand uncertainty in this chapter. An optimal

safety stock level may protect against demand uncertainty, prevent supply chain disruptions, im-

prove customer satisfaction, and compensate for forecast inaccuracies. Despite the cost savings

1The information on Walmart and Amazon are based on the data available at the time of this chapter.

8



achieved by minimizing expensive transshipments, a large volume of safety stock at one location

may also lead to higher lateral transshipment, resulting in financial and operational inefficiencies.

Thus, an efficient allocation of safety stock over a large network of FCs is critical for achieving

an appropriate balance between a satisfactory service level and rising costs. Each customer region

may exhibit different demand patterns, and each FC should ideally meet those demands with the

least amount of safety stock for the assortment it carries.

Since customers are not concerned with the source location of their orders, online retailers pool

or aggregate inventory from multiple stocking locations. Pooling reduces overall system inventory

and provides additional flexibility in replenishing the customer demand for an FC (Lee 1987). We

pool safety stock across an online retailer’s network to ensure that the required customer service

level is met. We also incorporate lost sales in this model because maintaining a 100% service level

can be expensive and inefficient. While a certain level of lost sales is economically acceptable,

retailers do not desire a high amount of unmet demand. These factors motivate online retailers to

operate in a way that minimizes the total expenditures consisting of inventory, transportation, and

lost sales. Note that transportation costs in this chapter refer to the costs associated with outbound

shipping from FC to customers that include shipment and transshipment costs only. Minimizing

other transportation costs is not the focus of this chapter.

Previous studies mostly consider transshipments in the traditional retail setting: within ware-

houses, retail stores, or between warehouses and retail stores. In the traditional retailing model,

products are sold and shipped to customers through physical stores. In contrast, online retailers

ship products directly from their FCs to customer locations. Therefore, the difference between

traditional retailing and online retailing lies in the order fulfillment process. Additionally, online

shopping requires customers to wait for a period after they place their orders, whereas traditional

retailers deliver items immediately. Online retailers may also ship items directly from their suppli-

ers. While we recognize that fulfillment by external suppliers to customers is possible, it is not the

focus of this chapter. The reader may refer to the work by Xiao and Xu (2018) for coordination

and capacity issues with the online platform and third-party seller coordination.
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2.1.1 Goals

We address a difficult problem of allocating safety stock over a network of fulfillment centers

in the face of demand uncertainty. The goal here is to develop an easily implementable safety

stock allocation mechanism that may benefit online retailers. An online retailer must deliver the

product upon receiving an order if the ordered item was displayed on the website. We consider the

allocation process as a discrete stochastic optimization model with uncertain demands represented

by sample paths from a normal distribution. Such representation of demand is consistent with

the literature (Campbell et al. 1998). For the ease of development, we use single item orders that

include such items as computers, laptops, and backpacks that are delivered to customers one at a

time. We assume that the retailer follows a periodic review order-up-to policy where it periodically

places system-wide orders to its suppliers. Our single period model can be repeated throughout

the year, as in Acimovic and Graves (2017). At the end of each period, the retailer calculates the

safety stock at the FCs and may order the amount needed at these FCs, along with the required

inventory.

For our analysis, we use the online retailing networks of Amazon and Flipkart as canonical

examples. Because of the difficulty of solving the safety stock allocation problem in a large net-

work, we use a divide and conquer strategy where the network is divided into multiple clusters of

FCs, connected via a Minimum Spanning Tree (MST) graph. By doing so, we model the cheapest

transportation link between any two clusters, avoiding long lead time delays and minimizing ex-

pensive distant transshipments. Within each cluster, we model the FCs in a hub-and-spoke system.

The distance between two FCs within a cluster tends to be small, and therefore, the hub-and-spoke

system allows us to use equal transshipment costs between any two nodes within that cluster. The

hub-and-spoke structure is consistent with the fulfillment strategy of many large online retailers.

We employ our solution strategy first to a network with two FCs serving two customer regions and

examine the relationship between the standard deviation of the demand and safety stock alloca-

tion. We then extend our analysis to three FCs with three customer regions. Finally, we use the

insights from the solution for two and three FC networks, along with the clustering and hub-and-
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spoke approach, to solve allocation in much larger networks and provide online retailers an easily

implementable tool for managing their inventory.

2.1.2 Contributions

This chapter proposes a safety stock allocation approach in a multi-location online retailing

network. The safety stock allocation is an important problem for an online retailer since an insuffi-

cient quantity of safety stock, combined with expensive transshipments, can significantly increase

the cost of meeting customer demand. As discussed in the next section, there has been some work

in the literature on safety stock allocation in online retailing. However, we are not aware of any

attempt in the literature that explicitly addresses safety stock allocation for medium or large online

retailers under demand uncertainty and lateral transshipments. Our approach to handling a larger

retailing network begins with the solution for the simpler case of two FCs and two regions, where

we present a stochastic optimization model with uncertain demands represented by sample paths

from the demand distribution. We determine the proportion of safety stock allocated to two FCs

for both equal and unequal variances of the demand at two regions.

The optimal allocation of safety stock quickly becomes intractable as the retailing network

grows in the size of the number of nodes (FCs). We develop a novel approach to solve larger

problems by sequentially employing the following steps: 1) the global network is broken into sev-

eral clusters using an integer program, 2) within each cluster we identify a hub-and-spoke system

using a p-center algorithm 3) all hub nodes in the network are then linked through a MST to keep

the transshipment cost between clusters as small as possible, 4) system-wide safety stock is then

allocated to the hub of each cluster via a stochastic optimization algorithm, 5) spoke nodes (also

refereed to as leaf nodes) in each cluster are pooled to form one FC, and the share of that cluster’s

safety stock is allocated to the hub and pooled FC, and consequently to individual leaf FCs.

Wei et al. (2021) is the most recent work that examines the order fulfillment process of an

omnichannel retailer but considers only two nearby stores to deliver customer orders. Glazebrook

et al. (2015) is another study on hybrid transshipments in a multi-node network that considers three

locations and extends to 10 and 50 locations via simulations. We employ a stochastic optimiza-
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tion approach and solve a network of up to six FCs optimally by incorporating a large number

of sample paths representing uncertain demands. This is the first study to solve a network of 6

FCs optimally to the best of our knowledge. For networks with more than 6 FCs, we use the de-

composition described above to obtain a near-optimal solution. We employ the Sample Average

Approximation approach (SAA) to show the robustness of our approach for a network with 166

FCs. The incorporation of such a huge number of FCs is a first in the online retailing inventory

literature.

We address the following questions for the management of an online retailer: (i) what is an

efficient mechanism to allocate safety stock in a network that reduces expensive transshipment,

(ii) how does the performance of the allocation mechanism vary substantially across networks, and

iii) how robust is the allocation mechanism for changes in the demand. Considering the demand

volatility observed in practice, we offer a cost-efficient inventory allocation and transportation

approach while maintaining a required service level. We demonstrate that our decomposition ap-

proach offers a near-optimal solution by assessing its performance on a sizable testbed of relevant

instances of mid-sized and large networks. We report extensive computational results to validate

the robustness of our approach under different parametric conditions.

This chapter is organized as follows. We proceed with a brief literature review in Section 2.2

and study two and three FC networks in Section 2.3. We also prove some important results in

Section 2.3 that are used for analyzing larger networks. Section 2.4 is the key part of this chapter,

where we model a large network of FCs under a MST graph and explore its properties. Key

contributions in this section include the decomposition of the network into clusters and each cluster

into a hub-and-spoke system. Section 2.5 presents an implementation of the decomposition method

and evaluation of its performance. In Section 2.6, we describe the SAA approach and validate

the robustness of our heuristic for a large network. In Section 2.7, we analyze three practical

safety stock allocation approaches used in practice and investigate the cost implications for those

approaches. We present the managerial insights in Section 2.8 and conclude in Section 2.9 with

implications for further research.
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2.2 Literature Review

The general problem of minimizing the total costs of transportation, inventory holding, and

lost sales has been extensively studied in the operations management literature. This chapter con-

tributes to the literature by specifically addressing safety stock allocation while balancing the costs

of transshipment, inventory, and lost sales for an online retailer. Variants of this problem have

been addressed by a few researchers, prominent among those are the contributions of Glazebrook

et al. (2015) and Acimovic and Graves (2017). While these and other important studies inspire our

research, as we discuss below, what we address in this chapter differs from the current literature

in several ways. To the best of our knowledge, this is the first attempt to simultaneously consider

transshipment and safety stock management for a large online retailer in the presence of demand

uncertainty.

There is a rich literature in the operations management field on various transshipment strate-

gies. Krishnan and Rao (1965), Karmarkar and Patel (1977), Robinson (1990), and Archibald

et al. (1997) are some of the leading pieces that explore transshipment within the same firm. Kr-

ishnan and Rao (1965) develop a single-period two location model. Robinson (1990) extends the

literature by considering multiple identical locations and two non-identical location models. Re-

search on transshipment has primarily focused on transshipment that can be broadly classified as:

(i) proactive transshipment when transshipment is allowed before the demand is realized and (ii)

reactive transshipment when transshipment is allowed after the demand is realized. For a brief

review of the transshipment types, the reader may refer to the work by Paterson et al. (2011). We

model reactive transshipment where an online retailer transships orders after the selling period be-

gins. Archibald et al. (2010) propose a novel heuristic for reactive transshipments. Hu et al. (2008)

and Chen et al. (2015) consider reactive transshipment with uncertain capacity. In the first stage,

they characterize the optimal ordering, and in the second stage, they model reactive transshipment.

The work in this chapter differs from the transshipment literature in that we use an online retailing

context with a focus on managing a balance between inventory and transshipment costs for a net-

work with a large number of FCs. We also address demand uncertainty in a stochastic optimization
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framework. In Table 1, we compare this chapter to the problems analyzed in the prior literature.

Some of these papers, as rightly pointed out by Herer et al. (2006), incorporate high levels of com-

plexity into their models, rendering them analytically intractable. We adopt a framework that may

provide useful insights to practitioners, while making sure the intractability is handled through a

creative solution approach.

This chapter is in part motivated by Glazebrook et al. (2015), who address transshipment in

car parts industry. For a central depot periodically replenishing the stores, they propose a hybrid

transshipment approach for meeting immediate shortfall and proactive transshipment for inventory

balancing. Their decisions include: (i) choosing the sending location for transshipment, and (ii)

determining the number of items to be transshipped. They provide an optimal solution for the

case of three locations and propose a heuristic for the multi-location (10 and 50 locations) and

multi-item orders. There are important differences between Glazebrook et al. (2015) and our re-

search. We formulate a cost minimization problem for an online retailer, replenished by a supplier.

As opposed to Glazebrook et al. (2015), we focus on the efficient allocation of safety stock in an

online retailing environment under reactive lateral transshipment. Unlike the car parts industry,

where proactive transshipment is more common since replenishments from the central depot re-

quires more time and money, reactive transshipment allows online retailers to take advantage of

the time gap between order placement and order fulfillment to pursue the best fulfillment strategy.

Our modeling approach also differs from Glazebrook et al. (2015). We explicitly model safety

stock allocation and transshipment via stochastic optimization, where a large number of scenarios

effectively represent demands. We prove a number of results that allow us to tackle very large on-

line networks. We solve the model optimally for 6 FCs, versus the three-FC networks considered

in Glazebrook et al. (2015), and provide an easily implementable heuristic for larger networks.

The second stream of literature related to our research is inventory management in online re-

tailing. Several studies focus on order fulfillment at FCs to minimize shipping costs (Acimovic

and Graves 2015, Jasin and Sinha 2015, Lei et al. 2018, Xu et al. 2009). This chapter builds on

this stream of literature and focuses on the simultaneous consideration of transshipment policies
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and safety stock allocation in online retailing. One of the key studies that motivate this work is

that of Acimovic and Graves (2017). They point out some of the difficulties inherent in using

traditional inventory management to an online environment. For their industrial partner, one of the

largest online retailers, the traditional status quo policy increases inventory imbalance and local

stockouts, resulting in higher outbound shipping costs through “additional spillovers" or trans-

shipments. They suggest a heuristic based on a stochastic linear program for inventory allocation

policy. In the proposed policy, they determine the order amount for each FC by estimating the

safety stock and demand realized during the lead time and review period. With 1080 scenarios,

each having 63 demand sample paths along with varying lead time, cycle service level, and inven-

tory shift magnitude, they show that their heuristic reduces costs associated with transshipments or

the additional cost of meeting the demand spilled over to other nodes.

This chapter extends the work of Acimovic and Graves (2017) in several aspects. To reduce the

overall inventory imbalance, they propose the allocation of inventory and the safety stock in the

same proportion across all FCs. In contrast, we determine the allocation of safety stock with the

objective of minimizing the total costs associated with transportation, safety stock holding, and lost

sales. More specifically, our approach involves the decomposition of a large network that reduces

the complexity and helps in efficiently allocating inventory. Through our theoretical insights and

numerical analysis, we show that our decomposition approach produces results reasonably close

to optimality. Additionally, our decomposition strategy allows us to solve much larger problems

with significant uncertainty in demands across the entire network.

2.3 Problem Formulation

Because the focus of our research is its applicability to online retailers, we closely studied the

fulfillment processes of two major online retailers - Amazon and Flipkart. We visited Flipkart’s

office in Bengaluru, India, and had an extensive conversation with a senior executive regarding their

network and fulfillment process. We also had conversations with employees of Amazon who are

involved in order fulfillment. Flipkart, the largest e-commerce player in India, connects thousands

of sellers to millions of customers across the country. Since the government policy in India does not
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Table 2.1: A review of closely related works

Work Objective Size Methodology Replenish-
ment policy

Transshipment
policy

Lost demand Safety
stock

Archibald
et al. (1997)

Optimal reorder policy with
minimized inventory cost

Small Stochastic
dynamic pro-
gramming (DP)

Periodic Reactive Emergency order No

Axsater
(2003)

Decision rule to cover whole
or a part of demand with
transshipments

Small Stochastic
dynamic pro-
gramming

Continuous Reactive Back-ordering No

Herer et al.
(2006)

Optimal order up-to policy
and optimal transshipment
policy

Small Integrated In-
finitesimal
Perturbation
Analysis IPA/LP
algorithm

Periodic Reactive Lost sales No

Archibald
(2007)

Optimal replenishment and
transshipment decisions

Small Markov decision
process and
heuristics

Periodic Reactive Emergency order No

Hu et al.
(2008)

Effect of capacity on replen-
ishment and transshipment
policies

Small Two-stage back-
ward induction

Periodic Reactive Lost sales No

Zhao et al.
(2008)

Transshipment policy trig-
gered by both demand ar-
rivals and production com-
pletions

Small Dynamic Pro-
gramming

Continuous Hybrid Lost sales Yes

Archibald
et al. (2010)

Efficient transshipment poli-
cies for reactive transship-
ments

Small Stochastic DP
and heuristics

Continuous Reactive Emergency order No

Glazebrook
et al. (2015)

Selection of transshipping lo-
cation and item-types under a
centralized system

Medium Stochastic DP
and heuristic

Periodic Hybrid Lost sales and
backordering

Yes

Acimovic and
Graves (2017)

Inventory allocation to
reduce demand spillovers
(transshipments)

Medium Stochastic linear
program (SLP)
and heuristics

Periodic Reactive Lost sales Yes

This chapter Efficient allocation of safety
stock with a network decom-
position approach to reduce
expensive reactive transship-
ments

Large Stochastic
optimization
approach and
heuristic

Periodic Reactive Lost sales Yes
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allow online retailers to hold their own inventory, Flipkart acts as a platform that connects buyers

and sellers. Through their robust distribution network, Flipkart ships the items from sellers to their

FCs and based on customer orders, fulfill them from their FCs, mostly from customers’ nearby

centers. As long as they have an item available at any FC, the website does not show out-of-stock

status. Based on their historical data and a better understanding of customer preferences, Flipkart

inventory allocation is robust and efficient. However, the website’s product availability status

means that Flipkart has to fulfill the order upon request from any FC in their network, resulting

in transshipments. They use both proactive and reactive transshipments. Reactive transshipments

mostly meet immediate shortages. Flipkart has large FCs near the metropolitan cities and smaller

FCs across the tier 2 and tier 3 cities. The larger FCs offer more product variety along with

higher inventory levels. Also, during shortages, these large fulfillment centers fulfill orders in

distant regions since immediate transportation from sellers on short notice is expensive and may

not always be possible. Flipkart’s five most popular orders are for single item products.

Amazon, another major retailer, has a significant market share in the Indian online retail land-

scape; however, their FCs are mostly located in tier 1 cities. On the other hand, in the US, Amazon

is the biggest e-commerce player having its presence across the country. In the US, e-commerce

firms can have their own inventory. Amazon sells its own products along with vendor-supplied

products. The inventory practice of Amazon closely resembles our work in two areas: (i)40 per-

cent of the products sold via Amazon are their own brands, and therefore, can be categorized as

single supplier products, and (ii) Amazon also follows a hub-and-spoke system with a combination

of large and small FCs. For example, the Moreno Valley FC in California is the largest among the

14 FCs in the California region for Amazon. It is one of the largest and crucial FCs for Ama-

zon in terms of both shipment and employment, supplying (shipping and transshipping) a large

population of California. Any supply shortage in nearby centers is likely redirected to the larger

warehouse.

The modeling assumptions stated below are based on our understanding of the operations of

the two largest e-commerce retailers and the existing literature. In Section 2.3.1, we analyze a
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network of two FCs serving two customer regions, which include the cases of equal and unequal

demand variances. Next, in Section 2.3.2, we extend our analysis to three fulfillment centers

configured as a hub-spoke system, serving three customer regions. We construct a generalized

model in Section 2.4 and apply the analytical insights from this section.

Assumptions

• We consider customers that place a single-item order and do not return the item. Return

management is not the focus of this chapter. However, the single item orders are quite

common for online retailers. Many of the popular products available on Flipkart are single

item orders.

• The fulfillment centers periodically replenish the single item by a single supplier at the same

per unit cost. The single supplier assumption exists in the literature (Archibald et al. 2010).

The number and location of FCs are predetermined. Many papers consider simultaneous

replenishments for retail networks under periodic review policy (e.g. Cao and Silver 2005,

Herer et al. 2006, Archibald et al. 2009).

• The online retailer follows a periodic review joint replenishment policy with identical review

period T for all FCs. Several papers measure base-stock levels in a periodic review environ-

ment (e.g. Robinson 1990, Herer et al. 2006). The supply lead time from the supplier to any

FC, L is a fixed constant and is known. FCs across the network are assumed to have the

same review period for convenience.

• The model includes lost sales; we penalize the firm for not meeting the realized demand by a

per unit missed demand cost. However, as noted by Nobel and van der Heeden. (2000), “The

lost sales model is intrinsically more difficult..., and no exact results have been reported yet."

Lee and Hong (2003) demonstrate the expression for the total cost per unit of time but com-

ment that it is an intractable task. One approach is to associate lost sales with a service level

requirement, with the aim of achieving a satisfactory compromise between holding cost and

customer service (Faaland et al. 2019). Additionally, our discussions with the practitioners
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reveal that the estimated penalty is the loss of revenue (product price) the sale would have

provided. One common notion with lost sales is the loss of customer goodwill or their re-

purchase intention. However, the existing literature shows mixed evidence; while Kim and

Lennon (2011) use experiments to show that stock-outs cause consumers to experience neg-

ative emotions, which adversely affect the retailer’s image and repurchase decisions. Dadzie

et al. (2005) do not find any significant impact of stock-outs on customer decisions for books,

clothes, and shoes. Firms often use price promotions to lower consumer dissatisfaction due

to stock-outs. Additionally, most online retailers do not display out-of-stock items. In order

to develop tractable analysis we initially fix the service level in our model. However, later in

Section 2.7, we analyze the impact of service level on the lost sales.

For Flipkart, the penalty cost is not direct since it does not own any inventory. Flipkart

shares a profit percentage for each sale. However, every unmet demand causes a seller to

lose a selling opportunity, and Flipkart loses its profit percentage. Note Flipkart works with

sellers to create demand forecasts and forecast errors hurt sellers and Flipkart. In that sense,

our lost sales assumption seems reasonable for both markets.

• We do not consider backordering. Glazebrook et al. (2015) show that the lost sales and

backordered sales models in their work with multiple stocking locations produce comparable

results. Online retailers do not use backordering since online customers do not wait to switch

to another platform for their desired products. Thus, we include only the lost sales cost

component in our model.

• Any FC can ship an item to any customer location. However, the cost may vary for shipment

or transshipment. Flipkart and Amazon both show items on their website as long as they are

available at warehouses in their markets.

• We assume that shipment and transshipment costs are exogenously given.

• We model consumer demand using a normal distribution and assume independent demand

at all FCs. We discuss it later in this section.
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• System-wide demand over the total on-hand inventory across all FCs is unmet. We do not

consider supplier fulfillment. This assumption is true, especially for Flipkart. The sellers are

small to medium enterprises that do not possess efficient logistics capabilities. Our focus is

not supplier fulfillment.

• Transshipments occur from one FC having a surplus to another FC facing a stock out.

2.3.1 Two Fulfillment Centers and Two Regions

Let us consider two FCs facing independent and stochastic demand for a specific item. Two

facilities FC1 and FC2 primarily serve two customer regions, R1 and R2, respectively. If FC1

(FC2) is unable to meet the demand of R1 (R2), FC2 (FC1) fulfills the unmet demand of R1 (R2)

if it has a surplus after serving the demand of its local region. We assume that the per unit outbound

shipping cost is higher if a region’s local FC fails to meet the demand. Due to demand uncertainty,

it is a common practice for FCs to keep safety stock to maintain the system wide service level

requirement. While a high level of safety stock is expensive, a low level of safety stock may lead

to higher transportation costs, resulting in a trade-off between transportation costs and holding

costs.

Due to the random nature of demand, there may exist several possible demand scenarios (or

sample paths). Each combination of demand for these two regions can affect the shipments and

transshipments. Let ρs denote the probability of occurrence of each scenario s. The two FCs meet

all demand unless there is a system-wide stock-out. As long as a product is displayed on its web-

site, the online retailer will deliver orders for that product from any region. Any excess demand,

more than the system-wide on-hand inventory, is lost. The safety stock allocation choice must be

made optimally in anticipation of all possible demand scenarios. It is a one-time decision made at

the beginning of a period.

Region R1 has a mean daily demand d1 and daily variance σ2
1 . Region R2 has a mean daily

demand d2 and daily variance σ2
2 . Let the lead time at each facility be L and review period T . Also,

let the system wide demand variance be σ2
0 = σ2

1 + σ2
2 (Independence assumption). The system

wide safety stock requirements is zσ0

√
T + L. We develop our model to allocate the system wide
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safety stock zσ0

√
T + L, optimally among the two FCs to minimize the total cost. Note that the

system level target inventory is Up, where Up = (L+T )(d1 +d2)+zσ0

√
T + L. The system-wide

order is placed in every period is (Up − I1 − I2), where (I1 + I2) is the on-hand inventory at both

FCs at the review period. When the order is received, it is split among the FCs such that the target

inventory at FCi is Ui, where Ui = (L + T )di + λizσ0

√
T + L, i = 1, 2, λ1 + λ2 = 1, and λi is

the proportion of safety stock allocated at FCi.

An FC transships to a stocked-out FC only if the former has a surplus. As the selling period

approaches, the online retailer’s accuracy in predicting the demand improves. In other words, the

online retailer can better predict the imminent stock-out and excess inventory across the network.

Therefore, during (T + L), the online retailer’s forecast may approximately mimic the actual de-

mand and it can facilitate transshipments after accounting for the local demand. Next, we define

our model. The parameters and variables are listed in Table 2.2.

Table 2.2: Parameters and variables

Parameters:
cp Shipping cost per unit from the FC closest to the customer
cs Cost of transshipping one unit, which is the shipping cost from the distant (i.e., secondary) FC to customer location

(cs > cp)
d1 Mean daily demand of region R1

d2 Mean daily demand of region R2

σ2
1 Daily variance of demand at region R1

σ2
2 Daily variance of demand at region R2

σ2
0 System wide demand variance σ2

0 , where σ2
0 = σ2

1 + σ2
2

T Review time at each facility
L Lead time at each facility
h Holding cost at each facility
g Penalty cost for each lost demand

Variables:
Xs

1 Units shipped from FC1 to R1 for scenario s
Xs

2 Units shipped from FC2 to R2 for scenario s
Xs

12 Units shipped from FC1 to R2 for scenario s
Xs

21 Units shipped from FC2 to R1 for scenario s
Y s1 Lost sales for region 1 for scenario s
Y s2 Lost sales for region 2 for scenario s
es1 Realized demand at FC1 under scenario s
es2 Realized demand at FC2 under scenario s
λ1 Proportion of safety stock allocated at FC1

λ2 Proportion of safety stock allocated at FC2

The firm incurs a cost of cp to ship each product to a customer from the nearest facility. If it
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ships from a distant FC, the firm incurs a per unit transshipment cost cs, where cp < cs. Holding

cost for each unit at either FC is h. We assume that any demand not satisfied is lost and a penalty

cost of g is incurred for each unit of unmet demand. We assume identical holding and penalty costs

across the FCs, similar to Glazebrook et al. (2015).

We use a normal distribution for customer demand with 99.72% of the demands within three

standard deviations from the mean. We explore 7 different demand realizations at each FC: d−3σ,

d− 2σ, d− σ, d, d+ σ, d+ 2σ, and d+ 3σ, for a total of 49 scenarios (i.e., sample paths, esi ). The

objective is to find the optimal allocation of safety stock that minimizes the expected cost over all

scenarios. es1 and es2 are the realized demands at the two FCs for scenario s.

Figure 2.1: Normal distribution up to ±3σ

The seven points noted above provide a reasonable approximation of normal distribution cov-

ering its entire region to a large extent. Normal distribution is continuous; however, we discretize

the distribution at seven points as mentioned above. We assume that the occurrence of demand

between d+0.5σ and d-0.5σ is represented by the value of d (the mean). The area between d+0.5σ
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and d-0.5σ in the normal table is the probability of occurrence of demand d. The probability of

occurrence of other six demand values (d − 3σ, d − 2σ, d − σ, d + σ, d + 2σ, and d + 3σ), are

shown in Figure 2.1.

Now, let us consider that two FCs, FC1 and FC2, ship Xs
1 and Xs

2 to regions R1 and R2,

respectively for each scenario s. For any excess demand, FC1 and FC2 shipXs
12 andXs

21 to regions

R1 and R2, respectively, at a unit cost of cs. Unmet demands, Y s
1 and Y s

2 are penalized at a unit

cost of g for each scenario s. Decision variables are λ1 and λ2, which are the proportions of safety

stock deployed at FC1 and FC2, respectively. The objective function is the sum of transportation

cost, inventory holding cost and lost sales cost for all s sample paths. In the formulation below, K1

= 49.

Problem MIP2FC:

Min Ψ1 = λ1z
√
T + Lσ0h+ λ2z

√
T + Lσoh+

K1∑
s=1

ρsπs

Subject to:

πs = (Xs
1 +Xs

2)cp + (Xs
12 +Xs

21)cs + (Y s1 + Y s2 )g, s = 1, . . . ,K1 (2.1)

Xs
1 +Xs

12 ≤ (L+ T )d1 + λ1z
√
T + Lσ0, s = 1, . . . ,K1 (2.2)

Xs
2 +Xs

21 ≤ (L+ T )d2 + λ2z
√
T + Lσ0, s = 1, . . . ,K1 (2.3)

Y s1 ≥ es1 −Xs
1 −Xs

21, s = 1, . . . ,K1 (2.4)

Y s2 ≥ es2 −Xs
2 −Xs

12, s = 1, . . . ,K1 (2.5)

λ1 + λ2 = 1 (2.6)

Xs
1 , X

s
21, X

s
2 , X

s
12, Y

s
1 , Y

s
2 : Integer variables, s = 1, 2, . . . ,K1 (2.7)

λ1, λ2 ≥ 0 (2.8)

The objective function minimizes the total costs, consisting of transportation, holding, and

penalty costs for all sample paths. Constraint set (2.1) represents the total cost of transporta-

tion and lost sale for each sample path. Constraint sets (2.2) and (2.3) limit the shipments from

FC1 and FC2 to the on-hand inventories in their respective locations. That is, none of the two

FCs can ship or transship more than their inventories. The lost sales are estimated in Constraint
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Table 2.3: Different demand situations (two FC case)

Sample path(s) es1 Probability of es1 es2 Probability of es2 ρs

1 µ2d1-µσ1 0.242 µ2d2 0.383 0.092686
2 µ2d1-2µσ1 0.061 µ2d2 0.383 0.023363
3 µ2d1-3µσ1 0.006 µ2d2 0.383 0.002298
4 µ2d1 0.383 µ2d2 0.383 0.146689
5 µ2d1+µσ1 0.242 µ2d2 0.383 0.092686
6 µ2d1+2µσ1 0.061 µ2d2 0.383 0.023363
7 µ2d1+3µσ1 0.006 µ2d2 0.383 0.002298
8 µ2d1-µσ1 0.242 µ2d2-µσ2 0.242 0.058564
9 µ2d1-2µσ1 0.061 µ2d2-µσ2 0.242 0.014762
10 µ2d1-3µσ1 0.006 µ2d2-µσ2 0.242 0.001452
11 µ2d1 0.383 µ2d2-µσ1 0.242 0.092686
12 µ2d1+µσ1 0.242 µ2d2-µσ2 0.242 0.058564
13 µ2d1+2µσ1 0.061 µ2d2-µσ2 0.242 0.014762
14 µ2d1+3µσ1 0.006 µ2d2-µσ2 0.242 0.001452
15 µ2d1-µσ1 0.242 µ2d2-2µσ2 0.061 0.014762
16 µ2d1-2µσ1 0.061 µ2d2-2µσ2 0.061 0.003721
17 µ2d1-3µσ1 0.006 µ2d2-2µσ2 0.061 0.000366
18 µ2d1 0.383 µ2d2-2µσ2 0.061 0.023363
19 µ2d1+µσ1 0.242 µ2d2-2µσ2 0.061 0.014762
20 µ2d1+2µσ1 0.061 µ2d2-2µσ2 0.061 0.003721
21 µ2d1+3µσ1 0.006 µ2d2-2µσ2 0.061 0.000366
22 µ2d1-µσ1 0.242 µ2d2-3µσ2 0.006 0.001452
23 µ2d1-2µσ1 0.061 µ2d2-3µσ2 0.006 0.000366
24 µ2d1-3µσ1 0.006 µ2d2-3µσ2 0.006 0.000036
25 µ2d1 0.383 µ2d2-3µσ2 0.006 0.002298
26 µ2d1+µσ1 0.242 µ2d2-3µσ2 0.006 0.001452
27 µ2d1+2µσ1 0.061 µ2d2-3µσ2 0.006 0.000366
28 µ2d1+3µσ1 0.006 µ2d2-3µσ2 0.006 0.000036
29 µ2d1-µσ1 0.242 µ2d2+µσ2 0.242 0.058564
30 µ2d1-2µσ1 0.061 µ2d2+µσ2 0.242 0.014762
31 µ2d1-3µσ1 0.006 µ2d2+µσ2 0.242 0.001452
32 µ2d1 0.383 µ2d2+µσ2 0.242 0.092686
33 µ2d1+µσ1 0.242 µ2d2+µσ2 0.242 0.058564
34 µ2d1+2µσ1 0.061 µ2d2+µσ2 0.242 0.014762
35 µ2d1+3µσ1 0.006 µ2d2+µσ2 0.242 0.001452
36 µ2d1-µσ1 0.242 µ2d2+2µσ2 0.061 0.014762
37 µ2d1-2µσ1 0.061 µ2d2+2µσ2 0.061 0.003721
38 µ2d1-3µσ1 0.006 µ2d2+2µσ2 0.061 0.000366
39 µ2d1 0.383 µ2d2+2µσ2 0.061 0.023363
40 µ2d1+µσ1 0.242 µ2d2+2µσ2 0.061 0.014762
41 µ2d1+2µσ1 0.061 µ2d2+2µσ2 0.061 0.003721
42 µ2d1+3µσ1 0.006 µ2d2+2µσ2 0.061 0.000366
43 µ2d1-µσ1 0.242 µ2d2+3µσ2 0.006 0.001452
44 µ2d1-2µσ1 0.061 µ2d2+3µσ2 0.006 0.000366
45 µ2d1-3µσ1 0.006 µ2d2+3µσ2 0.006 0.000036
46 µ2d1 0.383 µ2d2+3µσ2 0.006 0.002298
47 µ2d1+µσ1 0.242 µ2d2+3µσ2 0.006 0.001452
48 µ2d1+2µσ1 0.061 µ2d2+3µσ2 0.006 0.000366
49 µ2d1+3µσ1 0.006 µ2d2+3µσ2 0.006 0.000036
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Table 2.4: Decision variables for Problem MIP2FC when z =
√

2 (two FC case)

s es1 Xs12 es2 Xs21 Y s1 + Y s2
1 µ2d1-µσ 0 µ2d2 0 0
2 µ2d1-2µσ 0 µ2d2 0 0
3 µ2d1-3µσ 0 µ2d2 0 0
4 µ2d1 0 µ2d2 0 0
5 µ2d1+µσ 0 µ2d2 0 0

6 µ2d1+2µσ 0 µ2d2 (1− 2δ)µσ 0
7 µ2d1+3µσ 0 µ2d2 (1− 2δ)µσ µσ + 0

8 µ2d1-µσ 0 µ2d2-µσ 0 0
9 µ2d1-2µσ 0 µ2d2-µσ 0 0
10 µ2d1-3µσ 0 µ2d2-µσ 0 0
11 µ2d1 0 µ2d2-µσ 0 0
12 µ2d1+µσ 0 µ2d2-µσ 0 0
13 µ2d1+2µσ 0 µ2d2-µσ (1− 2δ)µσ 0
14 µ2d1+3µσ 0 µ2d2-µσ (2− 2δ)µσ 0

15 µ2d1-µσ 0 µ2d2-2µσ 0 0
16 µ2d1-2µσ 0 µ2d2-2µσ 0 0
17 µ2d1-3µσ 0 µ2d2-2µσ 0 0
18 µ2d1 0 µ2d2-2µσ 0 0
19 µ2d1+µσ 0 µ2d2-2µσ 0 0
20 µ2d1+2µσ 0 µ2d2-2µσ (1− 2δ)µσ 0
21 µ2d1+3µσ 0 µ2d2-2µσ (2− 2δ)µσ 0
22 µ2d1-µσ 0 µ2d2-3µσ 0 0
23 µ2d1-2µσ 0 µ2d2-3µσ 0 0
24 µ2d1-3µσ 0 µ2d2-3µσ 0 0
25 µ2d1 0 µ2d2-3µσ 0 0
26 µ2d1+µσ 0 µ2d2-3µσ 0 0
27 µ2d1+2µσ 0 µ2d2-3µσ (1− 2δ)µσ 0
28 µ2d1+3µσ 0 µ2d2-3µσ (2− 2δ)µσ 0
29 µ2d1-µσ 2δµσ µ2d2+µσ 0 0
30 µ2d1-2µσ 2δµσ µ2d2+µσ 0 0
31 µ2d1-3µσ 2δµσ µ2d2+µσ 0 0
32 µ2d1 2δµσ µ2d2+µσ 0 0
33 µ2d1+µσ 2δµσ µ2d2+µσ 0 0
34 µ2d1+2µσ 0 µ2d2+µσ 0 (1− 2δ)µσ + 2δµσ

35 µ2d1+3µσ 0 µ2d2+µσ 0 (2− 2δ)µσ + 2δµσ

36 µ2d1-µσ (1 + 2δ)µσ µ2d2+2µσ 0 0

37 µ2d1-2µσ (1 + 2δ)µσ µ2d2+2µσ 0 0
38 µ2d1-3µσ (1 + 2δ)µσ µ2d2+2µσ 0 0
39 µ2d1 (1 + 2δ)µσ µ2d2+2µσ 0 0
40 µ2d1+µσ (2δ)µσ µ2d2+2µσ 0 0 + µσ

41 µ2d1+2µσ 0 µ2d2+2µσ 0 (1− 2δ)µσ + (1 + 2δ)µσ

42 µ2d1+3µσ 0 µ2d2+2µσ 0 (2− 2δ)µσ + (1 + 2δ)µσ

43 µ2d1-µσ (2 + 2δ)µσ µ2d2+3µσ 0 0

44 µ2d1-2µσ (2 + 2δ)µσ µ2d2+3µσ 0 0
45 µ2d1-3µσ (2 + 2δ)µσ µ2d2+3µσ 0 0
46 µ2d1 (1 + 2δ)µσ µ2d2+3µσ 0 0 + µσ

47 µ2d1+µσ (2δ)µσ µ2d2+3µσ 0 0 + 2µσ

48 µ2d1+2µσ 0 µ2d2+3µσ 0 (1− 2δ)µσ + (2 + 2δ)µσ

49 µ2d1+3µσ 0 µ2d2+3µσ 0 (2− 2δ)µσ + (2 + 2δ)µσ
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sets (2.4) and (2.5). The sum of the two allocation parameters, λ1 and λ2 is normalized to 1 in

Constraint (2.6). Constraint sets (2.7) and (2.8) provide the nonnegativity constraints. Note that λ1

and λ2 allocate the safety stock at FC1 and FC2, respectively. Problem MIP2FC can be solved

optimally using CPLEX.

2.3.1.1 Equal Variance

First, we consider a special case where both regions have the same variance σ2. The probabili-

ties of the occurrence of each scenario (ρs) are described in Table 2.3. In total, we have 49 sample

paths with different probabilities. Each sample path contains the costs associated with shipments,

transshipments, safety stock holding, and penalty costs. Note that Constraint set (2.2) quantifies

the total cost for each sample path in the previous objective function and also in this special case.

We derive the optimal solution of safety stock allocation in the following Lemma.

Lemma 1. For any fixed service level no less than 50% and cs > cp, the optimal safety stock

allocation is λ1 = λ2 = 0.5 for the two FCs case with equal standard deviation, σ.

Proof: Since λ1 +λ2 = 1, we may assume that λ1 = 0.5 + δ and λ2 = 0.5 - δ, where δ is in [0, 0.5].

Note that σ1 = σ2 = σ. The total inventory at FC1 and FC2 are (L+ T )d1+z
√
L+ T (0.5 + δ)σ0

and (L+ T )d2+z
√
L+ T (0.5− δ)σ0, respectively, where σ0 =

√
2σ. Let us also denote

√
L+ T

= µ and L+ T = µ2. Note that

Total system inventory is µ2(d1 + d2) + z
√

2µσ.

Inventory at FC1 is µ2d1 + z
√

2µσ(0.5 + δ).

Inventory at FC2 is µ2d2 + z
√

2µσ(0.5− δ).

For ease of exposition, we fix the service level to 92% such that z =
√

2. However, the proof

can easily be generalized to any service level no less than 50%. With the updated z parameter, we

can rewrite the inventory levels for the system and FCs. The inventory levels as follows:

Total system inventory is µ2(d1 + d2) + 2µσ.

Inventory at FC1 is µ2d1 + (1 + 2δ)µσ.

Inventory at FC2 is µ2d2 + (1− 2δ)µσ.
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We can rewrite the MIP2FC based on these inventory levels Thus, we present the problem in

the following manner.

Problem MIP2FC:

Min Ψ1 = (1 + 2δ)µσh+ (1− 2δ)µσh+

K1∑
s=1

ρsπs

Subject to:
πs = (Xs

1 +Xs
2)cp + (Xs

12 +Xs
21)cs + (Y s1 + Y s2 )g, s = 1, . . . ,K1

Xs
1 +Xs

12 ≤ µ2d1 + (1 + 2δ)µσ, s = 1, . . . ,K1

Xs
2 +Xs

21 ≤ µ2d2 + (1− 2δ)µσ, s = 1, . . . ,K1

Y s1 ≥ es1 −Xs
1 −Xs

21, s = 1, . . . ,K1

Y s2 ≥ es2 −Xs
2 −Xs

12, s = 1, . . . ,K1

λ1 + λ2 = 1

Table 2.4 provides the transshipments and lost sales decisions for each sample path s along

with the realized demands. From Table 2.4, we infer the following claim.

Claim 1: The total lost sale for any sample path s, (Y s
1 + Y s

2 ) does not depend on the value of δ.

From the objective function Ψ1 of MIP2FC , the following claim is also obvious as holding

cost is the same at two FCs.

Claim 2: The total inventory cost does not depend on the value of δ for a fixed service level z > 0.

Claim 3: The objective function Ψ1 is minimized when δ = 0.

This claim is proven as follows: Ψ1 can be written as Ψ1 = Z1 + Z2, where Z1 is the cost

component does not depend on δ and Z2 is the cost component depends on δ.

Note that Z1 consists of costs of lost sale, inventory holding, and other transportation costs that

do not depend on δ. Z2 consists of all transshipment costs (columns corresponding to Xs
12 and Xs

21

in Table 2.4) that depend on δ. Thus, Z2 can be expressed as follows:

Z2 = [2δµ(ρ29 + ρ30 + ρ31 + ρ32 + ρ33 + ρ36 + ρ37 + ρ38 + ρ39 + ρ40 + ρ43 + ρ44 + ρ45 + ρ46 +

ρ47)− 2δµ(ρ6 + ρ7 + ρ13 + ρ14 + ρ20 + ρ21 + ρ27 + ρ28)](cs − cp),

That is,

Z2 = [2δµ(ρ29 + ρ32 + ρ33 + ρ6 + ρ7 + 3ρ13 + 3ρ14 + ρ20 + 2ρ21 + ρ28)− 2δµ(ρ6 + ρ7 + ρ13 +
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ρ14 + ρ20 + 2ρ21 + ρ28)](cs − cp).

This implies that

Z2 = [2δµ(ρ29 + ρ32 + ρ33 + 2ρ13 + 2ρ14)](cs − cp).

Since cs > cp, Z2 is minimized when δ = 0.

Thus we conclude that the optimal allocation is λ1 = λ2 = 0.5 so that the expected cost is the

minimum.

2.3.1.2 Unequal variances

Now, we extend Section 2.3.1.1 and consider two FCs with unequal demand variances. Let

us assume that the standard deviation of demand at FC1, σ1=kσ2, where k is any number. The

probabilities of the occurrence of each scenario (ρs) are described in Table 2.3.

Theorem 1. For any fixed service level no less than 50% and cs > cp, the optimal safety stock

allocation for the two FCs where σ1=kσ2 follows: λ1 = k
k+1

and λ2 = 1
k+1

.

Proof: Without loss of generality we set σ1 ≥ σ2 = σ and k ≥ 1. Note that the result is true for

k = 1 per Lemma 1. Now we first show the result for k = 2. Then we show the validity of the

result for any k > 2. We start the analysis by fixing k at 2. Since λ1 + λ2 = 1, we may assume

for k = 2 that λ1 = 2
3

+ δ and λ2 = 1
3
− δ, where δ is in [0, 1/3]. The total inventory at FC1 and

FC2 are (L + T )d1+z
√
L+ T (2

3
+ δ)σ0 and (L + T )d2+z

√
L+ T (1

3
− δ)σ0, respectively, where

σ0 =
√

5σ. Let us also denote
√
L+ T = µ and L+ T = µ2.

For convenience we fix the service level such that z =
√

5. However, the proof can easily be

generalized to any service level no less than 50%. Now we present the inventory levels:

Total system inventory is µ2(d1 + d2) + 5µσ.

Inventory at FC1 is µ2d1 + µσ(10
3

+ 5δ).

Inventory at FC2 is µ2d2 + µσ(5
3
− 5δ).

Note that, δ is in [0, 1/3]. However, there are two cases based on the value of δ: Case 1:

1/3 ≥ δ ≥ 2/15; Case 2: 0 ≤ δ < 2/15. In Case 1, FC1 can satisfy demand upto 2 one standard

deviations and FC2 can satisfy mean demand. In contrast, under Case 2, FC1 and FC2 both can

satisfy demand upto 1 one standard deviation. We show the resulting transshipments and lost sales
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in Table A.1 and Table A.2 in the Appendix.

Similar to the approach taken in Section 2.3.1.1, we extend the constraint of Problem MIP2FC

as follows:

Min Ψ1 = (
10

3
+ 5δ)µσh+ (

5

3
− 5δ)µσh+

K1∑
s=1

ρsπs

Subject to:

πs = (Xs
1 +Xs

2)cp + (Xs
12 +Xs

21)cs + (Y s1 + Y s2 )g, s = 1, . . . ,K1

Xs
1 +Xs

12 ≤ µ2d1 + (
10

3
+ 5δ)µσ, s = 1, . . . ,K1

Xs
2 +Xs

21 ≤ µ2d2 + (
5

3
− 5δ)µσ, s = 1, . . . ,K1

Y s1 ≥ es1 −Xs
1 −Xs

21, s = 1, . . . ,K1

Y s2 ≥ es2 −Xs
2 −Xs

12, s = 1, . . . ,K1

λ1 + λ2 = 1

We exhibit the realized demands, transshipments, and lost sales in Table A.1 and Table A.2.

From these two tables, the following claim is obvious.

Claim 1: The total lost sales for any sample path s, (Y s
1 + Y s

2 ) does not depend on the value of

δ. It is because the total system-wide lost sales do not change with safety stock allocation. This is

true for both cases 1 and 2.

From the objective function Ψ1 of MIP2FC , the following claim is also obvious as holding

cost is the same at two FCs.

Claim 2: The total inventory cost does not depend on the value of δ.

Claim 3: The objective function Ψ1 is minimized when δ = 0.

This claim is proven as follows: Ψ1 can be written as Ψ1 = Z1 + Z2, where Z1 is the cost

component that does not depend on δ and Z2 is the cost component that depends on δ.

Case 1: As in Lemma 1, we show from Table A.1 that Z2 can be expressed as follows:

Z2 = [5δµ(ρ29 + ρ30 + ρ31 + ρ32 + ρ33 + ρ34 + ρ36 + ρ37 + ρ38 + ρ39 + ρ40 + ρ41 + ρ43 + ρ44 +

ρ45 + ρ46 + ρ47 + ρ48)− 5δµ(ρ7 + ρ14 + ρ21 + ρ28)](cs − cp).

That is, Z2 = [5δµ(ρ29 + ρ30 + ρ31 + ρ32 + ρ33 + ρ34 + ρ36 + ρ37 + ρ39 + ρ40 + ρ41 + ρ43 +

ρ44 + ρ48)](cs − cp).

29



Since cs > cp, Z2 is minimized when δ = 0.

Case 2: As in Lemma 1, we show from Table A.2 that Z2 can be expressed as follows:

Z2 = [5δµ(ρ36 + ρ37 + ρ38 + ρ39 + ρ40 + ρ43 + ρ44 + ρ45 + ρ46 + ρ47)− 5δµ(ρ6 + ρ7 + ρ13 +

ρ14 + ρ20 + ρ21 + ρ27 + ρ28 + ρ34 + ρ35)](cs − cp).

That is, Z2 = [5δµ(ρ36 + ρ37 + ρ38 + ρ39 + ρ40 + ρ43 + ρ44 + ρ45 + ρ46 + ρ47)− 5δµ(ρ6 + ρ7 +

2ρ13 + 2ρ14 + ρ20 + 2ρ21 + ρ28)](cs − cp).

As (ρ36 + ρ37 + ρ38 + ρ39 + ρ40 + ρ43 + ρ44 + ρ45 + ρ46 + ρ47) = (ρ6 + ρ7 + 2ρ13 + 2ρ14 +

ρ20 + 2ρ21 + ρ28), we have Z2 = 0 under Case 2, 0 ≤ δ < 2/15. Thus we may set δ = 0.

The proof is similar for k = 2 with λ1 = 2
3
− δ and λ2 = 1

3
+ δ, where δ is in [0, 2/3].

Thus we conclude that the optimal safety stock allocation is λ1 =kλ2 where σ1=kσ2 under the

condition that k=2.

General k: So far, we show that the result hold for k = 1 and k = 2. We now show that it will be

true for general k.

For σ1=kσ2, where σ2 = σ:

Total system inventory is µ2(d1 + d2) + zµσ
√
k2 + 1.

For convenient, we assume the service level, z = (k+1)/
√
k2 + 1.

Case 1: 0 ≤ δ ≤ 1
k+1

. We assume that λ1 = k
k+1

+ δ and λ2 = 1
k+1
− δ, where δ is in [0, 1

k+1
].

Inventory at FC1 is µ2d1 + kµσ + (k + 1)δµσ.

Inventory at FC2 is µ2d2 + µσ - (k + 1)δµσ.

Similar to the proof for k = 1 and k = 2, we show below the optimal allocation where δ = 0.

For this allocation, we can show that FC1 can always serve a demand upto one standard de-

viation. However, as δ increases from 0 to 1
k+1

, FC1 stores more inventory. For, δ = 0, it has

no safety stock after one serving one standard deviation of demand. On the other hand, δ = 1
k+1

yields an extra µσ safety stock for FC1. Under this condition, FC2 has no safety stock; it can only

serve the mean demand. However, with δ = 0, it can serve a demand up to one standard deviation.

Therefore, we clearly have two cases: (i) δ = 0 and (ii) δ > 0. Note that, in either case, the total
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system inventory and lost sales remain the same; only transshipments between the FCs change due

to the change in their respective inventories.

Case 2: 0 ≤ δ ≤ k
k+1

. We assume that λ1 = k
k+1
− δ and λ2 = 1

k+1
+ δ, where δ is in [0, k

k+1
].

Total system inventory remains the same. We allocate (kλ - δ) proportion to FC1 and (λ + δ)

proportion to FC2.

Inventory at FC1 is µ2d1 + kµσ - (k + 1)δµσ.

Inventory at FC2 is µ2d2 + µσ + (k + 1)δµσ.

Similar to above procedure, we can show the optimal allocation where δ = 0.

Again, we have two cases: (i) δ = 0 where FC1 and FC2 both can serve demand upto one stan-

dard deviation with results are exactly similar to Table A.3 and (ii) 0 < δ ≤ k
k+1

. Under (ii), FC2

can serve demand more than one standard deviation and FC1 can serve only the mean demand.

In Table A.5, we list the results. Now, FC2 can serve demands upto 2 and 3 standard deviations

under the conditions δ ≥ 1/(k+1) and δ ≥ 2/(k+1). Both conditions are favorable following our

assumption that k ≥ 2. With δ ≥ 2/(k+1), FC2 never faces a stock-out. Note that the changes in

δ can be explained by the sample paths 36-49. Thus, we list only the sample paths between 36-49

corresponding to the deltas in Table A.6, Table A.7, and Table A.8. Note that Table A.5 does not

include the sample paths between 36 and 49.

We can simplify the expressions from Table A.6, Table A.7, and Table A.8 and show that the

total transshipments under cases 2a, 2b, and 2c are:

Transshipments under case 2a: 21µσ + 6kµσ − 8(k + 1)δµσ.

Transshipments under case 2b: 14µσ + 6kµσ − (k + 1)δµσ.

Transshipments under case 2c: 2µσ + 6kµσ + 5(k + 1)δµσ.

With the sample path probabilities for each sample paths between 36-49 being the same and

unit transshipment costs are equal, we can claim that the total costs are increasing with δ. In other

words, case 2a exhibits the least cost among the three cases under the boundary conditions of δ.

Now, we can just combine Table A.6 with the sample paths in Table A.5 and compare them with

the results for δ = 0.
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Table A.3 yields the expression 0.122µσ[cs − cp] for δ = 0. By combining the results for the

sample paths across Tables 16 and 17, we get (0.122µσ + 0.21(k + 1)δµσ )[cs − cp]. Clearly, we

get the lowest cost under the condition that δ = 0. Our proof is complete for case 2. When we look

at case 1 (Table A.4), we find the expression for transshipments as (0.122µσ + 0.242(k + 1)δµσ

)[cs − cp], which is more than 0.122µσ[cs − cp].

Therefore, we prove Theorem 1 and conclude that the optimal allocation of safety stock for the

two FCs where σ1=kσ2 follows: λ1 = k
k+1

and λ2 = 1
k+1

.

2.3.2 Pooling losses

In the previous subsection, we observe a network of two fulfillment centers. However, networks

generally consist of more than two fulfillment centers and thus, the allocation problem may quickly

become complex. To reduce the complexity of the problem, we propose a hub-and-spoke system

as described in the next subsection. Figure 2.2 exhibits a hub-and-spoke model for a three FC

network.

Figure 2.2: A network of three FCs

In terms of utility, a hub-and-spoke system offers several advantages. A hub-and-spoke system

requires fewer main routes and allows flows in both directions. With the number of transshipments

being a vital component of this chapter, the hub-and-spoke is appropriate to model consistent flows
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in both directions. Moreover, it reduces the number links for the same number nodes. The reader

may refer to Lumsden et al. (1999) for a detailed discussion of the benefits of a hub-and-spoke

system for cost reduction and flexibility. The primary motivation behind the analysis of a hub-

and-spoke system is twofold: (i) common practice in the industry where few nearby FCs fulfill

the demand of a customer region, and (ii) possibility for decomposition of any large network of

fulfillment centers into several smaller and manageable hub-and-spoke systems.

In the next Section, we decompose a network by forming clusters to group nearby FCs and

join these clusters to maintain the system connectivity. Our hub-and-spoke configuration in this

subsection paves the way for the overall network decomposition followed by the assignment of

safety stock. We make a few basic assumptions: (1) the distance between any two FCs within

a cluster is smaller than the distance between two FCs in two different clusters, and (2) within

each cluster, the leaf (or spoke) nodes are equidistant from the hub node. In other words, we

assume that the transportation cost between any leaf node and the hub node is the same within

each cluster. Therefore, we pool the leaf nodes within each cluster and form a single node as

shown in Figure 2.2 where we pool spoke nodes 1 and 2 to form a pooled node. We reduce n

leaf nodes (in a cluster) each with σi standard deviation to a single node with a pooled standard

deviation. This approximation is possible because of our equidistant nodes assumption and the

independence of demand among the FCs. In the next section, we model a large network under a

MST graph by dividing the entire network into a number of linked clusters. Within each cluster,

the FCs constitute a hub-and-spoke system. Therefore, the insights generated from this section

guide the work in the subsequent sections.

In a hub-and-spoke system, we model one FC as the hub and pool the leaf FCs to one FC, which

we call FCf . While this simpler model is easy to study and explain, there is a trade-off associated

with the simpler model. The pooling is virtual; in reality, these FCs exist as separate nodes. In the

pooled network, there are two stock-out situations - either the hub or the pooled FC face stock-

outs. However, in reality, each of the leaf FCs, now parts of FCf may face stock-outs randomly.

Let us illustrate this phenomenon with an example. We consider a network with three FCs - FC1,
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FC2, and FC3 with FC1 being the hub FC. We pool FC2 and FC3 to form a pooled FCf . As

explained above, this simpler model has two stock-out situations - either the hub or the pooled

FC face stock-outs. However, when we consider each FC2 or FC3, we can decide whether our

simpler model is appropriate or not. We show that, the stock-outs at either FC2 or FC3, causing

the transshipment costs of δ is small compared to the total costs of shipments and transshipments.

We provide an MIP formulation for the three FC network. Note that the three FC model can be

reduced to a hub-and-spoke model by combining FC2 and FC3 to a single pooled FC. Let the

reduced structure with the total cost of Ψ2 has 49 sample paths. Here, the transshipments occurs

between FC1 and the pooled FC. In the formulation below, K2 = 343.

Problem MIP3FC:

Min Ψ3 = λ1z
√
T + Lσoh+ λ2z

√
T + Lσoh+ λ3z

√
T + Lσoh+

K2∑
s=1

ρsπs

Subject to:

πs = (Xs
1 +Xs

2 +Xs
3)cp + (Xs

12 +Xs
21 +Xs

13 +Xs
31 +Xs

23 +Xs
32)cs + (Y s1 + Y s2 + Y s3 )g, s = 1, . . . ,K2 (2.9)

Xs
1 +Xs

12 +Xs
13 ≤ (L+ T )d1 + λ1z

√
T + Lσ0, s = 1, . . . ,K2 (2.10)

Xs
2 +Xs

21 +Xs
23 ≤ (L+ T )d2 + λ2z

√
T + Lσ0, s = 1, . . . ,K2 (2.11)

Xs
3 +Xs

31 +Xs
32 ≤ (L+ T )d3 + λ3z

√
T + Lσ0, s = 1, . . . ,K2 (2.12)

Y s1 ≥ es1 −Xs
1 −Xs

21 −Xs
31, s = 1, . . . ,K2 (2.13)

Y s2 ≥ es2 −Xs
2 −Xs

12 −Xs
32, s = 1, . . . ,K2 (2.14)

Y s3 ≥ es3 −Xs
3 −Xs

13 −Xs
23, s = 1, . . . ,K2 (2.15)

λ1 + λ2 + λ3 = 1 (2.16)

Xs
1 , X

s
2 , X

s
3 , X

s
12, X

s
21, X

s
13, X

s
31, X

s
23, X

s
32, Y

s
1 , Y

s
2 , Y

s
3 : Integer variables, s = 1, 2, . . . ,K2 (2.17)

λ1, λ2, λ3 ≥ 0 (2.18)

Note that the above formulation is similar to MIP2FC except for one additional FC. MIP3FC

has three inventory equations (Constraint sets (2.10), (2.11), and (2.12)), three equations associ-

ated with lost sales (Constraint sets (2.13), (2.14), and (2.15)), and three allocation parameters, λ

(Constraint sets (2.18)). This three FC configuration allows transshipments between all nodes.

Thus Ψ3 = Ψ2 + ∆, where ∆ captures the costs associated with missed transshipments cost

due to pooling FC2 and FC3 to a single pooled node FC. Next, the following theorem provides an
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upper bound for ∆ with respect to the total cost.

Theorem 2. In a three fulfillment center approximate model for the hub-and-spoke system with

leaf nodes having σ2 = σ3 = σ and the hub node with σ1 = kσ, k ≥ 2 and with the service level, z

= 2+k√
2+k2 , and cs > cp, we have ∆

Ψ2+∆
≤ 0.0246csµσ

µ2(d1+d2+d3)cp−0.2189µσcp+0.3144µσcs
, where ∆ is the amount

of cost that the hub-and-spoke system does not capture due to approximation.

Proof: Note that we consider a network of three FCs - FC1 (hub FC), FC2, and FC3 with standard

deviation of demands σ1, σ2, and σ3. For the ease of calculation, let us assume that σ2 = σ3 = σ and

σ1 = kσ where k ≥ 2. Note that, without pooling, FC2 and FC3 can transship items between each

other when (i) FC1 is out-of-stock and (iii) one of FC2 and FC3 is out-of-stock and the other has

inventory. We have a total of 343 sample paths. We need to show that the total probability of these

occurrences is negligible.

Total system inventory is µ2(d1 + d2 + d3) + (k+2)µσ, where z = 2+k√
2+k2 .

Inventory at FC1 is µ2d1 + kµσ.

Inventory at FC2 is µ2d2 + µσ.

Inventory at FC3 is µ2d3 + µσ.

Note that, in many cases, either FC1 or one of FC2 and FC3 can transship to the out-of-stock

FC between FC2 and FC3 if two FCs have enough surplus to meet the extra demand. However,

based on our problem construction, we utilize the hub FC, FC1, to serve the extra demand in

those cases. Similarly, when the hub and one of the leaf FCs are out-of-stock and the overall

system observes lost sales, the remaining leaf FC with surplus inventory transships items for the

out-of-stock hub FC.

Out of 343 sample paths, we find 17 sample paths where transshipments occur between FC2

and FC3, which are ignored due to pooling. Let us define the probabilities associated with the

sample paths as ρikj where i refers to the FCs (1, 2, or 3), j refers to the occurrence of demand (1,

2,.. 7), and k refers to the sample path numbers. Thus, the probabilities associated with missed

transshipments can be expressed as: ρ1,40
5 ρ2,40

6 ρ3,40
4 +ρ1,47

5 ρ2,47
7 ρ3,47

4 +ρ1,89
5 ρ2,89

6 ρ3,89
3 +ρ1,96

5 ρ2,96
7 ρ3,96

4

+ρ1,138
5 ρ2,138

6 ρ3,138
2 +ρ1,145

5 ρ2,145
7 ρ3,145

2 +ρ1,187
5 ρ2,187

6 ρ3,187
1 +ρ1,194

5 ρ2,194
7 ρ3,194

1 +ρ1,250
5 ρ2,150

4 ρ3,150
6
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+ρ1,257
5 ρ2,257

3 ρ3,257
6 +ρ1,264

5 ρ2,264
2 ρ3,264

6 +ρ1,271
5 ρ2,271

1 ρ3,271
6 +ρ1,299

5 ρ2,299
4 ρ3,299

7 +ρ1,306
5 ρ2,306

3 ρ3,306
7

+ρ1,313
5 ρ2,313

2 ρ3,313
7 +ρ1,320

5 ρ2,320
1 ρ3,320

7 +ρ1,321
6 ρ2,321

1 ρ3,321
7 .

The reader may refer to Table A.9 for the sample paths and their probabilities. In Table A.9,

we exhibit the 17 sample paths where we omit the transshipments. The next step is to include the

cost parameters. Let Ψ′2 that reflects all the shipment and transshipment costs under pooling model

without loss sales. Thus Ψ′2 ≤ Ψ2.

That is, ∆
Ψ2+∆

≤ ∆
Ψ′2+∆

≤
∑
i,j,k(k∈A) ρ

ik
j M

kcs∑
i,j,k ρ

ik
j [Spkcp+Tpkcs]+

∑
i,j,k(k∈A) ρ

ik
j M

kcs

In the above inequality, M represents the missed transshipment volume where Sp and Tp de-

note the shipment and transshipment volumes under pooling. ∆ is expressed in the inequality as∑
i,j,k(k∈A) ρ

ik
j M

kcs. Corresponding to all sample paths, the costs associated with these missed

transshipments can be quantified to be 0.0246Csµσ. Thus ∆ = 0.0246Csµσ. We show the sample

paths Table A.9.

For all 343 sample paths, the total costs consisting of all shipments and transshipments in

Problem MIP3FC can be expressed as µ2(d1 + d2 + d3)cp - 0.2189µσcp + 0.3144µσCs. Note that

µ2(d1 + d2 + d3)cp - 0.2189µσcp + 0.3144µσcs = Ψ′2 + ∆ ≤ ∆ + Ψ2 = Ψ3 as the left hand

expression does not consist of lost sales cost.

Thus, ∆
Ψ′2+∆

≤ 0.0246csµσ
µ2(d1+d2+d3)cp−0.2189µσcp+0.3144µσcs

. Hence the results follows as ∆
Ψ2+∆

≤ ∆
Ψ′2+∆

.

Next, we run a numerical analysis to show that the bound in Theorem 2 is very small for

practically relevant scenarios. Assuming cs = 1.5cp, we obtain ∆
Ψ′2+∆

≤ 0.0369cpµσ

µ2(d1+d2+d3)cp+0.2527µσcp
.

Note that the costs of missed transshipments due to pooling can be quantified as 0.0369cpµσ.

Observation 1. In Theorem 2, we prove the bound for the ratio of missed transshipment cost under

pooling, ∆ to the total cost Ψ3. Our numerical analysis in Table 2.5 shows that for the test data,

the ratio, ∆
Ψ′2+∆

, is much smaller compared to the total costs of shipments and transshipments. This

justifies the use of the approximated hub-and-spoke system.
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Table 2.5: Missed transshipments between FC2 and FC3 for three FC case

Sl. no µ d1 d2 d3 σ ∆
Ψ′

2+∆
(in %)

1. 1 500 500 500 10 0.024
2. 1 500 500 500 20 0.048
3. 1 500 500 500 50 0.122
4. 1 500 500 500 100 0.242
5. 1 500 500 500 200 0.484
6. 2 500 500 500 10 0.012
7. 2 500 500 500 20 0.024
8. 2 500 500 500 50 0.122
9. 2 500 500 500 100 0.242
10. 2 500 500 500 200 0.484

2.4 Generalization of the Proposed Method

In this section, we extend the simple models discussed in the previous section to develop ap-

proaches to allocate safety stock in large networks such as those used by Amazon and Flipkart.

Figure 2.3: FC network of a large retailer, n = 166

Here, we illustrate the application of our two previous models towards the decomposition of

a large online retailing network and the allocation of safety stock across the network. We use a

canonical network of a large online retailer with 166 FCs as shown in Figure 2.3. However, first,

we describe a general model MIPMP for a network having n fulfillment centers and K sample
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paths. A network of such size (Figure 2.3) is hard to analyze and solve and thus, we propose

a general decomposition-allocation strategy, Procedure Allocate-Safety Stock (PASS). Before

that, we describe the objective function and the constraints of MIPMP .

Problem MIPMP :

Min Ψg =
n∑
i=1

λiz

√√√√(T + L)
n∑
i=1

σ2
i h+

K∑
s=1

ρsπs

Subject to: πs =
n∑
i=1

Xs
i cp +

n∑
i=1

n∑
j=1

Xs
i,jcsi,j +

n∑
i=1

Y si g, s = 1, . . . ,K (2.19)

Xs
i +

n∑
j=1

Xs
ij ≤ (T + L)di + λiz

√√√√(T + L)
n∑
i=1

σ2
i , s = 1, . . . ,K, ∀i (2.20)

Y si ≥ esi −Xs
i −

n∑
i=1

Xs
ij , s = 1, . . . ,K, ∀j (2.21)

n∑
ß=1

λi = 1 (2.22)

n∑
i=1

n∑
j=1

Xs
ij = 0, s = 1, . . . ,K, i = j (2.23)

λi ≥ 0 (2.24)

Xs
i , X

s
ij , Y

s
i : Integer variables, s = 1, 2, . . . ,K (2.25)

The objective function minimizes the total holding, transportation, and penalty costs. Con-

straint (2.20) sets an inventory upper bound to the number of shipments and transshipments from

each FC. Constraint (2.21) equates the resultant demand and lost sales at each fulfillment center.

Constraint (2.22) normalizes the total safety stock allocation to 1. Constraint (2.23) negates any

shipments within the same FC. Finally, constraints (2.25) and (2.24) set the non-negativity criteria.

We have a total of K sample paths, which is so large that it is virtually impossible to handle with

the currently available tools. In our canonical example, K = 7166. We reduce the complexity of

our problem by proposing the PASS approach. First, we break down the network into a number of

clusters to manage the complexity. The clustering of nearby FCs is supported in the literature (Wei

et al. 2018). An online retailer can choose the best fulfillment strategy by selecting a fulfillment

source from multiple nearby FCs. Next, following the hub-and-spoke approach, we connect the

clusters to allow lateral transshipments. Then, we use MIPMP to find the cluster level allocation
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and use Theorem 1 to distribute the safety stock from the cluster level to the FC level.

Algorithm 1 Procedure Allocate-Safety Stock (PASS)

Input: Network data of n FCs, Demand data, Cost parameters.
Begin

Step 1: Divide the network of n FCs into a number of clusters using MIPCluster ,
where each cluster groups nearby FCs to form a hub-spoke system.

Step 2: Locate the hub FC for each cluster using the p-center algorithm.
Step 3: Link the clusters’ hubs with a Minimum Spanning Tree (MST)

graph to create the cost-effective transshipment links between clusters.
Step 4: Following the cluster formations at step 3, we consider each cluster as a node

and run MIPMP to estimate the cluster-wise safety stock allocation.
Step 5: Model each cluster as a hub-and-spoke network to allocate

safety stock at each FC using Theorem 1.
End
Output: Allocation of safety stock at each FC at each cluster.

2.4.1 Clustering

Each online order is fulfilled from the nearest FC based on the available inventory. Beyond

that, the online retailer would transship the item(s) from another nearby FC or transfer the order

to that FC. Given that online customers are unconcerned about the supply source of their order

assuming no change in the price, online retailers can choose the best fulfillment option. Yet, this

flexibility may become expensive for distant FCs. For example, it may be cheaper to transship

an item to any FC in Texas from an FC located in Arkansas or Tennessee than from an FC in

Washington. In other words, a reduction in the distance a package would travel reduces the cost

of shipping and time in transit. Wei et al. (2018), in the context of omnichannel retailing, remark

that the current practice is to ship online orders from at most two nearby stores (fulfillment options

in the context of omnichannel retailing). We do not restrict our model to any specific number of

nearby locations; we allow multiple transshipping points to fulfill customer orders in a particular

region while allowing transshipment cost to increase as the distance increases. This helps us to

group FCs in clusters. The distance between two FCs within a cluster is smaller than that of two

FCs across two clusters. In other words, the cost of shipment within the cluster is lower than that
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across the clusters.

We divide the network into several clusters and allocate the safety stock to each cluster. First,

we develop a Mixed Integer Programming (MIP) formulation, MIPCluster, to assign FCs to clus-

ters, based on the pair-wise distances. To determine the upper bound of the distances between two

points within a cluster, we use the practice followed by the United States Postal Service (USPS).

They estimate the shipping cost based on the weight of an item and the distance between the sender

and receiver. To decide on the distance, USPS divides the country into 8 zones. For a package of

certain weight, it is cheaper to ship an item from zone 1 to zone 2 compared to a shipment from

zone 1 to zone 8. We observe that a facility can ship items within zone 1, 2, 3, 4, and 5 at the same

cost. For further distant zones, the facility transships items at a higher cost. USPS categorizes

up to 600 miles as zone 4 and up to 1000 miles as zone 5, from zone 1. We use the same metric

to constrain the upper bound of the distances between two points within a cluster. As we deal

with single items, the weight of each item is assumed to be equal. We define the variables and

parameters below and formulate model MIPCluster.

Table 2.6: Parameters and variables for clustering

Parameters:
lij Distance between point i and point j
l Maximum distance between two points in a cluster
n Number of fulfillment centers
m Maximum number of clusters

Variables:
Nc = 1 indicates that cluster c is selected

= 0 indicates that cluster c is not selected
pic = 1 indicates that point i is in cluster c

= 0 indicates otherwise
yijc = 1 indicates if locations i and j are assigned to the same cluster c

= 0 indicates otherwise

The primary purpose of MIPCluster is to form clusters of nearby FCs. The pair-wise distances

of all fulfillment centers are used in the model to form the clusters. The objective is to minimize

the number of clusters given that the distance between any two centers in a cluster is bounded.

Here, we discuss the constraints of MIPCluster. Constraint (2.26) provides an upper bound for
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the number of clusters. For computational efficiency, we limit the number of possible clusters. The

second constraint (2.27) ensures that each location is assigned to only one cluster. Constraint (2.28)

limits the number of locations in a cluster, where M is a large number. Constraint (2.29) ensures

that if and only if locations i and j are assigned to the same cluster, the arc between locations i

and j resides within a cluster. Constraint (2.30) limits the distance between two points in a cluster.

Finally, we have non-negativity conditions through constraint (2.31). We use CPLEX to solve the

problem. We set the upper bound of the number of clusters to be 20 which seems reasonable. We

use three different upper bounds for the distances between two points within a cluster: 800 miles,

900 miles, and 1000 miles. The number of clusters found with these three upper limits is 6 which

is what we use in the next subsection.

Problem MIPCluster:
Min

m∑
c=1

Nc

Subject to:
m∑
c=1

Nc ≤ m (2.26)

m∑
i=1

pic = 1 , ∀i (2.27)

m∑
c=1

pic ≤MNc , ∀i (2.28)

yijc ≥ pic + pjc − 1 ,∀i, j, c (2.29)

yijclij ≤ l , ∀i, j, c (2.30)

yijc, pic, Nc ∈ 0, 1 (2.31)

2.4.2 Linking Clusters under a MST graph

A straightforward solution would be to restrict transshipments across clusters, wherein each

cluster acts as an independent node. Then the allocation of safety stock at the FCs becomes easy.

Existing literature also supports transshipments within groups (Herer et al. 2002). Independent

clusters constrain transshipments and, therefore, may result in high lost sales, which is undesirable.

Such an independent structure is not realistic in the online retailing context as orders may be
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fulfilled from FCs of distant clusters when cluster-wide stock-outs occur. Thus, we focus on how

to transship items across clusters economically. An interconnected less-expensive network can be

established under a MST graph, which is an undirected graph where all vertices are connected

without any cycles and exhibits the lowest possible total edge weight. In other words, in MST,

the pairs of unconnected nodes represent long distances requiring expensive transshipments. The

shortest path in the MST fulfills our objective of the cheapest transshipment between any two

nodes.

We compute the distances between the clusters by first identifying the central point (hub FC)

in a cluster. We develop the within cluster network as a hub-and-spoke network as described in the

previous section. To locate the hub FC at each cluster, we utilize the p-center approach. For each

cluster, we find a point (or the centroid) and measure the distances to other points in that cluster.

The algorithm for the p-center problem is as follows:

Algorithm 2 P-center algorithm (To locate the hub FCs, adapted from Shier (1977))

Input: Network data of FCs with coordinates and their cluster assignments.
Begin

Initialize N as the number of clusters (where N = 6 in our example).
It can also be treated as the index of clusters.
While (N) do
Step 1: for each point i in cluster N
Step 2: set i = 1
Step 3: Compute distance vector d, consists of the distances between

i and all other points (j) within cluster N ((j 6= i))
Step 4: Set maximum distance Maxdist := maximum(d)
Step 5: Add MaxDist to maxD where maxD is the list of the maximum pair-wise distances

of each iteration and set i = i+1
Minimum distance in each cluster N := minimum(Maxdist)
N =N+1 and go to Step 1
End(while)
Output: A list of N hub or central FCs .

End

With the p-center algorithm, we generate the MST (Figure 2.4). The distance between the

center points of cluster 1 and 6 (or the point minimizing the maximum distance in each cluster) is

564 miles. Similarly, the distance between two center points of clusters 1 and 5 is 1198 miles. The

distances between clusters 5 and 4, 5 and 3, and 3 and 2 are 328, 594, and 958 miles, respectively.
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The p-center approach provides us with: (i) the distance between clusters and (ii) the hub FCs for

each cluster.

Figure 2.4: A large size problem: MST of 6 clusters, n = 166

2.4.3 Hub-and-Spoke Network

The clusters provide us the distribution of FCs in an aggregate form. We allocate safety stock

to each cluster, based on their pooled standard deviations of demand (σo). For our illustrative

example, the σo parameters are not readily available. As the actual demand data is not available,

we collected and scaled the square footage information of each FC from online sources to estimate

a proxy for σo. In their empirical work in the medical supply chain, Shapiro and Byrnes (1992) find

that lower demand variance is associated with less storage space. Since facility planning requires

a substantial investment, online retailers build and expand their facilities with a demand forecast;

else, the excess space does not add any value. Therefore, we believe that the FC size is a reasonable

proxy for its standard deviation of demand since. However, our results are robust to any demand

variance parametric values, including the actual numbers observed in practice.

We now focus on the safety stock assignment within the clusters. Clusters can be made up of

one or more FCs. However, we observe that clusters are rarely formed with one FC. To reduce the
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complexity of the problem, we employ the theory of stocks centralization by using the “square root

law of locations." Remember, our primary objective for clustering is to group FCs that are closer

to one another. The distance between any two FCs within a cluster is smaller than the distance

between two FCs in two different clusters. Based on the cluster formation, the transportation cost

between any leaf node and the hub node is the same within each cluster. Therefore, we pool the

leaf nodes within each cluster and form a single node; we move from a system with σtotal standard

deviation of demand to a pooled system with
√
m σtotal standard deviation of where m denotes the

number of leaf nodes within a cluster. This approximation is possible because the transportation

cost between any leaf node and the hub node is the same within each cluster.

2.4.4 Safety stock allocation to clusters

We extend our MIP model, MIPMP , to assign safety stock with n=6. We model all the FCs

within each cluster as a single node, and thus, the entire system is aggregated into six nodes. The

distribution of demand is also aggregated at the cluster level. The system-wide safety stock level

remains unchanged. The per unit transshipment cost across the clusters is used as the per unit

transshipment cost in this aggregate network. Note that this system does not generate the actual

cost of transportation, safety stock holding, and lost sales; it provides us the safety stock allocation

parameter (λc) at the cluster level. For six nodes, we have a total of 117,649 sample paths. We

include the transshipment links, as described in Figure 2.4.

Table 2.7 displays the total safety stock assignment at each cluster.

Table 2.7: Safety stock assignment within six clusters following
Theorem 1

Clusteri Adjacent clusters Pooled STDDEV of Clusteri Safety stock at Clusteri
1 5, 6 402 272
2 3 518 518
3 2, 5 416 273
4 5 452 412
5 1, 3, 4 358 242
6 1 330 327

Notes: The standard deviations are rounded up to integer values.
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2.5 Heuristic PASS: Implementation

In the previous section, we describe the procedure (PASS) that decomposes a large network

of FCs into a cluster level hub-and-spoke system to facilitate the allocation of safety stock. We

determine the system-wide safety stock level and allocate them to each cluster in Section 2.4.4.

The clusters are linked under a MST graph that enables transshipments across the regions. In this

section, we have two objectives: (i) allocation of safety stock from cluster-level to FC-level, and

(ii) compare the performance of the optimal results from MIPMP and the results obtained from

our proposed PASS.

2.5.1 Distribution of Stock at the FC level

We extend our allocation approach from Section 2.4.4 and distribute the safety stock at every

fulfillment center in two stages: (i) allocate the safety stock at the hub FC and pooled FC and (ii)

dispense the shared safety stock from the pooled FC to the individual leaf FCs that make up the

pooled FC.

Table 2.8 exhibits the allocation of safety stock at the hub and pooled FCs. Column σh/σ0

denotes the ratio of the standard deviation at the hub FC and pooled standard deviation of the

leaf FCs. Next, we again allocate the safety stock at each leaf FC from the pooled safety stock

following Theorem 1.

Table 2.8: Safety stock assignment at hub and leaf FCs

Clusteri σh/σ0 of Clusteri Safety stock at hub FC of Clusteri Pooled safety stock at leaf FCs of Clusteri
1 114/385 62 210
2 94/509 81 437
3 95/405 52 221
4 80/444 63 349
5 80/348 45 197
6 80/3201 65 262

Notes:
1. The safety stock are rounded to integer values.
2. σh and σo are the standard deviation of demands of the hub FC and the pooled FC

Note that the general problem, MIPMP , can produce an optimal solution. However, when the

number of FCs is large (i.e., n ≥ 7), even the latest version of CPLEX (version 12.9) may not

guarantee a feasible solution for an instance of the MIPMP within a reasonable amount of time.
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For such large networks, PASS can be deployed to allocate safety stock. In what follows, we test

the efficiency of the proposed approach PASS.

2.5.2 Performance Analysis of PASS

We employ our algorithm PASS to provide an efficient allocation strategy that can be used in

any size of the network, especially the large ones. In this section, we analyze the performance of

PASS. The gap between the performance of our proposed approach and the optimal results obtained

from MIPMP is a good measure of the efficiency of the allocation strategy. To illustrate this, we

follow a simplistic setting by choosing a network of four FCs in two clusters and extending the

process to a network of six FCs. Note that, we divide the six FCs into clusters to allow pooling

in our analysis. We follow a two-step process: (i) we check the performance deviation from the

optimal results in these two settings and show that, with a higher n, the performance deviation

does not increase substantially, and (ii) we test PASS for a variety of cost settings under a six-FC

network and show that the performance is consistent. The former validates PASS’s usefulness in

any network, especially the larger ones, while the latter ensures the robustness under different cost

parameters.

We determine a sample size k of networks that establishes a statistically small gap between the

optimality ofMIPMP and PASS. We choose k and repetitively collect v samples (replications). We

choose k = 2401 and v = 35 for n=4. We illustrate the algorithm, Sample selection, for generating

v four-FC networks. First, we randomly select two different clusters and the corresponding hub

FCs from our sample of 166 FCs. Next, we randomly select one leaf FC from each cluster as the

hub FC is already predetermined. Our algorithm selects a different network each time. However,

the cluster-hub configuration remains the same. For six-FC networks, we follow the same process,

with the only exception of randomly selecting two leaf FCs from each cluster.

We fix the values of the cost parameters (shipment transshipment, holding, and penalty costs

at $7, $15, $20, and $28, respectively), keep the service level at 97.7%, and set (T +L) at 1 in our

computational experiments. Note that we do not report the safety stock holding cost in the results;
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Algorithm 3 Sample selection

Input: Network data of FCs with cluster assignments, hub and leaf FCs, demand, and cost parameters.
Begin

Choose sample size (N) = v.
While (N) do
Step 1: Randomly select two different clusters and two hub FCs. If the clusters are not

connected as shown in Figure 2.4, repeat this step. Otherwise, go to step 2.
Step 2: Choose a leaf FC from each cluster.
Step 3: Check whether the entire network has two hub FCs and two leaf FCs;

if the same configuration already selected before, go to step 2. Otherwise, go to step 1.
End(while)
Output: A list of v network configurations.

End

the system-wide safety stock and the costs associated with it remain the same. Table 2.9 displays

the performance comparison. The detailed results for all sample paths are provided in Tables A.10

and A.11. The average difference, in terms of overall cost, is 0.012 % with a maximum deviation

of 0.05%. When we extend it to a network of 6 FCs, our method again performs reasonably well

with an average of 0.015% deviation from the optimal results (Table 2.9). The maximum deviation

is 0.03%. The results do not show any substantial deviation between the two types. These findings

indicate that our decomposition approach performs reasonably well in comparison with the optimal

setup, even for large networks.

Table 2.9: Performance analysis (Differences in overall cost) with two clusters

Type Min diff (%) Max diff (%) Avg diff (%)
4 FC 0 0.05 0.012
6 FC 0.01 0.059 0.041

The above numbers provide reasonable support to the fact that our approximation method may

work well when we include more nodes in a network. For further analysis, we test it under three

different cost settings for a subsample of 17 randomly selected samples for each setting. We do not

see any noticeable differences between the three settings. cs1 and cs2 (cs2 > cs1) refer to the per
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unit transshipment costs within and between clusters, respectively. In Table 2.10, approximation

refers to the results obtained from PASS.

Table 2.10: Different cost settings for 6FC networks

cp $7, cs1 $12, cs2 $18, h $20, and g $28 cp $10, cs1 $15, cs2 $22, h $25, and g $35 cp $10, cs1 $20, cs2 $25, h $28, and g $35
Cost(Optimal) Cost(Approximation) Difference (%) Cost(Optimal) Cost(Approximation Difference (%) Cost(Optimal) Cost(Approximation Difference (%)
229334 229464 0.057 302273 302392 0.039 302555.6657 302669.6657 0.037679017
230471 230567 0.042 302270 302385 0.038 302418.1045 302531.1045 0.037365488
229459 229510 0.022 302251 302366 0.038 302501.6077 302676.6077 0.057850932
227417 227521 0.046 302306 302423 0.039 302583.9861 302694.9861 0.03668403
213081 213191 0.052 302233 302351 0.039 302622.4025 302781.4025 0.052540724
230469 230535 0.028 302316 302439 0.041 302532.336 302645.336 0.037351379
228868 228969 0.044 302295 302416 0.040 302444.015 302548.015 0.034386529
211739 211827 0.042 302422 302535 0.037 302396.1099 302500.1099 0.034391977
211827 211923 0.045 302286 302400 0.038 302616.7486 302730.7486 0.037671411
211739 211839 0.047 302156 302311 0.051 302486.266 302598.266 0.037026474
211716 211819 0.049 302347 302459 0.037 302423.1907 302524.1907 0.03339691
211753 211874 0.057 301818 301987 0.056 302442.1904 302555.1904 0.037362512
211618 211713 0.045 302762 302887 0.041 302573.8737 302683.8737 0.036354758
211481 211591 0.052 302361 302469 0.036 302610.5179 302782.5179 0.056838738
211665 211761 0.045 302229 302391 0.054 302400.4962 302507.4962 0.03538354
211699 211802 0.049 302189 302299 0.036 301027.3802 301211.3802 0.061124008
230509 230575 0.028 302193 302304 0.037 301031.1861 301136.1861 0.034880107

Here we discuss one important aspect of a multi-nodal structure. The MST establishes the con-

necting links between the clusters, and this translates to the transshipment links in our model. For

example, in the U.S. network, if cluster 1 is out-of-stock, cluster 6 may transship if it has sufficient

inventory. Interestingly, we need to address the situation if both clusters 1 and 6 are out-of-stock.

In this case, cluster 1 may be supplied by cluster 5 if it has a surplus whereas cluster 6 is allowed to

face lost sales. Intuitively, it is more costly to facilitate transshipments between two disjoint clus-

ters than two connected clusters. Note that we do not model transshipments between two disjoint

clusters that are not connected under the MST. However, the omission of such links between dis-

joint clusters does not impede the order fulfillment strategy as our stochastic optimization approach

efficiently allocates the system-wide safety stock to each cluster aimed at maintaining a balance

between safety stock holding and transshipments. Instead of expensive distant transshipments, we

compare it with the cost of holding safety stock at the closest FC and choose the best fulfillment

strategy. Our stochastic optimization approach estimates all the probabilities of stock-outs at all

clusters and provides a robust solution.
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2.6 Large Scale Problems: Performance Evaluation of PASS via Robust Optimization

In the previous section, we implement PASS and show the optimality gap. Due to computa-

tional limitation of solving MIPMP exactly, we evaluate the performance of PASS using a small

version of the problem with four and six FCs. We show that the gap between the results obtained

from MIPMP and PASS is between 0.03% and 0.05%. In this section, using a large scale prob-

lem encountered in practice (as shown in Figure 2.4), we demonstrate the efficiency of PASS. We

first perform a stochastic optimization approach to find a robust solution for Problem MIPMP that

minimizes the expected total cost. We then compare this solution with that of the solution obtain

by PASS.

2.6.1 Sample Average Approximation

The stochastic version of the problemMIPMP requires an exponential number of sample paths

(K = 7n) for large n, and thus cannot be solved in a reasonable time. In order to deal with this

issue, researchers use Sample Average Approximation Method (SAA) (Kleywegt and de Mello.

2001) which repetitively uses a smaller number of sample paths to obtain approximate solutions.

In this sampling approach, we determine an appropriate sample size, k, that confirms a statistically

small gap between the optimum of the general problem and the solution by SAA. We start with a

sampling process with a sample size (k) and υ (the number of replications of samples tested).

We use a large scale problem encountered in practice (as shown in Figure 2.4) to illustrate

our approach. Using the probability distribution for the demand data at each FC, we start with a

sampling process with the sample size (k) and the number of replications of samples tested (υ).

The value of υ is increased for a given value of k until a specified precision is reached. If the

precision is not reached then we need to increase sample size, k, and repeat the process until the

precision is reached. Note that the SAA problem corresponding the MIPMP can be formulated as

the following integer program, where the solution is z = (Xs
i , X

s
ij, Y

s
i ):

Problem MIPSAA:
Min πk(z) =

1

k

k∑
s=1

πs(λi, X
s
i , X

s
ij , Y

s
i )
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Subject to:

πs(λi, X
s
i , X

s
ij , Y

s
i ) =

n∑
i=1

Xs
i cp +

n∑
i=1

n∑
j=1

Xs
i,jcsi,j +

n∑
i=1

λiz

√√√√(T + L)
n∑
i=1

σ2
i h+

n∑
i=1

Y si g, s = 1, . . . , k (2.32)

Xs
i +

n∑
j=1

Xs
ij ≤ (T + L)di + λiz

√√√√(T + L)

n∑
i=1

σ2
i , s = 1, . . . , k, ∀i (2.33)

Y si ≥ esi −Xs
i −

n∑
i=1

Xs
ij , s = 1, . . . , k, ∀j (2.34)

n∑
ß=1

λi = 1 (2.35)

n∑
i=1

n∑
j=1

Xs
ij = 0, s = 1, . . . , k, i = j (2.36)

Xs
i , X

s
ij , Y

s
i : Integer variables, s = 1, 2, . . . , k (2.37)

λi ≥ 0 (2.38)

We start by randomly generating k sample paths. Then, we run the SAA problem and collect the

optimal objective value for the first sample, π1
k(z

1). Similarly, we obtain π2
k(z

2), π3
k(z

3), . . . , πυk (zυ)

for υ replications. Note that πrk(z
r) is an unbiased estimator of Ψ∗g. An estimator of Ψ∗g, the op-

timal objective value of Problem MIPMP , is given by π̄υk =
π1
k(z1)+π2

k(z2)+...+πυk (zυ)

υ
, where πrk(z

r)

denotes the optimal objective value of the rth SAA replication, r = 1, . . . , υ.

We can also calculate the sample variance V υ
k =

∑υ
r=1[πrk(zr)−π̄υk ]2

υ−1
. After υ replications, an

approximate 100(1 − p) percent confidence interval for the expected objective value (i.e., E[Ψ∗g])

is given by π̄υk ± tυ−1,1−p/2

√
V υk
υ

. The half-length of this confidence interval given is denoted

ζ(υ, p) = tυ−1,1−p/2

√
V υk
υ

.

If the estimate π̄υk satisfies π̄υk−E[Ψ∗g ]

E[Ψ∗g ]
= ξ, then we can claim that π̄υk has a relative error of ξ. If

we keep increasing replications until ζ(υ,p)
π̄υk

is less than or equal to ξ, then π̄υk has a relative error at

most ξ
1−ξ with a probability of approximately 1 − p (Law 2015). Therefore, to obtain an estimate

of E[Ψ∗g] with a relative error of ξ and a confidence level of 100(1 − p) percent, we follow the

following procedure (Law 2015) to determine the size of υ for the given sample size k:

Below we list the steps of the procedure defined in Law (2015).

• Step 1: Set υ0 = 10 random replications (each with k = 100 sample paths), and set υ = υ0.
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• Step 2: Calculate π̄υk and ζ(υ, p) from π1
k, π

2
k, . . . , π

υ
k . Note that πrk, r = 1, . . . , υ are obtained

by solving Problem SAA.

• Step 3: If ζ(υ,p)
π̄υk

< ξ
1+ξ

, then use π̄υk as the point estimate for Ψ∗g and stop. Otherwise, replace

υ by υ + 1, proceed with another iteration, and go to Step 2.

2.6.2 Numerical Analysis

In order to evaluate performance of PASS on larger problems, we first devise a stochastic

optimization approach (using MIPSAA) to find robust solution for MIPMP that minimizes the

expected cost. We then compare this solution with that of the solution given by PASS.

Finding the total expected cost for the solution given by heuristic, PASS for a large size problem

in Figure 2.4 is not straightforward. We estimate the total expected cost two different ways:

• (a) We solve the problem for six FCs using CPLEX by treating each cluster node as one

consolidated FC (found by PASS). We denote the six-cluster model PASSacross. The model

inputs include the six clusters found previously with their cluster standard deviations and

the outputs are the total expected cost and allocation of safety stock at each cluster. Note

that PASSacross omits all the transshipments that occur within a cluster (both between hub

and leaf node, and among nodes represented by the leaf node). However, we include the

transportation cost of each cluster’s demand which is an underestimate of the actual logistics

cost as transshipments within each cluster are ignored. Note that PASSacross includes the

transshipment cost across the clusters. The clusters are connected under the MST graph as

shown in Figure 5.

• (b) In the second approach, PASSwithin, we model each cluster as a hub-and-spoke system

where the hub is determined by our p-center algorithm and leaf nodes within each cluster

are pooled into a single node, resulting in two FCs in each cluster. For the entire network, we

obtain 12 FCs with each cluster having two nodes (a hub node and a leaf node). However,

it is computationally impossible to solve a network of 12 FCs together. This leads us to

solve each cluster individually and sum all the costs obtained from each of six clusters. This
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approach also has limitations: (i) omission of the transshipments across clusters, and (ii)

the missed transshipments (between nodes within a consolidated leaf node in each cluster)

due to pooling. In Section 2.3.2, we demonstrate that the pooling loss in (ii) is negligible as

compared to the overall cost.

In (a) and (b), we discuss two possible ways to measure the performance of PASS. Both ap-

proaches have their limitations due to underestimation of the total cost. However, we argue that

the cost obtained from PASSwithin is likely to be lower than that from PASSacross because trans-

shipments across clusters are more expensive. We now present the results for the three models:

PASSacross, PASSwithin, and MIPSAA. In our computational experiment, we set the mean de-

mand at each node at 400. Other parameters remain unchanged as in Section 2.5.2. After 15

replications of MIPSAA, we obtain a solution that satisfies the condition in Step 3 of SAA.

Table 2.11: Costs comparison: PASSacross, PASSwithin, and MIPSAA

PASSacross PASSwithin MIPSAA
$469,406 $460,137 $532,733

As we expected, the cost estimated by PASSacross is more than that given by PASSwithin

(Table 2.11). On the other hand, MIPSAA produces the highest costs among the three models

mainly because it captures all costs specified in MIPMP . In spite the computational complexities

associated with solving such large networks, we offer a new approach to systematically evaluate the

performance of PASS. It has to be noted that we use the theoretical insights gained in this chapter

to devise Heuristic PASS where we first determine the cluster safety stock allocation and then,

determine the allocation at all FCs within each cluster. The complexity arises when we include

all 166 FCs to compute the total cost for the network. Thus, we propose a combined two stage

method, PASSSAA: (i) using PASS to estimate the safety stock allocation at each FC (namely,

PASSacross) and (ii) then employing SAA by including the λs estimated in (i) to calculate the

total expected cost (namely, PASSSAA).

52



Table 2.12: Comparison: MIPSAA and PASSSAA

MIPSAA PASSSAA
ζ(υ,p)
π̄υ
k

ξ
1+ξ

$532733.93 $540584.38 0.009 0.0145

Observe that PASSacross provides the cluster-wise safety stock allocation. Following Theorem

1, we then allocate safety stock at the hub FCs and leaf FCs in all clusters. With fixed safety stock

allocation (i.e., fixed λs for all 166 FCs) above, we execute PASSSAA, which is equivalent of

running MIPSAA with fixed λs. For PASSSAA, we start with υ0 = 10 random replications

k = 100 for each replication. After 15 replications, PASSSAA generates a total cost of $540,584,

which is expectedly higher (1.47% higher) than MIPSAA. From Table 2.12, we can observe that

PASSSAA appears to be reasonably closer to MIPSAA. PASSSAA provides an upper bound

estimator to Ψ∗g, the objective function ofMIPMP . Thus, based on our computational experiments,

we conclude that the total expected cost obtained from PASSSAA would be close to the optimal.

Overall, our heuristic PASS offers an efficient allocation of safety stock across a large network.

2.7 Extensions Used in Practice

In managing online retailing operational costs, an efficient allocation of safety stock is an im-

portant task for an operations manager. In the previous subsection, we consider a real-world online

retailing network safety stock allocation problem, propose an allocation approach for medium and

larger networks, and discuss the managerial implications in the context of operational efficiency.

We also develop a methodology offering solutions close to optimal. In this section, we explore

the cost implications of various allocation methods that have been used in practice. For that, we

analyze the four cost components: shipment, transshipment, lost sales, and safety stock costs. We

study three practical safety stock allocation approaches that may be used in practice due to oper-

ational simplifications. We investigate the cost implications for those approaches using networks

having between two and six FCs. Since we illustrate this in small to medium size problems, we

use MIPMP . First, we compare the performance of our approach (called as “decentralized sys-

tem" investigated in the previous sections) in contrast to the “centralized system," where the entire
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safety stock is assigned to only one hub FC among a cluster of FCs. Second, we study the effect

of varying service levels on the total cost in the decentralized system. Finally, we compare our

decentralized system (i.e., pooling of safety inventory) with that of having no-pooling of safety

stock (i.e., no transshipments between FCs). For simplicity, we assume the demand variance of all

FCs to be equal. Other cost parameters used are as in Section 2.6.2.

2.7.1 Comparison between Decentralized and Centralized Systems

In previous sections, we consider an online retailing network where safety stock is allocated

across all FCs in a decentralized manner. This allocation allows transshipments between FCs. i.e.,

if an FC faces stock-out, an adjacent FC having surplus can fulfill the shortage. Online retailers

often implement a policy to store safety stocks at one location (say hub FC) among a cluster of

FCs for operational convenient. Thus, this safety stock allocation approach is of practical interest,

i.e., allocate safety stock at one FC only (called as “centralized system"). However, stocking at

one location may result in increased transshipments if other locations face frequent stock-outs.

Therefore, we investigate the cost implication associated with this policy. That is, we compare

our decentralized system with that of the centralized case. To describe the centralized case more

formally, we let λ1 = 1 and λi = 0 for i 6= 1. Note that the total system-wide safety stock costs

remain unchanged for the two scenarios.

We denote the centralized and decentralized cases as cen and decen, respectively. From Ta-

ble 2.13 we observe that the decentralized cases achieve a substantial amount of cost savings over

the centralized case allocation. For example, when there are five FCs in the network, one may

save 2.48% of their outbound shipping cost which amounts to a sizable saving for a company with

a large outbound shipping expenditure. The decentralized allocation policy appears to result in

similar savings for small, medium, and large networks.

2.7.2 Impact of Service Level on Cost Components: Decentralized System

For planning purposes, it is also important for managers to know the impact of service level on

the total cost. With this information, managers can evaluate the change in the total cost due to the
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Table 2.13: Comparison between decentralized and centralized systems

2FC 3FC 4FC 5FC 6FC
Cost components (in $) Decen Cen Decen Cen Decen Cen Decen Cen Decen Cen
Shipment 6907.37 6741.2 10254.4 9993.26 13550.2 13228.8 16917.5 16512.7 20233 19771.3
Transshipment 0 356.09 479.04 1038.74 1056.2 1758.68 1290.56 2160.77 1715.84 2711.39
Lost sales 426.6 426.6 214.3 214.3 51.78 51.78 271.2 265.5 360.1 348.6
Difference (in %) in total costs ( cen−decen

decen
) 2.58 2.72 2.24 2.48 2.34

level of safety stock allocation in the decentralized system. Higher service may be effective in re-

ducing lost sales and transshipments. However, it can increase the safety stock costs substantially.

We compute and compare the shipment, transshipment, lost sales, and safety stock costs for service

levels (in %) ∈ {90, 92, 95, 97, and 99}, respectively. Table 2.14 summarizes the percentage cost

differences associated with shipments, transshipments, safety stock, lost sales, and the total cost

for different service levels with respect to 90% base level. The total costs that include safety stock

costs sharply increase with the increasing service level. As expected, the shipments increase while

transshipments decrease as the service level goes up.

In Figure 2.5, we observe the costs for networks with four, five, and six FCs. The safety stock

holding costs increase across all networks as we increase the service level from 90% to 99%, result-

ing in lower lost sales. On the other hand, as observed from Figure 2.5, the higher the availability

of safety stock (i.e., higher service level) the lower the transshipment cost. Furthermore, the ship-

ment costs increase with the service level. The relationship between shipments and transshipments

with varying service level warrants further discussion. Higher service level increases system safety

stock resulting in higher safety stock at the individual FC level. With demand parameters remain

unchanged, cheaper shipments replace expensive transshipments as service level increases. How-

ever, the total cost also increases with a higher service level since safety stock holding is costly.

The increase in the total cost is significant, so the decision-makers should determine the appropri-

ate balance between the system service level and the corresponding total cost of serving customer

demand.
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Table 2.14: Changing costs (in%) from 90% service level: decentralized system

Network size Cost parameters 92% 95% 97% 99%

2FC

Shipment 0.5 0.79 1.03 1.45
Transshipment 0 0 0 0
Lost sales -24.52 -38.88 -50.18 -70.78
Safety stock 8.52 27.9 46.51 80.62
Total cost 1.87 7.72 13.43 23.9

3FC

Shipment 0.44 1.33 1.77 2.13
Transshipment -13.11 -39.34 -51.85 -61.17
Lost sales -18 -54.02 -73.93 -93.3
Safety stock 8.52 27.9 46.51 80.62
Total cost 1.99 6.64 11.54 20.99

4FC

Shipment 0.44 1.29 2.15 2.84
Transshipment -10.25 -30.23 -50.72 -67.06
Lost sales -22.12 -53.58 -73.07 -91.21
Safety stock 8.52 27.9 46.51 80.62
Total cost 1.83 6.14 10.28 18.56

5FC

Shipment 0.32 1.03 1.73 2.82
Transshipment -5.5 -20.32 -36.01 -62.31
Lost sales -22.09 -50.76 -73.1 -90.87
Safety stock 8.52 27.9 46.51 80.62
Total cost 1.62 5.46 9.17 16.29

6FC

Shipment 0.18 0.96 1.59 2.73
Transshipment -4.13 -17.26 -30.5 -56.06
Lost sales -2.13 -55.88 -72.53 -91.14
Safety stock 8.08 27.9 46.51 80.62
Total cost 1.62 5.03 8.53 15.02

Figure 2.5: Impact of service level on cost components

2.7.3 Comparison between Pooling and No-Pooling Systems

It has to be noted that the pooling of safety stock and optimal allocation to FCs in the decentral-

ized system is the main focus of this chapter. We may also refer to this decentralized system as a

“pooling system." In the “no-pooling system", FCs are assigned safety stock individually, thereby
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increasing the amount of safety stock deployed. This situation may be encountered when a net-

work consists of unconnected FCs that belong to the same company, but each FC operates as an

independent business unit. We assume transshipments do not occur in a no-pooling system as FCs

operate independently. However, in the pooling system, lateral transshipments across the FCs in a

network reduce the system-wide safety stock level due to pooling.

We compare the cost components in pooling and no-pooling systems. Note that the total cost

includes safety stock cost. Table 2.15 provides a representative subset of the outcomes associated

with pooling and no-pooling systems. The total cost for the pooling system includes the trans-

shipment cost. Figure 2.6 illustrates that as the network grows in the number of FCs, the cost

difference between the pooling and no-pooling systems increases sharply. For example, the differ-

ence is 13.57% for a network of two FCs and almost 30% for a network of five FCs. As expected,

the use of a pooling system performs much better in terms of the overall cost than a system with

no-pooling. The purpose of this section is to quantify the amount of saving that is significant due

to pooling systems.

Table 2.15: Comparison between pooling and no-pooling systems (92% service level)

2FC 3FC 4FC 5FC 6FC
Cost components (in $) Pooling No-pooling Pooling No-pooling Pooling No-pooling Pooling No-pooling Pooling No-pooling
Shipment 6907.37 6950.2 10254.4 10435.7 13550.2 13928.2 16917.5 17427.6 20233 20933.1
Transshipment 0 0 479.04 0 1056.31 0 1290.56 0 1715.84 0
Lost sales 426.6 255.22 214.3 383.21 51.78 511.46 271.2 639.91 360.11 762.45
Safety stock 3976 5640 4872 8460 5600 11280 6272 14100 6832 16920
Total cost 11309.9 12845.42 15819.8 19278.91 20258.29 25719.66 24751.32 32167.51 29140.95 38615.55

This section explores the variants of the safety stock allocation approaches that may be en-

countered in practice. Specifically, we address three variants: (i) cost saving associated with our

decentralized system over the centralized case, (ii) impact of service level on the total cost in the

decentralized system, and (iii) comparison between pooling and no-pooling systems. In summary,

numerical results from the three computational studies suggest that

• for a given service level, the decentralized safety stock allocation results in significantly lower

total cost than that of the centralized scenario,
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• higher service levels in the decentralized system increase the safety stock holding cost and

reduce lost sales and transshipments. However, the total cost increase significantly with the service

level, and

• pooling system performs better than no-pooling system. The cost saving is significant in the

pooling system.

Figure 2.6: Total costs of pooling and no-pooling systems

2.8 Managerial Insights

In this chapter, we address the order fulfillment challenges faced by online retailing managers.

We specifically investigate the approaches to allocate safety stock in online distribution networks.

The need and desire to continually reduce operating costs while balancing inventory and trans-

portation costs is a common issue online retailers face around the world. Additionally, demand

uncertainty, coupled with the size of their networks, makes it more difficult for online retailers to

systemically allocate safety stock at the right place and at the right time. The problem of safety

stock allocation, therefore, must be studied under these conditions. In this section, we present

managerial insights and discuss the advantages and possible extensions of this chapter.

Considering demand uncertainty and network size, our MIP model, MIPMP , can efficiently
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allocate safety stock by reducing expensive transshipments and excess inventory. However, the

current state-of-the-art MIP software cannot solve instances with more than 6 fulfillment centers

within a reasonable amount of time. Our approach, therefore, emphasizes on reducing complexity

associated with safety stock planning. For example, by creating clusters of fulfillment centers,

managers can holistically administer a large network of FCs with ease. This approach is consistent

with the industry practice of grouping nearby FCs while maintaining the control over every indi-

vidual FC as closely as possible. The cluster-based approach helps in storing inventory at the right

place that may result in cost-effective and faster delivery. We also validate the efficiency of our

approach in Section 2.5.2 and Section 2.6.2; our procedure (PASS) provides solutions reasonably

close to the optimum for small, medium, and larger networks.

In addition to its computational benefits, our proposed approach offers useful practical exten-

sions relevant to online retail operations. First, we consider stocking locations in a network. Until

now, we decompose a large network into several clusters and allocate the safety stock across all

fulfillment centers. However, online retailers may not allocate safety inventory at all locations

for ease of operations and expensive warehousing cost. Efficiency may arise by allocating safety

inventory only at hub FCs of the clusters. Our research may guide in identifying those locations.

Online retailers often provide customers with multiple delivery options or delivery heterogene-

ity; they may charge customers for expedited deliveries. The amount charged may compensate

for the extra transportation costs fully or partially. The transshipment costs for expedited deliv-

eries are more than normal mode of shipping. Delivery options may also vary across geographic

regions. For example, urban areas may exhibit more expedited delivery requests than suburban

areas. Our model can apply to the multiple delivery setting if the distribution of delivery options

can be estimated in terms of fraction of customers demand for various delivery options at each FC.

A rigorous mathematical analysis of safety stock allocation with delivery options is possible by

modifying model MIPMP with those options. However, with the availability of historical data of

different delivery options of customer demand, PASS can be adopted for safety stock allocation.

There are additional relevant managerial extensions of this chapter. We assume that cost pa-
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rameters do not vary within a cluster, given that fulfillment centers within a region may not exhibit

different cost characteristics. However, retailers may encounter varying holding costs, and there-

fore, the model can be extended to observe the relationship between safety stock allocation and

the ratio of demand uncertainty and holding costs (σi/hi). Another interesting extension is the in-

clusion of supplier lead time uncertainty. For analytical tractability, we use a single supplier with

identical lead time across the network. Based on their geographical operations, a supplier may

have different lead times in different regions. Additionally, the supplier lead times may change

with multiple suppliers. Our model can be utilized to understand the relationship between supplier

lead time (Li) and demand uncertainty σi. Several important questions can be similarly addressed

by running and re-running our model after adjusting certain variables. For example, shipment

or transshipment costs can be adjusted at the network level or across the clusters. Managers can

modify demand parameters frequently to account for rapid changes in demand.

2.9 Conclusion

We study the safety stock allocation mechanism in an online retailing fulfillment centers net-

work with an objective of minimizing the total cost consisting of the costs of transportation, inven-

tory holding, and penalty for lost sales. Currently, online retailers distribute safety stock myopi-

cally (Acimovic and Graves 2017) across its network and therefore, under uncertain demand, they

may encounter expensive transshipments or higher inventory holding costs. In this chapter, we de-

scribe a simple and easy-to-implement approach for allocating safety stock in any network. With

the current state-of-the-art computational capability, we can optimally allocate safety stocks in a

network having no more than 6 FCs. For larger networks, we begin by clustering the FCs. Next,

with p-center algorithm, we select the hub and spoke FCs and link the clusters under the Minimum

Spanning Tree (MST). This process lets us select the cheapest transportation route between any

two nodes. Finally, we allocate the safety stock across the network, starting at the cluster-level to

FC-level. Our theoretical results assist us to allocate safety stock at each FC near-optimally. To the

best of our knowledge, this chapter is the first research to optimally solve a network of 6 FCs and

suggest inventory allocation for larger networks using the stochastic optimization approach. None
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of the published papers in inventory allocation stream has computationally solved an inventory

allocation problem for more than 3 FCs.

We assess our decomposition method in the context of both the average-case and worst-case

performance. The computational study suggests that our proposed near-optimal method performs

fairly well compared to the optimal results. From the practice point-of-view, this chapter can

contribute significantly to the managerial decision. Despite substantial differences among online

retailers in terms of inventory allocation and shipment strategies, our proposed method offers an

easy-to-implement safety stock allocation process intending to reduce excess operational costs.

Amazon reported approximately $21.7 billion expenditure in outbound shipping in 2017. Flip-

kart’s annual costs in transportation and distribution in 2017 were approximately $324 million2.

Therefore, even 1-2% of savings in transportation may result in significant dollars in saving. With

an increasing trend in online shopping across the world, the net savings can be significant, and the

benefits can be passed on to the consumers.

We further observe many interesting avenues for future research. We model customer demand

using normal distribution and discretized it for analytical tractability. It has to be noted that the

discretization approximation is reasonable and can be used for any other distribution. Future re-

search may model demand using other appropriate distributions and validate our findings. Second,

our approach is valid for items ordered and delivered as a single-item. In doing so, we devise a

procedure on the allocation of safety inventory in any size of networks. Future studies may extend

the research in this chapter by incorporating multi-item orders. Third, supply-side uncertainty can

be considered as an interesting extension. However, the simultaneous consideration of supply and

demand uncertainty may increase the complexity.

We believe that this chapter has significant implications for practice. Online retailers struggle

with high transportation costs, facing a trade-off between overstocking and expensive transship-

ments. While these are difficult challenges, our research addresses these problems tactically. We

recommend that practitioners need to move from a myopic approach of allocating safety stock to

2https://www.livemint.com/Money/TcqdDf30s06hvtSuyM5I1L/If-Flipkart-losses-havent-alarmed-Walmart-
Amazon-Indias-s.html
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a more planned and cost-efficient process to derive significant cost benefits.
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3. ACO Service Delivery and Experience on Financial and Quality Performance - An Empirical

Examination

3.1 Introduction

Healthcare spending in the United States (U.S.) reached $3.8 trillion in 2019, or 17.7 percent

of the gross domestic product (GDP), exhibiting a consistent risk in healthcare spending over time

(Martin et al. 2021). U.S. healthcare faces significant obstacles from the fragmented nature of its

payment and delivery systems due to little or no accountability from a single group of physicians to

guide a patient’s health. The care episode of a patient may be distributed across many sites, result-

ing in duplication of tests, unnecessarily high costs, and inadequate care quality. Also, fragmented

care renders unnecessary hospitalizations, causing poor care quality and inefficient resource uti-

lization (Freeman et al. 2021). The Affordable Care Act 2010 (ACA) created Accountable Care

Organizations (ACOs) to improve population health and care quality and reduce healthcare costs.

ACOs consist of primary care physicians (PCPs), specialists, nurse practitioners (NPs), hospitals,

and other healthcare providers and facilities, who provide coordinated healthcare to their patients

for reducing healthcare costs and improving care coordination. ACOs that meet both financial and

quality standards are incentivized by their payers through financial rewards.

ACOs have increased both in terms of numbers and population coverage over time. The ACO

model requires the providers across care settings to take responsibility for the spending and quality

of care for a defined population. Currently, there are nearly 1000 ACOs across the US, operat-

ing with commercial, Medicare, and Medicaid contracts (Solutions 2021). ACOs have exhibited

higher average performance rates than other medical groups (Federal 2018). By making providers

more accountable for the total costs of care (care episode), the ACO model aims to provide better

care coordination. For example, Akron Children’s Health Collaborative, a new ACO, will take

responsibility for 100,000 children insured under Medicaid (Medcity 2021). Despite efforts to

curb spending and improve quality, the Centers for Medicare and Medicaid Services (CMS) esti-
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mates that financial and quality performance have not been substantially enhanced by the ACOs

(CMS 2021). Several ACOs do not demonstrate substantial cost reductions and quality improve-

ments (McKinsey. 2020), and over 30 organizations quit their contracts because they struggled to

reach their respective benchmarks (LaPointe 2018). Consequently, the number of ACO participa-

tion becomes slower compared to previous periods due to the risk and uncertainty associated with

performance (McWilliams and Chen 2020).

Given the number of ACOs and the rise in covered population, clearly, it is important from

an industry perspective to ensure ACOs become more efficient in delivering care. ACO model

shows promises amidst the rising cost of healthcare worldwide. This new and innovative patient-

care model has garnered interest in other countries, including Canada, especially for patients with

complex needs (Peckham et al. 2018). Within the broader umbrella of efficiency in operations,

service delivery via provider composition and experience play important roles in ACO performance

(Wilson et al. 2020). However, in spite of such importance, there is limited work in the literature

on analyzing efficiency issues in ACOs, especially in terms of utilizing these resources. To bridge

this important gap in the literature, we empirically examine the impact of primare care service

delivery (or broadly service delivery) via provider composition and experience on ACO financial

and quality performance. Our work sheds light on this operationally relevant problem for ACOs

that is relevant for researchers and policymakers, and we present valuable and actionable insights.

3.1.1 Background of ACOs

In the 1970s, the Health Maintenance Organization Act (HMO) became popular with its value-

based payment methods. In the nineties, integrated delivery networks (IDN) evolved but were

unsuccessful due to the misalignment of incentives between hospitals and providers (Burns and

Pauly 2012). The first set of ACOs was established in 2012 with the triple aims of access, care,

and quality. ACOs rely heavily on Health Information Technologies (HIT) and decision support

systems for better coordination among the participants, centered around PCPs as the gatekeepers

of care. The introduction of ACOs was also a departure from the traditional fee-for-service (FFS)

structure to a more value-based model through the incorporation of shared savings. Shared savings
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is a payment strategy that incentivizes providers to decrease health care spending for a population

by sharing a percentage of savings with the payers realized from their efforts.

The Medicare Shared Savings Program (MSSP), the largest of the ACO programs, incentivizes

ACOs to reduce spending and improve the quality of care. ACOs can be classified based on two

risk contract models - upside and downside. New ACOs commonly participate under the upside

risk only contract or one-side model through Track 1, where they are not penalized for exceeding

the benchmark spending, are eligible to share savings for three years and may extend the contract

for an additional three years. On the other hand, CMS encourages larger and experienced ACOs

to participate under the downside risk or two-sided models (Tracks 2 and 3). Under these models,

ACOs are penalized for exceeding the spending threshold. While these ACO share the losses, the

shared savings percentage is higher than that of Track 1. In 2018, with the support of the National

Association of ACOs (NAACOS), CMS introduced an additional contract - Track 1+, a two-sided

model with lower risk levels and was introduced to help ACOs transition to higher risk models

(Tracks 2 and 3). The three downside tracks put the ACOs under more risk-sharing.

Over the past decade, research on ACOs has gained a lot of momentum as the industry focus has

been gradually shifting from the popular volume-based practices towards value-based approaches

with innovative payment models. Fisher et al. (2006) did a seminal work that explains the funda-

mentals of ACOs and Burwell (2019) explains the ACO model through the lens of payer-provider

partnerships. The initial works classify ACOs across several dimensions - (i) public and private

programs (Fisher et al. 2012), healthcare IT infrastructure (Fisher and Shortell 2010), depth of the

network (Shortell et al. 2015), and ACO size (Shortell et al. 2010). These studies, among others,

clearly distinguish the characteristics of different ACOs and how heterogeneity in size or struc-

ture may influence ACO performance. While these studies provide a synthesized evidence on how

ACOs differ, performance improvements can be achieved by many factors, which needed more

in-depth investigations. Later studies provided more insights on the organizational characteristics

and performance, using more granular data and utilizing the outcomes from these early works. As

Ganguli et al. (2020) remark, physician composition may play a larger role in ACO success.
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3.1.2 Research Questions and Contributions

Prior research and industry studies identified service delivery and ACO experience as key is-

sues affecting ACO performance (Wilson et al. 2020, McKinsey. 2020). Given these findings, we

assert that the role of service delivery through provider composition and experience on ACO per-

formance merits additional investigation. Understanding how these factors influence performance

could inform ACOs in deploying initiatives at the organizational level. We have chosen three fac-

tors to study their influences on ACO performance as follows: (a) provider composition or the

proportion of primary care services provided by specialists and NPs to the primary care services

provided by PCPs, (b) ACO experience, and (c) the interaction between experience and the service

delivery on ACO performance.

The first factor involves an examination of provider composition with regard to primary care

delivery. It is important because while the ACO attempts to shift healthcare to a more PCP-patient-

oriented delivery, there is a lack of available PCPs (Heath 2018). In this scenario, it is pertinent to

examine how ACOs can use specialists and NPs to improve their performance and how geograph-

ical boundaries will affect their usage. Given the above facts and trends, we argue that policymak-

ers and ACO practitioners must understand the performance implications of provider composition.

This examination of provider composition relates to the healthcare objective of access to care and

its financial and quality implications.

The second factor pertains to ACO experience. Since the formation of ACOs in 2012, some

ACOs have shown consistent performance over time, and some have even expanded their oper-

ations in other states to treat more patients as revealed both in our data and CMS reports (CMS

2021). However, many ACOs drop out of the program each year, exhibiting weak financial or

quality performance (LaPointe 2018). The CMS allows ACOs to join the program with a flexible

setting but wants them to take more accountability by posing stricter benchmarks over time. ACOs

must perform satisfactorily in terms of savings and quality to achieve shared savings and survive

under downside-risk contracts. Under each risk model, the ACOs perform the same operations and

improve their experience in delivering better care. On the other hand, as they transition from a
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low risk to a high risk model, they take more accountability and initiatives. For this reason, we

examine the impact of experience, both in terms of years of operation and risk model, on ACO

performance.

We also explore the moderating roles of experience and risk model on the relationship between

provider composition and ACO performance as the third factor. As they gain experience within a

risk model, it is pertinent to observe how that experience affects the impact of service delivery via

provider composition on ACO performance. It is also interesting to explore the moderating role

of risk model on the relationship as higher risk models require stringer benchmarks, both in terms

of quality and financial performance. Therefore, we individually analyze the moderating role of

experience within a risk model and risk model on the relationship between provider composition

and performance.

We perform an empirical analysis using longitudinal performance data of ACOs between 2016

and 2019 with more than 600 ACOs with a Medicare contract and rigorous methods to obtain

a fine-grained picture of how ACOs are performing and how they can improve under industry

constraints. We find that provider composition has two different effects on ACO performance. On

the one hand, ACOs generate more short-term savings by providing more primary care services

via specialists and NPs. On the other hand, using specialists for primary care reduces the quality

of care, even in the short-term. This is because specialists are not trained to provide holistic care.

With regard to experience, we also find that depending on their contracts, ACOs can be strategic

through their operational experience and risk model. They should focus on cost reduction in their

initial years and slowly invest in quality and process improvement initiatives over time. Finally,

ACOs having more primary care services through NPs gain more savings both in the short-term

(experience) and long-term (risk model). However, ACOs need to improve the quality of care as

having more specialists and NPs providing primary care services hurt them in the long-term.

In a post-hoc analysis, we find that ACOs with more primary care services through federally

qualified health centers (FQHC), a prominent safety-net center, are associated with higher savings

rates. This finding should encourage ACOs to form associations with these centers in rural areas
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to deliver primary care and increase access to care to prevent expensive hospitalizations or delay

in proper care. In another post-hoc analysis, we use the socio-economic data from the Center

for Disease Control (CDC) and find that ACOs operating in states with more population having

infrequent check-ups and failed visit doctors because of cost are not associated with higher quality

score. Collectively, these results demonstrate the policy implications for ACO models in areas of

less access to care.

This chapter makes practical contributions to the healthcare operations management (HOM) lit-

erature by exploring the ACO characteristics associated with the financial and quality performance

of ACOs. Service providers (or providers) play a critical role in population health management in

service operations, especially in HOM. Their actions determine the quality of care and the cost of

healthcare. Payers such as CMS push providers to take more accountability in reducing healthcare

costs while increasing access to care and quality. The ACO model is a vital program started by

the CMS and later adopted by other payers to achieve the triple aim of healthcare and motivate

providers to transition from a volume-based to a value-based approach. ACOs are PCP-focused

organizations that manage the care episodes of patient populations. However, they often deliver

services through non-PCP and non-physicians. Our findings offer guidelines on how ACOs service

delivery via provider composition and experience affect their performance. We present manageri-

ally relevant insights to improve the ACO model further. In the next subsection, we briefly describe

the related works in the literature and highlight our contributions.

3.1.3 Literature Review

This work aims to analyze the impact of service delivery and experience in the context of

ACOs. There is substantial research in operations management that associates service delivery and

experience with organizational performance (Chandrasekaran et al. 2012, Anand et al. 2021). Re-

search on ACOs focusing on organizational aspects shows that the ACO model needs continuous

examination on their performance evaluations, especially in a highly competitive environment with

multiple providers, requiring effective coordination between ACOs and their care delivery system.

McClellan et al. (2010) highlight the importance of primary care services and clinical transforma-

68



tion on ACO performance and suggest that the proper utilization of primary care services should

be a priority for the ACOs. Multiple studies point out significant variations in primary care prac-

tices (Finkelstein et al. 2017, Weigel et al. 2016, Weiss et al. 2013). Kaufman et al. (2019) observe

highly variable financial performance across ACOs. Other studies identify several factors that im-

pact the success of ACOs, such as the type of ACOs (McWilliams et al. 2018), the responsibility

of PCPs in coordinating care (Rittenhouse et al. 2009), specialist office visits (Shetty et al. 2019),

utilization of NPs (Perloff et al. 2016), ACO experience, sizes, and prior experience with more

stringent contractual measures (Muhlestein et al. 2016, McWilliams et al. 2016).

Prior research, thus, reveals that ACO competence is a combination of their resources, such

as the care providers and the system, which has grown over time through experience. However,

only a few studies have explored the impact of service delivery through provider composition and

experience on performance. Ouayogode et al. (2017) analyze association of ACOs with hospitals

and ACO beneficiaries across different geographical regions, mostly observing the performance

difference between rural and other regions. Zhu et al. (2019) study the proportion of primary

care providers and physician leadership on ACO performance. Unlike these studies, our focus on

service delivery via provider composition and experience provides more insights on the operational

characteristics of ACOs that can be utilized to improve their performance. We specifically examine

the proportion of primary care services provided by specialists and NPs over PCPs instead of the

number of providers and how ACOs utilize their experience across risk models. Additionally,

we also consider two important extensions related to ACO geographical operations and socio-

economic factors.

We present the theoretical development and hypotheses in Section 2. Section 3 describes our

data, variables, empirical results, robustness checks, and post-hoc analysis. In Section 4, we dis-

cuss the policy implications. Section 5 describes the contributions and future opportunities of this

chapter.
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3.2 Theoretical Development and Hypotheses

This work seeks to advance our understanding of the impact of service delivery via provider

composition and experience on ACO performance through the lens of service delivery and orga-

nizational learning literature. Existing literature estimates that physicians’ decisions account for

approximately 80% of all spending by the ACOs (Mendelson et al. 2017). Increasing the number

of PCPs is considered important in the ACO model, and ACOs’ success on parameters of improved

care, better population health, and reduced costs may largely depend on its ability to attract PCPs.

We visited one of the biggest ACOs in Texas several times during this research and received valu-

able information. They have 335 PCPs working under the ACO model and they plan to increase

PCPs and NPs to deliver more primary care.

However, the national shortage of PCPs is a challenge for the ACOs (Siddiqui and Berkowitz

2014). The shortage of PCPs and the high importance of primary care services prompt healthcare

groups, including ACOs, to look beyond PCPs for primary care services and deploy healthcare

through specialists and NPs. Delivering primary care services through specialists is not uncom-

mon, as the shortage of generalist physicians is not a new phenomenon (Aiken et al. 1979, Janson

and Weiss 2004, Olfson et al. 2020). Similarly, NPs are also attractive options for primary care

services given their training and reduced expenses. Healthcare delivery is a social setting that fol-

lows the rules and policies to engage patients, guided by the policymakers, organizations, and the

providers’ own training.

While healthcare research has received much attention in the literature, the literature highlights

a need to understand further the impact of provider composition within service delivery and the

impact of ACO experience, which adds to the prominence of this chapter. We explain our theoreti-

cal development using a simple conceptual diagram in Figure 3.1 that offers a high-level overview

of the relationship between ACO service delivery, experience, and performance. We denote direct

relationships by solid arrows and moderating behavior of experience on the relationship between

ACO service delivery and performance using dotted arrows. It is important to note that the service

delivery variables, primary care by specialists and primary care by NPs, are constructed by taking
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the proportion of primary care services provided by specialists and NPs to the total number of

primary care services provided by PCPs. In this way, we focus on service utilization rather than

the number of providers in this chapter.

Primary care by 
specialists

Primary care by NPs

Experience

Risk model

ACO Service Delivery

ACO Experience

Savings rate

Quality score

ACO Performance

Main path relationships

Interactions

Figure 3.1: Conceptual model: ACO service delivery and experience on performance

3.2.1 ACO Service Delivery

The ACO model is rooted in the abilities of PCPs as designated providers for every patient

to ensure integrated care (Starfield 1998). A PCP is defined as a physician specializing in Family

Medicine, Internal Medicine, or Pediatrics who provides care to patients at the point of first contact

PCPs observe the patients and may refer them to specialists, nursing homes, or hospitals based on

care requirements. PCPs are the gatekeepers of care coordination, experts in communication with

patients and other providers, and mostly take a generalist approach to care. However, ACOs are

also impacted by the shortage of PCPs and may utilize specialists and NPs to offer primary care

services. We, therefore, examine healthcare service delivery by looking at primary care services

provided by specialists and NPs. We ground our hypotheses from the existing literature on pri-

mary care access and healthcare quality. Senot et al. (2016) discuss two broader quality categories
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- conformance quality and experiential quality. Conformance quality indicates the degree to which

a product meets the required specifications (Garvin 1987). For the ACOs, the conformance quality

refers to the set of conditions set by CMS and the ACO board. On the other hand, experiential

quality refers to the interactions between the caregivers and the patients and measures the per-

ceived quality (Chandrasekaran et al. 2012). We discuss the quality implications of ACO service

delivery using specialists and NPs through the lens of primary care access, ACO setup, and quality

dimensions.

3.2.1.1 Primary Care by Specialists

Access to primary care can aid in positive health outcomes (Starfield and Macinko 2005).

ACOs focus on disease management through preventive actions by offering timely care and co-

ordinated practice to reduce costs of care while maintaining the quality of patient care. Primary

care providers are an essential platform for general care and, more importantly, early diagnosis and

treatment of disease. Without timely intervention, a patient’s health may deteriorate, which would

require hospitalization, resulting in higher spending and poor quality of care. The proportion of

primary care physicians has not changed substantially between 1996 and 2015 and is unlikely to

improve in the next few years (Lancet 2019). Primary care is also less expensive than specialty

care and patients having easy access to PCPs tend to spend less money on health services and ob-

tain better care. A recent study on 620 ACOs shows that a balance of PCPs and specialists results

in a cost reduction of $1129 per beneficiary along with lower ED visits, lower hospital discharges,

and reduced skilled nursing facility discharges (Shetty et al. 2019). Therefore, it is pertinent to

analyze the relationship between specialists offering primary care services compared to that by

PCPs and ACOs. Having specialists perform primary care services may offer benefits in terms of

access to care and ACO supervision by ensuring conformance quality. While specialty charges

are higher than PCPs on average, having primary care to patients may prevent expensive future

procedures and improve the quality of care. Thus, higher rates of primary care services offered

through specialists can help ACOs achieve their financial outcomes. We posit that:

Hypothesis 1A: ACOs providing more primary care services through specialists are likely to
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have higher savings than other ACOs, on average.

Dagger et al. (2007) define technical quality as the “expertise, professionalism, and compe-

tency of a service provider.” The authors relate the definition to a physician’s knowledge and skills

in diagnosis and analysis. Patients seek higher levels of expertise from their providers in terms

of diagnosis of disease and care coordination. Primary care contributes to access to care and ap-

propriateness, including avoiding redundant treatments. As Baicker and Chandra (2004) remark,

care appropriateness may suffer at the hands of specialists who are trained to work at the level of

specific diseases. In other words, specialists may “overdo” primary care services that require more

generalist approaches. Specialists lack the generalist approach to primary care, resulting in a lower

experiential quality when they communicate with their patients and provide services. Through

continuous treatments and follow-ups, PCPs are more familiar with their patients. The long-term

relationship facilitates a generalist approach that prioritizes and personalizes care best suited for

different patients, resulting in higher experiential quality.

Primary care services provided by specialists may result in lowering the desired quality perfor-

mance. Studies show that seeking primary care services through a specialist may not achieve better

quality; specialists can overestimate the likelihood of illness in patients, leading to adverse effects

and medical errors (Franks et al. 1992, Hashem et al. 2003). While the collaborative environment

and norms set by the ACOs may reduce the overall cost of care of primary care services through

specialists, the quality of care can deteriorate. Thus, specialists may offer substantial conformance

quality in providing primary care services, but their experiential quality compared to PCPs may

worsen, leading to lower patient satisfaction. Another view offers a perspective of the experience

gained by specialists who offer their services at multiple places. While that may help expand spe-

cialist knowledge, a substantial portion of that knowledge is not portable (Huckman and Pisano

2006), especially for generic primary care services. For specialists, we hypothesize the following:

Hypothesis 1B: ACOs providing more primary care services through specialists are likely to

have lower quality than other ACOs, on average.
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3.2.1.2 Primary Care by NPs

Physician shortages and an aging population have increased the importance of NPs. There are

approximately 234,000 licensed NPs in the United States, and they form an important element in

urban and rural primary care practices. Primarily, offering more primary care through NPs includes

two advantages : (i) NPs can perform many services that PCPs provide and at a lower cost, and

(ii) NPs can be trained quicker than PCPs. NPs can work both autonomously and collaborate

with other physicians while providing primary care services. An expansion in the number of NPs

offering primary care services may keep increasing the access to basic primary care, especially

in remote areas. American Academy of Nurse Practitioners estimates that approximately 90% of

NPs receive primary care training, and 75% practice primary care (AANP 2014). DesRoches et al.

(2013) comment that NPs are more likely to give primary care services to disadvantaged Medicare

patients than physicians. Perloff et al. (2016) find that primary care through NPs is more cost-

efficient than that through physicians for Medicare beneficiaries. The authors note that “Medicare

program could obtain significant cost savings if more NPs were providing primary care services

to beneficiaries.” With NPs, ACOs can also maintain conformance quality as NPs are trained to

follow guidelines and coordinate with physicians. We hypothesize:

Hypothesis 2A: ACOs providing more primary care services through NPs are likely to be

associated with higher savings than other ACOs, on average.

Quality of care encompasses both clinical and experiential aspects. NPs take a more generalist

approach to patient care given their holistic education in clinical training. Their care delivery

constitutes patient’s overall wellness and a “sense of caring for others (Callister and Hobbins-

Garbett 2000).” Wilson et al. (2005) find that NPs can provide almost the same quality of care as

an expert and even better than non-expert physicians. Swan et al. (2015) also confirm the quality

of NPs. In a primary care setting, we can consider PCPs as the expert. Horrocks et al. (2002) find

that NPs, in some cases, may even provide better care than doctors. The same study shows that

NPs did longer consultations and more investigations than physicians. Stanik-Hutt et al. (2013),

in a systemic review of research on NPs, find that quality of care provided by NPs is mostly at
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the same level as that provided by physicians and better in some cases. Additionally, NPs work

with multiple physicians, observing a variety of processes and and learning from them, This can

be beneficial since expertise in healthcare industry is often obtained through implicit learning (KC

and Tushe 2021). The holistic education of NPs, coupled with their experience and more time with

the patients may help better patient care and satisfaction, indicating a higher experiential quality.

Therefore, we hypothesize:

Hypothesis 2B: ACOs providing more primary care services through NPs are likely to be

associated with higher care quality than other ACOs, on average.

3.2.2 Experience

Experience plays a vital role in the sustenance of the ACO model. The CMS wants ACOs to

make fast transitions to two-sided contracts. Two-sided contracts have two major benefits: (i) let-

ting ACOs take more responsibility in reducing cost and quality and (ii) inducing more physicians

to join ACOs for higher financial rewards (Song and Fisher 2016). Recent studies show that ACOs

participating for a longer time generate greater savings per beneficiary (Kocot 2016, Introcaso and

Berger 2017). Organizational learning curve theory asserts that cumulative production experience

is associated with better performance (Dutton and Thomas 1984, Argote et al. 2000). Firms can

learn by (i) performing the same activity over time (autonomous learning) and (ii) undertaking im-

provement activities (induced learning) (Levy 1965). March (1991) argues that organizations try to

trade-off between these two via exploitation or refining their systems and exploration or investing

in new opportunities.

In our context, ACOs focus on both types of learning to ensure better financial and quality

performance. However, ACOs in different stages may show heterogeneity in their learning process.

ACOs in their initial stage or under the one-sided contracts may adhere more to the norms set

by CMS and their own leadership boards and focus on autonomous learning because they have

higher motivation to perform the repeated tasks and reduce the costs of operations. However, more

focus on autonomous learning may hurt their inductive learning, reducing quality improvement

initiatives. Such a strategy may hurt their quality score since CMS assigns a substantial weightage
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on quality innovation measures to construct quality score variable. On the other hand, advanced

ACOs, under the two-sided contracts, are under pressure to perform better due to higher penalties.

These ACOs are more likely to have more process improvement initiatives than the ACOs under no

penalty. Due to this, they can incur more cost of operations and are likely to generate less shared

savings than the ACOs under one-side risk contracts under the current ACO model. Therefore, we

hypothesize a contrasting relationship between cost and quality through the lens of autonomous

learning and induced learning and posit:

Hypothesis 3A: ACOs with more experience are likely to be associated with greater savings

than other ACOs, on average.

Hypothesis 3B: ACOs with more experience are likely to be associated with lower quality

score than other ACOs, on average.

Hypothesis 4A: ACOs in a higher risk model are likely to be associated with lower savings

than other ACOs, on average.

Hypothesis 4B: ACOs in a higher risk model are likely to be associated with higher quality

score than other ACOs, on average.

3.2.3 Experience and Risk Model on Service Delivery Through Specialists and NPs

Experience and risk are two different ACO characteristics. While the former represents the

exploitation part of learning where ACOs mostly learn by doing, the latter is related to ACOs

improvement caused by their transition to a higher risk model. The literature on organizational

learning theory posits that organizations may learn differently based on their capacities (e.g. Cohen

and Levinthal 1990, Miner and Mezias 1996) . Experience can facilitate learning, but opportuni-

ties need to be exploited to achieve substantial gains (Dutton and Thomas 1984). Organizational

learning can be broadly represented as a set of three consecutive tasks in a cyclical fashion - (i)

enactment or information receival and action, (ii) selection of the information, and (iii) retention

of the information. Through these cycles, new information becomes available to the organization’s

members and organizations may or may not incorporate them in their structure. Organizations

may reexamine their approaches and utilize the new information to improve their services. The
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new information can come from both exploitation and exploration. However, exploration offers a

higher degree of change to the existing set of norms. Thus, within the same risk models, ACOs

mostly learn by focusing on their savings rate. They utilize their physicians and non-physicians

to deliver services and achieve to stay lower than the expenditure benchmark. Higher risk models

come with different action items and may force the ACOs to change the way they perform their

operations. Two-sided risk contracts result in more shared savings but require ACOs to share the

losses. Thus, the ACO members also need to be familiar with the new practices and act on them

for better performance.

ACOs facilitate communication among their members. Since PCPs are the primary provider of

primary care services and accountable for their patients’ care episodes, the ACO model may get the

most out of utilizing more PCPs as the gatekeepers. Due to the shortage of PCPs or unavailability

at locations, ACOs utilize specialists to provide primary care. Yet, the relationship between the

service delivery through specialists and performance may vary across experience and risk models.

Specialists, while adhering to ACO policies and routines, may not be efficient in terms of both

financial and quality performance in the long run. While access to care through specialists gives

ACOs the benefit of preventing expensive treatments, such benefits may not outweigh the cost

in the long run. Most specialists are still hired on fee-for-service contracts, and thereby, shared

savings generated by the ACO may be offset by a loss of FFS revenue (Barnett and McWilliams

2018). Financial incentives to specialists is also an ineffective lever for cost reduction and quaity

improvement measures in the long-term (Khullar et al. 2018). Also, while primary care is mostly

viewed as an “approach to providing healthcare,” specialists are usually trained in sets of specific

services. Thus, as an ACO grows over time, both in years and risk contracts, having a high propor-

tion of primary care through specialists may not be efficient both in terms of financial and quality

performance.

Hypothesis 5A: Experience negatively moderates the relationship between primary care ser-

vices by specialists and ACO savings rate.

Hypothesis 5B: Experience negatively moderates the relationship between primary care ser-
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vices by specialists and ACO quality score.

Hypothesis 5C: Risk model negatively moderates the relationship between primary care ser-

vices by specialists and ACO savings rate.

Hypothesis 5D: Risk model negatively moderates the relationship between primary care ser-

vices by specialists and ACO quality score.

NPs, on the other hand, work mostly with PCPs, are well-trained in primary care services, have

a holistic patient care approach, and are likely to be more flexible with organizational changes.

ACOs can change their provider composition from year to year and shift how they deliver care.

Between 2013 and 2018, NPs, on average, grew from 17.6 percent to 25 percent as a proportion

of total caregivers, while the proportion of PCPs declined from 60 percent to 42 percent during the

same period (Nyweide et al. 2020). While NPs work more with physicians, Horrocks et al. (2002)

and Stanik-Hutt et al. (2013) find that their care quality is as good as that of PCPs and billing rates

are lower. Medicare patients receive more annual check-ups and chronic care management visits

in which NPs can play a better role (Ganguli et al. 2017). Thus, as ACOs switch to a higher-risk

model, utilizing NPs can become more cost-effective, as highlighted in the literature (Salsberg

2015). Yet, a higher risk model may not necessarily see a better quality of score of an ACO

utilizing more NPs.

Aledade, one of the most successful ACOs in the MSSP program, remarks that “Primary care

physicians are ideally positioned to be leaders in this (downside risk) process. Many PCPs have

deep roots in their communities and are already familiar with their colleagues’ strengths, weak-

nesses, and opinions on quality improvement initiatives (Aledade 2020).” Thus, as other ACOs

also note, PCPs develop strong networks over time across other physicians and patients. Addi-

tionally, care delivery needs to be centered around a value-based system rather than a single PCP

(Nyweide et al. 2020). This becomes even more challenging because of the limit to NPs due to

state and federal health policies. This may hurt the ACOs in a higher risk model in improving ac-

cess to care and quality of care when diffusing more responsibilities to NPs from physicians turns

difficult. Therefore, we post the following hypotheses.

78



Hypothesis 6A: Experience positively moderates the relationship between primary care ser-

vices by NPs and ACO savings rate.

Hypothesis 6B: Experience positively moderates the relationship between primary care ser-

vices by NPs and ACO quality score.

Hypothesis 6C: Risk model positively moderates the relationship between primary care ser-

vices by NPs and ACO savings rate.

Hypothesis 6D: Risk model negatively moderates the relationship between primary care ser-

vices by NPs and ACO quality score.

3.3 Data, Variables, and Methodology

This section describes our data collection process, variables, and the econometric model to test

our hypotheses developed in the previous section.

3.3.1 Data

Our unit of analysis is the ACO. We analyze our research questions on a panel dataset of

Medicare ACOs primarily for two reasons: (i) Medicare is still the largest single payer of ACO

contracts and (ii) data availability. CMS records multiple quality measures under four broad cate-

gories - patient/caregiver experience, care coordination/patient safety, preventive health, and at-risk

population. The last broad measure includes diabetes, hypertension, vascular disease, heart failure,

and artery disease. In addition to these measures, our data also include the performance against

benchmark and improvement to the quality score variable. We investigate our hypotheses using the

dataset on ACOs between 2016 and 2019. From July 2019, CMS introduced the new “pathways

to success” program that introduced substantial changes to the ACO program. Thus, the 2019 data

include the data for the first six months in 2019 standardized by the CMS. Every year, several new

ACOs engage with CMS with Medicare ACO contracts while some ACOs drop out of the pro-

gram. Therefore, it is difficult to obtain a consistent and identical set of ACOs across years. Our

cleaned-up sample consists of 675 ACOs in an unabalanced panel, comprising 1908 observations

across 4 years. We use STATA 14 to perform our statistical analysis.
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Although data for ACOs were available from 2013, we decided to use the 2016-2019 time

period due to the following reasons. First, a period starting from 2016 provides a good window

to capture the ACO operations mostly for two reasons. First, 2016 was the first year in which

the early ACOs, who joined in 2012 or 2013, had their benchmarks reset. Second, CMS also

started comparing ACO location to the estimate ACO efficiency1. Additionally, our data include

both experienced and new experienced ACOs since the early ACOs in the program complete 3

years by 2016. Quality measures changed from 2016, thus the comparison of quality scores is

difficult (Saunders et al. 2017). Additionally, starting 2016, CMS started a new initiative called

Meaningful Measures for further refinement of performance metrics, consistent with the ACO

model objectives. Finally, the number of ACOs have significantly increased over time. Of the

103 MSSP ACOs that started in 2013, 74 ACOs remained in 2016, which is a reasonable number

according to the experts (Broome 2017). Therefore, we do not lose much information by excluding

the first 3-year ACOs and focusing on the newer performance data.

3.3.2 Variables

We measure the performance of ACOs using savings rate and quality score for each ACO i

ACO in year t. Below, we describe variables along with the independent variables and additional

controls. We provide the descriptive statistics and correlation analysis of the variables in Tables

A1 and A2 in Online Appendix.

3.3.2.1 Dependent Variables

ACOs receive shared savings if they do not exceed their benchmark spendings while main-

taining quality of care. This motivates us to include savings rate and quality as the dependent

variables2.

Savings rate (savit) - It captures the savings rate for an ACO i in year t and is estimated by

CMS by subtracting the assigned beneficiary expenditures from the total benchmark expenditures

1https://www.healthindustrywashingtonwatch.com/2016/06/articles/regulatory-developments/medicare-medicaid-
services-regulations/cms-finalizes-changes-to-medicare-shared-savings-programaco-benchmark-rebasing-rules/

2https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SSPACO
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as a percent of total benchmark expenditures. A positive number represents a positive savings rate

and a negative number denotes a negative savings or loss. The benchmark expenditures are decided

by the CMS earlier, which are standardized based on the size and type of ACOs along with several

other factors. There are 680 total observations with a negative savings rate, almost 36% of total

observations.

Quality is a multi-dimensional construct and, therefore, is difficult to measure and test. Studies

in OM measure quality at the product or the organizational level. In this chapter, we examine the

effects of our variables of interest on quality; this measure of quality is at the ACO or the firm-

level. Firm-level quality measure has been used across industries such as airlines, food and drug

industries, dairy and meat industries, and hospitals (Theokary and Justin Ren 2011).

Quality score (qualit) - CMS assigns a quality of score of 1 (or 100%) in the first performance

year of ACO if all measures were completely reported; otherwise, it assigns a score of less than 1 if

one or more measures were not completely reported. From the second performance year onwards,

CMS considers both the reporting of all measures and the ACO’s performance against established

benchmarks to calculate the quality score. The choice of a uni-dimensional quality variable such

as the quality score not only captures a wide variety of quality scores but also significantly reduces

the complexity of variable selection. For the quality score analysis, we drop the first year ACOs

since they all received a quality score of 1.

3.3.2.2 Independent Variables

Our primary variables of interest are:

PC by specialists (pcspit) - Since our focus on healthcare service delivery through non PCPs is

a comparable measure, we measure PC by specialists by dividing the total primary care services

provided by specialists to primary care services provided by PCPs. This operation allows us to

measure the proportion of primary care services offered by non PCPs and provides a better stand-

point to analyze the service delivery. Thus, we do not focus on the number of physicians but the

number of primary care services in all cases.

PC by NPs (pcnpit) - Similar to the PC by specialists, we operationalize PC by NPs by dividing
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the total primary care services provided by NPs to primary care services provided by PCPs.

Experience (expit) - This variable denotes the number of years an ACO is associated with a

payment contract with Medicare under a particular risk model.

Risk model (riskit) - We assign a Risk model score of 0 to ACOs under one-sided or upside

risk only contract. Since a majority of ACOs are in one-sided contract, we combined Tracks 2, 3,

and 1+ and assign the Risk model score 1 to those ACOs.

3.3.2.3 Control Variables

We describe a list of control variables relevant to this work, which are represented as a vector

X in our regression equation.

Beneficiaries (benit) - This variable controls for ACO size. Note that an ACO must have a

minimum 5,000 attributed patients or beneficiaries. However, CMS calculates the attributed pa-

tients based on the full 12 months eligibility. This variable is adjusted downwards and may show

a few ACOs with less than 5,000 attributed patients in the data summary3. We perform a log-

transformation on this variable to ensure normality assumptions are maintained.

States (statesit) - This variable denotes the number of states an ACO operates.

PCPs (pcpit) - We control the effect of the number of PCPs. Following Shortell et al. (2015),

who use the percentage of primary care providers in their cluster analysis, we use the total num-

ber of primary care physicians in our analysis. This variable denotes the total number of PCPs

associated with ACO i in year t.

Specialists (spit) - It refers to the number of specialists associated with ACO i in year t. Spe-

cialists have an essential role in the ACO framework.

NPs (npit) - It denotes the number of NPs associated with an ACO.

Female (femit) - It controls the number of female beneficiaries.

Inpatient expenditures (inpit) and Outpatient expenditures (outit)- control for the outpatient

and inpatient processes, by using the weighted expenditures.

3The reader may refer to https://www.naacos.com/assets/docs/pdf/2019/Final-NAACOS-AsTreatedDID-
SavingsEstimateReport2017.pdf for the attribution method used by the CMS.
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CMS estimate the output variables by already accounting for the population risk and therefore,

we do not include the combined measure of four risk categories - average ESRD (End Stage Renal

Disease) HCC risk score, average Disabled HCC risk score, average Aged/Dual HCC risk score,

and average Aged/Non-Dual HCC risk score. These combined measures are highly correlated with

the number of beneficiaries. All the Tables in Appendix B. In Table B.1, we see that ACOs have

more specialists than PCPs and NPs, on average. This suggests the ongoing shortage of PCPs in

the healthcare market and more focus on specialty providers.

3.3.3 Econometric Model

We examine how service delivery through primary care services through specialists and NPs

and experience in terms of number of years and risk model affect ACO savings rate and quality

score. We thus formally present our main effects models as follows

savit = β1pcspit + β2pcnpit + β3expit + β4riskit + γX + ε1it (3.1)

qualit = β5pcspit + β6pcnpit + β7expit + β8riskit + ηX + ε2it (3.2)

where β1 and β1 denote the effect of PC by specialists and PC by NPs on savings rate. If

they are both positive, then we can infer that both contribute to positive savings rate. On the other

hand, β5 being negative and β6 being positive indicate that PC by specialists have negative impact

on quality and PC by NPs have positive impact on quality. The coefficients for expit and riskit

have opposite effects on both savings rate and quality score. For example, a positive β3 and a

negative β7 support that expit positively affects savings rate and negatively affects quality score.

In contrast, a negative β4 and a positive β8 support that riskit negatively affects savings rate and

positively affects quality score. These results are shown in Models 2 and 5 in Appendices A4 and

A5, respectively.

To observe how each expit and riskit moderates the relationship between service delivery and

ACO performance, we observe the interactions in Equations 3.1 and 3.2. For each model, we add

the interaction terms one at a time. First, we observe how the two experience variables influence
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the relationship between pc by specialists and ACO performance, following our hypotheses that

β13, β15, β21, and β23 are all negative. On the other hand, the moderating effects of experience

variables on the relationship between pc by NPs and ACO performance are mixed. While we

expect β14, β16, and β22 to be positive, β24 negatively moderates the relationship between quality

score and PC by NPs. These results are displayed in Models 3 and 6 in Tables B.3 and B.4 in

Appendix B.

savit = β9pcspit + β10pcnpit + β11expit + β12riskit + β13expitXpcspit + β14expitXpcnpit

+β15riskitXpcspit + β16riskitXpcnpit + ζX + ε3it
(3.3)

qualit = β17pcspit + β18pcnpit + β19expit + β20riskit + β21expitXpcspit + β22expitXpcnpit

+β23riskitXpcspit + β24riskitXpcnpit + λX + ε4it
(3.4)

Our data include multiple ACOs over a period of four time periods. With panel data, we

can estimate the effects of our independent variables on outcome variables over time. Panel data

helps us with time-invariant omitted variables. The assumption of the random effects model is

that the unobserved effect between panels is uncorrelated with the explanatory variables. In a

broader sense, in a random effects specification, ACO effects are characterized by a time-invariant

component, τi. The component τi is the random disturbance characterizing ACO i and it is constant

through time. From a practical point of view, random effects model is more appealing since ACOs

are mostly operated according to the CMS guidelines. However, there may exist unobserved effects

between panels. For this, we perform Hausman specification test, which rules out the random

effects model (χ̃2 = 88.37, df=12) and we choose to proceed with the fixed effects assumption. For

the quality score analysis, we use Tobit regression.

3.3.3.1 Accounting for Possible Sources of Bias

In our data, there may remain potential biases associated with endogeneity and causality that

require a brief discussion. The nature of our dataset alleviates many concerns about the possible
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biases. The performance variables, savings rate and quality score are reported by CMS at the end

of each performance year. The independent variables that we use in our analysis are reported by

the ACOs before the dependent variables are measured by the CMS. Additionally, the dependent

variables are generated by the CMS and the independent variables are reported by each ACO. The

time-lag between our dependent and independent variables help remove the concerns related to

reverse causality.

Our dependent variables are not direct measures and are used in terms of savings and quality

ratings. Senot (2019) remarks that savings and improvement in quality may come from both posi-

tive (effective care) and negative factors (low-quality care). Since our focus is on service delivery

through provider composition and ACO experience and their impact on ACO performance, we

control for the standardized outpatient and inpatient expenditures to understand how they affect

savings rate and quality score. This can be attributed to the ACO operations; ACOs attempt to

lower expensive inpatient admissions and keep outpatient admissions for the needed patients so

that they can reduce cost and increase quality.

3.4 Results

We present our results and discuss the robustness tests we did to validate our findings. The es-

timation results for savings rate and quality score are presented in Tables B.3 and B.4, respectively.

3.4.1 Impact of Service Delivery through Provider Composition

H1A and H1B posit that ACOs providing more primary care services through specialists are

likely to be associated with higher savings and lower quality scores. Model 2 in Table B.3 and

Model 5 in Table B.4 test these two hypotheses and show that the PC by specialists coefficient is

positive and significant for savings rate (0.0089, p < 0.1) and negative and significant for quality

score (-0.0044, p < 0.05). Thus, ACOs having more specialists offering primary care services as

a percentage of primary care services provided by PCPs are associated with higher savings and

lower quality, supporting both H1A and H1B. On the other hand, H2A and H2B argue that ACOs

providing more primary care services through NPs are likely to be associated with higher savings
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and higher quality scores. The coefficient for PC by NPs in Model 2 in Table B.3 and Model

5 in Table B.4 is positive and significant for savings rate (0.0132, p < 0.05) and negative and

insignificant for quality score (-0.004, p > 0.1). The results highlight that primary care by more

NPs is associated with higher savings for an ACO. Thus, we find support for H2A. On the other

hand, H2B is not supported.

3.4.2 Impact of Experience

We further examine the two experience related variables - experience (years) and risk model.

Savings rate is positively associated with experience (0.0122, p < 0.01) in Table B.3. This indi-

cates that one additional year in ACO operations is associated with 0.0122 higher savings rate, on

average, supporting Hypothesis 3A. On the other hand, risk model is negatively associated with

savings rate (-0.00974, p < 0.1) in Table B.3. This result suggests that ACOs in a two-sided risk

contract generate 0.00974 lower savings rate than ACOs in a one-side contract, on average, show-

ing support for Hypothesis 4A. As hypothesized, experience (years) and risk model are negatively

and positively associated with quality score, respectively supporting Hypotheses 3B and 4B (Ta-

ble B.4. The coefficient of experience is -0.0017 (p < 0.1), suggesting that an additional year in

experience is associated with a decrease of 0.0017 unit in quality score. The coefficient for the risk

model variable (0.013, p < 0.01) suggests that an ACO in a two-sided contract is associated with

0.013 higher quality score than an ACO in a one-sided contract, on average.

3.4.3 Interactions

To better understand the interaction effects, we created the margin plots for the statistically

significant coefficients in Figures 3.2 and 3.3. H5A - H5D hypothesize the interactions between

PC by specialists and experience and risk model on both savings rate and quality score. Column 3

of Table B.3 shows that the interactions between PC by specialists and risk model on quality score

(-0.0230, p < 0.05) is negative and significant. Thus, ACOs in a higher risk model having more

primary care services through specialists are associated with lower quality score, on average. This

supports H5D. We visually describe the interaction in Figure 3.2 and it shows reduction in quality
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score as PC by specialists increases.
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Figure 3.2: Interactions between PC by NPs and risk model and PC by specialists and risk model
on quality score

Columns 3 and 6 from Tables B.3 and B.4 show no support form Hypotheses 5A, 5B, and 5C.

We hypothesize the interactions between PC by NPs and experience and risk in H6A - H6D. For

savings rate, the interaction coefficients between PC by NPs and experience (0.0063, p < 0.05)

and PC by NPs and risk model (0.05368, p < 0.05) are both statistically significant, supporting

Hypotheses 6A and 6C (Figure 3.3). More experienced ACOs with higher primary care services

by NPs always generate higher savings. Also, NPs are effective in delivering in primary care

services when ACOs are in the higher risk model. PC by NPs and risk model (-0.047, p < 0.01) on

quality score from Model 6 in Table B.4 is negative and significant, supporting H6D. The findings

suggest that more primary care services through other physicians and NPs do not help in getting

better quality scores to ACOs. H6B is not supported.

3.4.4 Robustness Checks

We perform additional analysis to test the robustness of our findings. The results are available in

Tables B.5 and B.6. First, as a validation of the main effects of our regression model of savings rate,

we perform quantile regression at 5, 101 25, 50, 75, and 90th percentiles and display the results
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Figure 3.3: Interactions between PC by NPs and experience (years) and risk model on savings rate

in Table B.5. The impact of PC by specialists is consistent across all the percentiles. Experience

has a slightly negative impact on savings rate at 5th percentile and risk model has positive effect

below 50th percentiles. These findings are not surprising since these ACOs are at lower quantiles.

We expect the risk model to be effective at a higher quantile since only 12.68% ACOs in our

sample are in two-sided risk models. We observe a similar pattern for the primary care by NPs at

lower quantiles. Thus, these effects are mostly driven by ACOs with a higher number of primary

care services by NPs. This finding is also reasonable given the construction of these variables

and the sample characteristics. Most ACOs usually have a lower number of this and therefore,

at lower fractiles, the estimation becomes challenging. Thus, these results need to be considered

carefully; bigger ACOs are better in utilizing NPs and FQHCs. Our interaction plots also suggest

how NP primary care services varies across experience and risk model. Altogether, this suggests

that smaller ACOs need to look at utilizing NPs more efficiently.

Next, we utilize a bootstrapped tobit regression to check the robustness of our main effects

on quality score. The results are presented in Table B.6. Since most ACOs have a higher quality

score, the bootstrapping may help finesse our results. We find that the the regression results do

88



not differ from our main results, thereby supporting the robustness of our main effects model for

quality score.

3.4.5 Post-Hoc Analysis

In this subsection, we present two additional analyses related to the use of FQHCs to provide

primary care services and the impact of socio-demographic factors on ACO outcomes. Addition-

ally, we also present our findings from our main results.

3.4.5.1 The Mechanism of Federally Qualified Health Centers

A specific feature of ACO service delivery that is worth examining involves care coordination

with multiple providers, especially outside urban areas where access to care is limited. In such

areas, care is provided through local centers such as federally qualified health centers (FQHC),

community health centers (CHC), and rural health centers (RHC), which Sandberg et al. (2014)

refer to as safety-nets. Across the country, approximately 22 million Americans are served by over

1100 CHCs and these health centers provide services to people below the poverty line as well as

racial and ethnic minorities (Shin et al. 2013). Takach and Buxbaum (2013), in their study of these

centers across eight states for Medicaid beneficiaries, find evidence that local community health

teams reduce high-cost utilization and improve the quality of care. Socioeconomic factors play a

crucial role in the lack of access to primary, causing higher rates of hospitalizations that can be pre-

vented (e.g. Hansell 1991, Stevens 2002). Parchman and Culler (1999) observe that primary care

shortage areas have more preventable hospitalizations. On the other hand, some studies indicate

that more primary care physicians do not necessarily lead to better access (Schreiber and Zielinski

1997). Hence, we perform an analysis to relate to the set of variables associated with safety-net to

ACO performance and conjecture safety-net has a positive association with both savings rate and

quality score.

We operationalize safety-net using three variables: (i) primary care services through FQHCs

(PC at FQHCs), (ii) association with CHC (Assoc CHC), and (iii) association with RHCs (Assoc

RHC), where (ii) and (iii) are binary variables indicating whether an ACO is associated with CHCs
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or RHCs or not. We create the PC at FQHCs variable by dividing the number of primary care

services at FQHCs by the total primary care services. We expect better access to primary care

through these centers, possibly reducing preventable hospitalizations and other serious outcomes.

This may lead to less spending for the ACOs and better quality of care to the patients. Primary care

services have been consistently associated with fewer specialists and emergency rooms (Martin

et al. 1989), not abundant in these remote areas. Thus, we expect these variables are positively

associated both with savings rate and quality score. We present our results in Table B.7.

ACOs offering more primary care services at FQHCs as a percentage of total primary care ser-

vices are also associated with a positive savings rate (0.0021, p < 0.01). In other words, between

two ACOs with a difference of one unit in PC at FQHCs, the ACO with the higher PC at FQHC

is associated with 0.0021 percent more savings. The intuition is that more primary care services

at FQHCs result in higher access to care in areas that are often underserved and observe a lack of

physicians. While research indicates that FQHCs are associated with lower spending compared to

traditional primary care settings (Sokol 2020), our result suggests that ACOs can take the finan-

cial risk in providing care to patients at FQHCs to lower healthcare spending. Indeed, a positive

association between savings rate and higher primary care services at FQHCs indicates that ACOs

should increase their access beyond urban areas. PC at FQHC does not have a statistically signifi-

cant impact on quality score. On the other hand, the two binary variables, Assoc CHC and Assoc

RHC, do not exhibit any significant relationship with savings rate or quality score. This result can

happen for several reasons, the sample being the primary one. Among 1908 observations, only

526 ACOs are associated with RHCs, while 402 are associated with CHCs. On the other hand,

this result indicates that association with these clinics may not necessarily increase cost and reduce

care quality.

3.4.5.2 Socio-demographic Factors on ACO performance

ACO model was implemented to increase access to care. Urban areas, in general, have more

providers, and therefore, the competition for patients may motivate them to form ACOs (Lewis

et al. 2013). However, their performance may also depend on several socio-demographic factors

90



related to access to care and how patients interact in the system. With the increase in healthcare

costs, families also face increased cost-sharing in their health plans (Claxton et al. 2009). Our

discussions with the ACO in Texas reveal that they engage more patients in their system through

continuous follow-ups and routine checks to prevent delays in care. However, infrequent check-

ups may hurt the ACO performance. We operationalize the socio-demographic construct using two

state-level variables from the CDC data - Medcost and Checkup. The former indicates infrequent

visits to providers due to cost, and the latter refers to the length of time during two routine check-

ups. We control for the population using two additional variables from the CDC dataset - general

health (Genhealth) and income level (Income). Note that CDC constructs these variables using

aggregated surveys at the state level.

We report the results in Table B.8. Medcost and Checkup have no significant impact on savings

rate. On the other hand, they are both negative and significant on quality score. The coefficients

of Medcost and Checkup are -0.3912 (p < 0.01) and -0.0809 (p < 0.01). Thus, ACOs quality

performance may hurt in states where people do not visit their healthcare providers for higher

cost and duration between routine visits are longer. These observations, though at aggregate level,

necessitates some policy interventions that may bolster the ACO model in the future.

3.4.5.3 Other Results

We discuss the hypothesized main and interaction effects, which are insignificant, followed

by some interesting results from our analysis. Note that the insignificant outcomes may arise due

to (i) insufficient data or (ii) other phenomenon or a combination of both. On average, primary

care services through NPs do not show any significant impact on quality score. Physicians enjoy

full authority to diagnose and treat all conditions in every state. In contrast, NPs in some states

practice independently from physicians (full authority), while in some other states operate under

the supervision of physicians (partial authority) (Cassidy 2012). This may explain that a higher

number of NPs not fully utilized in providing primary care services that are being reflected in the

insignificant impact on quality score. However, Model 5 in Table B.4 suggests that more primary

care through NPs is associated with higher quality scores, on average, hinting that NPs may have
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direct and indirect effects on quality performance, which can be an exciting future research avenue.

Column 3 of Table A3 suggests that the interaction terms associated with PC by specialists

on savings rate are not significant. Additional research questions may arise from this: What type

of specialists are being engaged in delivering primary care services? There are various types of

specialists, ranging from working in specific fields to being closer to primary care practices. There-

fore, as ACOs become more experienced and move to higher-risk contracts, they may judiciously

use specialists. Similar reasoning may follow for the insignificant relationships for the interaction

terms involving experience and specialists on quality score.

3.5 Discussions and Implications

This chapter makes several contributions to the HOM literature by analyzing the antecedents

of ACO performance and their implications. To the best of our knowledge, this work is the first

to focus on the understudied relationship between ACO service delivery and experience on ACO

performance and how ACO experience moderates the relationship between service delivery and

performance. We operationalize ACO service delivery via provider composition, which consists of

the primary care services provided through specialists and NPs. This operationalization of service

delivery focuses on how ACOs utilize their non-PCP workforce to deliver care and maintain access

to care for their patients. We focus on these two characteristics in their short-term and long-term

implications. While the data used in this chapter predate the new “Pathways to Success” program

launched by the CMS on July 2019, the implications are still applicable. This new program still

maintains the core of the ACO model. However, it requires ACOs to take up more resposibility

(or downside risk contract) sooner than before. Our questions are pertinent in the general ACO

network model and the findings can help in the “Pathways to Success” program.

3.5.1 ACO Service Delivery

Our results suggest that having primary care services by specialists and NPs may contribute

to more savings, on average. Service delivery is an important aspect of the ACO model since

most cost reduction of ACOs comes from reducing expensive hospitalizations and treatment delays
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through better access to care. ACOs differ by their size in terms of physicians, patient population,

and geographical presence, among others. We find that the smallest ACO in our sample has 2

PCPs, and the largest one consists of 5697 PCPs. Similarly, the ACO with the smallest patient

size has 152 beneficiaries, while the largest one has more than 200,000 patients. Such diversity

requires the efficient composition of providers to deliver better care at a lower cost. In spite of

being a PCP-centered model, ACOs, on average, have a higher number of specialists and provide

more primary care services than PCPs. This suggests that ACOs often utilize other providers to

offer primary care services. However, in the long term, under a higher risk model, using specialists

for primary care services may not be beneficial for ACOs.

On the other hand, NPs provide both short-term and long-term gains in terms of higher savings.

Yet, ACOs need to take proactive actions to utilize more NPs to offer primary care under higher

risk models to avoid a reduction in quality of care. Existing research suggests that NPs may not

always enjoy full autonomy during their work, which may affect patient care. Existing research

reveals that nurse satisfaction and working conditions can improve patient care quality (Poghosyan

et al. 2010), which, in turn, may affect the ACO quality. The assignment or attribution of a patient

to an ACO requires that the patient receives at least one primary care service provided by a PCP

each year; this may hurt NPs’ autonomy and satisfaction in general. ACOs may consider these

findings and may take necessary under the directives of the respective healthcare guidelines across

the states they operate.

Our post-hoc analysis reveals that ACOs with higher primary care services through FQHCs

generate more shared savings, on average. This finding should encourage ACOs to extend their

operations beyond urban areas and collaborate more with FQHCs to provide healthcare for vul-

nerable populations. This chapter suggests ACOS, especially Medicare ACOs, should not exclude

the patients in those areas or the patients who do not have proper access to quality healthcare.

Contrary to popular beliefs, this chapter shows that FQHCs do not necessarily increase operations

cost, showing higher savings without reduced quality scores for the ACOs. This indicates that ba-

sic primary care services alone may improve the healthcare landscape in underserved areas, which
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may motivate ACOs to operate across urban and distant areas. CMS should encourage ACOs to

reach out to FQHCs and also RHCs, especially in areas where access to quality healthcare is poor.

The goal is to increase access to care. Finally, ACOs can also do more in having more PCPs en-

gaged in their organizations. While there are multiple reports on the shortage of PCPs, ACOs still

should expand their network by reaching out to more PCPs. In their new plan, CMS introduced

telemedicine services to risk-taking ACOs that may reduce the workload of PCPs in the future,

which, in turn, may allow more PCP hours to the patients. Furthermore, CMS can use these tools

to better access the population for regular check-ups at a lower cost.

3.5.2 ACO Experience

We find that experience is positively associated with savings rate and negatively associated

with quality score. In contrast, the risk model has a negative impact on savings and a positive

impact on quality. Organizational learning theory guides us to analyze ACOs learning over time

and how that experience directly affects performance and also indirectly influence the relationship

between service delivery and performance. In the beginning, ACOs are more focused on sustain-

ability and continue to learn by doing or utilizing exploitation. Under a higher risk model, they

invest more in quality improvement initiatives, and therefore, try to trade-off exploration with ex-

ploitation. Our findings suggest that ACOs under downside contracts may generate low savings

but display higher quality scores than ACOs under upside-only contracts, on average. The result is

not surprising. ACOs often refrain from taking downside risk contracts or drop out of the program

due to fear of losses. Several studies show that the number of ACOs willing to take the down-

side risk is small. This chapter also show the same concern; on average, ACOs generate lower

savings under downside risk. On the other hand, the new “Pathways to Success” program pushes

ACOs to take downside risk as soon as possible. However, CMS, along with other payers, needs to

consider the burden on the ACOs and they must come up with innovative solutions, which should

not be one-size-fits-all. Some policymakers also suggested that CMS change the risk adjustment

methodologies to allow risk scores to increase over time, giving ACOs more time to adjust.

To thrive in an extremely competitive healthcare environment with increasing population and
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health expenditure, ACOs must position themselves to enjoy financial sustainability as well as

expanded coverage of the patient population, where experience may play a key role. Our findings

indicate how ACOs usually learn. Under any risk model, ACOs focus more on learning through

policy adherence and organizational routines and focus more on cost reduction to generate more

savings. As they move to a higher-risk model, ACOs need to change their strategies to prepare for

the shared loss policy, thereby forcing them to implement innovative processes to increase quality.

Two-sided risk contracts ensure that ACOs share the losses with CMS while enjoying a higher

shared savings percentage than that in a one-sided contract.

3.6 Conclusion

Rising health expenditure is one of the major concerns for policymakers in the US. The health-

care system suffers from a fragmented nature of care under fee-for-service agreements, which

results in excessive waste and duplicate tests due to the low level of coordination among the health

providers. Under the ACA 2010, ACOs were created to tackle the issue of increasing health-

care costs while providing a high quality of care through a coordinated system across healthcare

providers. The ACO model has been widely implemented across the country during the past decade

with participation from both public and private payers. Over time, the ACOs have brought more

patients under their umbrella, and since 2017, the net savings have increased. However, health-

care spending, specifically Medicare spending, which accounts for the health expenditure of older

people and young people with long-term disabilities, is likely to increase over time due to sev-

eral factors, including population aging. Additionally, there are significant performance variations

across the ACOs since the program’s implementation. With these concerns and CMS’ ambitious

plan of saving approximately $2.9 billion over ten years, ACOs need to provide high quality care

while being financially sustainable. From both the healthcare and OM perspectives, it is impera-

tive to examine the ACOs through these two critical elements - savings and quality. Using data on

ACO characteristics and performance between 2016 and June 2019, we analyze the performance

implications of ACOs and suggest best practices.

PCPs are the gatekeepers in healthcare delivery and ACOs are modeled as a PCP-centered
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healthcare unit forming a network of specialists, hospitals, and nursing facilities. However, there

is an acute shortage of PCPs. In the words of Dr. Adrian Billings, chief medical officer for

Preventative Care Health Services, Texas - “That means sicker patients, that means more costly

or care. That means less productivity. That means more death.” In this work, we focus on how

ACOs can utilize non-PCP workforce and the implications on performance. While specialists are

not inexperienced in primary care services, they may not offer services similar to an expert PCP.

This dissimilarity may reflect on financial and quality performance as ACOs gain more experience

as well as move to a higher level of risk sharing. Our results confirm that delivering primary

care through specialists is financially unsustainable and does not result in better quality. In the

short-term, ACOs can utilize them to deliver primary care services to extend their care to more

people and prevent costlier healthcare services. On the other hand, NPs can become beneficial in

achieving long-term and short-term ACO objectives.

We also analyze on how experience plays a role in ACO performance. Our data and analysis

reveal that ACOs may focus more on savings in the initial phases under a risk model and gradually

consider improving quality as they gain more experience. The results suggest that ACO perfor-

mance varies across different stages. Additionally, the relationship between ACO service delivery

through specialists and NPs and performance may vary with ACO experience. Overall, these find-

ings provide valuable insights for managing the ACO model better, both by ACOs themselves and

payers such as Medicare.

There are some limitations associated with the work in this chapter. We observe ACO char-

acteristics and performance using aggregate panel data, and a large number of ACOs are not in

a risk-sharing model. Our sample is also limited to Medicare ACOs as they form the largest of

the existing payer contracts. The inclusion of Medicaid and private contracts may provide better

estimates. Our discussions with ACOs reveal that all contracts are nearly the same, and we expect

similar findings with ACOs associated with private payers. Finally, a lot of ACOs use isolated,

decentralized health IT systems. An examination of the health IT implementation and financial

performance can provide an interesting research avenue.
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4. Know Your Users Before You Spend: A Data-Driven Optimization to Enhance User

Engagement using Visual Analytics

4.1 Introduction

Social media platforms are attractive channels for firms since they can reach out to a large audi-

ence ubiquitously to promote their products. A recent report shows that approximately 4.14 billion

people across the planet used social media in October 2020, which is around half of the global pop-

ulation (DataReportal 2020). Furthermore, most of these users spend a substantial amount of time

online. In the US, users spend approximately 2 hours every day on social media sites (Henderson

2020). Given that social media platforms offer substantial flexibility and benefits to firms in addi-

tion to the high user activities, it is not surprising that social media advertising is expected to grow

at 10.93% annually between 2021 and 2025 (Statista 2021). Firms are expected to spend almost

$225 billion on social media advertising in 2024, surpassing paid search and television advertising

(IndiaPartner 2021).

As a result of increasing social media advertising and an increase in the number of users,

firms produce and deliver a massive number of attractive posts every day for the users in the

social media. Consequently, it is an uphill task for a firm to get its content noticed by the users.1

Thus, producing a post for social media platforms imposes many challenges since firms compete

for users’ attention, and only a fraction of users may like and engage with a post (Gitlin 2021).

Content development for posts has implications for firms’ objectives; a recent industry report (Gary

2021) finds that posts failing to attract the users attention have negative implications on a brand’s

reputation. Consequently, content development requires special attention, which in turn needs an

understanding of features in a post that are attractive to the users. Social media analytics plays a

key role in getting insights on user preferences, and its cost is expected to reach $9.3 billion in

2026, consistent with the increasing number of social media users and firms’ focus on obtaining

market intelligence (ResearchAndMarket 2021).

1We interchangeably use post and content
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Given the increase in social media marketing, clearly, it is an important problem from an in-

dustry perspective on how to develop relevant posts with images. Businesses rely on social media

platforms to market their products while consumers want to learn about the products for purchasing

decisions (Forbes 2021). However, in spite of the importance of jointly analyzing user preferences

via analytics and content development activities, there is little work reported in the literature in this

regards. To bridge the gap in the literature, we propose a data-driven optimization framework for

deploying social media posts across multiple platforms by efficiently utilizing social media analyt-

ics to understand users’ preferences and develop content for posts accordingly during a planning

horizon under a firm’s limited budget. We also present valuable insights to managerially relevant

questions.

4.1.1 Motivation

Social media analytics provides important input in creating better content that is more attrac-

tive and engaging to an audience (Marta 2021). The deluge of enormous social media information,

including unstructured textual data and visual data such as images, has opened up new opportuni-

ties for firms to understand users’ choices and content attributes that engage them. In this regard,

measuring user engagement or the value of social media benefits has become crucial (Hallock et al.

2019). Users show their engagement via various actions, such as liking a post or commenting on

it. With the growing prevalence of social media analytics tools, firms can rapidly collect, com-

bine, and analyze data to gather information on users’ preferences for features included in posts.

The interactive nature of social media platforms allows firms to engage their audience with firm-

generated content (FGC) and helps them analyze the effectiveness of their content quantitatively.

In such light, we seek to establish a connection between image features of social media posts and

user engagement.2

Social media posts with images are a vital element of a firm’s advertising effort; a study by

MDG (2018) reveals that online posts with an image received 94% more engagement on average

than posts without images. Images in posts are information artifacts that can influence users’ deci-

2Image features or features represent the features of image.
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sions to engage with them on online platforms. We focus on understanding features of the images

that affect user attention. Setting in the narrative framing concept by Baumgartner (2002), we argue

that users go through a sense-making process as they observe images having many features. These

features are associated with user engagement (Zhao et al. 2019, Zhang et al. 2021). As can be seen

from empirical analysis performed later in the chapter, the features in this chapter primarily refer

to the objects used in the post. We operationalize two types of features - focal features that display

the product or group of products advertised and additional features that help create a dynamic en-

vironment and instill a sense-making process, stimulating user engagement and increasing brand

popularity (Wulf et al. 2019).

We operationalize these two types of features following the findings of two deep learning al-

gorithms - the simpler Single Shot Detector (SSD) and the advanced Faster Region-based Convo-

lutional Neural Network (R-CNN). The Faster R-CNN extracts additional features (or advanced

features) that may help users form a better narrative, albeit at a higher effort cost to the firm. Focal

features are the primary advertising objects and thus can be easily extracted using simpler meth-

ods such as SSD. This process also allows us to quantitatively examine the costs associated with

advanced social media analytics on user engagement.

In essence, users engage with a firm’s post if the firm identifies, creates, and publishes relevant

image features in it that attract users’ attention. In this regard, social media analytics become

an important input to content development for posts. A recent survey of 250 business executives

reveals that 85% of them believe social media data are a primary source of business intelligence,

and 60% of them agree to invest more resources into social media analytics (SproutSocial 2021).

Even if a firm decides to outsource these operations, they need a team in-house to coordinate with

the partners.3 For example, Unmetric, a popular analytics firm, offers services to firms wanting

to use social media insights. Their price for the basic analytic starts from $1000 and can increase

depending on the depth of service.4 Within social media analytics, the extraction and analysis

3https://www.forbes.com/sites/forbescommunicationscouncil/2021/08/17/the-real-cost-of-content-it-could-be-
greater-than-you-think/?sh=3efb66d6169a

4https://demo.unmetric.com/analyze
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of image features on consumer sentiments towards the post is important (Shin et al. 2020). On

the other hand, content development requires planning and investment. According to the numbers

published by the Business Development Bank of Canada, business-to-consumer or B2C companies

should allocate a budget of 5-10% of their total revenue to marketing, out of which social media

budget can be around 24% (BDC 2020).

In spite of their significance for firms, social media content development efforts incorporating

insights form data analytics have not been examined rigorously. Some key issues in this context

include: (i) how does a firm use social media analytics to develop content and determine the

desirable features to be included in posts under limited budget and (ii) how does a firm manage a

portfolio of social media platforms for their content publication. Hence, we focus on the utilizing

the insights obtained via social media analytics on the user preferences in developing the content

of posts to be published across multiple platforms and offer managerially relevant guidelines.

4.1.2 Goals and Contributions

Firms spend significant amount of resources on social media posts for advertising and seek

higher user engagement on their posts (Marta 2021). Consequently, generating more engagement

on their posts is imperative for brand awareness and potential future sales. To increase user en-

gagement on posts under a limited budget, we propose a data-driven optimization framework that

guides a firm’s content development activities and scheduling strategy for posts to be published

across multiple platforms during a planning horizon. The focus of this work is on organic or free

FGC of firms in two social media platforms: Instagram and Facebook.

FGC are more popular over paid advertisements primarily for two reasons. First, paid adver-

tisements (or ads) failed to attract substantial engagement or interaction from users. A recent study

reports that sponsored or paid post on Instagram received less user engagement, on average, than

organic or free content (Fractl 2017). Second, paid or targeted ads are created to reach at least

a specific number of users, introducing bias in the relationship between content and engagement

(Lee et al. 2018).

Several engagement metrics are considered in this chapter. Likes and comments were used
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to measure user engagement for each post on Instagram. For Facebook, we extract the number

of comments and shares. These online engagement metrics are public information, offer timely

information to firms, and act as reliable proxies to measure user engagement and potential future

sales (Jaakonmäki et al. 2017, Ma et al. 2018). Based on the observations in practice and our

empirical analysis of data from Facebook and Instagram, we analyze a problem where a firm wants

to develop their social media posts for single or multiple platforms under a budget constraint. The

main features of our optimization framework are presented below:

• Determining the features for social media posts for maximum user engagement for single or

multiple platforms.

We consider a planning horizon where the firm wants to develop and publish posts on sin-

gle or multiple social media platforms. The firm requires information on users’ preferences

and analyzes their own and competitors’ data to understand relevant image features. Social

media marketing campaigns require firms to operate across multiple platforms, resulting in

more resources and higher costs. However, users across platforms differ in their attributes.

Thus, understanding the relationship between features included in a post and the correspond-

ing user engagement becomes crucial at each platform. We explore this relationship between

engagement and features using empirical analysis and data on social media posts on Face-

book and Instagram and model it in our optimization framework. We combine and run ad-

vanced analytic methods and econometrics method on our dataset to explore the relationship

between features and engagement.

We find a clear difference in user behavior across platforms regarding what they like to see

on social media post. Instagram users prefer fewer features on posts. For example, in the

furniture industry, we observe that engagement starts to reduce if more than eight features

are included in a post in addition to the focal features. On the other hand, Facebook users

prefer more features on posts. This shows that firms need to treat each platform differently

for developing their advertising posts with relevant features.
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• Obtaining the maximum overall engagement under a limited budget.

Both content development and social media analytics activities require substantial invest-

ment. Our model deals with the trade-off between these completing nativities and finding

answers to the following question: “How much analytics can achieve the desired level of

features to be included in their content under a budget constraint while maximizing the user

engagement?"

We show that social media analytics efforts reduce as the firm faces tighter budget limita-

tions. Engagement also differs across platforms; therefore, firms must select features by

prioritizing platform(s). As the budget tightens, we show that the firm can obtain the highest

overall engagement following our framework. In the context of the study specific to a certain

category of firms, we show that Facebook receives more priority, and thus, more budget are

allocated to Facebook as it generates higher overall engagement.

• Developing an easy-to-implement solution.

We model social media user engagement as a Mixed Non-Linear Integer Programming

(MNILP) formulation incorporates the functional form of the relationship between the user

engagement and the features included in the post. This function relationship is estimated

from the empirical analysis. However, MNILP does not result in analytically tractable solu-

tions. We then transform the models into equivalent linear formulations for both single and

multiple platforms that are solvable efficiently. We show that the linearized model is equiv-

alent to solving the MNILP since the feasible integer solution is also feasible to the MNILP

and vice-versa. The objective of our model is to maximize user engagement subject to the

budget constraint that includes the costs of social media analytics and content development

activities.

We provide structural results for the two platforms - Facebook and Instagram and offer in-

sights on content development activities. In this regard, we identify the number of features

that contribute to the maximum and minimum engagement levels on Instagram and Face-

book, respectively. We establish the relationship between user engagement and the number
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of features included in the content. Further, we also illustrate the better performance of our

approach that combines both user-base and engagement intensity on a platform compared to

a scenario where budget is allocated only based on a platform’s user-base; it shows a dif-

ference of 11-12% in engagement. In addition to that, we also offer additional managerially

relevant guidelines on other aspects of social media posts.

The remainder of this chapter is organized as follows. In Section 4.2, we provide a review

of related works and emphasize the contributions of this chapter to the literature. In Section 4.3,

we describe the model setting, discuss the main empirical findings, and their applications in the

optimization model. In Section 4.4, we present our optimization model, structural properties, com-

putational experiments, and provide managerial insights. In Section 4.5, we discuss the extensions

of this chapter. We conclude the chapter in Section 4.6 with managerial and industrial implications

and future research directions.

4.2 Literature Review

This chapter draws from two major streams of research: (i) social media user engagement

and (ii) operations literature related to resource allocation. Following the discussions of relevant

studies of these streams, we underline our contributions.

4.2.1 Social Media User Engagement

First, this chapter builds and contributes to the literature on social media user engagement on

advertising posts. User engagement on social media advertising posts increases a firm’s expo-

sure and their products’ appeal to online users (Coursaris et al. 2016, Dessart et al. 2015). The

social media user engagement literature is vast and touches many aspects of the antecedents of

user engagement. The difficulties associated with user engagement are multifaceted as it involves

analyzing unstructured social media data. For instance, numerous studies analyze textual data to

reveal the antecedents of user engagement (Kumar et al. 2016, Naylor et al. 2012). Researchers

also examine visual data such as images and their impact on user engagement. While it is essential

from the industry point of view, research on social media posts with images in user engagement is
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relatively nascent. We briefly summarize some of these works here.

Li and Xie (2020) find that the presence of images and their quality enhance user engagement

across different industries and different social media platforms. Wulf et al. (2019) find that images

affect the popularity of cars in both economy and premium segments. Additionally, the popularity

and applications of deep learning algorithms have accelerated the research in image analytics and

social media. Liu et al. (2020) develop a convolutional neural network model and examine the

impact of images on brand popularity. Ma et al. (2018) observe that images boost online hotel

reviews. Zhang et al. (2021) empirically show that high-quality verified images stimulate the

demand of Airbnb properties.

Much of the study in the domain is related to how images enhance user engagement across

different industries. However, none of these studies consider the development of social media

posts with images having relevant features and how to extract those features using social media

analytics. In this chapter, we analyze not only the antecedents of user engagement, but also how

to develop content using those insights accordingly. In a related study, Shin et al. (2020) utilize

deep learning methods to explore user engagement using textual and visual data. They focus on

measuring user engagement on social media platforms. This is a key difference with our work; we

explore the functional form of image features-user engagement relationship to guide social media

post design and development under a budget-constrained environment. In Table 4.1, we highlight

the critical differences between this work and that by Shin et al. (2020).

4.2.2 Resource Allocation

The work in this chapter also shares some similarities with resource allocation research that

have been extensively studied in the operations literature (e.g., Loch and Kavadias 2002, Bish and

Wang 2004, Klingebiel and Rammer 2014). More specifically, this chapter partly relates to the

emerging field of new product development (NPD) under budget constraints. The problem con-

sidered in this chapter can be considered as a NPD framework: the social media analytics process

for designing content acts as a design phase, while the content development phase is the manu-

facturing phase. Scholars in NPD have looked at domains such as funding (Santiago and Vakili
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Table 4.1: Comparison between this work and Shin et al. (2020)

This chapter Shin et al. (2020)
Goals A data-driven optimization framework

to guide social media content develop-
ment using social media analytics to
maximize user engagement

A predictive analytics approach to un-
derstand the antecedents of higher user
engagement

Method Analytical modeling using empirical
results

Empirical

Focus utilizing budget to gain maximum en-
gagement by using the relevant number
of features

classifying specific features related to
user engagement

Deep learning algo-
rithms

SSD and Faster R-CNN Yahoo CNN

Image analysis Yes Yes

Text analysis Yes Yes

Platform Multiple Single (Tumblr)

Social media ad-
vertising costs

Yes No

2005), resource allocation decision-making (Hutchison-Krupat and Kavadias 2015), development

of pipeline (Ding and Eliashberg 2002), and most importantly, the phases of NPD (Bajaj et al.

2004) such as design and manufacturing.

Although there have been several studies on NPD, none of the past studies are applicable in

our setting because of the novelty of our context, requiring different methods and analyses. For

example, firms need to continuously monitor user engagement and develop social media posts

in accordance with frequently changing user needs. Yet, most works consider one phase of the

problem. Kumar et al. (2020) demonstrate a theoretical model of user engagement on digital

platforms for content providers’ advertisement sequence. Mallipeddi et al. (2021a) analyze social

media posts on Twitter to explore the relationship between tone of posts and engagement. Unlike

the aforementioned studies in the social media context, our model is unique in that we jointly

consider two phases in social media advertising and extend the resource allocation domain to

social media marketing. We explicitly show the use of social media analytics to develop better

105



social media posts, which is an important contribution of this chapter.

4.3 Problem Setting

The firm desires to maximize user engagement on their social media platforms by efficiently

deploying social media analytics and content creation efforts using relevant features to be included

in the posts. In order to achieve this, we propose an optimization framework for analyzing and

publishing social media posts across multiple platforms for a planning horizon under a firm’s

limited budget. Our framework incorporates the trade-off between the completing costs associated

with social media analytics and content development efforts to achieve the maximum engagement.

We introduce the basic model setting for maximizing user engagement for firms, and then

perform an empirical analysis to estimate parameters for the model. We provide a description

of the social media marketing ecosystem where firms publish their posts (i.e., advertisements) on

social media platforms where users engage with them. Information on their own and competitors’

posts act as an external source of knowledge for the firms to know about their users (Choudhury

and Harrigan 2014). Knowledge is a key element of competitive advantage and firms use it into

their decision making process to offer better products and services to their customers (Jansen et al.

2005). We illustrate the approach on two social media platforms, Instagram and Facebook.

4.3.1 Social Media Marketing Ecosystem

In a typical social media marketing system, a firm develops and publishes posts that contain

image with features on one or multiple platforms. Upon seeing a post on their social media ac-

counts, an Instagram user may engage in the following manner: like or comment or do both; and

a Facebook user may share or comment or engage in both. These user reactions help firms extract

valuable insights from users’ engagements. For example, a study by Palmer et al. (2013) reveals

that Burberry, a leading fashion brand, utilizes social media data to identify shopper trends and

performs timely customizations to their products accordingly. The same study also reports that

Walmart uses social media data that include user reactions such as comments and check-ins to

predict user demand for a product.
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As discussed earlier, user engagement or the extent to which a user interacts with a service and

frequently wants to use that service is an important outcome metric for the firm. In analyzing user

engagement data, we take engagement types such as like, comment, and share, into consideration.

In the following, we discuss three important aspects of social media ecosystem: (i) social media

user engagement (ii) features of post and user engagement on social media platforms, and (iii)

costs associated with social media marketing.

4.3.1.1 Social Media User Engagement.

To capture users’ engagement level toward a post, we let xlmk be the volume of engage-

ment type m on post k at platform l. The firm derives benefits by maximizing user engagement:∑L
l=1

∑M
m=1

∑K
k=1 xlmk. Firms usually publish one post each day as revealed in our data and other

studies (Cui et al. 2018). Thus, in this chapter, each k could represent one day and therefore, the

planning horizon consists of K number of days. Our data also reveal that engagement on posts

occur within a day from the post publication date. For example, we analyze a sample of 32 posts

on Instagram across multiple firms over a three week period of time and observe that 94% likes

and 84% comments occur within a day.

Firms usually post once every day to provide fresh content to their users (Innovations 2021).

Therefore, we implement a single post publication per period policy in developing our optimization

model. Another aspect of our model is the inclusion of both single and multiple platforms. The

context of multiple platforms requires distinctions since each platform has its own characteristics

and impact. Following Aichner and Jacob (2015), we utilize social media impact factor for a

platform which is defined in the context of a firm using multiple platforms. The impact factor for a

platform which is a fraction user basis as compared to total user basis for multiple platform, can be

expressed by dividing the number of active users per month for the platform by total active users

per month across multiple platforms. We also assign weights zlm to each engagement type m for

each platform l.
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4.3.1.2 Features of Post and User Engagement on Social Media Platforms.

Creating posts with images is challenging, especially when the firm operates across multiple

social media platforms. Practitioners suggest that firms should not post identical content on multi-

ple platforms since each platform is different (Amibbola 2021). Also, a firm should not post same

content regularly as it reduces user engagement (Mallipeddi et al. 2021b). Thus, a firm must tailor

its social media marketing strategy to create and customize image features in a post that attracts

and engages users by competing among millions of other posts published every minute.

Recall that a firm may emphasize its focal features or simple features in an image and introduce

additional features that create an impression of the overall narrative on users. Since focal features

portray the main information or primary products, firms may enhance them to a certain extent. On

the other hand, they can add the number of advanced features to significantly enhance the post that

in turn improves user engagement. In our optimization model, we represent simple and advanced

features as slk and flk, respectively. Therefore, user engagement xlmk can be expressed as xlmk

= f(slk, flk, τ), where the vector τ represent additional parameters derived from the empirical

analysis. We estimate the engagement-feature association, xlmk = f(slk, flk, τ) from the empirical

analysis.

4.3.1.3 Costs Associated with Social Media Marketing.

In the context of social media marketing, Wu et al. (2020) find that firms allocate resources to

perform in-house market research and create their advertisements. This entails two major costs:

social media analytics and content development. We denote Ul as the analytics effort in social

media for every platform l. Social media analytics typically involves the analysis and insights

gained from structured and unstructured social media data (SproutSocial 2021). As mentioned

in an industry report (Hootsuite 2021), more insights from social media platforms require higher

analytics effort, increasing the costs. Our modeling framework incorporates this cost and guides

as to how a firm should invest its resources in getting more information.

Social media marketers should be cautious about similar or outdated posts on their pages.
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Content development using new and relevant features are essential in the social media advertising

landscape. It requires costs associated with making images, which may consist of photographers,

human actors, objects, renting space, etc. We capture a substantial part of this cost by assuming a

unit development cost per feature for each slk and flk. For example, Socialistics (2021) mentions

that organizations usually spend on social media activities anywhere between $6,000 and $10,500

per month, primarily depending on the frequency of posting, number of platforms, and graphics.

The cost increases as more sophisticated social media analytics are used. For example, The Content

Factory, a leading social media outsourcing vendor, charges $4000 for three social media platforms

only for content customizations and hashtags (TCF 2021). Another study by Reports (2021) finds

that it may cost $50 per each graphic or object on social media content. For ease of exposition,

our optimization model includes a constant development cost, “a" per unit for every feature to

be included in a post. The model also includes a fixed cost Cf of a technical team performing a

social media analytics. Cf does not include the content development cost. As discussed earlier,

a firm may need either an in-house or a third-party outsourced social media management team.

We represent the budget constraint as a
∑L

l=1

∑K
k=1(slk + flk) + e

∑L
l=1 Ul + LCf ≤ B, where B

denotes the limited budget and e is a per unit effort cost of including features in a post.

4.3.2 Data Collection and Empirical Analysis

To investigate the impact of image features and select the relevant advanced features for achiev-

ing the maximum engagement on single or multiple platforms, we conduct an empirical analysis

using data on posts from Instagram and Facebook. To establish the relationship between engage-

ment and features, we follow these two stages: (i) extracting simple and advanced features by

running machine learning algorithms (SSD and Faster R-CNN) and (ii) performing an economet-

ric analysis to understand the relationship between user engagement and the features extracted in

(i) while controlling for other factors. In this subsection, we briefly describe the process and use

of empirical outcomes in our optimization model. Figure 4.1 graphically illustrates the empirical

analysis step-by-step. Appendix C.1.1 provides the details of the data collection.

We ground our empirical work in the process model developed by O’Brien and Toms (2008)
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Figure 4.1: Social media content analysis process

and the narrative framing theory by Baumgartner (2002) to postulate the relationship between user

engagement and advanced features. User engagement occurs through a process where users start

an engagement with a system, which is a social media post in our research context, and maintain

their engagement, followed by disengagement and re-engagement. Images convey information to

users, which can influence their decision-making (Duarte et al. 2012). These pieces of information

help in forming a mental image of the product(s) advertised on social media. An image not only

consists of focal products (or simple features) but also comprises other additional features (or

advanced features) that offer a visual experience as a whole. This narrative framing of images via

the advanced features helps form users’ cognitive thinking and subjective interpretation when they

see a post, resulting in excitement from the users. In line with the marketing literature on user

reactions (Yin et al. 2017), we argue that increasing additional features (or additional information)

in an image may impact non-linearly on users’ reactions. In other words, we conjecture that the

association between advanced features and user engagement depends on how much information is

helpful for users.

An understanding of the relationship between user engagement and features is important for

firms as they need to decide how many advanced features they should use to help users in their

decision making process without overdoing it or exceeding their budget. Users express their ex-

citement via liking a post, commenting on it, and sharing with others, leading to user engagement
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on a post. Deep learning methods have facilitated opportunities to identify image features that

influence user engagement at a substantially low cost and without human biases associated with

data-intensive projects (Wu et al. 2015).

4.3.2.1 Deep Learning Methods.

We apply deep learning algorithms to extract features of the images included in social media

posts. This is a major part of social media analytics, which encompasses a range of activities

that can reveal insights on user engagement and desired features by exploring the relationships in

unstructured datasets (IBM 2021). These algorithms facilitate an information-gathering process

from images and how much of that information effectively generates higher user engagement,

similar to the textual analytics processes through automated software tools. Consistent with the

literature, we use pre-trained robust deep learning algorithms on our social media data to extract

the features from images (Shin et al. 2020). The use of algorithms pre-trained on large existing

datasets and applied on a new and smaller dataset is known as transfer learning. This approach is

widely used for higher accuracy, especially when the collected data is not large enough for model

training. We also manually analyze the features extracted after applying the pre-trained algorithms

and ensure the accuracy and detection performance.

More details of the deep learning approach is provided in Appendix C.1.2. We illustrate a sam-

ple output of the deep learning methods in Table 4.2, where the features extracted by algorithms

SSD and Faster R-CNN are shown. We denote the number of features extracted by SSD as simple

features. Advanced features are the additional features extracted by the Faster R-CNN, represent-

ing more information in images (Column 5 in Table 4.2). Note that simple and advanced features

together represent the total number of features in an image. SSD is a simple algorithm with one

layer and therefore, is designed to extract the most prominent feature(s) of an image. This is in

line with the content marketing strategies of firms where they focus on clarity or the absence of

ambiguity in an advertisement where the primary objects are prominently highlighted (Erdem and

Swait 1998). Social media advertising strategies utilize the same philosophy, especially given the

space limitations and users’ attention span. Faster R-CNN is an advanced algorithm, and thus, it
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can extract the additional features in an image.

Table 4.2: Sample output from deep learning algorithms

Post SSD Faster R-CNN No. of Simple features No. of Advanced features
1 [’couch’] [’vase’, ’vase’, ’chair’, ’couch’] 1 3
2 [’chair’] [’vase’, ’chair’, ’chair’, ’surfboard’, ’couch’, ’potted plant’, ’potted plant’] 1 6

4.3.2.2 Empirical Findings.

As hypothesized in our empirical analysis, the features in a post influence the user engagement.

In order to formulate and solve our optimization model that maximizes the user engagement (to be

developed in the next section), we need to understand the relationship between user engagement

for a post and the corresponding features in it. Therefore, we collect data from social media plat-

forms and perform the empirical analysis to discover this relationship. The features in a post are

extracted by the machine learning algorithms. Our empirical analysis reveals that the user engage-

ment in a platform is strongly related to the number of simple and advanced features included in a

post. Following the theoretical support, we introduce a quadratic term for advanced features in the

regression model. Table C.1 (in Online Appendix) lists the variables used in the empirical analysis

on Instagram and Facebook data. The summary statistics for the variables used in Instagram and

Facebook analyses are displayed in Tables C.2 and C.3, respectively. More details of the empirical

analysis are provided in Appendix C.1.3.

Given the form of our engagement variables, which exhibit the properties of count variables, we

deploy negative binomial regression. We specify the model specifications in Appendix C.1.3.1 and

discuss the results in Appendix C.1.3.2 and report the findings for Instagram in Table C.4, followed

by the Facebook results in Table C.5. We also perform additional robustness tests by using quantile

regression and zero-inflated negative binomial regression and illustrate them in Appendix C.1.3.4.

We briefly summarize the primary findings below.

As postulated, the number of advanced features follow a non-linear relationship with likes on

Instagram, and shares and comments on Facebook, although exhibiting different patterns. The

patterns for the two platforms are displayed in Figures 4.2 and 4.3. We do not find any signifi-
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Figure 4.2: Instagram analysis

Figure 4.3: Facebook analysis

cant relationship between advanced features and comments on Instagram. Following the approach

suggested by Hayes (2017), we estimate the user engagement values (e.g., the number of likes

on Instagram) from the regression equation by averaging all other variables and multiplying them

with their corresponding coefficients as shown in Table 4.4. Thus, we estimate the engagement

levels due to the number of advanced features and other parameters in a post and include this non-

linear relationship in our optimization model to be developed in the next section. We present the

key findings of our empirical analysis below. We incorporate these insights and other empirically

derived parameters to build our optimization model.

Empirical Insight 1: The relationship between user engagement for a post and the corresponding

number of advanced features in it is nonlinear and differs across engagement types and platforms.

In particular, the empirical analysis reveals that the relationships between the number of advanced
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features and likes on Instagram, and comments and shares on Facebook are quadratic.

Empirical Insight 2: Instagram users do not prefer too many features on images in a post as

excessive features hinder the aesthetics of the post. On the other hand, Facebook users prefer

more features in a post as they interact well with those users.

In the next section, an optimization model is developed with the aim of creating a social media

marketing strategy for a firm. The model provides a plan for designing social media posts and

scheduling them during a planning horizon in order to maximize user engagement, xlmk (e.g., the

number of likes on Instagram) under a firm’s limited budget B, where l, m, and k denote the

platform type, the user engagement type, and the identity of the post, respectively. We provide the

model parameters and variables for the single platform single engagement type in Table 4.3, where

indices l and m are dropped due to the model specificity to single platform and single engagement

type. Our empirical analysis suggests the following functional from for the relationship between

the user engagement, xlmk, and the number of simple features, slmk and the number of advanced

features, flmk in post k.

xlmk = blm + βlmslmk + ζlmflmk + ηlmf
2
lmk,

where blm is a constant, βlm is coefficient for simple features, and ζlm and ηlm are coefficients

for advanced features (linear and quadratic, respectively). These coefficients are estimated via em-

pirical analysis for a planning horizon and are provided in Table 4.4. This functional relationship

is used in our optimization model to be developed in the next section.

4.4 Problem Formulation

As mentioned in the previous section, we use the findings from our empirical analysis to de-

velop an optimization model with the aim of creating a social media marketing strategy for a firm.

More specifically, we use the function relationship, xlmk = blm+βlmslmk + ζlmflmk +ηlmf
2
lmk that

describes the user engagement in our model.

Our model devises a plan for designing social media posts and scheduling them during a plan-
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Table 4.3: Parameters and variables for one platform and one engagement type

Parameters

a Content creation Cost of adding one feature to post k, k = 1, 2, . . . ,K
B Total allocated budget for a planning horizon
u1, u2 Upper bound for simple and advanced features extracted in the previous planning horizon, respectively.
b Impact factor of post measures on user engagement of post k, obtained from empirical analysis, k = 1, 2, . . . ,K
β Impact factor of simple features on user engagement of post k, derived from empirical analysis
ζ Linear impact factor of advanced features on user engagement of post k, estimated in empirical analysis
η Quadratic impact factor of advanced features on user engagement of post k, obtained from empirical analysis
wk Weight of post k on user engagement, where

∑7
k=1 wk = 1.

Cf Fixed cost incurred for social media analytics activities for a planning horizon
e Unit cost of putting an effort for extracting/analyzing advanced features using the advanced deep learning method Faster R-CNN.
qk Number of features of focal product(s) in content k (qk ≤ sk).

Variables
U Maximum number of advanced features to be included during the planning horizon
xk User engagement of post k, k = 1, 2, . . . ,K
sk Number of simple features to be included in the image of post k , k = 1, 2, . . . ,K
fk Number of advanced features to be included in image of post k, k = 1, 2, . . . ,K

Table 4.4: Parameters obtained from empirical analysis

Coefficients Instagram (l = 1) Facebook (l = 2)
Likes (m = 1) Shares (m = 2) Comments (m = 3)

blm 7.2900 2.8400 2.6300
βlm -0.0340 -0.0500 0.0036
ζlm 0.0940 -0.0988 -0.1140
ηlm -0.0062 0.0090 0.0100
u1l 10 19 19
u2l 14 18 18

ning horizon in order to maximize user engagement under a firm’s limited budget. In Section 4.4.1,

we develop a plan for a single platform with both single and multiple engagement types. We

present the generalized case for multiple platforms and engagement types in Section 4.4.3.

4.4.1 Single Platform Single Engagement Type

We present the single platform and single engagement type version of the generalized problem.

The firm’s objective is to maximize user engagement during a planning horizon comprising of

K periods, where k = 1, 2, . . . , K and each period represents a day. Similar to the analysis by

Mallipeddi et al. (2021b), we consider a planning horizon of K = 14 days or two weeks. The

firm operates under limited budget to be allocated for the costs associated with the firm’s content

development activities and the social media analytics tasks during the planning horizon. Recall

that our data reveal that a firm creates and publishes approximately one post per period. Thus, we
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could consider K posts (usually one per day) are posted during the planning horizon.

In the context of social media analytics, the firm gathers social media data concerning firms’

posts, performs feature extraction from posts using deep learning algorithms, and establishes the

feature-engagement functional relationship and estimates relevant parameters associated with the

relationship using an econometric analysis. The firm then decides the number of features to be

included in each post and schedules the posts during a planning horizon. Given the focal features

(referred to as simple features in this chapter) for a product to be advertised, the firm also needs

to decide the number of advanced features to be included in a post on different platforms. As

observed in our empirical analysis, the Faster R-CNN identifies the advanced features in a post,

including the simple features extracted by SSD.

We represent the features by defining two decision variables: sk (respectively, fk) denote the

number of simple (respectively, advanced) features to be included in the post k. Also, our empirical

analysis reveals that the number of features is finite; sk and fk have upper bounds u1 and u2,

respectively, which are estimated from our data, specific to each platform. Within simple features,

we denote qk (qk ≤ sk) as the focal features specific to a product(s) to be used in a post. We

maintain this relationship throughout our analysis. Finally, we also mention here that for multiple

platforms l and engagement types m, xlmk denote the user engagement (e.g., the number of likes

on Instagram) for post (i.e., content) k. For a single platform with single engagement type, xk

denote the user engagement where indices l and m are dropped.

We allocate budget B that include the cost of performing the following activities for a planning

horizon: (i) content creation and (ii) social media analytics. The content creation cost for a post

depends on the number of features to be included in it. Recall that the firm analyzes posts in

the previous planning horizon to decide features in post k in the current planning horizon. Our

objective is to assist firms in developing a social media marketing strategy by deciding the number

of features to be included in the posts that have to be scheduled during the planning horizon.

This involves analyzing the data, understanding features that influence the user engagement, and

designing better post by specifying features to be included in the post. These insights are derived
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Figure 4.4: Instagram: engagement intensity per post during days of week

from social media analytics.

Firms perform social media analytics by continuously monitoring and analyzing user engage-

ment, and observing user preferences for its own posts and those of other similar organizations

(IBM 2021). They use these insights to deliver better and relevant posts. Therefore, we update the

parameters in Table C.10 for each planning horizon and run our optimization model with updated

parameter for each period. Thus, the goal is to analyze social media data across the platforms pe-

riodically, derive empirical insights on the relationship between user engagement types and image

features in the posts, and design the image content to be posted for the next planning horizon. We

follow that no two posts are the same during a planning horizon in the same platform, consistent

with the suggestions for not using identical and repetitive posts by practitioners (Amibbola 2021).

Next, we discuss three important attributes to be included in our model: (i) engagement inten-

sity during a week, (ii) cost of social media analytics and (iii) content creation cost.

4.4.1.1 Engagement Intensity.

The existing literature on social media user engagement reports mixed evidence on engagement

intensity over a week, often different across industries. Some studies find that posts on weekdays

generate a relatively higher intensity of engagement than posts on weekends, on average (Arens

2021). While the data did not reveal any statistically significant difference of user engagement
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across the days, it is not surprising that users access social media platforms from their phones or

computers depending on their convenient time. For example, Kumar et al. (2019) find that users

do not engage on social media shopping sites during the weekends. To be general, we introduce an

engagement intensity via weight wk, for user engagement for post k which depends on day the post

is scheduled. We set
∑7

k=1wk = 1 for one week during the planning horizon where wk assumes

lower values during the weekend. Note that weights wk may differ with the industry. For example,

Mariani et al. (2018) find that user engagement of tourism organizations on Facebook is positively

associated with weekend postings. This highlights the importance of continuous monitoring of

user engagement during each planning horizon and finding weights based on observed data. In our

model, we use the weights derived from a survey done by Unmetric on 100 firms’ Instagram posts

and user engagement as depicted in Figure 4.4, which clearly shows that engagement is relatively

lower on Saturdays and Sundays.

4.4.1.2 Social Media Analytics Cost.

Firms may perform social media analytics in-house or outsource them. Even if a firm out-

sources their analytics to a third-party, they still require a team to coordinate with the vendor

regularly. Studies suggest that many firms perform the analytics in house for better control and

ease of decision making (Wu et al. 2020). The in-house team monitors social media activities and

aids the content designers to develop effective posts for the next planning horizon. The team (i)

collects data from multiple platforms on multiple firms that include images, text information, and

user reactions, (ii) extracts features from the images, and (iii) analyzes their impact on the user

engagement.

We refer the cost of maintaining a team, Cf , as fixed cost, amortized for the planning horizon.

There is a variable cost eU per planning horizon, where U is the upper bound on fk (or Ul for

flk) quantifying the team’s effort (include computational power) required to perform social media

analytics and e represents the per unit analytics cost in extracting and analyzing the number of

advance features, fk bounded by variable U for a planning horizon. Thus, the costs of feature

extraction and analysis consist of a fixed cost Cf and a variable cost eU per planning horizon.
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Estimating e is challenging; the firm needs resources on data collection, data structuring since

most data are unstructured, and running computational algorithms on the data. These operations

are costly and time-consuming. The firm may devote more effort U to extract more (advanced or

additional) features and get better understanding of user engagement, which may reduce budget

allocation for content creation activities, Cc. We perform computational experiments on a testbed

of various parametric values of e to estimate user engagement outcomes and the corresponding

cost components. Without loss of generality, our framework applies to both in-house or outsourced

analytics operations as higher analytics effort incurs more cost in both cases.

4.4.1.3 Content Development Cost.

Similar to analytics operations, the firm may possess in house design team(s) having required

expertise in developing posts or it may subcontract this activity to another firm. The content cre-

ation involves one or more teams designing and developing images with desirable features for a

post. The team may consists of designers and photographers requiring office space. Thus, each

additional feature in the image requires more effort and resources, besides renting or buying the

objects associated with the features. As discussed earlier, we denote a linear cost per feature

to be included in a post is a. Thus, for a planning horizon, the total content creation cost is

a
∑K

k=1(sk + fk), each post k having (sk + fk) features. The same approach extends to the gen-

eralized model where each content has (slk + flk) features. We now present below our model,

SMMs for the single platform and single engagement type. The objective of SMMs is to maxi-

mize the weighted user engagement, Πs, where weight wk is introduced to capture the intensity of

user engagement in period k. As indicated before, we omit the indices l and m in SMMs.

We now describe the constraints in SMMs. In Constraint (4.1), we impose the budget con-

straint with three cost components. The first component (a
∑K

k=1(sk + fk)) is the content creation

cost for K posts, each post k having (sk + fk) features. The second component (eU ) refers to the

social media analytics cost which is variable cost. The third component (Cf ) represents the fixed

cost of the social media analytics cost. Constraint set (4.2) which is obtained by our empirical

analysis, illustrates the functional relationship between user engagement and image features to be
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included in the post. Note that the parameters, b, β, ζ , and η are estimated from our empirical anal-

ysis (refer, Table C.10). However, this constraint introduces non-linearity to our model through

a quadratic term. Constraint sets (4.3) and (4.4) restrict the total number of simple and advanced

features below their upper bound values, respectively, where U is the decision variable. We obtain

the upper bound values from our empirical data. In Constraint set (4.5), the decision variable U is

bounded by u2 which is obtained from our empirical analysis. Constraint sets (4.6) provide lower

bounds set by the firm on the number of simple features for post k. Note that qk represent the

number of features of a focal product(s) the firm wants to advertise in period k, such as a bed or

chairs for a furniture firm, which are easier to extract and therefore, belong to the simple features

category. In Constraint sets (4.7). we define the nonnegativity constraints.

Problem SMMs:

Max Πs =

K∑
k=1

wkxk

Subject to:

a
∑K

k=1(sk + fk) + eU + Cf ≤ B (4.1)

xk = b+ βsk + ζfk + ηf2
k , ∀k (4.2)

sk ≤ u1, ∀k (4.3)

fk ≤ U, ∀k (4.4)

U ≤ u2, ∀k (4.5)

sk ≥ qk, ∀k (4.6)

xk, sk, fk, U : Integer variable (≥ 0), ∀k (4.7)

4.4.2 Solving Single Platform Problem SMMs for a Platform

We illustrate our solution approach and algorithms for two platforms, Instagram and Face-

book, as each platform has certain attributes characterizing its user engagement. We illustrate

those attributes in the subsections below. The proofs of Lemmas and Theorems are provided in
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Appendix C.2.1.

4.4.2.1 Solving Single Platform Problem SMMs for Instagram.

Attributes of Instagram on user engagement are given under Case 1, where βlm < 0, ζlm > 0,

ηlm < 0. We now provide the solution approach by linearizing Problem SMMs and a polynomial

time algorithm to solve it. Any platform belonging to this case may use the approach/algorithm

presented in this subsection.

Case 1: βlm < 0, ζlm > 0, ηlm < 0. Example of such platform is Instagram in our case study

demonstrated in Table 4.4, where l = 1 and m = 1. We have following results for the platform

satisfying condition in Case 1.

We let q0 =
∑K

k=1 qk and f0 =
∑K

k=1 fk.

Since βlm < 0, in Problem SMMs, in order to have maximum user engagement, fk, we must

have sk = qk, ∀k. Thus, the following results follow.

Lemma 2. In Problem SMMs, the maximum user engagement is obtained by sk = qk, ∀k and∑K
k=1 sk = qo.

The next result provides the optimal number of advanced features, f ∗k that maximizes the user

engagement for period k.

Lemma 3. In Problem SMMs under condition Case 1 for platform l and engagement type m for

a given value of sk, the maximum user engagement for period k is x∗k, when either f ∗k = b ζlm
2|ηlm|
c

or f ∗k = b ζlm
2|ηlm|
c+ 1 whichever provides maximum x∗k.

Lemma 4. As ζlm > 0 and ηlm < 0, in Problem SMMs for platform l and engagement type m,

U0 = min{u2, f
∗
k} and U ≤ U0.

The next lemma quantifies f0 for given budget B, where f0 =
∑

k fk.

Lemma 5. In Problem SMMs under condition Case 1, the maximum, f0 = b (B−Cf−eU−aq0)

a
c.
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Theorem 3. Problem LSMMs(Case1) under condition Case 1 is equivalent to linear version of

Problem SMMs.

Problem LSMMs(Case1):

Max Πs =

K∑
k=1

wkxk

Subject to:

a
∑K

k=1 sk + a
∑K

k=1

∑f∗k
j=0 jyk,j + eU + Cf ≤ B (4.8)

xk = βsk +
∑f∗k

j=0 gjyk,j , ∀k (4.9)∑f∗k
j=0 yk,j = 1, ∀k (4.10)

sk ≤ u1, ∀k (4.11)∑f∗k
j=0 jyk,j ≤ U, ∀k (4.12)

U ≤ f∗k , (4.13)

sk ≥ qk, ∀k (4.14)

xk, sk, U : Integer variable (≥ 0), ∀k (4.15)

yk,j ∈ {0, 1} ∀k; ∀j (4.16)

In Table C.11, we enumerate the Instagram engagement (likes) values for each fk, which we

derive from our empirical results. The highest engagement x∗k occurs at f ∗k = 8. We find these

values from our empirical analysis for each Instagram and Facebook (later).

4.4.2.2 Solving Single Platform Problem SMMs for Facebook (Shares).

Attributes of Facebook on user engagement (Shares) are given under Case 2, where βlm < 0,

ζlm < 0, ηlm > 0. We now provide the solution approach by linearizing Problem SMMs. Any

platform belonging to this case may use the appraoch presented in this subsection.

Case 2: βlm < 0, ζlm < 0, ηlm > 0. Example of such platform is Facebook (Shares) in our case

study, see Table 4.4, where l = 2 and m = 2. We have following results for the Platform satisfying

122



condition in Case 2.

As in Case 1, we must have sk = qk, ∀k and
∑K

k=1 sk = qo (Lemma 2). The next result provides

the optimal number of advanced features, f ∗k that minimizes the user engagement for period k.

Lemma 6. In Problem SMMs under condition Case 2 for platform l and engagement type m for

a given value of sk, the minimum user engagement x∗k occurs at period k, when either f ∗k = b |ζlm|
2ηlm
c

or f ∗k = b |ζlm|
2ηlm
c+ 1 whichever provides minimum x∗k.

4.4.2.3 Solving Single Platform Problem SMMs for Facebook (Comments).

Attributes of Facebook on user engagement (Comments) are given under Case 3, where βlm >

0, ζlm < 0, and ηlm > 0. We now provide the solution approach by linearizing Problem SMMs.

Any platform belonging to this case may use the approach presented in this subsection.

Case 3: βlm > 0, ζlm < 0, ηlm > 0. Example of such platform is Facebook (Shares) in our case

study, see Table 4.4, where l = 2 and m = 3. We have following results for the Platform satisfying

condition in Case 2.

The next result provides the optimal number of advanced features, f ∗k that minimizes the user

engagement for period k.

Lemma 7. In Problem SMMs under condition Case 3 for platform l and engagement type m for

a given value of sk, the minimum user engagement x∗k occurs at period k, when either f ∗k = b |ζlm|
2ηlm
c

or f ∗k = b |ζlm|
2ηlm
c+ 1 whichever provides minimum x∗k.

Unlike Case 1, Case 2 and 3 have convex patterns and therefore, demonstrate the minimum

engagements that occur at fk = 5 and 6 for Facebook shares and comments, respectively. Since all

other structural properties remain the same, we can modify Problem LSSMs(Case1) by replacing

f ∗k with u2, the upper bound of advanced features on Facebook. u2 remains the same for both

shares and comments as these two engagement types belong to the same platform. The specifics

of the Problem LSMMs(Cases2− 3) are formally described in Appendix C.2.
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Table 4.5: Weights wk (in multiples of 10)

w1 w2 w3 w4 w5 w6 w7

10 12 16 14 16 14 10

4.4.2.4 Numerical Analysis.

In summary, the analysis of two platforms and corresponding three engagement types lead to

several interesting and distinct insights, as illustrated in the Lemmas. Prior to analyzing the gen-

eralized framework, we present the numerical analysis on single platform and single engagement

type, first by running models, LSMMs(Case1) and LSMMs(Cases2 − 3). Next, we combine

shares and comments for Facebook and offer insights for single platform and multiple engagement

types problem (LSSMf ). We fix a at 20 and vary e between 20 and 90, with increments of 10.

qk refers to the number of features in the focal products in the post k, and qk is generated ran-

domly from the set of integer number between 1 and 5, fixed for all platforms. The values for wk

are selected based on the numbers from Figure 4.4, where the planning horizon starts on a Sun-

day and ends on a Saturday during a two week period. Table 4.5 shows the values of wk, where

k = 1, 2, . . . , 7. We repeat the same values for k = 8, 9, . . . , 14 and fix them across platforms and

engagement types for comparison.

The results of the linearized formulation for Instagram are presented in Table C.14. We graph-

ically illustrate the Instagram engagement results on the left panel of Figure 4.5. As can be seen,

the total engagement (likes) on Instagram reduces as e increases because the budget allocation

tightens for content development activities. Consequently, all posts use qk focal features and the

optimal number of advanced features, f ∗k when e is low (below 40). Thus, the highest engagement

of 695946 (x∗k) occurs when e is set at lowest (e = 20). However, as e increases, fewer than optimal

number of advanced features (f ∗k ) are included on posts to be published on the days with low en-

gagement intensity. Also U starts to reduce overall as well as the budget allocation becomes more

stringent for both activities (Social media analytics and content development) when e exceeds 80.

The numerical experiment on Instagram supports our theoretical results for Case 1. On average,

firms exploit their social media analytics fully on Instagram under lower e (i.e., lower budget al-
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Figure 4.5: Single platform analysis

location for content development activities) and achieves the maximum user engagement, x∗k by

including the optimal number of advanced features (f ∗k = 8) on posts as specified by Lemma 3.

Managerial Insight 1: The relationship between the number of likes on Instagram and the ad-

vanced features exhibits a concave function, implying that likes on Instagram initially increase with

the number of advanced features and then reduce after a threshold. In our context, likes on posts

attain the maximum value when the number of advanced features is eight and decreases afterward.

Managerial Insight 2: Budget restriction affects the overall engagement on likes as the optimal

number of advanced features are not included across all posts. The firm obtains the maximum

possible engagement corresponding to their budget by reducing the number of advanced features

on posts that are published on the days with lower engagement intensity.

The firm must focus on adding more advanced features for posts (i.e., more content develop-

ment activities) to be published on days having relatively high engagement intensity. More bud-

get allocation for social media analytics affects the content development activities which in turn,

forces the firm to use fewer advanced features on posts to be published during the days with less

engagement intensity. In our case study, Tuesdays and Thursdays receive the highest engagement

intensity, the firm may utilize more advanced features on posts to be published during those days.

Similar to the above setting, we run extensive computation experiments for Facebook. Ta-

bles C.15 and C.16 display the results for Facebook shares and comments, respectively. We vi-

sually depict the results for both Facebook shares and comments on the right panel of Figure 4.5.
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Since U for Facebook remained constant at 18, we do not display it in the figure. Unlike the rela-

tionship between likes and advanced features on Instagram, both engagement types on Facebook

follow a convex relationship with advanced features. Table C.12 shows that f ∗k = 5 minimizes the

shares. Additionally, the engagement at fk = 12 is substantially higher than that at fk = 0. Ta-

ble C.15 shows the results for Facebook shares. The firm utilizes fk = u2 (or, 18 for Facebook)

advanced features on posts to be published other than the weekends. Among week days, posts

scheduled for Tuesdays and Thursdays continue to include u2 advanced features even at a very

high value of e. This is not surprising for Facebook shares since the firm receives more benefits

by not using any advanced features than fk ≤ 11. This is evident from the fact that at least one

post during each planning horizon is assigned 12 advanced features. We observe a similar pattern

for Facebook comments in Table C.16, where the minimum engagement occurs at f ∗k = 6. User

engagement at fk = 13 substantially exceeds the engagement at fk = 0. The results conform our

theoretical insights for the convex relationship between advanced features and Facebook shares

(respectively, comments).

Managerial Insight 3: The relationship between the user engagement measured by the number of

shares (respectively, comments) on Facebook and advanced features reveals a convex pattern. The

engagement decreases initially with the number of advanced features and rises after exceeding cer-

tain thresholds. For example, in the furniture industry context, the number of shares (respectively,

comments) increases as advanced features exceed 5 (respectively, 6).

Managerial Insight 4: When the budget tightens, the firm may use more advanced features on

posts for days with higher engagement intensity and less or zero advanced features on posts for

days with lower engagement intensity.

Facebook results offer interesting insights. Under a sufficient budget, the firm uses the maxi-

mum number of advanced features on its posts. When the budget tightens, the maximum number

of advanced features are placed on the posts for days with higher engagement intensity days, and

other posts have less or zero number of advanced features. In cases with no advanced features on

a post, the firm may place only the focal features and add further textual information.
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Next, we run the numerical analysis for the case with multiple engagement types combined for

a single platform. The model can be run by assigning weights to the engagement types. We assign

Facebook shares and comments two different weights of 0.7 (µ2) and 0.3 (µ3), respectively and an-

alyze the solutions. We present a combined formulation for Facebook in Problem LSSMf in Ap-

pendix C.2. There are two major differences between ProblemsLSSMf andLSSMs(Cases2−3):

(i) the addition of index m to denote the engagement type, (ii) the engagement weight variables µ2

and µ3, and (iii) gmj , the enumerated engagement values for each fk. The number of simple and

advanced features are platform dependent but engagement type independent.

The results are presented in Table C.17. Since the engagement types are from the same plat-

form, the number of features, both simple and advanced, the effort U , and the upper limits for

both features remain common. x1k and x2k refer to the engagement from shares and comments,

respectively. Our model, LSSMf efficiently selects the number of advanced features for the posts

to be published on a platform to achieve the maximum total weighted user engagement across all

engagement types, depending on their weights.

For a platform with multiple engagement types, the firm must focus on the engagement metrics

they prefer. For example, sharing helps in reaching out to more target audiences. On the other hand,

the firm can gather more information on user sentiment through comments. The firm can set the

appropriate weights depending on the impact of each engagement type on their business context.

Since our model, LSSMf incorporates both engagement types, the firm can derive maximum

benefits by following our approach. In the next subsection, we present the generalized problem,

including all platforms and engagement types in a single formulation.

4.4.3 Multiple Platforms and Multiple Engagement Types - Generalized Problem

Firms desire their presence across multiple social media platforms in order to reach varieties of

users. Moreover, users also retrieve information from multiple platforms (Zhou et al. 2015). Thus,

firms need comprehensive social media marketing management strategies by considering multiple

platforms for getting the maximum user engagement through their organic posts. This raises the

following key challenging aspects that must be incorporated into the generalized model.
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• Modalities of engagement may differ within and across the platforms. The engagement

types signal the degree of interest of a user. For example, a user’s degree of interest on a post

through comments are highly valued than likes within a platform.

• Our single platform analysis shows that inclusion of the number of advanced features in

a post have opposite influences on user engagement in different platforms. For example,

Facebook and Instagram users have differing engagement levels in viewing the advanced

features in a post. We include this aspect into the generalized problem.

• A firm’s content publication across platforms is a significant lever in reaching out to a larger

audience and impacting user engagement. Thus, the firm goal is to achieve the highest pos-

sible overall engagement from all platforms. This requires a standardized approach of incor-

porating above mentioned aspects of different platforms within a multi-platform framework

to achieve the highest benefits.

In the previous approach, we show that the firm solves its problem by running the model indi-

vidually for each platform and combining engagement types within it. However, such an approach

may be suboptimal as the budget allocation across the platforms must be determined optimally.

Thus, we develop here the generalized problem with the multiple platforms and multiple engage-

ment types. The firm’s objective is to maximize the overall user engagement across multiple plat-

forms during a planning horizon.

Firms create content for a post on social media platforms to advertise their products and often

customize the content of a post with modifications in multiple platforms, saving them content

creation costs substantially and letting them reach out to their audience faster. While reusing the

same content of a post, a firm may boost its brand messaging. However, such cross-posting efforts

may not yield benefits in terms of user engagement since each platform has its own characteristics.

Our model also captures the customization approach by tailoring the number of features on posts

to be published on different platforms.

In the multiple platform problem, we distinguish different user engagement types via the pa-
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rameter zlm, which represents the importance and impact of the platform and its engagement types

on the firm. Besides assigning weights for days of a week, this parameter differentiates platforms

and their engagement types. zlm depends on the user-base for each platform l, vl and the weight

of an engagement type, µlm. We follow the model developed by Aichner and Jacob (2015), where

they describe two metrics - social media impact factor (SMIF) and social media use (SMU). The

authors calculate SMIF of every platform l by dividing the active users of platform l to the total

active users across platforms, V =
∑2

l=1 vl. We use vl/V to represent SMIF and estimate it from

the firm’s social media accounts. Next, SMU of each platform is measured by computing the user

reactions through engagement types. For each platform, they compare different engagement types

and assign weights accordingly. For example, one share is ten times more valuable than one like

and twice the value of a comment on Facebook. We capture the engagement weights within each

platform. Thus, we construct zlm using vl and µm and present them in Table 4.6. It is obvious that

we set z1,2 = z1,3 = 0 and z2,1 = 0.

Table 4.6: Platform and engagement weights

Coefficients
Instagram (l = 1) Facebook (l = 2)
Likes (m = 1) Shares (m = 2) Comments (m = 3)

Platform engagement weight v1
V

v2
V

v2
V

Engagement weight µ11 = 1.0 µ22 = 0.7 µ23 = 0.3

(Engagement+ Platform) z1,1 = µ11(v1
V ) z2,2 = µ22(v2

V ) z2,3 = µ23(v2
V )

weight, zlm

In the generalized model, we optimize the user engagement across platforms with the objective

of creating a template for content designers to develop different posts for a planning horizon. With

the design parameters across the platform in hand (e.g., the number of focal and advanced features

to be included in the post for each platform), designers can choose to customize their content while

creating posts for different platforms. We continue with our assumption that the firm publishes

different posts for different days/platforms. However, note that the firm publishes one post per
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day for each platform. Thus, the variables representing features, slk and flk are engagement type

independent.

Problem SMMG:

Max Πg =
L∑
l=1

M∑
m=1

K∑
k=1

zlmwkxlmk

Subject to:

a
∑L

l=1

∑K
k=1(slk + flk) + e

∑L
l=1 Ul + LCf ≤ B (4.17)

xlmk = blm + βlmslk + ζlmflk + ηlmf
2
lk,∀k; ∀l; ∀m (4.18)

slk ≤ u1l, ∀k; ∀l (4.19)

flk ≤ Ul, ∀k; ∀l (4.20)

U ≤ u2l, ∀k, ∀l (4.21)

slk ≥ qlk, ∀k; ∀l (4.22)

xlmk, slk, flk, Ul : Integer variable (≥ 0), ∀l; ∀m; ∀k (4.23)

Constraint set (4.17) limits the three cost parameters under the total budget, similar to the single

platform and single engagement type case although with platform (l) notations. In Constraint

set (4.18), we associate user engagement with our empirical results for each platform l and user

engagement m. However, the features are independent of m. Constraint sets (4.19) and (4.20)

restrict the simple and advanced features within their upper bound and the decision variable Ul,

respectively. In Constraint (4.21), we restrict the decision variable Ul under the upper bound of

advanced features u2l for each platform l. We set the focal products(s) criterion through Constraint

set (4.22). In Constraint set (4.23), we define the nonnegativity constraints.

We follow a similar approach we used for the single platform formulations and linearize Con-

straint (4.18) and present the linear version LSMMG of SMMG in Appendix C.2. We linearize

the nonlinear Constraint (4.18) by using Constraints (C.21) and (C.22). There are substantial
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differences between the linearized general model LSMMG and the single platform combined for-

mulation LSMMf . The binary variable, yl,k,j now depends on the platform l since the firm can

vary the number features on content across platforms. Depending on the convex or concave rela-

tionships between advanced features and engagement, the firm can either use the upper bound on

the advanced features or the optimal advanced features, represented by J l. For example, J l take

the values of f ∗l=1,k for Instagram and u2,l=2 for Facebook. The enumerated values, glmj depend on

both platform and engagement types.

4.4.3.1 Numerical Analysis - Generalized Framework.

Figure 4.6: Multiple platform analysis

Next, we run LSSMG and present the numerical results in Table C.18. In our example, the

user-base on Facebook is relatively higher than that of Instagram. We assign 100000 and 80000

users to Facebook and Instagram, respectively, which are scaled numbers based on our data. For
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ease of exposition, we kept qk similar across two platforms and set a budget of $12000, which is

within the range of firms’ social media budgets as discussed earlier. Furthermore, consistent with

our single platform results, we assume the same engagement intensities across the days within the

planning horizon. The generalized problem is unique for two more reasons - (i) the functional

relationship between engagement-feature is different across multiple platforms (ii) the number of

advanced features to be included in a post is different across multiple platforms. We find that

as the costs of analytics increase, the number of advanced features on Instagram posts reduces

steadily while Facebook posts include the maximum number of advanced features. In the case

study at furniture company, limited budget affects Instagram posts, primarily because Instagram

has a lower user-base as compared to Facebook.

We illustrate the results in Figure 4.6. The left and right graphics on the top panel illustrate the

engagement levels and U on Instagram and Facebook, respectively. Facebook comments remain

the same, and therefore we omit them in Figure 4.6. As e increases, likes and U for Instagram show

a downward curve. On the other hand, shares on Facebook increase moderately. Consequently,

overall weighted engagement across two platforms declines as e increases.

Managerial Insight 6: The firm must focus on the overall user engagement across the platforms

and allocate large portion of the budget on the platform that offers high engagement. The number

of advanced features for posts at low engagement platform is sensitive to the per unit variable

cost of analytics (e). As this cost increases, the number of advanced features on posts for low

engagement platform reduces. Thus, the firm must prioritize the platforms according to the user

engagement and allocate accordingly more advanced features for posts to be placed at platforms

with high engagement. In the case study example, the furniture company obtains more overall

engagement by reducing advanced features in Instagram posts and maintaining high number of

advanced features on Facebook posts.

4.5 Extensions

In this section, we discuss relevant extensions of our model that we observe by running the

computational experiments. First, we compare two cases: our approach and a policy where the firm
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allocates budget solely based on the user-base of a platform. The latter policy is not uncommon

(HootSuite 2021). Second, we also discuss the engagement levels on Facebook with the number

of advanced features.

4.5.1 Comparison Against User-Base Budget Allocation

We consider a case where the allocation of budget are done according to a platform’s user-base

to maximize user engagement. The number of users are different across platforms. Therefore, a

firm may want to distribute their budget accordingly. This approach entails the separation of social

media analytics and content development by platforms. For presentation purpose, we report the

overall user engagement and the difference from the generalized linear model in Appendix C.19.

As can be seen, for every value of e, the average engagement is lower when budget is pre-allocated.

The difference is consistently within the range of 11-12%. Here, U1 and U2 represent the effort

levels on Instagram and Facebook, respectively (refer Appendix C.18). The firm fully exploits

social media analytics on both platforms and ignores the level of engagement. This produces sub-

optimal performances since the firm misses out the opportunity to prioritize content development

for Facebook and fails to gain higher overall engagement.

Managerial Insight 7: User-base focused budget allocation may produce sub-optimal perfor-

mance compared to our approach.

However, the results require a cautious explanation. First, increasing overall engagement across

platforms may not be ideal for a firm that solely wants to advertise on one platform. Additionally,

the firm may want to attract more users on their less popular platform, and a user-based-focused

budget allocation may negatively impact that strategy.

4.5.2 Facebook Engagement

The structural results show that Facebook users prefer either fewer or more features. Both

comments and shares show similar patterns. As observed from Tables C.15 and C.16, social media

analytics effort (U ) remain the same as budget tightens. However, in most cases, advanced features

on posts are either the maximum (18) or the minimum (0). Thus, the firm utilizes user insights
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and develops posts accordingly to obtain the highest possible engagement. Under more budget

restrictions, the firm obtains more benefits than not having any advanced features than having fewer

of them. The firm must exclusively focus on focal features and generate substantial engagement in

such a scenario.

4.6 Discussion and Conclusion

The popularity of social media platforms has opened up new opportunities for firms to adver-

tise their products and reach their target audience. These platforms facilitate real-time interactions

between social media posts and users, allowing firms to monitor and collect user feedback infor-

mation which has enormous operational value for the firms (Lee et al. 2018). Firms can use the

information to deliver better social media posts to users. However, developing posts is challenging.

A survey by Sebastian (2021) finds that only 40.6% of online users find the advertisements on so-

cial media platforms relevant. Social media marketing depends on relevant information and firms

are increasingly using advanced analytics tools such as deep learning algorithms to mine images

and uncover trending patterns (Linkfluence 2021). Thus, social media analytics has become an

essential tool to discover users’ preference that are valuable information for firms to design and

develop posts attractive to their users (ResearchAndMarket 2021).

Most companies today, irrespective of their sizes, are spending substantial resources on social

media platforms to gain competitive advantage. This includes spending more money to advertise

their products. Since the proliferation of multimedia social platforms, image-based content has

become instrumental in advertising products. For example, IKEA, a leading global furniture re-

tailer, constantly uses pictures with home decor to provide an integrated experience to its users.

This include having many features within an image, not just the focal product(s). Victor Bayata,

head of mobile solutions at IKEA, said “So it’s very important for us to understand these [people]

behaviors because that is how we start supporting them and bringing relevant communication. Our

ambition as a company is all about, again, bringing the customer a unique, relevant and integrated

experience that can allow us to engage."5 In this context, by utilizing social media analytics to de-

5https://www.retaildive.com/ex/mobilecommercedaily/ikea-exec-selling-through-instagram-creates-personalized-
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velop posts using appropriate features on the images, firms can improve user engagement on social

media platforms, which in turn, increases the potential future sales.

4.6.1 Managerial and Industry Implications

In this chapter, we analyze how social media analytics and content development activities can

be jointly utilized to deliver better posts for users to achieve higher engagement. We fill an impor-

tant gap in the literature by analyzing social media content development strategies using a data-

driven optimization framework and offering valuable insights. We develop an optimization model

that maximizes user engagement under a limited budget. Our model parameters and the functional

form of user engagement are estimated via an empirical analysis based on the data from Facebook

and Instagram. We develop insights into the following aspects: (i) the relationship between user

engagement and image features across platforms, (ii) the budget allocation for the competing costs

of social media analytics and content development activities in our model, and (iii) the budget

allocation and content development strategies on single and multiple platforms. Our work has

substantial managerial implications for designing social media content development strategies.

We derive parameters and the functional form of the relationship between user engagement

and image features from our empirical analysis. We use two different deep learning algorithms

and identify simple and advanced features in posts. Simple features define the image of the focal

product(s) to be advertised. Advanced features represent the additional features in a post that en-

hances the context of an advertised product to the users. Our empirical analysis show that these

additional features across platforms improve user engagement, although nonlinearly. We develop

technique to linearize this relationship in our optimization model. The relationship between user

engagement and advanced features are different across platforms, which is also captured in the

optimization model. We find a clear difference in user behavior across platforms where Insta-

gram and Facebook users prefer relatively low and high number of features in posts, respectively.

These findings show that a “one-size-fits-all" strategy does not work; firms must tailor their posts

according to the platforms’ user preferences.

user-experience
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We offer guidelines on developing social media posts by exploring the interaction between so-

cial media analytics and social media content development and model their costs in the optimiza-

tion framework. We guide how a firm can achieve the highest overall engagement as their budget

changes. Our models derive insights for both single and multiple social media platform strategies.

In the context of analyzing two platforms, we find that as budget tightens, the firm allocates fewer

advanced features on posts to be published (i) on days that exhibit relatively low engagement inten-

sity and (ii) on the platform which has cumulatively less user-base and engagement. This work can

be extended to three or more social media platforms without the loss of generality. Our numerical

analysis shows that a budget allocation policy solely based on a platform’s user-base produces sub-

optimal performance compared to our model solution, which considers user-base and engagement

intensity together.

We now discuss some additional results obtained in our empirical analysis and their implication

to practice. Even though the following discussions do not claim causality, they are substantially

related to social media marketing. First, the post interval or the duration between two succes-

sive posts is negatively associated with user engagement across all platforms. Given the dynamic

nature of social media advertising and competition among marketers to seek user attention, infre-

quent social media activity provides negative outcomes. Users may disengage because of untimely

information and no communication. Thus, firms should frequently publish posts on their social

media accounts. Second, different platforms have different user preferences. For example, Insta-

gram users do not like more features in an image but prefer more textual information, as evidenced

from the positive relationship between word count of a post on Instagram and the number of likes.

In contrast, Facebook users are attracted to high number of features and less textual details, re-

vealed by the negative association between word count and shares and comments on Facebook.

Finally, we also observe how image color properties can influence engagement. Saturation refers

to the strength of color present within a picture and it negatively impacts engagement on Facebook.

Since Facebook users prefer more features, images with high saturation levels may lead to negative

outcomes.
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4.6.2 Limitations and Future Research

We present some limitations of this chapter which can open up exciting future research avenues.

First, we collected data from Instagram and Facebook from the accounts of leading furniture firms

and used the pre-trained deep learning models to analyze them. The parameters and the functional

form of engagement are both derived from the empirical results based on that data. While our op-

timization framework is generalizable for other industries, future research may examine multiple

datasets from different industries and extend the application domain. Second, we use the number

of features of images along with other relevant post information such as textual descriptions, im-

age color properties, and post time and analyze user engagement. Further research can classify

different features or use clustering properties to determine a particular feature’s role in engage-

ment. However, such a study may face challenges in specifying the class of features, which is

a complex and subjective task and requires substantial time and effort. Third, our optimization

model does not directly incorporate the relationship between textual information and image fea-

tures. We show that they act differently on different platforms. Future studies may include this

relationship in social media user engagement research. Finally, for this work, we do not focus

on algorithmic development, and therefore, use pre-trained models to illustrate the social media

analytics utility. Studies may consider developing and tuning pre-trained models and also create

comparative research works.
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5. CONCLUSION

In my dissertation, I analyze challenging and practically relevant operational efficiency issues

in service organizations. I specifically explore the resource utilization and planning problems in

e-commerce or online retailing, healthcare, and social media advertising domains. Motivated by

the order fulfillment challenges faced by online retailing managers, my first essay specifically

investigates the approaches to allocate safety stock in online distribution networks. The need and

desire to continually reduce operating costs while balancing inventory and transportation costs is

a common challenge online retailers face worldwide. Additionally, demand uncertainty, coupled

with the size of their networks, makes it more difficult for online retailers to systemically allocate

safety stock at the right place and at the right time.

Considering demand uncertainty and network size, the generalized formulation of safety stock

and transshipment model can efficiently allocate safety stock by reducing expensive transship-

ments. However, the current state-of-the-art MIP software cannot solve instances with a large

number of fulfillment centers within a reasonable amount of time. Therefore, my approach em-

phasizes reducing the complexity associated with safety stock planning. For example, by creating

clusters of fulfillment centers, managers can holistically administer a large network of FCs with

ease. This approach is consistent with the industry practice of grouping nearby FCs while main-

taining control over every individual FC as closely as possible. The cluster-based approach helps

in storing inventory at the right place and can result in cost-effective and faster delivery. I also val-

idate the efficiency of my approach, and the proposed PASS provides solutions reasonably close to

the optimum for small, medium, and larger networks.

This study fills a gap in the online retailing and inventory management literature by proposing

a new and practical model-driven solution approach for safety stock allocation. Despite substantial

differences among online retailers in terms of inventory allocation and shipment strategies, the

proposed method offers an easy-to-implement safety stock allocation process intending to reduce

excess operational costs. Even 1-2% of savings in transportation may result in significant savings.

138



With an increasing trend in online shopping worldwide, the net savings can be significant, and the

benefits can be passed on to the consumers.

My second essay explains the characteristics of ACOs in terms of their care delivery through

provider composition and experience that affect their performance. It is particularly significant

since the rising health expenditure is one of the major concerns for policymakers in the US.

The healthcare system suffers from a fragmented nature of care under fee-for-service agreements,

which results in excessive waste and duplicate tests due to the low level of coordination among

the health providers. Under the ACA 2010, ACOs were created to tackle the issue of increasing

healthcare costs while providing a high quality of care through a coordinated system across health-

care providers. The ACO model has been widely implemented across the country during the past

decade with participation from both public and private payers. Over time, the ACOs have brought

more patients under their umbrella, and since 2017, the net savings have increased. However,

healthcare spending, specifically Medicare spending, which accounts for the health expenditure of

older people and young people with long-term disabilities, is likely to increase over time due to

several factors, including population aging.

PCPs are the gatekeepers in healthcare delivery and ACOs are modeled as a PCP-centered

healthcare unit forming a network of specialists, hospitals, and nursing facilities. However, there

is an acute shortage of PCPs. In the words of Dr. Adrian Billings, chief medical officer for

Preventative Care Health Services, Texas - “That means sicker patients, that means more costly or

care. That means less productivity. That means more death.” The second essay first analyzes how

ACOs can utilize non-PCP workforce and the implications on their performance. While specialists

are not inexperienced in primary care services, they may not offer services similar to an expert PCP.

This dissimilarity may reflect on financial and quality performance as ACOs gain more experience

as well as move to a higher level of risk-sharing. My results confirm that delivering primary care

through specialists is financially unsustainable and does not result in better quality. In the short-

term, ACOs can utilize them to deliver primary care services to extend their care to more people

and prevent costlier healthcare services. On the other hand, NPs can become beneficial in achieving
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long-term and short-term ACO objectives.

I also analyze how experience plays a role in the ACO performance. The data and analysis

reveal that ACOs may focus more on savings in the initial phases under a risk model and gradually

consider improving quality as they gain more experience. The results suggest that ACO perfor-

mance varies across different stages. Additionally, the relationship between ACO service delivery

through specialists and NPs and performance may vary with ACO experience. Overall, these find-

ings provide valuable insights for managing the ACO model better, both by ACOs themselves and

payers such as Medicare.

This study on ACOs makes several contributions to the HOM literature by analyzing the an-

tecedents of ACO performance and their implications. To the best of my knowledge, this work is

the first to focus on the understudied relationship between ACO service delivery and experience

on ACO performance and how ACO experience moderates the relationship between service de-

livery and performance. I operationalize ACO service delivery via provider composition, which

consists of the primary care services provided through specialists and NPs. This operationaliza-

tion of service delivery focuses on how ACOs utilize their non-PCP workforce to deliver care and

maintain access to care for their patients. I focus on these two characteristics in their short-term

and long-term implications. While the data used in this study predate the new “Pathways to Suc-

cess” program launched by the CMS on July 2019, the implications are still applicable. This new

program still maintains the core of the ACO model. However, it requires ACOs to take up more

resposibility (or downside risk contract) sooner than before. My questions are pertinent in the

general ACO network model and the findings can help in the “Pathways to Success” program.

My third essay explores how social media analytics and content development can be jointly

utilized to deliver better image content to users to achieve higher engagement. This chapter fills

an important gap in the literature by analyzing social media content development strategies using

a data-driven optimization framework and offering insights into a social media content ecosystem.

I develop an optimization model that maximizes user engagement under budget constraints. The

model parameters and the functional form of user engagement are estimated via an empirical anal-

140



ysis based on the data from Facebook and Instagram. I show insights on (i) user engagement and

image feature relationships across platforms, (ii) social media analytics and content development

costs in the model, and (iii) insights on single and multiple platforms. This work has substantial

managerial implications for designing social media content development strategies. I also discuss

some additional results from the empirical analysis.

I derive parameters and the functional form of engagement from the empirical analysis. This

chapter utilizes two different deep learning algorithms and operationalize simple and advanced

features. Advanced features represent the additional features in an image that explains the context

of an advertised product to the users. The empirical analysis show that these additional features

across platforms improve user engagement, although nonlinearly. I linearize the relationship from

the empirical results and employ in the optimization model. The relationship between engagement

and advanced features are different across platforms, which is also captured in the optimization

model. I find a clear difference in user behavior across platforms where Instagram and Facebook

users prefer relatively low and high number of features in image posts, respectively. These findings

show that a “one-size-fits-all" strategy does not work; firms must tailor their content according to

the platforms’ user preferences.

I also find that as budget tightens, the firm allocates fewer advanced features on posts to be

published (i) on days that exhibit relatively low engagement intensity and (ii) on platform which

has cumulatively less user-base and engagement. Without the loss of generality, this work can be

extended to three or more social media platforms. I numerically show that a budget allocation

policy solely based on a platform’s user-base produces sub-optimal performance compared to the

framework, which considers user-base and engagement intensity together.

Social media marketing depends on relevant information and firms are increasingly using ad-

vanced analytics tools such as deep learning algorithms to mine images and uncover trending

patterns. My work sheds light on the social media marketing landscape and identifies factors rel-

evant to user engagement under a firm’s budget allocation to develop the appropriate content to

be posted on social media platforms. I offer guidelines on developing image content by exploring
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the interaction between social media analytics and social media content development and model

their costs in the optimization framework. The numerical analysis exhibits the changing levels user

engagement according to the changing costs of social media analytics.

In conclusion, my dissertation focuses on multiple industries and utilizes multiple methods

- econometric method, stochastic optimization, and data-driven optimization to analyze the effi-

ciency problems in online retailing, healthcare, and social media advertising. The research works

contribute to the growing areas in OM, explore managerially relevant questions, and offer action-

able guidelines. I believe that the findings discussed in the dissertation will enhance the service

organizations by making them more efficient.
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APPENDIX A

SAFETY STOCK ALLOCATION IN AN ONLINE RETAILING NETWORK: A STOCHASTIC

OPTIMIZATION APPROACH

Table A.1: Decision variables for Problem MIP2FC when z =
√

5 (two FC unequal variance, case
1: 1/3 ≥ δ ≥ 2/15)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
1 µ2d1-2µσ 0 µ2d2 0 0
2 µ2d1-4µσ 0 µ2d2 0 0
3 µ2d1-6µσ 0 µ2d2 0 0
4 µ2d1 0 µ2d2 0 0
5 µ2d1+2µσ 0 µ2d2 0 0
6 µ2d1+4µσ 0 µ2d2 0 0
7 µ2d1+6µσ 0 µ2d2 µσ( 5

3
− 5δ) µσ + 0

8 µ2d1-2µσ 0 µ2d2-µσ 0 0
9 µ2d1-4µσ 0 µ2d2-µσ 0 0
10 µ2d1-6µσ 0 µ2d2-µσ 0 0
11 µ2d1 0 µ2d2-µσ 0 0
12 µ2d1+2µσ 0 µ2d2-µσ 0 0
13 µ2d1+4µσ 0 µ2d2-µσ 0 0
14 µ2d1+6µσ 0 µ2d2-µσ µσ( 8

3
− 5δ) 0

15 µ2d1-2µσ 0 µ2d2-2µσ 0 0
16 µ2d1-4µσ 0 µ2d2-2µσ 0 0
17 µ2d1-6µσ 0 µ2d2-2µσ 0 0
18 µ2d1 0 µ2d2-2µσ 0 0
19 µ2d1+2µσ 0 µ2d2-2µσ 0 0
20 µ2d1+4µσ 0 µ2d2-2µσ 0 0
21 µ2d1+6µσ 0 µ2d2-2µσ µσ( 8

3
− 5δ) 0

22 µ2d1-2µσ 0 µ2d2-3µσ 0 0
23 µ2d1-4µσ 0 µ2d2-3µσ 0 0
24 µ2d1-6µσ 0 µ2d2-3µσ 0 0
25 µ2d1 0 µ2d2-3µσ 0 0
26 µ2d1+2µσ 0 µ2d2-3µσ 0 0
27 µ2d1+4µσ 0 µ2d2-3µσ 0 0
28 µ2d1+6µσ 0 µ2d2-3µσ µσ( 8

3
− 5δ) 0

29 µ2d1-2µσ µσ(5δ − 2
3

) µ2d2+µσ 0 0
30 µ2d1-4µσ µσ(5δ − 2

3
) µ2d2+µσ 0 0

31 µ2d1-6µσ µσ(5δ − 2
3

) µ2d2+µσ 0 0
32 µ2d1 µσ(5δ − 2

3
) µ2d2+µσ 0 0

33 µ2d1+2µσ µσ(5δ − 2
3

) µ2d2+µσ 0 0
34 µ2d1+4µσ µσ(5δ − 2

3
) µ2d2+µσ 0 0

35 µ2d1+6µσ 0 µ2d2+µσ 0 µσ( 8
3
− 5δ) + µσ(5δ − 2

3
)

36 µ2d1-2µσ µσ( 1
3

+ 5δ) µ2d2+2µσ 0 0

37 µ2d1-4µσ µσ( 1
3

+ 5δ) µ2d2+2µσ 0 0
38 µ2d1-6µσ µσ( 1

3
+ 5δ) µ2d2+2µσ 0 0

39 µ2d1 µσ( 1
3

+ 5δ) µ2d2+2µσ 0 0
40 µ2d1+2µσ µσ( 1

3
+ 5δ) µ2d2+2µσ 0 0

41 µ2d1+4µσ µσ(5δ − 2
3

) µ2d2+2µσ 0 0 + µσ

42 µ2d1+6µσ 0 µ2d2+2µσ 0 µσ( 8
3
− 5δ) + µσ( 1

3
+ 5δ)

43 µ2d1-2µσ µσ( 4
3

+ 5δ) µ2d2+3µσ 0 0
44 µ2d1-4µσ µσ( 4

3
+ 5δ) µ2d2+3µσ 0 0

45 µ2d1-6µσ µσ( 4
3

+ 5δ) µ2d2+3µσ 0 0
46 µ2d1 µσ( 4

3
+ 5δ) µ2d2+3µσ 0 0

47 µ2d1+2µσ µσ( 4
3

+ 5δ) µ2d2+3µσ 0 0
48 µ2d1+4µσ µσ(5δ − 4

3
) µ2d2+3µσ 0 0 + 2µσ

49 µ2d1+6µσ 0 µ2d2+3µσ 0 µσ( 8
3
− 5δ) + µσ( 4

3
+ 5δ)
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Table A.2: Decision variables for Problem MIP2FC when z =
√

5 (two FC unequal variance, case
2: 0 ≤ δ < 2/15)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
1 µ2d1-2µσ 0 µ2d2 0 0
2 µ2d1-4µσ 0 µ2d2 0 0
3 µ2d1-6µσ 0 µ2d2 0 0
4 µ2d1 0 µ2d2 0 0
5 µ2d1+2µσ 0 µ2d2 0 0
6 µ2d1+4µσ 0 µ2d2 µσ( 2

3
− 5δ) 0

7 µ2d1+6µσ 0 µ2d2 µσ( 5
3
− 5δ) µσ + 0

8 µ2d1-2µσ 0 µ2d2-µσ 0 0
9 µ2d1-4µσ 0 µ2d2-µσ 0 0
10 µ2d1-6µσ 0 µ2d2-µσ 0 0
11 µ2d1 0 µ2d2-µσ 0 0
12 µ2d1+2µσ 0 µ2d2-µσ 0 0
13 µ2d1+4µσ 0 µ2d2-µσ µσ( 2

3
− 5δ) 0

14 µ2d1+6µσ 0 µ2d2-µσ µσ( 8
3
− 5δ) 0

15 µ2d1-2µσ 0 µ2d2-2µσ 0 0
16 µ2d1-4µσ 0 µ2d2-2µσ 0 0
17 µ2d1-6µσ 0 µ2d2-2µσ 0 0
18 µ2d1 0 µ2d2-2µσ 0 0
19 µ2d1+2µσ 0 µ2d2-2µσ 0 0
20 µ2d1+4µσ 0 µ2d2-2µσ µσ( 2

3
− 5δ) 0

21 µ2d1+6µσ 0 µ2d2-2µσ µσ( 8
3
− 5δ) 0

22 µ2d1-2µσ 0 µ2d2-3µσ 0 0
23 µ2d1-4µσ 0 µ2d2-3µσ 0 0
24 µ2d1-6µσ 0 µ2d2-3µσ 0 0
25 µ2d1 0 µ2d2-3µσ 0 0
26 µ2d1+2µσ 0 µ2d2-3µσ 0 0
27 µ2d1+4µσ 0 µ2d2-3µσ µσ( 2

3
− 5δ) 0

28 µ2d1+6µσ 0 µ2d2-3µσ µσ( 8
3
− 5δ) 0

29 µ2d1-2µσ 0 µ2d2+µσ 0 0
30 µ2d1-4µσ 0 µ2d2+µσ 0 0
31 µ2d1-6µσ 0 µ2d2+µσ 0 0
32 µ2d1 0 µ2d2+µσ 0 0
33 µ2d1+2µσ 0 µ2d2+µσ 0 0
34 µ2d1+4µσ 0 µ2d2+µσ µσ( 2

3
− 5δ) 0

35 µ2d1+6µσ 0 µ2d2+µσ µσ( 2
3
− 5δ) 2µσ + 0

36 µ2d1-2µσ µσ( 1
3

+ 5δ) µ2d2+2µσ 0 0

37 µ2d1-4µσ µσ( 1
3

+ 5δ) µ2d2+2µσ 0 0
38 µ2d1-6µσ µσ( 1

3
+ 5δ) µ2d2+2µσ 0 0

39 µ2d1 µσ( 1
3

+ 5δ) µ2d2+2µσ 0 0
40 µ2d1+2µσ µσ( 1

3
+ 5δ) µ2d2+2µσ 0 0

41 µ2d1+4µσ 0 µ2d2+2µσ 0 µσ( 2
3
− 5δ) + µσ( 1

3
+ 5δ)

42 µ2d1+6µσ 0 µ2d2+2µσ 0 µσ( 8
3
− 5δ) + µσ( 1

3
+ 5δ)

43 µ2d1-2µσ µσ( 4
3

+ 5δ) µ2d2+3µσ 0 0
44 µ2d1-4µσ µσ( 4

3
+ 5δ) µ2d2+3µσ 0 0

45 µ2d1-6µσ µσ( 4
3

+ 5δ) µ2d2+3µσ 0 0
46 µ2d1 µσ( 4

3
+ 5δ) µ2d2+3µσ 0 0

47 µ2d1+2µσ µσ( 4
3

+ 5δ) µ2d2+3µσ 0 0
48 µ2d1+4µσ 0 µ2d2+3µσ 0 µσ( 2

3
− 5δ) + µσ( 4

3
+ 5δ)

49 µ2d1+6µσ 0 µ2d2+3µσ 0 µσ( 8
3
− 5δ) + µσ( 4

3
+ 5δ)
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Table A.3: Decision variables for Problem MIP2FC for k (two FC unequal variance, case 1: δ =
0)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
1 µ2d1-kµσ 0 µ2d2 0 0
2 µ2d1-2kµσ 0 µ2d2 0 0
3 µ2d1-3kµσ 0 µ2d2 0 0
4 µ2d1 0 µ2d2 0 0
5 µ2d1+kµσ 0 µ2d2 0 0
6 µ2d1+2kµσ 0 µ2d2 µσ µσ(k − 1) + 0
7 µ2d1+3kµσ 0 µ2d2 µσ µσ(2k − 1) + 0
8 µ2d1-kµσ 0 µ2d2-µσ 0 0
9 µ2d1-2kµσ 0 µ2d2-µσ 0 0
10 µ2d1-3kµσ 0 µ2d2-µσ 0 0
11 µ2d1 0 µ2d2-µσ 0 0
12 µ2d1+kµσ 0 µ2d2-µσ 0 0
13 µ2d1+2kµσ 0 µ2d2-µσ 2µσ µσ(k − 2) + 0 [k>2; no lost sales for k≤2]
14 µ2d1+3kµσ 0 µ2d2-µσ 2µσ µσ(2k − 2) + 0
15 µ2d1-kµσ 0 µ2d2-2µσ 0 0
16 µ2d1-2kµσ 0 µ2d2-2µσ 0 0
17 µ2d1-3kµσ 0 µ2d2-2µσ 0 0
18 µ2d1 0 µ2d2-2µσ 0 0
19 µ2d1+kµσ 0 µ2d2-2µσ 0 0
20 µ2d1+2kµσ 0 µ2d2-2µσ 3µσ µσ(k − 3) + 0 [k>3; no lost sales for k≤3]
21 µ2d1+3kµσ 0 µ2d2-2µσ 3µσ µσ(2k − 3) + 0
22 µ2d1-kµσ 0 µ2d2-3µσ 0 0
23 µ2d1-2kµσ 0 µ2d2-3µσ 0 0
24 µ2d1-3kµσ 0 µ2d2-3µσ 0 0
25 µ2d1 0 µ2d2-3µσ 0 0
26 µ2d1+kµσ 0 µ2d2-3µσ 0 0
27 µ2d1+2kµσ 0 µ2d2-3µσ 4µσ µσ(k − 4) + 0 [k>4; no lost sales for k≤4]
28 µ2d1+3kµσ 0 µ2d2-3µσ 4µσ µσ(2k − 4) + 0
29 µ2d1-kµσ 0 µ2d2+µσ 0 0
30 µ2d1-2kµσ 0 µ2d2+µσ 0 0
31 µ2d1-3kµσ 0 µ2d2+µσ 0 0
32 µ2d1 0 µ2d2+µσ 0 0
33 µ2d1+kµσ 0 µ2d2+µσ 0 0
34 µ2d1+2kµσ 0 µ2d2+µσ 0 kµσ + 0
35 µ2d1+3kµσ 0 µ2d2+µσ 0 2kµσ + 0
36 µ2d1-kµσ µσ µ2d2+2µσ 0 0
37 µ2d1-2kµσ µσ µ2d2+2µσ 0 0
38 µ2d1-3kµσ µσ µ2d2+2µσ 0 0
39 µ2d1 µσ µ2d2+2µσ 0 0
40 µ2d1+kµσ 0 µ2d2+2µσ 0 0 + µσ
41 µ2d1+2kµσ 0 µ2d2+2µσ 0 kµσ + µσ
42 µ2d1+3kµσ 0 µ2d2+2µσ 0 2kµσ + µσ
43 µ2d1-kµσ 2µσ µ2d2+3µσ 0 0
44 µ2d1-2kµσ 2µσ µ2d2+3µσ 0 0
45 µ2d1-3kµσ 2µσ µ2d2+3µσ 0 0
46 µ2d1 2µσ µ2d2+3µσ 0 0 [k > 2]
47 µ2d1+kµσ 0 µ2d2+3µσ 0 0+2µσ
48 µ2d1+2kµσ 0 µ2d2+3µσ 0 kµσ + 2µσ
49 µ2d1+3kµσ 0 µ2d2+3µσ 0 2kµσ + 2µσ
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Table A.4: Decision variables for Problem MIP2FC for k (two FC unequal variance, case 1:
0 < δ ≤ 1

k+1
)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
1 µ2d1-kµσ 0 µ2d2 0 0
2 µ2d1-2kµσ 0 µ2d2 0 0
3 µ2d1-3kµσ 0 µ2d2 0 0
4 µ2d1 0 µ2d2 0 0
5 µ2d1+kµσ 0 µ2d2 0 0
6 µ2d1+2kµσ 0 µ2d2 µσ − (k + 1)δµσ µσ(k − 1) + 0
7 µ2d1+3kµσ 0 µ2d2 µσ − (k + 1)δµσ µσ(2k − 1) + 0
8 µ2d1-kµσ 0 µ2d2-µσ 0 0
9 µ2d1-2kµσ 0 µ2d2-µσ 0 0
10 µ2d1-3kµσ 0 µ2d2-µσ 0 0
11 µ2d1 0 µ2d2-µσ 0 0
12 µ2d1+kµσ 0 µ2d2-µσ 0 0
13 µ2d1+2kµσ 0 µ2d2-µσ 2µσ − (k + 1)δµσ µσ(k − 2) + 0 [k>2; no lost sales for k≤2]
14 µ2d1+3kµσ 0 µ2d2-µσ 2µσ − (k + 1)δµσ µσ(2k − 2) + 0
15 µ2d1-kµσ 0 µ2d2-2µσ 0 0
16 µ2d1-2kµσ 0 µ2d2-2µσ 0 0
17 µ2d1-3kµσ 0 µ2d2-2µσ 0 0
18 µ2d1 0 µ2d2-2µσ 0 0
19 µ2d1+kµσ 0 µ2d2-2µσ 0 0
20 µ2d1+2kµσ 0 µ2d2-2µσ 3µσ − (k + 1)δµσ µσ(k − 3) + 0 [k>3; no lost sales for k≤3]
21 µ2d1+3kµσ 0 µ2d2-2µσ 3µσ − (k + 1)δµσ µσ(2k − 3) + 0
22 µ2d1-kµσ 0 µ2d2-3µσ 0 0
23 µ2d1-2kµσ 0 µ2d2-3µσ 0 0
24 µ2d1-3kµσ 0 µ2d2-3µσ 0 0
25 µ2d1 0 µ2d2-3µσ 0 0
26 µ2d1+kµσ 0 µ2d2-3µσ 0 0
27 µ2d1+2kµσ 0 µ2d2-3µσ 4µσ − (k + 1)δµσ µσ(k − 4) + 0 [k>4; no lost sales for k≤4]
28 µ2d1+3kµσ 0 µ2d2-3µσ 4µσ − (k + 1)δµσ µσ(2k − 4) + 0
29 µ2d1-kµσ (k + 1)δµσ µ2d2+µσ 0 0
30 µ2d1-2kµσ (k + 1)δµσ µ2d2+µσ 0 0
31 µ2d1-3kµσ (k + 1)δµσ µ2d2+µσ 0 0
32 µ2d1 (k + 1)δµσ µ2d2+µσ 0 0
33 µ2d1+kµσ (k + 1)δµσ µ2d2+µσ 0 0
34 µ2d1+2kµσ 0 µ2d2+µσ 0 kµσ+ (k + 1)δµσ + (k + 1)δµσ
35 µ2d1+3kµσ 0 µ2d2+µσ 0 2kµσ+ (k + 1)δµσ + (k + 1)δµσ
36 µ2d1-kµσ µσ + (k + 1)δµσ µ2d2+2µσ 0 0
37 µ2d1-2kµσ µσ + (k + 1)δµσ µ2d2+2µσ 0 0
38 µ2d1-3kµσ µσ + (k + 1)δµσ µ2d2+2µσ 0 0
39 µ2d1 µσ + (k + 1)δµσ µ2d2+2µσ 0 0
40 µ2d1+kµσ (k + 1)δµσ µ2d2+2µσ 0 0 + µσ
41 µ2d1+2kµσ 0 µ2d2+2µσ 0 (kµσ - (k + 1)δµσ) + (µσ + (k + 1)δµσ)
42 µ2d1+3kµσ 0 µ2d2+2µσ 0 (2kµσ - (k + 1)δµσ) + (µσ + (k + 1)δµσ)
43 µ2d1-kµσ 2µσ + (k + 1)δµσ µ2d2+3µσ 0 0
44 µ2d1-2kµσ 2µσ + (k + 1)δµσ µ2d2+3µσ 0 0
45 µ2d1-3kµσ 2µσ + (k + 1)δµσ µ2d2+3µσ 0 0
46 µ2d1 2µσ + (k + 1)δµσ µ2d2+3µσ 0 0 [k > 2]
47 µ2d1+kµσ (k + 1)δµσ µ2d2+3µσ 0 0+(2µσ + (k + 1)δµσ)
48 µ2d1+2kµσ 0 µ2d2+3µσ 0 (kµσ - (k + 1)δµσ) + (2µσ + (k + 1)δµσ)
49 µ2d1+3kµσ 0 µ2d2+3µσ 0 (2kµσ - (k + 1)δµσ) + (2µσ + (k + 1)δµσ)
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Table A.5: Decision variables for Problem MIP2FC for k (two FC unequal variance, case 2:
0 < δ ≤ k

k+1
)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
1 µ2d1-kµσ 0 µ2d2 0 0
2 µ2d1-2kµσ 0 µ2d2 0 0
3 µ2d1-3kµσ 0 µ2d2 0 0
4 µ2d1 0 µ2d2 0 0
5 µ2d1+kµσ 0 µ2d2 (k + 1)δµσ 0
6 µ2d1+2kµσ 0 µ2d2 µσ + (k + 1)δµσ µσ(k − 1) + 0
7 µ2d1+3kµσ 0 µ2d2 µσ + (k + 1)δµσ µσ(2k − 1) + 0
8 µ2d1-kµσ 0 µ2d2-µσ 0 0
9 µ2d1-2kµσ 0 µ2d2-µσ 0 0
10 µ2d1-3kµσ 0 µ2d2-µσ 0 0
11 µ2d1 0 µ2d2-µσ 0 0
12 µ2d1+kµσ 0 µ2d2-µσ (k + 1)δµσ 0
13 µ2d1+2kµσ 0 µ2d2-µσ 2µσ + (k + 1)δµσ µσ(k − 2) + 0 [k>2; no lost sales for k≤2]
14 µ2d1+3kµσ 0 µ2d2-µσ 2µσ + (k + 1)δµσ µσ(2k − 2) + 0
15 µ2d1-kµσ 0 µ2d2-2µσ 0 0
16 µ2d1-2kµσ 0 µ2d2-2µσ 0 0
17 µ2d1-3kµσ 0 µ2d2-2µσ 0 0
18 µ2d1 0 µ2d2-2µσ 0 0
19 µ2d1+kµσ 0 µ2d2-2µσ (k + 1)δµσ 0
20 µ2d1+2kµσ 0 µ2d2-2µσ 3µσ + (k + 1)δµσ µσ(k − 3) + 0 [k>3; no lost sales for k≤3]
21 µ2d1+3kµσ 0 µ2d2-2µσ 3µσ + (k + 1)δµσ µσ(2k − 3) + 0
22 µ2d1-kµσ 0 µ2d2-3µσ 0 0
23 µ2d1-2kµσ 0 µ2d2-3µσ 0 0
24 µ2d1-3kµσ 0 µ2d2-3µσ 0 0
25 µ2d1 0 µ2d2-3µσ 0 0
26 µ2d1+kµσ 0 µ2d2-3µσ (k + 1)δµσ 0
27 µ2d1+2kµσ 0 µ2d2-3µσ 4µσ + (k + 1)δµσ µσ(k − 4) + 0 [k>4; no lost sales for k≤4]
28 µ2d1+3kµσ 0 µ2d2-3µσ 4µσ + (k + 1)δµσ µσ(2k − 4) + 0
29 µ2d1-kµσ 0 µ2d2+µσ 0 0
30 µ2d1-2kµσ 0 µ2d2+µσ 0 0
31 µ2d1-3kµσ 0 µ2d2+µσ 0 0
32 µ2d1 0 µ2d2+µσ 0 0
33 µ2d1+kµσ 0 µ2d2+µσ (k + 1)δµσ 0
34 µ2d1+2kµσ 0 µ2d2+µσ (k + 1)δµσ kµσ + 0
35 µ2d1+3kµσ 0 µ2d2+µσ (k + 1)δµσ 2kµσ + 0
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Table A.6: Decision variables for Problem MIP2FC for k (two FC unequal variance, case 2a:
0 < δ < 1

k+1
)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
36 µ2d1-kµσ µσ − (k + 1)δµσ µ2d2+2µσ 0 0
37 µ2d1-2kµσ µσ − (k + 1)δµσ µ2d2+2µσ 0 0
38 µ2d1-3kµσ µσ − (k + 1)δµσ µ2d2+2µσ 0 0
39 µ2d1 µσ − (k + 1)δµσ µ2d2+2µσ 0 0
40 µ2d1+kµσ 0 µ2d2+2µσ 0 (k + 1)δµσ + (µσ − (k + 1)δµσ)
41 µ2d1+2kµσ 0 µ2d2+2µσ 0 (kµσ + (k + 1)δµσ) + (µσ − (k + 1)δµσ)
42 µ2d1+3kµσ 0 µ2d2+2µσ 0 (2kµσ + (k + 1)δµσ) + (µσ − (k + 1)δµσ)
43 µ2d1-kµσ 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0
44 µ2d1-2kµσ 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0
45 µ2d1-3kµσ 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0
46 µ2d1 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0 [k > 2]
47 µ2d1+kµσ 0 µ2d2+3µσ 0 (k + 1)δµσ + (2µσ − (k + 1)δµσ)
48 µ2d1+2kµσ 0 µ2d2+3µσ 0 (kµσ + (k + 1)δµσ) + (2µσ − (k + 1)δµσ)
49 µ2d1+3kµσ 0 µ2d2+3µσ 0 (2kµσ + (k + 1)δµσ) + (2µσ − (k + 1)δµσ)

Table A.7: Decision variables for Problem MIP2FC for k (two FC unequal variance, case 2b:
1

k+1
≤ δ < 2

k+1
)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
36 µ2d1-kµσ 0 µ2d2+2µσ 0 0
37 µ2d1-2kµσ 0 µ2d2+2µσ 0 0
38 µ2d1-3kµσ 0 µ2d2+2µσ 0 0
39 µ2d1 0 µ2d2+2µσ 0 0
40 µ2d1+kµσ 0 µ2d2+2µσ (k + 1)δµσ − µσ µσ + 0
41 µ2d1+2kµσ 0 µ2d2+2µσ (k + 1)δµσ − µσ (kµσ + µσ) + 0
42 µ2d1+3kµσ 0 µ2d2+2µσ (k + 1)δµσ − µσ (2kµσ + µσ) + 0
43 µ2d1-kµσ 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0
44 µ2d1-2kµσ 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0
45 µ2d1-3kµσ 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0
46 µ2d1 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0 [k > 2]
47 µ2d1+kµσ 0 µ2d2+3µσ 0 (k + 1)δµσ + (2µσ − (k + 1)δµσ)
48 µ2d1+2kµσ 0 µ2d2+3µσ 0 (kµσ + (k + 1)δµσ) + (2µσ − (k + 1)δµσ)
49 µ2d1+3kµσ 0 µ2d2+3µσ 0 (2kµσ + (k + 1)δµσ) + (2µσ − (k + 1)δµσ)
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Table A.8: Decision variables for Problem MIP2FC for k (two FC unequal variance, case 2c:
2

k+1
≤ δ < k

k+1
)

s es1 Xs
12 es2 Xs

21 Y s1 + Y s2
36 µ2d1-kµσ 0 µ2d2+2µσ 0 0
37 µ2d1-2kµσ 0 µ2d2+2µσ 0 0
38 µ2d1-3kµσ 0 µ2d2+2µσ 0 0
39 µ2d1 0 µ2d2+2µσ 0 0
40 µ2d1+kµσ 0 µ2d2+2µσ (k + 1)δµσ − µσ µσ + 0
41 µ2d1+2kµσ 0 µ2d2+2µσ (k + 1)δµσ − µσ (kµσ + µσ) + 0
42 µ2d1+3kµσ 0 µ2d2+2µσ (k + 1)δµσ − µσ (2kµσ + µσ) + 0
43 µ2d1-kµσ 2µσ − (k + 1)δµσ µ2d2+3µσ 0 0
44 µ2d1-2kµσ 0 µ2d2+3µσ 0 0
45 µ2d1-3kµσ 0 µ2d2+3µσ 0 0
46 µ2d1 0 µ2d2+3µσ 0 0 [k > 2]
47 µ2d1+kµσ 0 µ2d2+3µσ (k + 1)δµσ − 2µσ 2µσ + 0
48 µ2d1+2kµσ 0 µ2d2+3µσ (k + 1)δµσ − 2µσ (kµσ + 2µσ) + 0
49 µ2d1+3kµσ 0 µ2d2+3µσ (k + 1)δµσ − 2µσ (2kµσ + 2µσ) + 0

Table A.9: Missed transshipments between FC2 and FC3 for three FC case

s es1 es2 es3 Probability Transshipments
40 µ2d1+kµσ µ2d2+2µσ µ2d3 0.0056000 µσ
47 µ2d1+kµσ µ2d2+3µσ µ2d3 0.0005000 µσ
89 µ2d1+kµσ µ2d2+2µσ µ2d3-µσ 0.0035000 µσ
96 µ2d1+kµσ µ2d2+3µσ µ2d3-µσ 0.0003500 2µσ
138 µ2d1+kµσ µ2d2+2µσ µ2d3-2µσ 0.0009000 µσ
145 µ2d1+kµσ µ2d2+3µσ µ2d3-2µσ 0.0000880 2µσ
187 µ2d1+kµσ µ2d2+2µσ µ2d3-3µσ 0.0000880 µσ
194 µ2d1+kµσ µ2d2+3µσ µ2d3-3µσ 0.0000087 2µσ
250 µ2d1+kµσ µ2d2 µ2d3+2µσ 0.0056000 µσ
257 µ2d1+kµσ µ2d2-µσ µ2d3+2µσ 0.0035000 µσ
264 µ2d1+kµσ µ2d2-2µσ µ2d3+2µσ 0.0009000 µσ
271 µ2d1+kµσ µ2d2-3µσ µ2d3+2µσ 0.0000880 µσ
299 µ2d1+kµσ µ2d2 µ2d3+3µσ 0.0005500 µσ
306 µ2d1+kµσ µ2d2-µσ µ2d3+3µσ 0.0003500 2µσ
313 µ2d1+kµσ µ2d2-2µσ µ2d3+3µσ 0.0008800 2µσ
320 µ2d1+kµσ µ2d2-3µσ µ2d3+3µσ 0.0000087 2µσ
321 µ2d1+2kµσ µ2d2-3µσ µ2d3+3µσ 0.0000021 2µσ
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Table A.10: Performance analysis with 4 FCs across 2 clusters (
∑n

i=1 λi = 100)

Optimal Method PASS Difference
Cost λ1 λ2 λ3 λ4 Cost λ1 λ2 λ3 λ4 Diff Diff in (%)
147825 32 22 30 16 147845 36 19 32 13 20 0.013
147259 34 24 18 24 147340 37 23 16 24 81 0.055
147823 32 22 22 24 147847 35 19 25 21 24 0.016
147929 31 22 25 22 147958 36 18 28 18 29 0.019
148085 31 22 34 13 148089 34 20 35 11 5 0.003
147958 31 22 21 16 147965 33 21 22 24 7 0.005
147283 34 24 16 26 147293 39 23 15 23 9 0.006
147317 34 24 24 18 147344 38 22 24 16 27 0.018
148095 30 21 27 22 148134 32 20 28 20 39 0.026
146622 38 27 12 23 146638 49 23 11 17 16 0.011
147825 30 21 20 29 147905 34 19 23 24 79 0.053
148520 28 19 26 27 148572 30 20 27 23 52 0.035
147623 32 23 16 19 147674 34 23 16 27 52 0.035
147805 32 23 28 17 147825 37 19 31 13 21 0.014
147203 35 25 11 29 147205 40 24 10 26 1 0.001
146985 36 25 33 6 146987 37 32 25 6 2 0.001
148129 31 22 20 27 148135 32 21 20 27 6 0.004
147055 25 24 21 30 147057 25 25 21 29 2 0.001
147151 24 24 24 28 147151 24 25 24 27 0 0.000
146738 26 26 20 28 146750 26 26 20 28 12 0.008
146008 30 30 15 25 146010 31 30 15 24 2 0.001
148030 21 22 26 31 148033 22 22 26 30 3 0.002
147356 24 24 34 18 147356 24 24 34 18 0 0.000
147081 25 25 30 20 147083 25 25 30 20 2 0.001
146843 26 31 15 28 146843 27 31 16 26 0 0.000
148389 20 25 31 24 148390 21 24 30 25 0 0.000
147636 23 27 23 27 147638 23 27 23 27 2 0.001
146607 27 32 33 8 146609 27 39 27 7 1 0.001
147636 23 27 27 23 147636 23 27 27 23 0 0.000
147573 28 28 28 16 147575 27 29 28 16 2 0.001
148184 25 25 20 30 148186 25 25 21 29 1 0.001
147630 27 27 23 23 147632 28 26 23 23 2 0.001
147178 29 29 12 30 147220 33 28 10 29 42 0.029
147864 27 26 14 33 147867 28 26 15 31 3 0.002
146771 32 31 16 21 146772 32 32 17 19 1 0.001
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Table A.11: Performance analysis with 6 FCs across 2 clusters (
∑n

i=1 λi = 600)

Optimal PASS Difference
Cost λ1 λ2 λ3 λ4 λ5 λ6 Cost λ1 λ2 λ3 λ4 λ5 λ6 Diff Diff in (%)
228899 155 110 90 85 105 55 228979 139 133 82 93 93 60 80 0.034
226783 176 45 128 100 59 92 226881 154 60 132 104 72 78 98 0.042
228835 155 49 105 73 144 74 228909 156 65 79 148 57 95 73 0.031
229334 151 71 91 90 121 77 229419 151 76 89 109 91 84 85 0.036
230471 105 75 130 81 124 85 230562 165 70 81 103 106 75 91 0.038
229459 150 104 88 104 104 50 229547 152 108 85 94 108 53 88 0.037
227417 168 74 74 108 71 105 227492 171 80 55 120 54 120 75 0.032
227229 171 62 80 86 90 111 227299 171 50 89 120 66 104 70 0.030
230486 142 101 81 93 83 100 230552 144 112 64 103 64 113 66 0.027
227894 164 44 119 114 81 78 227996 164 48 106 118 81 83 102 0.043
227389 169 72 100 88 88 83 227499 170 50 110 120 64 86 110 0.047
227424 169 81 112 119 51 68 227449 172 86 102 120 43 77 25 0.011
229646 146 80 113 70 123 68 229738 150 83 97 107 89 74 92 0.039
211629 139 130 59 58 141 73 211760 145 108 77 138 77 55 131 0.059
213212 144 106 66 118 118 48 213321 178 82 56 118 118 48 109 0.049
213108 150 57 123 103 45 122 213218 178 48 90 118 54 112 110 0.050
211637 122 143 39 173 66 57 211733 125 106 75 178 49 67 96 0.044
211687 106 127 44 162 74 87 211790 118 96 62 164 55 105 103 0.047
211710 110 119 33 155 109 74 211805 112 86 66 160 74 102 95 0.043
211693 106 88 79 152 122 53 211796 108 62 98 155 87 90 103 0.047
211756 93 135 50 137 138 47 211853 98 98 78 137 100 89 97 0.044
211672 118 82 67 165 108 60 211777 116 60 90 169 77 88 105 0.048
211600 115 94 115 168 30 78 211699 122 66 134 174 48 56 99 0.045
211730 129 103 65 155 83 65 211818 130 78 92 154 68 78 88 0.040
211849 126 124 19 148 125 58 211945 127 91 90 150 98 44 96 0.043
211717 126 61 103 111 127 72 211817 130 92 78 138 104 58 100 0.045
211600 140 3 92 152 111 102 211701 144 20 79 171 100 86 101 0.046
211780 113 53 138 104 100 92 211875 117 71 106 138 78 90 95 0.043
211737 88 53 118 124 68 149 211858 139 58 103 132 70 98 121 0.055
212091 75 201 80 137 37 70 212196 134 114 62 162 46 82 105 0.048
211786 125 70 68 152 90 95 211879 143 90 51 175 91 50 93 0.042
211675 112 130 135 74 74 75 211770 134 114 62 162 46 82 95 0.043
211637 133 133 79 138 78 39 211724 150 134 62 125 62 67 87 0.040
211627 137 73 86 118 56 130 211725 159 68 65 136 73 99 98 0.045
211804 57 0 338 119 2 84 211910 151 67 130 128 44 80 106 0.048
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APPENDIX B

ACO SERVICE DELIVERY AND EXPERIENCE ON FINANCIAL AND QUALITY

PERFORMANCE - AN EMPIRICAL EXAMINATION

Table B.1: Regression results for Quality score

Variable name Description Type Mean SD Min Max
Savings rate savit Savings as a percentage of total benchmark expenditures computed by the CMS at the end of each performance year of ACO i in year t Dependent 0.016 0.047 -0.288 0.311
Quality score qualit A composite score of all quality measures computed by the CMS at the end of each performance year of ACO i in year t Dependent 0.944 0.066 0.174 1.000
PC by specialists pcspit Ratio of primary care services provided by specialists and primary care services provided by PCPs of ACO i in year t Independent 1.134 0.971 0.142 9.870
PC by NPs pcnpit Ratio of primary care services provided by NPs and primary care services provided by PCPs of ACO i in year t Independent 0.430 0.316 0.014 3.810
Experience (years) expit Experience of ACO i in year t Independent 2.507 1.897 0.000 7.000
Risk model riskit Risk model of ACO i in year t Independent 0.127 0.332 0.000 1.000
States stateit Number of states ACO i operates in year t Control 1.630 1.120 1.000 13.000
Log (Beneficiaries) benit Assigned beneficiaries of ACO i in year t Control 9.540 0.7470 5.020 12.380
PCPs pcpit Number of PCPs of ACO i in year t Control 232.280 315.210 2.000 5697.000
Specialists spit Number of specialists of ACO i in year t Control 397.199 662.070 0.000 12802.000
NPs npit Number of NPs of ACO i in year t Control 141.540 200.780 0.000 3957.000
Female genit Number of female beneficiaries of ACO i in year t Control 11205.390 11213.490 91.000 133423.000
outpatient outit Annualized, truncated, and weighted mean outpatient expenditure per beneficiary of ACO i in year t Control 2383.760 756.890 772.000 7431.000
inpatient init Annualized, truncated, and weighted mean inpatient expenditure per beneficiary of ACO i in year t Control 3420.890 943.316 1430.000 25878.000

Table B.2: Correlation of variables

Savings rate Quality score States Experience (years) Log (beneficiaries) PC by SP PC by NP PCPs SPs NPs Female Inpatient Outpatient
Savings rate 1.000
Quality score 0.031 1.000
States -0.016 0.017 1.000
Experience (years) 0.223 -0.230 -0.122 1.000
Log (beneficiaries) -0.068 0.083 0.063 0.114 1.000
PC by SP 0.013 -0.052 0.016 0.073 -0.004 1.000
PC by NP -0.102 -0.001 0.027 0.001 0.030 0.651 1.000
PCPs -0.060 -0.039 0.121 0.108 0.658 0.087 0.081 1.000
SPs -0.089 -0.034 0.107 0.075 0.592 0.073 0.064 0.926 1.000
NPs -0.087 -0.001 0.170 0.087 0.634 0.128 0.175 0.876 0.877 1.000
Female -0.037 0.019 0.101 0.110 0.875 -0.014 0.002 0.792 0.670 0.749 1.000
Inpatient -0.158 -0.169 0.063 0.005 -0.110 0.010 -0.015 0.011 0.031 0.047 -0.080 1.000
Outpatient -0.260 0.046 0.051 -0.068 0.083 0.217 0.305 0.276 0.363 0.356 0.063 0.354 1.000
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Table B.3: Regression results for Savings rate

Variables Savings rate Savings rate Savings rate
Model 1 (Controls only) Model 2 (Main-effects) Model 3 (Interactions)

States -0.0015000 (0.0009000) -0.0008498 (0.0009370) -0.0008452 (0.0009370)

Log (Beneficiaries) -0.0026000 (0.0049000) -0.0097200 (0.0049800) ** -0.0097540 (0.0047400) **

PCPs 0.0000022 (0.0000180) -0.0000005 (0.0000181) 0.0000005 (0.0000181)

Specialists -0.0000040 (0.0000097) 0.00000563 (0.0000093) 0.0000025 (0.0000093)

NPs 0.0000207 (0.0000176) -0.0000302 (0.000017) -0.0000256 (0.0000177)

Female 0.0000003 (0.0000004) 0.0000009 (0.0000004) ** 0.0000009 (0.0000004)**

Inpatient expenditures -0.0000061 (0.00000227) *** -0.0000037 (0.0000022) -0.0000036 (0.0000024)

Outpatient expenditures -0.0000007 (0.0000043) -0.0000372 (0.0000054)*** -0.0000373 (0.0000054)***

PC by specialists 0.0046200 (0.0024000) * 0.0089900 (0.0027000) ***

PC by NPs 0.0132000 (0.0062400) ** 0.0119800 (0.0063000) **

Experience (years) 0.0122000 (0.0012600) *** 0.0122000 (0.0012600) ***

Risk model -0.0099000 (0.0050000) ** -0.0097360 (0.0049900) *

PC by specialists * Experience -0.000392 (0.00087)

PC by NPs * Experience 0.0063840 (0.0025340) **

PC by specialists * Risk model 0.0053134 (0.0091900)

PC by NPs * Risk model 0.0536800 (0.0220400) **
Constant 0.06045130 (0.0464000) 0.1556400 (0.0459000) *** 0.15612000 (0.0452000)***
R-sq within 0.0117000 0.1097000 0.1143000
Observations 1908 1908 1908
Standard deviations in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.4: Regression results for Quality score

Variables Quality score Quality score Quality score
Model 4 (Controls only) Model 5 (Main-effects) Model 6 (Interactions)

States -0.0008340 (0.0014000) -0.0010000 (0.0014000) -0.0010000 (0.0014000)

Log (Beneficiaries) 0.0221000 (0.0043000)*** 0.0215000 (0.0042000)*** 0.0200000 (0.0042000) ***

PCPs -0.0000330 (0.0001530)** -0.0000251 (0.0000152) * -0.0000254 (0.0000153) *

Specialists -0.0000090 (0.0000067) -0.0000136 (0.0000068) ** -0.0000135 (0.0000068) **

NPs 0.0000432 (0.0000179)** 0.0000467 (0.0000185) ** 0.0000472 (0.0000186) **

Female -0.0000006 (0.0000004) -0.0000006 (0.0000004) * -0.0000006 (0.0000004) *

Inpatient expenditures -0.0000210 (0.0000021) *** -0.0000210 (0.0000021) *** -0.0000221 (0.0000021) ***

Outpatient expenditures 0.0000130 (0.0000026) *** 0.0000151 (0.0000027)*** 0.0000152 (0.0000027)***

PC by specialists -0.0044000 (0.0021000) ** -0.0070000 (0.0040000) *

PC by NPs -0.0040000 (0.0070000) -0.0110000 (0.0110000)

Experience (years) -0.0017000 (0.0010000) * 0.0122000 (0.0012600) ***

Risk model 0.0130000 (0.0040000) *** -0.0097360 (0.0049900) *

PC by specialists * Experience 0.0010300 (0.0010200)

PC by NPs * Experience 0.0041715 (0.0030000)

PC by specialists * Risk model -0.0230000 (0.0050000) ***

PC by NPs * Risk model -0.0470000 (0.0130000) ***
Constant 0.7782000 (0.0390000) *** 0.7917000 (0.0399999) *** 0.79540000 (0.0380000)***
Log likelihood 2212.0600000 2223.2200000 2230.8700000
Observations 1586 1586 1586
Standard deviations in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

Table B.5: Quantile regression for Savings rate

Savings rate 5 10 25 50 75 90
States 0.0021000 (0.0015000) 0.0022000 (0.0005300)*** -0.0000631 (0.0008000) -0.0012000 (0.0009000) -0.0008900 (0.0007600) -0.0023000 (0.0010000)**

Experience (years) -0.0011000 (0.0006278)* 0.0025400 (0.0002000)*** 0.0093600 (0.0003000)*** 0.0045600 (0.0005000)*** 0.0056000 (0.0003000)*** 0.0039000 (0.0030000)***

Risk model 0.0242500 (0.0029300)*** 0.0211000 (0.0086000)*** 0.0090000 (0.00460000)** 0.0079000 (0.0016000)*** -0.0092000 (0.0047000)* -0.0006000 (0.0023000)

Log (beneficiaries) 0.0312000 (0.0037000)*** 0.0077000 (0.0026000)*** -0.0014000 (0.0017000) 0.0019000 (0.0018000) -0.0224000 (0.0028900)*** -0.0370000 (0.0017000)***

PC by SP 0.0119000 (0.0016000)*** 0.0120000 (0.0013000)*** 0.0060000 (0.0005000)** 0.0116000 (0.0016000)*** 0.0035000 (0.0006000)*** -0.0016000 (0.0028000)

PC by NPs -0.0279000 (0.004000)*** -0.029000 (0.0019000)*** -0.0220000 (0.0009000)*** -0.0250000 (0.0030000)*** -0.0038000 (0.0077000) 0.0063000 (0.0123000)

PCPs 0.0000281 (0.0000044)*** 0.0000109 (0.0000081) 0 .0000013 (0.000007) -0.000000026 (0.0000038) 0.0000143 (0.0000073)* 0.000023 (0.000010)**

SPs -0.0000053 (0.0000027)*** -0.0000099 (0.0000016)*** -0.0000007 (0.0000078) -0.0000031 (0.0000020) -0.0000024 (0.0000067) -0.0000093 (0.00000256)*

NPs -0.0000216 (0.0000017)** 0.0000190 (0.0000076)** 0.0000045 (0.0000110) -0.0000059 (0.000004) -0.0000074 (0.0000077) 0.0000080 (0.0000100)

Female -0.0000008 (0.0000002)*** 0.-0000004 (0.0000003) 0.0000007 (0.0000001) 0.00000008 (0.00000006) 0.0000059 (0.0000001)*** 0.0000009 (0.0000002)***

Inpatient -0.0000260 (0.0000018)*** -0.0000220 (0.0000019)*** -0.0000116 (0.000000428)*** -0.0000091 (0.00000098)*** -0.0000053 (0.0000016)*** -0.0000005 (0.0000001)

Outpatient -0.0000046 (0.0000015)*** -0.0000068 (0.0000018)*** -0.0000079 (0.0000007)*** -0.0000089 (0.0000004)*** -0.0000069 (0.0000018)*** -0.000017 (0.0000016)***
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Table B.6: Bootstrapped Tobit Regression - Quality score

Variables Coef. Std. Err. P value 95% Confidence Interval
States -0.0010976 0.0019414 0.5720000 -0.0049026 0.0027075

Experience (years) -0.0017817 0.0010986 0.1050000 -0.0039350 0.0003716

Risk model 0.0136528 0.0040532 0.0010000 0.0057086 0.0215970

Log (beneficiaries) 0.0215665 0.0101793 0.0340000 0.0016153 0.0415176

PC by SP -0.0042304 0.0018769 0.0240000 -0.0079091 -0.0005518

PC by NP -0.0040224 0.0086718 0.6430000 -0.0210188 0.0012974

PCP -0.0000251 0.0000153 0.1020000 -0.0000551 0.0000049

SP -0.0000136 0.0000064 0.0330000 -0.0000262 -0.0000010

NP 0.0000467 0.0000190 0.0140000 0.0000942 0.0000839

Female -0.0000006 0.0000005 0.2790000 -0.0000017 0.0000004

Inpatient -0.0000220 0.00000529 0.0000000 -0.0000324 -0.0000116

Outpatient 0.0000151 0.0000037 0.0000000 0.00000764 0.0000225

Constant 0.7917981 0.0939737 0.0000000 0.6076130 0.9759833

Table B.7: Post-hoc Analysis for FQHC, CHC, and RHC

Variables Savings rate Quality score
States -0.0008591 (0.0009377) -0.0011000 (0.0014000)

Log (Beneficiaries) -0.0095000 (0.0047000)** 0.0215000 (0.0047000)***

PCPs -0.0000001 (0.0000180) -0.0000238 (0.0000152)

Specialists 0.0000031 (0.0000094) -0.0000142 (0.0000068) **

NPs -0.0000256 (0.0000178) 0.0000482 (0.0000187) **

Female 0.0000009 (0.0000004) -0.0000006 (0.0000003) *

Inpatient expenditures -0.0000036(0.0000022) -0.0000221 (0.0000021) ***

Outpatient expenditures -0.0000370 (0.0000026) *** 0.0000154 (0.0000028)***

PC by specialists 0.0088200 (0.0027000)*** -0.0034000 (0.0023000)

PC by NPs 0.1604000 (0.0063000)** -0.0044000 (0.0070000)

Experience (years) 0.0120000 (0.0012000)*** -0.0016000 (0.0010000)

Risk model -0.0100000 (0.0049000) * 0.0130000 (0.0040000) *

PC at FQHCs 0.0020300 (0.0006100)*** 0.0004000 (0.0009000)

Assoc CHC 0.0025000 (0.0038000) -0.0064000 (0.0040000)

Assoc RHC -0.0010000 (0.0033000) 0.0017000 (0.0013700)
Constant 0.1538000 (0.0450000) *** 0.7909000 (0.0394000) ***
Observations 1908 1586
Standard deviations in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.8: Main Effects Models with the CDC Data

Variables Savings rate Quality score
States -0.0008600 (0.0009400) -0.0008800 (0.0013900)

Log (Beneficiaries) -0.0095007 (0.0047000) ** 0.0217700 (0.0043100) ***

PCPs -0.0000068 (0.0000180) -0.0000100 (0.0000100)

Specialists 0.0000064 (0.0000097) -0.0000130 (0.000006)*

NPs -0.0000301 (0.0000176)* 0.0000270 (0.0000100)

Female 0.0000010 (0.0000004)** -0.0000006 (0.0000035) *

Inpatient expenditures -0.0000023 (0.0000022) -0.0000218 (0.0000022)***

Outpatient expenditures -0.0000386 (0.0000055) *** 0.0000170 (0.0000027)***

PC by specialists 0.0043100 (0.0025300) * -0.0069700 (0.0021100) **

PC by NPs 0.0140600 (0.0064600) ** 0.0006100 (0.0066600)

Experience (years) 0.0114900 (0.0017100) *** -0.0027000 (0.0009000) ***

Risk model -0.0103000 (0.0050300)** 0.0113100 (0.0046400) **

Checkup -0.0018000 (0.0225000) -0.0809300 (0.018700)***

Income -0.0004400 (0.0005400) 0.0018700 (0.0006000)***

Genhealth -0.0228000 (0.0367000) -0.0058500 (0.0196000)

Medcost -0.0235000 (0.1137000) -0.3912500 (0.0870000)***
Constant 0.2784700 (0.249100) 1.6294000 (0.2104800) ***
Model parameters R-sq within = 0.1020 Log likelihood = 2252.0172
Observations 1908 1908
Standard deviations in parentheses
* p < 0.1, *** p < 0.05, *** p < 0.01

173



APPENDIX C

KNOW YOUR USERS BEFORE YOU SPEND: A DATA-DRIVEN OPTIMIZATION TO

ENHANCE USER ENGAGEMENT USING VISUAL ANALYTICS

C.1 Empirical Analysis

In this section, we discuss our empirical analysis. We provide more details on (i) data collec-

tion, (ii) deep learning approach, (iii) econometric approach, and (iv) discussion of the findings.

C.1.1 Data Collection and Variables

Our dataset comes from the posts published by furniture firms on Facebook and Twitter ac-

cessed through the platforms’ application programming interfaces (APIs). We collected a total of

2733 recent posts from Facebook and Instagram. These APIs only allow certain features of social

media posts to be extracted. We select each firm’s official social media accounts that periodically

generate organic posts for each platform’s audience. The baseline data were collected from the

social media platforms, with additional information about the firms manually gleaned from their

social media accounts and official websites. We built scrapers in Python that interact with the

social media APIs that collect posts with images, likes, comments, shares (shares are available

for Facebook only), captions, and posting dates. Comments are common and can be measured

across the two platforms. The study by Aldous et al. (2019) finds that most engagements happen

during an initial couple of hours from posting time, and therefore, day normalization may not be

required. Our data reveal the same property as we discussed in Section 4.3.1.1. We describe the

main variables used in our empirical analysis in Table C.1.

Dependent variables: The dependent variables in this chapter are likes and comments for In-

stagram and shares and comments for Facebook. All the variables exhibit the properties of a count

variable, and therefore, we model them under Negative Binomial regression. Note that, on av-

erage, user engagement on Instagram is substantially higher than that on Facebook. We identify

these variables from the data we collected from Instagram and Facebook.
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Table C.1: Variables used in empirical analysis

Variable Description Type
likes number of likes (negative binomial) dependent variable for Instagram engagement
comments number of comments (negative binomial) dependent variable for Instagram and Facebook engagements
shares number of shares (negative binomial) dependent variable for Facebook engagement
simple features number of features extracted using the SSD algorithm independent variable
advanced features number of extra features extracted using the advanced Faster R-CNN algorithm independent variable
time number of days between post date and data collection date control variable
post interval time (in days) since the last post control variable
revenue revenue of a firm control variable
posts (Instagram only) total number of posts by a firm on Instagram control variable
page active (Facebook only) length of the official account of a firm on Facebook since page opening control variable
saturation saturation value of an image control variable
log(wc) Logarithm of wordcount of a post caption control variable

Independent variables: The key independent variables in the empirical analysis are the image

features extracted from the social media posts. SSD is a simpler algorithm that only extracts

prominent or focal features from images. We refer to them as simple features. On the other

hand, the Faster R-CNN extracts the additional features in addition to the focal feature(s) given

its algorithmic complexity and performance. These additional features are advanced features. It is

noteworthy to mention here that we apply the deep learning algorithms in our empirical analysis

to illustrate the use of social media analytics. Given the high accuracy and several applications

of pre-trained deep learning algorithms (Cheng et al. 2017), we use the pre-trained models, both

SSD and the Faster R-CNN. The use of pre-trained models is prevalent in academic research given

the high level of accuracies of these algorithms in classification tasks (Yim et al. 2021). The pre-

trained models that we use are trained using a popularly labeled dataset called the COCO dataset.

The COCO dataset is already trained with 90 different feature classes and showed a high level of

prediction accuracy across many settings.1 We use the cut-off probability of 50% to detect features

from an image.

Control variables: We employ several post-level and firm-level control variables to control for

the heterogeneity among posts and firms. We run a simple Python program to extract an image’s

color properties, including red, green, blue (RGB) channel values and hue, saturation, and light-

ness (HSL) values. We only use saturation as a control variable in the econometric analysis, given

the high correlation. Besides extracting image features, we also extract and analyze the proper-

1Readers may refer to https://paperswithcode.com/sota/object-detection-on-coco
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ties of captions using the Linguistic Inquiry and Word Count or LIWC tool. LIWC tool ignores

irrelevant items such as punctuation and hashtags and preserves the relevant information from the

textual data. Post captions are crucial in our analysis since they offer social media users valuable

information about the products. We use log-transformed word count to control the additional in-

formation effect on user engagement. We also construct a time variable that refers to the duration

between post and data collection dates. This variable is used for two purposes. First, it controls the

length of time a post has been on the platform. Second, it also acts as a proxy that controls for the

number of followers around the post time. We control for the firm effects using firms’ number of

posts and revenue, consistent with the literature for controlling post volume that indicates the level

of active participation (Audrezet et al. 2086).

It is important to discuss the choice of the industry in this chapter. We extract social media

posts of the large furniture firms. We chose the furniture industry to capture a wide range of audi-

ences similar to many other sectors. Additionally, furniture industries focus more on the products

in their posts than human brands and logos, which is more appropriate for this chapter. More im-

portantly, product image photography is an important display for furniture retailers as customers

give importance to the professionally-shot furniture images and the beautiful room scene graphics

displayed on images. Therefore, our work can be extended to several other industries.

C.1.2 Applications of Deep Learning Algorithms

We use the deep learning methods to extract features or objects from images that we use as

variables in our econometric model to assess the feature-engagement relationship and develop the

optimization model to maximize user engagement. For that purpose, we deploy deep learning

algorithms using Tensorflow in Python (All codes are available upon request). Tensorflow is an

end-to-end open-source platform developed by Google that has inbuilt functionalities for the train-

ing and testing of deep learning algorithms. Since we used pre-trained models with the labeled

COCO dataset and applied it to the social media data we collected, our computational tools were

sufficient to run the models. Social media analytics help firms identify the antecedents of user

engagement, especially via deep learning methods, since they help identify the features without
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large-scale experiments and inherent biases (Ciregan et al. 2012).

Deep learning methods vary based on complexity and performance in detecting objects. De-

pending on the applications, several popular deep learning methods are available for use. Convo-

lutional Neural Networks or CNNs are popular deep learning algorithms for object detection with

various degrees of complexity and accuracy. CNNs are primarily built with multi-layer percep-

trons, a basic neural network structure with inputs, activation functions, and outputs, with fully

collected layers. In other words, each neuron within a layer is connected to all neurons in the next

layer. CNNs learn to optimize the network by analyzing the hierarchical patterns in the data, in this

case, an image. It first assembles and analyzes simpler patterns and then advanced patterns through

the layers. The higher the layers, the more computationally complex the algorithm becomes with

better accuracy but lower memory efficiency. SSD uses one such layer and quickly detects promi-

nent objects present in an image. It is significantly faster in speed but underperforms in terms of

detecting features.

Within the family of CNNs, Region-based CNN (R-CNN) methods take image input and iden-

tify the features via bounding boxes or region proposals through selective search. Once the region

proposals are identified, R-CNN warps the input to a standard size for processing, passes to a CNN-

based feature extractor that extracts features, and finally uses a Support Vector Machine (SVM)

algorithm to classify the features into the corresponding classes. This process is slow because it

requires the training of three different models: (i) the CNN to generate features, (ii) the classifier

that predicts the class objects, and (iii) the regression model to reduce bounding box errors (Yadav

and Binay 2017). In the family of R-CNNs, Fast R-CNN is developed to expedite the process by

jointly training the CNN, classifier, and bounding box regressors and replacing the SVM classifier

with a softmax for object classification. However, one bottleneck with the Fast R-CNN was that

the region proposals were created using the slow selective search process. The Faster R-CNN, first

proposed by Ren et al. (2015), overcomes the bottleneck by using a single CNN to carry out both

region proposals and classification.

Compared to other CNN methods for image analysis, the Faster R-CNN method enables the
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end-to-end learning of all layers. The Faster R-CNN uses a region proposal network (RPN) instead

of slow selective search methods. For our optimization model, we identify features from the social

media data and analyze the appropriate number of features to be used in images. The Faster R-

CNN is the appropriate method in this context to identify the additional features from an image

and the focal features extracted by SSD. Compared to Faster R-CNN, SSD is a simpler model

that does not require regional proposal generation or feature resampling. The difference in the

performance between SSD and Faster R-CNN allows us to quantify social media analytics to gather

more user information efficiently. Faster R-CNN is 5-6 times slower than SSD processing an

image. Ideally, more advanced analytics employ a large amount of data, more computational tools,

and better technology teams, which adds to the social media analytics costs. We use the two

deep learning methods to illustrate the difference. Both algorithms are pre-trained on the COCO

dataset. Faster R-CNN detects more features. We use these two algorithms on all the social media

posts we collected and identify the simple and advanced features in the econometric method and

optimization model.

C.1.3 Econometric Approach

This section describes our econometric approach where we establish the relationship between

the features extracted using the deep learning algorithms and user engagement. The summary

statistics of the variables are listed in Tables C.2 and C.3 for Instagram and Facebook, respectively.

Table C.2: Summary statistics of Instagram variables

Variable Obs Mean Std. Dev. Min Max
likes 542 2888.7600 3243.9750 96 19815
time 542 164.3358 119.2445 1 449
saturation 542 58.1697 49.0072 0 255
log(wc) 542 3.3761 0.7042 1.0980 5.6970
simple features 542 1.5572 1.4692 0 10
advanced features 542 3.8450 2.9365 0 14
post interval 542 2.2103 1.9504 0 33
revenue 542 3.2576 1.6654 1.4500 5.3300
posts 542 2120.2920 495.0938 1227 2514

178



Table C.3: Summary statistics of Facebook variables

Variable Obs Mean Std. Dev. Min Max
shares 2,191 13.6020 26.6060 0 388
comments 2,191 35.8380 63.0630 0 573
time 2,191 352.3580 246.7230 1 1057.2900
saturation 2,191 56.9330 43.3854 0 255
log(wc) 2,191 3.4888 0.6033 0 5.2200
simple features 2,191 1.7122 1.6960 0 19
advanced features 2,191 3.8621 3.0050 0 18
post interval 2,191 1.2590 1.2582 0 8.0818
revenue 2,191 3.74 2.9200 1.4500 9.1200
page active 2,191 3965.4200 289.3200 3499 4344

C.1.3.1 Model Specification.

The dependent variables represent count data and are heavily skewed. Following the litera-

ture, count models such as Poisson or Negative Binomial are appropriate in our context. All four

engagement metrics that we analyze exhibit high dispersion where their variances exceed their

mean values. Thus, we model the engagement variables under Negative Binomial regression as

suggested by Cameron and Trivedi (2013). We present our regression equation.

Generalized Regression Equation:

user engagementlmk = αlm + βlmsimple featureslmk + ζlmadvanced featureslmk

+ηlmadvanced featureslmk
2 + θVlmk + γZ + νYl + εlmk

As discussed earlier, the primary independent variables used in the analysis are simple featureslmk

and advanced featureslmk for post k on platform l and engagement type m. The variable simple

featureslmk comprises of the focal or prominent features of an image, conveying some product in-

formation about the advertisement to users. On the other hand, advanced featureslmk complement

simple featureslmk and form a narrative for users by creating a story. Users obtain their information

through these features. As hypothesized, the association between advanced features and engage-

ment exhibits non-linear trends. Thus, we construct the quadratic variable for advanced featureslmk

to test the relationship.

The coefficient of simple featureslmk represents the impact of simple features on engagement,
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while the coefficient for advanced featureslmk captures the impact of advanced features extracted

by the Faster R-CNN on user engagement. The coefficient of the quadratic term for advanced

featureslmk highlights the nature of the nonlinear association between advanced features and user

engagement. Vlmk denote the post-specific controls (time, log-transformed word count of a post’s

caption, saturation value of the image of a post, and post interval) while Z denote the control

variables for firm effects. Variables such as revenue for a firm is a fixed variable in a single period

and it can be updated while running the analysis in the future periods. Revenue refers to the

market positioning of a firm; the bigger the revenue, the more power a firm has. Since it is difficult

to estimate the revenue generated from each each platform, we fix the firm revenue fixed across

platforms. On the other hand, the number of posts (or tweets) may vary across platforms but not

across the engagements within a platform. We denote such platform specific control variables as

Yl.

C.1.3.2 Results.

We report the empirical results for Instagram in Table C.4 with three models for likes and

comments - the control only models with simple features (1 and 4), the main effects models with

advanced features (2 and 5), and the full model with the quadratic advanced features (3 and 6).

The log-likelihood values substantially increase from Model 1 to Model 2 and from Model 4 to

Model 5, highlighting the importance of including advanced features to the regression model. The

variable advanced features is positive and statistically significant for likes (0.0307, p= 0.0240).

This result suggests that one unit increase in advanced features is associated with an approximately

3% increase in the number of likes. On the other hand, the effect of advanced features on comments

is negatively signed but not significant. Simple features is negatively associated with comments

(-0.0540, p= 0.0270), indicating that having more simple features may not improve comments on

Instagram. Next, we present the discussion on the quadratic advanced features variable.

We include the quadratic term for advanced features in Models 3 and 6 for likes and comments,

respectively. Not surprisingly, these two models have the best fit with the inclusion of advanced

features quadratic term. The quadratic term is negative and significant (-0.0062, p= 0.0460) for
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Table C.4: Negative Binomial Regression analyses of likes and comments on Instagram data

(1) (2) (3) (4) (5) (6)
likes likes likes comments comments comments

time -0.0007∗ -0.0008∗∗ -0.0009∗∗ -0.0021∗∗∗ -0.0020∗∗∗ -0.0020∗∗∗

(0.0190) (0.0060) (0.0040) (0.0000) (0.0000) (0.0000)

saturation -0.0002 -0.0001 -0.0001 0.0008 0.0008 0.0008
(0.7990) (0.8630) (0.9500) (0.3210) (0.3250) (0.3330)

log(wc) 0.6680∗∗∗ 0.6840∗∗∗ 0.6980∗∗∗ 0.7050∗∗∗ 0.6950∗∗∗ 0.6810∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

simple features -0.0320 -0.0350 -0.0340 -0.0570∗ -0.0540∗ -0.0530∗

(0.1460) (0.1120) (0.1240) (0.0250) (0.0270) (0.0270)

post interval -0.0700∗ -0.0690∗∗∗ -0.0680∗∗∗ -0.035200∗ -0.03600∗∗ -0.03600∗∗

(0.0225) (0.0000) (0.0000) (0.0100) (0.0090) (0.0080)

revenue 0.3420∗∗∗ 0.3470∗∗∗ 0.3470∗∗∗ 0.4262∗∗∗ 0.425200∗∗∗ 0.42700∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

posts 0.0012∗∗∗ 0.0012∗∗∗ 0.0012∗∗∗ 0.0017∗∗∗ 0.0017∗∗∗ 0.0017∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

advanced features 0.03070∗ 0.0940∗∗ -0.0100 -0.0530
(0.0240) (0.0080) (0.4820) (0.1880)

advanced features squared term -0.0062∗ 0.0041
(0.0460) (0.2580)

constant 2.0700∗∗∗ 1.8200∗∗∗ 1.6400∗∗∗ -3.6700∗∗∗ -3.5700∗∗∗ -3.4400∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
log pseudolikelihood -4645.4731 -4641.8329 -4639.7038 -2335.1494 -2334.7808 -2334.0166
Observations 542 542 542 542 542 542
p values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.5: Negative Binomial Regression analyses of shares and comments on Facebook data

(1) (2) (3) (4) (5) (6)
shares shares shares comments comments comments

time -0.0001 -0.0001 -0.0001 -0.0022∗∗ -0.0022∗∗∗ -0.0021∗∗∗

(0.9910) (0.9910) (0.8920) (0.0040) (0.0000) (0.0000)

saturation -0.0020∗ -0.0020∗ -0.0019∗ -0.0018∗ -0.0017∗ -0.0016∗

(0.0190) (0.0190) (0.0190) (0.0100) (0.0120) (0.0180)

log(wc) -0.3150∗∗ -0.3140∗∗ -0.33220∗∗ -0.7350∗∗∗ -0.7380∗∗ -0.7760∗∗∗

(0.0050) (0.0053) (0.0030) (0.0000) (0.0060) (0.0000)

simple features -0.0340 -0.0350 -0.0500 0.0100 0.0120 0.0036
(0.4790) (0.4390) (0.2090) (0.7720) (0.6250) (0.9050)

post interval -0.0820∗ -0.0800∗ -0.0079∗ -0.0820∗∗ -0.0835∗∗ -0.0800∗∗

(0.03500) (0.0330) (0.0310) (0.0080) (0.0080) (0.0080)

revenue 0.1150∗∗∗ 0.1150∗∗∗ 0.1090∗∗∗ 0.3090∗∗∗ 0.3020∗∗∗ 0.2970∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

pageactive -0.0007∗∗∗ -0.0007∗∗∗ -0.0007∗∗∗ 0.0003∗∗ 0.0003∗∗ 0.0003∗

(0.0000) (0.0000) (0.0000) (0.0090) (0.0080) (0.0210)

advanced features 0.0020 -0.0988∗ -0.0060 -0.1140∗∗∗

(0.8890) (0.0280) (0.6250) (0.0000)

advanced features squared term 0.0090∗ 0.0100∗∗

(0.0200) (0.0010)

constant 6.3100∗∗∗ 6.3100∗∗∗ 6.7400∗∗∗ 4.1100∗∗∗ 4.1100∗∗∗ 4.7000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
log pseudolikelihood -7635.9460 -7635.9159 -7626.1976 -9159.3270 -9159.0695 -9147.0946
Observations 2191 2191 2191 2191 2191 2191
p values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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likes. The linear and quadratic terms are positive and negative, respectively, suggesting a concave

pattern in the relationship between advanced features and the engagement (likes). In other words,

likes increase initially with advanced features and then decreases after a certain switching point.

We present the discussion on switching behavior of engagement types later in Section C.1.4.

Turning our attention to the results for Facebook posts, in Columns 2 and 5 of Table C.5, we find

that the linear term of advanced features has no significant impact on either shares or comments.

The coefficients for simple features have no association with both shares and comments. The full

models in columns 3 and 6 in Table C.5 show that the quadratic term is both positive and significant

on shares (0.0090, p= 0.0200) and comments (0.0100, p= 0.0010). The number of shares and

comments on a Facebook post reduce initially as the number advanced features increases and

starts to increase after certain thresholds.

C.1.3.3 Discussion of Empirical Findings.

Our empirical analysis reveals that Instagram users prefer less advanced or additional features

as too many features hinder the clarity of an image. Facebook still enjoys a substantial amount of

users from all age groups, while Instagram is most popular among users below 30. This makes

Facebook reachable to a larger audience, who prefer more information through features. Having

relatively older users on the platform is advantageous since these users have higher income levels

and can potentially spend more money, even on additional objects. Therefore, the firm may want

to signal more information to them to achieve higher engagement and future expected sales. Addi-

tionally, unlike Facebook, Instagram is concise, and users may focus exclusively on core features.

We also discuss some additional findings that are interesting in our context. The positive and

significant coefficient of log word count (0.6840, p=0.0000) in Column 2 of Table C.4 suggests

that Instagram users prefer more information from the textual caption than from a cluttered image.

Another important finding is the negative association of post interval with both likes (-0.0690, p=

0.0000) and comments (-0.0360, p= 0.009) on Instagram. These two results suggest that there are

synergistic effects between user engagement and how frequently a firm should post as infrequent

postings may hurt both likes and comments. For Facebook, the impact of log word count is negative
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and significant for both shares (-0.3320, p=0.0030) and comments (-0.7380, p=0.0060) as reported

in Columns 2 and 5 in Table C.5. Thus, on Facebook, firms should focus more on the advanced

features to seek users’ attention.

One plausible reason behind the insignificance of advanced features to the number of com-

ments may relate to the smaller number of posts we extracted from Instagram compared to Face-

book. Comments are a different form of engagement than likes since it requires more effort from

the users. We find that simple features have a negative and significant effect on comments, sug-

gesting that Instagram users do not prefer too many focal features on the images. Conversely, it

also implies that the firm should present its information without relying on too many focal and

additional features.

C.1.3.4 Robustness Checks.

We conducted two relevant robustness checks to ensure the correctness of our empirical find-

ings. First, we perform a zero-inflated negative binomial regression (ZINB). Second, we employ

quantile regression to see the effects of the coefficients at various percentiles of the data.

We chose negative binomial regression as our depedent variables include count data, which

may also include zeros. There may be two possible reasons that could lead to the number of zeros:

(i) a user does not engage and (ii) a user does not see the post. Thus, the number of zeros may be

inflated and the standard negative binomial may not distinguish between the two. This motivates

us to re-analyze our data using ZINB. ZINB utilizes a logit model using a binary method for the

zero outcomes and a negative binomial as a count process to model the counts. However, ZINB

does not perform better than negative binomial if the data are too overdispersed. We present the

main results in Table C.6. Note that the Instagram results are exactly the same since no posts have

zero likes. Facebook shares and comments, containing many posts with zero comments or shares,

are also similar to our main results as reported earlier. Thus, ZINB supports the robustness of our

empirical findings.

We also analyze our findings at 0.5, 0.7, and 0.9 quantiles and present the results in Tables C.7,

C.8, and C.9. We chose relatively higher quantile values for the engagements since posts at the
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bottom have lower engagement, especially on Facebook. The squared advanced features variable

is significant for both shares and comments at 0.7 and 0.9 quantiles, with values almost similar to

out main findings. For Instagram, it is consistent across all quantiles since Instagram posts attract

a substantially higher number of likes.

C.1.4 Discussion of Empirical Results for Optimization Framework

In this section, we analyze the empirical results for each Instagram and Facebook engagement

types and present our insights for the optimization framework. We present the empirical summaries

in Table C.10 and discuss their implications.

The estimation results from the Instagram analysis (Table C.10) show that the quadratic impact

of the advanced features is negative and significant. The curve bends when f1,1,k = b 0.0940
2|0.0062|c+1 =

8. Thus, the number of likes reduces after the number of advanced features crosses 8 in an image,

on average. The relationship between user engagement and advanced features is non-monotonic

as the switching point is within the range of advanced features (Table C.2). The equation for

the Instagram likes can be written as following: x̂1,1,k = 1.6400 − 0.0340s1,1,k + 0.0940f1,1,k −

0.0062f 2
1,1,k + θ1V1,1,k + γ1Z + ν1Y1. The coefficient of f1,i,k shows the rate of change in likes

on Instagram while other variables are fixed at a constant value. We can assess the rate of change

in the dependent variable x̂1,1,k as we change f1,1,k. However, the quadratic relationship tells us

that the change is not the same at different levels and the direction of change switches after eight

advanced features. We present the engagement values near the switching point by following Hayes

(2017), where other variables except for simple features and advanced features are fixed at their

respective means and added to αlm to construct blm. We show them in Table 4.4.

• At f1,1,k = 7, the expected value of x̂1,1,k = 7.3400 + 0.0940 ∗ 7− 0.0062 ∗ 72 = 7.6740.

• At f1,1,k = 8, the expected value of x̂1,1,k = 7.3400 + 0.0940 ∗ 8− 0.0062 ∗ 82 = 7.6960.

• At f1,1,k = 9, the expected value of x̂1,1,k = 7.3400 + 0.0940 ∗ 9− 0.0062 ∗ 92 = 7.6838.

Thus, we can observe a downward trend of likes after the number of advanced features exceeds
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Table C.6: Zero-Inflated Negative Binomial Regression analyses of Instagram likes and Facebook
shares and comments

(1) (2) (3)
likes (Instagram) shares (Facebook) comments (Facebook)

time -0.0009∗∗ -0.0001 -0.0021∗∗

(0.0040) (0.8090) (0.0000)

saturation -0.0002 -0.0019∗∗ -0.0015∗

(0.6530) (0.0030) (0.0110)

log(wc) 0.6708∗∗∗ -0.3310∗∗∗ -0.7718∗∗∗

(0.0000) (0.0000) (0.0000)

simple features -0.0348∗∗ -.0500 .0055
(0.0213) (0.112) (0.698)

post interval -0.0413∗∗ -0.0796∗∗∗ -0-.0799∗∗∗

(0.0200) (0.0000) (0.0000)

revenue 0.3543∗∗∗ 0.1088∗∗∗ 0.2955∗∗∗

(0.000) (0.000) (0.000)

posts (or page active) 0.0011∗∗∗ -0.0007∗∗∗ 0.0003∗∗

(0.0000) (0.0000) (0.0020)

advanced features 0.0945∗∗∗ -0.1011∗∗∗ -0.1223∗∗∗

(0.0040) (0.0000) (0.0000)

advanced features squared term -0.0062∗ 0.0098∗∗∗ 0.0105∗∗∗

(0.03500) (0.0000) (0.0000)

constant 1.6409∗∗∗ 6.7428∗∗∗ 4.6861∗∗∗

(0.0000) (0.0000) (0.0000)

Inflate advanced features -0.1666 -1.5057 -1.3716
(1.0000) (0.5320) (0.2350)

log pseudolikelihood -4639.7040 -7626.1090 -9144.9040
Observations 542 2191 2191
p values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.7: Quantile Negative Binomial Regression analyses of Facebook shares

(1) (2) (3)
0.5 0.7 0.9

time -0.0002 -0.0001 -0.0003
(0.2950) (0.2530) (0.1710)

saturation -0.0015 -0.0001 -0.0002
(0.1100) (0.7410) (0.4830)

log(wc) -0.86742∗∗∗ -0.4741∗∗∗ -0.3157∗∗∗

(0.0000) (0.0000) (0.0000)

simple features -0.1119∗∗∗ -0.1119∗∗∗ -0.0627
(0.0000) (0.0000) (0.6980)

post interval -0.1082∗∗ -0.0456 -0.0515∗∗

(0.0500) (0.1880) (0.012)

revenue 0.1720∗∗∗ 0.1128∗∗∗ 0.0901∗∗∗

(0.0000) (0.0000) (0.0000)

page active -0.0007∗∗∗ -0.0009∗∗∗ 0.0009∗∗∗

(0.0000) (0.0000) (0.0000)

advanced features 0.0014 -0.0420 -0.1587∗∗

(0.9680) (0.1030) (0.0010)

advanced features squared term 0.0014 0.0030∗∗ 0.0105∗∗

(0.6400) (0.0000) (0.0000)

constant 7.4697∗∗∗ 7.8646∗∗∗ 8.2514∗∗∗

(0.0000) (0.0000) (0.0000)
Observations 2191 2191 2191
p values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.8: Quantile Negative Binomial Regression analyses of Facebook comments

(1) (2) (3)
0.5 0.7 0.9

time -0.0023∗∗∗ -0.0023∗∗∗ -0.0024∗∗∗

(0.0000) (0.0000) (0.0000)

saturation -0.0013 -0.0006 -0.0008
(0.1750) (0.3720) (0.1110)

log(wc) -1.4216∗∗∗ -1.0814∗∗∗ -0.7039∗∗∗

(0.0000) (0.0000) (0.0000)

simple features -0.0329 -0.0064 -0.0091
(0.1430) (0.9040) (0.7520)

post interval -0.0769∗∗ -0.1017∗∗ -0.0546
(0.0500) (0.0026) (0.3750)

revenue 0.2869∗∗∗ 0.2909∗∗∗ 0.2883∗∗∗

(0.0000) (0.0000) (0.0000)

page active 0.0001 0.0002 0.0002
(0.8380) (0.7380) (0.1790)

advanced features -0.0368 -0.0605 -0.1283∗∗∗

(0.4140) (0.0080) (0.0000)

advanced features squared term 0.0020 0.0058∗ 0.0094∗∗

(0.6440) (0.0390) (0.0040)

constant 7.3500∗∗∗ 6.0865∗∗∗ 5.4000∗∗∗

(0.0000) (0.0000) (0.0000)
Observations 2191 2191 2191
p values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.9: Quantile Negative Binomial Regression analyses of Instagram likes

(1) (2) (3)
0.5 0.7 0.9

time -0.0005∗∗∗ -0.0003∗∗∗ -0.0006∗∗∗

(0.0010) (0.0000) (0.0000)

saturation -0.0012∗∗∗ -0.0008∗∗ 0.0004∗∗∗

(0.0000) (0.0070) (0.0000)

log(wc) 0.6011∗∗∗ 0.8481∗∗∗ 0.7550∗∗∗

(0.0000) (0.0000) (0.0000)

simple features -0.0256∗∗∗ -0.0631∗∗∗ -0.0449∗∗∗

(0.0000) (0.0000) (0.0000)

post interval -0.0612∗∗∗ -0.0978∗∗∗ -0.0533∗∗∗

(0.0000) (0.0000) (0.0000)

revenue 0..4019∗∗∗ 0.3642∗∗∗ 0.2768∗∗∗

(0.0000) (0.0000) (0.0000)

posts .0011∗∗∗ .0013∗∗∗ .0014∗∗∗

(0.8380) (0.7380) (0.0000)

advanced features 0.1345∗∗∗ 0.0967∗∗∗ 0.0649∗∗∗

(0.0000) (0.0080) (0.0000)

advanced features squared term 0.1345∗∗∗ -0.0072∗∗∗ -0.0649∗∗∗

(0.0000) (0.0000) (0.0000)

constant 1.5843∗∗∗ 1.1802∗∗∗ 1.8638∗∗∗

(0.0000) (0.0000) (0.0000)
Observations 542 542 542
p values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.10: Parameter Estimation Via Empirical Analysis

Coefficients for Instagram (l = 1) Facebook (l = 2)
Likes (m = 1) Shares (m = 2) Comments (m = 3)

Constant (αlm) 1.6400∗∗∗ 6.7400∗∗∗ 4.7000∗∗∗

Simple features (βlm) -0.0340 -0.0500 0.0036
Advanced features (ζlm) 0.0940∗∗ -0.0988∗ -0.1140∗∗∗

Squared advanced features (ηlm) -0.0062∗ 0.0090∗ 0.0100∗∗

User engagement (xlmk) x1,1,k x2,2,k x2,3,k

p values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

8. The number of likes increases initially as the number of advanced features increases and starts

to reduce after f1,1,k = 8.

Table C.10 shows that the coefficients of quadratic term are all positive and significant for

Facebook shares (0.0090, p = 0.0200) and comments (0.0100, p = 0.0010). The curves are con-

vex. For Facebook shares and comments, the curves bend when the number of advanced features

exceeds 6 and 7, respectively. As compared to likes, comments and shares involve higher level of

engagement from the users, allowing them to comment or share to their networks more on the im-

ages, particularly the features. Users can express their perspectives on the features of the images.

For example, the user can inquire about a couch or a desk displayed on an image. We present the

equations for Facebook below after setting all variables at their mean, except for simple features

and advanced features.

• Facebook shares: x̂2,2,k = 2.8400− 0.0500s2,2,k − 0.0980f2,2,k + 0.0090f 2
2,s,k.

• Facebook comments: x̂2,3,k = 2.6300 + 0.0036s2,3,k − 0.1140f2,3,k + 0.0100f 2
2,3,k.

We tabulate the engagement values for each corresponding values for advanced features for

both platforms and three engagement types in the next section. Our empirical findings reveal the

nonlinear association between user engagement and advanced features. However, the tabulation

helps us estimate the engagement levels at several points and linearize the association between user

engagement and advanced features.
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C.2 Optimization Models and Tables

In this section, we present the proofs of our Lemmas and Theorem and the supporting tables.

We present the results of our computational results in tabular formats and describe the relevant

extensions of our primary models. In the following three tables (Tables C.11, C.12, and C.12), we

also average the simple features and include that in b.

Table C.11: gj Values, f ∗k = 8, b = 7.2900, ζ = 0.0940, η = −0.0062 (Instagram likes)

j gj = b+ jζ + j2η
0 7.2900
1 7.3778
2 7.4456
3 7.5162
4 7.5650
5 7.6050
6 7.6308
7 7.6442
8 7.6452
9 7.6360
10 7.6338

Table C.12: gj Values, b = 2.8400, ζ = −0.0980, η = 0.0090 (Facebook shares)

j gj = b+ jζ + j2η
0 2.8400
1 2.7519
2 2.6800
3 2.6270
4 2.5920
5 2.5750
6 2.5760
7 2.5950
8 2.6320
9 2.6870
10 2.7600
11 2.8510
12 2.9600
13 3.0870
14 3.2320
15 3.3950
16 3.5760
17 3.7750
18 3.9920

C.2.1 Proofs of Lemmas and Theorems

Proof of Lemma 3: Note that xk = b + βsk + ζfk + ηf 2
k . By taking derivative of xk with

respect to fk and set equal to zero, we have d(xk)
d(fk)

= ζ−2|η|fk = 0. As fk is integer and the second

191



Table C.13: gj Values, b = 2.6300, ζ = −0.1140, η = 0.0100 (Facebook comments)

j gj = b+ jζ + j2η
0 2.6300
1 2.5260
2 2.4420
3 2.3780
4 2.3340
5 2.3100
6 2.3060
7 2.3230
8 2.3580
9 2.4140
10 2.4900
11 2.5860
12 2.7020
13 2.8380
14 2.9900
15 3.1700
16 3.3660
17 3.5820
18 3.8180

derivative is negative, the result follows.

According to Lemma 3, the maximum user engagement x∗k occurs at either f ∗k = b ζlm
2|ηlm|
c = 7

or f ∗k = b ζlm
2|ηlm|
c+ 1 = 8 whichever provides maximum x∗k. Here f ∗k = 8.

Note that U is the upper bound on fk quantifying the effort required to extract advanced fea-

tures. The following Lemma provide an upper bound for U .

Proof of Lemma 4: The result follows from Lemma 3 as xk is concave function in fk.

Proof of Lemma 5: The budget Constraint (4.1) in in Problem SMMs can be expressed as

follows:

aq0 + af0 + eU + Cf ≤ B. This implies that the maximum, f0 = b (B−Cf−eU−aq0)

a
c.

Proof of Lemma 6: Note that xk = b+βsk+ζfk+ηf 2
k . By taking derivative of xk with respect

to fk and set equal to zero, we have d(xk)
d(fk)

= −|ζ| + 2ηfk = 0. As fk is integer and the second

derivative is positive, the result follows.

In case of Facebook (Shares), we use the following equation:

xk = b + βsk + ζfk + ηf 2
k , where b and η are positive and β and ζ are negative. Using the

values from Table 4.4, we can rewrite the equation as:

xk = 2.8400− 0.0500sk − 0.0988fk + 0.0090f 2
k .
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By definition of the problem fk ≤ u2 = 18.

According to Lemma 6 the minimum user engagement x∗k occurs at period k (for Facebook

(Shares)), when either f ∗k = b |ζlm|
2ηlm
c = 5 or f ∗k = b |ζlm|

2ηlm
c+ 1 = 6 whichever provides minimum x∗k.

Here x∗k = 5.

Proof of Lemma 7: Note that xk = b+βsk+ζfk+ηf 2
k . By taking derivative of xk with respect

to fk and set equal to zero, we have d(xk)
d(fk)

= −|ζ| + 2ηfk = 0. As fk is integer and the second

derivative is positive, the result follows.

In case of Facebook (Comments), we use the following equation:

xk = b + βsk + ζfk + ηf 2
k , where b, η and β are positive, and ζ is negative. Using the values

from Table 4.4, we can rewrite the equation as:

xk = 2.6300 + 0.0036sk − 0.1140fk + 0.0100f 2
k .

By definition of the problem fk ≤ u2 = 18.

According to Lemma 7 the minimum user engagement x∗k occurs at period k (for Facebook

(Shares)), when either f ∗k = b |ζlm|
2ηlm
c = 5 or f ∗k = b |ζlm|

2ηlm
c+ 1 = 6 whichever provides minimum x∗k.

Proof of Theorem 3: Since xk is integer, Constraints (4.9) and (4.10) linearize the nonliner

Constraint (4.2) in Problem SMMs using Boolean variables yk,j . Since we linearize fk as fk =∑f∗k
j=0 jyk,j , Constraints (4.4) is rewritten as Constraints (4.12) in LSMMs(Case1). Similar

change is made in Constraint (4.1) that becomes Constraint (4.8) to place
∑f∗k

j=0 jyk,j in place

of fk. We use our regression results to compute xk at different values of fk. Constraints (4.11) and

(4.14) remain the same in both problems. Constraint (4.13) to LSMMs(Case1) is added since

optimal solution x∗k to LSMMs(Case1) cannot be more that f ∗k . Suppose x∗k = f ∗k + z is op-

timal solution in LSMMs(Case1) for some k, where z is a positive integer. We set x∗k = f ∗k in

LSMMs(Case1). This change does not affect any constraint inLSMMs(Case1). But it increases

the objective function value ofLSMMs(Case1) since the optimal value is f ∗k for the concave func-

tion xk = b+βsk+ζfk+ηf
2
k in Problem SMMs for a fixed value of sk (Lemma 3). This contradicts

with the fact that x∗k = f ∗k + z optimal. Thus, the optimal solution x∗k to LSMMs(Case1) cannot

be more that f ∗k . Similarly, this statement is also valid for Problem SMMs.
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It has to be noted that each feasible integer solution to Problem LSMMs is also feasible to

Problem SMMs(Case1) with the same objective function value Π1. Since the optimal solution x∗k

to both problem cannot be more that f ∗k , the optimal solution to Problem LSMMs is also optimal

to Problem SMMs(Case1). Thus, Problem SMMs is equivalent to solving the linear version of

Problem LSMMs(Case1).

Problem LSMMs(Cases2− 3):

Max Πs = Ek =
K∑
k=1

wkxk

Subject to:

a
∑K

k=1 sk + a
∑K

k=1

∑u2
j=0 jyk,j + eU + Cf ≤ B (C.1)

xk = βsk +
∑u2

j=0 gjyk,j , ∀k (C.2)∑u2
j=0 yk,j = 1, ∀k (C.3)

sk ≤ u1, ∀k (C.4)∑u2
j=0 jyk,j ≤ U, ∀k (C.5)

U ≤ u2, ∀k (C.6)

sk ≥ qk, ∀k (C.7)

xk, sk, U : Integer variable (≥ 0), ∀k (C.8)

yk,j ∈ {0, 1} ∀k; ∀j (C.9)

The above formulation is similar to LSMMs(Case1). However, β, gj , u1, and u2 are different

for Facebook and Instagram. β and gj are different for Facebook shares and comments, which we

distinguish using m in LSMMf .

The following formulation represents the combined Facebook shares and comments problem

of LSMMs(Cases2 − 3), where m = 2 refers to shares and m = 3 denotes comments. This

results in a new parameter, µm, where we assign weights for each engagement type. We use 0.7
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Table C.14: Computational results for Instagram likes (regression parameters from Table 4.4 mul-
tiplied by 5000)

Unit effort cost e 20 30 40 50 60 70 80 90
Content sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk
1 3 8 37740 3 8 37740 3 8 37740 3 7 37690 3 6 37640 3 6 37640 3 7 37690 3 6 37640
2 4 8 37570 4 8 37570 4 8 37570 4 8 37570 4 7 37520 4 6 37470 4 7 37520 4 7 37520
3 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 7 37860 2 7 37860
4 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 7 37860 2 7 37860 2 7 37860
5 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 7 37860 2 7 37860
6 1 8 38080 1 8 38080 1 8 38080 1 8 38080 1 8 38080 1 8 38080 1 7 38030 1 7 38030
7 2 8 37910 2 8 37910 2 7 37860 2 6 37810 2 6 37810 2 6 37810 2 7 37860 2 6 37810
8 2 8 37910 2 8 37910 2 7 37860 2 6 37810 2 6 37810 2 6 37810 2 7 37860 2 6 37810
9 4 8 37570 4 8 37570 4 8 37570 4 8 37570 4 6 37470 4 6 37470 4 7 37520 4 6 37470
10 6 8 37230 6 8 37230 6 8 37230 6 8 37230 6 8 37230 6 8 37230 6 7 37180 6 7 37180
11 1 8 38080 1 8 38080 1 8 38080 1 8 38080 1 8 38080 1 6 37980 1 7 38030 1 7 38030
12 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 7 37860 2 7 37860
13 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 8 37910 2 7 37860 2 7 37860
14 2 8 37910 2 8 37910 2 7 37860 2 6 37810 2 6 37810 2 6 37810 2 6 37810 2 6 37810
Leftover budget 100 20 0 0 0 0 0 10
Engagement (weighted) 695946 695946 695796 695596 695366 695096 694976 694766
U 8 8 8 8 8 8 7 7

Table C.15: Computational results for Facebook shares (regression parameters from Table 4.4
multiplied by 5000)

Unit effort cost e 20 30 40 50 60 70 80 90
Content sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk
1 3 0 13450 3 0 13450 3 0 13450 3 0 13450 3 0 13450 3 0 13450 3 0 13450 3 0 13450
2 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200
3 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450
4 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 0 13700 2 0 13700 2 0 13700
5 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450
6 1 18 19700 1 18 19700 1 18 19700 1 18 19700 1 18 19700 1 0 13950 1 0 13950 1 12 14550
7 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700
8 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700
9 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200 4 0 13200
10 6 18 18450 6 18 18450 6 18 18450 6 18 18450 6 18 18450 6 18 18450 6 18 18450 6 18 18450
11 1 18 19700 1 12 14550 1 18 19700 1 12 14550 1 0 13950 1 18 19700 1 0 13950 1 0 13950
12 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450 2 18 19450
13 2 18 19450 2 18 19450 2 0 13700 2 0 13700 2 0 13700 2 12 14300 2 18 19450 2 0 13700
14 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700 2 0 13700
Leftover budget 60 0 60 0 60 0 20 0
Engagement (weighted) 318730 311520 310680 303470 302630 295420 294580 287370
U 18 18 18 18 18 18 18 18

Table C.16: Computational results for Facebook comments (regression parameters from Table 4.4
multiplied by 5000)

Unit effort cost e 20 30 40 50 60 70 80 90
Content sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk sk fk xk
1 3 0 13204 3 0 13204 3 0 13204 3 0 13204 3 0 13204 3 0 13204 3 0 13204 3 0 13204
2 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222
3 5 18 19086 2 18 19086 5 18 19140 2 18 19086 5 18 19140 2 18 19086 5 18 19140 2 18 19086
4 2 18 19086 2 12 13536 2 0 13186 2 18 19086 2 0 13186 2 18 19086 2 0 13186 2 0 13186
5 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086
6 1 18 19068 1 18 19068 1 18 19068 1 18 19068 1 18 19068 1 0 13168 1 0 13168 1 12 13518
7 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186
8 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186
9 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222 4 0 13222
10 6 18 19158 6 18 19158 6 18 19158 6 18 19158 6 18 19158 6 18 19158 6 18 19158 6 18 19158
11 1 18 19068 1 18 19068 1 18 19068 1 12 13518 1 0 13168 1 0 13168 1 18 19068 1 0 13168
12 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086 2 18 19086
13 2 18 19086 2 18 19086 2 18 19086 2 0 13186 2 18 19086 2 12 13536 2 0 13186 2 0 13186
14 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186 2 0 13186
Leftover budget 0 0 0 0 0 0 0 0
Engagement (weighted) 313678 305822 305418 297562 297158 289302 288898 281042
U 18 18 18 18 18 18 18 18
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Table C.17: Computational results for Facebook shares and comments (regression parameters from
Table 4.4 multiplied by 5000)

Unit effort cost e 20 30 40 50 60 70 80 90
Content sk fk x1k x2k sk fk x1k x2k sk fk x1k x2k sk fk x1k x2k sk fk x1k x2k sk fk x1k x2k sk fk x1k x2k sk fk x1k x2k

1 3 18 19200 19104 3 18 19200 19104 3 18 19200 19104 3 0 13450 13204 3 0 13450 13204 3 0 13450 13204 3 0 13450 13204 3 0 13450 13204
2 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122
3 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086
4 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086
5 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086
6 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068
7 2 13 14900 14186 2 0 13700 13186 2 0 13700 13186 2 18 19450 19086 2 13 14900 14186 2 0 13700 13186 2 0 13700 13186 2 0 13700 13186
8 2 18 19450 19086 2 18 19450 19086 2 13 14900 14186 2 0 13700 13186 2 0 13700 13186 2 18 19450 19086 2 0 13700 13186 2 0 13700 13186
9 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122 4 18 18950 19122
10 6 18 18450 19158 6 18 18450 19158 6 18 18450 19158 6 18 18450 19158 6 18 18450 19158 6 18 18450 19158 6 18 18450 19158 6 18 18450 19158
11 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068 1 18 19700 19068
12 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086
13 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086
14 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 18 19450 19086 2 0 13700 13186 2 13 14900 14186 2 0 13700 13186
Leftover budget 0 80 0 80 0 80 0 80
Engagement (weighted) 349621 348481 343826 342686 338031 336891 332236 331096
U 18 18 18 18 18 18 18 18

and 0.3 for shares and comments, respectively. β and gmj differ for each engagement type.

Problem LSMMf :

Max Πf = Emk =

3∑
m=2

K∑
k=1

µmwkxmk

Subject to:

a
∑K

k=1 sk + a
∑K

k=1

∑u2
j=0 jyk,j + eU + Cf ≤ B (C.10)

xmk = βmsk +
∑u2

j=0 gmjyk,j , ∀k; ∀m (C.11)∑u2
j=0 yk,j = 1, ∀k (C.12)

sk ≤ u1, ∀k (C.13)∑u2
j=0 jyk,j ≤ U, ∀k (C.14)

U ≤ u2, ∀k (C.15)

sk ≥ qk, ∀k (C.16)

xmk, sk, U : Integer variable (≥ 0), ∀k; ∀m (C.17)

yk,j ∈ {0, 1} ∀k; ∀j (C.18)
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Problem LSMMG:

Max Πg = Elmk =
L∑
l=1

M∑
m=1

K∑
k=1

zlmwkxlmk

(C.19)
Subject to:

a
∑K

k=1 slk + a
∑L

l=1

∑K
k=1

∑J l

j=0 jyl,k,j +
∑L

l=1 eUl + LCf ≤ B (C.20)

xlmk = βlmslk +
∑L

l=1

∑J l

j=0 glmjyl,k,j , ∀k; ∀m, ∀l (C.21)∑J l

j=0 yl,k,j = 1, ∀k, ∀l (C.22)

slk ≤ ul, ∀k, ∀l (C.23)∑J l

j=0 jyl,k,j ≤ Ul, ∀; ∀l (C.24)

Ul ≤ J l, ∀l (C.25)

slk ≥ qlk, ∀k, ∀l (C.26)

xlmk, slk, Ul : Integer variable (≥ 0), ∀k; ∀l; ∀m (C.27)

yl,k,j ∈ {0, 1} ∀k; ∀j; ∀l (C.28)

The generalized formulation LSMMG is a two platform extension of LSMMs(Cases2− 3),

where each engagement type is denoted by both l and m for Instagram (l = 1) and Facebook

(l = 2). The linearized version introduces the change in the formulation by removing the non-

linear Constraint (4.18) and replacing them by Constraint sets (C.21), (C.22), and (C.24).
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Table C.18: Computational results for Instagram likes, Facebook shares and comments using the
linearized problem (regression parameters from Table 4.4 multiplied by 5000))

Unit effort cost 20 30
s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k

1 3 3 8 18 37740 19200 19104 3 3 8 18 37740 19200 19104
2 4 4 8 18 37570 18950 19122 4 4 8 18 37570 18950 19122
3 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
4 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
5 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
6 1 1 8 18 38080 19700 19068 1 1 8 18 38080 19700 19068
7 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
8 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
9 4 4 8 18 37570 18950 19122 4 4 8 18 37570 18950 19122
10 6 6 8 18 37230 18450 19158 6 6 8 18 37230 18450 19158
11 1 1 8 18 38080 19700 19068 1 1 8 18 38080 19700 19068
12 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
13 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
14 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
Leftover budget 2980 480
Engagements (Total, Instagram, Facebook) 506130, 309309, 196820 506130, 309309, 196820
U1, U2, 8,18 8,18
Unit effort cost 40 50

s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k

1 3 3 8 18 37740 19200 19104 3 3 8 18 37740 19200 19104
2 4 4 8 18 37570 18950 19122 4 4 8 18 37570 18950 19122
3 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
4 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
5 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
6 1 1 8 18 38080 19700 19068 1 1 8 18 38080 19700 19068
7 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
8 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
9 4 4 8 18 37570 18950 19122 4 4 8 18 37570 18950 19122
10 6 6 8 18 37230 18450 19158 6 6 8 18 37230 18450 19158
11 1 1 8 18 38080 19700 19068 1 1 8 18 38080 19700 19068
12 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
13 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
14 2 2 8 18 37910 19450 19086 2 2 8 18 37910 19450 19086
Leftover budget 40 20
Engagements (Total, Instagram, Facebook) 506130, 309309, 196820 506130, 309309, 196820
U1, U2, 8,18 8,18
Unit effort cost 60 70

s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k

1 3 3 6 18 37640 19200 19104 3 3 6 18 37640 19200 19104
2 4 4 6 18 37470 18950 19122 4 4 6 18 37470 18950 19122
3 2 2 8 18 37910 19450 19086 2 2 6 18 37810 19450 19086
4 2 2 8 18 37910 19450 19086 2 2 7 18 37860 19450 19086
5 2 2 8 18 37910 19450 19086 2 2 6 18 37810 19450 19086
6 1 1 8 18 38080 19700 19068 1 1 7 18 38030 19700 19068
7 2 2 6 18 37810 19450 19086 2 2 6 18 37810 19450 19086
8 2 2 6 18 37810 19450 19086 2 2 6 18 37810 19450 19086
9 4 4 6 18 37470 18950 19122 4 4 7 18 37520 18950 19122
10 6 6 8 18 37230 18450 19158 6 6 6 18 37130 18450 19158
11 1 1 8 18 38080 19700 19068 1 1 7 18 38030 19700 19068
12 2 2 8 18 37910 19450 19086 2 2 7 18 37860 19450 19086
13 2 2 8 18 37910 19450 19086 2 2 7 18 37860 19450 19086
14 2 2 6 18 37810 19450 19086 2 2 6 18 37810 19450 19086
Leftover budget 0 0
Engagements (Total, Instagram, Facebook) 505845, 309025, 196820 505498, 308678, 196820
U1, U2, 5,18 7,18
Unit effort cost 80 90

s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k s1,k s2,k f1,k f2,k x1,1,k x2,2,k x2,3,k

1 3 3 5 18 37490 19200 19104 3 3 4 18 35940 13450 19104
2 4 4 6 18 37470 18950 19122 4 4 5 18 36870 12100 19122
3 2 2 6 18 37810 19450 19086 2 2 6 18 37210 12600 19086
4 2 2 6 18 37810 19450 19086 2 2 5 18 37210 12600 19086
5 2 2 6 18 37810 19450 19086 2 2 6 18 37210 12600 19086
6 1 1 6 18 37980 19700 19068 1 1 5 18 37380 12850 19068
7 2 2 6 18 37810 19450 19086 2 2 4 18 37210 12600 19086
8 2 2 6 18 37810 19450 19086 2 2 4 18 36110 13700 19086
9 4 4 6 18 37470 18950 19122 4 4 5 18 36870 12100 19122
10 6 6 6 18 37130 18450 19158 6 6 6 18 36530 11600 19158
11 1 1 6 18 37980 19700 19068 1 1 5 18 37380 12850 19068
12 2 2 6 18 37810 19450 19086 2 2 6 18 37210 12600 19086
13 2 2 6 18 37810 19450 19086 2 2 5 18 37210 12600 19086
14 2 2 5 18 37660 19450 19086 2 2 4 18 36110 13700 19086
Leftover budget 0 10
Engagements (Total, Instagram, Facebook) 505178,308358,196820 504156, 307336, 196820
U1, U2, 6,18 6,18
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Table C.19: Difference of engagement between generalized linear problem and budget allocated
linearized problem

Generalized model Budget allocated Difference
e Total U1 U2 U1 U2
20 566852 8 18 503543 8 18 11.1685
30 565742 8 18 502910 8 18 11.1061
40 564561 8 18 500324 8 18 11.3782
50 563356 5 18 499690 8 18 11.3012
60 562394 5 18 497104 8 18 11.6093
70 561431 4 18 496471 8 18 11.5704
80 560440 4 18 493885 8 18 11.8755
90 559381 3 18 493251 8 18 11.8220

199


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Literature Review
	Safety Stock Allocation in an Online Retailing Network: A Stochastic Optimization Approach
	Policy Implications

	ACO Service Delivery and Experience on Financial and Quality Performance - An Empirical Examination
	Policy Implications

	Know Your Users Before You Spend: A Data-Driven Optimization to Enhance User Engagement using Visual Analytics
	Policy Implications


	Safety Stock Allocation in an Online Retailing Network: A Stochastic Optimization Approach
	Introduction
	Goals
	Contributions

	Literature Review
	Problem Formulation
	Two Fulfillment Centers and Two Regions
	Equal Variance
	Unequal variances

	Pooling losses

	Generalization of the Proposed Method
	Clustering
	Linking Clusters under a MST graph
	Hub-and-Spoke Network
	Safety stock allocation to clusters

	Heuristic PASS: Implementation
	Distribution of Stock at the FC level
	Performance Analysis of PASS

	Large Scale Problems: Performance Evaluation of PASS via Robust Optimization
	Sample Average Approximation
	Numerical Analysis

	Extensions Used in Practice
	Comparison between Decentralized and Centralized Systems
	Impact of Service Level on Cost Components: Decentralized System
	Comparison between Pooling and No-Pooling Systems

	Managerial Insights
	Conclusion

	ACO Service Delivery and Experience on Financial and Quality Performance - An Empirical Examination
	Introduction
	Background of ACOs
	Research Questions and Contributions
	Literature Review

	Theoretical Development and Hypotheses
	ACO Service Delivery
	Primary Care by Specialists
	Primary Care by NPs

	Experience
	Experience and Risk Model on Service Delivery Through Specialists and NPs

	Data, Variables, and Methodology
	Data
	Variables
	Dependent Variables
	Independent Variables
	Control Variables

	Econometric Model
	Accounting for Possible Sources of Bias


	Results
	Impact of Service Delivery through Provider Composition
	Impact of Experience
	Interactions
	Robustness Checks
	Post-Hoc Analysis
	The Mechanism of Federally Qualified Health Centers
	Socio-demographic Factors on ACO performance
	Other Results


	Discussions and Implications
	ACO Service Delivery
	ACO Experience

	Conclusion

	Know Your Users Before You Spend: A Data-Driven Optimization to Enhance User Engagement using Visual Analytics
	Introduction
	Motivation
	Goals and Contributions

	Literature Review
	Social Media User Engagement
	Resource Allocation

	Problem Setting
	Social Media Marketing Ecosystem 
	Social Media User Engagement.
	Features of Post and User Engagement on Social Media Platforms.
	Costs Associated with Social Media Marketing.

	Data Collection and Empirical Analysis
	Deep Learning Methods.
	Empirical Findings.


	Problem Formulation
	Single Platform Single Engagement Type
	Engagement Intensity.
	Social Media Analytics Cost.
	Content Development Cost.

	Solving Single Platform Problem SMMs for a Platform
	Solving Single Platform Problem SMMs for Instagram.
	Solving Single Platform Problem SMMs for Facebook (Shares).
	Solving Single Platform Problem SMMs for Facebook (Comments).
	Numerical Analysis.

	Multiple Platforms and Multiple Engagement Types - Generalized Problem
	Numerical Analysis - Generalized Framework.


	Extensions
	Comparison Against User-Base Budget Allocation
	Facebook Engagement

	Discussion and Conclusion
	Managerial and Industry Implications
	Limitations and Future Research


	CONCLUSION
	REFERENCES
	APPENDIX Safety Stock Allocation in an Online Retailing Network: A Stochastic Optimization Approach
	APPENDIX ACO Service Delivery and Experience on Financial and Quality Performance - An Empirical Examination
	APPENDIX Know Your Users Before You Spend: A Data-Driven Optimization to Enhance User Engagement using Visual Analytics
	Empirical Analysis
	Data Collection and Variables
	Applications of Deep Learning Algorithms
	Econometric Approach
	Model Specification.
	Results.
	Discussion of Empirical Findings.
	Robustness Checks.

	Discussion of Empirical Results for Optimization Framework

	Optimization Models and Tables
	Proofs of Lemmas and Theorems



