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ABSTRACT 

 

This research seeks to improve the current state of knowledge about risks related to 

natural hazards, particularly those hazards affecting coastal communities. The inquiry 

focuses on a broad question: how can I help communities better understand and assess 

hurricane-related risks? To answer this question, this research explores how the intuitive 

format of Bayesian networks can be useful for disaster planning applications. Previous 

research showed that Bayesian networks are probabilistic models with a relatively easy 

graphical interpretation (yet still having a solid statistical basis) that are widely used in 

different fields, although they have a limited application in planning to date. This 

research comprises three studies. The first study uses Bayesian networks as an 

exploratory tool to estimate economic and social costs when assessing hurricane risks in 

a typical single-family home in a coastal community. That study shows that Bayesian 

networks can be flexible when combining hazards and vulnerabilities to estimate risks 

and are useful even when only limited information and resources are available, or the 

data format is heterogeneous. The second study examines in elementary but practical 

examples and experiments the advantages and limitations of the use of Bayesian 

networks to model household hurricane evacuation for descriptive and predictive 

analysis. The third study examines hurricane household evacuation choices using 

Bayesian networks to isomorphically model the complexities of an established 

conceptual model for studying protective action decisions such as hurricane household 

evacuation. The results of these studies indicate that Bayesian networks can flexibly 



 

iii 

 

integrate multiple fields in a complex structure of influence, which is the very nature of 

planning activities. Therefore, these studies show the potential of Bayesian networks to 

be used more frequently in future disaster preparedness and planning by facilitating the 

cooperation of specialists from several disciplines and providing a large potential for the 

engagement of citizens, policymakers, decision-makers, researchers, and other 

stakeholders to better understand local risks, which will ultimately foster participatory 

planning processes. 
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1. INTRODUCTION  

 

A broad increase in the frequency of natural hazards and damages has occurred 

in the United States. The United States accounted for over one-third (38%) of global 

economic losses caused by weather, climate, and water hazards; in particular, storms are 

associated with the greatest loss of life (71%) and economic losses (78%) in the region 

(National Oceanic and Atmospheric Administration, 2021; World Meteorological 

Organization, 2021). Moreover, the record of Atlantic tropical storms or hurricanes 

(1878 to present) is on an upward trend, and modeling studies show that the proportion 

of storms that reach very intense levels should increase in frequency and destructive 

potential per storm over the 21st century based on warmer ocean water temperatures and 

higher sea levels (Knutson, 2021). 

When striking coastal communities, hurricanes (or even less intense storms) 

typically leave paths of destruction (Keim et al., 2007), thereby implying that the storm 

strength was the main cause of damage, economic loss, and loss of lives (Pielke & 

Landsea, 1998; Rappaport, 2014). However, in general, beyond the overwhelming forces 

of nature, disasters are also a function of human failures, poor decisions about where and 

how communities are developed, social and structural vulnerabilities, and/or inadequacy 

in preparation and mitigation (Cutter et al., 2003; Masterson et al., 2014; Strobl, 2011; 

Yoon, 2012). 

My goal when conceptualizing this dissertation was twofold: first, to understand 

how communities can better understand and assess hurricane risks by using Bayesian 
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networks (BNs); and second, to evaluate whether BNs, a probabilistic graphical 

modeling method, is appropriate for such a task. To achieve these goals, I was interested 

in identifying and assessing hurricane-related risks and risk countermeasures in a way 

that enables the understanding of this process to be available to anyone, even when 

knowledge in statistical methods is limited, or resources and data are limited or not 

perfectly comprehensible, or when it is not possible to fully recognize the influence on 

impacts of all risk factors working individually. 

This dissertation comprises three studies. The first study explores the use of BNs 

for disaster planning, demonstrating its potential and some of the advantages for the risk 

assessment of natural hazards. The study explores the intuitive format of BNs, which can 

facilitate the cooperation of specialists from several disciplines and provide great 

potential for enabling the engagement of citizens, policymakers, decision-makers, and 

other stakeholders to better understand and quantify their local risks, and therefore foster 

participatory planning on communities. 

The second study examines the use of BNs to model and predict household 

hurricane evacuation. Although most household hurricane evacuation studies use logistic 

regression (LR), research has shown that BNs can be a valuable tool for modeling 

complex decision problems. This research uses data collected in a survey after Hurricane 

Harvey. The comparison between BNs with traditional approaches uses only two of the 

main and most recurrent reasons that directly affect household evacuation, according to 

research to date: (a) receiving an official warning, and (b) expecting personal and 

household impacts. The results show that BNs can represent conceptual models more 
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explicitly than traditional methods, offering a graphical representation of a model that 

has a solid statistical basis, and can, again, facilitate uptake by researchers, communities, 

and disaster planning practitioners. 

The third study examines hurricane household evacuation using BNs. To develop 

the analysis, I explored a conceptual model recognized from the literature and a large set 

of variables from the same survey on households’ choices after Hurricane Harvey. The 

results list factors that influence evacuation and indicate that BN can isomorphically 

model complexities of conceptual models without major statistical complications, thus 

demonstrating a potential to be used more frequently in future disaster preparedness and 

planning. 

The three papers indicate that BNs are a suitable tool to study disaster planning 

problems in special hurricane risks and evacuations. This research reveals that although 

the use of graphs for modeling is not necessarily new to research and applications, a BN 

offers a friendly approach for modeling the complex relationships, and the calculations 

involved are relatively easy to estimate and interpret. This research as a whole opens the 

possibility for future inclusion and tests of a more diverse set of variables and domains 

in the study of hurricane risks and risk countermeasures, such as evacuation. 
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2. RISK ASSESSMENT THROUGH BAYESIAN NETWORKS: HELPING 

COMMUNITIES TO BECOME AWARE OF HURRICANES’ MULTIPLE HAZARDS 

 

2.1. Abstract 

Although Bayesian networks (BNs) are integrated modeling tools that handle 

complex analysis with various interdependencies caused by common influencing 

variables—which are typical for risk assessment involving natural hazards—their 

application in the context of urban planning is still limited. This study explores the use 

of BNs for disaster planning, demonstrating its potential and some of the advantages for 

the risk assessment of natural hazards. For this purpose, a framework for risk assessment 

is presented and a brief introduction to BNs is provided. The methodology is applied in 

two illustrative examples as an exploratory tool to estimate economic and social costs 

when assessing hurricane risks in a typical single-family home in a coastal community. 

These examples explore the intuitive format of BNs and show how they can be used to 

model and quantify risks associated to natural hazards. The results of this research 

indicate that BNs can facilitate the cooperation of specialists from several disciplines 

and provide great potential for enabling the engagement of citizens, policymakers, 

decision-makers, and other stakeholders to better understand their local risks and 

therefore foster participatory planning on communities. Future research can expand this 

approach in spatial and temporal scales and verify the application in pilot projects 

developed together with the communities.  
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2.2. Introduction 

Damage and loss mechanisms related to natural hazards are complex and 

typically involve various influencing variables, which make them difficult to estimate 

for specific locations and purposes (Meyer et al., 2013; Wright et al., 2012). Because of 

those issues and the continued exposure to natural hazards, notably hurricanes and 

hazards triggered by them, a large part of coastal communities is in a critical and 

recurrent disaster condition. Several researchers have dedicated their work to 

understanding how these communities can better plan and prepare accordingly (e.g., 

Berke, 1998; Burby et al., 1999; Dickson et al., 2012; Quay, 2010). 

However, in reality, natural hazards and risk cannot be eliminated, and 

(financial) resources for the protection of communities and individuals are limited 

(Burby et al., 1999; Morrow, 1999). Suitable tools are needed for an integrated and 

participatory community level risk assessment, which can become an important first step 

for local and regional policymakers, citizens, and stakeholders to better understand their 

community risk profiles and stimulate the development of strategic and disaster 

planning, including hazard mitigation and climate adaptation policies that can reduce 

impacts and enhance resilience (Comfort et al., 1999; Godschalk et al., 1989; Tollefson, 

2012). 

The development of risk assessment may be facilitated by a theoretical 

framework, especially when it assimilates interdisciplinary challenges and integrated 

solutions (Gardoni et al., 2016). In line with standards such as the ISO 31000:2018 

(International Organization for Standardization, 2021) and most risk analysis textbooks 
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(Aven, 2012; Smith, 2013), a risk assessment framework and tool should have the 

following properties: 

• It should include entire systems and networks with dependent elements. 

• It should allow for combining different models and data. 

• It should be applicable to different types of hazards. 

• It should be easy to understand and communicate. 

Although few studies have sought to develop a probabilistic approach to risk 

assessment that is consistent under these premises, Bayesian networks (BNs), also called 

belief networks or probabilistic causal networks, have been used as a suitable tool to 

handle complex analysis by integrating interdependencies caused by common 

influencing variables and allowing the update of joint states of information in several 

circumstances and fields (Bayraktarli et al., 2005; Medina-Cetina & Nadim, 2008; 

Pourret et al., 2008; Sperotto et al., 2017; Straub, 2005; Uusitalo, 2007). However, 

despite this advantageous usage, the application of BNs in the context of urban planning 

is still a limited field of exploration. For example, the Journal of the American Planning 

Association currently has no study that explores the application of BNs in urban 

planning and related fields. 

This study tries to address this gap in knowledge and aims to demonstrate how 

BNs can be applied to help communities involved in the process of modeling natural 

hazard risks, even when data are limited and/or heterogeneous. A Bayesian formulation 

for risk assessments in planning can allow for a systematic and logical update of joint 

states of information on multiple spatial and temporal scales while integrating both 
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quantitative and qualitative data and knowledge, thereby relating multiple hazards and 

vulnerabilities, which is the very nature of natural hazards, particularly hurricanes. Most 

importantly, the visual nature of BNs and the design features associated with their 

development have the potential to link elements of probability theory with relatively 

easy interpretation and modification by using graphical models. This aspect of BNs can 

facilitate the cooperation of experts from several disciplines and provides great potential 

to enable the engagement of citizens, policymakers, decision-makers, and stakeholders 

to codevelop models that can provide (a) a better understanding of local risks from 

natural hazards and (b) costs and benefits of alternative mitigation and adaptation 

approaches, both of which are expected to foster participatory planning in communities. 

This study starts with the presentation of a general framework for risk assessment 

in an urban environment. It then introduces BNs and outlines some of the advantages of 

utilizing that approach for modeling natural hazard risks. The use of BNs is illustrated by 

two examples. Both examples explore the intuitive format of BNs to identify, model, and 

assess risks. To demonstrate the usefulness of BN, only belief probabilities and estimates 

are employed in the examples. This process can be useful for several communities, 

especially for communities most vulnerable to natural disasters that have limited 

surveyed data on the exposures and vulnerabilities. The proposed approach can help 

communities generate risk models and estimate the state of risk, and outcomes can be 

used to guide future data collection, which will serve as inputs for a more accurate 

estimate of risk. 
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The first example applies BNs to exploratively estimate the expected economic 

loss of a typical single-family home in a coastal community, given the probability of 

wind intensity related to hurricanes and the vulnerability of the building (established by 

its fragility based on a typology). The first example is then extended to demonstrate the 

usefulness and flexibility of BNs by including multiple hazards and impacts in the same 

risk assessment arrangement. The probability of flood due to hurricanes and the 

estimated number of displaced residents are integrated into the model, even while it still 

considers hurricane-related winds and the expected loss of structural damage. 

2.3. A General Framework for Risk Assessment of Natural Hazards 

Figure 1 presents a general theoretical framework for the risk assessment of 

natural hazards (adapted from Faizian et al. (2005) and Straub (2005)) to help structure 

the risk assessment of natural hazards on communities. It provides an overview on the 

involved critical processes and facilitates a rational and consistent approach that can be 

implemented using BNs. The components of the framework comprise multidisciplinary 

participation from natural scientists, engineers, social scientists, economists, other 

experts, and input from local knowledge and tries to address an integrated solution by 

means of planning and policy for the risk assessment (and management) problem. 
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Figure 1. A framework for the risk assessment of natural hazards. 

 

In the framework, three core components are distinguished, namely community 

exposure, community vulnerability, and community resilience, which can lead notably to 

direct consequences or indirect consequences. These components can be described by 

means of scientific knowledge (i.e., models, either physical or empirical) or by 

indicators that represent the available information (local knowledge or historical 

distributions) for specific cases. Although not directly part of the risk assessment (but 

part of the risk management), mitigation actions—which are achieved by the 

community, decision-makers, emergency managers, and other stakeholders—can also be 

considered in terms of potential measures influencing risk. Each of these framework 

components is next examined in greater detail. 

Community exposure can be considered an indicator of the hazard potential for a 

given element or system of the community and estimated as the probability (P) that a 
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particular threat (T) with a given intensity is exceeded within a given time and space. For 

hurricanes, the exposure is an inherently uncertain phenomenon with probabilistic 

characteristics usually provided in terms of threat intensities (hurricane category) and 

corresponding return periods (Emanuel & Jagger, 2010; Vickery & Twisdale, 1995). 

Community vulnerability can be considered an indicator of the immediate 

consequences (C) (to an element or system of the community) associated with a given 

exposure event, and it can be assessed through the probability P(C|T). In the event of a 

hurricane approaching a community, the vulnerability is associated with significant 

uncertainty and is appropriately described by a probability distribution of different 

damage states conditional on the exposure event—for example, the hurricane intensity, 

duration, source-to-site distance, and so forth. 

A direct consequence can be described as the possible estimated loss associate to 

each different and mutually exclusive damage state (u(C)). Due to the stochastic nature 

of exposure and vulnerability, risk as an expected value of loss can be described in a 

probabilistic and quantifiable form based on certain components of the framework. As a 

generalization of the weighted mean, the equation 

R = EV[CD] = P(T) x P(C|T) x u(C) (1) 

can define the assessment of the state of risk (R) by estimating the expected value (EV) 

of a direct consequence (CD) in terms of impacts as local social losses (including loss of 

lives as well as economical losses) of specific threats at a given location and time. By 

considering changes in these components, communities can understand how to better 
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manage risk relating to specific impacts (Dickson et al., 2012; Medina-Cetina & Nadim, 

2008). 

Community resilience is an indicator of an indirect consequence (CID) due to 

damage or loss in a system or element of the community. It can be assessed through the 

complement of the probability P(CID|T,C) and thus associated with the conditional 

probability of losses of various degrees—conditional on the exposure and a given 

damage state and also dependent on the location and time the event takes place. 

Mitigation actions are specific actions, projects, activities, or processes taken to 

reduce or eliminate long-term risk to people and community elements from specific 

community exposure and predicted impacts. There are examples of mitigation actions 

for hurricanes at community and household levels (e.g., the creation of hurricane 

evacuation zones, the determination whether to evacuate, and the strengthening of roof 

and house structures; Godschalk et al., 2000; Sadowski & Sutter, 2008). 

As will be outlined in detail in the following section, BNs can be applied to 

establish a general model of the causal relations between the hazard event itself and the 

possible consequences. This risk assessment model can also involve several observable 

characteristics that comprise so-called indicators. Only retrofitting (Jasour et al., 2018; 

Stewart et al., 2003) is considered in the following examples as a possible risk-reducing 

measure, and the risk associated with that measure will be compared to the risk 

associated with doing nothing, and the comparison can then constitute the basis for the 

decision-making. 
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2.4. Bayesian Networks for Modeling Natural Hazard Risks 

Studies show that BNs can be used as tools to describe and assess natural hazards 

and to quantify related risks (Bayraktarli et al., 2005; Faizian et al., 2005; Straub, 2005; 

Uusitalo, 2007). In recent years, the potential of BNs for risk assessments and as a 

decision support tool for urban systems has increased interest among some in their 

practical application. For example, Medina-Cetina and Nadim (2008) and Blaser et al. 

(2011) applied BNs to the stochastic design of early warning systems for natural threats 

such as landslides and earthquake-triggered tsunamis. Balbi et al. (2016) used BNs to 

assess flood risk to people by integrating people’s vulnerability and ability to cushion 

hazards through coping and adapting. 

This section presents a brief introduction to BNs and the rationale of using BNs 

for risk assessment. A concise overview on BNs is provided in Pearl (2011). More 

extensive publications on BNs include Pearl (1995) and Jensen and Nielsen (2007). In 

addition, many software packages, both commercial and freeware, are available for the 

computation of BNs, as discussed in Scutari and Denis (2014).  

BNs are probabilistic models based on directed acyclic graphs (DAGs) that help 

the representation of priori assumptions about the relationships between and among 

variables in causal structures. Figure 2 illustrates a simple BN that consists of three 

variables (X1, X2, X3). The variable X1 is a parent of X2 and X3, which are children of the 

former. Note that the common influencing variable X1 introduces a probabilistic 

dependency between X2 and X3. This feature can be a typical situation in natural hazards 
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modeling. For example, X1 can represent the hurricane wind intensity, and X2 and X3 are 

damage conditional on the wind intensity on buildings at two different locations. 

 

 

Figure 2. A simple Bayesian network of three nodes. 

 

The BN model describes the joint probability distribution P(X) of a set of 

variables X = X1 . . . Xn. The size of P(X) increases exponentially with the number of 

variables (n), but BNs can allow efficient modeling by factoring the joint probability 

distributions into conditional (local) distributions for each variable given its parents. The 

joint probability distribution for any BN can be described by 

P(X) = P(X1 . . . Xn) = Pi = 1 . . . n P(Xi|pi), where pi is a set of values for the parents of Xi. 

The joint probability distribution of the BN illustrated in Figure 2 is defined as 

P(X1,X2,X3) = P(X1) P(X2|X1) P(X3|X1). 

BNs can facilitate the inference of such a probabilistic model using efficient 

calculation algorithms (see, e.g., Jensen and Nielsen [2007] and Scutari [2010]). For 

computational reasons, in general, BNs are restricted to variables with discrete states. 

Therefore, for most applications, all random variables must be discretized in mutually 

exclusive and exhaustive states. In some applications, continuous variables can be used 

for Gaussian BNs or hybrid BNs (Scutari & Denis, 2014). 
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BNs allow entering evidence; that is, probabilities in the network are updated 

when new information is available for any of the variables. For example, when the state 

of X2 (in the graph in Figure 2) is observed to be e, this information will propagate 

through the network, and the joint prior probabilities of X1 and X3 will change to the joint 

posterior probabilities, or 𝑃(𝑋!, 𝑋"|𝑒) =
#(%!,',%")

#(')
. Consequently, the marginal posterior 

probabilities of X1 and X3 are also updated. 

An interesting aspect of BNs is that they can be extended to decision graphs by 

including decision nodes and utility nodes in the network (Jensen & Nielsen, 2007). This 

enables the assessment (and the optimization of possible actions) in the framework of 

decision theory. Such decision graphs can describe a concise representation of decision 

trees commonly applied for the optimization in the framework of Bayesian decision 

theory. The optimal action decision on an action is the one yielding the maximal 

expected utility. If no actions are considered, the expected utility represents a measure of 

the total risk (the expected value of risk; Dyckman, 1961; Straub, 2005). 

2.4.1. Rationale of Bayesian Networks for Risk Assessment 

Figure 3 shows a simple BN model that represents the main components of the 

risk assessment framework and directly expresses risk (Equation 1). The model 

describes the expected value of risk (EV[R]) representing (a) hazard as the probability 

that a threat T with a given intensity is exceeded within a given time and space, and (b) 

consequences as the multiplication of the vulnerability (probability of a consequence 

given a threat intensity) times a set of values of consequence certain to happen for each 

vulnerability state (Medina-Cetina & Nadim, 2008). 
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Figure 3. BN representing the key components of the risk assessment framework. 

 

Two illustrative examples are presented next. The first example applies BNs to 

estimate the expected economic cost of a typical single-family home in a coastal 

community given the probability of intense hurricane-related winds and the vulnerability 

of the building established by the fragility likelihood based on a typology. The second 

example extends the BN by integrating multiple hazards and impacts into a single model 

topology and includes (into the model) the probability of flood related to a hurricane and 

the estimated number of displaced residents. 

2.4.2. First Illustrative Example of Application 

To demonstrate the use of BNs in risk assessment of natural hazards, this 

example considers a simplified situation of a single-family home located in a typical 

coastal community on the U.S. Gulf of Mexico or Atlantic coast. Initially, the only 

information available is that this structure is exposed to an eventual hurricane of still 

unknown category. It has been hypothesized that the probability of structural damage of 

the building is conditional to the hurricane wind intensity and that the value of building 

damage is a result of the structural damage. Without loss of generalization, such an 
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example can be adjusted to capture risk for multiple structures by changing the utility 

value and the building damage probabilities accordingly. 

Figure 4 presents a BN for the risk assessment using an illustrative network. 

Different sources of knowledge can be used for the development of such network 

topology, such as modeled data, documented literature, experts’ opinion, and local 

experience. Herein, the associated causal relationship between the probability of 

different hurricane wind intensities (hazard) and the building vulnerability associated 

with a given wind intensity (vulnerability) seeks to capture risk in terms of an expected 

cost of damage (consequence). Once the topology of the network is outlined, the next 

step is to define the conditional probability distributions associated to each node.  

 

 

Figure 4. BN for the risk assessment of the hurricane wind on home structures. 

 

The input data for each variable or combination of any two variables are defined 

in a form of a probability density function (PDF) or a conditional probability 

distribution, respectively. Applicable to a given spatial and time domain, these 

probabilities can be obtained from local or expert knowledge, historical distributions (or 

return periods), or performance-based fragility functions of modeled data or empirical 

observations. Data and probabilities can be updated with evidence or deliberate changes 
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in conditional probabilities and probabilities. Figure 5 exemplifies a probability table 

taken from a wind speed frequency distribution. In this example, for illustrative purpose 

and easy interpretation, the probability states for the wind speed node are defined from a 

generic wind speed distribution considering the availability of evidence in a few states: 

low, moderate, and high. 

 

 

Figure 5. Probability density and probability table for an illustrative hurricane-
related wind intensity. 

 

With values conditional to the wind status, the building vulnerability node 

defines the probability states of the building damage in a few states as well: none, low, 

moderate, and high. Probabilistic values for the combination of wind state and building 

damage state can be observed in the vulnerability table in Figure 6. For example, if the 

wind speed is high, there is 20% chance of no damage, 25% chance of low damage, 30% 

chance of moderate damage, and 25% chance of high damage. If considering a lower 

wind intensity, the chances of high or moderate damage are reduced. Those values can 

be assessed specifically for the buildings of a community or generally obtained from the 
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literature (e.g., Kopp et al., 2012; Masoomi et al., 2018; Pinelli et al., 2004; van de Lindt 

& Dao, 2009). 

 

 

Figure 6. Probabilities and values for the nodes of the BN. 

 

Figure 6 also includes charts to illustrate the distribution of values of the PDF 

and corresponding conditional probability tables (CPTs) as described above, and a utility 

table for the consequences node that shows the predicted cost assigned for each building 

damage state. For example, no cost is projected if there is no damage to the building 

structure, but the predicted cost is $100,000 for a level of high damage. 
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Figure 7 exemplifies the computation of this simple BN model. The matrix 

multiplication calculates the probability of each structural damage conditional to the 

wind state. The expected value of risk is given by multiplying the probability of each 

state of damage (red circle) by the respective loss value it represents. In this example, the 

expected value of damage for the building structure is $16,115. Figure 7 also includes 

the visualization of the marginal probabilities in the form of the network probabilities. 

 

 

Figure 7. Illustrative computation of the simple BN. 

 

2.4.3. Second Illustrative Example of Application 

Typical housing damage models (e.g., Highfield et al., 2014; Zhang & Peacock, 

2009) consider variables in systematic domains. These domains are usually (a) location 

and hazard exposure, (b) demographic/socioeconomic characteristics, (c) mitigation 
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status, and (d) impacts on housing. Integrating these domains in a BN model can assist in 

the visualization and identification of how additional information may be efficiently 

used to reduce the risks. Figure 8 presents a graphical representation of a risk assessment 

model departing from these key domains and including direct economic cost and social 

cost as a measure of risk. This specific topology is based on hypothesized relationships 

between and among these domains. 

 

 

Figure 8. Risk assessment model using systematic domains of a typical housing 
damage model. 

 

The model assumes that mitigation status is conditional to the location and 

hazard status and the demographic and socioeconomic characteristics, and impacts on 

housing are conditional to the location and hazard status and mitigation status. The 

model also assumes that social costs can be associated with physical impacts (impacts on 

housing) and demographic and socioeconomic characteristics. 
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After defining a BN model topology that represents a conceptual model of 

housing damage, variables can be elected (by researchers, experts, members of the 

community, and other stakeholders) to capture these domains and create new networks 

that synthesize such an arrangement. Figure 9 presents a simple risk assessment model 

with three common variables, in essence adding hurricane-related flood to the previous 

model (Figure 4). The model assumes that the building vulnerability is conditional to the 

wind intensity and flooding related to hurricanes, and the expected damage cost is a 

consequence that associates the hazard exposure with the vulnerability status. 

 

 

Figure 9. A basic risk assessment model. 

 

Still following the conceptual model, domains can be further extended. Typical 

variables such as housing tenure status or describing owner or rental occupancy can 

characterize a sociodemographic condition and have probabilistic effects on the fragility 

of the structure, thereby influencing its maintenance and protection status (Peacock et 

al., 2014). The housing tenure status can also have a direct influence on the estimate of 

displaced residents (Lee & Van Zandt, 2019). 
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Figure 10 presents an extended arrangement of the former model (Figure 9), 

including tenure status as a possible probabilistic indicator of building vulnerability and 

tenure status and building vulnerability as a possible probabilistic indicator of the 

expected number of displaced residents (as a social measure of risk). Although still a 

simple model with few variables, this BN exemplifies multiple hazards and impacts in 

the same network arrangement. 

 

 

Figure 10. An extended risk assessment model. 

 

A difficulty of having multiple variables with multiple levels conditioning a node 

is finding out probabilities for all the possible combinations. When obtaining data from a 

survey using a large number of observations, the various combinations of levels will 

facilitate this task. However, when setting up an exploratory network, belief probabilities 

can be difficult to infer, and this task can be simplified by reducing the possible levels 

for each variable (because it reduces the number of possible combinations). 
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Figure 11 presents a contingency table with a set of belief probabilities for each 

combination of building damage, tenure status, hurricane flooding, and hurricane wind 

levels, as defined by the researcher. As already mentioned, such values can be obtained 

in a variety of ways, including by expert opinion, scientific models, and local 

knowledge. When creating a BN with communities, local knowledge comes from the 

input and iteration of the parties involved with the risk assessment. 

Figure 11 also provides a graphical visualization of such a combination of 

probabilities for a presumed easier interpretation. These data illustrate rental structures 

with greater probability of structural damage for the same combinations of threat 

intensities due to lesser mitigation adoption (e.g., Ge et al., 2011). Changing the 

probabilities in this table through various risk mitigation and preventive actions (e.g., 

retrofitting of different classes of structures in accordance with specific exposure) will 

directly impact the expected value of risk, which can be assessed and reexamined with 

the associated baseline risk of no intervention. 
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Figure 11. Conditional probabilities for the building vulnerability. 

 

Finally, Figure 12 presents the network probabilities and the values assumed for 

the utility nodes. Such values can also have multiple sources, such as surveys, census 

averages, or experts and community members. These values are confined to the spatial 

scope that the network represents, which can be a specific structure or any combination 

of multiple structures in a domain. By multiplying the probability of each updated state 

of structural damage by the respective assessed loss value it represents, the expected 

damage cost for a single-family home is determined to be $7,055, and the expected 

number of displaced residents per structure is 0.62. 

 

Tenure Hurricane
Flooding

Hurricane
Wind

Vulnerability Assessment
for Building Damage

(Likelihoods Based on a Typology)
None Major Minor None

Owner

None
Low .99 .01 .00 .00
Moderate .90 .08 .02 .00
High .75 .10 .10 .05

Low
Low .80 .10 .08 .02
Moderate .70 .15 .10 .05
High .55 .20 .15 .10

High
Low .50 .10 .30 .10
Moderate .40 .12 .33 .15
High .30 .15 .35 .20

Renter

None
Low .94 .05 .01 .00
Moderate .80 .12 .05 .03
High .50 .20 .20 .10

Low
Low .80 .10 .05 .05
Moderate .60 .15 .15 .10
High .50 .20 .20 .10

High
Low .20 .20 .30 .30
Moderate .15 .15 .32 .38
High .05 .20 .35 .40
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Figure 12. Network probabilities and values of the utility nodes. 

 

Compared to the first illustrative example, the overall expected damage cost is 

lower ($16,115 versus $7,055) due to a detailed vulnerability assessment of the 

structures and the proportion of structures occupied by owners and renters. These values 

reflect the overall expected damage costs in opposition to an exclusive assessment for 

owners and renters, which could still be implemented in the same network arrangement. 

2.5. Discussion and Conclusions 

This study addresses the problem of risk assessment in coastal communities in 

the face of natural hazards, specifically hurricanes. To offer a consistent approach to the 

risk assessment problem using BNs, this study adapts a general framework from the 

literature that facilitates the structure of critical processes. Although this approach can 

serve as a guideline to specific management of risks due to natural hazards, this study 

Es#mate Cost for Each 
Damage State (USD)

None 0

Minor $5,000

Moderate $10,000

High $100,000

Es#mate Avg. Number of Displaced
Residents by Tenure and Damage State

Owner Renter

None 0 0

Minor 0 0

Moderate 0 2

High 2.5 2

EV[cost] = $7,055 / home

EV[displaced] = 0.62 
residents / home

Expected Values

Flooding

Hurricane
Wind

Building
Vulnerability

Expected
Damage

Cost

Tenure
Expected
Displaced
Residents
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focuses on the representation of a part of the system. The proposed framework is 

hierarchically structured based on how exposure to natural hazards, risk, and different 

sources of knowledge interact and have vulnerability as the link to the magnitude of 

direct consequences. BNs allow a detailed evaluation of the joint influence of the 

different indicators on the risk, providing results that, in contrast to traditional 

methodologies, are consistent with the mathematical (probabilistic) concept of risk and 

can be directly used for optimization purposes. 

In the illustrative examples, BNs can represent some of the complexities of the 

urban environment, such as the combination of physical and social vulnerabilities, while 

predicting economic and social losses. The BN modeling ensures that the models can be 

further extended when additional (or complementary) information is included or 

examination by different stakeholders is performed, and a potential unavailability of 

indicators can be assessed by prior beliefs. For example, a city planner may want to 

include the age of the building in the fragility assessment, while emergency managers 

may want to estimate the number of displaced children. Even if these variables cannot be 

primarily assessed, prior probability distributions can be applied and included in the 

network. BNs are flexible enough to be extended to model an entire community system 

based on evidence of local and expert knowledge, and different levels of detailing can be 

integrated into a common model (e.g., a forecast model that considers different scales of 

time). 

It is a challenge for planners and other professionals to provide methods and 

tools for communities to improve understanding and decision-making for the effective 
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assessment and management of local natural hazard risks. In contrast to traditional 

approaches, BNs can be used for communication because they are graphically based and 

allow explicit documentation of assumptions and uncertainties, thereby facilitating the 

interaction of the various parties of the community and the identification of decisions of 

mitigation and preparedness for optimal cost-efficient improvements. When the large 

effects that can be associated with climate change are considered, it is obvious that more 

research is needed to support decision-making on how to cope with the increasing 

frequency and strength of hurricanes and other natural hazards, and the associated 

consequences for the coastal communities. In this scenario, BNs can provide an 

appropriate approach for probabilistically modeling these problems for communities so 

that the communities are better aware of and better prepared for natural hazards. 

2.5.1. Limitations and Future Research 

For BNs to go beyond an exploratory risk assessment, calibration and data 

support is necessary to better capture risk estimates—as is true of any mathematical 

modeling approach. Moreover, the design of the network can be supported by data and 

statistical tests, for example, using network scores (a measure of how well the model fits 

the data) and link strength (a measure of the probabilistic dependence corresponding to 

each link of the network). Accordingly, various conditional independence tests can be 

used to test for the existence of each individual link strength by removing that link from 

the network and quantifying the change with some probabilistic analysis (Scutari & 

Denis, 2014). To perform these tests, surveyed data are needed. The models proposed by 

the presented methodology can serve as a starting point to identify variables of interest. 
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The proposed approach is illustrated with examples that consider the assessment of 

hurricane risks on a house structure scale. Future studies can process data on aggregated 

scales and apply the same process through the support of geographical information 

systems (GISs). GIS tools can facilitate the management of relevant information for the 

assessment of risks in a specific area and a large range of assets.
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3. A STUDY OF BAYESIAN NETWORKS TO MODEL HOUSEHOLD 

HURRICANE EVACUATION 

 

3.1. Abstract 

In many coastal communities, household hurricane evacuation is an important 

protective action taken by local authorities and residents to reduce risk. For such a 

critical problem, it is important to continuously review and analyze modeling tools. 

Although most household hurricane evacuation studies use logistic regression, research 

has shown that probabilistic graphical techniques such as Bayesian networks (BNs) can 

be a valuable tool for modeling these complex decision problems. The aim of this study 

is to introduce and examine the use of BNs to model and predict household hurricane 

evacuation. This study uses data collected in a survey after Hurricane Harvey passed 

through the Texas Coastal Bend area in August 2017. To facilitate the examination of 

BN and the comparison with traditional approaches, this study uses only two of the main 

and most recurrent reasons that directly affect household evacuation, according to 

research to date: (a) receiving an official warning, and (b) expecting personal and 

household impacts. The results show that BNs can represent conceptual models more 

explicitly than traditional methods by offering a graphical representation of a model that 

can facilitate the uptake by researchers, communities, and disaster planning practitioners 

while still having a solid statistical basis. This study indicates that BNs are a suitable 

tool to study disaster planning problems; moreover, future studies may include a greater 

number of predictors in the modeling of such problems. 
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3.2. Introduction 

Although household evacuation is an important risk countermeasure in many 

coastal communities by which local authorities and residents can reduce exposure and 

prevent loss of life due to threats triggered by hurricanes or even less intense tropical 

storms, research to date indicates that receiving an official warning and expecting 

personal and household impacts are both the main and most recurrent reasons (i.e., 

predictors) for this protective action (Baker, 1991; Dash & Gladwin, 2007; Huang et al., 

2016; Lindell & Perry, 2012). 

Although most studies use logistic regression (LR) to examine a wide range of 

factors that affect evacuation (Yang et al., 2016), probabilistic graphical techniques such 

as Bayesian networks (BNs) may offer an alternative method to model the so-called 

“complexity involved in the household evacuation decision-making process” (Hasan et 

al., 2011, p. 341). Generally, the formulation of these problems involves a chain of 

selection of actions from a set of alternatives, each of which is evaluated against multiple 

and often conflicting criteria. 

Indeed, BNs’ modeling can take into account hierarchical and probabilistic 

interrelation of variables (Li et al., 2014), which also allows the learning of causal 

effects from observational data in which collecting experimental data is often not 

possible (Ramanan & Natarajan, 2020; Zheng & Pavlou, 2010). While these complex 

structures of variables can be used for descriptive analysis, they also have predictive 

capability, thereby allowing the analysis of scenarios in various planning activities (e.g., 

Cinar & Kayakutlu, 2010). However, the use of BNs to study responses to 
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environmental hazards and disasters is still limited. Additionally, no research has been 

conducted using BNs to model household behaviors within the need to evacuate from 

hurricanes. 

To better understand BNs for modeling household evacuation during hurricanes, 

this study presents a sequence of analyses and four experiments that aim to demonstrate 

the utility of this novel approach in the disaster planning field. The development of the 

analyses and experiments compares BN with traditional approaches and reveals the 

method’s adequacy, effectiveness, and limitations. The data for the analyses were 

collected from a survey of households in the Texas Coastal Bend area, a large coastal 

region of Texas impacted by Hurricane Harvey in August 2017. 

To facilitate the examination of BN and the comparisons with traditional 

approaches, this researcher uses only two of the main and most recurrent variables to 

predict household evacuation: (a) receiving an official evacuation warning, and (b) 

expecting personal and household impacts. Research has shown that both an official 

evacuation order and expecting personal and household impacts have a positive and 

significative correlation with the evacuation of households (Baker, 1991; Hasan et al., 

2011; Huang et al., 2016; Tanim et al., 2022).  

The next section presents a short introduction to BNs and the rationality to model 

hurricane household evacuation. Many other researchers provide an enhanced overview 

on BNs—for example, Pearl (1995, 2011) and Jensen and Nielsen (2007). In addition, 

many software packages, both commercial and freeware, are available for the 

computation of BNs, as discussed in Scutari and Denis (2014). The code of this research 
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is implemented in R (R Core Team, 2021) and uses the following R packages: bnlearn 

(Scutari, Silander, & Ness, 2021) and tidyverse (Wickham, 2019). The code and data to 

reproduce all analyses are presented in the appendix. 

3.2.1. Bayesian Networks to Model Decision Problems 

A BN is a representation of a joint probability distribution of a set of random 

variables with a possible mutual causal relationship (Pearl, 2011), but also the 

association that can represent containment, ownership, part, requirements, or any other 

connection that has meaning within the context of the domain being modeled (Achumba 

et al., 2013). Generally, the method of modeling using BN can be described in the 

following three steps: 

1. Setting up a model (i.e., the graphical representation of a model). In BNs, the 

network is more precisely a directed acyclic graph (DAG). In research, 

DAGs have been used to help choose which covariates to include in 

traditional statistical approaches, thus helping to minimize bias in estimates 

(Shrier & Platt, 2008). A DAG consists of nodes that represent random 

variables and of edges between pairs of nodes, which represent the 

relationship of nodes. A network can be built manually with knowledge of 

the underlying domain, consistent with knowledge about the underlying 

scientific problem and the data collection process (Ellis & Wong, 2008). 

2. Estimate of probabilities and conditional probabilities. A variety of numerical 

methods are available to estimate marginal distributions (Bernardo, 1979). 

Typically, the marginal distributions are calculated by dividing the range for 
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the quantity of interest into a few discrete bins of equal width, conditional on 

any preceding variable proposed by the network structure, if applicable. 

3. Evaluating the fit of the model and the implications of the joint probability 

distribution. The assumptions of the model (i.e., each one of the linkages) can 

be tested through conditional independence tests (such as mutual 

information) on each arc conditional to the network (Scutari & Denis, 2014). 

Two random variables are independent if the occurrence of one variable does 

not affect the probability of occurrence, and therefore, the probability 

distribution, of the other variable (Jensen & Nielsen, 2007). Besides the 

examination of each pair of nodes, network scores can be used to select 

alternative network structures that best fit the data (Scutari & Denis, 2014). 

Importantly, BNs can be useful in a wide range of applications (Pourret et al., 2008). 

Research has shown that BNs are a valuable tool for modeling complex decision-making 

problems, including when considering individual’s concern in choosing to define the 

importance of criteria according to the disposition of the information (Sedki et al., 2010). 

Specifically, the potential of BNs to model decisions under uncertainty and as 

integrative decision support tools has increased interest among some for its practical 

applications. For example, Jager et al. (2018) developed a BN approach to integrate the 

separate models that support decision-making in the risk management of coastal areas in 

the United Kingdom. The researchers effectively applied BN to integrate the output from 

storm simulations with land use data, vulnerability relationships, and different levels of 

disaster risk reduction measures. 
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However, despite this favorable basis, the use of BNs to study household 

hurricane evacuation still represents a limited explored field. The author found no study 

that explores the application of BNs to investigate household responses to environmental 

hazards and disasters, and more specifically, no research has been conducted using BNs 

to model household behaviors within the need to evacuate from hurricanes. 

3.3. Data and Methods 

This study examines the use of BNs to model household hurricane evacuation 

based on data collected in a survey after Hurricane Harvey passed through the Texas 

Coastal Bend area in August 2017. To validate the application of BNs and create a 

baseline for comparison, this section briefly presents how the data were obtained and the 

descriptive statistics of the selected variables. Also, this section presents empirical 

cumulative distributions, Pearson’s correlation, and chi-squared tests among the selected 

variables, develops an LR, and implements a simple BN model that can directly be 

compared to the regression. For BNs, conditional independent tests and network scores 

are also explained. The following section develops four experiments that test the BN 

model in specific disaster planning circumstances, and then the results are discussed. 

3.3.1. Hurricane Harvey and the Texas Coastal Bend Area 

According to the National Hurricane Center, Harvey was the first Category 4 

hurricane to hit the coast of Texas since Hurricane Carla in 1961 and the first major 

hurricane to hit the middle of the coast of Texas since Hurricane Celia in 1970. 

Hurricane Harvey first made landfall in the middle of Aransas County and then moved 

on to its second landfall near the State of Louisiana. Figure 13 shows a part of the 
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Hurricane Harvey Final Best Track (National Hurricane Center, 2022) over the Texas 

Coastal Bend area, which is a significant geographic region along the coast of Texas that 

lies exposed to hurricanes. The region consists of eight counties (Aransas, Calhoun, 

Jackson, Matagorda, Nueces, Refugio, San Patricio, and Victoria). 

 

 

Figure 13. Texas Coastal Bend area and Hurricane Harvey track. 

 

In 2019, to better understand household-level evacuation experiences, 

researchers from the Hazard Reduction & Recovery Center at Texas A&M University, 

the Texas A&M Transportation Institute, and the Institute for Hazard Mitigation 

Planning and Research at University of Washington conducted the Hurricane Harvey 
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Evacuation Behavior Survey (HHEBS). Households were randomly selected, and the 

survey distribution was administered in three mailout waves that were nonproportional 

random samples based on address sample frames. Wave 1 of the survey was online only 

and Waves 2 and 3 included paper copies of the survey instrument with postage-paid 

return (Bierling et al., 2020). 

The HHBES behavioral survey dataset contained 958 observations. After 

excluding duplicated entries because of the multiple waves of the survey distribution and 

responses of nonresidents in the area at the time of Hurricane Harvey, 907 observations 

remained to be analyzed. Out of the 41 questions that comprised the survey instrument, 

six questions are used in this study, two of which are used directly, and four of which are 

used to compose a mean score that captures one of the model’s predictors. 

The next sections provide a concise description of each of the variables and the 

information provided by Table 1 and Table 2. The first table presents a summary of the 

variables, the descriptions, the proportion of the sample with data, and the categories of 

how the variables are initially coded. After a description of the selection of residents at 

the time of the hurricane (evacuation = 2) is given and a listwise deletion to handle the 

missing data is made, which is illustrated by Figure 14, the second table presents the 

variables and respective categories used in the analysis. After that, the number of 

observations in the dataset (n) drops to 826 from the 907 previously obtained. 

3.3.1.1. Evacuation 

The survey asked if the household evacuated from Hurricane Harvey. This 

question presents four possible outputs: (a) No, (b) Yes, (c) Not Resident, or (d) No 
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Answer. For analysis, only the observations that answered Yes and No are selected; No 

is coded as 0, and Yes is coded as 1. In the initial dataset, 2.5% of respondents were not 

residents at the time, and 0.5% did not answer the question. These samples were 

excluded from the dataset. For the analysis, 63% of the households evacuated from 

Harvey at some point in time, and 37% did not evacuate. This variable is labeled as 

evacuation. 

3.3.1.2. Expected Impacts 

Expected impacts can be considered a form of risk perception and assessed in 

several ways (e.g., wind damage, surge damage, flood damage, casualties, job 

disruption, and service disruption; Huang et al., 2016). In this study, expected impacts 

capture the expectations of personal and/or household impacts and are assessed by the 

mean score of four questions of the survey: how likely did the participant think, as the 

storm was approaching, (1) that they or household members would be injured or killed if 

they stayed? (2) that their home would be inundated by storm surge? (3) that their home 

would be exposed to inland flooding? or (4) that their home would be severely damaged 

or destroyed by storm wind? These questions were answered on a scale of 1 to 5, where 

1 represented not at all likely and 5 represented almost certain. In the initial dataset, 

4.7% of the participants did not respond to any of these questions. If only one or more of 

the questions were answered, it was computed as the average of the answers. This 

variable is coded as expected_hh_impacts. 
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3.3.1.3. Hurricane Evacuation Orders 

Typically, in a hurricane threat, the official evacuation request starts as a call for 

voluntary evacuations and, at some point, is elevated to a mandatory evacuation order 

(McCausland & Chuck, 2017). A hurricane evacuation order can allow residents to 

identify, and possibly better understand, that the risk of a hurricane is imminent and thus 

lead the public to a life-saving decision-making process. One question asked the 

informants to what extent they considered the official recommendation of local 

authorities to evacuate when deciding whether to evacuate. Answers to this question 

were scaled from 1 to 5, in which 1 represented not at all considered and 5 represented 

very great extent considered. In the initial dataset, 7.4% of the observations did not 

respond to this question. This variable is coded as signif_evac_orders.  

 

Table 1. Variables, Descriptions, Proportion of Sample with Data, and Coding. 
Variables (ntotal = 907) Description Proportion of Sample 

with Data (nmissing) 
Coding 

(levels/count/percent) 
evacuation 
(1 question) 

If household evacuated from 
Hurricane Harvey. 

0.994 (5) No = 0: 336 (37%) 
Yes = 1: 543 (60%) 

Not resident at time = 2: 23 (2.5%) 
No answer: 5  

expected_hh_impacts 
(Mean score of 

4 questions) 

How likely the informant thought, as 
the storm was approaching, that they 

or household members would be 
injured or killed if they stayed, or that 

home would be inundated by storm 
surge or inland flooding, or severely 

damaged or destroyed by storm wind. 

0.953 (43) Not at all likely = 1: 171 (19%) 
2: 405 (45%) 
3: 146 (16%) 
4: 108 (12%) 

 Almost certain = 5: 34 (3.7%) 
No answer: 43 (4.7%)  

signif_evac_orders 
(1 question) 

To what extent was the 
recommendation of local authorities 

to evacuate considered when deciding 
whether to evacuate. 

0.926 (67) Not at all considered = 1: 141 (16%) 
2: 90 (9.9%) 

3: 129 (14%) 
4: 159 (18%) 

Very great extent = 5: 321 (35%) 
No answer: 67 (7.4%)  

 

Figure 14 presents the missing data in the survey. The missing data per variable 

are clustered, so in this way, one can approximately identify the frequency with which 
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missing questions happen in the same observation. It can be noted that those household 

informants who did not answer the question about evacuating also did not answer the 

other questions, and only a small part of individuals who did not answer the question 

about expected personal and household impacts answered the other two questions. 

Figure 14 also includes the number of the missing data for each variable and the 

percentage they represent. 

 

 

Figure 14. Missing survey data. 

 

Table 2 provides the mean, standard deviation (SD), and counts for each of the 

levels and percentage for each of the variables. It can be observed that 63% of the 

participants evacuated from the hurricane. An average of 2.34 out of 5 people sampled 

expected personal and household impacts. The average rate of participants who 

considered local authorities’ official recommendations to evacuate when deciding 

whether to evacuate was 3.53 out of 5. 
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Table 2. Variables’ Mean, Standard Deviation (SD), and Coding for the Analysis. 
Variables 
(n = 826) 

Mean (SD) Coding 
(count percent) 

evacuation 0.63 (0.48) 0: 306 (37%) 
1: 520 (63%) 

expected_hh_impacts 2.34 (1.05) 1: 163 (20%) 
2: 386 (47%) 
3: 140 (17%) 
4: 106 (13%) 
5:  31 (3.8%) 

signif_evac_orders 3.53 (1.49) 1: 134 (16%) 
2:   89 (11%) 
3: 127 (15%) 
4: 158 (19%) 
5: 318 (38%) 

 

A general goal of this analysis is to study the relationship between the 

independent variables and evacuation, the dependent variable. For an initial visualization 

of how this relationship can happen, an empirical cumulative distribution of the two 

independent variables conditional on the evacuation response was made (see Figure 15). 

The cumulative percentage of responses is shown on the y-axis and each level of the 

variables on the x-axis. 

 

 

Figure 15. Empirical cumulative distribution function conditional to evacuation. 
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A possible indication of dependence can be observed for both variables since the 

distributions for evacuees and non-evacuees (1 and 0, respectively) seem to be different 

and do not overlap. The accumulated percentage for non-evacuees (0) increases faster at 

the lower levels of expecting impacts and considering evacuation orders. 

3.3.2. Pearson Correlation Coefficient 

Table 3 presents the Pearson correlation coefficients (r) to verify the linear 

relationship between evacuation and the two independent variables. The correlation 

between evacuation and considering local authorities’ official recommendations to 

evacuate is 0.46, and between evacuation and expecting personal and household impacts 

is 0.37. Both values are significant, as can be seen in the test statistic (z) used to compute 

the p-value (p), the p-value itself, and the lower and upper bounds on the 95% 

confidence interval for the correlation values. 

 

Table 3. Pearson Correlation Coefficients. 
Variable 1 Variable 2 r Statistic p-value Conf. 

lower 
Conf. 
upper 

evacuation signif_evac_orders 0.46 15.0 ≤ 0.000 0.408 0.516 
evacuation expected_hh_impacts 0.37 11.5 ≤ 0.000 0.311 0.429 

 

3.3.3. Chi-Square Test of Independence 

Although the way the variables are coded allows the estimation of the correlation 

among them, because the variables are all categorical, the Chi-square test of 

independence is more suitable to show whether a relationship exists between the 

variables. Table 4 and Table 5 are contingency tables that present the cross-tabulation of 
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the data. The levels for evacuation are shown in the rows, and the levels for the 

independent variable are shown in the columns. 

 

Table 4. Cross-Tabulation of Evacuation and Considering Evacuation Orders. 
N = 826 signif_evac_orders 

1 2 3 4 5 
evacuation 1 38 31 64 117 270 

0 96 58 63 41 48 

 

Table 5. Cross-Tabulation of Evacuation and Expected Impacts. 
N = 826 expected_hh_impacts 

1 2 3 4 5 
evacuation 1 49 237 113 94 27 

0 114 149 27 12 4 

 

The calculated value of Chi-square for Table 4 is 182, with degrees of freedom 

equal to 4 and a p-value much smaller than 0.05 (p ≤ 0.000). The calculated value of 

Chi-square for Table 5 is 133, with the same degrees of freedom equal to 4, and a p-

value that is also much smaller than 0.05 (p ≤ 0.000). A p-value smaller than 0.05 is the 

usual test for dependence. In both cases, the p-values are much smaller than 0.05, so 

there are reasons to believe that the variables are not independent (i.e., they are linked 

together). In other words, considering evacuation orders and expecting impacts likely 

makes a difference to evacuation. 

Also, descriptive statistics can verify the multicollinearity between the variables. 

Multicollinearity is when two or more predictors are linearly dependent. The eigenvalue 

(λ) stands for the variance of the linear combination of the variables and estimates a 
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vector of values (eigenvalues) such that the sum must equal the number of independent 

variables. In such a vector, a very small eigenvalue (close to 0.05) is an indicator of 

multicollinearity (Shrestha, 2020). For the data, the vector of eigenvalues is [1.8461, 

0.6315, 0.5224], which does not indicate multicollinearity. 

Therefore, considering the statistics above and the dichotomy of the evacuation, 

an LR can be applied for modeling the probability of the variable. It should be noted that 

dependent variables in LRs are not necessarily measured on an interval or ratio scale. 

Moreover, LRs do not make assumptions about distributions of variables and do not 

require a linear relationship between the dependent and independent variables. 

Additionally, in the logistic models, the error terms (residuals) do not need to be 

normally distributed, and homoscedasticity is also not a requirement (Hosmer et al., 

2013), which implies flexibility for the application of the method and its wide popularity 

in various fields. 

3.3.4. Logistic Regression 

In regression analysis, LR is used to create a statistical model that uses a sigmoid 

function (also called logistic function) for estimating the odds ratio (calculated from the 

exponentiated coefficients) of a binary dependent variable for one or more explanatory 

variables, although several other complex extensions exist. Many textbooks and 

publications provide enhanced learning on LR—for example, Kleinbaum et al. (2002) 

and Hosmer et al. (2013). The application and outputs of the method are provided below. 

As a very simple example of LR, to predict if evacuation was affirmative (1) or 

negative (0), if expectation of personal and/or household impacts (expected_hh_impacts) 
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was not at all likely (0) to almost certain (5), and if local authorities’ official 

recommendations to evacuate (signif_evac_orders) were not at all considered (0) or 

considered to a very great extent (5), the logistic function is of the form: 

𝑝(evacuation) =
1

1 + 𝑒!(#!$#"expected_hh_impacts$##signif_evac_orders)
  

or, 

ln 2
𝑝(evacuation)

1 − 𝑝(evacuation)4 = 𝛽8 + 𝛽9expected_hh_impacts + 𝛽:signif_evac_orders (1) 

Figure 16 illustrates the logistic model just described, where evacuation is given 

as a probability that assumes a value between 0 and 1. 

 

 

Figure 16. An LR model to predict evacuation. 

 

Table 6 shows the results for the LR model (equation 1). Both predictors are 

significant (large z-values, very small p-values), and the parameter estimates are 

positive, as expected. The z-values are the regression coefficients divided by standard 

error (SE). A large z-value (in magnitude) indicates that the corresponding predictor 

matters. A common rule of thumb is to use a cut-off value of 2, which approximately 

corresponds to a two-sided hypothesis test with a significance level of 0.05. The 

estimated parameters are the expected change in the log odds of evacuation for a unit 
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increase in the corresponding predictor variable holding the other predictor variable 

constant at a certain value. The odds ratio (OR) that are greater than 1 indicate that the 

event (evacuation) is more likely to occur as the predictor increases. In these results, the 

odds ratio indicates that for every 1-point increase in considering evacuation orders 

(signif_evac_orders), the likelihood that the household evacuates from the hurricane 

increases by 1.76 times (e0.5642 = 1.76). For more detailed information on odds ratio 

interpretations, see McHugh (2009). 

 

Table 6. Results of the LR to Predict Evacuation. 
Variable Estimate 

(b) 
OR SE Statistic p-value 

Intercept -2.751 0.064 0.264 -10.42 ≤ 0.000 
expected_hh_impacts 0.624 1.870 0.102 6.14 ≤ 0.000 

signif_evac_orders 0.564 1.760 0.061 9.33 ≤ 0.000 

 

Average marginal effect (AME) is an alternative metric in LR models that can be 

used to describe the impact of a predictor on the outcome variable (Norton et al., 2019). 

Table 7 presents the results for the AME analysis. The AME value of 

expected_hh_impacts is 0.1082, which can be interpreted as meaning that a unit increase 

in the variable value increases the probability of evacuation by 10.82%. Again, both 

predictors are significant (large z-values, very small p-values), and the effects are 

positive, as expected. The lower and upper bounds are presented on the 95% confidence 

interval for the AME estimates. 
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Table 7. Average Marginal Effects of the LR. 
Predictor AME SE Statistic p-value Conf. 

lower 
Conf. 
upper 

expected_hh_impacts 0.1082 0.016 6.585 ≤ 0.000 0.076 0.141 
signif_evac_orders 0.0979 0.008 11.948 ≤ 0.000 0.082 0.114 

 

3.3.5. Bayesian Networks 

The development of a BN starts with the design of the graphical model, or more 

precisely, a DAG. Variables are represented by nodes, and their conditional relationships 

by directed edges (arrows). Note that the terms node and variable can be used 

interchangeably. 

Occasionally, there are misperceptions between a BN and a DAG. A DAG 

expresses only the conditional independence structure of a BN via the graph structure, 

which encodes conditional dependencies between random variables. The DAG 

representation is useful for discussing the construction and the interpretation of a BN. 

Figure 17 shows, on the left, the DAG that represents that the probability of 

evacuation is conditional to the probabilities of expecting impacts and considering 

official evacuation orders. This representation of the model is equivalent to that made in 

LR (Figure 16). On the right, Figure 17 presents the probabilities for each level of 

expected_hh_impacts and signif_evac_orders and the conditional probability for each 

level of evacuation. 
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Figure 17. The DAG expressing the conditional structure of evacuation (on the left) 
and the joint probabilities for each node (on the right). 

 

Every joint distribution on n variables factorizes over a DAG with n nodes such 

that there is a directed edge between every pair of vertices (i.e., the vertices are 

numbered from 1 to n). A joint probability distribution factorizes with respect to the 

DAG, generally, in the form 𝑃(𝑥!, 𝑥), … , 𝑥*) = 𝑃(𝑥!) ∙ ∏ 𝑃(𝑥+|𝑥+,!, … , 𝑥!)*
+-) . This 

yields the classic frequentist and maximum likelihood estimates (Scutari & Denis, 2014). 

For example, Table 8 shows the count of each combination of signif_evac_orders 

and expected_hh_impacts and evacuation. A prior probability of evacuation is estimated 

by dividing the total number of observations that evacuate (evacuation = 1) by the 

general total number of observations -i.e.,	 .)/
0)1

= 0.62957. 

Estimated likelihoods from Table 8 can also assist in estimating the posterior 

probability for evacuation given signif_evac_orders and expected_hh_impacts. For 
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example, evacuation = 1 conditional to signif_evac_orders and expected_hh_impacts 

(model of Figure 17) are computed using the Bayes’ theorem (P(A|B) = P(B|A) P(A) / 

P(B) (Stone, 2013). Therefore, 

𝑃(evacuation = 1|expected_hh_impacts,signif_evac_orders) =

∑ 𝑃(expected_hh_impacts!)𝑃(signif_evac_orders")𝑃(expected_hh_impacts! ,signif_evac_orders"|evacuation = 1)!," = 0.632, 

where I represents each of the levels of expected_hh_impacts, and j represents each of 

the levels of signif_evac_orders. 

 

Table 8. Combination of All Levels of evacuation, signif_evac_orders and 
expected_hh_impacts.  

evacuation 
 

signif_evac_orders expected_hh_impacts 0 1 Total 
1 1 56 8 64 

2 34 20 54 
3 4 6 10 
4 2 4 6 
5 0 0 0 

2 1 19 8 27 
2 34 21 55 
3 4 1 5 
4 0 1 1 
5 1 0 1 

3 1 23 13 36 
2 32 34 66 
3 5 11 16 
4 3 3 6 
5 0 3 3 

4 1 7 10 17 
2 22 57 79 
3 8 28 36 
4 4 18 22 
5 0 4 4 

5 1 9 10 19 
2 27 105 132 
3 6 67 73 
4 3 68 71 
5 3 20 23 

 Total 306 520 826 
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Every BN model demands a particular factorization of a joint probability 

distribution. This factorization implies certain independent assumptions about the 

underlying model. These assumptions can be tested through conditional independence 

tests on each arc conditional to the network. Two random variables are independent if 

the occurrence of one variable does not affect the probability of occurrence and therefore 

the probability distribution of the other variable (Gelman & Speed, 1993; Holmes, 2008; 

Jensen, 1996). Generally, 𝑥! ⊥ 𝑥)|𝑥" ⟺ 𝑃(𝑥!, 𝑥)|𝑥") = 𝑃(𝑥!|𝑥")𝑃(𝑥)|𝑥"). In the 

example, expected_hh_impacts and signif_evac_orders are independent random 

variables; thus, P(expected_hh_impacts, signif_evac_orders | evacuation) = P(expected_hh_impacts | evacuation) 

P(signif_evac_orders | evacuation).  

Instead of using marginal independence, the independence between two random 

variables can be assessed through conditional independence tests by adapting either the 

log-likelihood ratio G2 or Pearson’s X2 to test for conditional independence (Agresti, 

2003; Burkart & Király, 2018). Pearson’s X2 test is preferable for continuous data, and 

the log-likelihood ratio G2 test, equivalent to the mutual information (MI) test from 

information theory, is preferable for discrete data (Scutari & Denis, 2014). The MI 

between two random variables (x1, x2) can be estimated through the following equation: 

𝑀𝐼(𝑥9, 𝑥:) = 𝐸 2𝑙𝑛
𝑝(𝑥9, 𝑥:)
𝑝(𝑥9)𝑝(𝑥:)

4 = G 𝑝(𝑥9, 𝑥:)[ln 𝑝(𝑥9, 𝑥:) − ln 𝑝(𝑥9) 𝑝(𝑥:)]
;",;#

 (2) 

Table 9 shows the MI tests for the example. Both predictors have a very small 

value of MI (<< 0.05), which suggests strong evidence of the connections given the 
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structure of the network. The strength of the connection can be represented by the width 

of the lines in the DAG (see Figure 18, on the right). 

 

Table 9. Mutual Information Tests. 
From To MI p-value 

expected_hh_impacts evacuation ≤ 0.000 
signif_evac_orders evacuation ≤ 0.000 

 

The task of testing all the links in a network can be automatized. The sequential 

mutual information Monte Carlo permutation test is one of the conditional independence 

tests for discrete BNs that uses categorical variables and is implemented in R. Based on 

the MI of two random variables, this test is proportional to the log-likelihood ratio and 

produces a measure of the mutual dependence between the two variables (Tsamardinos 

& Borboudakis, 2010). 

 

 

Figure 18. The DAG expressing the conditional structure of evacuation (on the left), 
the joint probabilities for each node (in the center), and the indication of 
connections strength (on the right). 
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Unlike conditional independence tests, network scores (NS) can test the DAG as 

a whole. NS are goodness-of-fit statistics that measures how well the structure of the 

DAG mirrors the dependence structure of the data. Bayesian information criterion (BIC) 

is one of the most popular tests. In the example, it takes the form of: 

𝐵𝐼𝐶 = 𝑙𝑜𝑔𝐿𝑖𝑘 − d ∙
log(𝑛)
2 = −2790 − 3.358 ∙ 33 = −2901 

where logLik is log-likelihood of the network considering the data, n is the sample size, 

and d is the number of parameters extracted from the network structure and variable 

levels. The BIC value should only be compared with another network structure that uses 

the same data and variables, but different connections between the variables. That can be 

examined in the following experiments below. For a more detailed explanation of BIC 

and other NS, please see Scutari and Denis (2014). 

The fundamentals of BN have been explained in this section. Next, the use of the 

studied network will be explored in four experiments. The first experiment estimates the 

evacuation probability given that some information is known about the predictor 

variables. The second experiment uses a synthetic dataset with a distribution like the 

data surveyed and compares the predictive capacity of BNs with that of LR. The third 

experiment studies which of the two predictors has higher influence on the probability to 

evacuate, which specifically can be useful for practical planning purposes. And finally, 

the fourth experiment studies an alternative network structure and shows that this 

network structure can more isomorphically reproduce conceptual models.  

 

 



 

52 

 

3.3.6. Experiment 1 

This experiment analyzes the prediction ability of both models in one specific 

observation. It estimates the probability of evacuation given that information about the 

state of the predictor variables is known. First, the most adverse condition is assumed on 

both variables: (a) local authorities issuing official recommendations to evacuate is not 

at all considered (signif_evac_orders = 1), and (b) expecting personal or household 

impacts is not at all likely (expected_hh_impacts = 1). 

Evidence on the state of the variables is commonly called soft evidence, in 

contrast to when there is evidence on the connection of variables, called hard evidence 

(Mrad et al., 2015). By using the results of the LR (see Table 6), a prediction model (i.e., 

prognostic analysis) takes the form of: 

𝑦 = −2.751 + 0.624	expected_hh_impacts + 0.564	signif_evac_orders

= 	−2.751 + 0.624	 ∙ 1 + 0.564	 ∙ 1 = −1.563 

Accordingly, the probability that such a household does evacuate is given by: 

𝑃(evacuation = 1) =
𝑒2

1 + 𝑒2 =
𝑒,!..1"

1 + 𝑒,!..1" = 0.174 

Correspondingly, the probability that such a household does not evacuate is given by: 

𝑃(evacuation = 0) = 1 − 𝑃(evacuation = 1) = 0.827 

For predicting the probability of evacuation using a BN, Figure 19 shows the 

conditional probabilities after fixing both signif_evac_orders and expected_hh_impacts 

to 1. The computation of evacuation probabilities is similarly calculated using Bayes’ 

theorem (as shown on page 47). The probability that such a household does evacuate is 

0.125, and accordingly, the probability that the household does not evacuate is 0.875. 
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Figure 19. BN predicting evacuation. 

 

The results are slightly different—probabilities of 82.68% versus 87.5% that the 

household does not evacuate and probabilities of 17.35% versus 12.5% that it does 

evacuate—for the LR and the BN, respectively. In the surveyed sample, there are 64 

observations with such a combination (signif_evac_orders = 1 and expected_hh_impacts 

= 1). Of these, 56 (87.5%) did not evacuate, and eight did evacuate (12.5%), which are 

the same probabilities given by the BN model’s prediction. 

This experiment may emphasize a limitation on both methods. Logistic 

regression can only make a prediction if there is concomitantly information available on 

the state of all variables of the model—that is, complete cases. One way to get around 
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this limitation for LR is to consider a missing value as zero, but that procedure can 

ultimately cause bias in the prediction. 

For BN, the probability can be estimated in incomplete cases. However, the 

probability of evacuation can only be estimated if there is a combination of predictors in 

the observed data in order to create a probability estimate for it. For example, in the case 

of fixing signif_evac_orders to 1 and expected_hh_impacts to 5, there are no 

observations in the survey, so no probability is generated for that (see Table 8). 

Two possible solutions can be adopted to solve this limitation specifically. First, 

a reasonable belief can be assigned if no other information is available prior (e.g., equal 

chance for each one of the levels). Second, the number of levels for a particular variable 

can be decreased, and consequently the combination of observations implies the increase 

of the number of observations on each level and also increases the chances of having 

probabilities for all the combinations of levels. 

This experiment infers only one conceivable situation to demonstrate how the 

prediction occurs using both approaches. The next experiment executes the prediction on 

several circumstances and compares the prediction accuracy of the models. 

3.3.7. Experiment 2 

An alternative approach to test the inference ability of the models is to use Monte 

Carlo simulations to randomly generate observations (i.e., synthetic data) and use these 

observations to estimate and verify the models’ prediction capacity. This experiment 

seeks external validity of the models’ inference ability by testing how generalizable the 

prediction’s accuracy is on a large set of conditions. In the literature, the aim of 
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producing synthetic data has been to provide publicly available datasets that can be used 

for inference in place of the actual data. 

The synthpop package in R (R Core Team, 2021) is used to create synthetic data 

that allows inferences from the fitted statistical models and the comparison of the results. 

The package was first written as part of the United Kingdom Economic and Social 

Research Council-funded Synthetic Data Estimation for Longitudinal Studies project to 

allow local researchers to produce synthetic data tailored to the needs of particular 

projects. For more details on the synthpop package, please see Nowok et al. (2016). 

The use of synthpop requires only a set of observed data that are assumed to be a 

sample from a population with parameters that can be estimated by the package’s 

synthesizer. A set of synthetic data was created having the same number of observations 

as the original dataset (n = 826). Figure 20 visually compares distributions of 

synthesized and observed data. 

 

 

Figure 20. Distribution of a synthetic population. 
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Based on the synthetic dataset, Table 10 presents a summary of the predictions 

on both LR and BN models. A traditional classifier threshold of 0.5 is applied. That is, if 

the model predicts less than this value, it is assumed that the household does not 

evacuate. Correspondingly, if the probability value of the model output is higher than or 

equal to the threshold value, it is assumed that the household does evacuate. 

The first column in Table 10 (probability) shows the probability inferenced by 

the models, and each Column 0 or 1 counts the number of times the model predicts 

correctly or incorrectly. For example, the BN model predicts the probability of 0 percent 

on two observations that did not evacuate, and on one observation that actually 

evacuated. The LR does not predict 0 percent probability on any of the observations. 

 

Table 10. Inferenced Results Using Synthetic A Dataset.  
N = 826 Counts on Each Method 

BN LR 
Probability 0 1 0 1 

0 2 1 0 0 
0.1 27 16 0 0 
0.2 7 1 27 16 
0.3 6 16 33 40 
0.4 79 71 62 50 

Subtotal  121 105 122 106 
0.5 41 70 31 62 
0.6 12 28 19 2 
0.7 48 62 41 87 
0.8 47 140 44 136 
0.9 19 67 39 119 
1 13 53 5 13 

Subtotal  180 420 179 419 
Total 301 525 301 525 
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Both methods are good and very similar in the categorization and prediction 

accuracy. BN correctly predicts 121 no evacuations, while LR correctly predicts LR 122 

no evacuations (highlighted in the table). Therefore, both methods have a true negative 

rate (i.e., specificity) of approximately 40% (121/301 and 122/301, respectively). BN 

correctly predicts 420 evacuations, while LR correctly predicts 419 evacuations (also 

highlighted in the table). Therefore, both methods have a true positive rate (i.e., 

sensitivity) of approximately 80% (420/525 and 419/525, respectively). 

Figure 21 presents the receiver operating characteristic (ROC) curve and the area 

under the curve (AUC), which illustrates the diagnostic ability of the models as binary 

classifiers. Many publications provide an enhanced overview on AUC-ROC curves—for 

example, Marzban (2004) and Hoo et al. (2017). It can be observed in the figures that 

both the BN and LR models have similar predictive ability, considering the AUC 

estimates (59.8% versus 59.2%, respectively) and the 95% confidence intervals. 
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Figure 21. AUC and ROC curve for sensitivity and specificity analysis. 

 

3.3.8. Experiment 3 

This experiment explores the possibility of knowing that a household has 

evacuated, but it is desirable to investigate the influence of each predictor level on such 

an output. The evidence that the household has evacuated is so-called soft evidence. 

Although it analyzes the parent nodes of an outcome, it is usually acknowledged in 

Bayesian literature as a prognostic analysis. 

Using Bayes’ theorem (explained on page 47), probabilities can be estimated for 

each of the predictors if it is known that the household evacuated (evacuation = 1). For 

example, the probability of expecting impacts is not at all likely (expected_hh_impacts = 

1), and the household evacuate (evacuation = 1) can be estimated using the values from 

Table 8 in the following equation: 
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𝑃(expected_hh_impacts = 1	|	evacuation = 1)

= 	
(number	of	obs. 	for	which	evacuation = 1	and	expected_hh_impacts = 1)

(number	of	obs. 	for	which	evacuation = 1 )

= 49
520 = 0.0942 

Table 11 presents the results for all levels on both predictors. Based on the 

evidence that the household did evacuate (evacuation = 1), the probability of 

expected_hh_impacts is lower (2 has the greater probability), and signif_evac_orders is 

higher (5 has the greater probability). This information can be very useful for disaster 

planning. To enhance evacuation, emergency managers need to focus on intensifying the 

risk perception in relation to signif_evac_orders, which most impacts the probability of a 

household evacuating according to this specific surveyed data and model structure. 

 

Table 11. Prognostic Results on the Predictors. 

Levels 
Predictors’ Probabilities 

expected_hh_impacts signif_evac_orders 
1 0.0942 0.0731 
2 0.4558 0.0596 
3 0.2173 0.1231 
4 0.1808 0.2250 
5 0.0519 0.5192 

 

3.3.9. Experiment 4 

This experiment considers an alternative network structure on the BN model. The 

initial network structure simply pointed out all the predictive variables for evacuation. 

Changes in an initial network structure can happen as hard evidence is learned from data 

or beliefs (i.e., hypotheses; Mrad et al., 2015). 
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For example, consider the probability of official evacuation orders influencing 

the probability of expecting personal and household impacts. This hypothesis has 

already been tested and supported by data (Huang et al., 2017). In the BN model, such a 

connection will update the prior expected_hh_impacts. Figure 22 presents the alternative 

network structure, in which signif_evac_orders still influence evacuation but also 

simultaneously influence expected_hh_impacts. Testing the MI of the nodes reveals that 

the three connections are statistically significant. As can be noted in the evacuation 

node, once again the evacuation probabilities are updated. The BIC of the updated BN is 

-2850. 

 

 

Figure 22. An alternative network structure. 
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The capability of connecting nodes and forming more complex structures while 

priors are also updated can help the modeling of conceptual models without other 

statistical complexities. Figure 23 presents an adapted section of the protective action 

decision model (PADM; Lindell & Perry, 2012). 

The diagram shows a section of the information flow in the PADM that can be 

directly compared to the alternative proposed BN. Warning messages (equivalent to 

considering official evacuation orders) are related to the threat perceptions (consistent 

with expecting impacts), which are related to the decision for and the act of protective 

measures (in this case, evacuation). 

This conceptual model also considers experience in decision-making influence 

predictors, which is not considered in the proposed BN, although the BN model in its 

alternative implementation possibly better reflects such a structure and creates the 

possibility for the straightforward implementation of more complete versions of PADM 

conceptual models. The next chapter presents a more extensive discussion of this idea. 
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Figure 23. Section of the information flow in the PADM adapted from the model 
presented by Lindell & Perry (2012). 

 

3.4. Discussion and Conclusions 

BNs are used in several fields and have been widely applied to decision-making 

problems because they combine the benefits of formal probabilistic methods, an 

engaging visual form, and efficient computational techniques to explore complex 

arrangements of predictors for an outcome. Hurricane evacuation is a recurrent and 

important decision-making problem for many coastal communities exposed to this 

natural hazard, and BNs can be useful in helping to reach that decision even though they  

currently have had limited exploration. 
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This study began with the identification of two objectives: first, to understand 

how BNs could be used to model hurricane household evacuation; and second, to 

demonstrate the adequacy, effectiveness, and limitations of this novel approach in this 

specific field of disaster planning. A random sample of 826 completed cases based on 

address sample frames that were collected in a survey after Hurricane Harvey passed 

through the Texas Coastal Bend area in August 2017 was used for this study. The 

analysis considered only two of the main and most recurrent reasons that directly affect 

household evacuation, based on research to date: (a) receiving an official warning, and 

(b) expecting personal and household impacts. 

Since each relationship between two variables is a hypothesis to be tested, even 

when not acknowledged, the assumptions that (a) receiving an official warning, and (b) 

expecting personal and household impacts to influence evacuation were first confirmed 

(i.e., supported by the surveyed data) using traditional approaches, such as linear 

correlation, chi-square tests, and LR. Although the correlation among variables is a 

traditional indicator of similarity or of a relationship between two variables, an empirical 

cumulative distribution of an independent variables conditional on the dependent 

variable seems to be more effective in identifying possible conditional relationships. 

The same variables and dataset were used for the development of a simple BN, 

which presented consistent findings with the results and literature. The probabilities 

were obtained from the observations for all possible level combinations (i.e., categories 

of variables used), and by using the significant level of 0.05, the MI test estimated the 

linkage strength (i.e., p-values) among the variables. The initial BN only had direct links 
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from the predictors to evacuation; therefore, the conditional MI estimates were 

equivalent to the Chi-square independence tests of each pair of variables. 

The development of the initial BN model explained the fundamentals of the tool, 

such as  the factorization of the probabilities and other core definitions and properties 

that provided basis for the experiments developed next. The odds ratios of an LR cannot 

be interpreted as absolute effects, which implies that BN results can have a more direct 

explanation without requiring additional steps and context. Although odds ratios mean 

the ratio of occurrence to nonoccurrence, the probability of BNs are the ratio of 

occurrence to the whole. The probabilities of evacuation found by the BN are updated 

consequences from the network structure, which revises the prior knowledge. The initial 

dataset showed an estimated 62.9% chance that a random household would evacuate 

(520/826). Considering such initial network structure, the updated estimate was 63.2%. 

To further study the use of BNs, four experiments were developed. Experiment 1 

estimated the evacuation probability given that information is known about the 

predictors’ levels. The most adverse condition was assumed on both variables; that is, (a) 

a household did not at all consider local authorities issuing official recommendations to 

evacuate, and (b) the household did not at all likely expect personal or household 

impacts. 

This experiment showed that the probability values are not very different, 

although they are not the same. This example shows how the prediction calculations are 

developed by each BN and LR, and no conclusion can be taken from the differences in 
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the probabilities. For that, Experiment 2 sought to compare the predictive capacity of BN 

in a more generalized and formal procedure. 

The way in which the probabilities are obtained exposed a limitation of the BN. 

The probability of evacuation can only be estimated if there is a combination of 

predictors’ levels in the observed data to create a probability estimate for it. In case there 

is no such value in the factorization of the observations, a prior must be adopted, either 

by a belief, or by decreasing the number of levels of a variable, to increase the chances 

of having probabilities for all the combinations of levels. 

The second experiment sought to generalize the predictive capacity of the BN 

model, and to compare the results when using the LR as a classifier. For the external 

validity of the models, a synthetic population generator was used to create a large 

number of simulated observations with the analogous distributions for each variable as 

the surveyed data. 

Both models had similar classifications and were able to classify the evacuation 

satisfactorily (AUC values were statistically significance greater than 50% on both 

models, but not statistically significance different between them). Both models had a 

higher sensitivity rate (i.e., true positive rate) than sensitivity (i.e., true negative rate), 

approximately 80% versus 40%, respectively. 

Experiment 3 explored diagnostic analysis using BN. It showed that knowing the 

outcome of evacuation, it is possible to investigate the probability levels of the 

predictors that are more likely to have happened. In the example, given that the 

household evacuated, it is likely that receiving an official warning was to a very great 
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extend (rate 5) while expecting impacts was more likely to be at the lower of the average 

rate. This type of analysis can be appropriate and useful for the development of public 

policies and for a better understanding of factors that influenced evacuation. 

Experiment 4 considered an alternative network structure for the BN. This is 

usually called hard evidence in the Bayesian literature, in contrast to the soft evidence 

that is related to knowledge in the state of a variable. The new network seems to better 

mirror the dependence structure of the data because its BIC value is higher than the 

previous network (-2850 > -2901). 

Experiment 4 suggested that BNs can isomorphically represent complexities of 

conceptual models from the literature without major statistical complications such as the 

ones found in multistage modeling. However, there is a limitation to using linkages 

between variables with a single direction that do not form a cycle in the network 

structure considering that DAG are premises for BN. More advanced analysis, such as a 

dynamic BN, can accept the modeling of variables at different moments in time and 

bypass this limitation. 

None of the findings of these experiments are unknown in regard to BN. The 

major methodological contribution of this study is its validation of the application of BN 

in disaster planning problems, specifically in the analysis of hurricane evacuation. 

Although household evacuations in natural disasters have often been studied, constant 

examination of methods to predict evacuation behavior is relevant for more accurate 

outcomes and for a deeper learning process of the population choices. 
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Instead of competing with traditional methods, BN can be a complementary 

method that can help in the examination of gaps in the evacuation literature. For 

example, usually an expressive quantity of residents at risk do not evacuate from an 

approaching hurricane when they are advised to by local authorities. This inaction can 

cause unnecessary suffering, injuries, and ultimately deaths. Non-evacuation is still not 

fully understood. The use of BN to study household hurricane evacuation can help 

members of the community, planners, and emergency managers jointly learn and explore 

factors that affect the evacuation behavior. Thus, BNs can provide tools that can more 

comprehensively assist in preparedness yet still allow the presence of analysis of 

alternative risk countermeasures and scenarios by defining specific states for variables. 

This study was based on the observations of a particular survey instrument in a 

specific region during a single event. Future studies should continue testing the use of 

BNs with different datasets and expand the number of factors that can influence 

evacuation, thereby further testing the mediating effects between variables and BN’s 

asymptotic assumptions in terms of a larger dataset and a number of variables on 

complex network structures. 



 

68 

 

4. APPLICATION OF BAYESIAN NETWORKS TO STUDY HOUSEHOLD 

HURRICANE EVACUATION 

 

4.1. Abstract 

During hurricanes in coastal communities, household evacuation is a critical 

response by which local authorities and residents can prevent loss of life. Research to 

date indicates that receiving an official warning and expecting personal and household 

impacts directly affect evacuation. However, more analyses are needed to understand the 

mediating and interaction effects of other variables. Although most studies use logistic 

regression to examine the wide range of factors that affect evacuation, probabilistic 

graphical techniques such as Bayesian networks (BNs) may provide an alternative that 

allows learning of causal effects from observational data and creates intuitive graphical 

representations of probabilistic models that can more directly represent conceptual 

models and explicitly acknowledge the complexity of evacuation. This study aims to 

examine hurricane household evacuation using BNs. To develop the analysis, this study 

considers an established conceptual model from the literature and data collected after 

Hurricane Harvey passed through the Texas Coastal Bend area in August 2017. The 

results list factors that influence evacuation and indicate that BN can isomorphically 

model complexities of conceptual models without major statistical complications, 

thereby demonstrating a potential to be more frequently used in future disaster 

preparedness and planning.  
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4.2. Introduction 

Hurricane-related hazards, such as high wind speed and storm surge, can cause 

some of the most devastating natural disasters in coastal communities (Bengtsson, 2001). 

Moreover, household evacuations are so critical in saving lives that several studies are 

still trying to understand the factors that influence this choice (e.g., Baker, 1991; Lazo et 

al., 2015; Lindell et al., 2005). 

The analysis of evacuation behavior is critical for disaster preparedness and 

planning—particularly for hurricanes, since Baker’s (1991) research indicates that 

receiving an official warning to evacuate and expecting personal and household impacts 

from the storm directly influence evacuation, and frequent evaluations are necessary to 

better understand the mediating and interactive effects of many other variables (Tanim et 

al., 2022). 

Modeling the “complexity involved in the household evacuation decision-making 

process” (Hasan et al., 2011, p. 341) is an ongoing challenge effectively captured by 

conceptual models such as the protective action decision model (PADM) (Heath et al., 

2018; Lindell & Perry, 2012). 

However, mathematically modeling such problems is not a simple task because 

of the heterogeneity of the social vulnerabilities of populations impacted (Burton, 2010), 

the areas affected by those compounding threats (Cegan et al., 2022), and the indefinite 

mediating and interacting effects of diverse variables. 

Most studies use logistic regression (LR) to examine the wide range of factors 

that affect evacuation (Yang et al., 2016), which provides a rigorous analytical 
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framework for modeling the discrete outcome of a choice. However, although many 

prediction models are developed and available, supposedly the uptake in planning 

practice and public policy is relatively slow, considering that an expressive number of 

at-risk residents do not evacuate from an approaching hurricane when advised by local 

authorities. Some studies (e.g., Laitin, 2003; Waddell, 2011) have tried to identify the 

challenges that can happen in the process of taking models developed in an academic 

research setting, where theoretical validity and the advancement of methodology receive 

high priority, and moving them into public agency settings in which priorities are 

typically reliability, facility of use, and staff capacity to explain to stakeholders what the 

models are doing. 

More specifically, including amid researchers, probably two important 

challenges associated with using the LR to model evacuation are as follows: (a) the 

difficulty to incorporate dependencies among variables, and (b) the presence of 

numerous (risk) factors with only a small and/or mixed effect across previous decisions 

and intentions to evacuate. For example, while some studies indicate that gender is 

significantly related to hurricane evacuation and women are more likely to evacuate 

(e.g., Bateman & Edwards, 2002; Gladwin et al., 2001), others have found no significant 

effect of gender on evacuation intention, although men were less likely to evacuate 

among respondents (Lazo et al., 2015). 

This study tries to overcome these challenges by examining hurricane household 

evacuation through an alternative approach—Bayesian networks (BNs). This 

probabilistic graphical technique has been used to study decision-making problems in 
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risk management (e.g., Fenton & Neil, 2011; Jager et al., 2018); however, the use of 

BNs in research to study responses to environmental hazards and disasters, particularly 

hurricane evacuation, has been limited. 

BNs are possibly a more accessible approach to model and examine factors that 

can directly and indirectly influence evacuation. BNs allow the learning of causal effects 

from observational data and offer an intuitive graphical representation of probabilistic 

models with relatively easy interpretation while still having a solid statistical basis. 

These graphical representations can more explicitly specify conceptual models and 

acknowledge the complexity of evacuation. 

This study develops a BN model that is consistent with an abbreviated version of 

the PADM and uses data collected in a survey after Hurricane Harvey (that hit Texas in 

August 2017). The PADM proposes to integrate the influence of environmental and 

social cues, information sources, preferences, warning messages, and receiver 

characteristics in the evacuation choice. The general goal of the survey used was to 

obtain data on household evacuation response and factors influencing household 

response in the Texas Coastal Bend area, which includes Aransas, Calhoun, Jackson, 

Matagorda, Nueces, Refugio, San Patricio, and Victoria Counties. 

The results find important factors that influence evacuation, but more 

importantly, the results indicate that BNs can isomorphically model complexities of 

conceptual models without major statistical complications and are likely to be used more 

often in future disaster preparedness and planning. Future research can incorporate more 

variables and domains in the model and, also, include a specific variable that measures 
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the evacuation decision, or choice, previously the evacuation, which tries, in this way, to 

contrast the difference between choice, decision, or intention to evacuate and its 

occurrence and success. 

4.3. Data and Methods 

This section presents a conceptual model that can facilitate the study of factors 

that influence evacuation and includes the description of the dataset used in the analysis. 

The specific version of the model presented was chosen from among the many varieties 

in the literature because it was recently published and used for a storm with similar 

characteristics in a geographical region near the Coastal Bend. Details are presented 

below. 

4.3.1. Conceptual Model and the Graphical Representation of a Probabilistic Model 

Lindell and Perry’s (2012) PADM has been extensively used to analyze the 

behavior and decision-making of people and households subject to threats from a wide 

range of hazards (e.g., Strahan & Watson, 2019; Terpstra & Lindell, 2013) and has 

acquired the status of a theory in environmental hazard and disaster planning (Lindell & 

Perry, 2012). 

Generally, slightly different versions of this conceptual model and information 

flow appear in the literature (e.g., Lazo et al., 2015; Lindell et al., 2005). Figure 24 

shows an analogous version of the PADM multistage model of hurricane evacuation 

presented in Huang et al. (2017) to examine hurricane evacuation decisions during 

Hurricanes Katrina and Rita.  
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Hurricane Katrina made landfall off the coast of Louisiana, and Hurricane Rita 

threatened the Texas coast but gradually curved east toward the coast of Louisiana, 

making its landfall near the border of Texas and Louisiana. The PADM conceptual 

model facilitated defining the hypotheses tested in the study in which basically every 

relationship between the variables was an assumption to be examined. 

In the aforementioned study, a series of statistical tests and regression analyses 

showed that two predictive paths affected evacuation decisions. For the first path, the 

effects of the antecedent variables on evacuation decisions were mediated by expected 

storm threats and impacts. For the second path, the effects of the antecedent variables on 

evacuation were mediated by expected evacuation impediments—although expected 

evacuation impediments affect evacuation decisions indirectly (via expected wind 

impacts) as well as directly. 
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Figure 24. Adapted version of the PADM multistage model for hurricane 
evacuation. 

 

Apart from the dotted link, this conceptual model is very comparable to a 

directed acyclic graph (DAG), which may represent a BN model by directly using the 

same structure. 

BNs are a type of probabilistic graphical model that use Bayesian inference for 

probability computations. BNs aim to model conditional dependence and therefore 

causation by representing conditional dependence on a DAG. A DAG can be thought of 

as a kind of flowchart that visualizes a whole causal network linking causes and effects 
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(Foraita et al., 2014). In a graph that represents a particular model, a set of variables is 

shown as nodes and their conditional dependencies shown as links (also called arcs or 

edges). 

Every BN demands a particular factorization of a joint probability distribution, 

and this factorization implies certain independence assumptions about the underlying 

model that can be found using only the DAG (Jensen, 1996). In other words, the BN 

model that a specific DAG represents is a joint probability distribution that takes the 

form of a product of n factors (p = p1 p2  . . .  pn) wherein these factors need meaningful 

interpretations as probability densities (for the initial variables of the network that are 

theoretically not dependent on other influences) or marginal and conditional 

probabilities (for the other variables that are conditioned to one or more factors). 

All the independence relationships implied by the factorization can be found using only 

the DAG. That is, BNs satisfy the global and local Markov properties (Kang & Tian, 

2012) that state, respectively, that the set of conditional independence relationships 

encoded in a DAG can be read by d-separation criterion (Geiger et al., 1990), and a node 

is conditionally independent of its non-descendants given its preceding nodes in the 

network. 

To ultimately construct the BN probabilistic model to examine evacuation, 

variables selected from a survey are presented below. 

4.3.2. Hurricane Harvey Household Evacuation Behavior Survey 

In 2019, researchers from the Hazard Reduction & Recovery Center at Texas 

A&M University, Texas A&M Transportation Institute, and the University of 
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Washington Institute for Hazard Mitigation Planning and Research conducted the 

Hurricane Harvey Evacuation Behavior Survey (HHEBS), which targeted the eight 

counties that comprise the Texas Coastal Bend area (Aransas, Calhoun, Jackson, 

Matagorda, Nueces, Refugio, San Patricio, and Victoria counties). Figure 25 shows a 

part of the Hurricane Harvey Final Best Track (National Hurricane Center, 2022) over 

the Texas Coastal Bend area, which is a significant geographic region of the coast of 

Texas exposed to hurricanes. 

 

 

Figure 25. Texas Coastal Bend area and Hurricane Harvey track. 

 



 

77 

 

The general goal of the researchers conducting the HHEBS was to obtain data on 

factors influencing household responses to Hurricane Harvey, which made its first 

landfall in Aransas County, Texas, on August 25, 2017, as a Category 4 hurricane. 

Households were randomly selected, and the survey distribution was administered in 

three waves. Wave 1 of the survey was online only, and Waves 2 and 3 included paper 

copies of the survey instrument with postage-paid return. To enhance communication 

and responses from Hispanic residents, 20% of the sample distribution included a 

bilingual version (English and Spanish). These bilingual surveys were addressed to 

locations with a higher proportion of Spanish speakers in the study area (Bierling et al., 

2020). 

The HHBES behavioral survey covered four primary topic areas: household 

evacuation decisions and associated cues, evacuation preparations and logistics, 

evacuation route choices, and respondent/household demographics and related 

characteristics (Bierling et al., 2020). The survey instrument, comprising 41 questions, 

was based upon earlier questionnaires that the HRRC used in previous hurricane 

evacuation behavior studies (e.g., Lindell et al., 2001; Lindell et al., 2013), along with 

items from other evacuation studies summarized by Lindell et al. (2019). The original 

survey dataset contained 958 observations. After excluding duplicated entries because of 

the multiple waves of the survey distribution, there remained 907 observations to be 

initially analyzed. 

What follows next is a concise description of each of the selected variables. 

Table 12 presents a summary of the variables, which includes  the proportion of the 
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sample with data and the categories of how the variables are initially coded. The analysis 

used only the observations of residents at the time of the hurricane. 

4.3.2.1. Evacuation 

The survey asked if the household evacuated from Hurricane Harvey. This 

question presents four possible outputs: (a) No, (b) Yes, (c) Not Resident, or (d) No 

Answer. For analysis, only the observations that answered Yes and No are selected; No 

is coded as 0, and Yes is coded as 1. In the initial dataset, 2.5% of the observations were 

not residents at the time, and 0.5% did not answer the question. These samples were 

excluded from the dataset. For the analysis, 60% of the households evacuated from 

Harvey at some point in time, and 37% did not evacuate. This variable is labeled 

evacuation. 

4.3.2.2. Hurricane Evacuation Orders 

Typically, a hurricane evacuation starts as a call for voluntary evacuations and at 

some point is elevated to a mandatory evacuation order (McCausland & Chuck, 2017). A 

hurricane evacuation order can allow residents to identify, and possibly better 

understand, that the risk of a hurricane is imminent and thus lead the public through a 

life-saving decision-making process. 

Using communication from the Aransas Pass Police Department 

(https://police.aptx.gov/hurricane-harvey/), multiple local news articles published by the 

Texas Press Association (https://www.texaspress.com), and Alana Rocha from the State 

Operations Control (https://twitter.com/viaAlana/status/901130510117867521), the 

researchers could identify whether each of the households was in an area of voluntary or 
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mandatory evacuation orders. This variable is coded as evac_orders and can assume the 

values of mandatory (= 1) or voluntary (= 0). It is worth noting that this measure is 

different from whether the respondent considered hurricane evacuation orders and is not 

necessarily applied to evacuation zones only. 

4.3.2.3. Consideration of Hurricane Evacuation Orders 

This question asked to what extent the residents weighed the local authorities’ 

official recommendations to evacuate when deciding whether to evacuate. Answers to 

this question were on a scale of 1 to 5, where 1 represented not at all considered and 5 

represented considered to a very great extent. In the initial dataset, 7.4% of the 

participants did not respond to this question. This variable is coded as 

signif_evac_orders. 

4.3.2.4. Sociodemographic Characteristics (Age, Gender, and Education) 

Sociodemographic characteristics not only provide context on the observations, 

but many studies also show that sociodemographic characteristics such as age, gender, 

and years of education can influence the perception of risk and, subsequently, the 

evacuation choice (Huang et al., 2016). These variables were self-reported in the survey. 

Approximately 58% of the respondents were male (coded as 0) and 42% were females 

(coded as 1). The variable gender is coded as gender. Among respondents, the minimum 

age was 20 years old, the maximum age was 94 years old, and the average age was 61.7 

years old, with a standard deviation (SD) of 13.2. Ages have been reclassified into 

groups based on decades and the variable is coded as age. In regard to education, 

respondents were asked to reveal their highest level of education based on the following 
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possible answers: some high school, some college/vocational school, college graduate, 

high school graduate/GED, or graduate school. These answers have been recoded to the 

highest year of education—up to 10, 12, 16, 18 or 21, respectively. On average, HHEBS 

respondents had higher levels of formal education than the area population; 47.1% of 

survey respondents reported having a bachelor’s degree or higher, in comparison to 

19.9% of the area population (Bierling et al., 2020). This variable is coded as education. 

4.3.2.5. Risk Area 

This variable was identified by the researchers using detailed evacuation maps to 

discover whether the household of the respondent is in a formal existing hurricane 

evacuation zone. This variable is coded as risk_area and can assume the values of Yes 

(= 1) or No (= 0). It is worth noting that this measure is different from whether the 

respondent acknowledged living in an area of high risk for storm surge or an evacuation 

zone. 

4.3.2.6. Consult Sources of Information 

In this study, consult sources of information assessed how many times per day, 

on average, the respondent consulted sources for information about the hurricane in the 

three days before landfall. It is assessed by the mean score of six sources of information: 

(a) local authorities (e.g., mayor, sheriff or police chief, emergency coordinator); (b) 

local news media (e.g., newspapers, radio stations, or television stations); (c) national 

news media (e.g., network news or Weather Channel); (d) the internet (e.g., National 

Hurricane Center website); (e) social media (e.g., Facebook and Twitter); and (f) phone 

or face-to-face contact with peers (such as friends, relatives, or neighbors). Answers to 
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these questions were given on a scale of 1 to 5, respectively, based on consulting 0, 1-2, 

3-4, 5-6, or 7 times or more on average per day. In the initial dataset, 94.5% of the 

observations responded to at least one of these questions. The mean of this variable was 

3.0, and the SD was 1.20. This variable is coded as consult_info. 

4.3.2.7. Expected Personal and/or Household Impacts 

Although risk perception can be considered a complex analysis (Wachinger & 

Ren, 2010), expected impacts can be considered a form of risk perception and assessed 

in several ways (e.g., wind damage, surge damage, flood damage, casualties, job 

disruption, and service disruption; Huang et al., 2016). In this study, expected impacts 

try to capture the expectation of personal and/or household impacts and are assessed by 

the mean score of four questions from the survey: how likely the informant thought, as 

the storm was approaching, (1) that they or household members would be injured or 

killed if they stayed? (2) that their home would be inundated by storm surge? (3) that 

their home would be exposed to inland flooding? or (4) that their home would be 

severely damaged or destroyed by storm wind? These questions were answered on a 

scale of 1 to 5, where 1 represented not at all likely and 5 represented almost certain. In 

the initial dataset, 4.7% of the respondents did not respond to any of these questions. If 

only one or more of the questions were answered, it was computed as the average of the 

answers. This variable is coded as expected_hh_impacts. 

4.3.2.8. Multiple Concerns 

In this study, social cues are assessed by the mean score of five concerns: (a) 

concern about protecting their home from looters; (b) concern about protecting their 
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home from storm impact; (c) concern about evacuation expenses, such as gas, food, and 

lodging; (d) concern about traffic accidents during the evacuation; and (e) concern about 

traffic jams during the evacuation. Answer to these questions were given on a scale of 1 

to 5, where 1 represented not at all considered and 5 represented considered to a very 

great extent. In the initial dataset, 94.5% of the participants responded to at least one of 

these questions. The mean of this variable was 3.0, and the SD was 1.20. This variable is 

coded as multiple_concerns. 

4.3.2.9. Social Cues 

Social cues are forms of risk awareness that use peers as a source of information 

(Lindell et al., 2005). In this study, social cues are assessed by the mean score of four 

observations: (a) seeing businesses closing; (b) seeing friends, relatives, neighbors, or 

coworkers evacuating; (c) hearing announcements of watches and warnings; and (d) 

hearing local authorities recommending evacuation. Answers to these questions were 

given on a scale of 1 to 5, where 1 represented not at all considered and 5 represented 

considered to a very great extent. In the initial dataset, 93.4% of participants responded 

to at least one of these questions. The mean of this variable was 2.7, and the SD was 

1.41. This variable is coded as social_cues. 

4.3.2.10. Previous Unnecessary Hurricane Evacuation Experience 

This question asked respondents to what extent they considered previous 

experience with an unnecessary evacuation when deciding whether to evacuate. In the 

initial dataset, 91.6% of the respondents responded to this question. Answers to this 

question were given on a scale of 1 to 5, where 1 represented not at all considered and 5 
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represented considered to a very great extent. In the initial dataset, 91.6% of the 

respondents responded to this question. The mean of this variable was 2.8, and the SD 

was 1.57. This variable is coded as unnecessary_evac_exp. 

 

Table 12. Variables’ Proportion of Sample with Data, Coding, Mean, and SD. 
Variable 
(n = 907) 

Complete 
Rate 

(n
missing

) 
Coding 

(levels / categories) 
Count & percent, or 

Mean & SD 

evacuation 0.994 (5) 
1: yes, 
0: no 

(drop not living in the place) 

yes: 543 (60%) 
no: 336 (37%) 

not res.: 23 (2.5%) 

evac_orders 1.000 (0) 1: mandatory 
0: voluntary 

mandatory: 571 (63%) 
voluntary: 336 (37%) 

gender 0.965 (32) 1: female 
0: male 

male: 506 (58%) 
female: 369 (42%) 

risk_area 1.000 (0) 1: yes 
0: no 

yes: 570 (63%) 
no: 337 (63%) 

age 0.963 (34) min.: 20 
max.: 94 (reclassified in decades) 61.7 13.20 

consult_info 0.974 (24) 1: 0x, 2: 1-2x, 3: 3-4x, 
4: 5-6x, 5: 7+/day 2.9 0.98 

expected_hhs_impacts 0.953 (43) From 1: not at all likely 
to 5: almost certain 2.3 1.04 

signif_evac_orders 0.926 (67) From 1: not at all 
to 5: very great extent 3.5 1.50 

education 0.959 (37) Up to 10, 12, 16, 18  
or 21 years of education 16.5 3.10 

multiple_concerns 0.945 (50) From 1: not at all 
to 5: very great extent 3.0 1.20 

social_cues 0.934 (60) From 1: not at all 
to 5: very great extent 2.7 1.41 

unnecessary_evac_exp 0.916 (76) From 1: not at all 
to 5: very great extent 2.8 1.57 

 

A listwise deletion was used to handle the missing data (illustrated by Figure 

26—in maroon are the missing data for each one of the variables, clustered, so that the 

approximate frequency that missing questions happen in the same observation can be 

visually identified). After that procedure, the number of observations (n) in the dataset 
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drops from the original 907 to 771. Figure 26 also includes the number of the missing 

data for each variable and the percentage they represent. 

 

Figure 26. Missing survey data. 

 

Table 13 presents the intercorrelations among the variables (Pearson correlation 

coefficient). The values in red are nonsignificant at p ≤ 0.05. The correlation coefficient 

(r) can take on values between -1 and 1. The further away r is from zero, the stronger the 

linear relationship between the two variables. The matrix indicates that the highest 

correlations among these scales are the correlation between social_cues and 

signif_evac_orders (r = 0.61), signif_evac_orders and expected_hh_impacts (r = 0.42), 

and signif_evac_orders and evacuation (r = 0.46). Figure 27 presents illustratively the 

same information and the level of significance for each pair of variables. 
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Table 13. Intercorrelations Among the Variables. Values in red are nonsignificant 
at p ≤ 0.05.  
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evacuation 1 0.36 0.46 0.28 -0.02 0.02 0.18 0.31 0.04 -0.01 -0.03 0.01 

expected_hh_impacts  1 0.42 0.09 0.14 0.32 0.10 0.39 0.20 -0.12 -0.16 0.10 

signif_evac_orders  1 0.15 0.15 0.26 0.10 0.61 0.21 -0.10 -0.05 0.14 

evac_orders  1 0.03 -0.01 0.13 0.08 0.07 0.10 -0.12 0.02 

unnecessary_evac_exp  1 0.41 -0.04 0.19 0.13 -0.03 -0.06 0.07 

multiple_concerns  1 -0.02 0.36 0.20 -0.11 -0.19 0.09 

risk_area  1 0.05 -0.03 0.13 0.09 -0.03 

social_cues  1 0.19 -0.16 -0.11 0.20 

consult_info  1 -0.12 -0.08 0.17 

age  1 0 -0.12 

education  1 -0.04 

gender  1 
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Figure 27. Illustrative of the intercorrelations among the variables. 

 

A goal in this analysis is to study the relationship between the independent 

variables and evacuation (the dependent variable). For an initial (and exploratory) 

visualization of how this relationship can happen, an empirical cumulative distribution 

of each independent variable conditional on the evacuation response was made (see 

Figure 28, in blue when evacuation = 1 and in red when evacuation = 0). The cumulative 

percentage of responses is shown on the y-axis, and each level of the variables is shown 

on the x-axis. The empirical cumulative distribution functions seem to be an effective 

way of identifying variables whose evacuation may be conditioned. It can be noted that, 

for example, signif_evac_orders seem to be related to evacuation, but age, gender, or 

education, do not seem to be related to evacuation. 

Significant

Not signif.(p > .05)
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Figure 28. Empirical cumulative distribution function conditional to evacuation. In 
blue, evacuation = 1 (Yes). In red, evacuation = 0 (No). 

 

4.3.3. An Initial Bayesian Network Model 

One of the advantages of using probabilistic graphical modeling approaches is 

the ability to make connections between variables when these linkages represent 

hypotheses that can be tested by the model while supported by the data. Next, Figure 29 

presents a BN model that substitutes the element of the conceptual model (in blue; see 

Figure 24, the adapted version of the PADM multistage model of hurricane evacuation) 

with the selected variables from the survey that can at least partially capture and describe 

each of the phenomena. 

In this model, each link represents a conditional dependency and each node a 

random variable. Nodes that are not connected represent variables that are conditionally 

independent of each other. Each node is associated with a probability function that takes 
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as input a particular set of values from the preceding nodes, if applicable, and creates as 

an output the probability distribution of the variable it represents. 

 

 

Figure 29. Probabilistic model of hurricane evacuation. Each node represents a 
variable of the survey that is associated with an element of the conceptual model. 

 

Figure 30 repeats the BN model without the elements of the conceptual model, 

illustrating the conditional dependency of each of the variables. Evacuation is related to 

expectation of personal and/or household impacts (expected_hhs_impacts), consideration 

of multiple concerns about the storm and possible consequences (multiple_concerns), 

consideration of official evacuation recommendation (signif_evac_orders), and 

unnecessary evacuation experience (unnecessary_evac_exp). Considering official 
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evacuation recommendation (signif_evac_orders) is supposedly conditional to having 

evacuation orders for the household. Considering multiple concerns about the storm and 

possible consequences (multiple_concerns) is conditional to age, education, and gender. 

And expectation of personal and/or household impacts (expected_hhs_impacts) is 

conditional to the frequency of consulting information about the storm (consult_info), 

the household being in a risk area (evacuation zone – risk_area), perceived social cues 

(social_cues), and age, education, and gender. 

 

 

Figure 30. BN model of hurricane evacuation. 
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Figure 31 presents the probabilities of each variable. The model shows that 

59.9% of the households will evacuate, while 40.1% will not evacuate. This estimate 

updates the prior number of 61.8% for the probability of a household evacuation (i.e., 

the number of observations that evacuated/total number of observations = 

543/(543+336)) and the prior 38.2% of households that will not evacuate. 

In addition, the network shows the probabilities for the other variables. The 

probability of unnecessary previous evacuation experience has 31.8% of the informants 

rating at the lowest level (1) and 23.5% of the informants rating it at the highest level 

(5). Considering evacuation orders has a distribution toward great or very great extent. 

Considering multiple concerns is relatively balanced in the middle range. Expecting 

personal and/or household impacts is toward the lowest share. It seems that very few 

people do not consult sources of information. The consideration of social cues is 

relatively balanced. Approximately 65% of the households were under mandatory 

evacuation orders, and 63.3% of the households were in an evacuation zone. 
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Figure 31. The joint probabilities for each variable. 

 

The estimate network score Bayesian information criterion (BIC) is -66,485. To 

verify the assumptions of the dependence of the network, Figure 32 presents the strength 

of each linkage resulting from a mutual information (MI) test on each connection (with a 

threshold of p < 0.05). 

MI is a statistic to measure the relatedness between two variables. The concept of 

mutual information is complex and is the basis of information theory. Compared with 

traditional measures such as correlation, mutual information can detect a wider range of 

relationships. For example, a zero-correlation coefficient does not necessarily imply that 

two variables are independent while zero mutual information is mathematically 
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equivalent to independence. Mutual information between two discrete variables is 

conventionally calculated by their joint probabilities estimated from the frequency of 

observed samples in each combination of variable categories (Cover & Thomas, 1990). 

The MI tests detected that the data did not support the following hypotheses/linkages: 

• unnecessary_evac_exp was not significant for evacuation. 

• risk_area and age were not significant for expected_hhs_impacts. 

• age and gender were not significant for multiple_concerns. 

 

 

Figure 32. Results of the MI tests to examine linkage strength. 
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4.3.4. Adjusting the Bayesian Network Model 

In Figure 28, it appears that risk_area can have dependency on evacuation 

(Figure 33 shows it in detail). This possible direct relationship was not tested in the BN 

above. 

 

 

Figure 33. Empirical cumulative distribution function conditional of risk_area to 
evacuation. 

 

The linkage between risk_area and expected_hhs_impacts was not significant. 

However, risk_area is significantly directly connected with evacuation (see Figure 34). 

The network score BIC of the updated version of the network is -68,484. This value is 

smaller than the previous BIC, which implies that this network structure fits the data 

worse than the preceding structure. 
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Figure 34. BN model updated: risk_area directly influencing evacuation. 

 

New connections can be tested. Figure 35 analyzes the possibility that age 

influences unnecessary_evac_exp by taking into account that older people may have 

lived longer in the region and have had a greater chance of experiencing unnecessary 

evacuation. This network update also tested whether age influences signif_evac_orders, 

multiple_concerns, and expected_hhs_impacts. Age was not significant for any of these 

hypotheses. 

This network also tests the hypotheses that gender can influence 

signif_evac_orders, multiple_concerns, and expected_hhs_impacts. Gender was 

significant for signif_evac_orders only. Age and gender were not significant for 
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education. Education was significant for multiple_concerns, but not significant for 

signif_evac_orders and expected_hhs_impacts. The updated network score BIC 

is -70,558, indicating that this network structure fits the data even worse. 

 

 

Figure 35. BN model updated: testing multiple hypothesis regarding the 
sociodemographic variables age, gender, and education. 

 

Based on the results obtained by the updated model above, Figure 36 presents a 

fitted model using only significant linkages, and that model reaches a much higher 

network score BIC value (-10,041), indicating a network structure that better fits the 

data. Education is the only influence in multiple_concerns. Evac_orders and gender 

influence signif_evac_orders. Consult_info, social_cues, and risk_area influence 

BIC(LL - nk): -70,558
Significant
Not signif. (p > .05)
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expected_hhs_impacts. Risk_area, signif_evac_orders, and multiple_concerns influence 

evacuation. 

 

 

Figure 36. BN model updated: fitted model. 

 

Figure 37 presents the updated joint probabilities of the network. The probability 

that a household evacuates changes to 63.0% (the first network had this probability at 

59.9%).  

BIC(LL - nk): -10,041

Significant
Not signif. (p > .05)
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Figure 37. The updated joint probabilities for each variable. 

 

4.3.5. Experiment 1: Probabilities for Fixing multiple_concerns to the Lowest Level 

In addition to testing hypotheses in the connection of variables, BNs allow 

testing changes in joint probability by fixing the state of particular variables. This 

experiment analyzes the prediction ability of the BN model. To demonstrate a typical 

application in disaster planning, Figure 38 shows how changes can be examined in the 

evacuation probability by fixing the state of multiple_concerns to the lowest level (not 

considered important when deciding to evacuate = 1). Interestingly, the evacuation 

probability has increased to 73.7% from 61.0%, which may indicate that not having 

concerns about multiple factors (about protecting home from looters and from storm 
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impact, about evacuation expenses, about traffic accidents and traffic jams during 

evacuation) can increase the evacuation participation by approximately 21%. 

 

 

Figure 38. Joint probabilities after fixing multiple_concerns to the lowest level. 

 

4.3.6. Experiment 2: Probabilities for Fixing Evacuation 

This experiment explores, by using Bayes’ theorem, the possibility of knowing 

that a household has evacuated, but it is desirable to investigate the influence of each 

predictor level on such an output. The evidence that the household has evacuated is so-

called soft evidence. Although it analyzes the preceding nodes of an outcome, it is 

usually acknowledged in Bayesian literature as a prognostic analysis. 

Table 14 presents the results for all levels on the three predictors of evacuation. If 

the evidence shows that the household did evacuate (evacuation = 1), the probability of 
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expected_hh_impacts is lower (2 has the greater probability), and signif_evac_orders is 

higher (5 has the greater probability). This information can be very useful for disaster 

planning. The probability that the household was in the risk area slightly changed to 

68.7%. To enhance evacuation, assuming that residents need to evacuate, emergency 

managers need to focus on intensifying the risk perception in relation to 

signif_evac_orders, which most impacts the probability of a household evacuating, 

according to the specific surveyed data and model structure. 

 

Table 14. Prognostic Results on the Predictors of Evacuation. 

Levels 
Predictors’ Probabilities 

expected_hh_impacts signif_evac_orders risk_area 
1 0.124 0.107 0.313 
2 0.493 0.068 0.687 
3 0.194 0.130  – 
4 0.154 0.218 – 
5 0.036 0.477 – 

 

4.4. Discussion and Conclusions 

Analysis of evacuation behavior is critical for disaster preparedness and 

planning, particularly hurricane household evacuation. Modeling the complexity 

involved in the household evacuation decision-making process is an ongoing challenge 

effectively captured by conceptual models such as the PADM. However, the 

mathematical modeling of such problems is not a simple task due to the heterogeneity of 

(a) the social vulnerabilities of populations impacted, (b) the areas affected by these 

compounding threats, and (c) the indefinite mediating and interacting effects of diverse 
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(risk) factors. Most studies use LR to examine the wide range of affective factors, which 

provides a rigorous analytical framework. However, although many prediction models 

are available, the uptake in planning practice and public policy is relatively slow. This 

can happen for different reasons: (a) struggles in the implementation and use of 

statistical models, and (b) difficulties in interpretation of what the models are doing by 

researchers and, more frequently, by authorities and the general population. 

BNs are used in several fields and have been widely applied to decision-making 

problems because they combine the benefits of formal probabilistic methods, an 

engaging visual form, and efficient computational techniques to explore complex 

arrangements of predictors for an outcome. Hurricane evacuation is a repeated and 

important decision-making problem for many coastal communities exposed to this 

natural hazard; importantly, although BNs currently have limited exploration in this 

field, they may prove to be quite useful. 

This study began with the identification of two objectives: first, to model 

hurricane household evacuation through BNs and acknowledge the factors that affected 

the evacuation choice in a recent event; and second, to find and demonstrate some 

advantages and limitations to this novel approach in this specific field of disaster 

planning. This study develops a BN model that is consistent with an abbreviated 

(reduced) version of the PADM and uses data collected in a survey after Hurricane 

Harvey passed through the Texas Coastal Bend area in August 2017, which includes 

Aransas, Calhoun, Jackson, Matagorda, Nueces, Refugio, San Patricio, and Victoria 

Counties. These data consist of a random sample of 826 completed cases. The original 
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survey dataset contained 958 observations. After excluding duplicated entries because 

the multiple waves of the survey distribution, and listwise deletion of missing data, the 

number of observations in the dataset dropped to 771. 

The analysis considered 11 of the main and most recurrent reasons that influence 

household evacuation, according to research to date: (a) previous unnecessary hurricane 

evacuation experience, (b) perceived social cues, (c) multiple concerns about the 

household and/or the evacuation, (d) expected personal and/or household impacts, (e) 

frequency of consulting sources of information about the storm, (f) the location of the 

residence in a risk zone (evacuation zone), (g) hurricane evacuation orders in the 

location of the residence, (h) consideration of hurricane evacuation orders, (i) age, 

(j) gender, and (k) the highest level of education. 

An initial BN model can more directly capture the conceptual model. The results 

of this model show that the factors significant for the evacuation choice were relatively 

consistent with the correlation analysis. The intercorrelation test were at a significance 

level of 0.05, and all tests of statistical significance of the linkages in the network use MI 

with a significance level of 0.05 as well. 

The factors influencing evacuation in this study were not necessarily new, while 

the survey instrument was based on previous research, and the model development was 

based on the conceptual model broadly accepted in the literature. However, the proposed 

model was built graphically and explicitly to acknowledge the conceptual model 

structure. Later, the adjustments in the model aided the update of the prior evacuation 
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probability and the description of the flow of information by the identification of 

statistically significant influences on evacuation—both direct and indirect effects. 

Unlike previous research (Huang et al., 2017), unnecessary evacuation 

experience was not correlated with evacuation and did not indicate statistical 

significance in the BN model. This finding is intriguing, and this indication should be 

specifically considered in the future. 

Interestingly, multiple concerns were not correlated with evacuation; however, it 

was statistically significant in the BN model. Note that the prior probability distribution 

of multiple concerns was first adjusted by the demographic factors (age, gender, and 

education) but later in the fitted network by education only. 

The influence of consulting information and the sociodemographic variables on 

evacuation were not directly tested in the BN model. These variables did not have a 

significant correlation with evacuation, but consulting information and education had an 

influence on expected personal and/or household impacts and multiple concerns, 

respectively. Therefore, the BN model should better analyze the mediating effects on the 

evacuation. 

In addition to the correlation analysis, the visualization of the empirical 

cumulative distribution function conditional to evacuation displayed a visual indication 

of possible dependence on evacuation. Thus, the BN model was adjusted to connect the 

risk area directly to evacuation. Note that the risk area was not significant for expected 

personal and/or household impacts, as initially hypothesized by the link in the model. 
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However, the adjusted model showed that the risk area was ultimately statistically 

significant and influential in the evacuation choice. 

A second adjustment to the BN model tested the influence of sociodemographic 

variables with risk factors, as described below. Gender was statistically significant for 

considering evacuation orders only. Age and gender were not statistically significant for 

education. Education was statistically significant for multiple concerns but not 

significant for considering evacuation orders and expected personal and/or household 

impacts. 

Finally, a fitted model was presented with only statistically significant linkages. 

As expected, the network score BIC result of this network shows that this model fits the 

data better than the previous models. With this model, two typical situations in disaster 

planning were tested. First, an analysis of how much the probability of evacuation was 

modified by setting multiple concerns to the lowest level (i.e., not considered important 

in deciding to evacuate) showed that evacuation increases (to 73.7% from 61.0%). It can 

be assumed that not having concerns about protecting one’s home from looters and from 

the storm, or about evacuation costs, traffic accidents, and traffic jams during evacuation 

will make residents more disposed to evacuate if instructed to do so. What should be 

studied in the future are actions that might make this factor fall to such a level. 

The second experiment tested the probabilities of factors that most influenced 

evacuation. The results showed that intensifying the risk perception in relation to 

considering evacuation orders most influenced the probability of a household 

evacuating, according to this specific surveyed data and model structure. As can be 
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observed, BN can facilitate the discussion of uncontrolled risk factors (e.g., gender and 

age) versus controlled risk factors (e.g., establishment of mitigation policies, official 

warnings, and definition of effective risk areas / evacuation zones). The use of graphs for 

modeling is not necessarily something new in statistical analysis. However, BNs 

specifically offer a friendly approach for modeling complex relationships, and the 

calculations involved are of relatively easy estimation and interpretation, as shown in the 

previous study (Chapter 3, page 30). 

A difficulty in developing a BN model was the discretization of the variables in 

order to find meaningful levels to the problem of evacuation while creating probabilities 

for all the combinations of levels given the network structure and the number of 

observations analyzed without using prior beliefs for missing combinations. Future 

research should include and test a more diverse set of variables and domains in the BN 

model while also testing these model structures with different datasets. In addition, 

future research should include an evacuation decision variable before the evacuation to 

assess the difference between the decision to evacuate and the evacuation occurrence, 

which can be limited by many factors, including sociodemographic ones. 
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5. CONCLUSIONS 

 

To offer a consistent approach to the risk assessment problem using BNs, 

Chapter 2 adapted a risk framework from the literature that facilitated the structure of 

critical processes. Although this approach can serve as a guideline to specific 

management of risks due to natural hazards, this study focused on the representation of a 

part of the system. The proposed framework was hierarchically structured based on how 

exposure to natural hazards, risk, and different sources of knowledge interact, and 

considered vulnerability as the link to the magnitude of direct consequences. BNs allow 

a detailed evaluation of the joint influence of the different indicators on the risk, 

providing results that, in contrast to traditional methodologies, are consistent with the 

mathematical (probabilistic) concept of risk and can be directly used for optimization 

purposes. In the illustrative examples, BNs can represent some of the complexities of the 

urban environment, such as the combination of physical and social vulnerabilities, while 

predicting economic and social losses. BN modeling ensures that models can be further 

extended when additional (or complementary) information is included or an examination 

by different stakeholders is performed, and a potential unavailability of indicators can be 

assessed by prior beliefs. 

None of the findings of the experiments in Chapter 3 are unknown regarding BN. 

The major contribution of this study is the validation of the application of BN in disaster 

planning problems, more specifically the analysis of hurricane evacuation. Although 

household evacuations in natural disaster have been often studied, constant examining of 
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methods to predict evacuation behavior is relevant for more accurate outcomes and a 

deeper understanding of the choices a population makes. 

The proposed model in Chapter 4 to study evacuation choices was built 

graphically and explicitly to acknowledge the conceptual model structure. The 

adjustments developed in the model allowed for the update of the evacuation’s prior 

probability, and the description of the flow of information by the identification of both 

direct and indirect effects showed significant influences on evacuation. Different than 

previous research, unnecessary evacuation experience was not correlated with 

evacuation and did not indicate statistical significance in the proposed model. This 

finding is intriguing, and this indication should be specifically considered in the future. 

The major methodological contribution of these studies is the validation of the 

application of BNs in disaster planning problems. The results of this dissertation suggest 

that BNs can be useful for disaster planning applications in the future by more directly 

capturing conceptual models and enabling the participation of multiple actors in the 

analysis of risk and risk countermeasures, thereby not limiting the process of risk 

assessment to experts only but instead creating a broader and more inclusive 

understanding of hurricane risks in communities. The use of BNs to study household 

hurricane evacuation can help members of the community, planners, and emergency 

managers get involved and jointly learn and explore factors that affect evacuation 

behavior. Furthermore, rather than competing with traditional methods, BNs can be a 

complementary and regular method to further assist the examination of gaps in the 

disaster planning literature. 
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This investigation also raised some new questions. Recurrently, an expressive 

number of residents at risk do not evacuate from an approaching hurricane when they are 

advised to do so by local authorities. This causes unnecessary suffering, injuries, and 

ultimately deaths. Such situations are likely to intensify based on a predicted increase in 

frequency and intensity of tropical storms and because of abrupt climate change. 

Although there are diverse studies on the evacuation behavior and choices, non-

evacuation is still not fully understood; both theoretical and policy framing of the 

decision to evacuate are mostly centered around logical and socioeconomic approaches 

that assume that risk is objective, and people will rationally evacuate if they have the 

material means to do so. Conventional (neoclassical) economic models and most policy 

makers assume that rational individuals should be able to keep informed of weather 

conditions, determine the probability of being impacted by a hurricane and wonder how 

serious the impact would be, and make the decision to evacuate (or not) accordingly. 

With more data and prospective surveys, I hope to be able to identify and 

formulate environmental and social contexts and psychological processes based on 

people’s responses to environmental hazards and disasters. Most studies on this topic 

still barely explain illogical beliefs (e.g., religiosity, faith, superstitions, and fads), 

decision paralysis (e.g., procrastination), and certain common and undiagnosed diseases 

and conditions in the population (e.g., obsessive, and compulsive behaviors). Some 

irrational behaviors in sports, academics, and economics have been analyzed in regard to 

prevalence and performance and have been postulated to be positively associated with 

external locus of control, high role-identity, ambiguous intolerance, and high stress 
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situations. These factors can also be very pertinent to situations when someone (or a 

household) is threatened by natural hazards. However, to date there has been no research 

exploring how irrational behaviors affect people’s responses to environmental hazards 

and disasters. In addition, no research has been conducted that analyzes individual 

irrational behaviors within the need to evacuate from hurricanes. 
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APPENDIX A 

CODE FOR CHAPTER 2 

# author: "Alexander Abuabara" 
 
#### Preamble #### 
library(bnlearn)   # Bayesian Network Structure Learning, Parameter Learning 
and Inference 
library(tidyverse) # Easily Install and Load the 'Tidyverse' 
 
setwd("/Users/alexander/Desktop/Dissertation/P1 script/") 
options(digits = 4, scipen = 20) 
set.seed(123) 
 
#### Model 1 #### 
DiagrammeR::grViz("digraph { 
                  # a 'graph' statement 
                  graph [layout = dot, # dot, neato, twopi, and circo 
                         rankdir = LR, 
                         overlap = true, 
                         fontsize = 10]  
                   
                  # several 'node' statements 
                  node [shape = hexagon] # diamond 
                  'Damage\nCost' 
 
                  node [shape = oval, 
                        fixedsize = false, 
                        width = 1.4] 
                  'Hurricane\nWind'; 'Building\nVulnerability' 
                   
             'Hurricane\nWind' -> 'Building\nVulnerability' 
     'Building\nVulnerability' -> 'Damage\nCost'}") 
 
dag <- model2network("[hurricane_wind][building_vulnerability|hurricane_wind]") 
par(new = TRUE, bg = "white") 
graphviz.plot(dag, layout = "dot") 
 
hurricane_wind.lv <- c("Low", "Moderate", "High") 
 
######################################   Wind 
(hurricane_wind.prob <- array(c(0.30,  # Low 
                                0.50,  # Moderate 
                                0.20), # High 
                              dim = 3, 
                              dimnames = list(hurricane_wind = 
hurricane_wind.lv))) 
 
building_vulnerability.lv <- c("None", "Low", "Moderate", "High") 
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############################### Damage: None    Low    Mod   High     Wind 
(building_vulnerability.prob <- array(c(0.70,  0.20,  0.08,  0.02,  # Low 
                                        0.40,  0.25,  0.20,  0.15,  # Moderate 
                                        0.20,  0.25,  0.30,  0.25), # High 
                                      dim = c(4,3), 
                                      dimnames = list(building_vulnerability = 
building_vulnerability.lv, 
                                                      hurricane_wind         = 
hurricane_wind.lv))) 
 
cpt <- list(hurricane_wind         = hurricane_wind.prob, 
            building_vulnerability = building_vulnerability.prob) 
 
bn <- custom.fit(dag, cpt) 
 
bn.fit.dotplot(bn$hurricane_wind, 
               ylab = "Hurricane Wind Categories", 
               main = "Probabilities for the Node Hurricane Wind") 
 
bn.fit.dotplot(bn$building_vulnerability, 
               ylab = "Building Damage Categories", 
               main = "Conditional Probabilities for the Node Building 
Vulnerability\nConditional to the Hurricane Wind") 
 
par(new = TRUE, bg = "white", mar = c(1, 1, 1, 1)) 
graphviz.chart(bn, 
               type = "barprob", 
               grid = TRUE, 
               layout = "neato", 
               bg = "white", 
               bar.col = "black", 
               text.col = "black", 
               strip.bg = "white", 
               draw.levels = TRUE, 
               main = "Model 1", 
               sub = "") 
 
values_loss <- array(c(0, 
                       5000, 
                       10000, 
                       100000), dim = 4, 
                     dimnames = list(building_vulnerability = 
building_vulnerability.lv)) 
 
values_loss %>% as.data.frame() %>% 
   janitor::clean_names() %>% stats::setNames(c("USD")) 
 
junction <- gRain::querygrain(gRbase::compile(as.grain(bn))) 
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junction$building_vulnerability 
 
(expected_value <- round(sum(junction$building_vulnerability * values_loss), 
2)) 
 
(results_table <- 
      data.frame("Model1.Limited" = 
scales::percent(round(junction$building_vulnerability, 2))) %>% 
      rbind.data.frame(., Expected_Loss = 
scales::dollar(round((expected_value))))) 
 
#### Model 2* #### 
dag <- 
model2network("[hurricane_wind][hurricane_flooding][building_vulnerability|hurr
icane_wind:hurricane_flooding]") 
par(new = TRUE, bg = "white") 
graphviz.plot(dag) 
 
hurricane_flooding.lv <- c("None", "Low", "High") 
 
(hurricane_flooding.prob <- array(c(0.7, 0.15, 0.15),dim = 3, 
                                  dimnames = list(hurricane_flooding = 
hurricane_flooding.lv))) 
 
############################### Damage: None    Low    Mod   High    Wind 
(building_vulnerability.prob <- array(c(0.50,  0.30,  0.15,  0.05,  # Low 
                                        0.25,  0.40,  0.20,  0.15,  # Moderate 
                                        0.20,  0.35,  0.25,  0.20,  # High 
                                         
                                        0.25,  0.40,  0.20,  0.15,  # Low 
                                        0.20,  0.35,  0.25,  0.20,  # Moderate 
                                        0.15,  0.30,  0.30,  0.25,  # High 
                                         
                                        0.20,  0.35,  0.25,  0.20,  # Low 
                                        0.15,  0.30,  0.30,  0.25,  # Moderate 
                                        0.01,  0.14,  0.35,  0.50), # High 
                                      dim = c(4,3,3), 
                                      dimnames = list(building_vulnerability = 
building_vulnerability.lv, 
                                                      hurricane_wind = 
hurricane_wind.lv, 
                                                      hurricane_flooding = 
hurricane_flooding.lv))) 
 
cpt <- list(hurricane_wind         = hurricane_wind.prob, 
            hurricane_flooding     = hurricane_flooding.prob, 
            building_vulnerability = building_vulnerability.prob) 
 
bn <- custom.fit(dag, cpt) 
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bn.fit.dotplot(bn$hurricane_wind, 
               ylab = "Hurricane Wind Categories", 
               main = "Probabilities for the Node Hurricane Wind") 
 
bn.fit.dotplot(bn$building_vulnerability, 
               ylab = "Building Damage Categories", 
               main = "Conditional Probabilities for the Node Building 
Vulnerability\nConditional to the Hurricane Wind") 
 
graphviz.chart(bn, 
               type = "barprob", 
               grid = TRUE, 
               layout = "neato", 
               bg = "white", 
               bar.col = "black", 
               text.col = "black", 
               strip.bg = "white", 
               draw.levels = TRUE, 
               main = "Model 1", 
               sub = "") 
 
values_loss %>% as.data.frame() %>% 
   janitor::clean_names() %>% stats::setNames(c("USD")) 
 
junction <- gRain::querygrain(gRbase::compile(as.grain(bn))) 
 
junction$building_vulnerability 
 
(expected_value <- round(sum(junction$building_vulnerability * values_loss), 
2)) 
 
(results_table <- 
      data.frame("Model1.Limited" = 
scales::percent(round(junction$building_vulnerability, 2))) %>% 
      rbind.data.frame(., Expected_Loss = 
scales::dollar(round((expected_value))))) 
 
#### Model 2 #### 
dag <- 
model2network("[hurricane_wind][hurricane_flooding][tenure][building_vulnerabil
ity|hurricane_wind:hurricane_flooding:tenure]") 
par(new = TRUE, bg = "white") 
graphviz.plot(dag) 
 
tenure.lv <- c("Owner", "Renter") 
 
(tenure.prob <- array(c(0.65, 0.35), 
                      dim = 2, 
                      dimnames = list(tenure = tenure.lv))) 
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############################### Damage: None    Low    Mod   High   # Wind       
# Flooding 
######################################### Tenure: Owner 
(building_vulnerability.prob <- array(c(0.99,  0.01,  0.00,  0.00,  # Low        
# None 
                                        0.90,  0.08,  0.02,  0.00,  # Moderate 
                                        0.75,  0.10,  0.10,  0.05,  # High 
                                         
                                        0.80,  0.10,  0.08,  0.02,               
# Low 
                                        0.70,  0.15,  0.10,  0.05, 
                                        0.55,  0.20,  0.15,  0.10, 
                                         
                                        0.50,  0.10,  0.30,  0.10,               
# High 
                                        0.40,  0.12,  0.33,  0.15, 
                                        0.30,  0.15,  0.35,  0.20, 
                                         
                                        # Tenure: Renter 
                                        0.94,  0.05,  0.01,  0.00,  # Low        
# None 
                                        0.80,  0.12,  0.05,  0.03,  # Moderate 
                                        0.50,  0.20,  0.20,  0.10,  # High 
                                         
                                        0.80,  0.10,  0.05,  0.05,               
# Low 
                                        0.60,  0.15,  0.15,  0.10, 
                                        0.50,  0.20,  0.20,  0.10, 
                                         
                                        0.20,  0.20,  0.30,  0.30,               
# High 
                                        0.15,  0.15,  0.32,  0.38, 
                                        0.05,  0.20,  0.35,  0.40), 
                                      dim = c(4,3,3,2), 
                                      dimnames = list(building_vulnerability = 
building_vulnerability.lv, 
                                                      hurricane_wind = 
hurricane_wind.lv, 
                                                      hurricane_flooding = 
hurricane_flooding.lv, 
                                                      tenure = tenure.lv))) 
 
cpt <- list(hurricane_wind = hurricane_wind.prob, 
            hurricane_flooding = hurricane_flooding.prob, 
            tenure = tenure.prob, 
            building_vulnerability = building_vulnerability.prob) 
 
bn <- custom.fit(dag, cpt) 
 
bn.fit.dotplot(bn$hurricane_wind, 
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               ylab = "Hurricane Wind Categories", 
               main = "Probabilities for the Node Hurricane Wind") 
 
bn.fit.dotplot(bn$hurricane_flooding, 
               ylab = "Hurricane Flooding Categories", 
               main = "Probabilities for the Node Hurricane Flooding") 
 
bn.fit.dotplot(bn$tenure, 
               ylab = "Tenure Categories", 
               main = "Probabilities for the Node Tenure") 
 
bn.fit.dotplot(bn$building_vulnerability, 
               ylab = "Building Damage Categories", 
               main = "Conditional Probabilities for the Node Building 
Vulnerability\nConditional to the Hurricane Wind, Flooding, and Tenure") 
 
graphviz.chart(bn, 
               type = "barprob", 
               grid = TRUE, 
               layout = "neato", 
               bg = "white", 
               bar.col = "black", 
               text.col = "black", 
               strip.bg = "white", 
               draw.levels = TRUE, 
               main = "Model 1", 
               sub = "") 
 
values_loss %>% as.data.frame() %>% 
   janitor::clean_names() %>% stats::setNames(c("USD")) 
 
junction <- gRain::querygrain(gRbase::compile(as.grain(bn))) 
 
junction$building_vulnerability 
 
(expected_value <- round(sum(junction$building_vulnerability * values_loss), 
2)) 
 
(results_table <- 
      data.frame("Model1.Limited" = 
scales::percent(round(junction$building_vulnerability, 2))) %>% 
      rbind.data.frame(., Expected_Loss = 
scales::dollar(round((expected_value)))))  
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APPENDIX B 

CODE FOR CHAPTER 3 

Maps 

# author: "Alexander Abuabara" 
 
###### Preamble ###### 
library(tidyverse)  # Easily Install and Load the 'Tidyverse' 
library(sf)         # Simple Features for R 
library(tigris)     # Load Census TIGER/Line Shapefiles 
library(shadowtext) # Shadow Text Grob and Layer 
library(ggspatial)  # Spatial Data Framework for ggplot2 
 
setwd("/Users/alexander/Desktop/Dissertation/P2 script/") 
 
options(digits = 5, 
        scipen = 999, 
        tigris_use_cache = TRUE) 
 
###### Old Evac. Zones ###### 
CBSA_counties <- c("Aransas", "Calhoun", "Matagorda", "Jackson", 
                   "Victoria", "Refugio", "San Patricio", "Nueces") 
 
CBSA_shapes <- counties(state = "TX", 
                        cb = FALSE, 
                        year = 2018) %>% 
   filter(NAME %in% CBSA_counties) 
 
CBSA_crop <- CBSA_shapes %>% 
   group_by() %>% 
   summarise() 
 
TX_cropped <- counties(state = "TX", 
                       cb = FALSE, 
                       year = 2018) %>% 
   st_crop(., st_buffer(CBSA_crop %>% st_transform(3083), 
                        dist = units::set_units(10, km)) %>% 
              st_transform(st_crs(CBSA_crop))) 
 
CBSA_water <- map_df(CBSA_counties, ~area_water(state = "TX", 
                                                county = .x, 
                                                year = 2018)) %>% 
   st_combine() %>% rmapshaper::ms_simplify() 
 
CBSA_places <- places(state = "TX", 
                      cb = TRUE, 
                      year = 2018) %>% 
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   st_crop(., CBSA_crop) %>% 
   st_filter(., CBSA_crop) %>% 
   filter(ALAND > 2000000) 
 
hurr_track <- read_sf("./P2 data/Harvey.shp") %>% 
   st_transform(st_crs(CBSA_crop)) %>% 
   st_crop(., st_buffer(CBSA_crop %>% st_transform(3083), 
                        dist = units::set_units(10, km)) %>% 
              st_transform(st_crs(CBSA_crop))) 
 
old_evac_zones <- read_sf("./P2 data/old_evac_zones.shp") %>% 
   filter(EvacZone != "Out") %>% 
   mutate(EvacZoneGen = case_when(EvacZone == "Coastal"  ~ "A", 
                                  EvacZone == "A"        ~ "A", 
                                  EvacZone == "B"        ~ "A", 
                                  EvacZone == "C"        ~ "B", 
                                  EvacZone == "D"        ~ "C", 
                                  EvacZone == "E"        ~ "C", 
                                  EvacZone == "Zone 1-2" ~ "A", 
                                  EvacZone == "Zone 3"   ~ "B", 
                                  EvacZone == "Zone 4-5" ~ "C", 
                                  EvacZone == "Risk 1"   ~ "A", 
                                  EvacZone == "Risk 2"   ~ "A", 
                                  EvacZone == "Risk 3"   ~ "B", 
                                  EvacZone == "Risk 4"   ~ "C", 
                                  EvacZone == "Risk 5"   ~ "C", 
                                  TRUE ~ "Missing"), 
          Cat = case_when(EvacZoneGen == "A" ~ "Cat.1-2-3", 
                          EvacZoneGen == "B" ~ "Cat.4", 
                          EvacZoneGen == "C" ~ "Cat.5", 
                          TRUE ~ "Missing")) %>% 
   st_crop(., CBSA_crop) 
 
pts <- do.call(rbind, 
               st_geometry(st_centroid(CBSA_shapes))) 
CBSA_shapes$X <- pts[,1] 
CBSA_shapes$Y <- pts[,2] 
 
ggplot2 <- ggplot() + 
   geom_sf(data = TX_cropped, 
           fill = "antiquewhite", 
           col = "black", 
           size = 0, 
           inherit.aes = FALSE) + 
   geom_sf(data = CBSA_shapes, 
           fill = "antiquewhite", 
           col = "black", 
           size = 0, 
           inherit.aes = FALSE) + 
   geom_sf(data = old_evac_zones, 
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           aes(fill = Cat), 
           size = 0, 
           alpha = .7, 
           inherit.aes = FALSE) + 
   geom_sf(data = CBSA_water, 
           fill = "lightcyan", 
           size = 0, 
           alpha = 1, 
           inherit.aes = FALSE) + 
   geom_sf(data = CBSA_shapes, 
           fill = "transparent", 
           col = "black", 
           size = .5, 
           inherit.aes = FALSE) + 
   geom_sf(data = CBSA_places, 
           aes(color = "Local\nCommunities"), 
           fill = "grey20", 
           size = 0, 
           alpha = .4, 
           inherit.aes = FALSE) + 
   geom_sf(data = hurr_track, 
           col = "blue", 
           size = 1, 
           alpha = .85, 
           inherit.aes = FALSE) + 
   geom_shadowtext(data = CBSA_shapes, 
                   aes(x=X, y=Y, label=NAME),  
                   color="black", bg.color="white", size = 5, fontface = 
"italic", 
                   inherit.aes = FALSE) + 
   annotate(geom = "text", 
            label = "Gulf of Mexico", 
            x = -96.1, y = 28.1, 
            fontface = "italic", color = "cyan3", size = 5) + 
   annotate(geom = "text", 
            label = "Hurricane\n Harvey\n    Track", 
            x = -96.625, y = 27.75, 
            fontface = "bold", color = "blue", size = 5) + 
   coord_sf(xlim = c(-97.99, -95.46), 
            ylim = c(27.51, 29.32), 
            expand = FALSE) + 
   labs(fill = "Generalized\nHurricane\nEvacuation\nZones", 
        color = "", x = "", y = "") + 
   annotation_scale(location = "br", width_hint = .2, style = "ticks") + 
   annotation_north_arrow(location = "br", which_north = "true", style = 
north_arrow_minimal, pad_y = unit(0.2, "in")) + 
   theme( 
      panel.background = element_rect(fill = "lightcyan"), 
      panel.border = element_rect(color = "black", fill = "transparent"), 
      panel.grid = element_blank() , 
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      legend.background = element_rect(color = "transparent", fill = 
"transparent"), 
      legend.key = element_rect(color = "transparent", fill = "transparent"), 
      legend.justification = "top", 
      legend.title = element_text(size = 13), #text sizes 
      legend.text = element_text(size = 11), 
      axis.title = element_text(size = 13), 
      axis.text = element_text(size = 11), 
      element_line(color = "black")) 
 
ggplot2 
 
# ggsave("./P2 images/map_1.png", width = 9, height = 6) 
 
###### Counties ###### 
ggplot3 <- ggplot() + 
   geom_sf(data = TX_cropped, 
           fill = "white", 
           col = "black", 
           size = 0, 
           inherit.aes = FALSE) + 
   geom_sf(data = CBSA_shapes, 
           fill = "white", 
           col = "black", 
           size = 0, 
           inherit.aes = FALSE) + 
   geom_sf(data = CBSA_shapes, 
           fill = "white", 
           col = "black", 
           size = .5, 
           inherit.aes = FALSE) + 
   geom_sf(data = hurr_track, 
           col = "black", 
           size = 1, 
           alpha = .85, 
           inherit.aes = FALSE) + 
   geom_shadowtext(data = CBSA_shapes, 
                   aes(x=X, y=Y, label=NAME), 
                   color="black", bg.color="white", size = 5, fontface = 
"italic", 
                   inherit.aes = FALSE) + 
   annotate(geom = "text", 
            label = "Hurricane\n Harvey\n    Track", 
            x = -96.60, y = 27.75, 
            fontface = "bold", color = "black", size = 5) + 
   annotate("segment", 
            x = -96.581, xend = -96.8, 
            y = 27.488, yend = 27.8, 
            colour = "blue", size = 1, 
            arrow = arrow()) + 
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   coord_sf(xlim = c(-97.99, -95.46), 
            ylim = c(27.51, 29.32), 
            expand = FALSE) + 
   theme_void() 
 
ggplot3 
 
# ggsave("./P2 images/map_2.png", width = 9, height = 6) 
 
###### Inset ###### 
library(rnaturalearth) # World Map Data from Natural Earth 
library(cowplot)       # Streamlined Plot Theme and Plot Annotations for 
'ggplot2' 
 
data("us_states", package = "spData") 
 
world <- ne_countries(scale = "medium", returnclass = "sf") 
states <- map_data("state") 
 
bbox <- st_as_sfc(st_bbox(CBSA_crop)) 
 
ggplot1 <- ggplot() + 
   geom_sf(data = us_states, 
           size = .5, 
           fill = "white", 
           col = "black") + 
   geom_sf(data = st_buffer(bbox %>% st_transform(3083), 
                            dist=units::set_units(20, km)), 
           size = .7, 
           fill = NA, 
           col = "blue") +  
   coord_sf(crs = "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 
+x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")+ 
   theme_void() 
 
ggplot1 
 
inset <- ggdraw() + 
   draw_plot(ggplot2) + 
   draw_plot(ggplot1, x = 0.75, y = 0.175, width = 0.25, height = 0.25) # size 
and location 
 
inset 
 
# ggsave("./P2 images/map_3.png", width = 9, height = 6) 
 
inset <- ggdraw() + 
   draw_plot(ggplot3) + 
   draw_plot(ggplot1, x = 0.75, y = 0.075, width = 0.25, height = 0.25) # size 
and location 
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inset 
 
# ggsave("./P2 images/map_4.png", width = 9, height = 6) 
 
beepr::beep() 
# sessionInfo() 
 
# line = st_sfc(st_linestring(rbind(c(-96.571, 27.474), 
#                                   c(-96.581, 27.488))), 
#               crs = 3083) 
#  
# ggplot() + 
#    geom_sf(data = line) + 
#    annotate("segment", x = -96.571, xend = -96.581, y = 27.474, yend = 
27.488, 
#             colour = "blue", size = 2, arrow = arrow()) + 
#     
#    coord_sf(datum = 3083) 
#  
# dat <- data.frame(x = c(-96.571, -96.581), 
#                   y = c(27.474, 27.488)) 
#  
# ggplot() + 
#    geom_path(data = dat, 
#              aes(x, y), 
#              arrow = arrow()) 
 

The code below requires a dataset file. May be available upon request to the author. 

# author: "Alexander Abuabara" 
 
###### Preamble ###### 
library(bnlearn)      # Bayesian Network Structure Learning, Parameter Learning 
and Inference 
library(corrplot)     # Visualization of a Correlation Matrix 
library(DescTools)    # Tools for Descriptive Statistics 
library(gRain)        # Graphical Independence Networks 
library(gtsummary)    # Presentation-Ready Data Summary and Analytic Result 
Tables 
library(haven)        # Import and Export "SPSS", "Stata" and "SAS" Files 
library(labelled)     # Manipulating Labelled Data 
library(modelsummary) # Summary Tables and Plots for Statistical Models and 
Data: Beautiful, Customizable, and Publication-Ready 
library(plyr)         # Tools for Splitting, Applying and Combining Data 
library(rstatix)      # Pipe-Friendly Framework for Basic Statistical Tests 
library(tidyverse)    # Easily Install and Load the "Tidyverse" 
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setwd("/Users/alexander/Library/Mobile 
Documents/com~apple~CloudDocs/TAMU/Research/3-Dissertation/P2 script/") 
options(digits = 2, scipen = 99999999, na.strings = "NA") 
 
###### Data ###### 
survey_ <- read_sav("./P2 data/Coastal Bend Hurricane Evacuation Behavior 
Generation 2.sav") %>% 
   mutate(county_aux = as.factor(str_remove_all(ActualCounty, " County")), 
          # data cleaning for structure type (suggested by Peacock) 
          Q31aux    = case_when(Q31 == 1        ~ 1, 
                                Q31 %in% c(2,3) ~ 2, 
                                Q31 == 4        ~ 3, 
                                Q31 == 5        ~ 4), 
          Q31aux    = ifelse(InformID %in% 
c(576,224,154,613,333,287,672,194,29,58,306,758,885,5, 
                                             
392,260,458,192,580,834,481,65,805,426,408), 1, Q31aux), 
          Q31aux    = ifelse(InformID %in% 
c(830,249,272,421,317,446,279,894,78,815,46, 
                                             493,764,690,848,782,879,407,502),            
2, Q31aux), 
          Q31aux    = ifelse(InformID %in% 
c(114,881,582,701,127,239,634,877,71,84,261),  3, Q31aux), 
          Q31aux    = ifelse(InformID %in% c(666,616,146),                                
4, Q31aux), 
          Q31aux    = ifelse(InformID %in% c(899),                                       
NA, Q31aux), 
          structure = labelled(Q31aux, c("Single_family" = 1, 
                                         "Multi_family"  = 2, 
                                         "Mobile_home"   = 3, 
                                         "Other"         = 4))) 
 
survey <- survey_ %>% 
   remove_var_label() %>% 
   filter(Use == 1) %>% 
   remove_attributes("format.spss") %>% 
   transmute(evacuation = factor(tolower(as_factor(Q5Mod))), 
             age = as.numeric(InfAge), 
             consult_info = as.numeric(rowMeans(select(., Q1_1, Q1_2, Q1_3, 
Q1_4, Q1_5, Q1_6), na.rm = TRUE)), 
             evac_orders = 
factor(case_when(grepl(c("Matagorda|Calhoun|Refugio|Aransas|San Patricio"), 
county_aux) ~ "mandatory", 
                                            grepl("Nueces", county_aux) & 
Q31aux == 3 ~ "mandatory", 
                                            TRUE ~ "voluntary"), ordered = 
TRUE, levels = c("mandatory", "voluntary")), 
             expected_hh_impacts = as.numeric(rowMeans(select(., Q3_3, Q3_4, 
Q3_5, Q3_6), na.rm = TRUE)), 
             gender = factor(case_when(Gender == 1 ~ "male", 
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                                       Gender == 0 ~ "female"), ordered = TRUE, 
levels = c("male", "female")), 
             signif_evac_orders = as.numeric(rowMeans(select(., Q4_4), na.rm = 
TRUE)), 
             # education = as.numeric(rowMeans(select(., Q36), na.rm = TRUE)), 
             education = as.numeric(case_when(Q36 == 1 ~ 10, 
                                              Q36 == 2 ~ 12, 
                                              Q36 == 3 ~ 16, 
                                              Q36 == 4 ~ 18, 
                                              Q36 == 5 ~ 21)), 
             multiple_concerns = as.numeric(rowMeans(select(., Q4_7, Q4_8, 
Q4_9, Q4_11, Q4_12), na.rm = TRUE)), 
             risk_area = factor(case_when(EvacZoneOld %in% c("A", "B", "C", 
"D", "E", 
                                                             "Risk 1", "Risk 
2", "Risk 3", "Risk 4", "Risk 5", 
                                                             "Coastal", "Zone 
1-2", "Zone 3", "Zone 4-5") ~ "yes", 
                                          TRUE ~ "no"), ordered = TRUE, levels 
= c("yes", "no")), 
             social_cues = as.numeric(rowMeans(select(., Q4_1, Q4_2), na.rm = 
TRUE)), 
             unnecessary_evac_exp = as.numeric(rowMeans(select(., Q4_6), na.rm 
= FALSE)), 
   ) %>% 
   mutate_all(~ case_when(!is.nan(.x) ~ .x),) %>% 
   mutate_if(is.numeric, signif, 3) 
 
PlotMiss(survey, main = "Missing survey data (clustered)", clust = TRUE) 
 
dat_bn_dicretized <- 
   survey %>% 
   as.data.frame() %>% 
   transmute( 
      evacuation = case_when(evacuation == "yes" ~ 1, 
                             evacuation == "no" ~ 0), 
      expected_hh_impacts, 
      signif_evac_orders, 
      evac_orders = case_when(evac_orders == "mandatory" ~ 1, 
                              evac_orders == "voluntary" ~ 0), 
      unnecessary_evac_exp, 
      multiple_concerns, 
      risk_area = case_when(risk_area == "yes" ~ 1, 
                            risk_area == "no" ~ 0), 
      social_cues, 
      consult_info, 
      age = age, 
      education, 
      gender = case_when(gender == "male" ~ 1, 
                         gender == "female" ~ 0), 
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   ) %>% 
   filter(if_all(everything(), ~!is.na(.x))) %>% # na.omit() 
   mutate_if(is.integer, as.double) %>% 
   mutate(age = round_any(age, 10, floor)) %>% 
   mutate(across(where(is.numeric), round, 0)) %>% 
   mutate_if(is.double, as.ordered) 
 
dat_bn_dicretized %>% glimpse() 
dat_bn_dicretized %>% tbl_summary() %>% as_hux_table() 
 
dat_dicretized <- 
   dat_bn_dicretized %>% 
   mutate_if(is.ordered, as.character) %>% 
   mutate_if(is.character, as.double) 
 
dat_dicretized %>% 
   tbl_summary( 
      type = list(where(is.numeric) ~ "continuous"), 
      statistic = list(all_continuous() ~ "mean {mean} (sd {sd})"), 
      missing_text = "(Missing)" 
   ) %>% as_hux_table() 
 
###### Descriptive ###### 
# Empirical CDF of discretized data 
par(mfrow = c(2, 6), mar = c(1, 3, 1, 1), pty = "s") 
for (var in colnames(dat_dicretized %>% 
                     # select(-evacuation) %>% 
                     mutate_if(is.ordered, as.character) %>% 
                     mutate_if(is.character, as.double))){ 
   x = dat_dicretized[, var] 
   plot(ecdf(x), 
        col = "black", lwd = 1, lty = 1, xaxt = "n", yaxt = "n", 
        verticals = TRUE, do.points = FALSE, col.01line = NULL, 
        main = "", xlab = "", ylab = "", add = FALSE) 
   axis(1, at = min(x):max(x)) 
   axis(2, seq(0, 1, by = .5)) 
   mtext(var, side = 1, line = 2.4) 
} 
title(main = "Empirical Cumulative Distribution Function of Each Variable", 
line = -3, cex.main = 2, outer = TRUE) 
 
for (var in colnames(dat_bn_dicretized %>% select(-evacuation))){ 
   x = dat_dicretized[dat_dicretized$evacuation == 1, var] 
   y = dat_dicretized[dat_dicretized$evacuation == 0, var] 
   plot(ecdf(x), 
        col = "blue", lwd = 1.5, lty = 1, xaxt = "n", yaxt = "n", 
        verticals = TRUE, do.points = FALSE, col.01line = NULL, 
        main = "", xlab = "", ylab = "", add = FALSE) 
   plot(ecdf(y), 
        col = "red", lwd = 0.75, lty = 1, xaxt = "n", yaxt = "n", 
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        verticals = TRUE, do.points = FALSE, col.01line = NULL, 
        main = "", xlab = "", ylab = "", add = TRUE) 
   axis(1, at = min(x):max(x)) 
   axis(2, seq(0, 1, by = .5)) 
   mtext(var, side = 1, line = 2.2, cex = .9) 
   legend("bottomright", 
          legend = c("1", "0"), 
          col    = c("blue", "red"), 
          pch    = 15, cex = .9) 
} 
title(main = "Empirical Cumulative Distribution Function of Each Variable 
Conditional to Evacuation", line = -3, cex.main = 2, outer = TRUE) 
 
# Correlation 
corr <- cor_test(data   = dat_dicretized, 
                 vars   = evacuation, 
                 method = "pearson", 
                 use    = "pairwise.complete.obs") %>% arrange(-cor, p) 
 
# Matrix of p-values 
p.mat <- cor.mtest(dat_dicretized, conf.level = 0.95) 
 
# p.mat %>% view() 
round(cor(dat_dicretized), 2) %>% view() 
 
par(mfrow = c(1, 1), mar = c(1, 1, 10, 1), bg = "white", pty = "m") 
corrplot(cor(dat_dicretized, method = "pearson"), 
         method = "color", type = "upper", tl.srt = 40, tl.col = "black", 
         p.mat  = p.mat$p, sig.level = 0.05, # insig = "blank", 
         order  = "original", col = RColorBrewer::brewer.pal(n = 10, name = 
"RdBu")) 
 
# Detect multicollinearity 
eigen(cor(dat_dicretized))$values 
kappa(cor(dat_dicretized), exact = TRUE) 
 
###### Logistic Regression ###### 
summary(model_1 <- glm(evacuation ~ social_cues, 
                     data = dat_dicretized, 
                     family = binomial(link = "logit"))) 
 
summary(logit <- glm(evacuation ~ social_cues + unnecessary_evac_exp, 
                     data = dat_dicretized, 
                     family = binomial(link = "logit"))) 
 
summary(logit <- glm(evacuation ~ social_cues + unnecessary_evac_exp + 
signif_evac_orders + multiple_concerns, 
                     data = dat_dicretized, 
                     family = binomial(link = "logit"))) 
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summary(model_1 <- glm(evacuation ~ expected_hh_impacts + signif_evac_orders, 
                       data = dat_dicretized, 
                       family = binomial(link = "logit") 
                       )) 
 
summary(logit <- glm(evacuation ~ ., 
                     data = dat_dicretized, 
                     family = binomial(link = "logit") 
                     )) 
 
anova(model_1, logit) 
# hypothesis test: 
# H0 = the two models are equally useful for predicting the outcome 
# H1 = the larger model is significantly better than the smaller model 
# canno reject the null hypothesis, and prefer to use the first model? 
 
lmtest::lrtest(model_1, logit) 
# likelihood-ratio test 
 
###### Standardized and performance ###### 
summary(lm.beta::lm.beta(logit)) 
library(tidymodels) 
performance::check_model(logit) 
 
broom::tidy(logit, exponentiate = TRUE, conf.level = 0.95) 
performance::r2_nagelkerke(logit) 
VIF(logit) 
epiDisplay::logistic.display(logit, simplified = TRUE)[["table"]] %>% 
as.data.frame() %>% 
   rownames_to_column("var") %>% mutate(signif = case_when(`Pr(>|Z|)` <= 0.001 
~ "Signif. 0.001", 
                                                           `Pr(>|Z|)` > 0.001  
& `Pr(>|Z|)` <= 0.01  ~ "Signif. 0.01", 
                                                           `Pr(>|Z|)` > 0.01   
& `Pr(>|Z|)` <= 0.05  ~ "Signif. 0.05", 
                                                           TRUE ~ "Not 
signif."), 
                                        signif = factor(signif, levels = c("Not 
signif.", "Signif. 0.05", "Signif. 0.01", "Signif. 0.001"))) %>% 
   ggplot(aes(x = OR, y = fct_reorder(var, OR), fill = signif, color = signif)) 
+ 
   geom_point(shape = 21, size = 3) + 
   geom_errorbar(aes(xmin = lower95ci, xmax = upper95ci), width = .1) + 
   scale_colour_manual(values = rev(c("red", "green4", "blue", "black")), 
                       breaks = c("Not signif.","Signif. 0.05", "Signif. 0.01", 
"Signif. 0.001")) + 
   scale_fill_manual(values   = rev(c("red", "green4", "blue", "black")), 
                     breaks = c("Not signif.", "Signif. 0.05", "Signif. 0.01", 
"Signif. 0.001")) + 
   geom_vline(aes(xintercept = 1), size = .25, linetype = "dashed") + 
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   coord_trans(x = "log10") + 
   scale_x_continuous(breaks = seq(0, 10, 1) ) + 
   labs(title = "Logit regression predicting evacuation", x = "Odds ratio and 
95% confidence intervals (log scale)", 
        y = "", color = "", fill = "") + theme_bw() 
 
effects_logit = margins::margins(logit) 
summary(effects_logit) 
par(new = TRUE, mfrow = c(1, 1), mar = c(12, 4, 2, 2), bg = "white", pty = "s") 
plot(effects_logit) # las = 3 
 
par(new = TRUE, mfrow = c(1, 2), mar = c(7, 3, 3, 2), bg = "white", pty = "s") 
for (var in c("expected_hh_impacts", "signif_evac_orders")){ 
   visreg::visreg(logit, var, scale = "response", partial = FALSE, rug = 2, 
xlab = paste(var), ylab = "P(evacuation)") 
} 
 
###### BN ###### 
dag = 
model2network("[age][consult_info][evac_orders][gender][education][risk_area][s
ocial_cues][unnecessary_evac_exp][signif_evac_orders|evac_orders][multiple_conc
erns|age:gender:education][expected_hh_impacts|age:consult_info:gender:educatio
n:risk_area:social_cues][evacuation|expected_hh_impacts:signif_evac_orders:mult
iple_concerns:unnecessary_evac_exp]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white", pty = "m") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized) 
coefficients(bn) 
par(mfrow = c(1, 1), bg = "white", pty = "m") 
graphviz.chart(bn, type = "barprob", grid = TRUE, draw.levels = TRUE, scale = 
c(1, 1.2)) # c(1.2,2)) 
(pvalues = arc.strength(dag, data = dat_bn_dicretized)) 
par(new = TRUE, mfrow = c(1, 1), bg = "white", pty = "m") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
LL  = logLik(dag, dat_bn_dicretized) 
k   = log(nrow(dat_bn_dicretized))/2 
N   = nparams(dag, dat_bn_dicretized) 
(BIC = LL - N * k) 
score(dag, dat_bn_dicretized) 
 
###### Exp.1 ###### 
dag = 
model2network("[age][consult_info][evac_orders][gender][education][risk_area][s
ocial_cues][unnecessary_evac_exp][signif_evac_orders|evac_orders][multiple_conc
erns|age:gender:education][expected_hh_impacts|age:consult_info:gender:educatio
n:risk_area:social_cues][evacuation|expected_hh_impacts:signif_evac_orders:mult
iple_concerns:risk_area:unnecessary_evac_exp]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized) 
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pvalues = arc.strength(dag, data = dat_bn_dicretized) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
LL  = logLik(dag, dat_bn_dicretized) 
k   = log(nrow(dat_bn_dicretized))/2 
N   = nparams(dag, dat_bn_dicretized) 
(BIC = LL - N * k) 
score(dag, dat_bn_dicretized) 
 
###### Exp.2: Risk area ###### 
dag = 
model2network("[age][consult_info][evac_orders][gender][education|age:gender][r
isk_area][social_cues][unnecessary_evac_exp|age][signif_evac_orders|age:gender:
education:evac_orders][multiple_concerns|age:gender:education][expected_hh_impa
cts|age:consult_info:gender:education:risk_area:social_cues][evacuation|expecte
d_hh_impacts:signif_evac_orders:multiple_concerns:risk_area:unnecessary_evac_ex
p]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized) 
pvalues = arc.strength(dag, data = dat_bn_dicretized) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
LL  = logLik(dag, dat_bn_dicretized) 
k   = log(nrow(dat_bn_dicretized))/2 
N   = nparams(dag, dat_bn_dicretized) 
(BIC = LL - N * k) 
score(dag, dat_bn_dicretized) 
 
dag = 
model2network("[consult_info][evac_orders][gender][education][risk_area][social
_cues][signif_evac_orders|gender:evac_orders][multiple_concerns|education][expe
cted_hh_impacts|consult_info:risk_area:social_cues][evacuation|expected_hh_impa
cts:signif_evac_orders:multiple_concerns:risk_area]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp, -age)) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.chart(bn, type = "barprob", grid = TRUE, draw.levels = TRUE, scale = 
c(1, 1.2)) # c(1.2,2)) 
pvalues = arc.strength(dag, data = dat_bn_dicretized %>% select(-
unnecessary_evac_exp, -age)) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
LL  = logLik(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp, -age)) 
k   = log(nrow(dat_bn_dicretized))/2 
N   = nparams(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp, -age)) 
(BIC = LL - N * k) 
score(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp, -age)) 
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###### Exp.3: Soft-evidence ###### 
dag = 
model2network("[consult_info][evac_orders][gender][education][risk_area][social
_cues][signif_evac_orders|gender:evac_orders][multiple_concerns|education][expe
cted_hh_impacts|consult_info:risk_area:social_cues][evacuation|expected_hh_impa
cts:signif_evac_orders:multiple_concerns:risk_area]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp, -age)) 
 
ev <- list(multiple_concerns = "1")                                                          
# evidence vector 
updated_dat <- cpdist(bn, nodes = bnlearn::nodes(bn), evidence = ev, method = 
"lw", n = 1e6) # draw samples 
updated_fit <- bn.fit(dag, data = updated_dat)                                               
# refit: you'll get warnings over missing levels 
par(new = TRUE, mfrow = c(1, 1), bg = "white")                                               
# plot 
graphviz.chart(updated_fit, type = "barprob", grid = TRUE, draw.levels = TRUE, 
scale = c(1, 1.2)) 
 
junction <- compile(as.grain(bn)) 
multiple_concerns_low <- setEvidence(junction, 
                                     nodes = "multiple_concerns", 
                                     states = "1") 
querygrain(multiple_concerns_low)$evacuation 
querygrain(multiple_concerns_low)$education 
 
###### Exp.4: Soft-evidence ###### 
dag = 
model2network("[consult_info][evac_orders][gender][education][risk_area][social
_cues][signif_evac_orders|gender:evac_orders][multiple_concerns|education][expe
cted_hh_impacts|consult_info:risk_area:social_cues][evacuation|expected_hh_impa
cts:signif_evac_orders:multiple_concerns:risk_area]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp, -age)) 
 
ev <- list(evacuation = "1") 
updated_dat <- cpdist(bn, nodes = bnlearn::nodes(bn), evidence = ev, method = 
"lw", n = 1e6) 
updated_fit <- bn.fit(dag, data = updated_dat) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.chart(updated_fit, type = "barprob", grid = TRUE, draw.levels = TRUE, 
scale = c(1, 1.2)) 
 
junction <- compile(as.grain(bn)) 
evac_yes <- setEvidence(junction, 
                        nodes = "evacuation", 
                        states = "1") 
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querygrain(evac_yes)$expected_hh_impacts 
querygrain(evac_yes)$signif_evac_orders 
querygrain(evac_yes)$risk_area  
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APPENDIX C 

CODE FOR CHAPTER 4 

The code below requires a dataset file. May be available upon request to the author. 

# author: "Alexander Abuabara" 
 
###### Preamble ###### 
library(bnlearn); library(gRain) 
library(corrplot); library(DescTools); library(gtsummary); 
library(modelsummary) 
library(haven); library(labelled); library(plyr); library(rstatix); 
library(tidyverse) 
 
setwd("/Users/alexander/Desktop/Dissertation/Paper/") 
 
options(digits = 2, scipen = 99999999, na.strings = "NA") 
 
###### Data ###### 
survey_ <- read_sav("./Data/Coastal Bend Hurricane Evacuation Behavior 
Generation 2.sav") %>% 
   mutate(county_aux = as.factor(str_remove_all(ActualCounty, " County")), 
          # data cleaning for structure type (suggested by Walt) 
          Q31aux    = case_when(Q31 == 1        ~ 1, 
                                Q31 %in% c(2,3) ~ 2, 
                                Q31 == 4        ~ 3, 
                                Q31 == 5        ~ 4), 
          Q31aux    = ifelse(InformID %in% 
c(576,224,154,613,333,287,672,194,29,58,306,758,885,5, 
                                             
392,260,458,192,580,834,481,65,805,426,408), 1, Q31aux), 
          Q31aux    = ifelse(InformID %in% 
c(830,249,272,421,317,446,279,894,78,815,46, 
                                             493,764,690,848,782,879,407,502),            
2, Q31aux), 
          Q31aux    = ifelse(InformID %in% 
c(114,881,582,701,127,239,634,877,71,84,261),  3, Q31aux), 
          Q31aux    = ifelse(InformID %in% c(666,616,146),                                
4, Q31aux), 
          Q31aux    = ifelse(InformID %in% c(899),                                       
NA, Q31aux), 
          structure = labelled(Q31aux, c("Single_family" = 1, 
                                         "Multi_family"  = 2, 
                                         "Mobile_home"   = 3, 
                                         "Other"         = 4))) 
 
survey <- survey_ %>% 
   remove_var_label() %>% 
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   filter(Use == 1) %>% 
   remove_attributes("format.spss") %>% 
   transmute(evacuation            = factor(tolower(as_factor(Q5Mod))), 
             # location 
             evac_orders           = 
factor(case_when(grepl(c("Matagorda|Calhoun|Refugio|Aransas|San Patricio"), 
county_aux) ~ "mandatory", 
                                                      grepl("Nueces", 
county_aux) & Q31aux == 3 ~ "mandatory", 
                                                      TRUE ~ "voluntary"), 
ordered = TRUE, levels = c("mandatory", "voluntary")), 
             risk_area             = factor(case_when(EvacZoneOld %in% c("A", 
"B", "C", "D", "E", 
                                                                         "Risk 
1", "Risk 2", "Risk 3", "Risk 4", "Risk 5", 
                                                                         
"Coastal", "Zone 1-2", "Zone 3", "Zone 4-5") ~ "yes", 
                                                      TRUE ~ "no"), ordered = 
TRUE, levels = c("yes", "no")), 
             # risk perception 
             expected_impacts   = as.numeric(rowMeans(select(., Q3_3, Q3_4, 
Q3_5, Q3_6), na.rm = TRUE)), 
             effect_evac_order = as.numeric(rowMeans(select(., Q4_4), na.rm = 
TRUE)), 
             multiple_concerns     = as.numeric(rowMeans(select(., Q4_7, Q4_8, 
Q4_9, Q4_11, Q4_12), na.rm = TRUE)), 
             social_cues           = as.numeric(rowMeans(select(., Q4_1, Q4_2), 
na.rm = TRUE)), 
             freq_consult_info          = as.numeric(rowMeans(select(., Q1_1, 
Q1_2, Q1_3, Q1_4, Q1_5, Q1_6), na.rm = TRUE)), 
             # impediments 
             unnecessary_evac_exp  = as.numeric(rowMeans(select(., Q4_6), na.rm 
= FALSE)), 
             # socio-demographic 
             age                   = as.numeric(InfAge), 
             education             = as.numeric(case_when(Q36 == 1 ~ 10, 
                                                          Q36 == 2 ~ 12, 
                                                          Q36 == 3 ~ 16, 
                                                          Q36 == 4 ~ 18, 
                                                          Q36 == 5 ~ 21)), 
             gender                = factor(case_when(Gender == 0 ~ "woman", 
                                                      Gender == 1 ~ "man"), 
ordered = TRUE, levels = c("woman", "man")), 
   ) %>% 
   mutate_all(~ case_when(!is.nan(.x) ~ .x),) %>% 
   mutate_if(is.numeric, signif, 2) 
 
# PlotMiss(survey, main = "Missing survey data (clustered)", clust = TRUE) 
 
dat_bn_dicretized <- 
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   survey %>% 
   as.data.frame() %>% 
   transmute( 
      evacuation = case_when(evacuation == "yes" ~ 1, 
                             evacuation == "no" ~ 0), 
      evac_orders = case_when(evac_orders == "mandatory" ~ 1, 
                              evac_orders == "voluntary" ~ 0), 
      risk_area = case_when(risk_area == "yes" ~ 1, 
                            risk_area == "no" ~ 0), 
      expected_impacts, 
      effect_evac_order, 
      multiple_concerns, 
      social_cues, 
      freq_consult_info, 
      unnecessary_evac_exp, 
      age = age, 
      education, 
      gender = case_when(gender == "man" ~ 1, 
                         gender == "woman" ~ 0), 
   ) %>% 
   filter(if_all(everything(), ~!is.na(.x))) %>% # na.omit() 
   mutate_if(is.integer, as.double) %>% 
   mutate(age = round_any(age, 10, floor)) %>% 
   mutate(across(where(is.numeric), round, 0)) %>% 
   mutate_if(is.double, as.ordered) 
 
# dat_bn_dicretized %>% glimpse() 
 
###### Descriptive ###### 
dat_bn_dicretized %>% tbl_summary() %>% as_hux_table() 
 
dat_dicretized <- 
   dat_bn_dicretized %>% 
   mutate_if(is.ordered, as.character) %>% 
   mutate_if(is.character, as.double) 
 
dat_dicretized %>% 
   tbl_summary( 
      type = list(where(is.numeric) ~ "continuous"), 
      statistic = list(all_continuous() ~ "mean {mean} (sd {sd})"), 
      missing_text = "(Missing)" 
   ) %>% as_hux_table() 
 
# Empirical Cumulative Distribution Functions Conditional to Evacuation 
dev.off(); par(mfrow = c(2, 6), mar = c(1, 3, 1, 1), pty = "s") 
for (var in colnames(dat_bn_dicretized %>% select(-evacuation))){ 
   x = dat_dicretized[dat_dicretized$evacuation == 1, var] 
   y = dat_dicretized[dat_dicretized$evacuation == 0, var] 
   plot(ecdf(x), 
        col = "blue", lwd = 1.5, lty = 1, xaxt = "n", yaxt = "n", 
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        verticals = TRUE, do.points = FALSE, col.01line = NULL, 
        main = "", xlab = "", ylab = "", add = FALSE) 
   plot(ecdf(y), 
        col = "red", lwd = 0.75, lty = 1, xaxt = "n", yaxt = "n", 
        verticals = TRUE, do.points = FALSE, col.01line = NULL, 
        main = "", xlab = "", ylab = "", add = TRUE) 
   axis(1, at = min(x):max(x)) 
   axis(2, seq(0, 1, by = .5)) 
   mtext(var, side = 1, line = 2.2, cex = .9) 
   legend("bottomright", 
          legend = c("1", "0"), 
          col    = c("blue", "red"), 
          bty    = "n", 
          pch    = 15, 
          cex    = .8 
          ) 
} 
# dev.copy(png, "./Figures/figure2.png", width = 2800, height = 1200, res = 
300); dev.off() 
 
# Correlation 
corr <- cor_test(data   = dat_dicretized, 
                 vars   = evacuation, 
                 method = "pearson", 
                 use    = "pairwise.complete.obs") %>% arrange(-cor, p) 
 
# Matrix of p-values 
p.mat <- cor.mtest(dat_dicretized, conf.level = 0.95) 
 
# p.mat %>% view() 
round(cor(dat_dicretized), 2) # %>% view() 
 
par(mfrow = c(1, 1), mar = c(0, 0, 0, 0), bg = "white", pty = "m") 
corrplot(cor(dat_dicretized, method = "pearson"), 
         method = "color", type = "upper", tl.srt = 40, tl.col = "black", 
         p.mat  = p.mat$p, sig.level = 0.05, tl.cex = .85, 
         order  = "original", 
         col    = RColorBrewer::brewer.pal(n = 10, name = "RdBu")) 
dev.copy(png, "./Figures/figure3.png", width = 2000, height = 1200, res = 300); 
dev.off() 
 
# Detect multicollinearity 
eigen(cor(dat_dicretized))$values 
kappa(cor(dat_dicretized), exact = TRUE) 
 
###### Logistic Regression ###### 
summary(model_1 <- glm(evacuation ~ social_cues, 
                       data = dat_dicretized, family = binomial(link = 
"logit"))) 
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summary(logit <- glm(evacuation ~ unnecessary_evac_exp, 
                     data = dat_dicretized, family = binomial(link = "logit"))) 
 
summary(model_1 <- glm(evacuation ~ expected_impacts + effect_evac_order, 
                       data = dat_dicretized, family = binomial(link = 
"logit"))) 
 
summary(logit <- glm(evacuation ~ ., 
                     data = dat_dicretized, family = binomial(link = "logit"))) 
 
# ANOVA 
anova(model_1, logit) 
 
###### Standardized and performance ###### 
VIF(logit) 
broom::tidy(logit, exponentiate = TRUE, conf.level = 0.95) 
performance::r2_nagelkerke(logit) 
performance::check_model(logit) 
 
epiDisplay::logistic.display(logit, simplified = TRUE)[["table"]] %>% 
as.data.frame() %>% 
   rownames_to_column("var") %>% mutate(signif = case_when(`Pr(>|Z|)` <= 0.001 
~ "Signif. 0.001", 
                                                           `Pr(>|Z|)` > 0.001  
& `Pr(>|Z|)` <= 0.01  ~ "Signif. 0.01", 
                                                           `Pr(>|Z|)` > 0.01   
& `Pr(>|Z|)` <= 0.05  ~ "Signif. 0.05", 
                                                           TRUE ~ "Not 
signif."), 
                                        signif = factor(signif, levels = c("Not 
signif.", "Signif. 0.05", "Signif. 0.01", "Signif. 0.001"))) %>% 
   ggplot(aes(x = OR, y = fct_reorder(var, OR), fill = signif, color = signif)) 
+ 
   geom_point(shape = 21, size = 3) + 
   geom_errorbar(aes(xmin = lower95ci, xmax = upper95ci), width = .1) + 
   scale_colour_manual(values = rev(c("red", "green4", "blue", "black")), 
                       breaks = c("Not signif.","Signif. 0.05", "Signif. 0.01", 
"Signif. 0.001")) + 
   scale_fill_manual(values   = rev(c("red", "green4", "blue", "black")), 
                     breaks = c("Not signif.", "Signif. 0.05", "Signif. 0.01", 
"Signif. 0.001")) + 
   geom_vline(aes(xintercept = 1), size = .25, linetype = "dashed") + 
   coord_trans(x = "log10") + 
   scale_x_continuous(breaks = seq(0, 10, 1) ) + 
   labs(title = "Logit regression predicting evacuation", x = "Odds ratio and 
95% confidence intervals (log scale)", 
        y = "", color = "", fill = "") + theme_bw() 
 
effects_logit = margins::margins(logit) 
summary(effects_logit) 
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par(new = TRUE, mfrow = c(1, 2), mar = c(7, 3, 3, 2), bg = "white", pty = "s") 
for (var in c("expected_impacts", "effect_evac_order")){ 
   visreg::visreg(logit, var, scale = "response", partial = FALSE, rug = 2, 
xlab = paste(var), ylab = "P(evacuation)") 
} 
 
###### BN ###### 
dag = 
model2network("[age][freq_consult_info][evac_orders][gender][education][risk_ar
ea][social_cues][unnecessary_evac_exp][effect_evac_order|evac_orders][multiple_
concerns|age:gender:education][expected_impacts|age:freq_consult_info:gender:ed
ucation:risk_area:social_cues][evacuation|expected_impacts:effect_evac_order:mu
ltiple_concerns:unnecessary_evac_exp]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white", pty = "m") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized) 
# coefficients(bn) 
par(mfrow = c(1, 1), bg = "white", pty = "m") 
graphviz.chart(bn, type = "barprob", grid = TRUE, draw.levels = TRUE, scale = 
c(1, 1.2)) # c(1.2,2)) 
(pvalues = arc.strength(dag, data = dat_bn_dicretized)) 
par(new = TRUE, mfrow = c(1, 1), bg = "white", pty = "m") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
LL  = logLik(dag, dat_bn_dicretized) 
k   = log(nrow(dat_bn_dicretized))/2 
N   = nparams(dag, dat_bn_dicretized) 
(BIC = LL - N * k) 
score(dag, dat_bn_dicretized) 
 
###### Exp.1 ###### 
dag = 
model2network("[age][freq_consult_info][evac_orders][gender][education][risk_ar
ea][social_cues][unnecessary_evac_exp][effect_evac_order|evac_orders][multiple_
concerns|age:gender:education][expected_impacts|age:freq_consult_info:gender:ed
ucation:risk_area:social_cues][evacuation|expected_impacts:effect_evac_order:mu
ltiple_concerns:risk_area:unnecessary_evac_exp]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized) 
pvalues = arc.strength(dag, data = dat_bn_dicretized) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
score(dag, dat_bn_dicretized) 
 
###### Exp.2: Adjusts ###### 
dag = 
model2network("[age|education][freq_consult_info|age:gender:education][evac_ord
ers][gender][education|gender][risk_area][social_cues|age:gender:education][unn
ecessary_evac_exp|age:gender][effect_evac_order|age:gender:education:evac_order
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s][multiple_concerns|age:gender:education][expected_impacts|age:freq_consult_in
fo:gender:education:risk_area:social_cues][evacuation|expected_impacts:effect_e
vac_order:multiple_concerns:risk_area:unnecessary_evac_exp]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized) 
pvalues = arc.strength(dag, data = dat_bn_dicretized) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
score(dag, dat_bn_dicretized) 
 
###### Adjusted ###### 
dag = 
model2network("[age][freq_consult_info|age:gender][evac_orders][gender][educati
on][risk_area][social_cues|age:gender][effect_evac_order|gender:evac_orders][mu
ltiple_concerns|education][expected_impacts|freq_consult_info:social_cues][evac
uation|expected_impacts:effect_evac_order:multiple_concerns:risk_area]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp)) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.chart(bn, type = "barprob", grid = TRUE, draw.levels = TRUE, scale = 
c(1, 1.2)) # c(1.2,2)) 
pvalues = arc.strength(dag, data = dat_bn_dicretized %>% select(-
unnecessary_evac_exp)) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
strength.plot(dag, strength = pvalues, shape = "ellipse") 
score(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp)) 
 
###### Exp.3: Soft-evidence ###### 
dag = 
model2network("[age][freq_consult_info|age:gender][evac_orders][gender][educati
on][risk_area][social_cues|age:gender][effect_evac_order|gender:evac_orders][mu
ltiple_concerns|education][expected_impacts|freq_consult_info:social_cues][evac
uation|expected_impacts:effect_evac_order:multiple_concerns:risk_area]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp)) 
 
ev <- list(multiple_concerns = "1")                                                          
# evidence vector 
updated_dat <- cpdist(bn, nodes = bnlearn::nodes(bn), evidence = ev, method = 
"lw", n = 1e6) # draw samples 
updated_fit <- bn.fit(dag, data = updated_dat)                                               
# refit: you"ll get warnings over missing levels 
par(new = TRUE, mfrow = c(1, 1), bg = "white")                                               
# plot 
graphviz.chart(updated_fit, type = "barprob", grid = TRUE, draw.levels = TRUE, 
scale = c(1, 1.2)) 
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junction <- compile(as.grain(bn)) 
multiple_concerns_low <- setEvidence(junction, 
                                     nodes = "multiple_concerns", 
                                     states = "1") 
querygrain(multiple_concerns_low)$evacuation 
querygrain(multiple_concerns_low)$education 
 
###### Exp.4: Soft-evidence ###### 
dag = 
model2network("[age][freq_consult_info|age:gender][evac_orders][gender][educati
on][risk_area][social_cues|age:gender][effect_evac_order|gender:evac_orders][mu
ltiple_concerns|education][expected_impacts|freq_consult_info:social_cues][evac
uation|expected_impacts:effect_evac_order:multiple_concerns:risk_area]") 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.plot(dag, shape = "ellipse") 
bn = bn.fit(dag, dat_bn_dicretized %>% select(-unnecessary_evac_exp)) 
 
ev <- list(evacuation = "1") 
updated_dat <- cpdist(bn, nodes = bnlearn::nodes(bn), evidence = ev, method = 
"lw", n = 1e6) 
updated_fit <- bn.fit(dag, data = updated_dat) 
par(new = TRUE, mfrow = c(1, 1), bg = "white") 
graphviz.chart(updated_fit, type = "barprob", grid = TRUE, draw.levels = TRUE, 
scale = c(1, 1.2)) 
 
junction <- compile(as.grain(bn)) 
evac_yes <- setEvidence(junction, 
                        nodes = "evacuation", 
                        states = "1") 
querygrain(evac_yes)$expected_impacts 
querygrain(evac_yes)$effect_evac_order 
querygrain(evac_yes)$risk_area 


