
AUTOMATED MACHINE LEARNING SYSTEMS:

EVALUATION, EASE OF USE, DATA TRANSFORMATION

A Dissertation

by

DIEGO SERAFIN MARTINEZ GARCIA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Xia Hu
Committee Members, Frank Shipman
 Zhangyang Wang
 Yang Shen
Head of Department, Scott Schaefer

May 2022

Major Subject: Computer Science

Copyright 2022 Diego Serafin Martinez Garcia

ABSTRACT

Machine Learning (ML) has been rapidly progressing through the years due to its versatility to

solve different problems. As a result, many machine learning frameworks have been created that

are a collection of different algorithms. However, data scientists often struggle to determine which

one to use to develop their ML solutions due to many options. For this reason, many Automated

Machine Learning (AutoML) systems have been created to help users create ML solutions easily

by defining the problem they want to solve, providing the data, and setting a budget such as time

search for a solution.

Through the years, many AutoML systems have been developed, and their applications range

from solving simple tasks such as tabular classification to more complex such as object detection.

Due to many AutoML systems, it becomes challenging for users to determine which one suits them

the best because most of the systems focus on specific tasks and data, and sometimes they overlap

on the tasks they can solve. Another issue that users need to be aware of is that although most of the

search process is already automated, it is necessary for the user to get involved in data preprocessing

in most systems. Such preprocessing can be trivial, from selecting images files to more challenging

tasks such as merging multiple database tables.

Another aspect of AutoML systems is the research involved in the development. AutoML

research can focus on the way of searching, to some more deep processes such as optimizing how

models are run. This research leads to the creation of many AutoML systems every year. Creating

an AutoML system is challenging since there are many things to consider, from the design to

the implementation, and attempting to use an existing system to test a new hypothesis becomes

challenging. The challenge of reusing an existing AutoML system is that most systems were

designed towards proposing some research improvement rather than usability. Another problem is

that these systems are not maintained, and if they are maintained, it is difficult to use them due to

the lack of documentation.

ii

Enabling the advance on AutoML is challenging. Firstly, it is necessary to standardize compo-

nents, so there is a more efficient way to compare different frameworks. There are many AutoML

systems every year with new search strategies. However, it becomes challenging to objectively

compare them since they could be improving in other areas rather than the ones claimed. Secondly,

creating an AutoML system should not be challenging since it can stop many researchers from

contributing to the field. Creating a new AutoML system with the sole purpose of testing a new

component should not be difficult. Thirdly: we identify that state-of-the-art AutoML systems

only focus on model selection and hyperparameter tuning while leaving room for improvement

on the data preprocessing. To tackle the challenges above, several contributions are made in the

preliminary work, and future work is proposed to conclude the dissertation:

• The first contribution of this research dissertation is the development of standards for AutoML,

which generalize components that have been used for a while and give them proper definitions.

• Second, we propose a better methodology for the evaluation of AutoML systems that provide

a better understanding of the capabilities of different systems

• To alleviate the burden of human efforts to create single-use AutoML systems, we propose

an extendible to enable AutoML. The proposed AutoML frameworks enable customizable

AutoML solutions without designing and implementing every aspect of an AutoML system.

• Considering the potential benefit of data preprocessing search for AutoML in the last piece of

work, we focus on the preprocessing search by creating an end-to-end framework that takes

advantage on contextual feature similarities.

iii

DEDICATION

To my family.

iv

ACKNOWLEDGMENTS

Foremost, I would like to thank my family, my mother Celia for her emotional support and

always being there, my father Serafin for his wisdom, my sister Lourdes for visiting me and keeping

an eye on me all the time, and my sister Selina for her affection. Without my family, none of this

work would be possible. Also, I was fortunate to have many friends across the journey that provided

advice and support when I needed it. I would like to thank Jorge, Maria, Irving, Patricia. I would

like to especially thank Jonathan Martinez and Tsung-Lin Yang, who helped me stay on track and

never give up; I really appreciate them.

Most of this work has been done through collaborations through the DARPA D3M program.

I want to thank everyone on the program, especially Brian Sandberg, Mitar Milutinovic, Shelly

Stanley, Brandon Schoenfeld, Curtis Lisle, Daragh Hartnett, Dayne Freitag, Mark Hoffmann, Sonia

Castelo, and Remco Chang. Thanks for the hard work through these years and the wonderful

discussions and collaboration on such an exciting project. Also, I would like to thank the JPL team

for their contributions to the project and for making me feel welcome while doing my internship;

special thanks to Brian Wilson, Chris Mattmann, Alice Yepremyan, Sujen Shah, and Bhavin Shah.

I would like to express my gratitude to my advisor, Dr. Xia Hu, who provided his mentorship,

support, and almost infinite patience. I would like to thank the rest of my dissertation committee, Dr.

Frank Shipman, Dr. Zhangyang Wang, and Dr. Yang Shen, for their continuous advice and support

during my Ph.D.

Finally, I would like to thank an extraordinary person that is no longer among us, that helped

me during rough times by providing support and music and made me challenge myself to achieve

greater things. Thank you, my friend, Luna. Rest in peace.

Special thanks to Texas A&M University and all the funding agencies, including The Mexican

National Council for Science and Technology and Defense Advanced Research Projects Agency.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Xia Hu [advisor],

Professor Frank Shipman, and Professor Zhangyang Wang of the Department of Computer Sci-

ence and Engineering, and Professor Yang Shen from the Deparment of Electrical & Computer

Engineering.

Funding Sources

This work is, in part, supported by The Mexican National Council for Science and Technology

(CONACYT), and by DARPA (#FA8750-17-2-0116)The views, opinions, and/or findings expressed

are those of the author(s) and should not be interpreted as representing the official views or policies

of the Department of Defense or the U.S. Government or the Mexico Government.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xii

1. INTRODUCTION. 1

1.1 Motivation and Challenges . 1
1.2 Related Work . 2
1.3 Dissertation Contributions . 4
1.4 Dissertation Overview . 5

2. ON EVALUATION OF AUTOML SYSTEMS: FUNDAMENTAL AUTOML EVALUA-
TION PRACTICES AND UNIFIED OPEN-SOURCE MACHINE LEARNING FRAME-
WORK . 6

2.1 Introduction. 6
2.2 Preliminaries . 10

2.2.1 Machine Learning Primitives . 10
2.2.2 Pipeline Language . 12
2.2.3 Reference Runtime . 14

2.3 Towards Better Evaluation of AutoML Systems . 14
2.4 Experiments . 19
2.5 Conclusions. 24

3. Axolotl System: Modular Framework for development and testing AutoML solutions 25

3.1 Introduction. 25
3.2 Framework. 26

3.2.1 Simplification of D3M Ecosystem. 27
3.2.2 Pipelines Evaluation via Backend . 35

vii

3.2.3 Search Algorithms . 39
3.3 Conclusions. 43

4. Feature-wise Transformation Search for AutoML . 45

4.1 Introduction. 45
4.2 Preliminaries . 46
4.3 Framework. 48

4.3.1 Feature embedding . 51
4.3.2 Feature Clustering . 52
4.3.3 Preprocessing Pipeline Search . 53

4.4 Experiments . 54
4.4.1 Search Space . 54
4.4.2 Baselines . 55
4.4.3 Method Settings . 55
4.4.4 Results . 55

4.5 Conclusions. 57

5. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES . 58

REFERENCES . 60

APPENDIX A. PIPELINE EXAMPLE IN JSON FORMAT . 67

APPENDIX B. SEARCH ALGORITHM EXAMPLE . 74

APPENDIX C. SEMANTIC HANDLER EXAMPLE BUILT IN AXOLOTL 77

viii

LIST OF FIGURES

FIGURE Page

2.1 An illustrative example of the exposed interfaced of the Random Forest primitive
by Sklearn wrapped by the D3M API. This wrapped primitive contains general
information on the metadata, as well as standard methods and hyperparameters
definitions. 12

2.2 An example of DAG pipeline that can generate predictions for data with only
numerical values. The pipeline focuses on three aspects, missing feature imputation,
passing targets to the learning, and formatting the output predictions. 13

2.3 Pseudo-code describing execution semantics of the reference runtime. The fit
semantic in which the runtime iterates over all the pipeline steps and passes the
data around to fit the sub-pipelines or primitives. The produce semantic in which
the runtime passes the data through all the pipeline steps to produce new values
forwarded to the next steps.. 15

2.4 Evaluation Framework for AutoML Systems. The framework is divided into three
stages, offline training, search and score. During the offline training, some data is
available that can be used as a reference to train or create AutoML systems. On the
search, the AutoML system must generate machine learning pipelines within some
budget such as time, memory, etc. In the scoring face, the pipelines generated by
the systems are independently trained and evaluated so AutoML systems can be
compared based on their results. 17

2.5 Reference Runtime as an evaluation tool. The reference runtime facilitates pipelines
evaluation by fitting them and producing predictions. The reference runtime gener-
ates a fitted pipeline that can later be used with the test data and produce predictions
to be later evaluated. To achieve this, the reference runtime requires informa-
tion about the pipeline that will be used, a set of training data, and the problem
description that contains information regarding the target column. 18

2.6 Evaluation results on known and blind datasets, aggregated for select task types.
Note that some systems failed to produce any pipelines for some datasets, so
individual plots may contain fewer data points. Higher is always better. 23

ix

3.1 AutoML System Axolotl Architecture: System API: It is divided into two main
components, the D3M wrapper, which aims to simplify user interactions with the
AutoML framework, and the Search, which is in charge of generating pipelines to
be produced by the system. Backend: Deals with running and evaluating pipelines
generated by the Search. 27

3.2 Example of a Sklearn Primitive usage. The primitive can directly be used from the
import, then assign the hyperparameters on the constructor and use the interface fit
to train the ML primitive and use it with the predict interface to generate predictions. 28

3.3 Example of a D3M Random Forest Primitive usage. The primitive needs to be
retrieved from the D3M index, and then the Hyperparameter class needs to be
obtained to get the default values. Later the primitive can be instantiated via the
constructor by passing the hyperparameters. The primitive instance can later be
trained by setting the input data via set_training_data and later fit. Finally, the
primitive can generate predictions via the produce method. 30

3.4 Example of simplified D3M Random Forest Primitive usage. A dynamic class is
built during execution by stating the python path of the primitive to use as base. Then
the dynamic class can be use as a regular ML Primitive by stating the parameters
and hyperparameters directly on the methods. 31

3.5 Example of adding a Primitive to a D3M Pipeline. The primitive needs to be
retrieved from the index to be later used to instantiate a PrimitiveStep. After
instantiating the primitive step, the arguments and hyperparameters are added one
by one, and later an output method is added referencing the desired produce method.
Finally, the primitive step is added to the pipeline. 33

3.6 Example of adding a Primitive to a D3M Pipeline via Axolotl Primitive Handler
simplification. A primitive handler is created by defining the desired primitive and
hyperparameters to be later added to the pipeline by calling the add_produce method
and stating the arguments references. 34

3.7 Reference Runtime Backend. In order to interact the search with the reference
runtime, the search generates several pipeline candidates and defines the evaluation
metrics and the dataset to use. Then the Reference Runtime evaluates one pipeline
at a time and forwards the results back to the search. 37

3.8 Parallel Backend with Reference Runtime and Ray. The parallel backend using Ray
follows the same interface as the reference runtime with the difference that the par-
allelization is horizontal, allowing multiple pipelines to be evaluated simultaneously.
Several components are added to the shared storage, such as the dataset, a queue
containing the pipelines to evaluate, and a queue containing the evaluation results.
Then, multiple runtime workers access the shared storage, evaluate a pipeline on
the queue, and return the evaluation results. The process is repeated until no more
pipelines are allocated to the evaluation queue. 38

x

3.9 Axolotl’s search: Search algorithms must implement the required methods from the
Search Base class to be compatible with the other parts of the system. Tunner base
class helps to define classes for hyperparameter tuning. 40

3.10 Axolotl’s Data-Driven search algorithm consists of a mixture of different search
strategies focusing on the pipeline’s specific components. A heuristic that trans-
forms the input data to a common numerical representation is used for the Data
Preprocessing step, dealing with different data types such as files, text, dates, and
categorical attributes. A brute force method is used for the feature and model
selection. Finally, Bayesian optimization is used for the Hyperparameter tuning step. 44

4.1 An illustration of different pipeline architectures and performance on the same
dataset. Figure (a) is a standard pipeline that imputes missing values and applies
One Hot Encoder transformation to non-numerical data. Figure (b) is a pipeline that
handles numerical and categorical data similarly to the Common Pipeline but also
applies One Hot Encoder transformation to some numerical data and uses Label
Encoder transformation to some categorical data. The performance improvement is
because some numerical data such as age has a limited range and can be seen as
categories instead of numerical data, while some categorical values only contain a
couple of options. 47

4.2 Figure (a) shows an illustration of a preprocessing pipeline that uses Feature-wise
pipelines for each feature. Figure (b) shows an example of how our method deals
with multiple attributes by using a single pipeline. If we consider a search space
with only eight pipelines to choose from for each feature, we would have over two
million possible combinations for the Feature-wise case. However, our proposed
method is capable of reducing this space to around thirty-two thousand. 49

4.3 Clustered Feature-wise Pipeline Search Framework. An Autoencoder is used to
generate the column feature embedded from the input dataset. Then a randomly
initialized clustering network is used to generate the feature clusters. The cluster
information is forwarded to the feature-wise random search that will eventually
generate transformed data. Then the data is forwarded to the ML Learner to generate
predictions used on the Policy Gradient Loss to generate a reward. Then, the reward
is used to tune the Clustering Network. The process keeps repeating until no more
resources are allocated. 50

4.4 Accuracy improvement on different machine learning learners focuses on heteroge-
neous data from the OpenMl-CC18 Benchmark with a 500 iteration search. The
proposed method has more impact on the learners if the data contains different data
types such as integer, boolean values. The performance improvement on machine
learning learners that are tree-based is minimal since tree methods are already
dealing with categorical data better. 57

xi

LIST OF TABLES

TABLE Page

2.1 List of AutoML systems that focus on model selection and hyperparameter tuning
categorized according to the search strategy used. Most of the frameworks fit
into three main categories: Bayesian Optimization, Evolutionary Algorithms, and
Reinforcement Learning. An extra category has been added as Other Techniques
since these frameworks do not fit the previous ones. 7

2.2 List of AutoML systems that focus on Neural Architecture Search. The systems
are categorized according to the search strategy used: Bayesian Optimization,
Reinforcement Learning, Gradient-based Approaches, and Evolutionary Algorithm . 7

2.3 A subset of known datasets, their task type, and metric used. Achieved scores are
not shown because scores on known datasets can be overfitted. 20

2.4 Percentage of the 106 known datasets and 62 blind datasets for which each evaluated
AutoML system successfully created a functional pipeline that can produce predic-
tions using the reference runtime. Results show that the systems search method
directly affects the performance since they all use the same building blocks. 21

4.1 Preprocessing pipeline search space. The space follows a strict order of operations.
It is divided into three main components: imputers, encoders, scalars. Each com-
ponent has different available options that can be selected and includes the None
operation. 54

4.2 Comparison between the average accuracy of standard, random clustered and Clus-
tered Feature-wise pipelines on OpenML-CC18 Benchmark datasets. CFWT shows
a promising increase of performance for standard machine learners. 56

xii

1. INTRODUCTION

1.1 Motivation and Challenges

Machine Learning (ML) has been rapidly progressing through the years due to its versatility to

solve different problems. As a result, many machine learning frameworks have been created that

are a collection of different algorithms. However, data scientists often struggle to determine which

one to use to develop their ML solutions due to many options. For this reason, many Automated

Machine Learning (AutoML) systems have been created to help users create ML solutions easily

by defining the problem they want to solve, providing the data, and setting a budget such as time

search for a solution.

Through the years, many AutoML systems have been developed, and their applications range

from solving simple tasks such as tabular classification to more complex such as object detection.

Due to many AutoML systems, it becomes challenging for users to determine which one suits them

the best because most of the systems focus on specific tasks and data, and sometimes they overlap

on the tasks they can solve. Another issue that users need to be aware of is that although most of the

search process is already automated, it is necessary for the user to get involved in data preprocessing

in most systems. Such preprocessing can be trivial, from selecting images files to more challenging

tasks such as merging multiple database tables.

Another aspect of AutoML systems is the research involved in the development. AutoML

research can focus on the way of searching, to some more deep processes such as optimizing how

models are run. This research leads to the creation of many AutoML systems every year. Creating

an AutoML system is challenging since there are many things to consider, from the design to

the implementation, and attempting to use an existing system to test a new hypothesis becomes

challenging. The challenge of reusing an existing AutoML system is that most systems were

designed towards proposing some research improvement rather than usability. Another problem is

1

that these systems are not maintained, and if they are maintained, it is difficult to use them due to

the lack of documentation.

AutoML systems often follow simple patterns to generate machine learning pipelines; the

embedded knowledge on the system bounds such patterns. In most cases, the ML pipelines

generated follow a simple structure that contains data transformation and then the machine learner.

Although this approach is effective, it restricts the search by focusing on model selection and

hyperparameter tuning. Feature transformation for preprocessing can become complicated to

automate since it requires having some knowledge of the data beforehand.

1.2 Related Work

Evaluation of AutoML systems. Several frameworks attempt to help practitioners to identify

strengths and weaknesses of AutoML systems by taking the practical approach of evaluating

systems as-is and comparing only the predictions generated by each system, such as the AutoML

Challenge Series [1], and Benchmarking automatic machine learning frameworks [2]. These

comparisons, as well as the benchmarking suite OpenML benchmarking suites and the OpenML100

[3] focus only on tabular data consisting primarily of classification and regression tasks with

numerical and categorical data and some missing values, but the AutoML Challenge Series also

includes various other problem types that are preprocessed to fit the tabular paradigm. Notably,

the AutoML Benchmark evaluates systems given multiple time budgets, helping demonstrate how

AutoML systems evolve with increasingly available resources. Other studies such as Survey on

automated machine learning [4] used 137 OpenML datasets to evaluate multiple AutoML systems,

such as, auto-sklearn [5], TPOT [6], hyperopt-sklearn [7], RoBO [8], BTB [9].

Standardization of AutoML components. Every year, numerous Machine Learning algorithms

are created, in which most of them there almost to none existing documentation. To solve this,

Machine Learning libraries have been created containing collections of different algorithms that

are updated through time. One of the most outstanding examples of this is Scikit-Learn Library

(Sklearn) [10] which is one of the most extensive collections of machine learning algorithms that

keeps growing with contributions. Sklearn has defined a standard of rules to follow with its influence

2

to implement the most standard code interface such as the function fit and predict. Later on, Sklearn

introduced automated pipelines that only use functions that fit and predict. The overall approach to

standardize ML algorithms follows human interaction. The interfaces are designed to be human-

friendly by providing enough documentation for humans to get a better sense of what everything

does in natural language. Another important work that looks towards the standardization of AutoML

is OpenML [11] which takes further the concept of pipelines defined by Sklearn. OpenML defines

ML pipelines as flows that later on are serialized and stored on the OpenML database. OpenML

also generates the concept of runs, which focuses on the information of a workflow that is run or

evaluated with a dataset; these runs also store information regarding the metrics used to be evaluated.

Workflow runs are then submitted to the OpenML database to be stored and later be used to either

attempt to reproduce the experiments or to be used as data to design or train new AutoML systems.

Building an AutoML System. Every year several AutoML systems are created to test a new

hypothesis. Each of the systems focuses on different strategies to generate better pipelines. The

most common approach for such systems is to have templates mainly in charge of doing the data

preprocessing and then applying some model selection algorithms. Other approaches such as genetic

programming (TPOT), reinforcement learning (AlphaD3M [12]), probabilistic matrix factorization

[13] or combining multiple approaches like Bayesian Optimization, and Metalearning (AutoSklearn)

can yield a substantial improvement on performance. Unfortunately, the systems are designed not to

be used as an AutoML system, and it can be challenging to use them as a base to create new systems

or test different search strategies. AutoSklearn is the most widely known and can be extended to

test new algorithms, but the learning curve is very steep due to all intricated parts of the program.

Preprocessing Pipeline Search for AutoML. Current AutoML solutions are capable of generating

complex pipelines by creating ensembles of simple ones such as AutoSklearn [5] or by adding

multiple data transformation primitives on the middle such as AlphaD3M [12]. A more complex

approach can be found on DeepLine [14] in which multiple pipelines are created on a parallel

that later is ensembled; this framework uses Deep reinforcement learning to learn across multiple

datasets. All of the methods have a common approach: apply the same data transformation for all

3

of the same data. This approach leads to a good overall performance since it relies on embedded

human knowledge about how to tread different feature types. So far, Preprocessing Pipeline search

on AutoML systems focuses on the best cases to select one of the very few options of available

preprocessing pipelines. These pipelines are humanly handcrafted or a simple combination of

different data transformation primitives such as imputers, encoders, and scalers.

1.3 Dissertation Contributions

Enabling the advance on AutoML is challenging. Firstly, it is necessary to standardize compo-

nents, so there is a more efficient way to compare different frameworks. There are many AutoML

systems every year with new search strategies. However, it becomes challenging to objectively

compare them since they could be improving in other areas rather than the ones claimed. Secondly,

creating an AutoML system should not be challenging since it can stop many researchers from

contributing to the field. Creating a new AutoML system with the sole purpose of testing a new

component should not be difficult. Thirdly: we identify that state-of-the-art AutoML systems

only focus on model selection and hyperparameter tuning while leaving room for improvement

on the data preprocessing. To tackle the challenges above, several contributions are made in the

preliminary work, and future work is proposed to conclude the dissertation:

• The first contribution of this research dissertation is the development of standards for AutoML,

which generalize components that have been used for a while and give them proper definitions,

as well as, generate APIs so AutoML can use them so they can be built by using the same

building blocks.

• Second, we propose a better methodology for evaluating AutoML systems that provide a

better understanding of the capabilities of different systems that take advantage of the use of

the same building components on the systems.

• To alleviate the burden of human efforts to create single-use AutoML systems, we propose

an extendible framework to enable AutoML. The proposed AutoML frameworks enable

customizable AutoML solutions without designing and implementing every aspect of an

4

AutoML system. The main focus is to allow developers and researchers to prototype and test

different methodologies within AutoML quickly.

• Considering the potential benefit of data preprocessing search for AutoML. We proposed a

framework for the exploration of feature-wise preprocessing pipeline search. We focus on

reducing the complexity of the preprocessing pipeline search space by clustering features

based on an end-to-end framework that guides the search.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Chapter 2: On Evaluation of AutoML Systems. In this chapter, we develop a framework

to enable Automated machine learning by standardizing the language for machine learning

pipelines and providing a deterministic way to evaluate them.

• Chapter 3: AutoML System: Axolotl. In this chapter, we develop an Automated Machine

learning system that enables non-expert to expert users to create, test, and evaluate their

Automated Machine learning methods without the burden of creating a system from scratch.

• Chapter 4: Feature-wise Transformation for AutoML. In this chapter, we explore the

benefit of searching for feature transformation methods to boost the performance of ma-

chine learning pipelines by proposing an end-to-end discovery framework to search for

transformation for a group of features automatically.

• Chapter 5: Conclusions and Future Research Opportunities. We conclude the disserta-

tion with a summary of contributions and discuss potential research directions to the results

presented.

5

2. ON EVALUATION OF AUTOML SYSTEMS: FUNDAMENTAL AUTOML EVALUATION

PRACTICES AND UNIFIED OPEN-SOURCE MACHINE LEARNING FRAMEWORK1

In this chapter, we tackle the standardization and evaluation for AutoML systems. Our developed

framework can provide more information to AutoML systems about their components and attempts

to standardize the components across multiple systems. As for the evaluation, the framework can

provide better insight into how AutoML systems perform in different scenarios.

2.1 Introduction

The AutoML community has produced many academic and non-academic systems: AlphaD3M

[12], Auto-sklearn [5], Google Cloud AutoML [15], H20 [16], Hyperopt [7], Auto-WEKA [17],

SmartML [18], Auto-Net [19], auto_ml [20], ML-Plan [21], TPOT [6], Mosaic [22], Auto-Meka

[23], RECIPE [24], TransmogrifAI [25], Alpine Meadow [26], The Automatic Statistician [27],

ATM [28], Rafiki [29], Adaptive TPOT [30], Oboe [31], TPE [32], SMAC [33], FABOLAS [34],

BOHB [35], APRL [36], Hyperband [37], and DarwinML [38]. Table 2.1 shows an overview of

the different techniques used for these systems; most of them focus on Bayesian Optimization,

Evolutionary Algorithms, and Reinforcement Learning, but also other systems use non-conventional

techniques such as matrix factorization, among others. Some systems focus on neural networks

only: MetaQNN [39], DEvol [40], Auto-Keras [41], Neural Network Intelligence [42], ENAS

[43], Neural Architecture Search [44], NASNet [45], DARTS [46], Proxyless [47], NASBot [48],

and NAONet [49]. We observe [50] that their approaches, even the programming languages, vary

significantly, complicating system comparison. Table 2.2 shows an overview of the different

techniques used for these Neural Architecture Search systems; most of them focus on Bayesian

Optimization, Evolutionary Algorithms, Reinforcement Learning, and Gradient-based Approaches.

1This chapter is reprinted with permission from “On evaluation of automl systems” by Mitar Milutinovic, Brandon
Schoenfeld, Diego Martinez-Garcia, Saswati Ray, Sujen Shah, and David Yan, 2020. In Proceedings of the ICML
Workshop on Automatic Machine Learning. 2020. Copyright 2020 by M. Milutinovic, B. Schoenfeld, D. Martinez-
Garcia, S. Ray, S. Shah, D. Yan.

6

Bayesian
Optimization

Evolutionary
Algorithm

Reinforcement
Learning

Other techniques

Auto-sklearn [5] TPOT [6] AlphaD3M [12] H20 [16]
Hyperopt [7] auto_ml [20] Rafiki [29] ML-Plan [21]

Auto-WEKA [17] Auto-Meka [23] APRL [36] Mosaic [22]
SmartML [18] RECIPE [24] Hyperband [37] Alpine Meadow [26]

TransmogrifAI [25] Adaptive TPOT [30] Auto Statistician [27]
ATM [28] DarwinML [38] Oboe [31]
TPE [32]

SMAC [33]
FABOLAS [34]

BOHB [35]

Table 2.1: List of AutoML systems that focus on model selection and hyperparameter tuning
categorized according to the search strategy used. Most of the frameworks fit into three main
categories: Bayesian Optimization, Evolutionary Algorithms, and Reinforcement Learning. An
extra category has been added as Other Techniques since these frameworks do not fit the previous
ones.

Bayesian
Optimization

Reinforcement
Learning

Gradient-based
Approaches

Evolutionary
Algorithm

Auto-Keras [41] MetaQNN [39] DARTS [46] DEvol [40]
NN Intelligence [42] NAS [44] Proxyless [47]

NASBot [48] ENAS [43] NAONet [49]
NASNet [45]

Table 2.2: List of AutoML systems that focus on Neural Architecture Search. The systems are
categorized according to the search strategy used: Bayesian Optimization, Reinforcement Learning,
Gradient-based Approaches, and Evolutionary Algorithm

7

Existing evaluations, including the AutoML Benchmark [51], the AutoML Challenge Series [1],

and another benchmarking study [2], attempt to help practitioners identify strengths and weaknesses

of systems by taking the practical approach of evaluating systems “as-is”, comparing only the

predictions of each system’s chosen pipeline. These comparisons, as well as another benchmarking

suite [3], focus on tabular data, consisting primarily of classification and regression tasks with

numeric and categorical data and some missing values, but the AutoML Challenge Series also

includes various other problem types that are preprocessed to fit the tabular paradigm. Notably,

the AutoML Benchmark evaluates systems given multiple time budgets, helping demonstrate how

AutoML systems evolve with increasingly available resources. Another study [4] used 137 OpenML

datasets to evaluate multiple AutoML systems (auto-sklearn, TPOT, hyperopt-sklearn, RoBO [8],

BTB [9]). TUPAQ [52] emphasizes large-scale distributed and scalable machine learning, focusing

their evaluation on scalability and convergence rates.

AutoML Benchmarks evaluate different systems by providing fixed problems that consist of a

single table with categorical and numerical columns and some missing values. Then the benchmarks

provide different resource constraints in which only the search time changes most of the time. This

approach for measuring the AutoML system performance can be drastically affected by external

factors, such as the programming language used for the system, the available search space, and the

determinism of the final solutions. AutoML systems’ comparison by these means does not provide

a fair comparison since they only consider the final output and not any other part of the process.

In order to make a more fair comparison among AutoML systems, it is necessary to consider

other factors such as the use of the same framework. A fair comparison becomes a challenging task

since different systems attempt to get performance improvements in different ways, such as focusing

on model selection, hyperparameter tuning, or just by speeding up the evaluation of solutions so

they can cover a more extensive search space.

8

To achieve the goal of creating a more fair comparison framework for AutoML systems, it is

necessary to tackle three challenges: standard machine learning primitive representation, unified

broad standard pipeline representation, standard pipeline execution. We briefly describe each of the

challenges and their importance:

• Current machine learning primitives such the one on scikit-learn [10] library are made for a

human to use, and their documentation provides a general idea of their usage. Unfortunately,

machine learning systems cannot use almost any of the knowledge on the documentation to

learn the proper use of the primitives, such as their interfaces. AutoML systems have to wrap

primitives manually so that they can be used in an automated fashion. The drawback for this

approach is that every system has a different method to wrap them, thus making it difficult

to use them across frameworks since they only focus on some specific information for their

systems.

• The pipeline generated by current AutoML systems can be from a sequence of ML primitives

executed one after another or a more complex representation that is defined as the composition

of the ML Primitives (scikit-learn). None of the current pipeline representations created by

AutoML authors can capture a general pipeline representation containing all the different

approaches, making it difficult to compare their solutions across different frameworks.

• The general output of AutoML systems are the predictions for a given problem. Although

this is the final goal of AutoML, in practice, this makes the process of comparing them even

more challenging since the system may or may not be deterministic, and their solutions can

be implemented on artifacts that they can only use. For this reason, AutoML systems must

express their solutions in the general pipeline language and be evaluated in a deterministic

way that is not dependent on the system that generated them.

9

2.2 Preliminaries

The implementation of this work (D3M Core Package 2) has been a collaborative effort among

different institutions via the Data Driven Discovery of Models Project by DARPA.

2.2.1 Machine Learning Primitives

A primitive is a basic building block that is the implementation of a function or an algorithm.

The primitives can be written by using any programming language, but they must have a python

interface. The python interface contains metadata that defines information about the wrapped

primitive such as the algorithm type and information about all the parameters and the accepted

inputs and outputs. Primitives under our definition have two different kinds of hyperparameters:

control hyperparameters, which are these parameters that control the logic of the primitive, and

tuning hyperparameters that are the ones that directly affect the performance of the primitives.

Current implementations of machine learning primitives such as the Sklearn [10] lack machine-

readable information. The information contained in such primitives’ documentation mainly focuses

on explaining in natural language what each parameter does and sometimes providing more infor-

mation about how to tune the parameters, such as the range of a variable. This approach makes it

even more difficult for AutoML systems to ingest or learn how to use the primitives. As previously

mentioned, this problem can be solved by creating a standardization of primitive information in the

machine-readable interface. This interface mainly focuses on three aspects, general information

about the primitives, hyperparameters definitions, and standard class methods.

The first aspect of the general information about the primitive is metadata on JSON format that

contains a universally unique identifier (UUID) to help keep track of the primitive through different

versions. The metadata also contains automatic installation instructions that mainly focus on python

packages and contain other relevant dependency information such as external code needed for the

primitive to work, i.e., Java code. Other information such as the primitive family, algorithm types,

and keyboards are provided to help AutoML systems to identify primitives in a more accessible

2https://gitlab.com/datadrivendiscovery/d3m

10

https://gitlab.com/datadrivendiscovery/d3m

manner depending on specific characteristics.

The second aspect about hyperparameters definition, the primitive interface should be able to

provide more information about the different hyperparameters that can change and their data types

such as categorical, numerical, or even more complex structures such as other primitives. The

hyperparameters also need to contain information about how to tune them, like the different possible

values, the range of values, and, if possible, the distribution of them. These hyperparameters should

be descriptive enough so the AutoML system can select and sample different values within their

definition. An important thing to mention is that such definitions can only be validated during

execution and not via semantics. Several primitives have some hyperparameter definitions, such as

the clustering method K-Means where the number of clusters is at most as many input features.

The third aspect of standard class methods is that the primitive interface must have an expected

set of functions so the AutoML system can always call them. For this work, the expected functions

are set_training_data, fit and produce, This function semantics are general enough to cover most of

the cases for already written ML primitives. Other popular and useful methods such as exposing

log_likelihoods can be added by extending the bases classes and following the naming conventions.

The functions must also contain metadata information about the parameters, inputs, and outputs.

The function’s parameters could be something extra that change the function’s behavior, such as

defining the number of iterations for the method to take or the maximum amount of time for the

function to take. The inputs mostly apply to set_training_data and produce functions since they pass

the data to the primitive, e.g., the data that a Random forest primitive uses for train or to produce

predictions. The outputs are often associated with producing methods.Standard methods can be

found on base classes provided on the D3M core package, such as supervised and unsupervised

learning classes.

A visualization example of a Sklearn wrapped primitive with the interface can be found in Figure

2.1. In this case, the Random Forest primitive is being wrapped by using a supervised learning

primitive base class since it uses inputs (features) and outputs (predictions). The wrapped primitive

contains some relevant information such as the algorithm type, random forest, the primitive family

11

D3M SK Random Forest Classifier

SK Random Forest Classifier
Hyperparameters

n_estimators: int
- lower=1
- upper=None
- default=10
- description
- semantics

criterion: Enum[str]
- default=gini
- values=[gini, entropy]
- description
- semantics

...

Metadata
- algorithm_type=random_forest
- family=classification
- hyperparams_to_tune=[

n_estimators, criterion]
- version
- source
- installation

Methods

set_training_data -> None
- params: inputs,outputs
- description

Supervise Learner Primitive
Base Class fit -> CallResult

- params: timeout, iterations
- description

produce -> CallResult
- params: inputs, timeout
- description

log_likelihoods-> CallResult
- params: inputs, timeout
- description

Figure 2.1: An illustrative example of the exposed interfaced of the Random Forest primitive by
Sklearn wrapped by the D3M API. This wrapped primitive contains general information on the
metadata, as well as standard methods and hyperparameters definitions.

classification, version, and other relevant information regarding the installation instructions. Then,

the definition such as types and possible values of different hyperparameters such as the number

of estimators (numerical) and the decision criteria (categorical) with multiple predefined values.

Finally, the wrapped primitive contains standard methods, such as set_training_data that takes

features and predictions that later on are used to train the ML learner by using fit and finally generate

prediction by using fit.

2.2.2 Pipeline Language

A machine learning pipeline consists of a series of steps of different operations that are applied

to the input data to achieve a goal, such as classification or regression. Currently, there are several

approaches to represent this workflow, such as sklearn pipeline3) that consist of a sequence of steps

applied one after another. The main disadvantage of this kind of representation is that it does not

allow the generation of more creative solutions that are not necessarily linear; for example, applying

3https://scikit-learn.org/stable/modules/generated/sklearn.pipeline

12

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline

a transformer to a specific set of columns or even having a set of ML learners to do ensembling

learning.

In our proposed framework, we defined a pipeline as a Directed Acyclic Graphs representing end-

to-end execution of a program containing inputs and outputs. For the graph pipeline representation,

we define each node as a pipeline step and each edge as the relation of inputs and outputs among

the steps. Pipeline steps can be divided into two categories primitive steps and sub-pipeline

steps. A primitive step consists of an ML primitive with defined inputs, outputs, parameters, and

hyperparameters, while sub-pipeline steps refer to another existing pipeline. The sub-pipeline

approach enables the composition of pipelines and primitives that provides more flexibility. The

approach of representing pipelines as DAGs is general enough to be able to represent the already

existing pipelines and room for new ones. The proposed pipeline representation is language-

independent and can be represented in JSON or YAML serialization.

Figure 2.2: An example of DAG pipeline that can generate predictions for data with only numerical
values. The pipeline focuses on three aspects, missing feature imputation, passing targets to the
learning, and formatting the output predictions.

An example of a pipeline that can generate classification predictions for problems with only

numerical values can be found in Figure 2.1 and the JSON representation can be found in Appendix

A. This pipeline does not follow the conventional sequence as other frameworks but instead applies

different operations for different input columns. The most upper branch allows keeping track of the

13

sample indexes because some other problem types can vary. The middle branch keeps track of the

targets later passed to the ML learner. Finally, the bottom branch performs profiling to determine

the data types of the features (since everything is considered as strings) to later apply an imputation

method and finally use the transformed features to be used by the ML to generate predictions.

2.2.3 Reference Runtime

Machine learning pipelines represent the workflow used to solve some tasks. The same pipeline

can be executed in different ways, leading to different results. For this reason, we propose a

deterministic reference runtime that executes the pipeline with given input and produces predictions

in the same way. The reference runtime focuses on two execution semantics, fit and produce.

In Figure 2.3 we elaborate in more details such semantics. For the fit phase, the runtime uses

as parameters a pipeline and a set of inputs, then iterates overall steps and calls the methods

FitPrimitive primitive if the step is a primitive step or fit; after this calls, the runtime store the current

state of the executed primitive or pipeline into the state. Later on, the produce method is called to

generate more data stored in the environment that would be used later to propagate to the following

states. The produce semantic follows the same flow as the fit by iteration over all the pipeline steps,

calling the produce methods, and storing the values on the environment. It is important to notice

that we can iterate over the pipeline steps in order since the pipeline language defined does not

allow to put steps that do not have specified inputs before they are generated.

2.3 Towards Better Evaluation of AutoML Systems

AutoML systems should be evaluated thoroughly as machine learning algorithms. We identified

critical AutoML evaluation best practices, including 1) separating datasets used for system devel-

opment from those used for evaluation, 2) using the same set of ML building blocks (primitives)

systems use, and 3) standardizing a common ML program description language (pipeline language).

Evaluating machine learning algorithms relies on reporting the score on the test data, which is

different from the training set used to build the algorithm’s internal state. When ML algorithms

are evaluated, a common practice is to report its score on the test data, different from the training

14

1 Function FitPipeline(pipeline, inputs)
2 env← inputs
3 state← ∅
4 for step ∈ pipeline do
5 if step ∈ PrimitivesStep then
6 state← state + FitPrimitive(step, env)
7 env← env + ProducePrimitive(state, step, env)
8 else
9 state← state + FitPipeline(step, env)

10 env← env + ProducePipeline(state, step, env)

11 return env, state

1 Function ProducePipeline(pipeline, state, inputs)
2 env← inputs
3 for step ∈ pipeline do
4 if step ∈ PrimitivesStep then
5 env← env + ProducePrimitive(state, step, env)
6 else
7 env← env + ProducePipeline(state, step, env)

8 return env

Figure 2.3: Pseudo-code describing execution semantics of the reference runtime. The fit semantic
in which the runtime iterates over all the pipeline steps and passes the data around to fit the sub-
pipelines or primitives. The produce semantic in which the runtime passes the data through all the
pipeline steps to produce new values forwarded to the next steps.

data used to build the algorithm’s internal state. Similarly, AutoML system evaluators should split

data, which for AutoML systems is a dataset of datasets. Any dataset used for system evaluation

should not have already been used for system development and fine-tuning. This approach prevents

AutoML systems, and also it can help demonstrate that systems can automatically generate solutions

for unseen datasets. Ideally, evaluations would use k-fold cross-validation over datasets, but this

is not always possible because it can be computationally too expensive to build AutoML systems

multiple times, and not all AutoML systems can be trained. As an alternative, evaluators can use

blind datasets not known to authors of AutoML systems in advance.

15

Using a fixed collection of ML building blocks for AutoML systems allows researchers to test

scientific hypotheses about system designs, such as comparing strategies for exploring the ML

program search space. When two systems search for ML programs using different ML building

blocks, differences in system scores cannot be attributed to differences in search strategies alone. A

system may have exclusive access to an algorithm that performs better on the evaluation datasets. If

the other system were to have access to that same algorithm, it could potentially create that same

(better) ML program, perhaps even sooner.

ML programs produced by systems should be described in a standardized language. The

standardization of a language ensures that systems generate ML programs that contain only the ML

building blocks permitted by the evaluators, without extra glue code that could leak into final ML

programs. The use of a standard language promotes reproducibility. It allows evaluations where

AutoML systems produce only ML programs, not predictions, so those programs can be trained and

scored outside of systems, assuring equal access to ML building blocks and other resources.

In order to have a more objective evaluation of AutoML systems, we decided to split the

valuation into three stages (Figure 2.4) Offline training, search, and scoring.

In the first stage, the offline training, a set of datasets is given to the performers. These datasets

can be used to either design an AutoML system around them, use them for training and AutoML

system, or else. The dataset set should contain at least an example of a task that will be asked on the

search; for example, if an object detection dataset is not provided during training, it should not be

used for searching. The second part of this component consists of the AutoML system. The system

should use as inputs a dataset and a problem description and should output any number of ML

pipelines. As previously mentioned, AutoML systems should be using the same building blocks,

but for evaluation, it does not matter if they are using them internally, and the only part where they

come in handy is for describing the ML pipelines. AutoML systems are allowed to use different

frameworks, techniques, or optimizations to do the search. They can use other primitives that are not

within the D3M ecosystem but have to generate pipelines that the ecosystem can run. For example,

it is known that some D3M wrapped primitives from the Sklearn libraries are sometimes slower

16

Offline Train

AutoML
System

Train
Meta-Dataset

Search

Trained
AutoML
System

Test
Meta-Dataset

Score

ML Pipelines

Ground
Truth

AutoML
Performance

Figure 2.4: Evaluation Framework for AutoML Systems. The framework is divided into three
stages, offline training, search and score. During the offline training, some data is available that can
be used as a reference to train or create AutoML systems. On the search, the AutoML system must
generate machine learning pipelines within some budget such as time, memory, etc. In the scoring
face, the pipelines generated by the systems are independently trained and evaluated so AutoML
systems can be compared based on their results.

than the pure Sklearn version due to the handling of metadata, so if a system is designed with this

in mind, they could potentially get a speed up to internally evaluate candidate pipelines, and they

should be able to represent them on the Pipeline language since there are mirror components.

The second stage, searching, is similar to the first stage in the sense that a set of datasets is given

to generate ML pipelines with the already trained AutoML systems. The test dataset set could be a

blind set from the training datasets or a completely unseen dataset, as long as the datasets contain

the same datatypes used on the training set and the same tasks. Then the trained AutoML systems

are going to be iterating over all test datasets to generate ML pipelines. For this searching process,

the evaluator needs to be providing the AutoML systems with information regarding the amount

of time to do the search, the computation resources such as the number of CPUs, GPUs, memory

RAM, storage space allowed for each problem, the target metric to optimize, etc. The same set of

parameters and machines needs to be used to provide a more fair evaluation. The AutoML systems,

in this stage, are allowed to use whatever techniques and optimization, but they do not have access to

17

anything else just to the current dataset that is searching pipelines for; this is to reduce the different

possible variations and advantages that a system could have. For example, a system could potentially

have access to the internet to search for similar datasets to do data augmentation; However, this is a

valid approach; this provides an overstanding advantage for such a system. Similar approaches are

valid as long as the system is self-contained,i.e., the system has a local database where it can search

for similar datasets.

Reference Runtime

Train
Dataset

Problem
Description

Fitted Pipeline

Pipeline

PredictionTest Data

Figure 2.5: Reference Runtime as an evaluation tool. The reference runtime facilitates pipelines
evaluation by fitting them and producing predictions. The reference runtime generates a fitted
pipeline that can later be used with the test data and produce predictions to be later evaluated. To
achieve this, the reference runtime requires information about the pipeline that will be used, a set of
training data, and the problem description that contains information regarding the target column.

18

The final stage, scoring, focuses on gathering all the ML pipelines generated by the AutoML

systems and evaluating them according to the metric of interest. In Figure 2.5 we show all the

components needed to evaluate a pipeline. First, we need the ML Pipeline generated by the AutoML

system; then, we use the training data provided during the search process and a problem description.

The problem description, as its name states, is a collection of relevant information for the AutoML

system that contains the task type, task subtype, metric of interest, and the target column identifier

and instructions on how to evaluate the pipelines, such as K-fold cross-validation, train/test split,

etc. Still, for our purpose, we focus on already split data. All of this information is passed to the

reference runtime, and the ML pipeline is fitted with the input data, generating a fitted pipeline.

Later on, the fitted pipeline is used to use the test data to generate predictions that are evaluated

using the Groud Truth. After getting the scores of the pipelines, the evaluator could use different

metrics to determine which AutoML system is better using different criteria, such as focusing only

on single tasks, or which AutoML system generates better scoring pipelines, or just using the best

pipeline as a reference point.

2.4 Experiments

The proposed framework was designed to support evaluations based on the best practices. As an

example, eight AutoML systems have used our framework. An impartial third party organization

(Data Machines) evaluated them using a suite of 106 available datasets and 62 blind datasets with

AutoML systems with identical computing resources allocated. The datasets were prepared by

Another 3rd party organization (MIT Lincoln Laboratory) and created their corresponding expert-

made baseline solutions. The datasets represent 15 different task types. Overall, those datasets

span a wide range of task types, including (i) classification, (ii) regression, (iii) semi-supervised

classification, (iv) time-series forecasting, (v) graph matching, (vi) link prediction, (vii) collaborative

filtering, (viii) community detection, (ix) object detection and (x) vertex classification. List of raw

data types present include (i) tabular data, (ii) text, (iii) time-series, (iv) graphs, (v) images, (vi)

audio, (vii) video. Table 2.3 shows a subset of known datasets.

19

Dataset Task type Metric

CIFAR Image classification Accuracy
Geolife Classification Accuracy
Mice protein Classification F1
Wikiqa Text classification F1
ElectricDevices Time-series classification F1
Arrowhead Time-series classification F1
Stock data Time-series forecasting MAE
Monthly sunspots Time-series forecasting MAE
TERRA canopy height Time-series forecasting MAE
Facebook Graph matching Accuracy
Retail sales Regression RMSE
Hand geometry Image regression MSE
Amazon Community detection NMI
Jester Collaborative filtering MAE
Net nomination Vertex classification Accuracy

Table 2.3: A subset of known datasets, their task type, and metric used. Achieved scores are not
shown because scores on known datasets can be overfitted.

During evaluation or execution of ML pipelines via the reference runtime, the runtime can

generate a pipeline run. A pipeline run consists of a series of data collection that tracks the execution

of the pipeline and its steps. The information contains information that links the problem description,

the dataset description, and the pipeline that is being executed. It also tracks information related to

the execution time and memory usage of the methods that the primitives call and the metadata of

the input data across the steps. All of this extra information is stored in JSON serializable format

that can later be stored to be analyzed.

During the evaluation, all pipelines and pipeline run documents made during evaluation by all

AutoML systems have been stored into the metalearning database as standardized documents for

168 datasets, 519 primitives, 160,999 pipelines, and 65,866 pipeline runs. Success rates are shown

in Table 2.4. For this experiment, we consider a success, such as an AutoML system generating a

runnable pipeline by the reference runtime capable of producing predictions. Non-tabular datasets,

while supported by our framework, presented a more significant challenge to evaluated systems,

leading to sparse results with only a few AutoML systems succeeding on a particular dataset.

20

AutoML System Known Datasets Blind Datasets

CMU 93% 95%
ISI 92% 87%
MIT 92% 77%
NYU 91% 76%
SRI 76% 77%
TAMU 93% 74%
UCB 92% 87%
Uncharted 73% 55%

Table 2.4: Percentage of the 106 known datasets and 62 blind datasets for which each evaluated
AutoML system successfully created a functional pipeline that can produce predictions using the
reference runtime. Results show that the systems search method directly affects the performance
since they all use the same building blocks.

Figure 2.6 shows the results on tabular datasets and on some non-tabular datasets. Each dot on

sub-figures of Figure 2.6 show how well system’s best solution performed in comparison with the

expert-made baseline solution. Because we are aggregating multiple datasets together, we show

only relative distance from the baseline of each of those datasets. Higher is always better, for

all metrics. Note as well that dots are shown only for datasets a system succeeded in producing

pipelines for. We can observe the worse overall performance of AutoML systems on blind datasets.

Not easily visible in Figure 2.6 AutoML systems have produced much less successful pipelines on

blind datasets as well. Success rates are shown in Table 2.4. Non-tabular datasets, while supported

by our framework, presented a greater challenge to evaluated systems, leading to sparse results with

only few AutoML systems succeeding on a particular dataset.

21

cmu isi mit nyu sri tamu ucb uncharted

−0.4

−0.2

0.0

0.2

0.4

M
et

ri
c(

s)
f1

Score above baseline

(a) Known tabular binary classification

cmu isi mit nyu sri tamu ucb uncharted

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

M
et

ri
c(

s)
:f

1
m

ac
ro

,f
1,

ac
cu

ra
cy

Score above baseline

(b) Blind tabular binary classification

cmu isi mit nyu sri tamu ucb uncharted
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

M
et

ri
c(

s)
f1

m
ac

ro
,a

cc
ur

ac
y

Score above baseline

(c) Known tabular multi-class classification

cmu isi mit nyu sri tamu ucb uncharted

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

M
et

ri
c(

s)
:f

1
m

ac
ro

,a
cc

ur
ac

y
Score above baseline

(d) Blind tabular multi-class classification

cmu isi mit nyu sri tamu ucb uncharted
−5

−4

−3

−2

−1

0

M
et

ri
c(

s)
R

M
SE

,M
SE

1e7 Score below baseline

(e) Known tabular regression

cmu isi mit nyu sri tamu ucb uncharted

−8

−6

−4

−2

0

2

4

M
et

ri
c(

s)
:M

SE
,R

M
SE

Score below baseline

(f) Blind tabular regression22

cmu isi mit nyu sri tamu ucb uncharted

−0.6

−0.4

−0.2

0.0

M
et

ri
c(

s)
ac

cu
ra

cy
,f

1
m

ac
ro

Score above baseline

(g) Known graph vertex classification

cmu isi mit nyu sri tamu ucb uncharted

−0.8

−0.6

−0.4

−0.2

0.0

M
et

ri
c(

s)
:a

cc
ur

ac
y

Score above baseline

(h) Blind graph vertex classification

cmu isi mit nyu sri tamu ucb uncharted

−0.4

−0.2

0.0

0.2

0.4

M
et

ri
c(

s)
f1

m
ac

ro
,f

1

Score above baseline

(i) Known tabular semi-supervised

cmu isi mit nyu sri tamu ucb uncharted

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

M
et

ri
c(

s)
:f

1,
f1

m
ac

ro

Score above baseline

(j) Blind tabular semi-supervised

Figure 2.6: Evaluation results on known and blind datasets, aggregated for select task types. Note
that some systems failed to produce any pipelines for some datasets, so individual plots may contain
fewer data points. Higher is always better.

23

2.5 Conclusions

In this work, we focus on the standardization and evaluation aspect of AutoML systems and

propose a general framework that enables a more fair comparison among systems. The proposed

standard framework provides a set of tools that alleviate the need for AutoML systems of more

information about the building blocks used. An advantage of using a standardized ML framework

across ML systems is that various tools are available. A proposed tool, the Pipeline Profiler [53]

visualizes and compares pipelines generated by different AutoML systems, which provides insight

into the behavior of various components. Marvin [54] is an index of all current and historic

primitives and provides a web interface to search for primitives by their metadata.TwoRavens

wrapper [55] wraps AutoML systems to expose the same control interface to make the execution of

AutoML systems uniform. The metalearning database service[56] is a publicly accessible python

Flask-based app backed by an Elasticsearch database that enables users and systems to search and

upload data. Currently, the metalearning database contains about 202 datasets, 519 primitives used

in the most recent evaluation, 160999 pipelines, and 65866 pipeline run documents. By conducting

experiments on various real-world recommendation tasks, we empirically validate the effectiveness

and efficiency of our proposed framework.

24

3. Axolotl System: Modular Framework for development and testing AutoML solutions

In this chapter, we propose a framework to enable data scientists to prototype different AutoML

systems rapidly without spending too much time learning the base system. To achieve this, we

designed the framework based on the D3M ecosystem (Chapter 2) and created tools that simplify

users’ interaction with the complex ecosystem.

3.1 Introduction

AutoML solutions aim to solve a wide range of problems, from tabular classification to more

complex problems such as graph matching or video recognition. Although AutoML systems

provide new users simple interfaces for running out-of-the-box, the systems lack adaptability and

extensibility for new problems or approaches. Most of the systems are very complex pieces of code

that do not allow users to customize, such as creating different search methods easily.

For example, AutoSklearn [5] one of the most popular AutoML frameworks, it lacks extensibility.

If a user would like only to use the framework to search for the pre-processing pipeline, make a

model selection, and avoid hyperparameter tuning, they would need to re-wrap all the primitive

search space since their code creates the search space considering all hyper-parameters since the

beginning. The engineering effort to achieve such an easy task (search without hyperparameter

tunning) depends on the user’s familiarity with the whole framework. Another example of the

over-engineering aspects of designing an AutoML system is the re-usability. AutoML solutions

such as PMF-AutoML [13] and OBOE [31] share the same pipeline representation and search space,

as well as the one defined on AutoSklearn. In essence, the framework they use is almost identical,

and the search method is different, but they re-implemented all over again in their work.

Developing AutoML systems from scratch is challenging since the developers must consider

many aspects, such as defining a pipeline representation, their execution, the search method, and

other things. In chapter 2, we presented a work for standardize AutoML. Although all of the code

is available for system developers to use, it has a steep learning curve. The framework provides

25

many benefits at a high engineering cost. In order to build a better AutoMl system, it is necessary to

overcome the next challenges: (1) Use of D3M standards and reduce the engineering overhead; (2)

Ease of applicability: competitive performance and ease to use for new users; (3) Extensibility: a

modular system that allows easy customization of every system’s components.

3.2 Framework

To cope with the challenges, we propose the AutoML framework Axolotl 1 which aims to

provide tools for easily creating specific purpose AutoML solutions, as well as provide a competitive

performance to other AutoML solutions. Axolotl framework (Figure 3.1) is divided into multiple

components; the two main components are the search algorithms and the backend. The search

algorithm is designed to implement their different search methods and interact with all the other

system parts with minimum effort. Search algorithms, in general, try to generate pipelines and then

evaluate their performance with a metric to use these results later and improve their output through

iterations; this can be seen as evaluating more pipelines would increase the performance. For this

reason, we decided to abstract the backend, which is in charge of executing and evaluating pipelines

generated by the user or by search algorithms. We provide two different backends, a simple one

that uses the reference runtime and runs one pipeline at a time and a backend implementation that

uses Ray [57] to run multiple pipelines in parallel. Base classes for both components can be found

in the system; this allows users of various levels of knowledge to improve the system in different

ways, such as creating better search algorithms tied to their specific needs or improving the pipeline

executions. In the following sections, we will discuss the aspects of each component’s design.

1https://gitlab.com/axolotl1/axolotl

26

https://gitlab.com/axolotl1/axolotl

TA2-3
Interface

Backend

Runner Base
Multiprocessing

Simple (D3M Runtime)

System API

Use Backend

Search

Data Converter

D3M API
Primitives

Problem Generation

Custom Primitives
User

D3M Wrapper

Evaluate
pipelines Results

Figure 3.1: AutoML System Axolotl Architecture: System API: It is divided into two main compo-
nents, the D3M wrapper, which aims to simplify user interactions with the AutoML framework,
and the Search, which is in charge of generating pipelines to be produced by the system. Backend:
Deals with running and evaluating pipelines generated by the Search.

3.2.1 Simplification of D3M Ecosystem

The D3M ecosystem (Chapter 2) provides the tools to create AutoML systems that can be

compared among each other in a more efficient fashion. Unfortunately, the API D3M-Core Package

2) and the Collection of D3M ML Primitives 3) are very complicated pieces of software that has a

very steep learning curve for on-coming users. Although the D3M ecosystem has a large collection

of documentation and examples, it lacks user-friendliness since it was designed to facilitate machines

using it. In this work, we focus on simplifying diverse aspects of D3M: unwrapping d3m primitive

to a simplified interface, generation of D3M pipelines, and importing datasets and tasks.

2https://gitlab.com/datadrivendiscovery/d3m
3https://gitlab.com/datadrivendiscovery/primitives

27

https://gitlab.com/datadrivendiscovery/d3m
https://gitlab.com/datadrivendiscovery/primitives

Simplification of Primitives. Machine Learning primitives have been standardized in a human-

readable form; for example, the classification primitive RandomForest by Sklearn contains an

explanation for what each hyperparameter represents on the documentation, and to use it, a user

need to follow the steps of instantiating the primitive by stating the desired hyperparameter on the

constructor, then fit it and finally generate predictions by calling the method to predict (Figure 3.2).

1 from sklearn.ensemble import RandomForestClassifier
2

3 # Create a random forest instance.
4 primitive_instance = RandomForestClassifier(n_estimators=10)
5

6 # Train the ML primitive.
7 primitive_instance.fit(attributes, targets)
8

9 # Generate predictions.
10 predictions = primitive_instance.predict(attributes)

Figure 3.2: Example of a Sklearn Primitive usage. The primitive can directly be used from the
import, then assign the hyperparameters on the constructor and use the interface fit to train the ML
primitive and use it with the predict interface to generate predictions.

Later on, the D3M standard was written, which provided more machine-readable information

that defined the hyperparameter space and added more standard functions definitions that allowed

primitive designers to create new functions that AutoML systems can automatically use without

further modifications. The hyperparameter space is defined by implementing the hyperparameter

class that contains the possible and default values for each hyperparameter; this allows AutoML

systems to query this information and make decisions to tune them during their search. This

process facilitates the use of primitive automated systems. Still, it makes it difficult for humans

to use; for example, in Figure 3.3 we have all the operations needed to have similar results as the

28

Sklearn interface. First, the primitive class must be retrieved through the D3M index that indexes

all the d3m compatible primitives. The hyperparameter class needs to be obtained by accessing the

metadata of the primitive, then getting all the default values of the hyperparameters and overriding

the one of interest. After all this, the primitive class can be instantiated by passing the modified

hyperparameter instance to the constructor. The training data needs to be set on the primitive

instance via the set_training_data method to be used later to train the primitive by using the fit

method and later generate predictions by calling the produce method. All of this process requires

some understanding of the D3M ecosystem, in which, in most cases, it should not be necessary to

expose it to the end-users. The end-users are more likely to fit and train an ML primitive to check

how the data changes, and by using this API, things become more complicated since they need to

know how primitives and metadata are built.

We designed a primitive simplification mechanism to tackle this challenge, allowing users to

experience the primitives as simple as a higher API. This primitive simplification is achieved by

exploiting the Python API that allows dynamic object creation. Users mostly create Python classes

by statically describing their variables and methods and rarely adding more during execution. These

classes follow common programming patterns that state that all methods and variables should be

known before execution so everything can be tacked during debugging. One of the most common

instances where dynamic classes can be seen on Python is when users manually attach a new variable

to the instance; this leads to missing documentation. They can be problematic later since Python is

not a strong typing language, and users or other methods can easily modify the variable a lose track

of its content. By taking into consideration these issues, we decided to create dynamic classes (not

regular classes with attached methods) that are built during runtime and are fully documented.

The approach of creating dynamic classes on the fly allows us to generate simple primitives for

all primitives on the D3M ecosystem without having to insert methods or variables manually. To

achieve this, we created a base class that invokes the automatic insertion of methods when called

and returning a new class. First, the class generators create a new class using the BaseEasyPrimitive

class that later on inserts all the methods of interest, such as set_training_data fit and the different

29

1 from d3m.index import get_primitive
2

3 # Retrieve D3M primitive class.
4 RandomForestPrimitive = get_primitive(
5 'd3m.primitives.classification.random_forest.Common'
6)
7

8 # Hyperparameter handling.
9 hyperparams_class =

RandomForestPrimitive.metadata.get_hyperparams()↪→

10 default_hyperparameters = hyperparams_class.defaults()
11 new_hyperparameters =

default_hyperparameters.replace({'n_estimators': 10})↪→

12

13 # Create a random forest instance.
14 primitive_instance =

RandomForestPrimitive(hyperparams=new_hyperparameters)↪→

15

16 # set_training_data and fit are the equivalent to fit on sklearn.
17 primitive.set_training_data(inputs=attributes, outputs=targets)
18 primitive.fit()
19

20 # Generate prediciton.
21 predictions = primitive.produce(inputs=attributes).value

Figure 3.3: Example of a D3M Random Forest Primitive usage. The primitive needs to be retrieved
from the D3M index, and then the Hyperparameter class needs to be obtained to get the default
values. Later the primitive can be instantiated via the constructor by passing the hyperparameters.
The primitive instance can later be trained by setting the input data via set_training_data and later
fit. Finally, the primitive can generate predictions via the produce method.

produce. The base class’s constructor is in charge of wrapping and handling all the interactions with

the hyperparameters that allow users to specify the ones of interest and the function parameters.

The methods to expose such as fit and produce are later introduced by creating special function

handlers. These handlers are created via code in string format that is updated according to the

different methods to expose and later converted to python executable code. This approach allows

the creation of templates for the standard D3M methods and leaves room for users to add their

custom methods inside the dynamic class. The metadata is inspected at every step of creating the

new simple primitive. The information regarding the hyperparameters, parameters, and methods

30

is retrieved to dynamically create documentation that can be accessed via IDEs or python help

commands. Automatically generating the documentation allows users to inspect the documentation

quickly to understand the primitive better.

An example of using the simple primitive wrapper can be found in Figure 3.4. For this example,

the user can directly generate the primitive by using the same python path used on D3M. After the

primitive is materialized, it can be used as the Sklearn example by creating an instance, stating the

hyperparameters on the constructor, training it, and later generating predictions. This approach

shows that the D3M primitives interface can be simplified to alleviate the overhead of classes and

provide a friendly interface to the end-user.

1 from axolotl.simple.d3m_primitive_unwrapper import
SimplifyPrimitive↪→

2

3 # Retrieve D3M primitive class and create a dynamic unwrapped
class.↪→

4 RandomForestPrimitive = SimplifyPrimitive.from_primitive_path(
5 'd3m.primitives.classification.random_forest.Common'
6)
7

8 # Create a random forest instance and pass new hyperparameters.
9 primitive_instance = RandomForestPrimitive(n_estimators=10)

10 primitive_instance.fit(inputs=attributes, outputs=targets)
11

12 # Generate prediciton.
13 primitive_instance.produce(inputs=attributes)

Figure 3.4: Example of simplified D3M Random Forest Primitive usage. A dynamic class is built
during execution by stating the python path of the primitive to use as base. Then the dynamic class
can be use as a regular ML Primitive by stating the parameters and hyperparameters directly on the
methods.

31

Simplification of Pipelines Constructions The D3M Pipeline language allows flexibility with

the Direct Acyclic Graph approach to cover many pipeline configurations. To achieve this, it is

necessary to create the pipeline one step at a time, adding the nodes of the pipeline (primitive or sub-

pipelines) and then defining the edges (inputs and outputs). Also, since the pipelines are descriptions

of Machine Learning programs, it is crucial to define the parameters and hyperparameters for each

step. Figure 3.6 shows an example of how to add a primitive step to a Pipeline using the D3M

API. First, an empty pipeline needs to be created and add an input for the original data. Then, it is

necessary to retrieve the primitive class that is going to be added and create a PrimitiveStep instance

by using the primitive class and a resolver (use to resolve the primitive path if needed). For this

example, the primitive DatasetToDataframe helps to transform a D3M dataset to a D3M Dataframe;

the primitive only takes one input that is the original dataset. After creating the primitive step, the

inputs of the primitives are added (edges) by specifying the parameter’s name, the argument type,

and the data reference; if the primitive takes more parameters, this step needs to be repeated as

many times as possible parameters. Adding hyperparameters for the primitive step follows the same

logic as adding parameters; on the example, a hyperparameter named dataframe_resource with

the value None is added to the primitive step. A thing to notice is that ArgumentType has different

values according to data type; for example, during adding arguments most of the time, it could be

CONTAINER since it’s referencing to a data container, while on the hyperparameters is more likely

to refer to VALUE.

Regular primitives can only be used under a single semantic: apply the transformation or

operation to the whole input data. D3M Primitives have different execution semantics that adds

more complexity to the users. The most common execution semantics on D3M are apply to the

whole data, use columns by index, or use semantic types.

• Use all input data semantic follows the same logic as regular ML primitives, where the

operation defined by the primitive is applied to the whole input data.

• Use columns by index semantic allows a more granular control in how the operations are

applied to specific columns that are defined on the control parameters.

32

1 from d3m.index import get_primitive
2 from d3m.metadata.base import ArgumentType
3 from d3m.metadata.pipeline import Pipeline, PrimitiveStep,

Resolver↪→

4

5 # Create a new Pipeline and add inputs
6 pipeline = Pipeline()
7 pipeline.add_input('input_data')
8 # Retrieve D3M primitive class.
9 DatasetToDataframe = get_primitive(

10 'd3m.primitives.data_transformation' +\
11 '.dataset_to_dataframe.Common'
12)
13 # Create a primitive step.
14 primitive_step = PrimitiveStep(
15 primitive=DatasetToDataframe, resolver=Resolver()
16)
17 # Add inputs to the primitive step.
18 primitive_step.add_argument(
19 name=inputs,
20 argument_type=ArgumentType.CONTAINER,
21 data_reference='inputs.0'
22)
23 # Add hyperparameters one by one.
24 primitive_step.add_hyperparameter(
25 name=dataframe_resource,
26 argument_type=ArgumentType.VALUE,
27 data=None
28)
29 # Add method that is going to be use to generate the output.
30 primitive_step.add_output('produce')
31 # Add primitive step to the pipeline.
32 pipeline.add_step(primitive_step)

Figure 3.5: Example of adding a Primitive to a D3M Pipeline. The primitive needs to be retrieved
from the index to be later used to instantiate a PrimitiveStep. After instantiating the primitive step,
the arguments and hyperparameters are added one by one, and later an output method is added
referencing the desired produce method. Finally, the primitive step is added to the pipeline.

• Use semantic types semantic similar to use columns by index, enables a higher level where

the columns to apply can be queried by semantic types defined on D3M API, such as applying

the operation to specific values or choosing to apply it to all the features.

33

1 from axolotl.simple.primitives import PrimitiveHandler
2

3 # Create a new Pipeline and add inputs
4 pipeline = Pipeline()
5 pipeline.add_input('input_data')
6

7 # Create a primitive handler instance
8 primitive_handler = PrimitiveHandler(
9 primitive='d3m.primitives.data_transformation' +\

10 '.dataset_to_dataframe.Common',
11 hyperparams={'dataframe_resource': None},
12 resolver=Resolver()
13)
14

15 # Add primitive to pipeline
16 primitive_handler.add_produce(
17 [], pipeline, arguments_references={'inputs': 'inputs.0'}
18)

Figure 3.6: Example of adding a Primitive to a D3M Pipeline via Axolotl Primitive Handler
simplification. A primitive handler is created by defining the desired primitive and hyperparameters
to be later added to the pipeline by calling the add_produce method and stating the arguments
references.

Although there are multiple semantic executions on D3M Primitives, it is not standardized

across all of them, making it difficult for new users to determine whether or not the primitives can

handle them. For this reason, we designed our primitive handler for pipelines, considering the

flexibility the different semantics provide. We develop a primitive handle that allows users to add

primitives by simplifying most unnecessary code calls and allowing them to specify any of the three

semantic executions even without the primitives implementing them.

To achieve this, we mapped all the different semantic executions to use columns by index. We

are allowed to do this since the use of semantic types operation relied on iterative query all the

features’ metadata and check if they share the semantic type of interest. Instead, we do all this

process on the handler and split the input data into columns of interest and columns that should not

change. Then, we apply the desired primitive to only columns of interest and concatenate the results

with the columns that did not change. While doing this process, the necessary primitive steps to

34

split and concatenate the columns are automatically added to the pipeline so the user does not have

to handle it.

Besides automatically supporting the missing semantic executions, we also simplified the

interface to add primitives to pipelines. In Figure 3.6 an example of adding a primitive with its

parameters and hyperparameters can be found. We simplify different aspects of the interface by

removing redundant calls such as add_argument and add_hyperparameter, so it can support defining

all of the information at once. We also removed the overhead of the user to determine the data type

of the parameters. In general, with the simplification, the user follows the steps of creating the

pipeline, then creates an instance of the Primitive handler that takes as parameters, the primitive

that will be added, and the hyperparameters. Later, the method add_produce needs to be called by

specifying the pipeline where the primitives will be added and the inputs references. The previous

method also provides a way for the user to directly execute the primitive with extended semantics

by adding the data instead of the references.

3.2.2 Pipelines Evaluation via Backend

The backend is in charge of running different queries related to D3M pipelines search, such

as running pipelines, exposing their intermediate results, and evaluating them. It is one of the

most important components since the heavy computational part relies on it. We decided to abstract

the heaviest computational part as an independent component since different approaches could be

implemented, such as caching all the results to avoid computing again later with new pipelines or

even one that allows lazy evaluation of pipelines. A base class was created based on this abstraction

since it is necessary to cover few specific requirements to be compatible with the other parts of

the system. Such base class includes things defined on the reference runtime, such as training,

producing and evaluating pipelines, or exposing intermediate results. An important abstraction

detail is that every call to the backend should be implemented in two different manners, one that

does the operations on single pipelines and the other to operate on many pipelines; the rationale

behind this is that in many cases running multiple pipelines at the same time some optimization

could be applied. The system provides two implementations of the backend. The first one is a

35

wrapper around the reference runtime in which most of the functionality is exposed, and the second

one is an extension of the first one. However, it uses Ray to run pipelines in parallel, allowing

scaling pipeline search algorithms running in clusters or small servers.

The backend is designed around the idea that the pipeline search component would generate

a set of pipelines that are sent to the backend to be evaluated according to the criteria defined on

the search. To generalize the approach, we designed a base class called RunnerBase that abstracts

all the necessary functionality for backends to be compatible with other parts of the framework.

Overall, the base class defines a few abstract methods to be implemented; these methods are defined

as requests. Request methods are designed with an asynchronous paradigm, so different methods

of parallelizations can be supported. We support vertical and horizontal parallelization among the

different ways to speed up the evaluation of pipelines. Vertical parallelization in our context means

that pipelines are offered all the available resources so every primitive (if supported) can be trained

and produce predictions on parallel. In comparison, horizontal parallelization refers to splitting the

computational resources so multiple pipelines can be evaluated simultaneously.

Reference Runtime Backend. The first implementation of the backend purely uses the D3M

Reference Runtime. This implementation allows pipelines to be fitted, generate predictions, and

evaluate them. We achieve this by extending the methods defined on the reference runtime and

automatically generating the required extra information. The reference runtime backend allows

the vertical parallelization of pipelines by automatically modifying the parameters of the primitive

if they support it. In Figure 3.7 the flow diagram is presented. The search algorithm generates a

set of pipelines to evaluate and provides the evaluation definition for the pipelines. The evaluation

definition contains information regarding how to evaluate the pipelines, such as splitting the data,

doing cross-fold validation, and the metrics to use to evaluate the performance. After the search

component gathers the required information, the information is forwarded to the reference runtime

to evaluate the pipelines via the interface defined on the base class. Then, access the dataset defined

on how to evaluate the pipelines, and the runtime evaluates one pipeline at a time; if multiple

pipelines are required to be evaluated, the reference runtime will iterate all over them. After this,

36

the results are returned to the search algorithm, and the process can be repeated.

Dataset

Reference
Runtime

Search
Algorithm

Figure 3.7: Reference Runtime Backend. In order to interact the search with the reference runtime,
the search generates several pipeline candidates and defines the evaluation metrics and the dataset
to use. Then the Reference Runtime evaluates one pipeline at a time and forwards the results back
to the search.

Parallel Backend with Reference Runtime and Ray. The parallel implementation of the backend

allows evaluating multiple pipelines simultaneously by dividing the computer resources among

multiple pipeline runners. In Figure 3.8 the flow diagram is presented. This approach allocates

all information needed for the runners on shared storage. The shared storage contains a queue of

pipelines to be evaluated that the search algorithm populates. Then the data used to evaluate the

pipelines is shared across the runtime workers by hashing it to be identified easily. After all the data

is accessible to the workers, the runtime workers take a pipeline from the shared queue and evaluate

the pipeline. Later, they return the results to the shared storage, and the search algorithm can read

37

the results so later can allocate more pipelines to be evaluated. There are several challenges when

evaluating pipelines on parallel related to the data size; for this reason, we developed a data worker

in charge of handling data across the runtime workers instead of workers directly reading it.

Shared Storage

Search
Algorithm

Dataset

Pipelines to
Evaluate
Queue

Pipelines
Evaluations

Results

Runtime
Worker

Runtime
Worker

Runtime
Worker

Runtime
Worker

Figure 3.8: Parallel Backend with Reference Runtime and Ray. The parallel backend using Ray
follows the same interface as the reference runtime with the difference that the parallelization is
horizontal, allowing multiple pipelines to be evaluated simultaneously. Several components are
added to the shared storage, such as the dataset, a queue containing the pipelines to evaluate, and a
queue containing the evaluation results. Then, multiple runtime workers access the shared storage,
evaluate a pipeline on the queue, and return the evaluation results. The process is repeated until no
more pipelines are allocated to the evaluation queue.

38

3.2.3 Search Algorithms

Axolotl provides a simple API for developers to create and test custom search algorithms without

learning or interacting with other parts of the system. We created the PipelineSearchBase class

that abstracts all the interaction with the other components of the system. To create a new search

algorithm, the user needs to inherit from the base class and implement a single abstract method

called _search. The method only takes as a parameter the time left for the search. The main search

method will iteratively call the _search method and provide the remaining time for the search.

The arguments for the search algorithms contain a problem description with information regard-

ing the task to solve, the backend to be used, and possibly a ranking function to rank evaluated

pipelines. Later, during the search, it is necessary to specify the dataset to use to evaluate the

pipelines and the time constraints. The use case of specifying the dataset during the search and not

during the construction is that users can potentially modify the data, such as reducing or increasing

the number of observations. An example of a simple search algorithm that uses previously generated

pipelines can be found in Appendix B.

The search component on the systems provides two base classes, the PipelineSearchBase that it

was previously described and the TunnerBase. Also, Axolotl provides multiple search algorithms

(Figure 3.9) that allow users to create new ones by reusing existent components. We designed

four search methods: Random Search, Bayesian Search, Dummy Search, and Data-Driven Search.

Random and Bayesian Search focuses on hyperparameter tuning, while Dummy and Data-Driven

search focuses on pipeline generation.

Random Hyperparameter Search. This search method focuses on performing hyperparameter

tuning for a given set of pipelines. The method takes a set of pipelines as input and later generates

the hyperparameter space by querying the information from the metadata of every primitive on the

pipeline. Then, it proceeds to perform random sampling on the hyperparameter space and generate

new pipelines that copy the original ones but update the hyperparameters. These pipelines are later

evaluated, and the sampled configurations are removed from the space to avoid repeating the same

configurations.

39

Search Algorithms

Random Search

Data Driven Search

Bayesian Search

Search Base

TunnerBase

Predefined
Pipelines

Hyperparam
Search
Space

Dummy Search

Figure 3.9: Axolotl’s search: Search algorithms must implement the required methods from the
Search Base class to be compatible with the other parts of the system. Tunner base class helps to
define classes for hyperparameter tuning.

Bayesian Hyperparameter Search. This search method uses Bayesian optimization tuning the hy-

perparameters of a given set of pipelines. The method uses an Oracle that extends the KerasTuner[58]

by mapping the D3M hyperparameter space. The oracle is in charge of transforming categorical

hyperparameters to numerical by using One Hot Encoding. After the hyperparameter space is

transformed into the continuous space, the oracle generates new hyperparameter configurations that

are later evaluated. The results are used to train a Gaussian Process that is later used to sample new

configurations. The method uses the input pipelines as part of the search space, so the search will

return pipelines whose performance is better or equal to the original ones.

Dummy Search. This search provides valid pipelines for classification and regression problems

for most tabular data with numerical and categorical values. The search uses a small collection

of generic pipelines that were collected from previous AutoML systems evaluations that later are

queried according to the task to solve and retrieve them. Then, the pipelines are evaluated, and

those with higher performance are selected.

Data-Driven Search. We propose a Data-Driven approach for a search algorithm that can be

easily modified and extend by using our API. The data-driven search’s general idea is to attempt

40

to transform the input data into a common numerical representation and then do model selection,

hyperparameter tuning, and pipeline selection. The search strategy is a combination of multiple

strategies: heuristics, brute force, and Bayesian optimization. A visual representation of the search

can be seen in Figure 3.10. The search strategy is divided into four steps: Data Prepossessing,

Feature Selection, Model Selection, and Hyperparameter Tuning.

• Data preprocessing. The Data-Driven search strength comes from the data preprocessing

search. Most AutoML systems have very limited available operations on the data before

passing it to an ML learner. Such systems mainly focus on transforming the categorical

data to numerical representation by performing some transformation like OneHotEncoding.

Later, the systems add steps to scale the data, such as MinMax value, standard value, and

maximum absolute value. The limitation is that it becomes challenging to automatically

handle other data types such as images, audio, graph data, etc. Our approach is to extend the

concept of PrimitiveHandler (Chapter 3.2.1) that allows users to add primitives to pipelines

easily. We extended the PrimitiveHandler base class to several classes that are considered

SemanticHandlers. SemanticHandlers, similar to PrimitiveHandlers tries to encapsulate

and simplify the interactions with D3M API. Such handlers have been created to contain

hand-made heuristics for data preprocessing to tackle different data types and can be directly

be applied to the data or automatically added the needed steps to the pipeline to transform the

data. The Semantic Handlers contains information related to what data type transforms, and

when applied to data that does not contain such type, they are ignored. The main goal is to

transform all the input data to a common numerical data frame representation.

An example of the implementation of a SemanticHandler can be found in Appendix C. The

handler is only applied to data with categorical semantic and is based on a heuristic that

considers the cardinality of the data. Since handlers only affect the columns with specific

semantics, there are some cases when the semantics of the data can change after applying it.

For example, if the data contains categorical values and we apply the Categorical semantic

handler, the output data will now contain numerical semantic.

41

Since semantics can change after handlers, we decided to create DataSemanticHandlers class.

This class aims to provide multiple ways to execute semantic handlers, such as vertical and

horizontal execution. The vertical execution refers to executing one semantic handler at a

time so that the following ones will use the output. This approach allows a nested execution

in the sense that if a handler transforms the data, the following will include that data. The

horizontal execution splits the data into different semantics and feeds specific semantics to

the handler so that the outputs can be concatenated later.

• Feature Selection. After the preprocessing pipeline is generated and the data has been

transformed to a standard numerical representation, the search attempts to run every feature

selection primitives on the library with a subset of the already transformed data. If it is

successful, a new set of pipelines contains the successful primitives. By running the feature

selection primitives on a data subset, we guarantee that we will be evaluating pipelines that

are most likely to produce a score.

• Model Selection. In this step, the pipelines are completed by adding a Machine learner

primitive. The machine learners’ primitives are queried from the D3M library by considering

the task and metric from the problem description. For example, the system will query

primitives with terms, binary, and multi-class classification if a task is only specified as

classification with accuracy metric. In some instances, problems are not well defined, such as

semi-supervised classification, so the system will try to map to the closest task that will be

classification. After a set of candidate machine learners primitives are retrieved, new pipelines

are created by doing all the combinations of preprocessing pipelines and machine learner

candidates. After all the pipelines to be evaluated are generated, the system will evaluate

them and rank them according to their performance scores.

42

• Hyperparameter Tuning. This final step is only triggered if there is time left for the search.

Hyperparameter optimization on this search is not essential and is only used to fine-tune the

best pipelines. The intuition behind this is that the default values of hyperparameters provide a

good reference of the overall performance of the pipeline, and the performance improvement

should not be far [59]. If hyperparameter tuning is triggered (if there is time left to evaluate

more pipelines), the system will select the top-k primitives based on performance and generate

more pipelines candidates by tuning their hyperparameters by using the Bayesian Search.

Pipelines with different hyperparameter configurations will be evaluated until there is no time

left.

3.3 Conclusions

The work we discussed in this chapter focuses on the design of the Axolotl AutoML system

that allows flexibility to different levels of users to do customization. The system tries to reduce

the overhead caused by the Standard D3M API for AutoML by providing tools to developers that

hide the complexity by using dynamic classes and handlers generated on Python. Axolotls AutoML

system also provides search algorithms and techniques capable of solving an extensive collection

of Machine Learning tasks such as univariate and multivariate regression, binary and multi-class

classification, vertex classification, community detection, and collaborative filtering. The system

can also handle a diverse collection of data types such as numerical, boolean, categorical, text,

time series, image, audio, and graph. By conducting experiments on various real-world datasets,

we empirically validate our proposed framework’s effectiveness and validate the stability of our

framework (see Chapter 2).

43

Feature Selection

Model Selection

Boilerplate

Data Featurization

Files

Text

Categorical

Dates

Data Preprocessing

Hyperparameter Tuning

Pipeline Search

Figure 3.10: Axolotl’s Data-Driven search algorithm consists of a mixture of different search
strategies focusing on the pipeline’s specific components. A heuristic that transforms the input
data to a common numerical representation is used for the Data Preprocessing step, dealing with
different data types such as files, text, dates, and categorical attributes. A brute force method is used
for the feature and model selection. Finally, Bayesian optimization is used for the Hyperparameter
tuning step.

44

4. Feature-wise Transformation Search for AutoML

AutoML systems methods mainly focus on model selection, ensemble models, and hyperpa-

rameter tuning leaving room for improvement on data preprocessing. In this chapter, we explore

increasing the performance of machine learning pipelines by exploiting preprocessing pipeline

search. We propose an algorithm that searches for feature-wise preprocessing pipelines instead

of a single pipeline for all the data. The algorithm uses feature context similarity to search and

propose pipelines to similar pipelines to similar features and reduce the search time. The algorithm’s

outcome is expected to be a set of preprocessing pipelines that boost the performance of a pipeline

with a specific machine learning learner.

4.1 Introduction

Designing and implementing an AutoML system is challenging since it has many moving parts.

The design focuses on the hypothesis to test, for example, a system that quickly evaluates more

pipelines to cover a more extensive search space to a system that evaluates a few configurations

thoroughly to get more accurate measurements to tune a prediction model. Despite differences in

AutoML systems, most of them focus only on tasks related to tabular data that contains numerical

and categorical values; this leads to systems following the same patterns when creating pipelines.

Most of the pipelines generated for AutoML systems follows the follow the following pattern

preprocessing data and machine learning learner. On the preprocessing steps, systems attempt to

transform the data to a numerical representation by applying data transformations. In most cases,

these transformations are limited to applying some encoding to non-numerical values, imputing

missing values, and normalizing them. Although the number of data transformation primitives is

limited, the complexity of generating preprocessing from scratch could easily explode due to the

number of possible combinations. To alleviate this problem, AutoML systems generally have a set

of already defined preprocessing pipelines to use. This approach leads to a good overall performance

since it relies on embedded human knowledge about how to tread different feature types.

45

Motivated by the current limitations on the preprocessing pipelines, we expected to improve

the performance of ML pipelines by generating more complex preprocessing pipelines structures.

Transforming the data based on data types might not necessarily be optimal for all of the cases.

For example, in Figure 4.1 we present a couple of pipelines that are solutions for Thyroid Disease

dataset [60] 1. The Thyroid Disease dataset contains integer, float, categorical and boolean features.

A common solution from an AutoML system will be similar to the pipeline Figure 4.1a in which the

system will apply One Hot Encoder to any non-numerical value, while a more elaborated solution

(Figure 4.1b) will be applying specific transformation for different columns. Both of the pipelines

were evaluated using ten cross-fold validation with the same splits. The most common pipeline

achieved 93 percent accuracy, while the most complex one achieved 95 percent accuracy.

Current pipeline search is not a trivial task since the search space is extensive. We need to

consider that AutoML systems alleviate this problem by creating templates or, in the case of

preprocessing pipeline search, limit the available options. Given the ample search space, searching

for preprocessing pipelines for all the input features could lead to an exponential grow of the

search space. For example, for a dataset with seven features and seven different combinations of

transformation, the search space would be over eighty-five million combinations, without even

considering the hyperparameter space of each transformer. To tackle this challenge, we propose

the use of a deep-clustering-driven search that searches for preprocessing pipelines for clusters of

similar features instead of independently.

4.2 Preliminaries

AutoML algorithm’s primary goal is to provide a machine learning pipeline that performs

well given specific criteria and data. The pipelines are usually divided into two components: the

preprocessing pipeline and the machine learning learner. Overall the pipeline search problem for

AutoML could be defined as:
1http://archive.ics.uci.edu/ml/datasets/thyroid+disease

46

http://archive.ics.uci.edu/ml/datasets/thyroid+disease

Numerical Features Categorical Features

Input Data

Simple ImputerSimple Imputer

Stochastic Gradient
Descent

One Hot Encoder

ACC: 0.936340

(a) Common Pipeline.

Numerical Features Categorical Features

Input Data

Simple ImputerSimple Imputer

Stochastic Gradient
Descent

One Hot Encoder

ACC: 0.959704

Boolean Features

Label Encoder

Some Numerical
Features

Simple Imputer

One Hot Encoder

(b) Feature-wise Pipeline.

Figure 4.1: An illustration of different pipeline architectures and performance on the same dataset.
Figure (a) is a standard pipeline that imputes missing values and applies One Hot Encoder trans-
formation to non-numerical data. Figure (b) is a pipeline that handles numerical and categorical
data similarly to the Common Pipeline but also applies One Hot Encoder transformation to some
numerical data and uses Label Encoder transformation to some categorical data. The performance
improvement is because some numerical data such as age has a limited range and can be seen as
categories instead of numerical data, while some categorical values only contain a couple of options.

47

argmin
M,P,θm,θp

L (M (P (x;θp) ;θm) ,y) , (4.1)

where P (x;θp) is the transformed data using the preprocessing pipeline P with hyperparam-

eters θp on the inputs x. M is the machine learning model (i.e Random Forest, SVM) with

hyperparameters θm that generates predictions, y are the targets or labels and L is the loss function.

Our goal in this work is not focus on model or hyperparameter search but to find a collection of

preprocessing pipelines C where C(x) = p0(x0) · . . . · pk(xk), and pk a preprocessing for the feature

k where 0 ≤ k ≤ number of features to solve the optimization problem:

argmin
C

L (M(C(x)),y) , (4.2)

Note that although we are following the traditional setting, we want to solve the optimization

problem by searching for the pipeline collection C and do not take into consideration the ML model

M or the hyperparameters. As previously mentioned, since we focus on searching for the set

preprocessing pipeplines C, we decided to fix the loss function L to be the 10-cross fold valiation

accuracy score and the ML modelM.

4.3 Framework

To tackle the challenge of high dimensional search space on feature-wise transformation search,

we propose to instead search searching for transformations for similar features. The key idea is to

reduce the number of preprocessing pipelines to search by clustering similar features. This approach

will drastically reduce the search space. For example, for a feature subset from the dataset Credit

Approval 2 dataset with seven features and eight different combinations of transformation, the

search space would be over two million combinations. In figure 4.1a we show an example of how

a clustered feature-wise pipeline could reduce the search space by clustering similar features that

share the same values; by doing this, the search space is drastically reduced to around thirty-two

thousand combinations.
2https://archive.ics.uci.edu/ml/datasets/Credit+Approval

48

https://archive.ics.uci.edu/ml/datasets/Credit+Approval

Job Marital
Status

CreditEducation HouseAge Loan

ML Learner

Simple
Imputer

One Hot
Encoder

Categorical
Encoder Simple

Imputer
One Hot
Encoder

Categorical
Encoder

One Hot
Encoder

Categorical
EncoderOne Hot

Encoder
Label

Encoder

(a) Feature-wise transformation pipeline.

Job Marital
Status

CreditEducation HouseAge Loan

ML Learner

Simple
Imputer

One Hot
Encoder

Categorical
Encoder

One Hot
Encoder

Categorical
EncoderOne Hot

Encoder
Label

Encoder

(b) Clustered Feature-wise transformation pipeline.

Figure 4.2: Figure (a) shows an illustration of a preprocessing pipeline that uses Feature-wise
pipelines for each feature. Figure (b) shows an example of how our method deals with multiple
attributes by using a single pipeline. If we consider a search space with only eight pipelines to
choose from for each feature, we would have over two million possible combinations for the
Feature-wise case. However, our proposed method is capable of reducing this space to around
thirty-two thousand.

49

We develop a framework that attempts to reduce the search space for preprocessing pipeline

search by searching for transformation for clusters of features instead of each independent feature.

The framework is three stages, feature embedding, feature clustering, and the preprocessing pipeline

search. The idea behind of search strategy is that features can be clustered in so many different ways,

so the search needs to learn how to cluster them efficiently. In Figure 4.3 the overall framework

overlay is presented. The workflow goes as follows. First, the feature columns are embedded using

an AutoEncoder, the embedding is used to cluster them. After the feature clusters are generated,

they are forwarded to the random search in charge of searching for the preprocessing pipelines.

After a valid set of preprocessing pipelines is found, the data is transformed to generate predictions

with the Machine Learning Learner. The prediction is later used to tune the parameters of the

clustering network. The process repeats until there are no more resources.

Policy Gradient Loss

Dataset AutoEncoder
Clustering
Network

Random search

Apply
Transformation

to set of
Features

Repeat until valid operation is found

ML
Learner

Transformed
data

Predictions

Figure 4.3: Clustered Feature-wise Pipeline Search Framework. An Autoencoder is used to generate
the column feature embedded from the input dataset. Then a randomly initialized clustering network
is used to generate the feature clusters. The cluster information is forwarded to the feature-wise
random search that will eventually generate transformed data. Then the data is forwarded to the ML
Learner to generate predictions used on the Policy Gradient Loss to generate a reward. Then, the
reward is used to tune the Clustering Network. The process keeps repeating until no more resources
are allocated.

50

4.3.1 Feature embedding

Feature embedding has been widely studied, and several methods have been proposed. Tra-

ditional methods such as PCA and SVD focus only on numerical data, and in order to support

non-numerical values such as categorical, these methods rely on transforming the data to a numerical

representation by using other transformers such as OneHotEncoder. Other methods provide more

flexibility by creating vector representation of words and sentences, such as word2vec [61] and

BERT [62]. Although these methods perform well on NLP tasks, it becomes challenging to use

when a large corpus of unseen values is presented. Another drawback of these approaches is that

they tend to require large amounts of data and time if they were to be trained from scratch.

Our approach to embedding the input features assumes that all the features are non-numerical

values, then the features are transformed to numerical representation and computed the embedding

by the use of AutoEncoders. As previously mentioned, most of the frameworks deal with non-

numerical data by using OneHotEncoder, but in our case, this is not suitable since it can complicate

the process of comparing the feature columns later on. First, to do the feature embedding, we

compute the unique values across all features and create vector counts of every value for each

column. The use of value count aims to capture the similarity of the columns in terms of repeated

values, such as columns sharing the same numerical representation or the same categorical values;

this approach also aims to capture missing values. After encoding the feature columns into vector

counts, we use an AutoEncoder with Mean squared error (reconstruction error) to generate a more

general embedding.

It is important to note that our embedding approach aims to generate feature embeddings such as

columns that can be compared later on as a whole and not by observations. The feature embedding

method aims to capture the relationships among different values across the features and generates

an embedding on a lower dimension that can be easily compared.

51

4.3.2 Feature Clustering

Once the data is embedded, we could potentially use any out-of-the-shelve clustering method

such as kmeans, mean-shift, or spectral clustering. The downside of these methods is that they

take into consideration the initial state of the data (train), and when new data appears, it becomes

complicated to adapt, and in most of the cases, the models need to be re-trained, and with this,

the previous information gets lost. For most clustering methods, the number of clusters is a

hyperparameter that gets fixed when the method is initialized, and they are not flexible enough to

change. In our framework, we tackle these limitations from traditional cluster methods by the use

of a clustering deep neural network. The framework uses a Deep K-means [63]. The neural network

is treated as a classification network that takes as input a set of observations and a set of pseudo

labels that is trained with the Cross-Entropy Loss. The pseudo labels are created by generating a set

of cluster labels using K-means.

The clustering network in our framework aims to create clusters based on the features’ similari-

ties. Since the similarity can be measured according to different metrics [64], we decided instead of

measuring similarity in terms of performance. The clustering network in our framework follows a

similar logic as previously described. First, we generate pseudo-cluster labels by using k-means

and the embedded data (note that these labels are not going to be used during training), and then

we create a network that will be used to learn the cluster strategy. For the network, we define the

size of the input layer according to the number of input features and the output layer according to a

hyperparameter that represents the maximum number of clusters to generate. Then, the network is

randomly initialized, and the embedded features are used in forward-pass generating clusters.

After generating the clusters, the information is passed to the preprocessing pipeline search, and

then the predictions are returned. The predictions are later evaluated to compute the ground truth.

Then, we use a Policy Gradient Loss [65] that takes as inputs the labels generated on k-means, the

labels generated by the clustering network, and the performance. The loss function will generate a

reward that penalizes the clusters generated by the network that do not score well during the search.

Then, the reward is used for the clustering network to tune.

52

Since we are not directly training the clustering network with the labels from k-means, but

instead, we are randomly initializing it, we expect to generate random clusters of features so with

every iteration, the network will be following the reward that is provided by the performance of the

search. By doing this, we are allowing the clustering network to generate different clusters through

iterations that enable the exploration of other clusters configurations.

4.3.3 Preprocessing Pipeline Search

The preprocessing pipeline search component on the framework is in charge of searching for

the preprocessing pipelines for each cluster of features. There are many strategies for this, such as

Bayesian optimization, tree search, etc., but we decided to implement a random search variation.

The intuition behind this is that the search would likely not search for the pipelines for the same

set of clusters often since the clusters are changing through time by tuning the clustering network.

Having a different set of clusters also leads to problems related to optimization techniques since

they will require a fresh start for every new set of clusters. Also, it is very likely that if the search

happens to get the same cluster configuration, the optimization would not have enough data samples

to lead to a better solution.

We tackle these problems by using Random Search without replacements and a hashing mech-

anism to track the different cluster searches in our framework. The idea is that when a cluster

configuration is forwarded to the search, the search will hash and check if the configuration already

exists. If not, it will automatically create a new random search. If the cluster configuration exits, it

will access the previous results and sample a new set of preprocessing pipelines. The preprocessing

pipelines are generated by iterating on the different clusters and randomly sampling a transformation.

If the transformation can successfully be applied to the data, then another transformation is selected,

and the process is repeated. If the transformation fails, it is removed from the pool from that set of

features to not be sampled again. The approach allows cutting evaluation time by hashing already

seen configurations and avoiding the data transformations that are more likely to fail. The result is

that we are sampling new preprocessing pipelines more efficiently over time.

53

4.4 Experiments

In this section, we empirically evaluated the proposed clustered feature-wise preprocessing

pipeline search. To evaluate the performance of our method, we use eight datasets from the OpenML

Benchmark Suit[66]. The datasets were chosen because they contain missing values and different

data types, such as integer, float, boolean, and categorical values.

4.4.1 Search Space

The search space that we are using for our experiments is standard in AutoML System. In

Table 3.9 we listed all the data transformations in the space. We limited the space to three main

operations, imputers, encoders, and scalars. We follow the same order of operations as other

frameworks where the order cannot be changed, but operations can be skipped—for example, a

preprocessing pipeline with only encoders and scalars. This search space leads to the generation of

forty-eight possible preprocessing pipelines.

Imputers Encoders Scalars

Median Ordinal MinMax
Most Common Value One Hot Standard

Mean None MaxAbs
None - None

Table 4.1: Preprocessing pipeline search space. The space follows a strict order of operations. It is
divided into three main components: imputers, encoders, scalars. Each component has different
available options that can be selected and includes the None operation.

54

4.4.2 Baselines

We utilize two main baselines in the final experiment. The first one is for the traditional AutoML

preprocessing pipeline, and the second is a variation of the proposed method that randomly generates

clusters to search. Their details are summarized as follows:

• Predefined preprocessing pipeline. Following the traditional AutoML setting, this method

imputes missing values by using the most common value, then for the numerical values, apply

a standard scaler. For the categorical values, OneHotEncoder is used. This method only

distinguishes between two data types, numerical and non-numerical.

• Random Clusters Search. This method generates a set of preprocessing pipelines for a set

of random clustered features. It is challenging for the search to yield valid results due to

the large number of invalid clusters generated. We let the method run 10000 iterations to

guarantee that at least one set of preprocessing pipelines can be scored for a fair comparison.

4.4.3 Method Settings

For our proposed framework, we set the number of iterations to 500; it will generate 500 clusters

settings and pipelines so the clustering network can adjust. The reason for this is that if we were

to run it using a time constraint, the number of iterations could vary due to the dataset size and

complexity, which will cause us not properly to compare the results. Also, since the datasets we are

using have a different number of features, we decided to fix the maximum number of features in our

method to 5; this means that there are at most 5 clusters at any given time during the search.

4.4.4 Results

We empirically evaluate the frameworks by providing the full dataset [66] and evaluating the

best pipeline they can generate as specified in previous subsections. We evaluate the pipelines using

a ten cross-fold validation with the accuracy metric. Since our model focuses on the preprocessing

pipeline search, we repeated the search multiple time with different standard machine learning

55

Dataset Baseline Random Clusters CFWT

38-sick 0.9593 0.9729 0.9769
29-credit-a 0.8428 0.8255 0.8443
1049-pc4 0.8869 0.9006 0.9108
1480-ilpd 0.7077 0.7060 0.7111
23381-desses-sales 0.5804 0.5944 0.6219
3-kr-vs-kp 0.9477 0.9488 0.9518
40975-car 0.8642 0.8440 0.8670
50-tic-tac-toe 0.7752 0.8336 0.9098

Average 0.8205 0.8336 0.8492

Table 4.2: Comparison between the average accuracy of standard, random clustered and Clustered
Feature-wise pipelines on OpenML-CC18 Benchmark datasets. CFWT shows a promising increase
of performance for standard machine learners.

learners: Ada boost, Gradient Boosting, Random Fores, Support vector classification, a linear

classifier with stochastic gradient descend learning, and a multi-layer perceptron.

In Table 4.2, the average accuracy is presented. Overall, our framework is capable of boosting

the performance of machine learning learners by proposing other preprocessing pipelines with the

same components. In Figure 4.4 the accuracy improvement on different learners is presented. The

proposed method has more impact on the learners if the data contains different data types such

as integer, boolean values. The performance improvement on machine learning learners that are

tree-based is minimal since tree methods are already dealing with categorical data better.

56

0.00 0.01 0.02 0.03 0.04 0.05
Average ACC improvement

mlp

sgd

svc

random_forest

gradient_boosting

ada_boost
Le

ar
ne

rs

Figure 4.4: Accuracy improvement on different machine learning learners focuses on heterogeneous
data from the OpenMl-CC18 Benchmark with a 500 iteration search. The proposed method has
more impact on the learners if the data contains different data types such as integer, boolean values.
The performance improvement on machine learning learners that are tree-based is minimal since
tree methods are already dealing with categorical data better.

4.5 Conclusions

In this work, we proposed a framework that enables the search of more complex preprocessing

pipelines by searching for pipelines for each feature instead of general ones that only consider at

most two according to data types. A search algorithm is proposed that reduces the complexity of

the search space generated by searching for individual pipelines by clustering similar features that

lead to searching for fewer pipelines. The algorithm takes advantage of a Deep clustering network

to guide the search that tunes itself with every iteration. Experimental results on eight benchmark

datasets demonstrate the proposed search algorithm’s effectiveness and its capability to improve the

machine learning learners’ performance.

57

5. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES

Automated Machine Learning provides tools for different levels of users to create ML solutions

for their problems. However, most of the existing AutoMl systems only focus on the research aspect

rather than usability, leading to the rise of the number of systems. Due to the creation of many

systems, it becomes challenging to compare them since the components that each of them uses

could lead to a broader impact rather than their proposed solution. In this dissertation, we made

a series of contributions towards the standardization of AutoML components and evaluation of

systems, how to design an AutoML framework to alleviate the increasing number of single-use

AutoML solutions, and how to efficiently search for feature-wise data transformation for AutoML.

To tackle the challenges of standardization of AutoML components and evaluation of systems,

we propose a standard framework that provides building blocks for AutoML systems. Such building

blocks allows

Our research would promote the standardization of building blocks for AutoML systems,

facilitate the development and evaluation of new systems, as well as enable the exploration of new

approaches to preprocess the data on AutoML systems. Despite the efforts made in the thesis, there

are still many challenges and open problems to be explored. With respect to future work, we are

interested in investigating the following directions:

• Create tools for automatic ingestion of machine learning primitives for AutoML. With

the number of machine learning primitives growing every year, it becomes almost impossible

to keep up with manually creating code wrappers that provide the information for AutoML

systems. This problem could be tackled from different perspectives; for example, the human

documentation can be parsed to generate the information needed, or automatic testing tools

could be used to test and assess the different hyperparameter values to create more dynamic

documentation that, in most cases, humans are not able to describe the different scenarios,

such as specific invalid configuration of hyperparameters.

58

• Pipeline validation during syntax checking AutoML systems, overall, spend a vast amount

of time evaluating machine learning pipelines. In some cases, such as in the D3M ecosystem,

the AutoML systems tend to waste so much time evaluating pipelines that they cannot be run

because the inputs from one primitive to another are incorrect. Another reason why pipelines

fail during evaluation is that the hyperparameter configuration is not valid because it relies

on some aspect of the input data that is only available during runtime. The number of failed

pipelines can be reduced if the errors are discovered before running them.

• Enable interpretability in the D3M Ecosystem. The D3M Ecosystem provides the building

blocks to create AutoML systems such as primitives and pipelines definitions. Although

this enables better comparison among systems, it becomes challenging to identify whether

or not the improvement of performance is due to the search algorithm can produce better

pipelines or because the machine learning primitives are powerful. The interpretation in

AutoML could potentially inform the user why a system is selecting some primitives and

creating an interactive system.

• Enable discoverability of preprocessing pipelines for unseen data. In this dissertation,

we target the exploration on the preprocessing pipelines, but they are mainly restricted to

known operations for know data such as categorical and numerical data. There are still many

data types that require other primitives to transform to numerical representation, such as

audio, video, image data. Although there are preprocessing pipelines for these data types, it is

unknown whether or not they can be improved by combining with others.

59

REFERENCES

[1] I. Guyon, L. Sun-Hosoya, M. Boullé, H. J. Escalante, S. Escalera, Z. Liu, D. Jajetic, B. Ray,

M. Saeed, M. Sebag, A. Statnikov, W.-W. Tu, and E. Viegas, “Analysis of the automl challenge

series 2015-2018,” in Automatic Machine Learning: Methods, Systems, Challenges (F. Hutter,

L. Kotthoff, and J. Vanschoren, eds.), pp. 191–236, Springer, 2018. In press, available at

http://automl.org/book.

[2] A. Balaji and A. Allen, “Benchmarking automatic machine learning frameworks,” arXiv

preprint arXiv:1808.06492, 2018.

[3] B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van

Rijn, and J. Vanschoren, “Openml benchmarking suites and the openml100,” arXiv preprint

arXiv:1708.03731, 2017.

[4] M.-A. Zöller and M. F. Huber, “Survey on automated machine learning,” arXiv preprint

arXiv:1904.12054, vol. 9, 2019.

[5] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter, “Auto-

sklearn: Efficient and robust automated machine learning,” in Automated Machine Learning,

pp. 113–134, Springer, 2019.

[6] R. S. Olson and J. H. Moore, “TPOT: A tree-based pipeline optimization tool for automating

machine learning,” in Automatic Machine Learning: Methods, Systems, Challenges (F. Hutter,

L. Kotthoff, and J. Vanschoren, eds.), pp. 163–173, Springer, 2018.

[7] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-Sklearn,” in Automatic Machine Learning:

Methods, Systems, Challenges (F. Hutter, L. Kotthoff, and J. Vanschoren, eds.), pp. 105–121,

Springer, 2018.

[8] A. Klein, S. Falkner, N. Mansur, and F. Hutter, “Robo: A flexible and robust bayesian

optimization framework in python,” in NIPS 2017 Bayesian Optimization Workshop, 2017.

60

http://automl.org/book

[9] L. Gustafson, Bayesian tuning and bandits: an extensible, open source library for AutoML.

PhD thesis, Massachusetts Institute of Technology, 2018.

[10] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pretten-

hofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux,

“API design for machine learning software: experiences from the scikit-learn project,” in

ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122,

2013.

[11] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “OpenML: Networked science in

machine learning,” SIGKDD Explorations, vol. 15, no. 2, pp. 49–60, 2013.

[12] I. Drori, Y. Krishnamurthy, R. Rampin, R. Lourenço, J. P. One, K. Cho, C. Silva, and J. Freire,

“AlphaD3M: Machine learning pipeline synthesis,” in AutoML Workshop at ICML, 2018.

[13] N. Fusi, R. Sheth, and M. Elibol, “Probabilistic matrix factorization for automated machine

learning,” in Proceedings of the 32nd International Conference on Neural Information Pro-

cessing Systems, NIPS’18, (Red Hook, NY, USA), p. 3352–3361, Curran Associates Inc.,

2018.

[14] Y. Heffetz, R. Vainshtein, G. Katz, and L. Rokach, “Deepline: Automl tool for pipelines

generation using deep reinforcement learning and hierarchical actions filtering,” in Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 2103–2113, 2020.

[15] Google, “Cloud AutoML.” https://cloud.google.com/automl/, 2019.

[16] H2O.ai, “H2o automl.” http://docs.h2o.ai/h2o/latest-stable/h2o-docs/

automl.html, June 2017. H2O version 3.30.0.1.

[17] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown, “Auto-WEKA:

Automatic model selection and hyperparameter optimization in weka,” in Automatic Machine

Learning: Methods, Systems, Challenges (F. Hutter, L. Kotthoff, and J. Vanschoren, eds.),

pp. 89–103, Springer, 2018.

61

https://cloud.google.com/automl/
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

[18] M. Maher and S. Sakr, “SmartML: A meta learning-based framework for automated selection

and hyperparameter tuning for machine learning algorithms,” in EDBT: 22nd International

Conference on Extending Database Technology, 2019.

[19] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, M. Urban, M. Burkart, M. Dippel,

M. Lindauer, and F. Hutter, “Towards automatically-tuned deep neural networks,” in Automatic

Machine Learning: Methods, Systems, Challenges (F. Hutter, L. Kotthoff, and J. Vanschoren,

eds.), pp. 145–161, Springer, 2018.

[20] P. Parry, “auto_ml: Automated machine learning for production and analytics,” 2018.

[21] F. Mohr, M. Wever, and E. Hüllermeier, “ML-Plan: Automated machine learning via hierar-

chical planning,” Machine Learning, vol. 107, pp. 1495–1515, 9 2018.

[22] H. Rakotoarison, M. Schoenauer, and M. Sebag, “Automated machine learning with monte-

carlo tree search,” arXiv preprint arXiv:1906.00170, 2019.

[23] A. G. C. de Sá, A. A. Freitas, and G. L. Pappa, “Automated selection and configuration of

multi-label classification algorithms with grammar-based genetic programming,” in Parallel

Problem Solving from Nature – PPSN XV (A. Auger, C. M. Fonseca, N. Lourenço, P. Machado,

L. Paquete, and D. Whitley, eds.), (Cham), pp. 308–320, Springer International Publishing,

2018.

[24] A. G. C. de Sá, W. J. G. S. Pinto, L. O. V. B. Oliveira, and G. L. Pappa, “RECIPE: A grammar-

based framework for automatically evolving classification pipelines,” in Genetic Programming

(J. McDermott, M. Castelli, L. Sekanina, E. Haasdijk, and P. García-Sánchez, eds.), (Cham),

pp. 246–261, Springer International Publishing, 2017.

[25] Salesforce, “TransmogrifAI.” https://transmogrif.ai/, 2019.

[26] Z. Shang, E. Zgraggen, B. Buratti, F. Kossmann, P. Eichmann, Y. Chung, C. Binnig, E. Upfal,

and T. Kraska, “Democratizing data science through interactive curation of ml pipelines,” in

Proceedings of the 2019 International Conference on Management of Data, pp. 1171–1188,

ACM, 2019.

62

https://transmogrif.ai/

[27] C. Steinrucken, E. Smith, D. Janz, J. Lloyd, and Z. Ghahramani, “The automatic statistician,”

in Automatic Machine Learning: Methods, Systems, Challenges (F. Hutter, L. Kotthoff,

and J. Vanschoren, eds.), ch. 9, pp. 175–188, Springer, 2018. In press, available at http:

//automl.org/book.

[28] T. S. W. Drevo, B. Cyphers, A. Cuesta-Infante, A. Ross, and K. Veeramachaneni, “ATM: A

distributed, collaborative, scalable system for automated machine learning,” in 2017 IEEE

International Conference on Big Data (Big Data), pp. 151–162, 12 2017.

[29] W. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi, J. Shao, and M. Reyad,

“Rafiki: machine learning as an analytics service system,” Proceedings of the VLDB Endow-

ment, vol. 12, no. 2, pp. 128–140, 2018.

[30] B. P. Evans, B. Xue, and M. Zhang, “An adaptive and near parameter-free evolutionary

computation approach towards true automation in automl,” arXiv preprint arXiv:2001.10178,

2020.

[31] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, “OBOE: Collaborative filtering for automl

model selection,” in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pp. 1173–1183, ACM, 2019.

[32] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimiza-

tion,” Advances in neural information processing systems, vol. 24, 2011.

[33] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for general

algorithm configuration,” in International conference on learning and intelligent optimization,

pp. 507–523, Springer, 2011.

[34] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian optimization of

machine learning hyperparameters on large datasets,” in Artificial Intelligence and Statistics,

pp. 528–536, PMLR, 2017.

[35] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyperparameter optimization

at scale,” in International Conference on Machine Learning, pp. 1437–1446, PMLR, 2018.

63

http://automl.org/book
http://automl.org/book

[36] U. Khurana and H. Samulowitz, “Automating predictive modeling process using reinforcement

learning,” arXiv preprint arXiv:1903.00743, 2019.

[37] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: Bandit-

based configuration evaluation for hyperparameter optimization,” in ICLR (Poster), 2017.

[38] F. Qi, Z. Xia, G. Tang, H. Yang, Y. Song, G. Qian, X. An, C. Lin, G. Shi, et al., “A graph-based

evolutionary algorithm for automated machine learning,” Software Engineering Review, vol. 1,

no. 2 (2020), pp. 10–37686, 2020.

[39] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network architectures using

reinforcement learning,” arXiv preprint arXiv:1611.02167, 2016.

[40] J. Davison et al., “DEvol: Deep neural network evolution.” https://github.com/

joeddav/devol, 2017.

[41] H. Jin, Q. Song, and X. Hu, “Auto-Keras: Efficient neural architecture search with network

morphism,” arXiv preprint arXiv:1806.10282, 2018.

[42] Microsoft, “Neural network intelligence.” https://github.com/Microsoft/nni,

2018.

[43] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural architecture search

via parameter sharing,” arXiv preprint arXiv:1802.03268, 2018.

[44] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” arXiv preprint

arXiv:1611.01578, 2016.

[45] “Learning transferable architectures for scalable image recognition,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 8697–8710, 2018.

[46] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” arXiv preprint

arXiv:1806.09055, 2018.

[47] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on target task

and hardware,” arXiv preprint arXiv:1812.00332, 2018.

64

https://github.com/joeddav/devol
https://github.com/joeddav/devol
https://github.com/Microsoft/nni

[48] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing, “Neural architecture

search with bayesian optimisation and optimal transport,” arXiv preprint arXiv:1802.07191,

2018.

[49] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture optimization,” arXiv

preprint arXiv:1808.07233, 2018.

[50] R. Elshawi, M. Maher, and S. Sakr, “Automated machine learning: State-of-the-art and open

challenges,” arXiv preprint arXiv:1906.02287, 2019.

[51] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Vanschoren, “An open source

automl benchmark,” arXiv preprint arXiv:1907.00909, 2019. Accepted at AutoML Workshop

at ICML 2019.

[52] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and T. Kraska, “Automating

model search for large scale machine learning,” in Proceedings of the Sixth ACM Symposium

on Cloud Computing, pp. 368–380, 2015.

[53] J. P. Ono, S. Castelo, R. Lopez, E. Bertini, J. Freire, and C. Silva, “Pipelineprofiler: A visual

analytics tool for the exploration of automl pipelines,” arXiv preprint arXiv:2005.00160, 2020.

[54] C. A. Mattmann, S. Shah, and B. Wilson, “Marvin: An open machine learning corpus and

environment for automated machine learning primitive annotation and execution,” 2018.

[55] V. D’Orazio, J. Honaker, R. Prasady, and M. Shoemate, “Modeling and forecasting armed con-

flict: AutoML with human-guided machine learning,” in 2019 IEEE International Conference

on Big Data (Big Data), pp. 4714–4723, 2019.

[56] “Metalearning database service.” https://metalearning.

datadrivendiscovery.org/, 2019.

[57] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M. I. Jor-

dan, and I. Stoica, “Ray: A distributed framework for emerging AI applications,” CoRR,

vol. abs/1712.05889, 2017.

65

https://metalearning.datadrivendiscovery.org/
https://metalearning.datadrivendiscovery.org/

[58] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al., “Kerastuner.”

https://github.com/keras-team/keras-tuner, 2019.

[59] S. Sanders and C. Giraud-Carrier, “Informing the use of hyperparameter optimization through

metalearning,” in 2017 IEEE International Conference on Data Mining (ICDM), pp. 1051–

1056, IEEE, 2017.

[60] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[61] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations

in vector space,” 2013.

[62] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” ArXiv, vol. abs/1810.04805, 2019.

[63] M. M. Fard, T. Thonet, and E. Gaussier, “Deep k-means: Jointly clustering with k-means and

learning representations,” Pattern Recognition Letters, vol. 138, pp. 185–192, 2020.

[64] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature selection:

A data perspective,” ACM Computing Surveys (CSUR), vol. 50, no. 6, p. 94, 2018.

[65] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016.

[66] B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van Rijn, and

J. Vanschoren, “Openml benchmarking suites,” 2019.

66

https://github.com/keras-team/keras-tuner

APPENDIX A

PIPELINE EXAMPLE IN JSON FORMAT

Example of a Pipeline on JSON format from Figure 2.2. The pipeline can generate predictions

for data with only numerical values. First, a Dataset to Dataframe Primitive is used to transform the

input dataset into a Dataframe common representation, and then it is parsed. Later, the attributes

are extracted, and missing values are imputed. A gradient boosting classifier primitive is later used

as a learner by using the features and targets. The predictions for the latter are forwarded to the

Construct prediction primitive that also uses the original Dataframe as input to match the indexes

and make sure that the pipeline output is in the correct format.

1 {

2 "id": "67d78c06-691d-4b3d-8056-8bb67e3e75ff",

3 "schema":

"https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json",↪→

4 "inputs": [

5 {

6 "name": "inputs"

7 }

8],

9 "outputs": [

10 {

11 "data": "steps.6.produce",

12 "name": "Predictions from the input dataset"

13 }

14],

15 "steps": [

16 {

17 "type": "PRIMITIVE",

18 "primitive": {

67

19 "python_path": "data_transformation.dataset_to_dataframe.Common",

20 "name": "Extract a DataFrame from a Dataset",

21 "id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65",

22 "version": "0.3.0"

23 },

24 "arguments": {

25 "inputs": {

26 "data": "inputs.0",

27 "type": "CONTAINER"

28 }

29 },

30 "outputs": [

31 {

32 "id": "produce"

33 }

34],

35 },

36 {

37 "type": "PRIMITIVE",

38 "primitive": {

39 "python_path": "data_transformation.column_parser.Common",

40 "name": "Parses strings into their types",

41 "id": "d510cb7a-1782-4f51-b44c-58f0236e47c7",

42 "version": "0.6.0"

43 },

44 "arguments": {

45 "inputs": {

46 "data": "steps.0.produce",

47 "type": "CONTAINER"

48 }

49 },

50 "outputs": [

51 {

68

52 "id": "produce"

53 }

54]

55 },

56 {

57 "type": "PRIMITIVE",

58 "primitive": {

59 "python_path":

"data_transformation.extract_columns_by_semantic_types.Common",↪→

60 "name": "Extracts columns by semantic type",

61 "id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",

62 "version": "0.3.0"

63 },

64 "arguments": {

65 "inputs": {

66 "data": "steps.1.produce",

67 "type": "CONTAINER"

68 }

69 },

70 "hyperparams": {

71 "semantic_types": {

72 "data": [

73 "https://metadata.datadrivendiscovery.org/types/Attribute"

74],

75 "type": "VALUE"

76 }

77 },

78 "outputs": [

79 {

80 "id": "produce"

81 }

82]

83 },

69

84 {

85 "type": "PRIMITIVE",

86 "primitive": {

87 "python_path":

"data_transformation.extract_columns_by_semantic_types.Common",↪→

88 "name": "Extracts columns by semantic type",

89 "id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1",

90 "version": "0.3.0"

91 },

92 "arguments": {

93 "inputs": {

94 "data": "steps.0.produce",

95 "type": "CONTAINER"

96 }

97 },

98 "hyperparams": {

99 "semantic_types": {

100 "data": [

101 "https://metadata.datadrivendiscovery.org/types/TrueTarget"

102],

103 "type": "VALUE"

104 }

105 },

106 "outputs": [

107 {

108 "id": "produce"

109 }

110]

111 },

112 {

113 "type": "PRIMITIVE",

114

115 "primitive": {

70

116 "python_path": "data_cleaning.imputer.SKlearn",

117 "name": "sklearn.impute.SimpleImputer",

118 "id": "d016df89-de62-3c53-87ed-c06bb6a23cde",

119 "version": "2019.6.7"

120 },

121 "arguments": {

122 "inputs": {

123 "data": "steps.2.produce",

124 "type": "CONTAINER"

125 }

126 },

127 "hyperparams": {

128 "return_result": {

129 "data": "replace",

130 "type": "VALUE"

131 },

132 "use_semantic_types": {

133 "data": true,

134 "type": "VALUE"

135 },

136 "error_on_no_input": {

137 "data": false,

138 "type": "VALUE"

139 }

140 },

141 "outputs": [

142 {

143 "id": "produce"

144 }

145]

146 },

147 {

148 "type": "PRIMITIVE",

71

149 "primitive": {

150 "python_path": "classification.gradient_boosting.SKlearn",

151 "name":

"sklearn.ensemble.gradient_boosting.GradientBoostingClassifier",↪→

152 "id": "01d2c086-91bf-3ca5-b023-5139cf239c77",

153 "version": "2019.6.7"

154 },

155 "arguments": {

156 "outputs": {

157 "data": "steps.3.produce",

158 "type": "CONTAINER"

159 },

160 "inputs": {

161 "data": "steps.4.produce",

162 "type": "CONTAINER"

163 }

164 },

165 "outputs": [

166 {

167 "id": "produce"

168 }

169]

170 },

171 {

172 "type": "PRIMITIVE",

173 "primitive": {

174 "python_path": "data_transformation.construct_predictions.Common",

175 "name": "Construct pipeline predictions output",

176 "id": "8d38b340-f83f-4877-baaa-162f8e551736",

177 "version": "0.3.0"

178 },

179 "arguments": {

180 "reference": {

72

181 "data": "steps.0.produce",

182 "type": "CONTAINER"

183 },

184 "inputs": {

185 "data": "steps.5.produce",

186 "type": "CONTAINER"

187 }

188 },

189 "outputs": [

190 {

191 "id": "produce"

192 }

193]

194 }

195]

196 }

73

APPENDIX B

SEARCH ALGORITHM EXAMPLE

Example of creating a search algorithm using Axolotl AutoML. The search method called

Predefined Search uses a small collection of already built pipelines and queries them based on

the task. The collection only contains classification and regression pipelines that were previously

collected. The search iterates over the pipelines and selects the ones with the highest rank, defined

as the average normalized accuracy.

1 class PredefinedSearch(PipelineSearchBase):

2 def __init__(self, problem_description, backend, *,

primitives_blocklist=None, ranking_function=None):↪→

3 super().__init__(

4 problem_description=problem_description, backend=backend,

5 primitives_blocklist=primitives_blocklist,

ranking_function=ranking_function↪→

6)

7

8 if self.ranking_function is None:

9 self.ranking_function = random_rank

10 self.task_description = schemas_utils.get_task_description(

11 self.problem_description['problem']['task_keywords']

12)

13

14 self.available_pipelines = self._return_pipelines(

15 self.task_description['task_type'],

self.task_description['task_subtype'],

self.task_description['data_types'])

↪→

↪→

74

16

17 # Selection of a data preparation pipeline, we provide some

predefine options such as train_test_split, k_fold, etc↪→

18 # as well as the user can provide their own.

19 self.data_preparation_pipeline =

schemas_utils.get_splitting_pipeline("K_FOLD")↪→

20 # Get the metrics to evaluate the pipelines based on the

problem description.↪→

21 self.metrics =

self.problem_description['problem']['performance_metrics']↪→

22 # Pipeline to be use for scoring, we recommend using the one

provided.↪→

23 self.scoring_pipeline = schemas_utils.get_scoring_pipeline()

24 # Get the parameters for the datapreparation pipeline, such as

number of folds, and so on.↪→

25 self.data_preparation_params =

schemas_utils.DATA_PREPARATION_PARAMS['k_fold_tabular']↪→

26

27 self.offset = 10

28 self.current_pipeline_index = 0

29

30 def _search(self, time_left):

31 # Read all the pipelines to be evaluated

32 pipelines_to_eval =

self.available_pipelines[self.current_pipeline_index:

self.current_pipeline_index+self.offset]

↪→

↪→

33 self.current_pipeline_index += self.offset

34

35 # Evaluate the pipelines.

75

36 pipeline_results = self.backend.evaluate_pipelines(

37 problem_description=self.problem_description,

pipelines=pipelines_to_eval, input_data=self.input_data,↪→

38 metrics=self.metrics,

data_preparation_pipeline=self.data_preparation_pipeline,↪→

39 scoring_pipeline=self.scoring_pipeline,

data_preparation_params=self.data_preparation_params)↪→

40

41 return [self.ranking_function(pipeline_result) for

pipeline_result in pipeline_results]↪→

42

43 def _return_pipelines(self, task_type, task_subtype, data_type):

44 pipeline_candidates = []

45 for pipeline_dict in

schemas_utils.get_pipelines_db()['CLASSIFICATION']:↪→

46 pipeline = pipeline_utils.load_pipeline(pipeline_dict)

47 pipeline.id = str(uuid.uuid4())

48 pipeline.created = Pipeline().created

49 pipeline_candidates.append(pipeline)

50

51 return pipeline_candidates

76

APPENDIX C

SEMANTIC HANDLER EXAMPLE BUILT IN AXOLOTL

Example of a Semantic Handler in Axolotl that determines applies different transformation

according to the cardinality of the categorical values. The handler extends from the PrimitiveHandler

class. Semantic Handlers have definitions of what data semantics are supported. The transformations

are applied to the columns containing the data semantics and ignored otherwise. This approach

allows applying multiple handlers consecutively without affecting other data columns.

1 class CategoricalHandler(PrimitiveHandler):

2 SUPPORTED_SEMANTICS = (schemas_utils.DATA_SEMANTICS.Categorical,)

3

4 def __init__(self, resolver=Resolver()):

5 super().__init__(primitive=None, hyperparams=[],

resolver=resolver)↪→

6

7 def _add_produce(self, available_data, pipeline,

arguments_references):↪→

8 data_ref = arguments_references['inputs']

9 data = available_data[data_ref]

10

11 # we get the indexes to work with

12 categorical_indexes =

data.metadata.list_columns_with_semantic_types(↪→

13 [schemas_utils.DATA_SEMANTICS.Categorical]

14)

15 target_index = data.metadata.list_columns_with_semantic_types(

16 [schemas_utils.DATA_SEMANTICS.Target]

77

17)[0]

18

19 if target_index in categorical_indexes:

20 categorical_indexes.remove(target_index)

21

22 if categorical_indexes:

23 arguments_references['inputs'] = add_produce_imputer(

24 self, available_data, pipeline, arguments_references,

PreparationPrimitives.Imputer,↪→

25 {

26 'use_columns': categorical_indexes,

27 'return_result': 'new',

28 'strategy': 'most_frequent'

29 }

30)

31 return self._add_produce_categorical(available_data, pipeline,

arguments_references)↪→

32 else:

33 return data_ref

34

35 def _add_produce_categorical(self, available_data, pipeline,

arguments_references):↪→

36 data_ref = arguments_references['inputs']

37 data = available_data[data_ref]

38 total_n_values = len(data)

39

40 index_to_drop = []

41 index_to_onehot = []

42 index_to_ordinal = []

78

43

44 for idx_col in range(len(data.columns)):

45 n_categories = len(data.iloc[:, idx_col].unique())

46 categories_ratio = n_categories / total_n_values

47

48 if categories_ratio > 0.8 and n_categories > 1000:

49 index_to_drop.append(idx_col)

50 elif n_categories <= 200:

51 index_to_onehot.append(idx_col)

52 else:

53 index_to_ordinal.append(idx_col)

54

55 new_data_refs = []

56 if index_to_onehot:

57 handler = PrimitiveHandler(

58 primitive=PreparationPrimitives.OneHotMaker,

59 hyperparams={

60 'use_columns': index_to_onehot,

61 'return_result': 'new',

62 'handle_unseen': 'column',

63 'handle_missing_value': 'column',

64 },

65 resolver=self.resolver

66)

67 new_data_refs.append(handler.add_produce(available_data,

pipeline, arguments_references={'inputs': data_ref}))↪→

68

69 if index_to_ordinal:

70 handler = PrimitiveHandler(

79

71 primitive=PreparationPrimitives.OrdinalEncoder,

72 hyperparams={

73 'use_columns': index_to_ordinal,

74 'return_result': 'new',

75 },

76 resolver=self.resolver

77)

78 new_data_refs.append(handler.add_produce(available_data,

pipeline, arguments_references={'inputs': data_ref}))↪→

79

80 if new_data_refs:

81 if len(new_data_refs) == 1:

82 return new_data_refs[0]

83 else:

84 handler = PrimitiveHandler(

85 primitive=PreparationPrimitives.HorizontalConcat,

resolver=self.resolver↪→

86)

87 return handler.add_produce(

88 available_data, pipeline, arguments_references={'left':

new_data_refs[0], 'right': new_data_refs[1]}↪→

89)

90 else:

91 return data_ref

80

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation and Challenges
	Related Work
	Dissertation Contributions
	Dissertation Overview

	ON EVALUATION OF AUTOML SYSTEMS: FUNDAMENTAL AUTOML EVALUATION PRACTICES AND UNIFIED OPEN-SOURCE MACHINE LEARNING FRAMEWORK
	Introduction
	Preliminaries
	Machine Learning Primitives
	Pipeline Language
	Reference Runtime

	Towards Better Evaluation of AutoML Systems
	Experiments
	Conclusions

	Axolotl System: Modular Framework for development and testing AutoML solutions
	Introduction
	Framework
	Simplification of D3M Ecosystem
	Pipelines Evaluation via Backend
	Search Algorithms

	Conclusions

	Feature-wise Transformation Search for AutoML
	Introduction
	Preliminaries
	Framework
	Feature embedding
	Feature Clustering
	Preprocessing Pipeline Search

	Experiments
	Search Space
	Baselines
	Method Settings
	Results

	Conclusions

	CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES
	REFERENCES
	APPENDIX Pipeline Example in JSON Format
	APPENDIX Search Algorithm Example
	APPENDIX Semantic Handler Example built in Axolotl

