
COMMUNICATION AND COMPUTATION OPTIMIZATIONS IN MODULAR

SYSTEMS-ON-CHIP

A Dissertation

by

PRITAM MAJUMDER

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Eun Jung Kim
Committee Members, Daniel A. Jiménez

Paul Gratz
Duncan M. “Hank” Walker
Abdullah Muzahid

Head of Department, Scott Schaefer

May 2022

Major Subject: Computer Engineering

Copyright 2022 Pritam Majumder

ABSTRACT

In our modern world where everyone is always connected through internet, terabytes of data

gets generated at every moment through online activities like communication on social media, on-

line banking, online shopping, browsing, streaming, telemedicine, information on global activities,

weather forecasting, astronomy etc. Current e-commerce and science community are heavily de-

pendent on this data, creating huge demand for quick data processing through machine learning

methods for on time decision making and also for enhancing our knowledge regarding science and

universe. To meet the demand, currently we rely on scale-out systems like cloud servers, usually

equipped with GPUs as general purpose accelerators, often realised with SoCs.

For designing large scale systems, design modularity offers cheaper SoC with inherent inte-

gration complexity, like network deadlock involving multiple modules, in spite of each individ-

ual module being deadlock-free. Based on our first observation, the deadlock in modular SoC is

formed by forming circular channel dependency involving two or more modules in the SoC. Fur-

ther, mixing traffics originated from different modules may block each other in a circular fashion,

which results in deadlock. We propose a deadlock avoidance technique for any modular SoC to

make the integration deadlock free with minimum overhead. We evaluate our theory of deadlock

freedom using full-system SoC simulation constituted of independently designed CPUs and GPUs

through interposer network. The routing used in CPU, GPU, or in interposer are completely in-

dependent of each other, experience deadlock while exposed to high workload. Our technique

successfully avoids the deadlock with much lesser performance and energy overhead than the

state-of-the-art turn-restriction-based SoC deadlock solution.

In addition, the excessive data movement in these large systems, tackled by near-memory pro-

cessing (NMP) has further scope for improvement in their data and computation mapping, as re-

ducing data movement does not ensure optimized operation cost. We propose a reinforcement

learning (RL) based solution to improve the cost of operations by improving the data and compu-

tation mapping in the memory network for NMP. The solution constituted of two main components,

ii

(1) the formulation of the mapping optimization as an RL problem that involves selecting enough

information from the system to form states, deciding the actions based on the desired mapping

outcome, and properly calibrate feedback aiming towards the goal of performance improvement,

(2) the realization of the information collection system and efficient implementation of data and

computation remapping. We integrate RL framework with system simulation framework and show

that our technique added as a plug-in module in the system can significantly improve the perfor-

mance of the NMP techniques. Finally we describe the simulation framework in details, integrated

with reinforcement learning, which we develop from scratch to evaluate our proposed solution.

iii

DEDICATION

To my loving family

To the past, the current and the future

iv

ACKNOWLEDGMENTS

Without the support of many people, this dissertation would not have been possible. First

and foremost, I would like to express my heartfelt gratitude to my advisor, Dr Eun Jung (EJ)

Kim. Since the first day, her continuous encouragement has inspired me to go through the ups

and downs along this journey. Her inspiring guidance, generous support and continuous trust has

motivated new directions and perspectives in interconnection networks, leading to the success of

this research. In addition to her technical expertise, Dr Kim has also offered me advice on my

pursuit of career goals, I am truly indebted to her. Many thanks to my committee members and

collaborators. I am thankful to Prof. Ki Hwan Yum for his suggestions and efforts in shaping this

research. I am grateful to Dr Daniel A. Jiménez, Dr Paul Gratz and Dr Abdullah Muzahid for the

insightful feedback and the mentoring they have provided for my research and career development.

I would also like to thank Dr Chia-Che Tsai for wonderful collaboration and support.

It would not have been a wonderful graduate life without friends. First, thanks to my HPC

research group mates, especially Jiayi and Sungkeun who have made my (office) life very colorful

through chit-chat, debates, jokes, playing foosball, badminton, table-tennis, tennis and occasion-

ally cooking together. I also appreciate the efforts that Richa, Ram, Divya, Swathi and Dylan have

contributed to this research. I would also like to thank Farabi, Harpreet, Sunyoung for wonderful

collaboration. Thanks to Sanchali for supporting being a part of my life. Special thanks to Esha

and Pinaki for being such a wonderful friend. Thank you Abhishek, Shudipta, Herede, Hia for be-

ing so amazing friends from childhood. Special thanks to Somsankar as a friend for boosting my

confidence during IIT Madras entrance tests. Thank you Riddhi for being such a good apartment

mate for majority period of my PhD. I am also grateful to the teachers and mentors who have been

guiding and supporting me along my education journey. Finally I thank all my family members,

especially my parents and my sister for supporting me in all my ups and downs and always having

faith in me.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Dr Eun Jung Kim (advisor),

Dr Daniel A. Jiménez, and Dr Duncan M. “Hank” Walker, Dr Abdullah Muzahid of the Department

of Computer Science and Engineering, and Dr Paul Gratz of the Department of Electrical and

Computer Engineering.

In Chapter 3 the hardware synthesis is helped by Divya and Swathi as Masters student in Texas

A&M University and part of it has been published in IEEE Transaction on Computers on 2021.

In Chapter 4 in concept development Jiayi helped. In Chapter 5 in some of the functional parts

SungKeun helped to develop. All other work conducted for the dissertation was completed by the

student independently.

Funding Sources

Graduate study was supported by Teaching Assistantships from the Department of Computer

Science and Engineering, Texas A&M University and research grant CCF-1423433 from National

Science Foundation.

vi

NOMENCLATURE

NoC Network-on-Chip

VC Virtual Channel

Flit Flow Control Digit

CMP Chip-Multiprocessors

RC Remote Control Mechanism

NI Network Interface

MC Memory Controller

SoC System on a Chip or System-on-Chip

HMC Hybrid-Memory Cube

HBM High Bandwidth Memory

NVM Non-volatile Memory

NMP Near-Memory Processing

PIM Processing-in-Memory

DNN Deep Neural Network

RL Reinforcement Learning

AIMM Artificially Intelligent Memory Management Unit Mecha-
nism

MC2sim Memory Centric Computing simulator

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xiii

LIST OF TABLES. .xviii

1. INTRODUCTION. 1

1.1 Deadlock in Modular SoCs . 1
1.2 Data and Computation (Re)Mapping. 4
1.3 Framework Development . 6
1.4 Thesis Statement . 8
1.5 Contributions . 8
1.6 Dissertation Organization . 9

2. BACKGROUND AND LITERATURE SURVEY. 10

2.1 Interconnection Network Basics. 10
2.1.1 Topology . 11
2.1.2 Routing Algorithm . 11
2.1.3 Flow Control . 11
2.1.4 Router Microarchitecture . 12
2.1.5 Network-on-Chip (NoC) Deadlock . 13

2.1.5.1 Turn Restriction and VC over-Provision . 14
2.1.5.2 Flow Control Based . 14

2.1.6 Modular 2.5D SoC Integration. 15
2.1.7 Deadlock Freedom in Modular SoC . 16

2.1.7.1 Modular Turn Restriction (MTR). 16
2.1.7.2 VC Separation (VC-SEP) . 16
2.1.7.3 In-Transit Buffer (ITB). 17

viii

2.2 3D stacked DRAM and NMP . 18
2.2.1 Die-Stacked Memory. 18
2.2.2 Memory Network. 18
2.2.3 Near-Data Processing. 18
2.2.4 Computation and Data Mapping in NMP . 20
2.2.5 Data Locality in NUMA and Multi-Program Workloads . 21
2.2.6 Migration and TLB shootdown . 21
2.2.7 Data/Computation (Re)Mapping using RL. 22

2.3 Framework Design . 23
2.3.1 Why Memory-Centric Computing Simulator? . 23
2.3.2 Memory Centric Design. 25

2.3.2.1 Inherent NMP support . 25
2.3.2.2 Huge Memory Allocation and Access APIs . 25

2.3.3 Simulation Speed . 25
2.3.3.1 Full System versus Application Level . 26
2.3.3.2 Decoupled Functional and Performance . 26

2.3.4 ML Support . 26

3. A SIMPLE DEADLOCK AVOIDANCE SCHEME FOR MODULAR SYSTEMS-ON-
CHIP . 27

3.1 Overview: Remote Control (RC) . 28
3.1.1 Problem Description. 29
3.1.2 Motivations for RC . 29
3.1.3 Remote Control . 31

3.2 Deadlock Avoidance using RC . 31
3.2.1 Deadlock Freedom . 31
3.2.2 Challenges . 34
3.2.3 Routing Oblivious Design. 34

3.3 Implementation . 35
3.3.1 Boundary Routers . 35

3.3.1.1 RCVA . 35
3.3.1.2 RCB . 36
3.3.1.3 Permission Network . 36

3.3.2 Non-boundary Routers . 39
3.3.2.1 Separate Injection Queue . 40

3.3.3 Case Study: Modular CPU-GPU Integration Using Silicon Interposer 40
3.4 Methodology . 42

3.4.1 Experimental Setup. 43
3.4.2 Traffic Patterns. 44

3.4.2.1 Synthetic Traffic Patterns . 44
3.4.2.2 Application Traffic Pattern . 44

3.4.3 System Speedup . 46
3.5 Performance Evaluation . 47

3.5.1 Throughput Analysis . 47

ix

3.5.2 Latency Analysis . 49
3.5.3 Routing Obliviousness . 50
3.5.4 Starvation and Fairness . 51
3.5.5 Sensitivity Analysis . 52

3.5.5.1 System Scalability . 52
3.5.5.2 Sensitivity to rc_buffer Size and VC Size . 56

3.5.6 Area and Energy Analysis . 56
3.6 Related Works . 57

3.6.1 VC and Turn Model Based . 57
3.6.2 Flow Control Based . 57

3.7 Summary . 58

4. AIMM: ARTIFICIALLY INTELLIGENT MEMORY MAPPING IN NEAR-MEMORY
PROCESSING SYSTEM .. 59

4.1 Proposed Approach . 59
4.1.1 Overview and Problem Formulation. 60

4.1.1.1 State Representation. 61
4.1.1.2 Action Representation. 61
4.1.1.3 Reward Function . 62

4.1.2 RL Agent. 63
4.2 Hardware Implementation . 64

4.2.1 Information Orchestration. 65
4.2.2 RL Agent Implementation . 66
4.2.3 Page and Computation Remapping . 66

4.2.3.1 Page Remapping. 67
4.2.3.2 Computation Remapping . 67

4.3 Evaluation Methodology. 68
4.3.1 Simulation Framework . 68

4.3.1.1 Front-end . 68
4.3.1.2 CMP and Associated Components . 69
4.3.1.3 HMC Model and HMC network . 71

4.3.2 Simulation Methodology . 71
4.3.3 NMP Techniques and Mapping Schemes . 72

4.3.3.1 Basic NMP (BNMP) . 72
4.3.3.2 Load Balancing NMP (LDB) . 72
4.3.3.3 PIM Enabled Instruction (PEI) . 73
4.3.3.4 Transparent Offloading and Mapping (TOM). 73
4.3.3.5 HOARD. 73

4.3.4 Workload analysis . 74
4.3.4.1 Page Access Classification . 74
4.3.4.2 Page Touched Distribution . 75
4.3.4.3 Affinity Analysis . 76

4.4 Experimentation Results . 76
4.4.1 Performance . 76

x

4.4.1.1 Execution Time . 76
4.4.2 Learning Convergence . 78
4.4.3 Migration . 79
4.4.4 Hop Count and Computation Utilization . 80
4.4.5 Scalability Study. 80

4.4.5.1 MCN Scaling . 81
4.4.5.2 Multi-program Workload . 82

4.4.6 Sensitivity Study. 82
4.4.6.1 Page-info cache size (PCS) . 83
4.4.6.2 NMP table size (NMP-Op Tab) . 83
4.4.6.3 Training hyper-parameters . 83

4.4.7 Area and Energy . 84
4.4.7.1 Information Orchestration . 84
4.4.7.2 Migration . 84
4.4.7.3 RL Agent . 84
4.4.7.4 Network and Memory . 85
4.4.7.5 Overall Dynamic Energy . 85

4.5 Case Study: Scalable HBM-PIM . 86
4.6 Summary . 87

5. MC2SIM: MEMORY-CENTRIC COMPUTATION SIMULATOR WITH PLUGGED-
IN REINFORCEMENT LEARNING FRAMEWORK . 88

5.1 Overview of MC2sim . 88
5.1.1 Program kernel and Trace support . 89
5.1.2 Chip multi-processor (CMP) Design . 90
5.1.3 Partial OS support . 90
5.1.4 Memory Network. 91
5.1.5 RL Agent. 91

5.2 Micro-architecture Modeling . 91
5.2.1 HMC Network . 91

5.2.1.1 HMC . 92
5.2.1.2 NMP-op support . 92
5.2.1.3 Building Network and associated protocols. 93

5.2.2 HBM-PIM Network . 94
5.2.2.1 HBM-PIM . 94
5.2.2.2 Scalable HBM-PIM . 95

5.2.3 CMP design . 95
5.3 Functional Component Models . 97

5.3.1 RL components . 97
5.3.2 System components . 98

5.3.2.1 Thread Scheduler . 98
5.3.2.2 4-level Page Table . 98
5.3.2.3 Page-frame Allocator. 98

5.4 Supporting Simulator Components. 99

xi

5.4.1 Trace Support . 99
5.4.2 Setting and Reading configurations. 100
5.4.3 Stats Collection . 100
5.4.4 Debugging support . 100

5.5 Simulation Methodology . 101
5.6 Validation and Experimentation . 101

5.6.1 Functional Correctness . 102
5.6.2 Results Accuracy . 103
5.6.3 Stability . 104
5.6.4 Simulation Speed . 105

5.7 Summary . 105

6. CONCLUSIONS . 106

6.1 Dissertation Summary . 106
6.2 Future Directions . 107

6.2.1 SoC Interposer Network . 107
6.2.2 Memory-centric Computing and AIMM .. 108
6.2.3 MC2sim . 109

REFERENCES . 110

xii

LIST OF FIGURES

FIGURE Page

1.1 Analogy with a Road Situation. (a) Traffic is forming deadlock involving both
highway and city-road traffic because of mutual blocking. (b) Once we make sure
that all the highway-bound cars can stay in the ramp, until they get a space in
highway, deadlock freedom is guaranteed. Note that in this case (also in out inter-
chiplet deadlock) traffic isolation is enough to avoid deadlock, as highway and
city-roads are deadlock free. 3

1.2 Memory mapping in different systems: (a) data mapping in conventional system,
(b) data and compute mapping in NMP system, and (c) data and compute mapping
in NMP system with AIMM. 5

2.1 Three topology examples: ring (a), mesh (b), and torus (c). 10

2.2 Flow control examples at low load without contention: store-and-forward flow con-
trol (a) and virtual cut-through flow control (b). Figures are redrawn and adapted
from examples in [1], where H indicates head flit, B and T stand for body and tail
flits, respectively. 12

2.3 Virtual-channel router microarchitecture. 13

2.4 Traditional 5-stage router pipeline followed by link traversal. 13

2.5 Connecting multiple chiplets using passive and active interposer [2]. No logic can
be implemented in passive interposer. Unlike passive interposer, we can imple-
ment any logic in active interposer. For instance routers are implemented in active
interposer for connecting chiplets. 15

2.6 A typical reinforcement learning framework.. 23

3.1 An example of deadlock, formed in between two (4×4) mesh chiplets, and how RC
can avoid the deadlock. (a) Packets P1 (blue solid line) and P2 (red dashed line)
forming deadlock. (b) rc_buffer in the boundary routers store outbound packets.
(c) RC avoids the deadlock by allowing all the outbound packets to be stored in the
boundary routers until they get credit from downstream interposer routers. 28

xiii

3.2 Remote Control: (a) Permission network consists of multiple Outbound Packet
Injection Control (OPIC) blocks connected in a tree fashion. Each router has one
OPIC block. (b) One OPIC tree, and each edge is 2-bit request and response line.
(c) Boundary router with the newly added components marked with gray. Note that
the router attached to a non-boundary node does not have RCVA and RCB. (d) The
changes in NI of the non-boundary router marked in gray. There is no change in
NI attached to boundary routers. 32

3.3 Router pipeline stages in case of normal packets followed by modified router pipeline
in case of handling outbound packets in the boundary router. 36

3.4 Components in an OPIC block along the timeline (not to scale). 38

3.5 Example of permission network in 8× 8 mesh with 4 boundary routers with rc_buffer
connected. n denotes the radix of the OPIC block. 38

3.6 SoC viewed from different angles. (a) Shows the top view of the SoC. There are
four GPU chiplet (4× 4 mesh) at the four corners, and a CPU chiplet (2× 2 mesh)
in the center. DRAM memory is connected with edge interposer routers. (b) 3D
view of the same SoC, highlighting the interposer router, boundary router, and TSV
that connects them. It also show the active interposer, and the mesh network in
the interposer. (c) Microscopic cross-section view of SoC highlighting the micro-
architectural details of 2.5D SoC integration on active interposer. 41

3.7 Difference in maximum link utilization between (a) Parking and (b) Modular Turn
Restriction technique. Each number on the link represents the percentage of max-
imum number of cycles the link was busy across all the sample (10,000 cycles)
periods. 42

3.8 Normalized execution time for real applications (lower is better). 43

3.9 Pictorial representation of synthetic traffic patterns. These graphs are drawn by
collecting traffic (sources and destinations) at runtime. 45

3.10 Fraction of inter/intra-chiplet traffic. 46

3.11 Throughput graph for synthetic traffic pattern study. (#VC = 2, VC buffer size = 4,
packet size = 8 flits, rc_buff = 4 packets). 49

3.12 Heat map of average packet residency latency (cycles) per router (smallest cube)
in UR plotted for near saturation point for each technique. Top four cubes (big
cubes) represent GPU chiplets, having 16 routers (small cubes) each. The bottom-
left cube is the CPU chiplet having 4 routers. Beside the CPU chiplet we show
silicon interposer with 16 interposer routers. 50

xiv

3.13 Analysis on throughput graph in Figure 3.11. (a) Zero load latency of UR, rep-
resenting the trend for others as well. (b) The network breakdown for RC across
different injection rates for UR. “Net Delay" is the network delay including retry
latencies. “Q Delay" is the injection queue latency. “Grant" response latency for
getting the permission from OPIC including waiting for rc_buffer full condition. 51

3.14 Throughput improvement by using adaptive routing for different size of modular
SoCs for the following systems. The left two bars are for 4 boundaries in 4×4 GPU
chiplet and 4 boundaries in 2×2 CPU chiplet. The right two bars 8 boundaries in
8×8 GPU chiplet and 4 boundaries in 4×4 CPU chiplet. 51

3.15 Sensitivity study: Scaling up the chiplet size, while keeping the number of bound-
aries same as 4/chiplet. (a) Eight GPU chiplets of size 4x4 and one CPU chiplet
of size 2x2 mesh. (b) Two GPU chiplets of size 8x8 and one CPU chiplet of size
2x2 mesh. (c) Four 8x8 GPU and one 4x4 CPU. (d) Same as (c) except 8 bound-
aries/GPU chiplet. The small bar chart in each of the graphs represents zero load
latency for that particular configuration. 53

3.16 Doubled the number of boundaries 8 boundaries/ 8×8 GPU chiplet and 4 bound-
aries in 4×4 CPU chiplet. The major Y-axis corresponds to zero load latency
shown in bar graphs, and minor Y-axis corresponds to the throughput as shown in
white dots. 54

3.17 Throughput sensitivity and interplay between virtual channel and rc_buffer size for
4×4 chiplets (68 nodes setup) with 4 boundaries/chiplet. 54

3.18 Normalized energy for all the techniques, across all the synthetic traffic patterns. . . . 55

4.1 Overview of AIMM memory mapping for data and computation in NMP systems. . . 60
4.2 Dueling network for the RL-based agent. FC: Fully Connected, ReLU: Rectified

Linear activation function. Total 8 action values, which are interpreted and realized
by the underlying hardware once delivered. 63

4.3 AIMM Architecture. In this diagram we show the flow of the AIMM system, where
the whole system can be divided into three major cluster of components. The first
one is the application and system software, where each application is registered
as processes and on the system side the thread creation and thread scheduling is
supported. The second one is the CMP core where NMP controller and RL agent
is also situated along with other regular components. Finally, the HMC network
connected with the MCs on the CMP and communicated through PCIe links. 64

xv

4.4 HMC network, where we show an example of basic NMP operation in the HMC
network (where (i) NMP-op request enters through the corner HMC and makes
entry in the NMP-op table, (ii) sends request packets, (iii) gets responses and (iv)
computes in the NMP-op at the entry location), along with HMC dissection, fea-
turing major HMC components. 65

4.5 RL agent implementation through flow diagram.. 66

4.6 Classification of pages based on their access volume. 69

4.7 Page touched distributions representing number of pages touched in each epoch of
10000 cycles for the whole application execution . 69

4.8 Page affinity showing the interrelation among the pages in an application. 70

4.9 Execution time for all the benchmarks, normalized individually with their basic
techniques BNMP, LDB, and PEI respectively, which does not have any remapping
support, and commonly referred as B in the graph. Execution time for the base-
line implementations are compared to the system with remapping support, namely,
TOM and AIMM, respectively. We have added an unrealistic setup (Genie) result
to show a highly optimistic upper-bound. 75

4.10 Migration Stats: (a) On the major axis we show the fraction of pages that are
migrated for each of the applications using bars. On the minor axis it projects
the fraction of total accesses that are happened on migrated pages, with diamond
shaped markers. (b) Migration latency breakdown. 78

4.11 (a) Operation per cycle timeline. The X-axis is the sampled time and the Y-axis
is the value for OPC. The graph is not monotonically increasing as OPC depends
on several system parameters at runtime. (b) Normalized execution time for 8×8
mesh (shorter is better). 80

4.12 Multi-process normalized execution time. BNMP and BNMP + HOARD are con-
sidered as two separate baselines and used for normalize BNMP + AIMM and
BNMP + AIMM + HOARD results, respectively. 81

4.13 (a) Average Hop Count and Computation Utilization. Major Y-axis is shown in
bars. (b) Sensitivity study: The bar graph shows the sensitivity of the benchmarks
for different page-cache sizes (PCS), whereas the line graph show the sensitivity to
the NMP-Op table (NOT) sizes. 82

4.14 Energy-delay product (lower is better). 85

4.15 Normalized execution time for the HBM-PIM network. The X-axis is the bench-
marks and the Y-axis is execution time, normalized to the BNMP. 86

5.1 MC2sim overview. 89

xvi

5.2 HMC network. (a) HMC network and connection with the CMP, (b) HMC dissec-
tion, (c) detail of NMP-op table, entries and connections. 90

5.3 HBM-PIM network, the TLM model diagram. In the model each HBM-PIM cube
consists of one read queue, one write queue (shown as one queue in the diagram)
and a set of PEs. The set of PEs models the computations in the odd-even banks.
Each of the HBM cube also has a generic port to connect with other devices, which
also has the same generic port. Each tile consists of such four HBM-PIM cubes
connected through a switch. The switch also has computation capability. The
whole network is build by connecting four tiles through links with another switch,
which also connects to one host that offloads the NMP-ops. 93

5.4 The CMP design. 96

5.5 Link utilization of different policies on HBM-PIM network. The X-axis is the
epoch of length 100K cycles. The Y-axis is the cumulative number of packets
transferred through all the four links in one epoch. Higher Y-axis value shows
better throughput. 102

5.6 Operation Breakdown, collected by accumulating the latency experienced by each
NMP-op in each stage. Proc-stall indicates number of cycles the process being
stall for some reason, CMP-lat shows the latency in the CMP network, MC-lat
shows the latency the NMP-op experienced in the MC on the CMP side, MNet-lat
show the latency NMP-op experienced in the memory network, Mem-lat is purely
memory access latency. 104

xvii

LIST OF TABLES

TABLE Page

2.1 Summary of existing simulators in terms of some of the important features. (FS/A)-
Full-system (FS) VS. application-level (A), (DC)-Decoupled functional and per-
formance simulation, (µAR)-Microarchitecture details, (X86)-X86 ISA support,
(Mc)-Manycore support, (SS)-Simulation speed, (MCD)-memory-centric design,
(ML)-in-built machine learning support, (Y)-yes, (N)-No, (P)-partial, (N/A)-not
applicable. 24

3.1 Qualitative Comparison with Different Deadlock Avoidance Techniques for Mod-
ular SoC. (+) means high and (−) means low. We project the degree of high and
low efficiency with number of (+) or (−), respectively. 30

3.2 Parameters of simulated architecture. 43

4.1 The state representation of AIMM.. 61

4.2 List of actions sorted categorically. 62

4.3 Hardware configurations. 70

4.4 List of benchmarks and corresponding input data sizes. 75

xviii

1. INTRODUCTION

Data processing applications are evolving rapidly to process tera-bytes of data everyday, as it

drives the modern consumer market. They are adopting kernels to not only handle huge amount

of data to be processed in realtime, but also with utmost precision. To facilitate fast and accurate

processing of data, depending on the type of applications, use of specialized hardware, capable of

providing computation bandwidth are becoming common practice these days. On the other hand,

computation bandwidth can only be utilized when data can be supplied to the processing units

on time. Historically memory access bandwidth is inadequate for providing high processing per-

formance, which could earlier be mitigated by the use of cache memory that exploits spatial and

temporal data access locality. Contemporary applications like graph processing, machine learn-

ing applications, often exhibit sparse data access behavior, making caches ineffective. To exploit

the full benefit of the processing capability and large internal memory bandwidth, memory-centric

systems with network of memory chips are becoming more popular these days. For extracting per-

formance by accelerating every aspect of the generalized processor is becoming prevalent, leading

to realize the system by connecting many smaller specialized chips (chiplet) together to work

in a harmony. This dissertation investigates ways to make this chiplet integration easy and free

of communication hazards, like deadlock. It also investigates the data communication aspect of

memory-centric systems followed by its data and computation mapping. Finally, we describe sim-

ulation framework that is designed to conduct the experimentation and also to contribute to the

research community, as there are only a handful of memory-centric free source system simulator

available right now.

1.1 Deadlock in Modular SoCs

With the advancements in silicon technology, Systems-on-Chip (SoCs) are becoming more

complex and expensive, which motivates the designers to break the whole SoC into multiple small

independent chiplets for reducing design cost and achieve a better scalability. The modular de-

1

sign of SoCs using 2.5D integration technology is a total paradigm shift from the monolithic SoC

design to the hierarchical SoC design [3, 4, 5]. It allows to design smaller independent chiplets

such as CPU, GPU, and accelerators with low cost and complexity, and integrate them together on

an interposer, creating heterogeneous chiplet-based architectures. The chiplet-based design also

increases the usability of chiplets in different SoCs and provides flexibility for vendors to man-

ufacture using any desired process technology. We use modular SoCs and chiplet-based systems

interchangeably.

One of the major concerns in any network-based system is deadlock due to cyclic hold-and-

wait among virtual channels (VCs) [6]. Since chiplets are designed independently, their integra-

tion on an interposer brings new challenges to provide correctness validation. Connecting several

deadlock-free NoCs together in a modular SoC may introduce a new kind of deadlock formed

among different chiplets, as they are oblivious to each other’s routing algorithm [7]. There have

been many studies that address deadlock issues in conventional interconnection networks [6, 8, 9,

10, 11]. Conventional deadlock avoidance techniques cannot be applied directly to modular SoCs,

as they consider the whole SoC as a single network, which violates the fundamental modularity

principle of the chiplet-based system design.

Keeping the design modularity in mind, recently Yin et al. [7] propose Modular Turn Restric-

tion (MTR), which imposes extra turn restrictions on the boundary routers of chiplets to avoid

deadlocks in modular SoCs. MTR is easy to implement in hardware but needs changes in both

chiplet routing and SoC routing. In addition, because of the skewed turn restrictions, this approach

can lead to load imbalance and create several hotspots, which are detrimental for network through-

put. From this work we notice that the boundary routers are playing a major role in inter-chiplet

deadlocks.

We exploit two key insights regarding deadlocks in modular SoCs for providing a solution that

works with any chiplet routing. First, outbound packets (going out of the chiplet) may block in-

bound (going inside a chiplet from outside) and intra-chiplet (source and destination in the same

chiplet) packets to reach destinations. The other key observation is that packets involved in a

2

DEADLOCK

Reason for
deadlock

ramp

Highway Highway

(a) (b)

City roads City roads

Outbound traffic inbound
traffic

Figure 1.1: Analogy with a Road Situation. (a) Traffic is forming deadlock involving both highway
and city-road traffic because of mutual blocking. (b) Once we make sure that all the highway-bound
cars can stay in the ramp, until they get a space in highway, deadlock freedom is guaranteed. Note
that in this case (also in out inter-chiplet deadlock) traffic isolation is enough to avoid deadlock, as
highway and city-roads are deadlock free.

deadlock cross the boundary of the chiplets through a set of specific boundary routers1. Since

the chiplets and interposer have independent deadlock free routing techniques, a deadlock is not

possible in any of them separately, meaning it must involve both. Based on MTR and our observa-

tions, we pin-point the reason for this newly evolved deadlock among the chiplets in the modular

SoC design. So we propose Remote Control (RC), which is specific and highly optimized to solve

this deadlock issue with minimum cost. It is also generalized enough to be applicable to chiplets

with any kind of network, and SoC with any kind of chiplets connected in any topology with

corresponding routing.

In Figure 1.1, we draw a real-life analogy with a road situation, where the highway is consid-

ered as part of the interposer network and city roads are considered as part of the chiplet network.

Cars moving from city to highway are considered as outbound cars. The ramp in between the high-

way and the city roads is analogous to the existing output buffer (we named it as rc_buffer) in the

boundary router. In Figure 1.1(a) it is clear that if all the outbound cars cannot be accommodated

in the ramp, it may result in a deadlock. Therefore, we must get reservation for ramp (rc_buffer)

1Boundary Router: Chiplet routers that are connected with interposer router.

3

before getting down to city roads as shown in Figure 1.1(b) to avoid a deadlock. That means at any

point there will be only those many outbound cars on the city road, which can be accommodated

in the ramp between the city road and highway. We assume that the highway and city roads do

not fall in deadlock if they operate in isolation. Hence we propose RC to control the injection of

outbound packets to ensure isolation of these two types of traffic.

1.2 Data and Computation (Re)Mapping

With the explosion of data, emerging applications such as machine learning and graph pro-

cessing [12, 13] have driven copious data movement across the modern memory hierarchy. Due

to the limited bandwidth of traditional double data rate (DDR) memory interfaces, memory wall

becomes a major bottleneck for system performance [14, 15]. Consequently, 3D-stacked memory

cubes such as the hybrid memory cube (HMC) [16] and high bandwidth memory (HBM) [17] were

invented to provide high bandwidth that suffices the tremendous bandwidth requirement of big

data applications. Although high-bandwidth stacked memory has reduced the bandwidth pressure,

modern processor-centric computation fails to process large data sets efficiently due to the expen-

sive data movement of low-reuse data. To avoid the high cost of data movement, near-memory

processing (NMP) was revived to enable memory-centric computing by moving the computation

close to the data in the memory [18, 19, 20, 21, 22].

Recently, memory-centric NMP systems demand even larger memory capacity to accommo-

date the increasing sizes of data sets and workloads. For example, the recent GPT-3 transformer

model [23] has 175 billion parameters and requires at least 350 GB memory to load a model for

inference and even more memory for training. As a solution, multiple memory cubes can be com-

bined to satisfy the high demands [22]. For instance, the recently announced AMD Radeon VII and

NVIDIA A100 GPU have 4 and 6 HBMs, respectively. More memory cubes are adopted in recent

works to form a memory-cube network [24, 25] for further scaling up. Moreover, NMP support for

memory-cube network has also been investigated in recent proposals to accelerate data-intensive

applications [21].

Along with the NMP and memory system developments, memory mapping for placing data

4

OS: Paging

HW:MMU

Virtual
Address

HMC IDPhysical
Address Memory

Controller
Memory-cube

Network

After
Translation

Request Pkt
Scheduling

(a) Data mapping in conventional system.

OS: Paging

HW:MMU

Virtual
Address HMC IDPhysical

Address Memory
Controller

Memory-cube
Network

After
Translation

NMP
Instruction NMP-op

Scheduling

(b) Memory (data/compute) mapping in NMP system.

OS: Paging

HW:MMU

Virtual
Address HMC IDPhysical

Address Memory
Controller

Memory-cube
Network

After
Translation

NMP
Instruction NMP-op

Scheduling

AIMM

(c) Memory mapping in NMP system with AIMM.

Figure 1.2: Memory mapping in different systems: (a) data mapping in conventional system, (b)
data and compute mapping in NMP system, and (c) data and compute mapping in NMP system
with AIMM.

and computation in the memory-cube network has become an important design consideration for

NMP system performance. The paging system maps a virtual page to a physical page frame, then

the memory controller hashes the physical address to DRAM address, which identifies the location

in the DRAM. For NMP systems, the memory mapping should handle computation in addition to

data, as shown in Figure 1.2b. Besides the data mapping, the memory controller also decides the

memory cube in which the NMP operation is to be scheduled.

Prior work has focused on physical-to-DRAM address mapping to improve the memory-level

parallelism [26, 27, 28]. Recently, DRAM address mapping has been investigated in NMP systems

to better co-locate data in the same cubes [22]. However, adapting the mapping for the dynamic

NMP application behavior is problematic due to the possibility of excessive data migration for

every memory byte in order to reflect the new mappings. On the other hand, virtual-to-physical

page frame mapping provides an alternative approach to adjust the data mapping during run time.

Although such research has existed for processor-centric NUMA systems [29, 30, 31, 32], it has

not yet been explored for memory-centric NMP systems, where computation is finer grained and

tightly coupled with data in the memory system.

Furthermore, recent NMP research [18, 21] tightly couples the computation mapping with

5

given data mapping for static offloading, which has not considered the co-exploration of the in-

termingling between them. This may cause computation resource under utilization in different

cubes and lead to performance degradation, especially for irregular data such as graphs [33] and

sparse matrices [34]. Thus, it is challenging to achieve an optimal memory mapping for NMP

with another dimension of computation mapping. Moreover, the unique and dynamic application

behaviors as well as the intractable decision space with NMP in the memory-cube network make

it even more challenging to design a universal optimal mapping for all types of workloads2.

We propose an Artificially Intelligent Memory Mapping (AIMM), that optimizes data place-

ment and resource utilization through page and computation remapping. AIMM can adapt to

different applications and runtime behaviors by continuously evaluating and learning the impact

of mapping decisions on system performance. It uses a neural network to learn the near-optimal

mapping at any instance during execution, and is trained using RL, which is known to excel at

exploring vast design space. In the proposed system, AIMM interacts with the paging system,

the memory controller, and the memory-cube network. It continuously evaluates the NMP perfor-

mance through the memory controller and makes data remapping decisions through the paging and

page migration systems in the memory network. It is also consulted for computation remapping to

improve NMP operation scheduling and performance.

1.3 Framework Development

Data processing applications’ demand for high memory capacity grows with the increased data

size, incurring disproportionate increase in the cost of data movement between the processor and

the main memory in processor-centric computation systems. Majority of those computations are

simple matrix multiplications that consist of dot-products followed by reduction or accumulation,

which can easily be carried out in SIMD systems like GPGPUs. However, GPGPUs also incur

the data movement between the main memory and GPU memory after the kernel is offloaded.

This ever increasing demand of data movement gives rise of in-memory/near-memory computa-

2We conservatively calculate the decision space by taking the minimum number of pages touched (n pages) in
any epoch in our set of applications, and mapping them to any of the m cubes, which constitutes = mn, where
MIN(n) = 12 andm = 16 in our system≈ 1014 with the average value of n in an epoch ranges from≈ 10s−1000s.

6

tion paradigm, which completely shunts the data movement between the processors and the main

memory, as it supports computation inside the augmented memory module or near to the data

location. The operation offloading is still needed from the processor side to the NMP memory

side. In addition, it is not practical to convert all the memory accesses in an application into NMP

operations, and hence, the systems still need to support conventional way of memory accessing.

In terms of memory technologies, the memory-centric design can be categorized into (1)

DRAM based, (2) NVM based, and (3) SRAM based [35]. The DRAM based designs are again di-

vided into (1) commercial DIMMs [36, 37, 38] and (2) 3D DRAM cubes. The 3D DRAM has two

distinct approaches, (1) HBM [39] and (2) HMC [18, 19, 21, 40, 41, 42]. The NVM based designs

use ReRam [43, 44]. Even though there are a lot of variations in the memory technology, they

also share common traits for building the memory system. For instance, for ease of capacity scal-

ing they tend to have modularized design, where certain size of modules are connected through

interconnection network. However, it is evident that the functionalities of modules of different

technologies widely vary, and so as their control and management systems.

There are many hard problems in the architecture for which historically we had either heuristic

based approximate runtime solutions, or complex and customized offline solutions for deciding a

rigid hardware policy. For instance, finding the optimal cache replacement policy, designing opti-

mal prefetcher, or optimal thread scheduler, etc., considered as hard problems to solve. Recently

by leveraging advanced technology artificially intelligent schemes [45, 46, 47, 48, 49, 50, 51] have

been proposed to go hand-in-hand with conventional hardware systems. So hardware design need

to adapt to the required changes to facilitate the machine learning framework integrated in it.

Simulators have been prevalent tools in the computer architecture research community to val-

idate innovative ideas, as prototyping requires significant investments in both time and money.

Many simulators have been developed to solve different research challenges, serving their own pur-

poses. Many memory-centric processing researchers either using in-house simulators customized

to their requirements, or using some modified versions of cpu-centric computation simulators avail-

able for several years. Developing simulation framework needs both time and effort and hence we

7

immediately need a framework generalized enough to be used to evaluate different innovative

ideas on different technologies and easily extendable to implement new policies. In addition, if

we have an evaluation standard, it will be easier to compare across the techniques quantitatively

even without spending time to reproduce the results, which should lead to overall higher research

throughput.

1.4 Thesis Statement

For exploiting the complete benefits of NMP using modular SoC, the integration must be guar-

anteed to be deadlock free for providing better design flexibility to both chiplet and SoC designers

and NMP data/computations should be intelligently placed in the memory to minimize the NMP

operation costs.

1.5 Contributions

• RC guarantees deadlock freedom in modular SoC by simply controlling a subset of packet’s

injection from a remote node in the same chiplet. Any chiplet topology and routing can

adapt RC, making it flexible and attractive for practical purposes. We formally prove that

RC guarantees deadlock freedom in modular SoC using an illustrative generalized example.

We quantitatively show that RC is better than the state-of-the-art technique(s) and to the

best of our knowledge, this is the first work that uses injection control based technique to

guarantee deadlock freedom in the modular SoC design domain.

• AIMM, an artificially intelligent memory mapping, continuously learns and adjusts the

memory mapping dynamically to adapt to application behavior and to improve resource

utilization in NMP systems. To the best of our knowledge, this is the first NMP work that

targets mapping of both data and computation. In AIMM a reinforcement learning formu-

lation explores the vast design space and used to train a neural network agent for solving

the memory mapping problem. We show a detailed hardware design and practical imple-

mentation of RL directed data and computation mapping in a plug-and-play manner to be

applied in various NMP systems. A comprehensive set of experimental results show that the

8

proposed AIMM improves the performance of state-of-the-art NMP systems significantly.

• We introduce MC2sim as a memory-centric computation framework, with plug-and-play

HMC- and HBM- network through a set of memory interfaces, and easily extendable to

NVM technologies. We also plug-in a reinforcement learning (RL) agent (can be configured

to disable if not required), which is capable of reading architectural data and can be inter-

faced with any hardware policy making through defined interfaces. The simulator is highly

optimized for high simulation speed to make RL training and inference possible in parallel

to the hardware simulation. Most of the simulator components are highly parameterizable.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces the fundamen-

tal concepts of interconnection network, deadlock, SoC, SoC deadlock, different aspects of the

processing-in-memory and memory-centric computing framework design, to lay down a foun-

dation for the discussion of this research, and survey the literature of related work. Chapter 3

presents the SoC deadlock issues and proposed solution, Chapters 4 and 5 present generalized data

and computation mapping solution for the NMP techniques and framework design for the evalu-

ation of memory-centric designs with NMP. Finally, Chapter 6 concludes this dissertation with a

discussion on the future research directions.

9

2. BACKGROUND AND LITERATURE SURVEY

In this chapter we present the fundamental concepts of interconnection network and deadlock

problem associated with it, followed by SoC and deadlock observed in modular SoCs. Then we

discuss about the 3D stacked DRAM fundamentals, along with data and computation mapping

aspects of in-memory/near-memory processing, followed by a brief discussion on the existing

simulation frameworks and motivation for design a new memory-centric computing framework.

2.1 Interconnection Network Basics

Interconnection network being the backbone of any multi-node system, plays a major role in

system performance. The communication fabric is built by connecting several routers through

physical link channels. Network topology, routing algorithm, flow control protocol and router mi-

croarchitecture implementation are the major aspects of any network interconnect design. Through-

out this dissertation we design and evaluate several types of networked systems, namely CMP

network, SoC chiplet and interposer network, memory cube network, etc. We discuss each basic

aspects of the network design, which is applicable for any kind of network, briefly as follows.

(a) Ring topology (b) Mesh topology (c) Torus topology

Figure 2.1: Three topology examples: ring (a), mesh (b), and torus (c).

10

2.1.1 Topology

The network topology forms the shape of the network by defining its connections. Figure 2.1

shows different types of topologies as an example of symmetric topology. There can be asymmetric

or irregular topologies as well. Router radix dictates the freedom of the topology as number of

routers that can be connected with any router is constrained by the router radix. The ring topology

is constructed by utilizing the low radix routers whereas the torus demand high radix routers to

form the network, and depending on that the network performance and energy consumption are

decided. The performance and energy trade-off sometimes lead to right choice for a network

topology.

2.1.2 Routing Algorithm

Routing algorithm goes hand-in-hand with the topology as each topology needs a customized

routing algorithm, which must ensure that the traffic in the network never falls in the deadlock.

Routing algorithm can be either deterministic or non-deterministic. Deterministic routing algo-

rithms are popular to be simple to implement using minimum resources. On the other hand, the

non deterministic routing algorithms are known for providing path diversity for routing packets

and so as the network throughput. Routing algorithms are prone to deadlock as one routing packet

tend to reserve multiple of network resources for achieving high performance, resulting in circular

hold and wait often involving multiple packets in circular hold-and-wait. The deadlock situation

can be solved mostly in two ways, (1) deadlock avoidance [8], and (2) deadlock recovery [52, 9].

We detail the deadlock problem and solutions in following sections.

2.1.3 Flow Control

Flow control is analogous to traffic lights on the roads. Similar to the traffic lights controlling

cars’ movements, flow control manages the flow of the packets in the network, so that all the

packets can reach to their corresponding destinations safely. Generally The flow control technique

regulates the flow of the traffic between two routers. However, there could be indirect ripple

effect of flow in different pair of routers on each other, mostly as the backpressure in the opposite

11

H B B B T
H B B B T

H B B B T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Channel 0
Channel 1
Channel 2

Cycle timeline

(a) Store-and-forward example

H B B B T
H B B B T
H B B B T

0 1 2 3 4 5 6

Channel 0
Channel 1
Channel 2

Cycle timeline

(b) Virtual cut-through example

Figure 2.2: Flow control examples at low load without contention: store-and-forward flow control
(a) and virtual cut-through flow control (b). Figures are redrawn and adapted from examples in [1],
where H indicates head flit, B and T stand for body and tail flits, respectively.

direction of the traffic flow under consideration. It is evident that stricter flow control may have

a negative impact on the network performance resulted due to network stalls. On the other hand,

relaxing the flow control may make the network deadlock prone.

In the Figure 2.2 two examples of flow control techniques are illustrated. (a) store-and-froward

stores the whole packet and then only forwards the packet to the next node in the network (down-

stream router). The technique is simple yet detrimental for the network performance as the packets

are practically sent as the form of several flits through the physical channels. The width of the

physical channels are in general equal to the flit width, and hence transferred through the channel

from upstream router to the downstream router within one network cycle. (b) virtual cut-through

can be considered as improvement over the store-and-forward technique, where the whole packet

need not reach to the VC buffer for forwarding already reached flits further downstream. Only

downside of this flow control is that the buffer sizes are bigger or at least equal to the packet size.

This shortcoming is addressed in the wormhole flow control which works with any size of the

buffer as the credit-flow happens in the flit level as opposed to packet level in virtual-cut-through

and hence likely to provide a high network throughput.

2.1.4 Router Microarchitecture

The router is responsible for routing packets so that the packets reach to their destinations

through the network. Router micro-architecture (shown in Figure 2.3) facilitates the packet receive,

evaluating its destination to route them forward. In order to do that each router try to reserve buffer

12

Crossbar
Switch

Input N

Input 0

vc0

vc1

vcv

…

vc0

vc1

vcv

…vc0

vc1

vcv

…

…

…

…

Output 0

Output N

…

…

Routing
Computation

VC Allocator
Switch

Allocator

Figure 2.3: Virtual-channel router microarchitecture.

Buffer Write Routing
Computation VC Allocation Switch

Allocation
Switch

Traversal

Buffer Write Switch
Allocation

Switch
Traversal

Head Flit

Body or Tail Flit

Link Traversal

Link Traversal

Figure 2.4: Traditional 5-stage router pipeline followed by link traversal.

in the downstream router by invoking VC allocation. Since one router may be connected with

multiple other routers, often they need to arbitrate the packets when they try to go to the same

destination in the same cycle. Switching/Switch-traversal is considered as the integral part of the

packet sending process which is followed by the switch allocation and arbitration. Link traversal

is followed by the switch traversal. In Figure 3.3 we show a conventional five stage pipeline router

functionalities step by step.

2.1.5 Network-on-Chip (NoC) Deadlock

Network-on-Chip (NoCs) are on-chip interconnection networks in silicon that interconnect

execution cores, slices of cache, memory and IO controllers. Deadlock being a pressing network

13

issue for long time, it is well known and well exercised. It occurs mostly because of circular hold

and wait for the network resources across the network. Here we briefly discuss the state-of-the-art

deadlock avoidance mechanisms in the context of monolithic NoC and later extend our discussion

for deadlock in hierarchical network in modular SoCs. Deadlock avoidance mechanisms fan out

in two distinct branches, namely VC and turn model based, and flow control based techniques.

The first type either rely on turn restrictions, or on dedicated/ordered VC buffer for different traffic

types/directions. On the other hand, flow control techniques either control the injection of packets,

or ensures bubble in the buffer to avoid deadlocks.

2.1.5.1 Turn Restriction and VC over-Provision

Duato proposed escape-VC [8], a theory for deadlock freedom for routing with cyclic channel

dependency. Duato’s theory can be applied for both deadlock avoidance [53, 54] and deadlock pre-

vention [55, 52, 56] techniques. Idea of escape channel cannot be applied directly in modular SoC

as the packets in the escape-VC must be propagated using a deterministic deadlock free algorithm,

which cannot be guaranteed in a modular SoC. Recently Ebrahimi et al. [57] propose EbDa that

provides exclusive sets of VCs to isolate traffics (say, intra-chiplet traffic, and inter-chiplet, or out-

bound traffic) to avoid deadlocks. However, VC separation leads to lower utilization and is shown

less attractive in MTR [7]. Dally et al. [6] propose to use two or more VCs in order to avoid the

cyclic channel dependencies. It ensures deadlock freedom by using total ordering of VCs. Even

though this condition is sufficient to avoid the deadlock, it is not necessary [9]. Extra VCs result

in increase in the router area and energy consumption. Based on Dally’s theory, a few other tech-

niques have been proposed that use additional VCs [58, 59, 60] to avoid deadlock. Another way to

achieve strict order of reservation for the shared VCs is by imposing turn restrictions [61, 62, 63]

on the packet traversal.

2.1.5.2 Flow Control Based

For providing deadlock freedom, flow control techniques either regulate the injection [64, 65]

of the packets or allow a packet to go forward depending on the buffer occupancy [66] in the ring.

14

chiplet chiplet

Router

chiplet chiplet
Router

Active InterposerPassive Interposer

Router

Router

Figure 2.5: Connecting multiple chiplets using passive and active interposer [2]. No logic can be
implemented in passive interposer. Unlike passive interposer, we can implement any logic in active
interposer. For instance routers are implemented in active interposer for connecting chiplets.

The second concept is coined as bubble flow control by Puente et al. [67] and applied in torus

network for the flow control in escape channel. This concept is being used in in-transit buffer

for avoiding deadlock in k-ary n-cube torus network [68], and extended later for irregular off-

chip network [69, 11], worm-whole switching [70], torus cache-coherent NoCs [71]. We take the

wisdom from bubble flow control and use that in Parking lot design. We also use the concept of

injection control for outbound packets to bound the Parking lot size (even to a single packet buffer).

Recently Ramrakhani et al. [9] propose SPIN to recover from deadlock by making packets in the

deadlock loop, move hop by hop in a synchronous progress. It is very challenging to apply SPIN in

modular SoC, where the chiplets are designed independently, and connected through the interposer

routers. Moreover, synchronization of packet movement among chiplets make the design very

complicated.

2.1.6 Modular 2.5D SoC Integration

Modularity has been advocated as a new design principle to reduce the complexity and cost of

the SoC design. An SoC is called modular if all the chiplets on that SoC are designed indepen-

dently. Contemporary multi-chiplet SoC integration uses a passive silicon interposer [72], where

the only way to make connections between chiplets is to make fixed wire connections as shown

in Figure 2.5. In a passive interposer, dedicated wire connections are required from a chiplet to

connect with different chiplets [2]. This may lead to long wire usage with multiple repeaters and

15

a huge number of dedicated communication channels, making it hard to scale in terms of area and

energy. In addition, the channels in a passive interposer should be standardized for the modular

SoC design. Hence, there has been an increase in research of active interposers [73, 4, 74] both

in industry and academia. We also consider an active interposer substrate for designing the in-

terposer network. Active interposer facilitates interconnection between the chiplets [2, 75, 76] by

adopting the router design in the silicon substrate, which is more area-and energy-efficient. The

integration process is generally known as 2.5D integration, featuring a silicon interposer as shown

in Figure 2.5. It is placed between the System-in-Package (SiP) substrate and the dice, where this

silicon interposer has Through-Silicon-Vias (TSVs) connecting the metalization layers on its upper

and lower surfaces [76].

2.1.7 Deadlock Freedom in Modular SoC

2.1.7.1 Modular Turn Restriction (MTR)

Based on the principle of turn restrictions [61], recently, Yin et al. [7] propose a deadlock-free

routing algorithm for modular SoC. As the best of our knowledge, this is the only work on modular

SoC deadlock freedom so far. At design time, MTR finds the optimal placement and turn restric-

tions for boundary routers of each chiplet independently with the help of Channel Dependency

Graph (CDG) analysis. The turn restrictions are applicable to both the packets that go out from

the chiplet (outbound packets) as well as to the packets that reach from other chiplets (inbound

packets). Once the list of turn restrictions is obtained, MTR applies the turn restrictions in the

chiplet routing, which are applicable only for the outbound packets. For imposing turn restriction

on the inbound packets, interposer routing also needs to be modified, which imposes constraint on

the SoC designers and increases design complexity.

2.1.7.2 VC Separation (VC-SEP)

The idea of VC separation is widely applied to avoid protocol deadlock as well as routing dead-

lock based on Duato’s theory [56]. We showcase it as a potential solution for SoC deadlock since

it is a natural fit for this particular problem. The traffic in the Modular SoC can be categorized into

16

two. (1) Inter-chiplet: traffic of packets which do not have destinations in the source chiplet. (2)

Intra-chiplet: traffic of packets having both sources and destinations in the same chiplet. Without

any constraint on the area, cost and energy, VC-SEP naturally segregates two different traffic by

providing two different virtual networks throughout the system. For outbound packets, we allocate

first half of the total set of VCs, and other set of VCs are being allocated for inbound packets and

all the intra-chiplet packets.

2.1.7.3 In-Transit Buffer (ITB)

The idea of ITB is originally used by Flich et al. to avoid deadlocks in irregular networks and

later extended for off-chip networks in the cluster of workstations [11]. Here, we adopt the idea of

ITB and apply in the Modular SoC to avoid deadlocks. ITB uses the Network Interface Card (NIC)

memory as an in-transit buffer in some pre-decided nodes. Those special nodes are being selected

after CDG analysis as deadlock breaking points. Any packet that reaches to those nodes are forced

to eject in that node. Using DMA, the whole packet is stored in the NIC memory. In case the NIC

memory gets exhausted, the packet is dropped and a NACK packet is being generated and sent to

the source node for re-transmission. This process continues till the packet is ejected successfully

in that special node. If the packet is successfully stored in NIC memory, the NIC sends an ACK

message to the source node. To port this idea in the Modular SoC, we consider the boundary

routers as special nodes and use the Network Interface (NI) connected to boundary routers to place

ITB, a small buffer to store packets (no DMA) in the similar way described above. The ejection

and reinjection in some special nodes (boundary routers) break the circular channel dependency

chain and hence avoid deadlocks. By using domain specific knowledge we further optimize the

performance of this implementation by doing ejection-injection only when a packet is outbound.

Please note that we made necessary changes to the original implementation for accommodating

the idea of ITB into the modular SoC context.

17

2.2 3D stacked DRAM and NMP

2.2.1 Die-Stacked Memory.

HMC [16] and HBM [17] with logic and DRAM dies in the same silicon have enabled high

bandwidth memory-centric design and near-memory processing. HMC uses packet-switching pro-

tocol to simplify capacity scaling by chaining multiple cubes as a memory-cube network [21]. On

the other hand, HBM is tightly coupled with the processor using direct connections and provides

the flexibility of memory controller design for command scheduling. In this work, we evaluate

AIMM on a system with large chained HMC network, and also conduct a case study in §4.5 on

capacity scaling using recently proposed HBM-PIM [39] in context of NMP operation and data

(re)mapping.

2.2.2 Memory Network

Conventional systems with DDR memory have capacity limits and bandwidth bottlenecks due

to the limited number of pins per processor chip. Therefore, it requires more processor sockets in

such systems to scale their memory capacity. However, the overweight data movement with re-

spect to light computation in emerging data-centric applications can lead CPU to be under-utilized.

In contrast, HMCs can be chained together to form a cost-effective memory network using packet

switching and provide large memory capacity. In addition, commonly adopted processor-centric

design optimizes processor-to-processor communication but overlooks the overall system band-

width utilization. A recent study [24] has shown that memory-centric designs can achieve better

bandwidth utilization as compared to processor-centric designs.

2.2.3 Near-Data Processing.

Recently, a significant amount of research efforts to reduce data movement across the memory

hierarchy to improve the system efficiency. Near-data processing (NDP), as a promising compute

paradigm, has driven new architectures to move computations near data-resident locations, such as

cache and memory. Aga et al. proposed compute cache [77] that uses bit-line circuit technology

to perform simple computation in the cache to enable in-place computing. Processing-in-memory

18

(PIM) [19, 78, 79, 20, 80, 81, 82, 83, 22] is an alternative NDP design that introduces compute

elements in memory for data processing. Recent studies [18, 84] have proposed to integrate PIM

architectures within modern systems in a seamless fashion. They extended the instruction set to of-

fload computations to data-resident memory modules. These mechanisms achieve better efficiency

compared to conventional computing due to reduced data movements. They are most effective in

the case of irregular memory accesses and atomic write operations. However, they are suboptimal

when performing simple tasks over a large size of raw data, such as dot product, since they need to

fetch part of the data across the memory network for further processing when data are not located

in the same module that incurs communication and energy overhead. Ahn et al. proposed Tesser-

act [19], a programmable PIM accelerator for large-scale graph processing. Nair et al. [85, 78]

proposed Active Memory Cube (AMC) by leveraging HMC to place vector processing units in

the logic layer. AMC suffers from delays due to instruction pre-loading as well as delay and en-

ergy overhead of its complex interconnection network. Most recently Fujiki et al. [86] propose a

programmable in-memory processor architecture, and data-parallel programming framework using

non-volatile memory. Mondrian [82] takes an algorithm-hardware co-design approach to sequence

irregular accesses for better locality. Recent study [87] analyzed Google workloads and discov-

ered the data movement as the bottleneck for performance and energy efficiency, which is also the

problem this research tries to solve.

The memory-centric design paradigm can be broadly classified as (1) processing using memory

(PUM) [42, 88, 89, 37] and (2) near-memory processing (NMP) [90, 91]. PUM typically augments

memory circuit for analog computation in the memory [42, 88, 89, 37] or cache [35]. We focus on

NMP in this work, where processing units (PUs) are built on the logic layer of HMC [18, 19, 21],

separate from the DRAM layers. In NMP, operations are offloaded from the processor to the mem-

ory in various granularity, ranging from operation-level [20, 18], to cache block [21], page [92],

and kernel level [19, 22], where NMP system complexity varies accordingly. As operation-level

offloading is the most flexible and practically feasible [39] in an augmented memory system, we

choose those NMP systems as our primary target for data and computation mapping optimization.

19

Prior research [93, 94, 95] has advocated to provide computation power as well as routing

functionalities in communication fabrics. Active Message [93] embeds the function pointer and

arguments across the network to perform tasks in remote compute nodes. Pfister et al. [94] and

Ma [96] proposed mechanisms to combine messages so as to reduce network traffic. Recently,

IncBricks [95] implements an in-network caching middlebox for key-value acceleration in router

switches. Several studies [97, 98, 99] proposed mechanisms to optimize shared value update or

reduction in the network. The NYU Ultracomputer [97] introduced adders in routers to combine

fetch-and-update requests for the same shared variable. Panda [98] and Chen et al. [99] proposed

similar hardware to optimize reduction in the network interface for MPI collective communica-

tions. These mechanisms only support pure reduction operations and cannot accelerate operations

like dot product, thus requiring significant data movements across the memory hierarchy to first

compute the intermediate results. Recently, Kwon et al. proposed MAERI [100] to improve ef-

ficiency for data-flow computations in deep neural network accelerators, which does not target

general applications. The multiply operations require data to be brought to local SRAM and are

calculated only at leaf nodes in the tree-based network topology. These in-network compute solu-

tions have limited adaptivity since the reduction tree/ring is statically tied to the network topology.

2.2.4 Computation and Data Mapping in NMP

Existing NMP proposals such as PEI [18] and Active-Routing (AR) [21] focus more on of-

floading and hardware design while leaving computation and data mapping unexplored. For com-

putation mapping, the location decisions and operation offloading schemes vary across different

techniques. For instance, AR sends the operations as <&dest += &src1 OP &src2>, where

each of the operands carry their physical addresses. On the other hand, PEI fetches one of the

source data from the cache and sends the request along with that data. The computation point for

each of the operations is decided following fixed policies, which either maps to closest to both the

sources, or at the destination. The result of the NMP operation is returned to the processor as a

response. We evaluate AIMM on two variations (created based on their computation points) of AR

and PEI described in §5.5.

20

For data mapping, AR and PEI rely completely on the OS for data allocation and are oblivious

to the data location. They can reduce data movement between the processor and the main memory

significantly, but do not address the cost of individual operation with operands being spread across

the memory network. To address this issue, we employ modified TOM [22], as a heuristic-based

solution, which originally facilitates data mapping for GPU NMP systems. TOM’s mapping deci-

sion is applied to a host of pages and it fails to adapt to fast changing application behaviors such as

graph processing. Owing to the observation that NMP applications exhibit a fine-grained relation-

ship between the data and computation location, more adaptive and robust solution is required.

2.2.5 Data Locality in NUMA and Multi-Program Workloads

System supports for data and computation mapping for NMP is still in its infancy. In NUMA

systems, heuristic-based approaches were proposed to co-locate data and computation for better

locality, including different aspects of data allocation optimization and reallocation using migra-

tion [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]. Multi-program workloads make the prob-

lem even more complex due to inter-process interference. In traditional multi-program workload

systems, a thread-private allocator like HOARD [101] can be used to improve the data locality

by ensuring the proximity of memory accesses in a thread through bulk allocation and per-thread

free lists. In this work, we explore AIMM on top of HOARD in multi-program scenarios, intend-

ing to reduce inter-process interference for NMP-ops in addition to data and computation location

optimizations.

2.2.6 Migration and TLB shootdown

Apart from migration in CPU-based NUMA [110, 111], page migration is also proven to be

useful in multi-GPU shared memory systems. The “first-touch” approach [112, 113, 114] can

localize memory allocation to the first thread or the first GPU that accesses the memory, but does

not guarantee the locality in the future computations. Baruah et al. [115] proposed to select pages

and migrate them at runtime to the highly predicted GPU. In AIMM, we co-explore both data

movement and computation scheduling to improve resource utilization.

21

Page migration needs to update the page table, typically accompanied by a TLB shootdown

for maintaining TLB coherence [116]. Commercial x86-64 processors do not support automatic

invalidation of stale TLB entries on a page table update. Instead, the OS is responsible for TLB

coherence maintenance via the expensive TLB shootdown process, which is an active research

area [117, 118, 119]. In this paper, we use hardware-assisted TLB shootdown by employing a lazy

invalidation approach as described in §4.2.3.

2.2.7 Data/Computation (Re)Mapping using RL

Reinforcement Learning (RL) is a machine learning method where an agent explores actions

in an environment to maximize the accumulative rewards [120]. In this paper, RL is used to design

an agent that explores data and computation remapping decisions (actions) in the NMP system

(environment) to maximize the performance (rewards). Figure 2.6 shows a typical setting of RL,

where an agent interacts with the environment E over a number of discrete time steps. At each time

step t, the agent observes an environment state st ∈ S (state space), and selects an action at ∈ A

(action space) to change the environment according to its policy π, which is a mapping from st

to at. In return, it receives a reward rt and a new state st+1 and continues the same process. The

accumulative rewards after time step t can be calculated as

Rt =
∑

T
t′=tγ

t′−trt′ (2.1)

where γ ∈ (0, 1] is the discount factor and T is the time step when the process terminates. The

state-action value function Qπ(s, a) under policy π can be expressed as

Qπ(s, a) = Eπ[Rt|st = s, at = a] (2.2)

the objective of the agent is to maximize the expected reward.

In this paper, we use Q-learning [121] that selects the optimal action a∗ that obtains the highest

state-action value (Q value) Q∗π(s, a
∗) = max Eπ[Rt|st = s, at = a∗] following the Bellman

22

Agent
(DNN)

Environment
(NMP System)

Reward
(perf improve)

Action
(data/compute

remapping)

State
(system and

application info)

Figure 2.6: A typical reinforcement learning framework.

equation [120]. The Q value is typically estimated by a function approximator. In this work, we

use a deep neural network with parameters θ as the function approximator to predict the optimal Q

value Q(s, a; θ) ≈ Q∗(s, a). Given the predicted value Q(st, at; θ), the neural network is trained

by minimizing the squared loss:

L(θ) = (y −Q(st, at; θ))2, (2.3)

where y = rt(st, at)+γ maxa′ Q(st+1, a
′; θ|st, at) is the target that represents the highest accumu-

lative rewards of the next state st+1 if action at is chosen for state st.

RL has been widely applied to network-on-chip (NoC) for power management [122], loop

placement for routerless NoC [123], arbitration policy [124], and reliability [125]. It has also

been used for designing memory systems, such as prefetching [126] and memory controller [51].

Additionally, it has been applied to DNN compilation and mapping optimization [127, 128, 129].

In this work, we use RL for co-exploration of data and computation mapping in NMP systems.

2.3 Framework Design

2.3.1 Why Memory-Centric Computing Simulator?

There are a large number of simulators available, which are designed following processor cen-

tric design principle as shown in Table 2.1, either focusing some specific components in the system

(like booksim [130], DRAMsim [131], GPGPUsim [132], CasHMC [133], etc.), or the system

23

Simulator FS/A DC µAr Mc SS MCD ML Simulator FS/A DC µAr Mc SS MCD ML
gem5 [134] FS N Y Y + N N/A SimpleScalar [140] A N Y N ++ N N/A
GEMS [141] FS Y Y Y + N N/A Booksim [130] N/A N/A Y N ++ N N/A
MARSSx86 [142] FS Y Y Y + N N/A Gernet [143] N/A N/A Y N ++ N N/A
SimFlex [144] FS Y Y Y + N N/A GPGPUsim [132] A Y Y N ++ N N/A
PTLsim [145] FS Y Y Y + N N/A DRAMsim [131] N/A N/A Y N ++ N N/A
Graphite [146] A Y N Y +++ N N/A Dinero IV [147] A N Y N ++ N N/A
SESC [148] A N Y N ++ N N/A Zesto [149] A N Y N + N N/A
Sniper [150] A Y N Y +++ N N/A CMP$im [151] A Y Y N ++ N N/A
MCSimA+ [135] A+ Y Y Y ++ N N/A Zsim [136] A Y Y Y ++ N N/A
Multi2Sim [152] A+ N Y Y + N N/A CasHMC [153] N/A N/A Y N/A ++ N N/A
PIMSim [137] FS/A+/A N Y Y +/++/+++ Y N/A MultiPIM [138] A+ Y Y Y ++ Y N/A
NAPEL [139] A Y N - +++ Y Y MC2sim A Y Y Y +++ Y Y

Table 2.1: Summary of existing simulators in terms of some of the important features. (FS/A)-
Full-system (FS) VS. application-level (A), (DC)-Decoupled functional and performance simu-
lation, (µAR)-Microarchitecture details, (X86)-X86 ISA support, (Mc)-Manycore support, (SS)-
Simulation speed, (MCD)-memory-centric design, (ML)-in-built machine learning support, (Y)-
yes, (N)-No, (P)-partial, (N/A)-not applicable.

as a whole keeping processors at the center of the design (like gem5 [134], MCsimA+ [135],

Zsim [136], etc.). There is always been a trade off between the simulator accuracy and the simula-

tion time. That is why in general practice the main focus of the design is done in details and other

essential supporting components are designed in a much abstract way to save simulation time.

Very recently we came across some efforts for supporting NMP, namely PIMSim [137], Mul-

tiPIM [138], NAPEL [139], which shows growing demand for memory centric design simulation

tool. In MC2sim design we tradeoff accuracy for speed as we are designing huge SoC with large

number of cores, connected to 100s of GBs of main memory supporting NMP and act as envi-

ronment for the reinforcement learning agent if enabled. In MC2sim our main focus is accurate

simulation of the NMP operations in the main memory system. Hence, we abstract the Chip multi-

processor side carefully without hurting its high level functionality and throughput. As many

essential components are implemented functionally, providing absolute end-to-end execution time

is not our primary goal, rather we intend to quickly and fairly compare merits of different NMP

techniques on this platform.

24

2.3.2 Memory Centric Design

Memory-centric design being in its infancy there are only a few general framework available to

evaluate different NMP techniques. Researcher customize the available stand alone different com-

ponent simulators and integrate them accordingly to make them work with their NMP techniques.

Most of the time the development takes time and also may have observe some secondary impact

from the original processor centric design, often goes undetected.

2.3.2.1 Inherent NMP support

NMP system being a unique problem itself involves co-design of the memory and the compu-

tations in-order to make them work in a harmony. If the NMP is implemented in a scale-out large

memory system it also involves unique remote request generation and receive response function-

alities engaging network components, which in turn influences the flow control. If the simulation

framework inherently support the NMP-op simulation, implementing different NMP-op policies

should be much easier and less error prone that implementing from scratch.

2.3.2.2 Huge Memory Allocation and Access APIs

Another goal of memory-centric design is to scale the memory capacity to terabytes and still

able to simulate the memory access behavior for the applications. As the best of our knowledge

the current simulators do not support programming kernels on their own, rather rely on reading for

the compiled binaries. The main downside of that is the memory allocation is access is limited by

the host system configurations. We change that concept by integrating the programming interface

with the simulation interface to support any size of memory allocation and access behavior simu-

lation through customized memory allocation and access APIs, which works along with usual C++

programming constructs.

2.3.3 Simulation Speed

Simulation speed always been a concern for any simulator, which is almost a necessity for

MC2sim because of mainly two reasons, (1) intend to simulate memory access behavior of huge

25

memory, (2) intend to support machine learning integration and providing feedback for learning.

Integrating existing cycle accurate simulators and by tweaking their implementation would provide

us accuracy at the cost of simulation speed, as indicated in the Table 2.1. Moreover, we require

even better simulation speed than any individual simulators listed.

2.3.3.1 Full System versus Application Level

The high accuracy of the full system simulators allow us to even count on absolute execution

time at the cost of their simulation time. On the other hand for fair comparison across NMP

techniques we do not need to have cycle accurate processor as more than 90% of the simulation is

going to happen on the memory system side. That is why MC2sim is somewhere in between the

full system and application level as it implements some part of the system hiding hardware details,

where as other parts in the NMP critical path are implemented in more details.

2.3.3.2 Decoupled Functional and Performance

To keep the RL agent as a plug-and-play module and easily replaceable, we decoupled its

functional simulation from the NMP-op performances simulation. Moreover, it also boosts the

simulation time as opposed to timing simulation of RL training and inference. However, we em-

ploy a clever phase shift policy where RL and simulation always go in one phase difference to give

a parallel simulation view between the RL and corresponding hardware simulation.

2.3.4 ML Support

Following recent surge in machine learning assisted hardware policy design and execution led

us to integrate reinforcement leaning support as a plug-and-play module. This support is unique for

any architectural simulator as they do not intend to do that when designed. Adding this component

in the simulation framework imposes a lot of constraints in the design, especially puts a cap on

the simulation time, beyond which RL support will not be even feasible in terms of the whole

simulation time.

26

3. A SIMPLE DEADLOCK AVOIDANCE SCHEME FOR MODULAR

SYSTEMS-ON-CHIP 1

Ever increasing performance demand and shrinking in the transistor size together result in

complex and dense packing in large chips. That motivates designers to opt for many small special-

ized hardware modules in a chip to extract maximum performance benefits with relatively lower

complexity and cost. These altogether opens up new directions for heterogeneous modular System-

on-Chip (SoC) research, where a large system is built by assembling small independently designed

chiplets (small chips). We focus on the communication aspect of such SoCs, especially newly ob-

served deadlock among chiplets. Even though deadlock is a classic problem in networks and many

solutions are available, the modular SoC design demands customized solutions that preserves the

design flexibility for chiplet designers.

In this chapter, we propose Remote Control (RC), a simple routing oblivious deadlock avoid-

ance scheme based on selective injection-control mechanism. Along with guarantee on deadlock

freedom, RC aims to provide a methodology to make each independently designed chiplet seam-

lessly integrate in any modular SoCs. We realize the modular SoC in the full system simulation

framework and observe that system experiences deadlock while exposed to high workload pres-

sure. In addition, we also observe that the existing turn-restriction based state-of-the-art technique

imposes very strict turn restrictions while moving transactions from the chiplets to the interposer

network and vice-versa. Hence by alleviating those turn restrictions, we achieve up to 56.34%

throughput and 15.49% zero load latency improvements on synthetic traffic and up to 20% speedup

on real workloads taken from vast range of benchmark suites, over the state-of-the-art turn restric-

tion based technique applied in modular SoC domain.

1Part of the data reported in this chapter is reprinted with permission from “A Simple Deadlock Avoidance Scheme
for Modular Systems-on-Chip" by Pritam Majumder, Sungkeun Kim, Jiayi Huang, Ki Hwan Yum, and Eun Jung Kim,
IEEE Transactions on Computers, Vol. 70, No. 11, Nov 1 2021, Copyright © 2021 IEEE.

27

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

I-0 I-1

I-2 I-3

P2 HEAD

P1 BODY

P1 BODY

P
1

 B
O

D
Y

P1 BODY

P1 HEAD

P2 BODY

P
2

 B
O

D
Y

P2 BODY

P2 BODY

P2 TAILP2 WAIT for VC

VC HELD by P1

P1 WAIT for VC

VC HELD by P2

Injection P1

Injection P2

P1 TAIL

Interposer
Router

Interposer
Router

Interposer
Router

Interposer
Router

(a) Deadlock formation.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

I-0 I-1

I-2 I-3

P2 HEAD

P1 BODY

P1 BODY

P
1

 B
O

D
Y

P1 BODY

P1 HEAD

P2 BODY

P
2

 B
O

D
Y

P2 BODY

P2 BODYP2 TAIL

VC Released

VC Released

P1 TAIL

(b) RC helping to release the VCs.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

I-0 I-1

I-2 I-3

P2 HEAD

P1 BODY

P1 BODY
P

1
 B

O
D

Y

P1 BODY

P1 HEAD

P2 BODY

P
2

 B
O

D
Y

P2 BODY

P2 BODYP2 TAIL

P1 TAIL

(c) Deadlock resolved.

Figure 3.1: An example of deadlock, formed in between two (4×4) mesh chiplets, and how RC can
avoid the deadlock. (a) Packets P1 (blue solid line) and P2 (red dashed line) forming deadlock. (b)
rc_buffer in the boundary routers store outbound packets. (c) RC avoids the deadlock by allowing
all the outbound packets to be stored in the boundary routers until they get credit from downstream
interposer routers.

3.1 Overview: Remote Control (RC)

We provide a brief overview of the RC by first describing the deadlock problem in the modular

SoCs and followed by the motivation behind the RC proposal, which shows that the solutions,

applied in different other fields for deadlock avoidance are not good enough for providing a good

performance in our context.

28

3.1.1 Problem Description

We use an example to describe the deadlock issue in the modular SoC. Figure 3.1a shows

a deadlock case in a modular SoC, where two (4×4) 2D mesh chiplets are connected through

an interposer. We denote router i on chiplet j as R-i/C-j for simplicity, where chiplet-0 is on

the left and chiplet-1 is on the right. In this system, R-2/C-0, R-14/C-0, R-1/C-1 and R-13/C-1

are boundary routers connected to the interposer network. Packets P1 and P2 are two outbound

packets in a circular hold-and-wait situation, forming a deadlock. The P2-head flit in R-10/C-0

requests for the south VC of R-6/C-0, which is held by packet P1. On the other hand, P1-head

flit in R-5/C-1 requests for the north VC of R-9/C-1, which is taken by P2. Such a case creates a

circular hold-and-wait situation and forms a deadlock, where neither P1 nor P2 can make forward

progress2. To avoid deadlock in this scenario MTR may impose turn restriction from R-6/C-0 to

I-0 through R-2/C-0, increasing pressure on the other boundary of C-0 for outbound traffic. Note

that MTR needs to impose more turn restrictions to avoid all other possible circular hold-and-wait

scenarios.

3.1.2 Motivations for RC

Limitations in the existing techniques discussed in Chapter 2 motivates us to find a better

solution. State-of-the-art MTR identifies an important emerging problem and provides a solution.

However, MTR has a few limitations. The major constrain in MTR is that it forces the chiplet

designers to implement turn restrictive routing to guarantee deadlock freedom in the modular SoC,

which is the main motivation of RC. In addition, extra turn restrictions can lead to non-minimal

path for intra- and inter-chiplet traffic. Also, the turn restrictions obtained by MTR does not balance

the turn restrictions among the boundaries well. Hence, a few boundary routers get huge inter-

chiplet traffic load while others do not, causing several hotspots in the system. MTR also constrains

the routing design and incurs design overhead. The complexity of the CDG analysis, which is the

core of this technique, grows exponentially with the increase in the number of chiplet routers

2Progress/forward-progress means moving near to the destination.

29

Modularity Design Efficiency Energy Efficiency Performance
MTR +++ ++ +++ +

VC-SEP −− ++ −−− −
ITB +++ −− −− ++
RC +++ +++ +++ +++

Table 3.1: Qualitative Comparison with Different Deadlock Avoidance Techniques for Modular
SoC. (+) means high and (−) means low. We project the degree of high and low efficiency with
number of (+) or (−), respectively.

and boundary routers, which unnecessarily elongates the design cycle. Moreover, MTR imposes

restrictions on interposer routing to restrict the inbound packets route, which increases system

network design complexity and traffic contention further.

VC-SEP is a well known technique for avoiding deadlock. The main drawback of this approach

is that it is very expensive in terms of energy and area consumption. In addition, the buffer uti-

lization is low, which leads to sub-optimal performance. Hence, even though this solution is fairly

simple, it is not attractive for designing cost-effective and high throughput modular SoC. Hence,

we use the idea of traffic isolation and come up with more efficient implementation by adopting

remote injection control mechanism with small buffer.

ITB could be a promising solution for deadlock problems in Modular SoC. However, it has

two major drawbacks in this context. (1) Dropping a packet in on-chip reliable network introduces

unnecessary complexity and overhead. (2) Ejection and reinjection in multiple nodes increases

overall hop counts as well as average packet latency. Furthermore, due to packet dropping/rein-

jection and use of ACK/NACK packets, the overall system throughput suffers. In principle RC is

different than this solution as RC does not rely on ejection and reinjection for deadlock freedom.

In fact, RC ensures deadlock freedom just by isolating two types of traffics in the system, which is

inspired by the VC-SEP idea.

In Table 3.1, we summarize the comparisons of these techniques and project the expectation of

Remote Control, which aims for improving the limiting aspects of existing solutions. In a nutshell,

30

the goal of RC is to provide routing design flexibility and eliminate unnecessary packet dropping

incurring packet re-transmission by introducing a flow control based technique. Additionally, RC

targets to save energy and area by segregating traffic only in chiplet boundary routers.

3.1.3 Remote Control

RC is a deadlock avoidance solution for modular SoC, implemented using injection control im-

posed on outbound packets from nodes connected to non-boundary chiplet-routers. Since outbound

packets get consumed in other chiplets, to avoid cross-chiplet deadlocks, we provide intermediate

sink (rc_buffer) for outbound packets in the boundary routers. Therefore, outbound packets are

drained to rc_buffer so that they release the chiplet VC buffers to be used by intra-chiplet and

inbound packets. If all the chiplets follow the same, intra-chiplet and inbound packets are never

indefinitely blocked by outbound packets, and in turn outbound packets can also make progress,

as an outbound packet for one chiplet is an inbound for other chiplet. In this section, we first walk

through a simple practical example to show a case of deadlock formation between two chiplets and

how RC can solve it. Then we generalize it for any chiplet-based systems and theoretically prove

that RC guarantees deadlock freedom in Modular SoCs.

3.2 Deadlock Avoidance using RC

As shown in Figure 3.1a, an outbound packet P1 in C-0 is blocking P2 packet to reach its

destination while P2 is blocking P1 in C-1. RC separates outbound packets from others in the

boundary router, and allows them to be stored completely in the rc_buffer until they get credits

from the downstream interposer router. This makes sure that the chiplet VCs will get free in a

bounded time, after the header flit reaches at rc_buffer. Hence, P1 will release all the VCs currently

blocked in C-0 and so does P2 in C-1. That is why with RC the circular channel dependency among

chiplets will never result in deadlock.

3.2.1 Deadlock Freedom

We propose the theoretical support for RC. The rc_buffer reservation is atomic for each of

the requesters and allows only one outstanding rc-request per requester at any point of time. The

31

R-0 R-1 R-2 R-3

R-4 R-5 R-6 R-7

R-8 R-9 R-10 R-11

R-12 R-
13

R-14 R-15

(a)

R-0 R-1

R-4 R-5

RCB

(b)

2-bit req
2-bit resp

NI NI

NI NI

FIFO

RA VA
SA

RCB

OPIC

RCVA

FIFO

FIFO

FIFO

FIFO

NI
CORE

can inject?
no Send req to

Local OPIC block

Injection queue

ejection queue

(c) (d)

To
Process

or
core
From

Process
or

core

new request?

OB
OB
OB

OB

To other
OPIC
blocks

Figure 3.2: Remote Control: (a) Permission network consists of multiple Outbound Packet Injec-
tion Control (OPIC) blocks connected in a tree fashion. Each router has one OPIC block. (b) One
OPIC tree, and each edge is 2-bit request and response line. (c) Boundary router with the newly
added components marked with gray. Note that the router attached to a non-boundary node does
not have RCVA and RCB. (d) The changes in NI of the non-boundary router marked in gray. There
is no change in NI attached to boundary routers.

request for a slot in the rc_buffer for any outbound packet is granted only when there is space for

the whole packet, and the slot is reserved. The slot is released once the tail flit leaves the rc_buffer

and then only a new request is granted. We define one rule and two definitions to keep our theorem

statement concise. We layout the proof of the theorem by contradiction, starting by assuming that

there is a deadlock.

Injection Rule: An outbound packet can be injected from NI to its attached router if and only

if the rc-request is granted.

Definition-1: Inflight outbound packet is the packet whose source and destination are in differ-

ent chiplets, and holds at least one VC in one chiplet-router. Note that once the outbound packet

leaves its source chiplet, it is considered as inbound packet for its destination chiplet.

Definition-2: Destination boundary router is a chiplet-router used by a set of nodes/routers in

the chiplet as a gateway to communicate between the chiplet and interposer. Any communication

between these nodes/routers in the chiplet and interposer happen only through their destination

boundary router.

Theorem: The SoC network is guaranteed to be deadlock free as long as all the outbound

packets reserve slots in rc_buffer in the destination boundary router before injection (Injection

Rule).

32

Proof: We define the network system (S) at any instant T as ST = {Q | Q = {λ, β}, λ ⊆ PT ,

β is the set of all the buffers reserved by packets in λ and β ⊆ B}, B is the set of total buffers

in the system (independent of T) and PT is the set of total packets in the system at an instant T .

Let us assume there exists an i such that Qi = {λi, βi} ∈ Q forms a deadlock. Let B denote

a set of buffers in all the boundary routers in the SoC system and ρ denote the set of inflight

outbound packets. We categorize all possible scenarios into four cases as follows and prove that

RC avoids deadlock for any modular SoC network by contradicting our initial assumption that Qi

is in deadlock.

if βi
⋂
B == :

- contradiction; //no deadlock(1)

else:

if λi
⋂
ρ == :

- contradiction; //no deadlock(2)

else:

if ∀ ρx ∈ (λi
⋂
ρ) ∃ slot in rc_buffer:

- contradiction; //no deadlock(3)

else:

- violation (Injection Rule);//no deadlock.(4)

(1) If there is no boundary router buffer involved, that means the deadlock is formed only inside

a chiplet or in the interposer, but not involving both. Since a chiplet and the interposer use their

own deadlock free routing logic, it is impossible to form deadlock without involving both, which

contradicts our initial assumption of Qi being in deadlock.

(2) If there is no inflight outbound packet involved in Qi, the circular deadlock chain is incomplete

as the packets in λi are either intra (source and destination in the same chiplet and chiplet routing is

deadlock free) or inbound (outbound packet that left its source chiplet as in Definition-1, so cannot

connect with its source in the deadlock chain). So there cannot be any deadlock in Qi.

(3) If the Injection Rule is followed by each chiplet, then rc_buffer will let all the inflight out-

bound packets to sink in there, allowing intra and inbound packets to reach their destinations

33

following deadlock-free chiplet/interposer routing. This in turn allows outbound packets to leave

their source chiplets and become inbound for their destination chiplets (Definition-1). In addi-

tion, deadlock-free chiplet routing guarantees that all the outbound packets reach their destination

boundary routers in the source chiplets. There cannot be any deadlock as long as all the packets

(intra and inbound) reach their destinations. Therefore, Qi cannot be in deadlock.

(4) If any inflight outbound packet ρx in λi that has no rc_buffer slot reserved in the bound-

ary router, it violates RC’s Injection Rule that all the outbound packets MUST reserve a slot in

rc_buffer before injection. Therefore, this situation cannot happen. Hence RC provides guarantee

in deadlock freedom for modular SoCs.

3.2.2 Challenges

There are several implementation challenges RC may face. (1) Remote injection control im-

plementation needs to establish an extra channel of communication, which may look structurally

similar to the credit channel. The challenging part is to keep the communication overhead as min-

imum as possible. (2) The rc_buffer, situated in the boundary router needs to allow all the inflight

outbound packets to be drained from the router VCs. In conventional system, a packet leaves the

VC from the upstream router only when the VC in the downstream router has been reserved and

the router switch is allocated. Whereas RC requires the packets to be drained irrespective of the

success in the conventional VC allocation in the boundary router. (3) The rc_buffer is common for

all types of packets, and hence it might suffer from fragmentation if not taken care properly for

different packet sizes.

3.2.3 Routing Oblivious Design

RC is oblivious to both the chiplet routing and the interposer routing. The boundary routers are

considered as local destinations for outbound packets in a chiplet. Hence, any routing technique

can be used to reach to the boundary routers. Through a boundary router an outbound packet

reaches a downstream interposer router, and it follows the interposer routing to reach another local

destination in the interposer. Since the interposer takes care of the communication between two

34

chiplets, one inter-chiplet packet only traverses through its source and destination chiplets. Once

the packet enters its destination chiplet, it follows the chiplet routing to reach its destination node.

3.3 Implementation

Is this section, we first discuss one possible implementation of rc_buffer (RCB) along with a

supporting protocol called RC virtual channel allocation (RCVA). Then, we build a permission net-

work connecting outbound packet injection control (OPIC) blocks. Our goal is to achieve deadlock

freedom with complete routing flexibility both in the chiplet and in the system backbone network.

3.3.1 Boundary Routers

Each boundary router has three new components, RCVA, RCB, and OPIC as shown in Fig-

ure 3.2 (c). In RC, RCVA protocol helps to operate the rc_buffer, while the permission network

built by connecting OPIC blocks transports permission requests and responses to and from the

rc_buffer. Altogether, they establish a fine control over the outbound packet injection and its safe

transmission to rc_buffer to achieve deadlock freedom by alleviating mutual blocking among dif-

ferent traffic types.

3.3.1.1 RCVA

RCVA implements two functionalities. First, it makes sure the outbound packets injected from

non-boundary routers do not participate in VC allocation (VA) in the boundary router but directly

do switch allocation as shown in Figure 3.3. We bypass the VA stage of the router to save its

latency, and when switch allocation is successful, the packet reaches the output port through the

crossbar. Then, we push the packet in the reserved slot in RCB.

Second, in each cycle RCVA checks if there is any candidate waiting in RCB for VC allocation.

The VC allocation logic in RCVA is much simpler and straightforward than that in the VA, as

RCVA deals with only one port. Moreover, since RCB collects all the outbound packets from all

the input VCs, VA does not deal with the outport that connects the downstream interposer router.

Hence, RCVA does not increase the number of stages in the router for any packets. For outbound

packets we consider a different router pipeline, which has same number of router stages as in the

35

Route Compute Switch Allocation RCVA

Route Compute Switch AllocationVC Allocation

For all normal packets:

Only for outbound packets in the boundary router:

Switch Traversal

Switch Traversal

Figure 3.3: Router pipeline stages in case of normal packets followed by modified router pipeline
in case of handling outbound packets in the boundary router.

normal router as shown in Figure 3.3.

3.3.1.2 RCB

RCB is a very small buffer located between the crossbar switch and link to the downstream

router. It has one or more slots for packets. If the head flit of a packet is written in the first half of a

cycle, it may be considered for VC allocation in the other half of the cycle by RCVA. RCB reserves

a space when a request arrives from the OPIC block, and allocates one of the empty reserved slots

to a packet when its head flit arrives. Flits leave RCB when credit is available for downstream

VC buffer. The slot is freed once the tail flit leaves from RCB. To handle different packet sizes

efficiently, maximum packet size is being reserved in RCB after receiving request, and once the

head flit arrives, we allocate exact number of slots as needed.

3.3.1.3 Permission Network

In this section the basic building block (OPIC) of the permission network is explained, followed

by the procedure for building the permission network, maintaining transparency with the chiplet

network.

OPIC block: As the name suggests, this block is responsible for regulating the injection of

outbound packets in the chiplet through its customized permission network. Each of the blocks

supports send-and-receive functionality for both permission requests and responses. In Figure 3.4

we divide the OPIC into smaller blocks, and place them in the timeline with respect to the clock.

In the beginning of the clock all the requests and responses reached in the last cycle are registered

36

Algorithm 1: Build Permission Network
Input : Adjacency matrix ADJ of size N ×N
Input : Boundary router list BDRL of size K
Input : Node list NODELIST of size N
Output : list of OPIC trees (TREES)

1 // initialize the variables;
Vector : TREES; // list of OPIC trees;
Variable: num_trees = # boundary routers;
Variable: all_visited = false;

2 // initialize one tree for each boundary router;
3 for i← 0 to num_trees do

Variable: root = BDRL[i];
4 TREES.push_back(root); // pushed the root of tree;

5 // keep looping until the node_list becomes empty;
6 while all_visited == false do
7 // check for each tree;
8 for t← 0 to num_trees do

Variable: cur_tree_size = TREES[t].size();
9 // try to add neighbors for each tree node;

10 for node← 0 to cur_tree_size do
Variable: target_node = TREES[t][node];

11 // check for all neighbors of the target_node;
12 for a← 0 to ADJ[target_node].size() do

Variable: nbr = ADJ[target_node][a];
13 // checking if neighbor of the target_node is there in the node_list;

Variable: inList, index, boundary = FindInNodeList (nbr);
14 if inList == true then
15 if boundary==false then
16 // adding node to the OPIC tree;
17 TREES.push_back(nbr);

18 // removing the node from node list;
19 NODELIST.erase(index);
20 if NODELIST.empty() then
21 all_visited = true;

37

Remaining
Requests

New
Requests

Remaining
Responses

New
Responses

Register
Requests

Register
Responses

Process requests
using responses

Send
responses

Remaining
Requests

New
Requests

Remaining
Responses

New
Responses

Se
nd

 R
eq

ue
st

s

OPIC Block

clock

arbiter

@cycle = t - 1 @cycle = t

+

+

Register
Requests

Register
Responses

arbiter

@cycle = t + 1

Figure 3.4: Components in an OPIC block along the timeline (not to scale).

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

2

0 1 3 9 10 11 18

8 16 17 1925

24

2627

Boundary with
rc_buffer2-bit OPIC

req/resp

R
es

p
in

 2
 c

yc
le

R
es

p
in

 4
 c

yc
le

Resp in 6 cycle

n=8

n=3

n=1

n=2

Figure 3.5: Example of permission network in 8× 8 mesh with 4 boundary routers with rc_buffer
connected. n denotes the radix of the OPIC block.

in separate registers for each connecting OPIC blocks. Those registers are read asynchronously

and based on the available permissions, responses are sent to requesters in a Round Robin (RR)

fashion after processing their requests using combination circuits; after that, remaining requests

and responses are also calculated. Again in the next clock, total requests and responses are being

registered and the same process continues.

Network: We explain the permission network building process in Algorithm 1 with an exam-

ple. The chiplet network topology and set of boundary routers being the inputs, this permission

38

network building process can be demonstrated in general for any chiplet topology and any number

or positions of boundary routers. In the example, the input topology is provided for an 8×8 mesh

in the form of adjacency matrix, along with boundary router set that contains node numbers 2, 5,

58 and 61. Depending on the technology size, chiplet designers can decide the wire-length for the

OPIC block connections (it is a hardware deployment concern, so not included in the algorithm),

which may result into different tree depths. The number of permission trees is equal to the number

of boundary routers in the chiplet. OPIC block in node-2 connects with OPIC block in nodes-0,

1, 3, 9, 10, 11, 18 using request and response lines of width 2-bit each in an n-ary tree. Similarly,

node-0 is connected with node-8, 16 with the request and response lines, and so on.

For instance, at any cycle t, node-8 and node-27 want to inject outbound packets, the requests

will be registered in node-0 and node-11 at the beginning of t+1, respectively. At t+2 the requests

from node-0 and node-11 will be registered in node-2. Let us suppose the rc_buffer does not have a

space, in that case the requests will be standby in these nodes. Now suppose at cycle T one packet

space gets free in rc_buffer and depending on the arbitration, one of these two will get the response

at T + 1. Suppose node-0 gets the response, then at cycle T + 2 node-8 will get the permission to

inject an outbound packet.

3.3.2 Non-boundary Routers

In a non-boundary router, we append a control on injection process, which allows all the intra-

chiplet packets to go without any check. Only for inter-chiplet traffic, the modified injection system

checks for injection permission from a local OPIC block. In Figure 3.2 (d), we show that if the

permission is not there, the outbound packet is not injected and a request for permission is sent

by the local OPIC block to the remote OPIC block in the boundary router through the permission

network. Once the response reaches, the outbound packet is injected. Hence, it may happen that if

the outbound packet does not get permission to inject, it can block intra-chiplet packets. A separate

injection queue for outbound packets in the non-boundary routers may solve the issue. The pros

and cons of adding an extra injection queue are discussed as follows.

39

3.3.2.1 Separate Injection Queue

We consider the separation of injection queues in the non-boundary routers as a design choice

for the following reasons. The advantage of having a separate queue can be exploited only if (1) the

VC is abundantly available for injection in the router, (2) the workload is very unevenly distributed

among chiplets. For instance, in a hypothetical situation with two chiplets, where one chiplet has

huge intra-chiplet traffic and huge congestion inside the chiplet, and the other chiplet has a few

outbound packets. Those outbound packets may block the intra-chiplet packets in the injection

queue for a long time.

In case the number of VC buffers is low/minimal, unavailability of the VCs becomes the bot-

tleneck and injection queue separation turns to be almost irrelevant. So in our general design, we

do not consider an extra injection queue for the outbound packets as it increases the NI design

complexity significantly.

3.3.3 Case Study: Modular CPU-GPU Integration Using Silicon Interposer

To check the feasibility of our design, we conduct a thorough case study on simple heteroge-

neous system comprised of four GPU chiplets (16-PEs/GPU, 32-SIMD/PE) and one CPU chiplet

(4-cores) [7]. The first challenge we face is to equip the network of each chiplet with RC inde-

pendently. In non-boundary routers the area overhead of OPIC is less than 0.2%. However, in

boundary routers area overhead is almost 1.6% over the router area, including rc_buffer of depth

8 packets, while the overhead on the NI is negligible. In the established permission network, we

ensure the setup and hold time has sufficient slack for both requests and responses between the

OPIC blocks. The permission network works independent of the chiplet network, operating with

the same 2GHz frequency as that of the chiplet network.

Once the chiplets are equipped independently with RC, they are ready to be integrated in an

SoC using 2.5D active interposer as shown in Figure 3.6. In this SoC, the interposer provides

a (4×4) mesh network for inter-chiplet communication. Since in the interposer network, edge

routers are connected with DRAM memory, memory controllers are connected with those routers.

40

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Link between Interposer Routers

CPU

GPU-0 GPU-1

GPU-2 GPU-3

TSV

Boundary
Router

Interposer
router

GPU-2 GPU-3

TSV

Interposer router

micro-
bumps Active

Interposer

(a)

(c)

(b)

Figure 3.6: SoC viewed from different angles. (a) Shows the top view of the SoC. There are four
GPU chiplet (4× 4 mesh) at the four corners, and a CPU chiplet (2× 2 mesh) in the center. DRAM
memory is connected with edge interposer routers. (b) 3D view of the same SoC, highlighting the
interposer router, boundary router, and TSV that connects them. It also show the active interposer,
and the mesh network in the interposer. (c) Microscopic cross-section view of SoC highlighting
the micro-architectural details of 2.5D SoC integration on active interposer.

The edge routers in the interposer also contain the coherence directory. Chiplets are connected with

the interposer using micro-bumps. TSV connects the micro-bumps with the interposer routers.

Interposer routers use internal link to connect with each other. For instance, in Figure 3.6 (c),

if GPU-2 wants to send a request packet to GPU-3, then that packet will reach to the boundary

router of GPU-2 first. In the boundary router, the packet will make an entry in rc_buffer. From the

boundary router, the packet will reach to the interposer router through the TSV. Once the packet

reaches to the interposer router, it will be routed to the interposer router that is connected to GPU-3.

Again, through the TSV the packet will reach from the interposer router to the boundary router of

GPU-3. Figure 3.7 shows the link utilization pattern for this system. We observe that the interposer

network experiences much more load as compared to individual chiplets as multiple chiplets are

connecting to it and each accesses the memory through this network, and also there are coherence

traffic going across chiplets through the interposer network. Based on this observation we propose

41

88%

71%
71%

84%
65%

71%

72%

88% 87%

71%
63%

77%

57%

72%

60%

82%72%
74%

70%

72%

71%

86%

87%
76%

86%

72%

77%
73%

(a) (b)

CPU

Interposer

GPU-0 GPU-1

GPU-2 GPU-3

CPU

Interposer

GPU-0 GPU-1

GPU-2 GPU-3

Figure 3.7: Difference in maximum link utilization between (a) Parking and (b) Modular Turn
Restriction technique. Each number on the link represents the percentage of maximum number of
cycles the link was busy across all the sample (10,000 cycles) periods.

to enhance the interposer network for sustaining more bandwidth.

3.4 Methodology

We verify and evaluate feasibility of the design in terms of both functional correctness and

design efficiency by synthesizing permission network, along with state-of-the-art 4 stage routers

RTL [154], using TSMC 45nm library. Functional correctness is verified using extensive test-cases.

Average area, power, and delay experienced by permission network are analyzed by simulating

RTL model.

To evaluate viability of RC in the target system, we build software prototype in gem5 [134].

We experience that RC can be seamlessly integrated in cycle-accurate network model of Book-

Sim [155]. Hence for full system setup, we integrate BookSim with gem5. We configure gem5 for

both heterogeneous (CPU-GPU) and homogeneous (CPU-CPU) systems. We want to prove that

RC is easy to integrate in full systems and its functionality does not introduce any new issue and

report the observed full system performance.

Finally, we thoroughly study the deadlock issue in hierarchical network system using exten-

sively modified BookSim (reliably implement hierarchical network topology and routing) for sev-

eral synthetic traffic patterns across large range of injection rates (even beyond saturation points),

different VC and rc_buffer sizes, different number of boundary routers, different network dimen-

42

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

blackscholes

bodytra
ck

canneal
dedup

facesimferre
t

x264

matadd
saxpy

ASAC

AlexN
et

AlphaGoZero

Faste
rRCNN

Googlenet

NCF_recommendatio
n

Resnet50

Transfo
rm

er_short

600.perlb
ench

602.gcc

607.cactuBSSN

620.omnetpp

623.xalancbmk

625.x264

638.im
agick

641.le
ela

644.nab

PARSEC GPU Apps ML Apps SPEC CPU 2017

N
or

m
al

iz
ed

 R
un

tim
e MTR RC

Figure 3.8: Normalized execution time for real applications (lower is better).

Parameter Value
CPU 2 GHz frequency, TimingSimple

CPU Cache
L1I and L1D - 32KB 4-way
L2 - 64KB 8-way

GPU 1 GHz frequency [156]

GPU Cache
SQC (shared L1I) - 32KB, 8 way
TCP (private L1D) - 16KB , 16 way
TCC (Texture Cache per Channel) - 256 KB, 16 way

Memory Build-in memory model in Gem5 [157]

Network
Booksim integraded with Gem5, 4-stage routers
1-flit buffers per control VC, 4-flit buffers per data VC
64 bit flit size and channel width

Permission N/W 2 cycles/ OPIC hop (round trip including OPIC block latency)

Table 3.2: Parameters of simulated architecture.

sions, and different routing techniques. We want to prove that in modular SoC, routing flexibility

is not an option, it is necessity.

3.4.1 Experimental Setup

In full system setup, we integrate BookSim with Gem5 to simulate network of Compute Units

(CUs) in the GPU chiplets (GCN-3 [156]), CPUs in CPU chiplet, and also different chiplets on

active interposer as summarized in Table 4.3. We use 4 stage routers having 1-flit buffers per

control VC and 4-flit buffers per data VC. Flit size and link channel width is 64 bit. The control

43

packets are 1 flit and data packets are 5 flits. In homogeneous setup we configure SoC using

multiple (4× 4 mesh) CPU chiplets only and use MOESI hammer as the coherence protocol.

Heterogeneous setup uses the multi-chiplet APU configuration [7], consisting of four GPU chiplets

(4× 4 mesh, 16 CUs), one CPU chiplet (2× 2), and an active interposer (4× 4 mesh) as shown

in Figure 3.6. We use the in-built memory model in gem5 equipped with eight memory channels

and 8 banks per channel. We run heterogeneous system-level simulation on APU applications

taken from AMD ROCm Developer Tools [158] and Rodinia [159] suites. We also evaluate RC in

homogeneous full system setup using PARSEC [160] and SPEC CPU2017 [161]. For running the

Machine Learning applications, we attach one accelerator [162] on each node and experimented

for training and ring all-reduce operations using underlying BookSim network simulator. Unless

otherwise mentioned, for synthetic experiments packet size is 8 flits; we use four 4× 4 chiplet

and one 2× 2 chiplet connected using 4× 4 interposer network, having 2-VC-4-stage routers with

4-flit buffer depth and 4 packet space in the rc_buffer.

3.4.2 Traffic Patterns

3.4.2.1 Synthetic Traffic Patterns

In Figure 3.9 we show the pictorial representation of the synthetic traffic patterns, assuming

source-0 to source-63 on the Y-axis from top to bottom. In the X-axis we have the dest-0 to dest-

63 from left to right. For instance in bit-complement has zero intra-chiplet traffic, as the source

and destination in this traffic pattern lied in different chiplets. The node number distribution for

the chiplets is as follows. Node-0 to node-15 (chiplet-0), node-16 to node-31 (chiplet-1), node-32

to node-47 (chiplet-2), node-48 to node-63 (chiplet-3), node-64 to node-68 (chiplet-4). Similarly

for other traffic patterns also, source and destinations are divided into chiplets. In Figure 3.10 we

show the percentage of inter-, and intra- chiplet traffic for each synthetic traffic patterns.

3.4.2.2 Application Traffic Pattern

The applications run on system level setup as already described. In general most of the com-

munications happen among edge interposer routers and CPUs/GPUs. These interposer routers

44

asymmetric bad_dragon badperm_yarc

bit-complement randperm shuffle

tornado transpose uniform

Figure 3.9: Pictorial representation of synthetic traffic patterns. These graphs are drawn by col-
lecting traffic (sources and destinations) at runtime.

45

asym bad-d bad-p
bitcomp

randpermshuffletornado
transpose

uniform
0.0

0.5

1.0
Fr

ac
ti

on
 o

f
in

te
r/

in
tr

a
tr

af
fic Intra triffics Inter traffics

Figure 3.10: Fraction of inter/intra-chiplet traffic.

contain memory controller, and coherence directory. Since in our configuration, CPU and GPU

share memory space, huge number of the communications happen either between CPU and mem-

ory controller, or between CPU and coherence directory. Also, significant communications happen

in between the GPUs and memory controllers, or GPUs and directory controllers. There are very

low communication between GPU chiplets, and absolutely no direct communication between CPU

and GPU chiplet. CPU and GPU they communicate with each other using shared memory. In

Figure 3.7 we show one example of link utilization for Sync/AsyncAC application for both Parking

and Modular Turn Restriction. For both the techniques the interposer links are highly used for reg-

ular memory accesses as well as for offloading job from CPU to GPUs, and getting back results in

the CPU through main-memory, connected with edge interposer routers. Interestingly for Modular

Turn Restriction we observe heavy link utilization in the boundary routers of the GPU chiplets.

3.4.3 System Speedup

We evaluate our design using both latency sensitive workloads as well as throughput sensi-

tive workloads as shown in Figure 3.8. We evaluate our design for the latency sensitive PARSEC

benchmarks and GPU benchmarks and observe performance difference with canneal in which the

average packet injection rate is moderate to high and almost similar performance for other bench-

marks with MTR as RC performs also similar to MTR for low and moderate network load. On

the other hand for throughput-sensitive programs, we expose both the techniques to several Ma-

chine Learning applications [162] as well as parallel execution of multiple instances (32 copies of

46

same application on 32 different cores) of SPEC CPU2017 benchmarks [161]. As expected, we

observe 14% to 20% system speedup, only attributed to an efficient deadlock avoidance scheme

(RC). Among the throughput hungry benchmarks, AlexNet is a slight outlier as the amount of time

spent on communication for this benchmark is significantly low as compared to other benchmarks.

In addition, full system performance can be boosted by prioritizing delinquent packets [163]. We

can partially achieve that by simply modifying the arbitration policy in RCVA. Since, that is or-

thogonal to our current work, we leave the performance optimization for the full system setup as

our future work.

3.5 Performance Evaluation

Keeping the gravity of the inter-chiplet deadlock problem in mind, we quantitatively compare

RC with MTR, ITB and VC-SEP. We extensively modify BookSim to reflect the hierarchy of net-

works. We introduce the concept of chiplet and interposer in BookSim to reflect their independent

topology and routing. Different link latencies are also reflected depending on their length in the in-

terposer. Initial system we mimic in BookSim, is similar to our prototype with CPU-GPU in terms

of their corresponding network. Then we expand our design space to evaluate different sensitivity

aspects for complete study. To thoroughly study the deadlock formation we use several synthetic

traffic patterns across huge range of injection rates. We observe that since the chiplets and inter-

poser routing techniques are deadlock free, inter-chiplet deadlock forms during high congestion,

near to the saturation points.

3.5.1 Throughput Analysis

Figure 3.11 shows that RC outperforms MTR, ITB, and VC-SEP in terms of network through-

put in all the synthetic traffic patterns. We explain the throughput for uniform random (UR) traffic

as a representative of synthetic traffic patterns.

In UR, the source and destinations are generated randomly, where most traffics result into inter-

chiplet communication. For example, 3/4 of the generated traffics consist of outbound packets

in the simulated configuration, which poses more stress on the boundary routers and interposer

47

network. Across all the techniques, VC-SEP has least throughput, due to under utilization of

buffer resources. While in MTR, turn restrictions on boundary routers create load imbalance,

leading to throughput degradation. In ITB, ACK/NACKs packets are used for re-transmit request,

data and control packets, which leads to higher network load and saturates the network earlier.

In addition, ejection and reinjection of packets add latency in the critical path. In contrast, RC

regulates outbound packet injections facilitated by rc_buffer in boundary routers and frees VC

usage constraints for better resource utilization. Additionally, RC provides routing flexibility so

that traffics can be distributed evenly to all boundary routers. With these benefits, RC improves

network throughput upto 1.7×.

To analyze the traffic distributions and communication bottlenecks of different designs, we de-

pict hotspots as heatmap for UR for MTR, ITB, VC-SEP, and RC at their near saturation load3 as

shown in Figure 3.12. Hotspot is defined as the average packet residency time in the router. Darker

color represents higher packet residency time due to congestion. MTR imposes multiple extra

turn-restrictions, resulting into hotspots due to imbalanced traffic distribution inside chiplets as

shown in Figure 3.12a, which leads to low network throughput as shown in Figure 3.11. Heatmap

for VC-SEP, as depicted in Figure 3.12c, shows the severe congestion throughout the SoC net-

work, which is due to the intensive usage of limited outbound VCs, making network saturation

early. Interestingly, for ITB the contention inside the chiplets is very low, which can be attributed

to packet drop [11] that yields the buffer resources in the network. However, extra packet trans-

missions cause high energy and power consumption in the chiplets. Since RC has uniform flow

of packets as shown in Figure 3.12d, it exhibits a better throughput than MTR and VC-SEP. RC

alleviates the long waiting of outbound packets from the chiplet routers. However, the contention

in the interposer network partially offsets the throughput benefit, observed using RC. Note that we

have plotted the heatmap with different injection rate (throughput injection rate) for each technique

to show their distinct saturation behaviors, and point out the key reason for saturation. We notice

that across all the techniques the interposer network is heavily used (outbound packets from mul-

3Different techniques have different saturation load.

48

0.0025 0.0145 0.026520
50
80

110
140

asymmetric

0.0025 0.0145 0.026520
50
80

110
140

bad_dragon

0.0025 0.0145 0.026520
50
80

110
140

bit-complement

0.0025 0.0145 0.026520
50
80

110
140

randperm

0.0025 0.0145 0.026520
50
80

110
140

Av
er

ag
e

La
te

nc
y

 (
cy

cle
s)

shuffle

0.0025 0.0145 0.0265
Injection Rate (packets/node/cycle)

20
50
80

110
140

tornado

0.0025 0.0145 0.026520
50
80

110
140

transpose

0.0025 0.0145 0.026520
50
80

110
140

uniform

MTR ITB VC-SEP RC

Figure 3.11: Throughput graph for synthetic traffic pattern study. (#VC = 2, VC buffer size = 4,
packet size = 8 flits, rc_buff = 4 packets).

tiple chiplet nodes go through one interposer network), which could be a bottleneck for achieving

throughout improvements. To alleviate the contention from the interposer, we plan to extend our

work to investigate innovative SoC topologies as our future work.

3.5.2 Latency Analysis

As shown in Figure 3.11, we observe a similar low load latency among RC, MTR and VC-

SEP across various traffic patterns. Figure 3.13a presents the detailed comparison of low-load

latency for UR as an example. It shows ITB increases a few more cycles as compared to other

techniques. Extra ejection and re-injection at low-load incurs two extra hops that causes high

latency overhead. On the other hand, MTR fails to follow minimum path to destination because of

the extra turn restrictions. In case of RC, because of the modular design, route is optimized in each

of the independently designed modules, which may not result into shortest path from source node

to destination node. We expect to achieve better low-load latency for RC if we incorporate more

chiplet information by relaxing modularity constraints while designing interposer routing.

In Figure 3.13b, we show the average packet latency breakdown for RC for UR to understand

the overhead incurred by injection control. It shows that the portion of granting delay for rc_buffer

reservation over packet latency increases with the increase in network load at the beginning, and

decreases while moving from medium load to high load. This is because at low load, rc_buffer

49

(a) MTR. (b) ITB. (c) VC-SEP.

0

5

10

15

20

(d) RC.

Figure 3.12: Heat map of average packet residency latency (cycles) per router (smallest cube) in
UR plotted for near saturation point for each technique. Top four cubes (big cubes) represent
GPU chiplets, having 16 routers (small cubes) each. The bottom-left cube is the CPU chiplet
having 4 routers. Beside the CPU chiplet we show silicon interposer with 16 interposer routers.

reservation causes constant delay without contention. Whereas at medium load, contention on

rc_buffers increases the granting delay. As injection rate increases to high load, the exponential

injection queuing delay dominates the packet latency, which reduces the impact of rc_buffer reser-

vation significantly. To alleviate round-trip delay of the permission network, rc_buffers can be

operated in a more proactive way, similar to token circulation rather than on-demand requesting

to reduce the constant delay at low to medium load. That may improve the permission request-

response delay, if enough tokens flow throughout the network [164].

3.5.3 Routing Obliviousness

In this section, we show RC is routing oblivious by implementing Dynamic Credit-based Rout-

ing, where each router adaptively selects either XY, or YX routing depending on the credit avail-

ability in the downstream router. To demonstrate the benefits of routing oblivious RC, we alleviate

the bottleneck in interposer as discussed in Section 3.5.1 by providing 2 extra VCs only for in-

terposer routers. In Figure 3.14, we show that when dynamic routing is applied, the throughput

improves in both smaller system (68 node, 84 routers) and bigger system (272 nodes, 304 routers)

by 15.3% and 21%, respectively. The main advantage of RC is that it gives complete freedom to

50

40

45

50

55

A
v

g
 P

k
t

La
t

0%

50%

100%

i-0.018 i-0.019 i-0.020 i-0.021 i-0.022

A
vg

 L
at

 %

Net Delay Q Delay Grant(a) (b)

Figure 3.13: Analysis on throughput graph in Figure 3.11. (a) Zero load latency of UR, repre-
senting the trend for others as well. (b) The network breakdown for RC across different injection
rates for UR. “Net Delay" is the network delay including retry latencies. “Q Delay" is the injection
queue latency. “Grant" response latency for getting the permission from OPIC including waiting
for rc_buffer full condition.

Static
Routing

Adaptive
Routing

0.0

0.1

0.2

Th
ro

ug
hp

ut

4x4 4B

Static
Routing

Adaptive
Routing

0.0000

0.0025

0.0050
Th

ro
ug

hp
ut

8x8 8B

Figure 3.14: Throughput improvement by using adaptive routing for different size of modular
SoCs for the following systems. The left two bars are for 4 boundaries in 4×4 GPU chiplet and
4 boundaries in 2×2 CPU chiplet. The right two bars 8 boundaries in 8×8 GPU chiplet and 4
boundaries in 4×4 CPU chiplet.

the chiplet designers to implement the best routing for the chiplet, using their domain expertise,

without being worried about system-level deadlock issue.

3.5.4 Starvation and Fairness

The system ensures that starvation never happens by serving each of the nodes in a Round

Robin (RR) fashion. In terms of the OPIC delay, the first time request for outbound packet injection

is logically decoupled with the consecutive retries, by registering the OPIC response in the local

node’s NI. This system works since RC proactively responds to the requesters whenever their turn

51

comes in RR and the slot for entire packet is available.

The fairness issue can be broken down into two distinct situations, (1) when the rc_buffer is

full, and (2) when the rc_buffer is available. When the rc_buffer is full, none of the requesters

get served, regardless of their location with respect to the rc_buffer. In that case, all the requests

wait in the OPIC block of the boundary router, so the Round Robin policy can serve them fairly.

When the rc_buffer is available, a nearer node stands a higher chance to get served than a farther

node, if they generate requests at the same time. However, it is not always true. In the OPIC block,

when a requester’s turn comes, the request gets served following Round Robin policy. This process

continues until all the responses present in that OPIC block get exhausted. The serving starts again

from the point, where it stopped last time. That is why in some scenarios, even if the request from

the near node reaches first, the responses may get exhausted before its turn comes. By the time

new response arrives, the request from the far node may get registered. Then depending on the last

serving location, either the near or the far requester may get served. In summary, we guarantee

that there is no starvation in the system. However, fairness is always not preserved, as the nodes

that are near to the boundary router may consume higher OPIC bandwidth than the nodes situated

farther, which is an inherent nature of any multi-hop network.

3.5.5 Sensitivity Analysis

We scrutinize the system using various size and number of chiplets to obtain better understand-

ing about system scalability with RC. Difference of throughput is also observed with different VC

sizes and increasing size of rc_buffer. We intend to provide enough insight for estimating the best

combination of these parameters for the system designers.

3.5.5.1 System Scalability

We extensively study the system scalability as shown in Figure 3.15 by increasing number

of chiplets in Figure 3.15b (132 nodes) as compared to Figure 3.11 (68 nodes). To compare the

scalability with different size of chiplets, we also keep the total number of nodes same between

Figure 3.15a (132 nodes) and Figure 3.15b (132 nodes) and contrast their zero load latency and

52

0.005 0.010 0.0150
30
60
90

120
Av

g.
 P

ac
ke

t
La

te
nc

y
(c

yc
le

s) (a)

0
20
40
60

0.005 0.010 0.0150
30
60
90

120
(b)

0
20
40
60

0.005 0.010 0.015
Injection Rate

(packets/node/cycle)

0
30
60
90

120

Av
g.

 P
ac

ke
t

La
te

nc
y

(c
yc

le
s) (c)

0
20
40
60

0.005 0.010 0.015
Injection Rate

(packets/node/cycle)

0
30
60
90

120
(d)

0
20
40
60

MTR ITB VC-SEP RC

Figure 3.15: Sensitivity study: Scaling up the chiplet size, while keeping the number of boundaries
same as 4/chiplet. (a) Eight GPU chiplets of size 4x4 and one CPU chiplet of size 2x2 mesh. (b)
Two GPU chiplets of size 8x8 and one CPU chiplet of size 2x2 mesh. (c) Four 8x8 GPU and one
4x4 CPU. (d) Same as (c) except 8 boundaries/GPU chiplet. The small bar chart in each of the
graphs represents zero load latency for that particular configuration.

throughput. Figure 3.15d shows a large system with large number of nodes per chiplet (total 272

nodes) with doubled number of boundaries in each chiplet. In all the configurations RC outper-

forms MTR, ITB, and VC-SEP in terms of throughput. Also in terms of zero load latency RC

exhibits same or better than MTR and much better than ITB. This is because the detour caused by

turn restrictions in MTR surpluses rc_buffer request delay in RC. For example, in Figure 3.15c,

MTR has 2 extra hops than RC, which accounts for 17% more in average hops. We observe that

the throughput difference reduces with the increase in the system size, as more nodes saturate the

bisection bandwidth earlier.

We quantitatively show that with the increase in the chiplet size, overhead of OPIC does not

hamper performance. In a 4× 4 mesh with four boundaries, each boundary gets three requesters,

53

asym bad-d bad-pbitcomp
randpermshuffletornado

transpose
uniform

Synthetic Traffic

0

50

100

Av
g.

 P
ac

ke
t

La
te

nc
y

(c
yc

le
s)

0.0025

0.0050

0.0075

In
je

ct
io

n
Ra

te

MTR ITB VC-SEP RC

Figure 3.16: Doubled the number of boundaries 8 boundaries/ 8×8 GPU chiplet and 4 boundaries
in 4×4 CPU chiplet. The major Y-axis corresponds to zero load latency shown in bar graphs, and
minor Y-axis corresponds to the throughput as shown in white dots.

1 2 4 8 16 32 64 128 256 512 1024 inf
rc_buffer size

0.00

0.01

0.02

Th
ro

ug
hp

ut

1 vc 2 vc 4 vc 8 vc

Figure 3.17: Throughput sensitivity and interplay between virtual channel and rc_buffer size for
4×4 chiplets (68 nodes setup) with 4 boundaries/chiplet.

and all of them get response from the boundary OPIC block in 2 cycle. However, in a 8× 8 mesh

network, maximum seven requester nodes can be connected as they are in one, or two hop distance

from the boundary. In that case the furthest node from the boundary gets the response in total

6 cycles. Other nodes get response in much lesser time. Since the requests get registered in the

next OPIC block, requester needs to send request only once. When we scale the number of nodes

further we do not need to reconsider the setup time and hold time, as the amount of work needed to

be done in one cycle will still be same. Only the number of cycles of getting response will increase

with the increase in distance from the boundary router. However, it is worth noting that we opt

for modular SoC design as we do not want to make large chips, rather want to put multiple small

54

asym bad-d bad-p bitcomp
randpermshuffletornado

transpose
uniform

Synthetic Traffic

0

1

2
No

rm
al

ize
d

En
er

gy

MTR ITB VC-SEP RC

Figure 3.18: Normalized energy for all the techniques, across all the synthetic traffic patterns.

chiplets together to scale the system size. In Figure 3.15a and in Figure 3.15b, we show that system

with multiple smaller chiplets in Figure 3.15a has better throughput than system with fewer large

chiplets. One reason for the difference in lower throughput with large number of smaller chiplets

is the number of boundary routers are same for each chiplet both the systems [7], resulting in more

boundaries in total, in case of systems with smaller chiplets.

Going one step further we doubled the number of boundary routers for 8×8 chiplets keeping

every other parameter values same. In Figure 3.16, the result shows that the average packet latency

in case of RC improve significantly) over MTR by up to 17%. Figure 3.15(c) and 3.15(d) show

results for SoCs with 4 boundaries and 8 boundaries per GPU chiplet, respectively. Average packet

latency increased from 68 cycles to 80 cycles in case of MTR, and there is almost no change for

our techniques. Our experimental results show that MTR travels more than 19.5% extra hops as

compared to RC. This can be attributed to extra turn restrictions imposed by MTR. In addition,

since the complexity of CDG analysis increased exponentially, we run the MTR algorithm for 7

days to explore the design space and pick the optimal result, which may not be the optimum turn

restrictions for 8 boundary router setup. Interestingly, VC-SEP shows the zero load latency in this

setup. However, the throughput suffer a lot because of low VC buffer utilization. In contrast, CDG

analysis in 4 boundary setup takes only less than 2 hours to finish in one intel core-i7 processor.

55

3.5.5.2 Sensitivity to rc_buffer Size and VC Size

In Figure 3.17, we show impact of rc_buffer size on network throughput, which is the saturation

injection rate for SoC network with four 8×8 GPU chiplets and one 4×4 CPU chiplet (272 nodes),

which shows similar trend for the smaller baseline setup with 4×4 GPU chiplets. We observe

that increase of both rc_buffer size and the number of VCs have impact on the system throughput.

With rc_buffer size of 1, we see hardly any throughput improvement with increasing VC sizes.

The throughput improvement from single packet slots to two packet slots in rc_buffer is almost

2×. Also with 1-VC, increase in the RC size improves throughput marginally. Result shows that

for all the VC sizes, rc_buffer size of 4 is good enough to provide achievable throughput, which

is the case in infinite rc_buffer, where the OPIC delay is zero. In addition, in terms of throughput,

the difference between 4-VC and 8-VC result is also not very significant. Even 2-VC result also

shows a good trade-off between throughput and energy consumption.

3.5.6 Area and Energy Analysis

The hardware complexity and area overhead of RC is very minimal. As per our detailed synthe-

sis report, in each router of size 49667.53 µm2, OPIC logic consumes only 785.68µm2 area, which

is 1.6% of the router area. There are four rc_buffer in each chiplet, and each has 4 packet buffers,

consuming 6.0424µm2 in total. Area overhead and hardware complexity incurred is negligible as

compared to the total chiplet area and complexity.

Since we focus on the network deadlock aspect in this work, we estimate only the network

energy to compare between MTR, ITB, VC-SEP and RC using DSENT [165] and rc_buffer access

energy from RTL simulation (0.10425pJ/flit/access). The energy consumed by the wire con-

nections in the OPIC tree are not significant. Figure 3.18 shows energy consumption of different

techniques normalized to MTR under 0.013 packets/node/cycle injection rate for 100000 packets.

It shows RC, MTR and ITB consume similar energy across all the synthetic traffic patterns. In con-

trast, VC-SEP consumes more energy due to low utilization of VCs, leading to longer simulation

time that consumes more static energy. We expect RC to save more energy by reducing the static

56

energy in high load since it sustains higher throughput.

3.6 Related Works

Deadlock avoidance mechanisms fan out in two distinct branches, namely VC and turn model

based, and flow control based techniques. The first type either rely on turn restrictions, or on

dedicated/ordered VC buffer for different traffic types/directions. On the other hand, flow control

techniques either control the injection of packets, or ensures bubble in the buffer to avoid dead-

locks. The state-of-the-art solves the new SoC deadlock issue using routing based turn restrictive

technique while RC follows flow control based deadlock avoidance.

3.6.1 VC and Turn Model Based

Duato proposed escape-VC [8], a theory for deadlock freedom for routing with cyclic channel

dependency. Duato’s theory can be applied for both deadlock avoidance [53, 54] and deadlock

prevention [55, 56] techniques. Idea of escape channel cannot be applied directly in modular SoC

as the packets in the escape-VC must be propagated using a deterministic deadlock free algorithm,

which cannot be guaranteed in a modular SoC. Recently Ebrahimi et al. [57] propose EbDa that

provides exclusive sets of VCs to isolate traffics (say, intra-chiplet traffic, and inter-chiplet, or

outbound traffic) to avoid deadlocks. However, VC separation leads to lower utilization and is

shown less attractive in MTR [7], and we also find the same way.

Dally et al. [6] propose to use two or more VCs in order to avoid the cyclic channel dependen-

cies. It ensures deadlock freedom by using total ordering of VCs. Even though this condition is

sufficient to avoid the deadlock, it is not necessary [9]. Extra VCs result in increase in the router

area and energy consumption. Based on Dally’s theory, a few other techniques have been pro-

posed that use additional VCs [59, 60] to avoid deadlock. Another way to achieve strict order of

reservation for the shared VCs is by imposing turn restrictions [62, 63] on the packet traversal.

3.6.2 Flow Control Based

For providing deadlock freedom, flow control techniques either regulate the injection [64] of

the packets or allow a packet to go forward depending on the buffer occupancy [66] in the ring. The

57

second concept is coined as bubble flow control by Puente et al. [67] and applied in torus network

for the flow control in escape channel. This concept is being used in in-transit buffer for avoiding

deadlock in k-ary n-cube torus network [68], and extended later for irregular off-chip network [11],

worm-whole switching [70], torus cache-coherent NoCs [71].

Recently Ramrakhani et al. [9] propose SPIN, a synchronized flow control technique for dead-

lock prevention in flat network. It is very challenging to apply synchronized flow control in mod-

ular SoC, where the chiplets are designed independently, and connected through the interposer

routers. Moreover, synchronization of packet movement among chiplets make the design very

complicated.

3.7 Summary

Chiplet-based system integration on an active interposer is a scalable and economic solution for

improving system performance. As deadlock freedom is one of the main concerns, we propose RC,

a simple routing oblivious technique for modular SoCs. It completely protects the idea of modular

design by providing total independence to the chiplet vendors, in terms of routing logic, topology,

dimension, etc. The low load latency improvements of RC over MTR, ITB and VC-SEP are up

to 15.49%, 19.17%, and 13.76% across different configurations for all the synthetic workloads,

respectively. The throughput improvements achieved by RC over MTR, ITB, and VC-SEP are

up to 56.34%, 12.12%, and 2.5×, respectively. In full system simulations for real workloads, we

improve performance upto 20% as compared to state-of-the-art MTR. As part of future work, we

want to investigate application-aware OPIC system, where critical packets can be prioritized in the

rc_buffer for better system performance.

58

4. AIMM: ARTIFICIALLY INTELLIGENT MEMORY MAPPING IN NEAR-MEMORY

PROCESSING SYSTEM

The resurgence of near-memory processing (NMP) with the advent of big data has shifted the

computation paradigm from processor-centric to memory-centric computing. To meet the band-

width and capacity demands of memory-centric computing, 3D memory has been adopted to form

a scalable memory-cube network. Along with NMP and memory system development, the map-

ping for placing data and guiding computation in the memory-cube network has become crucial in

driving the performance improvement in NMP. However, it is very challenging to design a univer-

sal optimal mapping for all applications due to unique application behavior and intractable decision

space.

In this chapter, we propose an artificially intelligent memory mapping scheme, AIMM, that

optimizes data placement and resource utilization through page and computation remapping. Our

proposed technique involves continuously evaluating and learning the impact of mapping decisions

on system performance for any application. AIMM uses a neural network to achieve a near-optimal

mapping during execution, trained using a reinforcement learning algorithm that is known to be

effective for exploring a vast design space. We also provide a detailed AIMM hardware design that

can be adopted as a plugin module for various NMP systems. Our experimental evaluation shows

that AIMM improves the baseline NMP performance in single and multiple program scenarios up

to 55% and 50%, respectively.

4.1 Proposed Approach

We formulate the problem as a reinforcement learning problem as (1) we want a generalized

and robust solution, which is applicable to all types of workloads, (2) the complexity and vastness

of the problem space make this problem almost unapproachable with conventional determinis-

tic algorithmic solutions, (3) technological advancements allow hardware implementation of the

RL agent with very minimal cost and effort, which runs very fast and hence practical to be on the

59

 Memory
 Controller

Page Info
Cache

Compute
Remap Table

DRAM
Addr

Compute
Cube

HMC Network

RL Agent

Compute
Remapping State,

Reward

Data
Remapping

NMP Acks
Virtual
Addr

Physical
Addr

NMP
Instruction

OS: Paging

HW: MMU
NMP
OpSys Info

Counters

Migration
Management

System

Figure 4.1: Overview of AIMM memory mapping for data and computation in NMP systems.

CMP chip. In this section, we introduce our proposed approach by first presenting the overview

and problem formulation. Then we describe the representations of state, action and reward func-

tion for AIMM NMP memory mapping, followed by the DNN architecture and training of the

RL-based agent.

4.1.1 Overview and Problem Formulation

AIMM continuously evaluates the data mapping done by the OS and computes cube decisions

made by the memory controllers. Meanwhile, it provides suggestions to change not only the de-

cision if necessary, but also the degree of the change (such as migration distance) in some cases.

RL agent also learns the remapping and migration cost from the system feedback for each of its

actions, and decides accordingly in the future (shown in Figure 4.1). The problem formulation is

a challenging process due to the problem complexity and the lack of straightforward methodical

ways. We explore two representations in this research: (1) Dataflow graph representation of ac-

cessed pages of an application; (2) Access history of each page along with the associated events

(page miss, row-buffer hits, and vault accesses, etc.). The first one involves costly hardware re-

sources for storing the dataflow graph and expensive Node2Vec embedding [166] for processing

the states. So we chose the second one that is more cost-effective. We detail the representation of

states, actions, and reward function of our formulation as follows.

60

4.1.1.1 State Representation

There are numerous parameters that can be considered for representing the state of the system

holistically. In addition, the cost of information collection throughout the system may become

prohibitively expensive. Hence, the state generalization and its representation are active research

areas we continue working on. As an alternative, we narrow down the set of parameters, specific to

our learning goal and represented them as it is. Our effort towards pre-processing the information,

before using them to build the states needs further attention to make them cost-effective.

Based on domain knowledge, the state representation (ten parameters) consists of system pa-

rameters (four) and page access history (six), as summarized in Table 4.1. The RL agent takes

this state information to improve the system performance through dynamic page-frame mapping.

System information helps the RL agent to be aware of the system, while page information helps

to focus on each page while taking an action. After collecting the required information of variable

vector lengths, each of them is flattened into single vector of size 128×8 Bytes (128 64-bit entries).

This leads to a vast space with 2128×64 = 28192 states in total in our system, making the problem

very challenging.

System Information Page Information
Parameter Description Vector Length Parameter Description Vector Length
NMP-op tab occupancy n cubes Page access rate 1
Row-buffer hit rate n cubes Migration per access 1
MC queue occupancy m MCs Hop count, Pkt lat History length
Global actions History length Migration lat, Page action History length

Table 4.1: The state representation of AIMM.

4.1.1.2 Action Representation

The actions are categorized into (1) computation migration, (2) page migration, and (3) train-

ing interval, as shown in Table 4.2. In addition, the default action (no change) allows the RL agent

61

to agree with the conventional system. “Near” and “Far” map to a randomly chosen neighboring

HMC and the diagonally opposite remote HMC, respectively. Source co-location under page mi-

gration allows the system to co-locate NMP-op pages as a special case of page migration. The

training interval regulates the epoch length in a range, discussed in §5.5.

Default Computation Migration Page Migration Training Interval
No change Near Far Near Far Co-locate sources Increase Decrease

Table 4.2: List of actions sorted categorically.

RL actions need to be interfaced with both the agent as well as the actuator system. The neural

network of the RL agent learns to decide the best action for a given input state through the feedback

from the system provided in the form of reward. The actions can be interpreted by the system as it

sees fit. However, system should stick to one interpretation of the actions for meaningful learning.

In AIMM we assign and define the actions such that they are robust and flexible enough to be

accommodated in any underlying system. Thus the interpretation of “near” and “far” is up to

the system designer to take a decision on. We provide one of the possible interpretations and

implementation in this dissertation.

4.1.1.3 Reward Function

As one of the most important components of the RL system, the reward function draws signif-

icant research attention [167, 168, 169] and demands a rigorous process (left for future work). We

manually explore several reward functions, including use of magnitude of performance as the re-

ward, which shows a slow or sometimes fluctuating learning curve. Hence, we digitize our reward

function that returns a unit of positive (+1) and negative (-1) reward for performance improvement

or degradation, respectively. Otherwise, a zero reward is returned. We have explored using the

communication hop count as a performance metric, but it leads to a local minimum that does not

reflect the performance goal. We empirically found that operations per cycle as a direct reflection

62

FC
 2

56
 (R

eL
U

)

FC
 1

28
 (R

eL
U

)

FC
 6

4
(R

eL
U

)

FC
 3

2
(R

eL
U

)

FC
 1

6
(R

eL
U

)

FC
 1

6
(R

eL
U

)

FC
 8

 (L
in

ea
r)

S
ta

te
 V

ec
to

r s

Q
(s

, a
):

8
st

at
e-

ac
tio

n
va

lu
e

FC
 1

 (L
in

)

V
(s

)
A

(s
, a

)

+

max

-1

Figure 4.2: Dueling network for the RL-based agent. FC: Fully Connected, ReLU: Rectified Linear
activation function. Total 8 action values, which are interpreted and realized by the underlying
hardware once delivered.

of performance can achieve a robust learning process.

4.1.2 RL Agent

We use the off-policy, value-based deep Q-learning [121] algorithm for the proposed RL-based

AIMM. For the state-action value estimation, we use a dueling network as a function approximator.

The DNN model in the agent is a simple stack of fully connected layers, as shown in Figure 4.2.

The agent takes the state and predicts the state-action value for each action. Then we use an ε-

greedy Q-learning algorithm [120] to trade off the exploitation and exploration during the search

and learning process. The algorithm selects an action randomly with probability ε to explore the

decision space, and choose the action with the highest value with probability 1 − ε to exploit the

knowledge learned by the agent. To train the DNN, we leverage experience replay [121] by keeping

the past experiences in the replay buffer and randomly draw the samples for training. Therefore, the

learning and search process is more robust by consolidating the past experiences into the training

process.

63

Application

NMP API
Kernel

Process Creation

C
M

P
N

et
w

or
k

MC0 MC2 MCk

Last Level
Cache and
Directory

MMU

RL Agent

Migration
Management

System

TLB

Migration
Queue

Migration
DMA

Replay
Buffer

NN
Model

Forward Pass
+ Action
Selection

Info Buffer

Backpropagatio
n + Training

Logic
st, rt-1

at

(st-1, at-1, rt-1,
st)

atst

1
2

2

3

3

HMC Network

MMU

TLB

MMU

TLB

C0 C1 Cn

Process Scheduler

Application Process Scheduler

Core (Ci)NMP API
Kernel

NMP
Controller

NMP-op
offloading

1
Launch

Invoke kernel

Context switchProcess creation
2

3

4

5

RL Agent

Figure 4.3: AIMM Architecture. In this diagram we show the flow of the AIMM system, where the
whole system can be divided into three major cluster of components. The first one is the application
and system software, where each application is registered as processes and on the system side the
thread creation and thread scheduling is supported. The second one is the CMP core where NMP
controller and RL agent is also situated along with other regular components. Finally, the HMC
network connected with the MCs on the CMP and communicated through PCIe links.

4.2 Hardware Implementation

In this section, we detail hardware modules for implementing AIMM. As shown in Fig. 4.3,

a CMP is connected to an HMC network (show in detail in Figure 4.4) through a set of memory

controllers (MC) on the CMP side. The MCs on the CMP side (i) map the physical address to

a specific HMC, (ii) generate HMC packets, and (iii) communicate with the RL agent. On the

HMC side, each NMP-op is offloaded to an HMC as computation location based on the NMP

technique, and corresponding memory operations are scheduled by the vault controllers as shown

in Figure 4.4.

64

(i) NMP Operation Request
(ii) Source Operand Request (iv) NMP Operation + Response

(iii) Source Operand Response

(i) Making entry in NMP Op table

Crossbar
Routing logic

NMP tab

Vault controller

Vault

External links

Bank

HMC Network HMC

(i) (ii)

(iii)

(iii)

(iv)(ii)

Figure 4.4: HMC network, where we show an example of basic NMP operation in the HMC
network (where (i) NMP-op request enters through the corner HMC and makes entry in the NMP-
op table, (ii) sends request packets, (iii) gets responses and (iv) computes in the NMP-op at the
entry location), along with HMC dissection, featuring major HMC components.

4.2.1 Information Orchestration

Table 4.1 shows that the states are constituted using both system and page information, which

are periodically collected at runtime. In MCs, the NMP-op occupancy is tracked for each HMC

nodes stored in an array of registers, along with the MC queue occupancy information. Global

actions are recorded by the RL agent itself. Row-buffer hit rate, however, is collected on the HMC

node for each access and communicated to the MCs on the CMP side through the HMC network,

in regular interval. Page specific information is stored in a fully associative cache like structure,

using page number for identifying an entry. Each entry stores the frequency of page accesses

(computed and stored on each access), frequency of migration for the selected page (incremented

on each migrations), and history of hop count. Packet latency, migration latency, and actions taken

for the selected page are also recorded. The history entries are temporarily stored in the HMC node

using history-length number of registers and spilled into the MCs whenever the history registers get

filled up or collection period/window ends. The cache uses the least frequently used replacement

65

Replay
Buffer

NN
Model

Forward Pass +
Action Selection

Info Buffer

Backpropagation +
Training Logic

st, rt-1

at

(st-1, at-1, rt-1, st)

atst

1

2

2 3

3

Figure 4.5: RL agent implementation through flow diagram.

policy. The state is constructed by combining all the information, and the reward is computed by

comparing the current performance parameter value with the last computed value.

4.2.2 RL Agent Implementation

We propose to use an accelerator (as shown in Figure 4.5) for deep Q-learning technique fol-

lowing such accelerators that have been proposed in literature [170, 171]. The agent, running on the

accelerator, pulls information from each memory controller. The incoming information, including

the new state st and a reward rt−1 for the last state-action (st−1, at−1), are stored in the information

buffer (1). The incoming information and the previous state and action in the information buffer

form a sample (st−1, at−1, rt−1, st), which is stored in the replay buffer (2). Meanwhile, the agent

infers an action at on the input state st (2). The generated action at is stored back to the informa-

tion buffer and transmitted back to the MCs which then perform the appropriate operations (3).

Upon the training time, the agent draws a set of samples from the replay buffer for training and

applies a back propagation algorithm to update the DNN model.

4.2.3 Page and Computation Remapping

Page migration is managed by migration management unit and employed in the HMC network

using migration DMA as shown in Figure 4.3. The TLB shootdown is customized to offset its

latency overhead incurred when handled by the OS. Compute migration is implemented in the

page granularity, meaning once the computation is migrated to a location, all the computation

involving that page as destination (dest) will be done in that location.

66

4.2.3.1 Page Remapping

It involves OS for page table update and the memory network for page migration to reflect a

page remapping, where the virtual page is mapped to a new physical frame belonging to a memory

cube suggested by the agent. We provide blocking and non-blocking modes for pages with read-

write and read-only permissions, respectively. For blocking migration, the page is locked during

migration and no access is allowed in order to maintain coherence, which also experiences TLB

shootdown overhead, implemented using constant latency. For non-blocking migration, the old

page frame can be accessed during the migration to reduce performance overhead. In addition, the

TLB is extended with an extra physical address field, which is used to hold the new frame number

during migration [172]. When a page migration is requested by the data remapping decision from

the agent, the page number and the new host cube are put into the migration queue of the migration

management system. When the migration DMA can process a new request, the OS is consulted to

provide a frame belonging to the new host cube and broadcast a message to update the extended

slot for the new physical frame location in the TLBs. Then DMA starts generating migration

requests that request data from the old frame and transfer it to the new frame in the new host

cube. Once migration finishes, a migration acknowledgement is sent from the new host to the

migration management system, which then reports the migration latency to the memory controller.

Meanwhile, an interrupt is raised to invoke the OS for a page table update and notify the TLBs

to use the new physical frame. In case of blocking migration, the page is unlocked for accessing,

whereas for non-blocking migration, the old frame is put back to the free frame pool when the

outstanding accesses finish.

4.2.3.2 Computation Remapping

Computation remapping decouples computation location and the data location for balancing

load and improving throughput of the NMP memory network. Computation cube of an NMP-op

is determined by the NMP-op scheduler based on the data address. The computation cube is then

embedded in the offloaded NMP-op request packet. A compute remap table is used to remap the

67

computation to a different cube suggested by the agent. When a compute remapping decision

related to a page is given by the agent, the page number and the suggestion are stored in the

compute remap table. Upon scheduling an NMP-op, the NMP-op scheduler consults the compute

remap table. If the related page of the NMP-op has an entry in the table, the computation cube is

decided based on the agent suggestion recorded in the entry. Otherwise, the default scheduling is

used. When the computation is done, the result is written back to the destination memory location.

4.3 Evaluation Methodology

In this section, we describe the simulation framework and methodology that implements and

evaluates several NMP techniques and mapping schemes, respectively, followed by the workloads

and analysis of their characteristics.

4.3.1 Simulation Framework

We develop a fast and accurate simulation framework (MC2sim) to model RL agent and sys-

tem architecture. The RL agent is functionally modeled using keras-rl [173] and built upon

gym [174]. Since we propose to use a hardware accelerator for RL implementation (as discussed in

§4.2.2), the timing aspect of the hardware accelerator is extracted using the MAESTRO inference

model [175], considering training time as 2× of the inference time. The simulation framework

takes an event-driven approach to model a cycle-level system architecture with three group of

components, namely, (1) Front-end (2) Chip-Multi Processor (CMP) and associated components,

and (3) HMC Model and HMC network. The RL agent and the system architecture model are

seamlessly integrated in order to achieve high simulation speed. The hardware configurations used

in our evaluation are summarized in Table 4.3.

4.3.1.1 Front-end

The front-end of MC2sim supports writing micro-kernels using a simple programming interface

(equipped with overloaded memory allocation API, memory access API, etc). The trace manger

facilitates real application traces and derives NMP operations. The processes that are registered

during the initialization phase are launched on their allocated cores at their specified launching

68

0%

20%

40%

60%

80%

100%

BP LUD KM MAC PR RBM RD SC SPMV

Pa
ge

 A
cc

es
 P

er
ce

nt
ag

e

Acc < 10 Acc < 100 Acc < 1000 Acc < 10000 Acc > 10000

Figure 4.6: Classification of pages based on their access volume.

BP LUD KM MAC PR RBM RD SC SPMV
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f A
ct

iv
e

Pa
ge

s (
lo

g1
0)

Figure 4.7: Page touched distributions representing number of pages touched in each epoch of
10000 cycles for the whole application execution

time by the process scheduler.

4.3.1.2 CMP and Associated Components

The event-driven implementation of CMP consists of a set of in-order cores, four Memory

Controllers (MC), MMU units, and an NMP controller connected through a fixed latency high-

bandwidth crossbar (to achieve high simulation speed). In a 64GB unified memory network formed

using sixteen 4GB HMCs, MCs are responsible for determining the host cube of a given 36-bit

69

0%

20%

40%

60%

80%

100%

BP KM LUD MAC PR RBM RD SC SPMV

Pe
rc

en
ta

ge
 o

f P
ag

e Low-Low Low-High High-Low High-High

Figure 4.8: Page affinity showing the interrelation among the pages in an application.

Hardware Configurations
Chip Multiprocessor (CMP) 16 core, Cahce (2MB/each core), MSHR (16 entries)
Memory Controller (MC) 4, one at each CMP corners, Page Info Cache (128 entries)
Memory Management Unit (MMU) 4-level page table
Migration Management System (MMS) Migration Queue (128 entries), DMA (Rx,Tx buffers 128 entries)
Memory Cube 4GB, 32 vaults, 8 banks/vault, Crossbar
Memory Cube Network (MCN) 4×4/ 8× 8 mesh, 3 stage router, 128 bit link bandwidth
NMP-Op table 512 entries
Hyper-parameters reply-buffer (1000 entries), minibatch (128), learning rate (0.005)

Table 4.3: Hardware configurations.

physical address with 4 bits, and the remaining 32 bits are used to address (4GB) in each individual

HMC. In addition, MCs create and send packets to respective HMCs, and also host page info caches

to record page related information. The CMP, bus and the MCs have their respective queues,

which backpressure NMP operation offloading; when they are full, forcing processors to stall

fetching. The NMP controller helps create and offload the NMP operations to the HMC after the

virtual-to-physical address translation, facilitated by the MMU unit equipped with a functional

4-level page table. The MMU also helps keep track of the migration candidates, and invokes

DMA to initiate physical data migration through the memory network. Page faults are realized by

employing process stall for a fixed number of cycles.

70

4.3.1.3 HMC Model and HMC network

The cycle accurate HMC network consists of event-driven HMC cubes [153] connected through

the NI with the 3-stage pipelined router logic [130], and high bandwidth external SERDES links [176,

133]. The protocol deadlock is avoided using separate virtual channels (VCs) and network dead-

lock is avoided by using static XY routing. We aim for high-speed network simulation with simple

round-robin allocation for the VCs and switch. The HMC reflects two different latency situations

(row buffer hit and row buffer miss). Each of the banks has a row-buffer and each of the vaults has

2 banks connected in each layer (total 4 layers), constituting a total of 8 banks per vault. Parallel

vault (32) accesses are facilitated by their respective vault controllers. NMP operations, are stored

in an NMP-op table in each HMC, where each entry in the table connects to a simple Processing

Unit (PU). The PUs receive operands either from the vault of the local cube, or from the remote

cube through the crossbar that connects all the vaults and the NMP-op table with the external links.

4.3.2 Simulation Methodology

MC2sim gives a parallel simulation view by running the hardware system and the RL agent in

alternating epochs (100 to 250 cycles), where the RL agent recommends on the basis of system

states in the last epoch to take action in the current epoch. The majority of the simulations are trace

based, where the traces are collected by executing applications with data set-sizes ranging from 80

MB to 0.5 GB and annotating NMP-friendly regions of interest that were identified in previous

works [18, 21]. The traces of an application form an episode for the application. AIMM evaluates

both single-program and multi-program workloads, for several episodes (5 to 10), clearing the

hardware system after each episode. The combinations of multi-program workloads are decided

based on the workload analysis (§4.3.4). We evaluate the AIMM performance on the following

techniques.

We create two variations of Active-Routing (AR) technique, based on the NMP-op computation

point and named as (1) Basic NMP (BNMP) and (2) Load Balance NMP (LDB). The BNMP

computation point is the HMC that contains the dest page of the requested NMP-op <&dest

71

+= &src1 OP &src2>. The LDB computation point is the src1 operand location, owing to the

observation that src operands span across more pages than dest, and hence are used for default

load balancing. We use PEI unchanged as they send one operand data with the NMP-op request

itself; the computation point is always the other operand location.

The TOM heuristic is adopted on top of the static computation point logic to improve per-

formance through better resource management. It derives the node-id using a few bits from the

physical address by using hash functions, decided after profiling for an epoch (10000 cycles) and

applied in the following epoch. Multi-program scenarios make use of HOARD for localizing pro-

cess data through page frame allocation using process specific free-frame list, in order to avoid

inter-process interference. Unless otherwise mentioned BNMP is considered as our common base-

line technique for result normalization and NMP operations are marked as non-cacheable [21]. We

discuss each of the techniques in detail as follows.

4.3.3 NMP Techniques and Mapping Schemes

4.3.3.1 Basic NMP (BNMP)

We implement BNMP, following Active-Routing [21] for scheduling each operation in the

memory cube while the in-network computing capability is not included. The NMP operation

format is considered as <&dest += &src1 OP &src2>, where &dest page host cube is

considered as the computation point. An entry is made in the NMP-Op table at the computation

cube and requests are sent to other memory cubes if sources do not belong to the same cube as the

destination operand page. Upon receiving responses for the sources, the computation takes place

and the NMP-Op table entry is removed once the result is written to the memory read-write queue.

The response is also sent back to the CPU if required.

4.3.3.2 Load Balancing NMP (LDB)

This is a simple extension of BNMP, based on two observations as follows. (1) Oftentimes,

some NMP-Op table receives a disproportionate load based on the applications access pattern.

(2) In most of the applications, the number of pages used for sources is significantly higher than

72

the number of pages used for destination operands. Hence we simply change computation points

from destination to sources in order to balance the load on the NMP-Op table. However, once the

computation is done, the partially computed result must be sent back to the destination memory

cube and also to the CPU.

4.3.3.3 PIM Enabled Instruction (PEI)

This technique recognizes and tries to simultaneously exploit the benefit of cache memory as

well as NMP. In case of a hit in the cache for one operand, PEI offloads operation with one source

data to another source location in the main memory for computation. Being one of the early pro-

posals on processing in-memory (PIM), they do not change the existing sequential programming

approach where operation location is decided based on the locality of the data accesses. In terms

of data and computation mapping PEI leaves fewer options open for AIMM, as they provide one

of the operands along with the operation itself. AIMM can still explore computation migration and

relative location of data from the connections with MCs, leading to some performance benefits as

shown in Figure 4.9.

4.3.3.4 Transparent Offloading and Mapping (TOM)

This is a physical-to-DRAM address remapping technique, originally used for GPUs to co-

locate the required data in the same memory cube for NMP. Before kernel offloading, TOM profiles

a small fraction of the data and derives a mapping with best data co-location, which is used as

the mapping scheme for that kernel. We imbibe the mapping aspect of TOM and make required

adjustments to incorporate it in our context for remapping data in the NMP system. We infer data

co-location from data being accessed by NMP-Op traces. Each mapping candidate is evaluated

for a thousand cycles with their data co-location information recorded. Then the scheme with best

data co-location that incurs the least data movement is used for an epoch.

4.3.3.5 HOARD

We adopted an NMP-aware HOARD [101] allocator as the baseline, heuristic-based OS solu-

tion for comparison and also as a foundation for experiment. HOARD is a classic multithreaded

73

page-frame allocator which has inspired many allocator implementations [177, 178, 179] in mod-

ern OSes. The original version of HOARD focuses on improving the temporal and spatial locality

within a multi-threaded application. HOARD maintains a global free list of larger memory chunks

which are then allocated for each thread to serve the memory requests of smaller page frames or

objects. Once the thread has finished the usage of the memory space, it chooses to “hoard” the

space in a thread-private free list until the space is reused by the same thread or the whole chunk

gets freed to the global free list. As a result, HOARD is able to co-locate data that belongs to same

thread as much as possible. We adopted the thread-based heuristic of HOARD for each program

in our multi-program workload setting. Our HOARD allocator aims for improving the locality

within each program, contributing to the physical proximity of data that is expected to be accessed

together in the NMP system.

4.3.4 Workload analysis

We primarily target the long running applications with large memory residency, which repeat-

edly use their kernels to process and compute on huge numbers of inputs. The machine learning

kernels are a natural fit for that as they are widely used to process humongous amounts of data

flowing in social media websites, search engines, autonomous driving, online shopping outlets,

etc. These kernels are also used in a wide variety of applications such as graph analytic and sci-

entific applications. Since these are well known kernels, we describe them briefly in Table 4.4. To

capture the page-frame mapping related traits of the application, we characterize the workloads in

terms of (1) page usage as an indicator of page life-time, (2) number of pages actively used in an

epoch as an indicator of space requirement in the page information cache, and (3) inter-relation

among the pages (page affinity) accessed to compute NMP operations in order to analyze the dif-

ficulty level for optimizing their access latency.

4.3.4.1 Page Access Classification

The page usage is an indicator of its scope for learning the access pattern and improving per-

formance after data or computation remapping at runtime. If the number of accesses to pages are

74

Benchmarks Description Input Data Size
Backprop (BP) [180] Training feedforward neural networks. 2097152 hidden units
LUD [180] Product of a lower and upper triangular matrix. 4096 matrix dimension
Kmeans (KM) [159] Iterative algorithm, partitions the data-set into

K pre-defined distinct non-overlapping clusters. mfeat-zer [181]
MAC Multiply-and-accumulate over two sequential vectors. 2×6400K dimension
Pagerank (PR) [13] Rough estimation of the importance of the webpages. web-Google graph [182]
RBM [12] Variant of Boltzmann machines [183]. Variant of Netflix database [184]
Reduce (RD) Sum reduction over a sequential vector. 6400K dimension.
SC [160] Assigns each point of a stream to its nearest center. 10 20 128 16384 16384 1000
SPMV [159] Solve sparse linear systems. 4096×4096 matrix

Table 4.4: List of benchmarks and corresponding input data sizes.

0

0.5

1

1.5

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BN
M

P

LD
B

PE
I

BP LUD KM MAC PR RBM RD SC SPMV

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e B B+TOM B+AIMM Genie

Figure 4.9: Execution time for all the benchmarks, normalized individually with their basic tech-
niques BNMP, LDB, and PEI respectively, which does not have any remapping support, and com-
monly referred as B in the graph. Execution time for the baseline implementations are compared
to the system with remapping support, namely, TOM and AIMM, respectively. We have added an
unrealistic setup (Genie) result to show a highly optimistic upper-bound.

very low, the scope for improvement using remapping technique narrows down to a great extent. In

Figure 4.6, we show that for most of our application kernels, the majority of the pages are moderate

to heavily used over the whole application execution, which offers a substantial scope for AIMM.

4.3.4.2 Page Touched Distribution

Figure 4.7 shows the number of pages touched in an epoch of 10000 cycles. We observe

low page reuse across epochs, leading to marginal benefits from using caches, which gets further

amortized by high data movement cost. Hence, NMP offloading can save latency and bandwidth

usage for these workloads. We can clearly identify two classes of applications. (1) High number

of touched pages, LUD, PR, RBM, SC, and (2) Low or moderate number of touched pages, BP,

75

KM, MAC, RD, SPMV in the epochs. As opposed to the medium to large working set (80MB to

0.5GB) of these applications [21], this study gives us an indication of the amount of page informa-

tion ideally needed to be stored in the page information cache in an epoch for the training of the

RL agent.

4.3.4.3 Affinity Analysis

In data mining, affinity analysis uncovers the meaningful correlations between different entities

according to their co-occurrence in a data set. In our context, we use and define the affinity analysis

to reveal the relationship among different pages if they are being accessed for computing the same

NMP operation. We track two distinct yet interlinked qualities of page access pattern, (1) the

number of pages related with a particular page as the radix for that page, which is similar to radix

of the node in a graph, (2) the number of times each pair of connected nodes are accessed as part of

the same NMP operation, similar to the weight for an edge. To understand the affinity, we create N

number of bins for each of the traits and place the pages in the intersection of both by considering

the traits together. So the affinity space is N(accesses)×N(radix), which is further divided into

four quadrants to produce a consolidated result in Figure 4.8. Based on our study, a higher affinity

indicates a harder problem, which poses greater challenges for finding a near-optimal solution. On

the contrary, they also exhibit and offer a higher degree of scope for improvement. Please note

that this is only one aspect of the complexities of the problem. Interestingly in our collection, we

observe a balanced distribution of workloads in terms of their page affinity.

4.4 Experimentation Results

4.4.1 Performance

4.4.1.1 Execution Time

Figure 4.9, shows the execution time for different applications under various system setup and

support. It is evident that AIMM is effective at helping the NMP techniques to achieve better per-

formance in almost all cases. We observe up to 55% improvement in execution time. With BNMP

processing, the NMP operations are completely on the memory side, both TOM and AIMM boost

76

the performance of BNMP. In general, TOM achieves around 15% to 20% performance improve-

ment. AIMM secures improvement in execution time by around 50% on average across all the

benchmarks. However for LDB, TOM did not improve much for most of the benchmarks. With

LDB, AIMM improves execution time up to 43%, with no performance degradation observed ex-

cept minor performance loss for SC. In the case of PEI, it is evident that for the majority of bench-

marks TOM degrades the performance, whereas AIMM manages to achieve performance benefit

around 10% to 20% (up to 42%) on average. For SPMV and MAC, both TOM and AIMM de-

grade the performance of PEI. There are several factors that play major roles in our system to drive

system performance, such as operation per cycle, learning rate, utilization of migrated pages, path

congestion and computation level parallelism. In addition, hop count in the memory network and

row buffer hit rate in the memory cube can be considered as primary contributors for performance,

depending on the nuances of individual cases. In the following, we discuss each of the techniques

to justify their performance.

In the case of PR on BNMP, AIMM does not improve over TOM, which can mostly be at-

tributed to the 3× computation distribution achieved by TOM over AIMM as shown on Fig-

ure 4.13a, in addition to very low migration page access for PR as shown in Figure 4.10. Figure 4.6

shows that PR has high number of pages that accessed small number of times, justifying low usage

of migrated pages. Higher computation distribution improves NMP parallelism at the cost of ex-

tra communication if the computation node and operation destination are different. Low accesses

to migrated pages diminishes the benefit of migration. On the other hand, AIMM achieves 50%

better performance for SPMV that is ascribed to significant improvement in average hop count in

Figure 4.13a, moderate fraction pages migrated (40%) and they constitute almost 60% of all the

accesses as shown in Figure 4.10. The performance of SC with TOM and AIMM allows us to delve

into discussion of the trade-off between computation distribution and hop count in the memory net-

work, along with importance of distribution of the right candidate in the right place. Missing one

of them may offset the benefit achieved by the other, as the case for SC with TOM. On the contrary,

AIMM leads to a better performance than TOM with very moderate compute distribution and low

77

0.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1

BP LU
D

KM M
AC PR

RB
M RD SC

SP
M

V

Fr
ac

tio
n

of
 A

cc
es

se
s

Fr
ac

tio
n

of
 P

ag
es

(a) 0% 50% 100%

BP
LUD
KM

MAC
PR

RBM
RD
SC

SPMV
Migr-Q Lat DMA Lat N/W Lat

(b)

Figure 4.10: Migration Stats: (a) On the major axis we show the fraction of pages that are migrated
for each of the applications using bars. On the minor axis it projects the fraction of total accesses
that are happened on migrated pages, with diamond shaped markers. (b) Migration latency break-
down.

hop count as shown in Figure 4.13a. Since LDB and PEI both tend to co-locate the sources belong-

ing to an NMP operation, they leave much lesser chance than BNMP type techniques for further

performance improvement using remapping like TOM or AIMM. The performance improvement

is mainly achieved by optimizing the location of the destination pages with respect to the source

operand pages.

For estimating an upper bound of the execution time, we build a Genie (with unrealistic as-

sumptions) that magically puts computation in the node with least congestion, and also instantly

gets the operand pages in that node for immediate computations without any delay or overhead

(not even memory access latency as shown in Figure 4.9, projects ≈12.5% standard deviation for

improvement of Genie over AIMM, across applications.

4.4.2 Learning Convergence

In Figure 4.11, we plot the timeline for OPC to show that AIMM progresses towards the goal

for achieving high OPC as the time advances for each of the applications. Since the number of

operations and so as the number of samples collected for each of the applications are different,

78

we randomly choose a fixed number of points while preserving their original order of creation.

The agent learns that the page migration has a long-term impact on the benefit of data co-location,

whereas the computation migration balances load by keeping the computation and communication

resource availability in consideration. KM and SC still show potential to improve OPC further

given more episodes to run and other applications converged.

4.4.3 Migration

In Figure 4.10a, we depict the fraction of pages being migrated for each application on the ma-

jor Y-axis and the fraction of total accesses requested that belong to a migrated page on the minor

Y-axis. The fraction of pages migrated is an indicator of the migration coverage. For instance, in

the case of RBM 100% pages are migrated, and almost all the migrated pages get accessed later.

Pages in RBM are susceptible to experience high volume of migration as (1) small number of pages

are accessed most of the execution time, (2) in a small fixed time window almost all the pages are

being accessed. On the other hand, BP has huge memory residency and relatively small working

set, which leads to a low fraction of page migration as compared to the total number of pages. Inter-

estingly, the small number of migrated pages constitute almost 40% of the total accesses, which is a

near ideal scenario as low number of page migrations has a small negative impact on performance,

and a high number of accesses to the migrated pages can potentially improve the performance,

provided the decision accuracy is high. The RL agent should learn from the wrong migration de-

cisions through the feedback, as they incur performance overhead. Figure 4.10b shows migration

latency breakdown, where, depending on the application, the migration latency is distributed in

different proportions between DMA and HMC network. We observe average migration costs ≈

800 cycles to 2000 cycles, depending on the network congestion. That is why we use non-blocking

migration for all of our experiments. The migration/access across all the applications ranges from

0.001% to 0.054%, which can be categorized as low to moderate frequency.

79

0 500 1000 1500 2000 2500
Ordered fixed Length Samples

1.0

1.2

1.4

1.6

1.8

2.0

2.2
 O

pe
ra

tio
n

pe
r C

yc
le

BP
LUD
KM
MAC
PR
RBM
RD
SC
SPMV

(a)

0.0 0.3 0.5 0.8 1.0

BP
LUD
KM

MAC
PR

RBM
RD
SC

SPMV

Normalized Execution Time

BNMP+AIMM BNMP

(b)

Figure 4.11: (a) Operation per cycle timeline. The X-axis is the sampled time and the Y-axis is
the value for OPC. The graph is not monotonically increasing as OPC depends on several system
parameters at runtime. (b) Normalized execution time for 8×8 mesh (shorter is better).

4.4.4 Hop Count and Computation Utilization

In terms of system performance, hop count and computation distribution hold a reciprocal re-

lation as reducing hop count improves the communication time, but results in computation under-

utilization due to load imbalance across cubes. On the other hand, computation distribution may

result in a high degree of hop count as concerned pages can only be in their respective memory

cubes. Hence, a good balance between these factors is the key to achieving a near-optimal solu-

tion. Figure 4.13a shows that AIMM maintains a balance between the hop count and computation

utilization. For instance, PR and SC individually achieves very high computation utilization which

also leads to high average hop count. Assuming that the computation distribution decisions and

corresponding locations are correct, the benefit gets diminished to 22% and 20% respectively pos-

sibly because of high hop count.

4.4.5 Scalability Study

In this subsection, we extend our experiments to study the impact of AIMM under a different

underlying hardware configuration (8×8 mesh) as well as under highly diverse workloads together

80

0

0.5

1

BP-LUD-PR-RBM

SC-KM-RD-MAC

SPMV-LUD-PR-RBM

LUD-RBM-SPMV
SC-SPMV-KM

PR-LUD
RBM-PR

LUD-RD

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e BNMP BNMP+AIMM BNMP+HOARD BNMP+AIMM+HOARD

Figure 4.12: Multi-process normalized execution time. BNMP and BNMP + HOARD are consid-
ered as two separate baselines and used for normalize BNMP + AIMM and BNMP + AIMM +
HOARD results, respectively.

(2/3/4-processes). With a larger network, we expect to observe higher network impact on the mem-

ory access latency, and intend to show that AIMM can adapt to the changes in the system without

any prior training on them. While choosing applications for multi-program workloads, we select

diverse applications together based on our workload analysis, so that the RL agent experiences

significant variations while trying to train and infer with them.

4.4.5.1 MCN Scaling

We observe that AIMM can sustain the changes in the underlying hardware by continuously

evaluating them and without having any prior information. However, the amount of improvements

for the applications are different than that in a 4×4 mesh. For instance, as shown in Figure 4.11b,

with BNMP+AIMM, RBM observes more benefit over BNMP, than it observes in the 4×4 mesh.

As we know larger networks are susceptible to higher network latency, however, they also offer

higher capacity and potential throughput. In the case of RBM, AIMM could sustain throughput,

whereas benefits for other benchmarks slightly offset, mostly because of higher network delay.

Note that in terms of simulation with larger network size, we did not change the workload size.

Tuning hyper parameters is left for future work.

81

0

2

4

6

8

10

0

1

2

3
BP LU
D

KM M
AC PR

RB
M RD SC

SP
M
V

Co
m

pu
ta

tio
n

U
til

iza
tio

n

N
or

m
al

ize
d

Ho
p

Co
un

t
BNMP BNMP+TOM
BNMP+AIMM BNMP
BNMP+TOM BNMP+AIMM

(a)

0

0.2

0.4

0.6

0.8

1

E-
16

E-
32

E-
64

E-
12

8

E-
25

6

E-
51

2

E-
10

24

N
om

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

PR (PCS) SPMV (PCS)

PR (NOT) SPMV (NOT)

(b)

Figure 4.13: (a) Average Hop Count and Computation Utilization. Major Y-axis is shown in bars.
(b) Sensitivity study: The bar graph shows the sensitivity of the benchmarks for different page-
cache sizes (PCS), whereas the line graph show the sensitivity to the NMP-Op table (NOT) sizes.

4.4.5.2 Multi-program Workload

Figure 4.12 shows multi-process execution time. For a continuous learning environment like

AIMM, multi-program workloads pose a tremendous challenge on the learning agent as well as on

the system. For studying the impact of multi-program workloads, we consider two baselines. (1)

BNMP, where the NMP operation tables, page info cache, etc., are shared and contended among

all the applications. We leave the study of priority based allocation or partitioning for future study.

(2) BNMP+HOARD, where at the page frame allocator level our modified version of HOARD

helps to co-locate data for each process, preventing data interleaving across processes. We observe

that for several application combinations (SC-KM-RD-MAC, LUD-RBM-SPMV, SC-SPMV-KM),

HOARD and AIMM compliment each other to achieve 55% to 60% performance benefits.

4.4.6 Sensitivity Study

We study the system performance by varying the sizes of (1) page info cache, whose size is

critical for passing system information to the agent and (2) NMP operation table, whose size is

important to hold the entries for NMP operations, denial of which affects memory network flow.

We choose two representative applications (PR, SPMV) to study their performance by varying one

82

parameter while keeping the other one to its default value, mentioned in Table 4.3. (3) We also

tune the training hyper-parameters for optimum results.

4.4.6.1 Page-info cache size (PCS)

Figure 4.13b shows that PR exhibits very minimal sensitivity to page cache size, whereas SPMV

finds its sweet point while increasing the number of entry from 32 (E-32) to 64 (E-64). As a general

trend, applications that get the most benefit from AIMM are more sensitive to the page cache size

than others. Based on this study, we empirically decide the number of page cache entry as 256.

4.4.6.2 NMP table size (NMP-Op Tab)

NMP table size sensitivity depends on several parameters such as the number of touched pages

(Figure 4.7), computation distribution, etc. In terms of average number of touched pages in an

epoch, SPMV has around 10 pages on average in a time window. Figure 4.13a shows that SPMV

has the highest computation distribution among the other applications. Combining these two pieces

of data, it explains the reason for execution time saturation after 32 entries (E-32) for SPMV. On

the other hand, PR has a very high demand for NMP operation table, as it has high average touched

page count and low reuse rate. That is why PR shows monotonic improvement in execution time

with the increase in the number of NMP table entries.

4.4.6.3 Training hyper-parameters

We study the sensitivity of the execution time with respect to replay-buffer size, frequency of

training and learning rates. The replay-buffer size is varied 500× observing only up to 4% perfor-

mance loss, which helped to optimize energy and area consumption without hurting performance

much. As discussed earlier, training rate is controlled by the agent by its actions (action #6 and

#7), we vary the upper and lower bound of it and observe a sweet point (execution time ±0.4 to

±13). We apply the same strategy for learning rate as well, where we explore the spectrum to find

the most suitable point (execution time ±0.1 to ±20) and set as default for all the applications and

experiments.

83

4.4.7 Area and Energy

In this section, we discuss the detailed area and energy aspect of our design. The implemen-

tation of the RL engine and migration management unit demands a separate provision in the chip.

For estimating the area and energy, we model all the buffers and caches using Cacti [185], 45nm

technology, since these components contribute to most of the area and energy overhead in the sys-

tem, and use McPAT [186] for overall CMP area estimation. Overall area overhead as compared

to 16 core Xeon processor is ≈0.2% and HMC area overhead is even more negligible.

4.4.7.1 Information Orchestration

We estimated the area for hardware registers and page information cache as part of the infor-

mation orchestration system. Since the hardware registers occupy negligible area, we mostly focus

on the page information cache of size 64KB, which occupies 0.23 mm2 area. The estimated per

access energy for page information cache is 0.05nJ, which is consumed every time the cache is

updated and read.

4.4.7.2 Migration

For the migration system, we consider three data storing points as a major contributor for

area, namely, NMP buffer (512B, 0.14mm2), Migration queue (2KB, 0.04mm2), and DMA buffers

(1KB, 0.124mm2). It is worth noting that, depending on the organization and access method, the

buffer and cache peripherals change significantly and so does their area. The per access energy

consumption by these components are 0.122nJ, 0.02689nJ, 0.1062nJ, respectively. Page wise en-

ergy in the average case is composed of DMA leakage energy (15.51nJ) for waiting 500 cycles and

the network cost for the whole page-frame transfer (574.44nJ), in total ≈ 600nJ.

4.4.7.3 RL Agent

For estimating the area and energy consumed by the RL agent, we focus on their major source

of energy consumption that can easily be modeled as cache like structures, namely weight matrix

(603KB, 2.095mm2), replay buffer (≈512KB, 3.17mm2), and state buffer (576B, 0.12mm2). Their

84

0.E+00
1.E-04
2.E-04
3.E-04
4.E-04
5.E-04
6.E-04

BP LUD KM MAC PR RBM RD SPMV SC

BNMP BNMP+AIMM

Figure 4.14: Energy-delay product (lower is better).

per access energy is estimated as 0.244nJ, 0.316nJ, and 0.106nJ, respectively.

4.4.7.4 Network and Memory

Since the migrations are realized by actually sending pages through the memory network with

the help of DMA, we also estimate the network and memory cube energy consumption by assuming

5pJ/bit/hop [187] and 12pJ/bit/access [16] for the network and memory, respectively.

4.4.7.5 Overall Dynamic Energy

In our overall dynamic energy study, we include energy consumed by (1) only additional

AIMM hardware, (2) memory network energy, and (3) memory cube energy, as major contributors

to energy consumption in our framework. In Figure 4.14 we project Energy-Delay Product (EDP)

as an overhead estimation metric, comparing the baseline and AIMM setup across the benchmarks.

The EDP is roughly equivalent to the reciprocal of MIPS2/Watt [188], where MIPS stands for Mil-

lion Instructions per second and Watt (Joul/second) is the unit of power. In our case we replace

instructions with NMP operations. The delay is the runtime, which is converted to seconds, as-

suming 2.66 GHz processor clock frequency. Overall EDP shows that, even though AIMM has

some energy overhead over the baseline, it is still beneficial, as (except MAC) we observe that all

the benchmarks’ EDP is significantly lower than baseline.

85

0

0.5

1

BP LUD KM MAC PR RBM RD SPMV SC

N
or

m
 E

xe
cu

tio
n

BNMP BNMP+AIMM

Figure 4.15: Normalized execution time for the HBM-PIM network. The X-axis is the benchmarks
and the Y-axis is execution time, normalized to the BNMP.

4.5 Case Study: Scalable HBM-PIM

In this section, we discuss a case study and potential solution for addressing the capacity scal-

ability issue with HBM-PIM [39]. It is pertinent to have a scalable solution, as many modern

applications (good candidates for NMP) like, embedding lookup for embedding reduction [189],

DNN kernel handling large input [190, 100], and other machine learning kernels used in our paper

demands huge memory for handling large inputs. To evaluate the scope of AIMM in hierarchical

HBM-PIM network, we develop a Transaction Level Model (TLM) [191], capturing high level

functional behaviors of the hierarchical HBM-PIM.

To overcome the memory capacity scaling limitation along with computation bandwidth, we

propose a hierarchical network of HBM-PIMs enabled with smart switches and connected through

smart network interfaces (SMART-NIC). Considering current HBM-PIM as one tile, we connect

4 tiles (scaled up to 128GB) and a host CMP using a smart switch (5×5 ports, NMP computation

enabled) with 100GB/s bus. The processor chip in the tile is used only for NMP computation

and memory commands are scheduled by MCs, whereas the host CMP is used for operation of-

floading. The TLM model connects the modules using generic port, and uses generic payload

and AXI4-Stream protocol [192] for communication; different constant latencies/buffer sizes are

used to model memory access latency, computation delay, link accesses latency, reflecting their

corresponding operating frequencies, bandwidth and pipeline behavior. We integrate this model

86

into MC2sim. We provide occupancy for PEs (in switches/HBMs), read/write queues in HBMs,

and generic ports as information to construct the states. Actions still dictate migrations (estimated

overhead for page migration is less than 10% of execution time, is not considered) and the reward is

constructed using OPC. The experimentation result is shown in the Figure 5.3. In our preliminary

study we observe large variations in the improvement over baseline, ranging from none to 50%

in execution time, possibly ascribed to optimization of computation location (external switch/tile

switch/HBM-PIM) through improved data mapping. We observe that the 2× improvement in

execution time is partially attributed to better link utilization that happening for PR and SC, along

with better resource utilization in terms of PEs. The benchmarks like BP and RD hardly gets bene-

fit from AIMM as both observes a little scope for improvement in the hierarchical network. Other

application kernels show moderate improvement in the results.

4.6 Summary

Careful articulation of data placement in the physical memory cube network (MCN) becomes

imperative with the advent of Near-Memory Processing (NMP) in the big data era. In addition,

scheduling computation for both resource utilization and data co-location in large-scale NMP sys-

tems is even more challenging than ever before. We propose AIMM, which is proven to be effective

in assisting the existing NMP techniques mapped on MCN, by remapping their computation and

data for improving resource utilization and optimizing communication overhead. Driven by the

application’s dynamic memory access behavior and the intractable size of data mapping decision

space, AIMM uses Reinforcement Learning techniques as an approximate solution for optimiza-

tion of the data and computation mapping problem. We project our technique as a plug-and-play

module to be integrated with diverse NMP systems. The comprehensive experimentation shows

significant performance improvement with up to 55% speedup for single-program workloads and

up to 50% for multi-program workloads over baseline NMP. For broader application, AIMM can

also facilitate data mapping in other near-data processing systems, such as processing in cache,

memory, and storage.

87

5. MC2sim: MEMORY-CENTRIC COMPUTATION SIMULATOR WITH PLUGGED-IN

REINFORCEMENT LEARNING FRAMEWORK

The resurgence of near-memory processing (NMP) with the advent of big data has shifted

the computation paradigm from processor-centric to memory-centric computing. Since memory-

centric computing resembles more with our brain functionalities and has capability to exploit huge

internal memory bandwidth and translate that into computation bandwidth, it may proven to be

the future of commercial computation facilities. Researchers are working on several technologies

like, DRAM chips (conventional DIMMs), DRAM cubes (HBM, HMC), NVM (ReRAM, PCM,

etc.), which expands the application scope for memory centric computations in capacity extendable

memory-network. However there is only a handful of free source simulation framework available

to facilitate the memory-centric computation research.

Since simulation framework plays the key role in innovative architectural design, we delve into

designing an end-to-end memory centric computation framework MC2sim, capable of simulating

Terabytes of in-memory data computations in reasonable timing. In addition, we also provide

simple programming interface for writing simple kernel programs to mimic their memory access

behavior. Owing to fact that there is a growing research interest in machine learning assisted

computer hardware and policy design and decision making, we integrate a reinforcement learning

agent which monitors the system parameters provided by the simulation framework and learns

different traits of the system if enabled. The framework not only supports NMP operations, but

also supports regular memory operations.

5.1 Overview of MC2sim

In this section we describe the overall simulation methodology, design principle followed, and

connection among the major class of components as shown in Figure 5.1. We can divide the whole

framework in five different class of components 1 kernel programming and real program trace

support, 2 chip multi-processor design, 3 simple thread scheduling and page translation, 4

88

Process Library

Registration

Application Class
Trace
Library

Thread Scheduler

C
hi

p
M

ul
ti-

P
ro

ce
ss

or Cores

Caches

CMP network

TL
B

M
C

s
M

M
U

s RL

NMP Cnt

4-level page table

Memory Network

Host m/c Storage

1

2

3

4

5

Page-Frame
Allocator

Figure 5.1: MC2sim overview.

memory network, 5 RL agent training and inference. We depict the way we put them together

under the same memory-centric design framework. We briefly describe each of the classes and

their integration process as follows.

5.1.1 Program kernel and Trace support

The simple programming interface allows user to write their own program in C++ and using

programming APIs users can easily simulate the memory access pattern or NMP operations they

want. The trace library on the other hand, allows users to create traces by running any application

on the host machine and then run the real application traces on the simulator. The traces only

contain virtual memory addresses, which are not related with the host machine. While simulat-

ing using these traces the physical configurations, virtual to physical address translation, etc., are

89

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

H
os

t C
M

P

MC

MC

Crossbar
Routing logic

NMP-op tab

Vault controller

Vault

External links

Bank

HMC

D S1 S2

Crossbar PE

(c) NMP-op table with PEs (b) HMC dissection(a) HMC Network

Gen Src Req

Figure 5.2: HMC network. (a) HMC network and connection with the CMP, (b) HMC dissection,
(c) detail of NMP-op table, entries and connections.

applied and calculated according to the simulated system setup.

Both of these techniques together allow the users with a great flexibility of application choices.

The operating system’s process creation and handling is imitated using simulator’s process library,

which registers processes from a list of processes at run time. For each trace or kernel, there should

be an interface written which registers the application trace or kernel as process to simulate at run-

time. Each processes are pinned to different CMP cores and removed from that core only when the

process completes. The number of applications that can be simulated in parallel is parameterized.

5.1.2 Chip multi-processor (CMP) Design

The CMP cores get the pinned processes at runtime through the thread scheduler, depending

on the scheduling policy. At each cycle, CMP visits each and every core to check if there is an

operation/instruction to schedule in that cycle. If an NMP operation or a regular memory request is

ready to be scheduled, they are packetized and sent to the memory controller for further processing.

The pipeline width of each core is parameterizable.

5.1.3 Partial OS support

Two OS kernels are supported so far for scheduling the threads in each core and also to support

the address translation. On a TLB miss, the 4-level page table is invoked to get the address transla-

tion done. The translation is assumed to be done in constant 200 cycles, including the TLB update.

90

In the mean time the CMP core is stalled. Currently the thread scheduler only handles CMP core

number of threads in the system and hence we do not simulate the process migration on context

switch.

5.1.4 Memory Network

Once the translation is done for all the operands in an NMP operation, the NMP request packet

reaches to the memory controller for finding out the actual physical location in the physical mem-

ory. Depending on the type of the memory technology, the job of the memory controllers may vary.

In general if the memory is constituted of memory cubes, the memory controller decides the cube

number in which the packet will be sent. Irrespective of the memory technology or network struc-

ture, each node in the network is equipped with routing and switching arbitration. The memory

network implements the NMP operation process in the memory.

5.1.5 RL Agent

If enabled, the RL agent observes the memory system parameters and learns the way to reach

the assigned learning goal. To allow the RL to learn, in the simulation framework it is invoked in a

regular interval and carries out one iteration of training and one iteration of inference and a set of

actions are delivered to the system for taking further actions to realize the suggestions.

5.2 Micro-architecture Modeling

In this section we describe the implementation by taking examples of HMC and HBM networks

that MC2sim supports by default, followed by brief CMP description, as MC2sim aims to design

a large memory centric computation system with in-build NMP support. We also show a detailed

NMP functionality for both HMC and HBM-PIM network separately.

5.2.1 HMC Network

HMCs have in-built support for connecting each other using external links, which they call

as chaining. HMC chaining allows a great flexibility of building large HMC network following

any topology (router radix less than equal to four) as they forward memory requests to the correct

91

destination. In this section we first describe the HMC modeling followed by HMC enhancements

for adapting NMP operations. Finally, we describe the HMC network design which by default

fully supports NMP operation along with regular memory accesses.

5.2.1.1 HMC

As shown in Figure 5.2b, HMCs consist of four DRAM layers and one logic layer at the bottom.

Each of these layers are divided into multiple banks. The layers are vertically connected using

through silicon via (TSV) [193] and multiple banks (usually 2 to 4) in each layer are connected

with it. The TSV latency and bandwidth is critical as they are responsible for (i) communicating

memory commands between the vault-controller and the banks, (ii) responses from the banks to

the vault controllers, and (iii) NMP-op results write back to the banks. At any point of time one

TSV can carry on one of the above mentioned communications to and from a bank, connected

to it. The number of TSV is parameterizable (usually 32 TSVs in an HMC). Each bank has a

row associated with it and the HMC access latency is modeled by determining the row hit or row

miss, considering TSV access latency inclusive. All the vaults are connected to the crossbar switch

allowing communication among them. The crossbar has 32 internal ports and 4 external ports,

altogether 32×36. This huge internal bandwidth has been supported and reflected in the model.

5.2.1.2 NMP-op support

To carry out NMP operation in the HMC, researchers propose to extend the HMC logic layer

with array of simple computation units. In addition, for bookkeeping the operands an NMP-op

table is also employed in the same logic layer. The maximum number of entries in the NMP-op

table is parameterizable in the framework. Depending on the destination of the NMP operation,

NMP-op table makes entry for that particular operation. Then checks the availability of the source

operands. If they are in the same cube, where the destination is, they schedule regular read re-

quests, putting the particular NMP-op entry in the NMP-op table as requester. Otherwise if the

source operands are in different cubes, “Gen Src Req” block generates requests and sends them

out through a particular port in the crossbar, based on the destination of the request following

92

TILE (T-0)

SWITCH

Off-chip LINK

PEs PORT HBM-PIM

HOST

Internal SWITCH +
SmartNIC

On-board link

TILE (T-1)

TILE (T-2)

TILE (T-3)

Wide NI

RD/WR Q

Figure 5.3: HBM-PIM network, the TLM model diagram. In the model each HBM-PIM cube
consists of one read queue, one write queue (shown as one queue in the diagram) and a set of PEs.
The set of PEs models the computations in the odd-even banks. Each of the HBM cube also has
a generic port to connect with other devices, which also has the same generic port. Each tile con-
sists of such four HBM-PIM cubes connected through a switch. The switch also has computation
capability. The whole network is build by connecting four tiles through links with another switch,
which also connects to one host that offloads the NMP-ops.

routing table.

Upon receiving a response for one or both the sources of an operation, the corresponding entry

in the NMP-op table is being accessed. If all the operands are available, the computation is done by

PE attached with that entry. The table entry is cleared once the result is forwarded to right location

through the crossbar. Until then the computation result is stored in the destination (D) field in the

same NMP-op table entry.

5.2.1.3 Building Network and associated protocols

The HMC network is built by connecting HMCs through SERDES [194, 195] links. The com-

munication is done through generic payload. Payload is converted into several packets depending

on the payload size and the link-width. We implement a credit based flow control, which incor-

93

porates the availability in the NMP-op table into account for the NMP-op requests that need to

register in that particular node. The router is modeled as a three stage router and minimum amount

of time a packet resides in the router is computed, based on the packet size.

In our model each HMC router has five ports, including the network interface. Each port

supports up to six virtual channels (VCs), and number of buffers in each VC is parameterizable.

We provide a mesh topology for HMC network and other topologies can also be built by providing

corresponding network initialization files. However, for a different topology one must develop a

supporting routing function. Currently, we support static XY routing for mesh. We model the link

contention by allowing only one transaction at any point of time.

5.2.2 HBM-PIM Network

Even though both HMCs and HBMs are 3D stacked DRAMs, structurally HBMs are differ-

ent from the HMCs. The major difference is that HBMs depend on other devices to implement

memory controller, whereas HMCs implement controllers in its own cube and hence behave al-

most independently. In addition, unlike HMCs, HBM cubes do not provide routing and switching

as well. Hence, forming HBM network is more challenging and involves some other supporting

smart components for achieving high performance.

5.2.2.1 HBM-PIM

Recently proposed HBM-PIM [196] enables processing in memory (PIM) by implementing

computations using the augmented memory circuit and reading values from the odd-even banks

connected. In our model we assume that as long as the sources belong to the same cube, they

can be rearranged to odd-even banks to carry out the PIM operation. The memory accesses are

modeled by reflecting different constant latencies for row-buffer hit or miss. All the HBM requests

are queued in read/write queues. The queue follows FIFO policy and number of requests serving

per cycle is parameterizable. This is the first commercial prototype of HBM that supports PIM op-

erations along with the regular memory accesses. In order to improve memory capacity, maximum

four HBM-PIMs are connected with the CMP chip, beyond which extending memory capacity

94

faces difficulty because of physical pin limit in CMP chip. The CMP chip and four HBM-PIM

cubes are connected through passive interposer links. Since passive interposer only supports direct

links between two modules, increasing the number of HBM-PIM cubes exponentially increases the

requirement for links in the interposer imposing another physical constraint on HBM-PIM capacity

scaling.

5.2.2.2 Scalable HBM-PIM

As HBM-PIM work pointed out that there is a capacity limit of HBM-PIM as we already

discussed, we propose a scalable solution, which involves and opens up opportunity in several

different areas, like smart-switch, smart-NIC, etc., as shown in Figure 5.3. The detailed implemen-

tation of the smart components, we left for future work. We develop a Transaction Level Model

(TLM) to implement a hierarchical network that consists of high bandwidth switches. The main

switch is connected to CMP with a wide network interface (NI), which is capable of sustaining

expected network bi-section bandwidth, 2× of bandwidth of the individual links or switches. The

switches follow round-robin scheduling for fair arbitration across input and output ports. The link

contention is correctly modeled. We consider four HBM-PIMs, considering each of them as tiles,

and connected the tiles with the main switch using generic ports. In fact, all the modules use the

instances of the same generic port for creating network and facilitating communication. The mode

of communication is generic payload which is recognizable in all the modules in the network. Each

of the transactions follow simple AXI4-Stream in our HBM-PIM network model. The protocol can

be changed easily if needed. The links that connect the main switch and the tiles supports upto 100

GB/s. The links in the HBM-PIM tiles can reach upto 350 GB/s bandwidth. The ports supports

several virtual channels to avoid protocol level deadlocks.

5.2.3 CMP design

In Figure 5.4 we show the CMP design in MC2sim. There are “k” processors which are capable

of processing NMP kernels and “k” is parameterizable. The applications that run on these proces-

sors create processes to pin on each of the processor cores. Each of the processor in the CMP

95

MMU-0

Processor-0

Processor-k

L$

Shared LLC

NMP controller-0

L$

L$

?

Y

N

TL
B

MMU-k

MC-0

MC-1

MC-n

TL
B

CMP n/w

MSHR

NMP kernel
processor

RL Agent

CMP Chip
Migration MU-k

Migration MU-0

NMP controller-k

?

Software/Application/OS DMA chip Main Memory Network

Figure 5.4: The CMP design.

belong to different CMP nodes that are connected through the CMP network. Each CMP node

consists of a processor, memory management unit (MMU), migration management unit, NMP

controller. Each processor has its private L1 cache. Each of the MMU handles the TLB, which is

also private to each node. In addition, CMP has RL agent, shared last level cache (LLC), memory

controllers that are common to all the CMP nodes.

The pinned processes offload NMP operations on each cycle and the MMU translates the vir-

tual addresses with the help of TLB. In case of TLB miss, MMUs access the page table situated in

the main memory. Once the translation is done for all the operands in one operation, the operation

is sent to the NMP controller, which creates NMP operation for the NMP units in the main-memory

and send them to the MC(s). The NMP operations are usually considered as non-cacheable and

hence after address translation the NMP controllers are invoked. Other regular memory requests

go through cache memory and reaches to MCs. In the MC(s) the NMP request and regular mem-

ory requests are handled equally and based on the underlying memory technology MC takes the

96

required course of actions. Since we are advocating for memory centric design, the memory net-

work is quipped with its own memory controllers for handling the memory commands as described

earlier.

To facilitate learning, we integrate an RL agent in the CMP and feed system parameters through

the CMP network. To keep the simulation speed in the acceptable range we execute the RL agent

on the host machine directly. However, to obtain a realistic simulation framework we estimate the

average time for one training iteration and switch the execution control between system simulation

and RL accordingly to provide a parallel simulation view. We also provide hardware accelerated

page migration unit as an example to reflect on the RL actions at the runtime. There could be

several other ways to reflect the learning outcome in the system, which needs to extended further.

5.3 Functional Component Models

To maintain the simulation speed we refrain from timing simulation for the learning accelerator

and some part of the OS kernels. These components provide the the accurate functionality running

directly on the host machine on which the framework is also running. In addition these components

are also compiled in the same framework build so that they can be accessed within the framework

process, for saving further inter-process communication delay during simulation.

5.3.1 RL components

We use the off-policy, value-based deep Q-learning [121] algorithm for the proposed RL-based

AIMM. For the state-action value estimation, we use a dueling network as a function approximator.

The DNN model in the agent is a simple stack of fully connected layers. The agent takes the

state and predicts the state-action value for each action. Then we use an ε-greedy Q-learning

algorithm [120] to trade off the exploitation and exploration during the search and learning process.

The algorithm selects an action randomly with probability ε to explore the decision space, and

choose the action with the highest value with probability 1− ε to exploit the knowledge learned by

the agent. To train the DNN, we leverage experience replay [121] by keeping the past experiences

in the replay buffer and randomly draw the samples for training. Therefore, the learning and search

97

process is more robust by consolidating the past experiences into the training process.

5.3.2 System components

Since the system components are same across all the system configurations, keeping the simula-

tion speed in mind we functionally implement the following three OS kernels, (1) thread scheduler,

(2) page table, and (3) page-frame allocator.

5.3.2.1 Thread Scheduler

The thread scheduler accepts all the process threads registered in the system and checks if sys-

tem simulation reached the scheduling cycle for that thread. If the time for scheduling is reached,

the thread is pinned to a CMP core till the end of the process and removed from the core once

done. MC2sim supports core number of processes to be scheduled to keep the thread scheduling

simple. However, if some research needs to have more complex thread scheduler, it can easily be

extended.

5.3.2.2 4-level Page Table

The four-level page table is built for accurate virtual to physical address translation and also

account for the page faults in the simulation. The physical address is assumed to be 48 bits and

the virtual addresses are considered to be 64 bits. The memory consumption of the page table

could be unbearable if the whole page table structure needed to be allocated in the beginning of the

simulation. We create the entries in the page table on demand, keeping the memory requirement

for the page table as minimum as possible. The 4-level page table consists of three layers of

directories and the penultimate layer with actual page tables in a complete graph tree structure.

However, practically only a few branches of the tree is only required to be created for running

most of regular applications.

5.3.2.3 Page-frame Allocator

We adopted an NMP-aware HOARD [101] allocator as the baseline, heuristic-based OS solu-

tion for comparison and also as a foundation for experiment. HOARD is a classic multithreaded

98

page-frame allocator which has inspired many allocator implementations [177, 178, 179] in mod-

ern OSes. The original version of HOARD focuses on improving the temporal and spatial locality

within a multi-threaded application. HOARD maintains a global free list of larger memory chunks

which are then allocated for each thread to serve the memory requests of smaller page frames or

objects. Once the thread has finished the usage of the memory space, it chooses to “hoard” the

space in a thread-private free list until the space is reused by the same thread or the whole chunk

gets freed to the global free list. As a result, HOARD is able to co-locate data that belongs to same

thread as much as possible. We adapted the thread-based heuristic of HOARD for each program

in our multi-program workload setting. Our HOARD allocator aims for improving the locality

within each program, contributing to the physical proximity of data that is expected to be accessed

together in the NMP system.

5.4 Supporting Simulator Components

The four main supporting aspects of any simulator is the (1) reading inputs, (2) reading con-

figurations, (3) output the simulation statistics, and (4) debugging. Since we support trace based

simulation, MC2sim facilitates reading trace files one by one, given trace location as the input to

the simulation. It also supports simulation specific configurations and uses them to set parameter

values either to configure the simulator, or setting some required simulation flags. The statistics

for many parameters are delivered in a file at the end of the simulation. We also provide debugging

facility for functional correctness of the implementation and logging.

5.4.1 Trace Support

The trace reader reads one trace file at a time for an application and store the whole content

in a vector of trace elements. Each of the trace element stores one entry on the trace file. During

the simulation, the processor fetches operations from the trace element vector and moves forward

for further processing. When back-pressured, the operation fetch is halted to reflect the idle time.

Once the content of the whole trace file simulated, the trace reader reads the next trace file. This is

how it maintains the order of actual execution of operations done during creating the traces.

99

5.4.2 Setting and Reading configurations

MC2sim facilitates the configuration reading as text, following the configuration format. Adding

a new configuration is as easy as registering the new parameter in the configuration map that be-

longs to the configuration class, and then access through configuration objects in the places where

needed. There should be one configuration file for each simulation, which is used to reconfig-

ure some parameter that is need to be different than default. We support a wide variety of scalar

parameter types like boolean, int, float, string, and vector as well.

5.4.3 Stats Collection

Adding and printing stats is the final goal for any simulation framework. We provide a stats

parameter registration method and allow the description of the parameter during registration. The

added parameter will automatically appear in the statistics output file along with its descriptions.

The only thing the user need to set is the value that stats parameter should be updated with at the

end of the simulation.

5.4.4 Debugging support

MC2sim can be debugged with “gdb” and “valgrind” directly if compiled with the debug op-

tion. In addition, for functional verification we have extensive debug messages which can be

enabled whenever required. We support total four classes of debug messages, each correspond to

each class of components in the simulator as described earlier. The output of the debug messages

are automatically written in the “debug.log” file. In addition we also provide a way to trace back to

the network deadlock, (1) first by finding a particular packet stuck in deadlock and (2) then printing

debug messages only for that packet. In addition, in case of a possible network deadlock situation

at runtime, all the network buffer contents, mostly packets’ source and destinations are printed in

a human readable format for finding out the deadlock formation cycle.

100

5.5 Simulation Methodology

The main contribution of this framework is to decouple the learning agent execution and system

simulation, yet run them together as part of the same process. In reality we want to run the system

and learning agent in parallel. One way to achieve that in the simulation is to create two different

threads, one for the learning agent and the other for the system simulation for executing them

in true parallel mode. The threads can be synchronised based on the cycle count in the system

simulation and one iteration of the training. The other way is to execute them in time division

multiplexing fashion, where the same synchronization condition can be applied for switching the

execution control. Since the later one is simpler to handle, we have opted that for the framework.

The framework is also capable of running multi-program workload and as of now it is not equipped

to execute multi-threaded applications.

The framework can take applications as input in two different ways, (1) trace, (2) c++ programs

written using programming APIs provided by MC2sim. The traces allow MC2sim to execute any

program irrespective of their source types and host requirements for execution. In addition, the

simulations are very fast and focused as the programs need not to execute repeatedly once the

traces are created. The only downside is the storage requirement forces us to trade-off the sys-

tem details recorded in the traces. On the other hand, the programs written using the given APIs,

sometimes experience difficulty to write the generalized conventional program itself as they are

tightly integrated with the system simulation. Hence, we have only implemented application ker-

nels which uses NMP by utilizing the second method.

5.6 Validation and Experimentation

In this section we try to establish the fact that MC2sim possesses most of the traits that are es-

sential for any simulation framework. First of all the functionality of the simulator must match with

its intention. Based on the goal of the simulator, the level of accuracy should be set and achieved.

Many simulators provide several options to the users to choose the level of accuracy they want. The

simulation stability both in terms of result reproducibility and simulation software reliability are

101

0 100 200 300 400 500 600 700
Epoch

100000

150000

200000

250000

300000

Nu
m

be
r o

f p
kt

s 1
00

K
cy

cle
s (

to
t 4

 li
nk

s)

Link Utilization
Link-unaware
Link-aware
AI-assisted

Figure 5.5: Link utilization of different policies on HBM-PIM network. The X-axis is the epoch
of length 100K cycles. The Y-axis is the cumulative number of packets transferred through all the
four links in one epoch. Higher Y-axis value shows better throughput.

essential qualities for a simulator. Above all simulation speed indirectly directs research through-

put by having short simulations, allowing to try several options for a particular implementation and

also help to achieve result coverage for wide range of configurations for research completeness.

5.6.1 Functional Correctness

Functional correctness in the context of MC2sim needs to ensure that (1) all the NMP-ops are

committed, (2) at the end of the simulation the network if properly drained, (3) NMP-op imple-

mentation being very complex in terms of its execution, it is very deadlock prone and hence, the

implementation must the guaranteed to be deadlock free, (4) the memory row-buffer hit or miss

should be accurate, (5) page-hit or page-miss should be implemented correctly in the page-table

implementation and accurately reflect its latency in the simulation. We carefully checked all these

functionalities by putting checking criteria in the simulation itself and by running several target

specific verification codes. The checks and assertions will also trigger in case user implements

something new which does not match with the original assumptions or the new implementation is

102

doing something wrong. For instance, a simple check if all the issued NMP-ops are got commit-

ted and some of them are not just lost; for avoiding protocol deadlock we provide several virtual

networks and for network deadlock we provide credit based flow-control, etc.

5.6.2 Results Accuracy

MC2sim is not intend to provide end-to-end execution time as absolute numbers, rather com-

pare across different NMP techniques in the memory-centric framework, simulating the processor

side in an abstract way for gaining high simulation speed. We borrow the idea of abstraction

from processor centric simulators, most of which either implement different aspects of memory

or network-on-chip in a high level or sometimes do not even implement it. Since we are design-

ing memory-centric design we choose to abstract the CMP and hence we don’t claim the end to

end timing in absolute sense. However, since most of the important aspects of different NMP

techniques are implemented in details, the comparisons across the techniques are fair. There will

always be more for more perfection.

In any network system, link utilization is a good indicator of the network performance. In

Figure 5.5 we show the link utilization (HBM-PIM network) for three different techniques which

are (1) link-unaware, (2) link-aware and (3) AI-assisted (further details are out of the scope of

this discussion). We want to show that given a better technique our link bandwidth can sustain

higher traffic. It also shows that our AI-assisted technique successfully learns the traits of the

link and improves its bandwidth over a period of time. Even though link utilization alone does

not guarantee a better performance, but network based system should have a bandwidth elasticity.

The peak bandwdith achieved is around 269 GB/s in total for four links, similar to regular PCIe

bandwidth, around 100 to 120 GB/s. The Y-axis of the graph shows number of packets in 100K

cycles, which derives to 2.7 packets in one cycle as peak bandwidth across four external links.

Considering packet size 128 bytes, we get bandwidth per cycle ≈345 Bytes/cycle. Considering

clock of 800 MHz (usual for PCIe bus) we get the bandwidth. The default link configurations can

reach upto 100 GB/s for each link and can be configured for any bandwidth required by changing

(i) the packet processing delay, (ii) number of packets processed per cycle, and (iii) the packet

103

0.E+00

2.E+10

4.E+10

6.E+10

8.E+10

1.E+11

BP LUD KM MAC PR RBM RD SC SPMV

Cy
cl
es

Proc-stall CMP-lat MC-lat MNet-lat Mem-lat

Figure 5.6: Operation Breakdown, collected by accumulating the latency experienced by each
NMP-op in each stage. Proc-stall indicates number of cycles the process being stall for some
reason, CMP-lat shows the latency in the CMP network, MC-lat shows the latency the NMP-op
experienced in the MC on the CMP side, MNet-lat show the latency NMP-op experienced in the
memory network, Mem-lat is purely memory access latency.

buffer size.

In Figure 5.6 shows the breakdown of the NMP-op latencies for all the NMP-ops in the appli-

cation as a cumulative latency for each stages of the operation in HMC network. It is evident that

the majority of the latency is contributed by the memory network because of the complex nature of

the operations of the NMP-op as discussed earlier. The memory network latency includes all the

latency for the NMP-op staring from reaching the memory network till it is added in the memory

write queue after the result calculation. Depending on the policy, an NMP-op may result into five-

to-six request/response communications in the memory network. It is expected to have a lower

latency in the CMP network as we are trying to simulate a high bandwidth system, where the CMP

is only act as a means of NMP-op offload.

5.6.3 Stability

The simulation stability can be defined in many ways. Here we define stability in terms of re-

sult reproducibility, simulation reliability and compilation support. Given an application and a set

of hardware configurations, the simulator should produce exactly the same set of statistics values

every time it simulates. Not only that, any change in the configuration should also be reflected in

104

some way if exercised by the application. In MC2sim we make sure that above mentioned both

cases are satisfied. Like any software, simulators also should be bug free and should be very re-

liable as long as the host machine satisfies the resource requirements. For instance, how much

main memory is required to run the simulations. Moreover, the simulation should not crash sud-

denly because of some unseen bug in the code. In terms of compilation, if should support different

compilation options including different compilers and their optimization options. We have tested

our code with gcc-4.8 and gcc-8 for “-O0”, “-O2” and “-O3” flags successfully. However, we

need to have more constrained versions of python-3.6 and corresponding libraries like tensorflow

(==1.13.1), keras, gym (==0.17.1).

5.6.4 Simulation Speed

Simulation speed being one of our desired design goal, we tried to come up with several im-

plementation choices to make it as fast as possible, without compromising the accuracy and sta-

bility. It can simulate least 15K cycles/14K NMP-ops per second on 2.66GHz core-i7 processor

for RL disabled configurations, and 11K cycles/20.7K NMP-ops per second on the same machine

for RL enabled configurations. Even if conservatively we consider NMP-op are similar to other

X86/RISC-V instructions (which is not, as we do cycle accurate simulation for memory), gem5

approximately commits only 4K instructions per second [197].

5.7 Summary

This paper introduces MC2sim, a cycle-level simulator to satisfy new demands of memory-

centric computing research. MC2sim supports both chip multi-processor and network of memory

components. MC2sim takes advantage of full-system simulators and application-level simulators,

while avoiding the deficiencies of both. MC2sim enables architects to perform detailed and holistic

research on emerging memory-centric NMP architectures. Using MC2sim, we explored different

NMP techniques and compared across them. We also conduct several experiments to validate our

design and ensure its correctness and desired accuracy.

105

6. CONCLUSIONS

The primary contribution of this dissertation is designing an ecosystem (system-on-chip) that

consists of numerous independently developed chips on the same silicon board, free of commu-

nication hazards, supporting memory-centric computation for near-memory processing (NMP),

integrated with a generic RL framework for minimizing the NMP operation cost. The secondary

contribution is to develop a simulation tool that models the above mentioned system, capable of

running the simulation at high speed, keeping the accuracy in the acceptable level for facilitating

research in this area.

6.1 Dissertation Summary

Network deadlock issue has been one of the high priorities for any network designer. However,

large modular SoC being in its infancy, the deadlock that occur in modular SoCs has been recently

detected by Modular Turn Restriction paper and provided a solution for a particular set of routing

functions adopted for each of the chiplets and SoC independently. In this study we expanded the

scope to any routing algorithm and any topology offering high level of flexibility and opportu-

nity for optimizations for the different chiplet and SoC designers. Our remote injection control

technique ensures no protocol change and only change required in the network-interface of all the

routers in the chiplet and only minor alteration in router stages for a class of packets. Since it

can be incorporated only by changing hardware it should be easily accommodated in the design to

guarantee deadlock freedom.

The deadlock avoidance not only makes the system reliable, but also improves the cost of

overall operations, which otherwise be incurred by affecting the ability of the system to function

without interruption or forcing the system run in a lower speed for minimizing the frequency of

deadlock occurrences. Hence the deadlock avoidance allows the SoCs to exploit the network at its

fullest. However, while running NMP operations in the memory network, one of the prime source

of the cost of operations being the network itself, the placement of the data and computation

106

event is very important. In addition, the secondary impact is observed on the row-buffer hit-rate

because of the scheduling computations. We utilize Reinforcement Learning techniques as an

approximate solution for optimization of the data and computation mapping problem. We project

our technique as a plug-and-play module to be integrated with diverse NMP systems. In this

not only the placement is important, but also its timing plays huge role for achieving desired

performance boost over the baseline performance.

This dissertation also introduces MC2sim, a cycle-level simulator to satisfy new demands of

memory-centric computing research. MC2sim supports both chip multi-processor and network

of memory components. MC2sim takes advantage of full-system simulators and application-level

simulators, while avoiding the deficiencies of both. MC2sim enables architects to perform detailed

and holistic research on emerging memory-centric NMP architectures. Using MC2sim, we ex-

plored different NMP techniques and compared across them. We also conduct several experiments

to validate our design and ensure its correctness and desired accuracy.

6.2 Future Directions

Large scale modular Systems-on-Chip (SoCs) are emerging as a promising solution for reduc-

ing data movement across different systems for big data applications, where we mostly focus on

the SoC network deadlock issue and cost of the operations in this dissertation. In the due process

we discover several new avenues in research that has potential to improve the large modular SoCs

further.

6.2.1 SoC Interposer Network

We observe that the interposer network may face large traffic volume, as several computation

chiplets are connected with memory through the active interposer. For instance, if the CPU, GPU

and neural accelerators are connected with the DRAM and NVM memory through the interposer

network, then all the operation offloading and data movement, along with coherence packets are

going through the interposer network. With the increase in the number of chiplets connected, the

pressure on the interposer network also tend to increase. High bandwidth switches like NVSwitch

107

may seem to be an easy fix, which also has limit on the peak bandwidth. In addition, DGX kind of

switches require hierarchical network of switches in the interposer which sounds very challenging

from the implementation perspective in the interposer at this point. However, new topological

solution may emerge in future. In addition, the network protocol stack for the interposer network

should consists of all possible protocols that chiplets attached to it may implement. Researchers

may need to come up with more durable and smarter solutions, better than just staggering protocols

in the network driver that has to be processed using another powerful processor.

6.2.2 Memory-centric Computing and AIMM

Scheduling NMP-ops in the finest granularity comes at the cost of offloading bandwidth bottle-

neck, which can be alleviated without using complex kernel level scheduling, by applying simple

stride-based vectorization (variable size and not limited to cache block [21] or page-level [92]

offloading) of the NMP operations, facilitated by the compiler. The stride needs to be observed

among the consecutive operand addresses. We observe very low (< 10%) (BP, LUD, MAC, PR,

RD) and moderate to high (KM, RBM, SC, SPMV) scope for vectorization potentially improving up

to 60% offloading bandwidth. Variable length vector NMP-ops will bring new challenges for MC

NMP-op scheduling policy, which definitely needs in depth investigation. Expanding AIMM for

facilitating data and command mapping for Processing Using Memory may alleviate the burden of

handpicking different mappings for different underlying hardware, and further optimize its perfor-

mance by continuously improving the mapping in orderly fashion.

Energy consumption is one of the most valuable commodity, which needs to be controlled

as much as possible. The trade-off can be learnt by the RL agent and realized its actions in the

underlying hardware. This process should aim to find a trade-off between the system performance

and dynamic energy consumption. In the similar direction, the RL accelerator design may be

simplified further to obtain cheaper inference and minimal training costs.

108

6.2.3 MC2sim

Since MC2sim is still under development, there are a lot of scope for further improvement. We

just point out a broad aspect of tile based HBM-PIM network, where a detailed design of SMART-

NIC and SMART-Switch have to be developed and verified for latency and bandwidth. We can

think about some prefetching in the NMP system for improving the NMP performance further. An

integrated RL accelerator may improve the simulation accuracy further at the cost of simulation

speed. Hence, it is worth exploring the design trade-off. Energy estimation being one of the prime

concerns, integrated energy estimator would facilitate the users with more certainty regarding the

design viability.

109

REFERENCES

[1] W. J. Dally and B. P. Towles, Principles and practices of interconnection networks. Elsevier,

2004.

[2] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh, “Cost-effective design of scalable high-

performance systems using active and passive interposers,” in Proceedings of the 36th In-

ternational Conference on Computer-Aided Design, pp. 728–735, IEEE Press, 2017.

[3] D. Green, “Common heterogeneous integration and ip reuse strategies (chips),” DARPA

DARPA-BAA-16-62.

[4] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based disintegration of multi-

core processors,” in Microarchitecture (MICRO), 2015 48th Annual IEEE/ACM Interna-

tional Symposium on, pp. 546–558, IEEE, 2015.

[5] S. S. Iyer, “Heterogeneous integration for performance and scaling,” IEEE Transactions on

Components, Packaging and Manufacturing Technology, vol. 6, no. 7, pp. 973–982, 2016.

[6] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor interconnec-

tion networks,” 1988.

[7] J. Yin, Z. Lin, O. Kayiran, M. Poremba, M. Shoaib, N. Jerger, and G. H. Loh, “Modular

routing design for chiplet-based systems,” in International Symposium on Computer Archi-

tecture, IEEE, 2018.

[8] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,” IEEE

transactions on parallel and distributed systems, vol. 4, no. 12, pp. 1320–1331, 1993.

[9] A. Ramrakhyani, P. Gratz, and T. Krishna, “Synchronized progress in interconnection net-

work (SPIN): A new theory for deadlock freedom,” in International Symposium on Com-

puter Architecture, IEEE, 2018.

110

[10] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero, M. Valero, J. Labarta, and

C. Minkenberg, “On-the-fly adaptive routing in high-radix hierarchical networks,” in Paral-

lel Processing (ICPP), 2012 41st International Conference on, pp. 279–288, IEEE, 2012.

[11] J. Flich, P. Lopez, M. P. Malumbres, J. Duato, and T. Rokicki, “Applying in-transit buffers to

boost the performance of networks with source routing,” IEEE Transactions on Computers,

vol. 52, no. 9, pp. 1134–1153, 2003.

[12] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia, and M. B. Taylor,

“Cortexsuite: A synthetic brain benchmark suite.,” in IISWC, pp. 76–79, 2014.

[13] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “CRONO: A Benchmark Suite for Multithreaded

Graph Algorithms Executing on Futuristic Multicores,” in International Symposium on

Workload Characterization (IISWC), pp. 44–55, IEEE Computer Society, 2015.

[14] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,” ACM

SIGARCH computer architecture news, vol. 23, no. 1, pp. 20–24, 1995.

[15] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Else-

vier, 2011.

[16] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in Hot Chips 23 Symposium (HCS), pp. 1–

24, IEEE, 2011.

[17] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim,

H. B. Park, J. W. Shin, et al., “25.2 a 1.2 v 8gb 8-channel 128gb/s high-bandwidth memory

(hbm) stacked dram with effective microbump i/o test methods using 29nm process and

tsv,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE

International, pp. 432–433, IEEE, 2014.

[18] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture,” in International Symposium on Com-

puter Architecture (ISCA), pp. 336–348, IEEE, 2015.

111

[19] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory Accel-

erator for Parallel Graph Processing,” in International Symposium on Computer Architecture

(ISCA), pp. 105–117, IEEE, 2015.

[20] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM: Enabling Instruction-

Level PIM Offloading in Graph Computing Frameworks,” in International Symposium on

High-Performance Computer Architecture (HPCA), pp. 457–468, 2017.

[21] J. Huang, R. R. Puli, P. Majumder, S. Kim, R. Boyapati, K. H. Yum, and E. J. Kim, “Active-

Routing: Compute on the Way for Near-Data Processing,” in 2019 IEEE International Sym-

posium on High Performance Computer Architecture (HPCA), pp. 674–686, IEEE, 2019.

[22] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, O. Mutlu,

and S. W. Keckler, “Transparent Offloading and Mapping (TOM): Enabling Programmer-

Transparent Near-Data Processing in GPU Systems,” in International Symposium on Com-

puter Architecture (ISCA), pp. 204–216, IEEE Press, 2016.

[23] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” arXiv

preprint arXiv:2005.14165, 2020.

[24] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-Centric System Interconnect Design

with Hybrid Memory Cubes,” in International Conference on Parallel Architectures and

Compilation Techniques (PACT), pp. 145–156, IEEE Press, 2013.

[25] J. Zhan, I. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang, and Y. Xie, “A Unified

Memory Network Architecture for In-Memory Computing in Commodity Servers,” in In-

ternational Sympoium on Microarchitecture (MICRO), pp. 1–14, IEEE, 2016.

[26] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme to reduce

row-buffer conflicts and exploit data locality,” in Proceedings of the 33rd annual ACM/IEEE

international symposium on Microarchitecture, pp. 32–41, 2000.

112

[27] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory using 3d-stacked

dram,” ACM SIGARCH Computer Architecture News, vol. 43, no. 3S, pp. 131–143, 2015.

[28] Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo, and L. Eeckhout, “Get out of the

valley: power-efficient address mapping for gpus,” in 2018 ACM/IEEE 45th Annual Inter-

national Symposium on Computer Architecture (ISCA), pp. 166–179, IEEE, 2018.

[29] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, E. Borin, and F. M. Quintão Pereira,

“Compiler support for selective page migration in numa architectures,” in Proceedings of

the 23rd International Conference on Parallel Architectures and Compilation, PACT ’14,

(New York, NY, USA), p. 369–380, Association for Computing Machinery, 2014.

[30] B. Goglin and N. Furmento, “Enabling high-performance memory migration for multi-

threaded applications on linux,” in 2009 IEEE International Symposium on Parallel Dis-

tributed Processing, pp. 1–9, 2009.

[31] M. Chiang, S. Tu, W. Su, and C. Lin, “Enhancing inter-node process migration for load

balancing on linux-based numa multicore systems,” in 2018 IEEE 42nd Annual Computer

Software and Applications Conference (COMPSAC), vol. 02, pp. 394–399, 2018.

[32] Z. Duan, H. Liu, X. Liao, H. Jin, W. Jiang, and Y. Zhang, “Hinuma: Numa-aware data

placement and migration in hybrid memory systems,” in 2019 IEEE 37th International Con-

ference on Computer Design (ICCD), pp. 367–375, 2019.

[33] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia: Understanding ir-

regular gpgpu graph applications,” in 2013 IEEE International Symposium on Workload

Characterization (IISWC), pp. 185–195, IEEE, 2013.

[34] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T. Krishna,

“Sigma: A sparse and irregular gemm accelerator with flexible interconnects for dnn train-

ing,” in 2020 IEEE International Symposium on High Performance Computer Architecture

(HPCA), pp. 58–70, IEEE, 2020.

113

[35] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw,

and R. Das, “Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),

pp. 383–396, IEEE, 2018.

[36] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and T. Vijaykumar,

“Newton: A dram-maker’s accelerator-in-memory (aim) architecture for machine learning,”

in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 372–385, IEEE, 2020.

[37] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A dram-based re-

configurable in-situ accelerator,” in 2017 50th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), pp. 288–301, IEEE, 2017.

[38] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “Dracc: a dram based accelerator for

accurate cnn inference,” in Proceedings of the 55th Annual Design Automation Conference,

pp. 1–6, 2018.

[39] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son, O. Seongil, H.-S. Yu,

H. Lee, S. Y. Kim, et al., “25.4 a 20nm 6gb function-in-memory dram, based on hbm2

with a 1.2 tflops programmable computing unit using bank-level parallelism, for machine

learning applications,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC),

vol. 64, pp. 350–352, IEEE, 2021.

[40] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi, J. C. Hoe, and

F. Franchetti, “3d-stacked memory-side acceleration: Accelerator and system design,” in

Workshop on Near-Data Processing (WoNDP)(Held in conjunction with MICRO-47), Cite-

seer, 2014.

[41] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory ac-

celerator for parallel graph processing,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture, pp. 105–117, 2015.

114

[42] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu,

P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for Bulk Bitwise Opera-

tions Using Commodity DRAM Technology,” in International Symposium on Microarchi-

tecture (MICRO), pp. 273–287, ACM, 2017.

[43] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S. Chang, and H.-P. Li,

“Sparse reram engine: Joint exploration of activation and weight sparsity in compressed

neural networks,” in Proceedings of the 46th International Symposium on Computer Archi-

tecture, pp. 236–249, 2019.

[44] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel

processing-in-memory architecture for neural network computation in reram-based main

memory,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[45] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et al.,

“Dadiannao: A machine-learning supercomputer,” in 2014 47th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pp. 609–622, IEEE, 2014.

[46] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accelerating distributed

reinforcement learning with in-switch computing,” in 2019 ACM/IEEE 46th Annual Inter-

national Symposium on Computer Architecture (ISCA), pp. 279–291, IEEE, 2019.

[47] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” arXiv preprint

arXiv:1611.01779, 2016.

[48] H. Van Hasselt and M. A. Wiering, “Reinforcement learning in continuous action spaces,”

in 2007 IEEE International Symposium on Approximate Dynamic Programming and Rein-

forcement Learning, pp. 272–279, IEEE, 2007.

[49] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-

learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30, 2016.

[50] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis, and P. Ran-

ganathan, “Learning memory access patterns,” arXiv preprint arXiv:1803.02329, 2018.

115

[51] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-optimizing memory controllers: A

reinforcement learning approach,” ACM SIGARCH Computer Architecture News, vol. 36,

no. 3, pp. 39–50, 2008.

[52] K. Anjan and T. M. Pinkston, “An efficient, fully adaptive deadlock recovery scheme:

Disha,” in ACM SIGARCH Computer Architecture News, vol. 23, pp. 201–210, ACM, 1995.

[53] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer networks using

virtual channels,” IEEE transactions on Parallel and Distributed Systems, vol. 4, no. 4,

pp. 466–475, 1993.

[54] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion awareness for load balance in

networks-on-chip,” in High Performance Computer Architecture, 2008. HPCA 2008. IEEE

14th International Symposium on, pp. 203–214, IEEE, 2008.

[55] S. Ma, N. Enright Jerger, and Z. Wang, “Dbar: an efficient routing algorithm to support mul-

tiple concurrent applications in networks-on-chip,” ACM SIGARCH Computer Architecture

News, vol. 39, no. 3, pp. 413–424, 2011.

[56] J. Duato and T. M. Pinkston, “A general theory for deadlock-free adaptive routing using a

mixed set of resources,” IEEE Transactions on Parallel and Distributed Systems, vol. 12,

no. 12, pp. 1219–1235, 2001.

[57] M. Ebrahimi and M. Daneshtalab, “Ebda: A new theory on design and verification of

deadlock-free interconnection networks,” ACM SIGARCH Computer Architecture News,

vol. 45, no. 2, pp. 703–715, 2017.

[58] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient

dataflow for convolutional neural networks,” in ACM SIGARCH Computer Architecture

News, vol. 44, pp. 367–379, IEEE Press, 2016.

[59] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Transactions on parallel

and distributed systems, vol. 11, no. 7, pp. 729–738, 2000.

116

[60] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable dragon-

fly topology,” in Computer Architecture, 2008. ISCA’08. 35th International Symposium on,

pp. 77–88, IEEE, 2008.

[61] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in Proceedings of the 19th

Annual International Symposium on Computer Architecture, ISCA ’92, pp. 278–287, 1992.

[62] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “Ariadne: Agnostic reconfiguration in a

disconnected network environment,” in Parallel Architectures and Compilation Techniques

(PACT), 2011 International Conference on, pp. 298–309, IEEE, 2011.

[63] B. Fu, Y. Han, J. Ma, H. Li, and X. Li, “An abacus turn model for time/space-efficient

reconfigurable routing,” in ACM SIGARCH Computer Architecture News, vol. 39, pp. 259–

270, ACM, 2011.

[64] C. Carrion, R. Beivide, J. Gregorio, and F. Vallejo, “A flow control mechanism to avoid

message deadlock in k-ary n-cube networks,” in High-Performance Computing, 1997. Pro-

ceedings. Fourth International Conference on, pp. 322–329, IEEE, 1997.

[65] X. Canwen, Z. Minxuan, D. Yong, and Z. Zhitong, “Dimensional bubble flow control and

fully adaptive routing in the 2-d mesh network on chip,” in Embedded and Ubiquitous Com-

puting, 2008. EUC’08. IEEE/IFIP International Conference on, vol. 1, pp. 353–358, IEEE,

2008.

[66] B. Roscoe, “Routing messages through networks: an exercise in deadlock avoidance,” 1987.

[67] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C. Izu, “Adaptive bubble

router: a design to improve performance in torus networks,” in Proceedings of the 1999

International Conference on Parallel Processing, pp. 58–67, Sep. 1999.

[68] V. Puente, C. Izu, R. Beivide, J. A. Gregorio, F. Vallejo, and J. Prellezo, “The adaptive

bubble router,” Journal of Parallel and Distributed Computing, vol. 61, no. 9, pp. 1180–

1208, 2001.

117

[69] J. Flich, M. P. Malumbres, P. López, and J. Duato, “Performance evaluation of a new routing

strategy for irregular networks with source routing,” in Proceedings of the 14th International

Conference on Supercomputing, ICS ’00, (New York, NY, USA), pp. 34–43, ACM, 2000.

[70] L. Chen and T. M. Pinkston, “Worm-bubble flow control,” in High Performance Com-

puter Architecture (HPCA2013), 2013 IEEE 19th International Symposium on, pp. 366–

377, IEEE, 2013.

[71] S. Ma, Z. Wang, Z. Liu, and N. E. Jerger, “Leaving one slot empty: Flit bubble flow control

for torus cache-coherent nocs,” IEEE Transactions on Computers, vol. 64, pp. 763–777,

March 2015.

[72] B. Black, “Die stacking is happening,” in Intl. Symp. on Microarchitecture, Davis, CA, 2013.

[73] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, “Noc architectures for silicon interposer

systems: Why pay for more wires when you can get them (from your interposer) for free?,”

in 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 458–

470, IEEE, 2014.

[74] E. Beyne and A. Manna, “High-bandwidth chip-to-chip interfaces: 3d stacking, interposers

and optical i/o,” in IMEC technology forum, Taiwan, 2013.

[75] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel, C.-J. Wu,

and D. Nellans, “MCM-GPU: Multi-chip-module gpus for continued performance scalabil-

ity,” in Proceedings of the 44th Annual International Symposium on Computer Architecture,

pp. 320–332, ACM, 2017.

[76] “3DIC.” www.3dic.org/2.5D_integration.

[77] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, “Compute

caches,” in 2017 IEEE International Symposium on High Performance Computer Architec-

ture, HPCA 2017, Austin, TX, USA, February 4-8, 2017, pp. 481–492, 2017.

118

www.3dic.org/2.5D_integration

[78] Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave, C. Bertolli, S. Antao, J. Brunheroto,

Y. Park, K. O’Brien, and R. Nair, “Data Access Optimization in a Processing-in-Memory

System,” in International Conference on Computing Frontiers (CF), p. 6, ACM, 2015.

[79] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim, “Accelerating Linked-List

Traversal through Near-Data Processing,” in International Conference on Parallel Architec-

ture and Compilation Techniques (PACT), pp. 113–124, IEEE, 2016.

[80] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu,

A. Davis, and F. Li, “NDC: Analyzing the Impact of 3D-Stacked Memory + Logic De-

vices on MapReduce Workloads,” in International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp. 190–200, 2014.

[81] A. F. Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: Near-DRAM Acceleration

Architecture Leveraging Commodity DRAM Devices and Standard Memory Modules,” in

International Symposium on High-Performance Computer Architecture (HPCA), pp. 283–

295, 2015.

[82] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot, and

D. Pnevmatikatos, “The mondrian data engine,” in Proceedings of the 44th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’17, pp. 639–651, 2017.

[83] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, “Chameleon: Versatile and

Practical Near-DRAM Acceleration Architecture for Large Memory Systems,” in Interna-

tional Symposium on Microarchitecture (MICRO), pp. 1–13, IEEE, 2016.

[84] J. Ahn, S. Yoo, and K. Choi, “AIM: Energy-Efficient Aggregation inside the Memory Hier-

archy,” ACM Transactions on Architecture and Code Optimization (TACO), vol. 13, no. 4,

p. 34, 2016.

[85] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C.-Y. Cher, C. H. A.

Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo, L. Grinberg, J. A.

Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno,

119

J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D. Ryu, O. Sal-

lenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura, “Active Memory Cube: A

Processing-in-Memory Architecture for Exascale Systems,” IBM Journal of Research and

Development, vol. 59, no. 2/3, p. 17, 2015.

[86] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,” in Proceedings

of the Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 1–14, ACM, 2018.

[87] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim, A. Ku-

usela, A. Knies, P. Ranganathan, et al., “Google workloads for consumer devices: mitigating

data movement bottlenecks,” in Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating Systems, pp. 316–331,

ACM, 2018.

[88] V. Seshadri and O. Mutlu, “Simple operations in memory to reduce data movement,” in

Advances in Computers, vol. 106, pp. 107–166, Elsevier, 2017.

[89] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and

T. C. Mowry, “Fast bulk bitwise and and or in dram,” IEEE Computer Architecture Letters,

vol. 14, no. 2, pp. 127–131, 2015.

[90] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh, and N. S. Kim, “In-

dram near-data approximate acceleration for gpus,” in Proceedings of the 27th International

Conference on Parallel Architectures and Compilation Techniques, pp. 1–14, 2018.

[91] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “ipim: Programmable in-

memory image processing accelerator using near-bank architecture,” in 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA), pp. 804–817,

IEEE, 2020.

[92] J. Huang, P. Majumder, S. Kim, T. Fulton, R. R. Puli, K. H. Yum, and E. J. Kim, “Com-

puting en-route for near-data processing,” IEEE Transactions on Computers, vol. 70, no. 6,

120

pp. 906–921, 2021.

[93] T. V. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active Messages: A Mech-

anism for Integrated Communication and Computation,” in International Symposium on

Computer Architecture (ISCA), pp. 256–266, IEEE, 1992.

[94] G. F. Pfister and V. A. Norton, ““Hot Spot" Contention and Combining in Multistage Inter-

connection Networks,” IEEE Transactions on Computers, vol. c-34, no. 10, pp. 943–948,

1985.

[95] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya, “IncBricks: To-

ward In-Network Computation with an In-Network Cache,” in International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pp. 795–809, ACM, 2017.

[96] S. Ma, N. E. Jerger, and Z. Wang, “Supporting Efficient Collective Communication in

NoCs,” in High Performance Computer Architecture (HPCA), pp. 1–12, IEEE, 2012.

[97] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir,

“The NYU Ultracomputer-Designing an MIMD Shared Memory Parallel Computer,” IEEE

Transactions on Computers, vol. c-32, no. 2, pp. 175–189, 1983.

[98] D. K. Panda, “Global Reduction in Wormhole k-ary n-cube Networks with Multidestination

Exchange Worms,” in International Parallel Processing Symposium (IPPS), pp. 652–659,

1995.

[99] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Salapura,

D. L. Satterfield, B. Steinmacher-Burow, and J. J. Parker, “The IBM Blue Gene/Q Inter-

connection Network and Message Unit,” in International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), pp. 1–10, IEEE, 2011.

[100] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible dataflow mapping over

dnn accelerators via reconfigurable interconnects,” in Proceedings of the Twenty-Third Inter-

121

national Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 461–475, ACM, 2018.

[101] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard: A scalable memory

allocator for multithreaded applications,” SIGPLAN Not., vol. 35, p. 117–128, Nov. 2000.

[102] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic storage allocation: A

survey and critical review,” in Memory Management (H. G. Baler, ed.), (Berlin, Heidelberg),

pp. 1–116, Springer Berlin Heidelberg, 1995.

[103] K. C. Knowlton, “A fast storage allocator,” Commun. ACM, vol. 8, p. 623–624, Oct. 1965.

[104] D. Bovet and M. Cesati, Understanding The Linux Kernel. Oreilly amp; Associates Inc,

2005.

[105] J. Corbet, “LKML: Transparent huge pages in 2.6.38,” Jan. 2011.

[106] A. Panwar, S. Bansal, and K. Gopinath, “Hawkeye: Efficient fine-grained os support for

huge pages,” in Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’19, (New York,

NY, USA), p. 347–360, Association for Computing Machinery, 2019.

[107] R. Courts, “Improving locality of reference in a garbage-collecting memory management

system,” Commun. ACM, vol. 31, p. 1128–1138, Sept. 1988.

[108] L. P. Deutsch and D. G. Bobrow, “An efficient, incremental, automatic garbage collector,”

Commun. ACM, vol. 19, p. 522–526, Sept. 1976.

[109] H. Lieberman and C. Hewitt, “A real-time garbage collector based on the lifetimes of ob-

jects,” Commun. ACM, vol. 26, p. 419–429, June 1983.

[110] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox, “Numa policies and

their relation to memory architecture,” ACM SIGOPS Operating Systems Review, vol. 25,

no. Special Issue, pp. 212–221, 1991.

[111] “Numa locality,”

122

[112] A. C. Yao, “An analysis of a memory allocation scheme for implementing stacks,” SIAM

Journal on Computing, vol. 10, no. 2, pp. 398–403, 1981.

[113] C. P. Ribeiro, J. Mehaut, A. Carissimi, M. Castro, and L. G. Fernandes, “Memory affinity

for hierarchical shared memory multiprocessors,” in 2009 21st International Symposium on

Computer Architecture and High Performance Computing, pp. 59–66, 2009.

[114] C. Lameter, “Numa (non-uniform memory access): An overview,” Queue, vol. 11, 07 2013.

[115] T. Baruah, Y. Sun, A. T. Dinçer, S. A. Mojumder, J. L. Abellán, Y. Ukidave, A. Joshi, N. Ru-

bin, J. Kim, and D. Kaeli, “Griffin: Hardware-software support for efficient page migration

in multi-gpu systems,” in 2020 IEEE International Symposium on High Performance Com-

puter Architecture (HPCA), pp. 596–609, IEEE, 2020.

[116] A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh, “Avoiding tlb shootdowns

through self-invalidating tlb entries,” in 2017 26th International Conference on Parallel

Architectures and Compilation Techniques (PACT), pp. 273–287, IEEE, 2017.

[117] M. Oskin and G. H. Loh, “A software-managed approach to die-stacked dram,” in 2015

International Conference on Parallel Architecture and Compilation (PACT), pp. 188–200,

IEEE, 2015.

[118] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy, “Unified instruction/translation/-

data (unitd) coherence: One protocol to rule them all,” in HPCA-16 2010 The Sixteenth

International Symposium on High-Performance Computer Architecture, pp. 1–12, IEEE,

2010.

[119] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A. Mendelson, N. Navarro,

A. Cristal, and O. S. Unsal, “Didi: Mitigating the performance impact of tlb shootdowns

using a shared tlb directory,” in 2011 International Conference on Parallel Architectures

and Compilation Techniques, pp. 340–349, IEEE, 2011.

[120] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

123

[121] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep

reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[122] J.-Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their bootstraps: Online learn-

ing in artificial neural networks for cmp uncore power management,” in 2014 IEEE 20th

International Symposium on High Performance Computer Architecture (HPCA), pp. 308–

319, IEEE, 2014.

[123] T.-R. Lin, D. Penney, M. Pedram, and L. Chen, “A deep reinforcement learning framework

for architectural exploration: A routerless noc case study,” in 2020 IEEE International Sym-

posium on High Performance Computer Architecture (HPCA), pp. 99–110, IEEE, 2020.

[124] J. Yin, S. Sethumurugan, Y. Eckert, C. Patel, A. Smith, E. Morton, M. Oskin, N. E. Jerger,

and G. H. Loh, “Experiences with ml-driven design: A noc case study,” in 2020 IEEE

International Symposium on High Performance Computer Architecture (HPCA), pp. 637–

648, IEEE, 2020.

[125] K. Wang, A. Louri, A. Karanth, and R. Bunescu, “Intellinoc: A holistic design frame-

work for energy-efficient and reliable on-chip communication for manycores,” in 2019

ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA), pp. 1–

12, IEEE, 2019.

[126] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality and context-based

prefetching using reinforcement learning,” in 2015 ACM/IEEE 42nd Annual International

Symposium on Computer Architecture (ISCA), pp. 285–297, IEEE, 2015.

[127] B. H. Ahn, P. Pilligundla, and H. Esmaeilzadeh, “Reinforcement learning and adaptive sam-

pling for optimized dnn compilation,” arXiv preprint arXiv:1905.12799, 2019.

[128] S.-C. Kao, G. Jeong, and T. Krishna, “Confuciux: Autonomous hardware resource assign-

ment for dnn accelerators using reinforcement learning,” in 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 622–636, IEEE, 2020.

124

[129] N. Wu, L. Deng, G. Li, and Y. Xie, “Core placement optimization for multi-chip many-

core neural network systems with reinforcement learning,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 26, no. 2, pp. 1–27, 2020.

[130] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally, “Booksim 2.0 user’s

guide,” Standford University, p. q1, 2010.

[131] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory system

simulator,” IEEE computer architecture letters, vol. 10, no. 1, pp. 16–19, 2011.

[132] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing cuda work-

loads using a detailed gpu simulator,” in 2009 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software, pp. 163–174, IEEE, 2009.

[133] D. I. Jeon and K. S. Chung, “CasHMC: A Cycle-Accurate Simulator for Hybrid Memory

Cube,” IEEE Computer Architecture Letters, vol. 16, pp. 10–13, Jan 2017.

[134] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,” ACM SIGARCH Computer

Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[135] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “Mcsima+: A manycore simulator with

application-level+ simulation and detailed microarchitecture modeling,” in 2013 IEEE In-

ternational Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 74–

85, IEEE, 2013.

[136] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural simulation

of thousand-core systems,” ACM SIGARCH Computer architecture news, vol. 41, no. 3,

pp. 475–486, 2013.

[137] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, “Pimsim: A flexible and de-

tailed processing-in-memory simulator,” IEEE Computer Architecture Letters, vol. 18, no. 1,

pp. 6–9, 2018.

125

[138] C. Yu, S. Liu, and S. Khan, “Multipim: A detailed and configurable multi-stack processing-

in-memory simulator,” IEEE Computer Architecture Letters, vol. 20, no. 1, pp. 54–57, 2021.

[139] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk, O. Mutlu, and

H. Corporaal, “Napel: Near-memory computing application performance prediction via en-

semble learning,” in 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6,

IEEE, 2019.

[140] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for computer system

modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[141] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E.

Moore, M. D. Hill, and D. A. Wood, “Multifacet’s general execution-driven multiprocessor

simulator (gems) toolset,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4,

pp. 92–99, 2005.

[142] K. Ghose et al., “Marssx86: Micro architectural systems simulators,” ISCA Tutorial Session,

2012.

[143] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed on-chip network

model inside a full-system simulator,” in Performance Analysis of Systems and Software,

2009. ISPASS 2009. IEEE International Symposium on, pp. 33–42, IEEE, 2009.

[144] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C. Hoe,

“Simflex: statistical sampling of computer system simulation,” IEEE Micro, vol. 26, no. 4,

pp. 18–31, 2006.

[145] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microarchitectural simulator,”

in 2007 IEEE International Symposium on Performance Analysis of Systems & Software,

pp. 23–34, IEEE, 2007.

[146] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep,

and A. Agarwal, “Graphite: A distributed parallel simulator for multicores,” in HPCA-16

126

2010 The Sixteenth International Symposium on High-Performance Computer Architecture,

pp. 1–12, IEEE, 2010.

[147] J. Edler, “Dinero iv: Trace-driven uniprocessor cache simulator,” http://www. cs. wisc. edu/˜

markhill/DineroIV, 1994.

[148] P. M. Ortego and P. Sack, “Sesc: Superescalar simulator,” in 17 th Euro micro conference

on real time systems (ECRTS’05), pp. 1–4, Citeseer, 2004.

[149] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator for highly de-

tailed microarchitecture exploration,” in 2009 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software, pp. 53–64, IEEE, 2009.

[150] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of abstraction for

scalable and accurate parallel multi-core simulation,” in Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12,

2011.

[151] A. Jaleel, R. S. Cohn, C.-k. Luk, and B. Jacob, “Cmp$im: A binary instrumentation ap-

proach to modeling memory behavior of workloads on cmps,” University of Maryland, Tech.

Rep, 2006.

[152] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A simulation framework

for cpu-gpu computing,” in 2012 21st International Conference on Parallel Architectures

and Compilation Techniques (PACT), pp. 335–344, IEEE, 2012.

[153] D.-I. Jeon and K.-S. Chung, “Cashmc: A cycle-accurate simulator for hybrid memory cube,”

IEEE Computer Architecture Letters, vol. 16, no. 1, pp. 10–13, 2016.

[154] D. Becker, D. William, K. Christoforos, and A. O. Oyekunle, “Efficient microarchitecture

for network-on-chip routers.” http://purl.stanford.edu/wr368td5072, 2012.

[155] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, and J. Kim,

“A detailed and flexible cycle-accurate network-on-chip simulator,” in Performance Analysis

127

http://purl.stanford.edu/wr368td5072

of Systems and Software (ISPASS), 2013 IEEE International Symposium on, pp. 86–96,

IEEE, 2013.

[156] AMD Research, “The AMD gem5 apu simulator: Modeling heterogeneous systems in

gem5,” in In gem5 User Workshop", 2015.

[157] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi, “Simulating dram con-

trollers for future system architecture exploration,” in Performance Analysis of Systems and

Software (ISPASS), 2014 IEEE International Symposium on, pp. 201–210, IEEE, 2014.

[158] AMD, “HCC sample applications, github repository, 2016.” https://github.com/

ROCm-Developer-Tools/HCC-Example-Application. Accessed: November

27, 2018.

[159] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:

A benchmark suite for heterogeneous computing,” in Workload Characterization, 2009.

IISWC 2009. IEEE International Symposium on, pp. 44–54, Ieee, 2009.

[160] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: Characteriza-

tion and architectural implications,” in Proceedings of the 17th international conference on

Parallel architectures and compilation techniques, pp. 72–81, ACM, 2008.

[161] “SPEC CPU2017.” https://www.spec.org/cpu2017.

[162] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “Scale-sim: Systolic cnn

accelerator simulator,” arXiv preprint arXiv:1811.02883, 2018.

[163] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-aware prioritization mecha-

nisms for on-chip networks,” in Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 280–291, ACM, 2009.

[164] A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,” in Proceedings of the 41st annual

IEEE/ACM International Symposium on Microarchitecture, pp. 342–353, IEEE Computer

Society, 2008.

128

https://github.com/ROCm-Developer-Tools/HCC-Example-Application
https://github.com/ROCm-Developer-Tools/HCC-Example-Application
https://www.spec.org/cpu2017

[165] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and V. Sto-

janovic, “Dsent - a tool connecting emerging photonics with electronics for opto-electronic

networks-on-chip modeling,” in Proceedings of the 2012 IEEE/ACM Sixth International

Symposium on Networks-on-Chip, NOCS ’12, (Washington, DC, USA), pp. 201–210, IEEE

Computer Society, 2012.

[166] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceed-

ings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 855–864, 2016.

[167] A. Demir, E. Çilden, and F. Polat, “Landmark based reward shaping in reinforcement learn-

ing with hidden states,” in Proceedings of the 18th International Conference on Autonomous

Agents and MultiAgent Systems, pp. 1922–1924, 2019.

[168] J. Ferret, R. Marinier, M. Geist, and O. Pietquin, “Self-attentional credit assignment for

transfer in reinforcement learning,” arXiv preprint arXiv:1907.08027, 2019.

[169] X. Guo, Deep learning and reward design for reinforcement learning. PhD thesis, 2017.

[170] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated deep reinforcement

learning,” in Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’19, (New York,

NY, USA), p. 499–513, Association for Computing Machinery, 2019.

[171] J. Su, J. Liu, D. B. Thomas, and P. Y. Cheung, “Neural network based reinforcement learning

acceleration on fpga platforms,” SIGARCH Comput. Archit. News, vol. 44, p. 68–73, Jan.

2017.

[172] Z. Yan, J. Veselỳ, G. Cox, and A. Bhattacharjee, “Hardware translation coherence for virtu-

alized systems,” in Proceedings of the 44th Annual International Symposium on Computer

Architecture, pp. 430–443, 2017.

[173] M. Plappert, “keras-rl.” https://github.com/keras-rl/keras-rl, 2016.

129

https://github.com/keras-rl/keras-rl

[174] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[175] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar, “Maestro: A

data-centric approach to understand reuse, performance, and hardware cost of dnn map-

pings,” IEEE micro, vol. 40, no. 3, pp. 20–29, 2020.

[176] A. Singh, D. Carnelli, A. Falay, K. Hofstra, F. Licciardello, K. Salimi, H. Santos,

A. Shokrollahi, R. Ulrich, C. Walter, et al., “26.3 a pin-and power-efficient low-latency 8-

to-12gb/s/wire 8b8w-coded serdes link for high-loss channels in 40nm technology,” in 2014

IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

pp. 442–443, IEEE, 2014.

[177] D. Delorie, “Glibc wiki - overview of malloc.” https://sourceware.org/glibc/

wiki/MallocInternals.

[178] “TCMalloc : Thread-Caching Malloc.” https://google.github.io/tcmalloc/

design.html.

[179] “jemalloc.” http://jemalloc.net/.

[180] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron, “A characteri-

zation of the rodinia benchmark suite with comparison to contemporary cmp workloads,” in

IEEE International Symposium on Workload Characterization (IISWC’10), pp. 1–11, IEEE,

2010.

[181] “Multiple features data set,” https://archive.ics.uci.edu/ml/datasets/

Multiple+Features.

[182] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community structure in large

networks: Natural cluster sizes and the absence of large well-defined clusters,” Internet

Mathematics, vol. 6, no. 1, pp. 29–123, 2009.

[183] G. E. Hinton, “Boltzmann machine,” Scholarpedia, vol. 2, no. 5, p. 1668, 2007.

130

https://sourceware.org/glibc/wiki/MallocInternals
https://sourceware.org/glibc/wiki/MallocInternals
https://google.github.io/tcmalloc/design.html
https://google.github.io/tcmalloc/design.html
http://jemalloc.net/
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Multiple+Features

[184] “Netflix public data sets,” https://github.com/Netflix/vmaf/blob/

master/resource/doc/datasets.md.

[185] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas, “CACTI

7: New tools for interconnect exploration in innovative off-chip memories,” ACM Transac-

tions on Architecture and Code Optimization (TACO), vol. 14, no. 2, p. 14, 2017.

[186] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat:

An integrated power, area, and timing modeling framework for multicore and manycore

architectures,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 469–480, 2009.

[187] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H. Loh, “There and Back Again:

Optimizing the Interconnect in Networks of Memory Cubes,” in International Symposium

on Computer Architecture (ISCA), pp. 678–690, ACM, 2017.

[188] S. Kaxiras and M. Martonosi, “Computer architecture techniques for power-efficiency,” Syn-

thesis Lectures on Computer Architecture, vol. 3, no. 1, pp. 1–207, 2008.

[189] Y. Lee, S. H. Seo, H. Choi, H. U. Sul, S. Kim, J. W. Lee, and T. J. Ham, “Merci: efficient

embedding reduction on commodity hardware via sub-query memoization,” in Proceedings

of the 26th ACM International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pp. 302–313, 2021.

[190] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,

N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a tensor processing

unit,” in Proceedings of the 44th annual international symposium on computer architecture,

pp. 1–12, 2017.

[191] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in First IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and Systems Synthesis (IEEE

Cat. No. 03TH8721), pp. 19–24, IEEE, 2003.

131

https://github.com/Netflix/vmaf/blob/master/resource/doc/datasets.md
https://github.com/Netflix/vmaf/blob/master/resource/doc/datasets.md

[192] “AXI reference guide,” https://www.xilinx.com/support/documentation/

ip_documentation/ug761_axi_reference_guide.pdf, 2011.

[193] T. Bandyopadhyay, R. Chatterjee, D. Chung, M. Swaminathan, and R. Tummala, “Electrical

modeling of through silicon and package vias,” in 2009 IEEE International Conference on

3D System Integration, pp. 1–8, IEEE, 2009.

[194] E. Naviasky, “Defining a new high-speed, multi-protocol serdes architecture for advanced

nodes,” Cadence Design Systems White Paper.

[195] A. Athavale, “High-speed serial i/o made simple a designers’ guide, with fpga applications,”

2021.

[196] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim, H. Shin, et al.,

“Hardware architecture and software stack for pim based on commercial dram technology:

Industrial product,” in 2021 ACM/IEEE 48th Annual International Symposium on Computer

Architecture (ISCA), pp. 43–56, IEEE, 2021.

[197] T. Ta, L. Cheng, and C. Batten, “Simulating multi-core risc-v systems in gem5,” in Workshop

on Computer Architecture Research with RISC-V, 2018.

132

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Deadlock in Modular SoCs
	Data and Computation (Re)Mapping
	Framework Development
	Thesis Statement
	Contributions
	Dissertation Organization

	Background and Literature Survey
	Interconnection Network Basics
	Topology
	Routing Algorithm
	Flow Control
	Router Microarchitecture
	Network-on-Chip (NoC) Deadlock
	Turn Restriction and VC over-Provision
	Flow Control Based

	Modular 2.5D SoC Integration
	Deadlock Freedom in Modular SoC
	Modular Turn Restriction (MTR)
	VC Separation (VC-SEP)
	In-Transit Buffer (ITB)

	3D stacked DRAM and NMP
	Die-Stacked Memory.
	Memory Network
	Near-Data Processing.
	Computation and Data Mapping in NMP
	Data Locality in NUMA and Multi-Program Workloads
	Migration and TLB shootdown
	Data/Computation (Re)Mapping using RL

	Framework Design
	Why Memory-Centric Computing Simulator?
	Memory Centric Design
	Inherent NMP support
	Huge Memory Allocation and Access APIs

	Simulation Speed
	Full System versus Application Level
	Decoupled Functional and Performance

	ML Support

	A Simple Deadlock Avoidance Scheme for Modular Systems-on-Chip
	Overview: Remote Control (RC)
	Problem Description
	Motivations for RC
	Remote Control

	Deadlock Avoidance using RC
	Deadlock Freedom
	Challenges
	Routing Oblivious Design

	Implementation
	Boundary Routers
	RCVA
	RCB
	Permission Network

	Non-boundary Routers
	Separate Injection Queue

	Case Study: Modular CPU-GPU Integration Using Silicon Interposer

	Methodology
	Experimental Setup
	Traffic Patterns
	Synthetic Traffic Patterns
	Application Traffic Pattern

	System Speedup

	Performance Evaluation
	Throughput Analysis
	Latency Analysis
	Routing Obliviousness
	Starvation and Fairness
	Sensitivity Analysis
	System Scalability
	Sensitivity to rc_buffer Size and VC Size

	Area and Energy Analysis

	Related Works
	VC and Turn Model Based
	Flow Control Based

	Summary

	AIMM: Artificially Intelligent Memory Mapping in Near-Memory Processing System
	Proposed Approach
	Overview and Problem Formulation
	State Representation
	Action Representation
	Reward Function

	RL Agent

	Hardware Implementation
	Information Orchestration
	RL Agent Implementation
	Page and Computation Remapping
	Page Remapping
	Computation Remapping

	Evaluation Methodology
	Simulation Framework
	Front-end
	CMP and Associated Components
	HMC Model and HMC network

	Simulation Methodology
	NMP Techniques and Mapping Schemes
	Basic NMP (BNMP)
	Load Balancing NMP (LDB)
	PIM Enabled Instruction (PEI)
	Transparent Offloading and Mapping (TOM)
	HOARD

	Workload analysis
	Page Access Classification
	Page Touched Distribution
	Affinity Analysis

	Experimentation Results
	Performance
	Execution Time

	Learning Convergence
	Migration
	Hop Count and Computation Utilization
	Scalability Study
	MCN Scaling
	Multi-program Workload

	Sensitivity Study
	Page-info cache size (PCS)
	NMP table size (NMP-Op Tab)
	Training hyper-parameters

	Area and Energy
	Information Orchestration
	Migration
	RL Agent
	Network and Memory
	Overall Dynamic Energy

	Case Study: Scalable HBM-PIM
	Summary

	MC2sim: Memory-Centric Computation Simulator with plugged-in Reinforcement Learning Framework
	Overview of MC2sim
	Program kernel and Trace support
	Chip multi-processor (CMP) Design
	Partial OS support
	Memory Network
	RL Agent

	Micro-architecture Modeling
	HMC Network
	HMC
	NMP-op support
	Building Network and associated protocols

	HBM-PIM Network
	HBM-PIM
	Scalable HBM-PIM

	CMP design

	Functional Component Models
	RL components
	System components
	Thread Scheduler
	4-level Page Table
	Page-frame Allocator

	Supporting Simulator Components
	Trace Support
	Setting and Reading configurations
	Stats Collection
	Debugging support

	Simulation Methodology
	Validation and Experimentation
	Functional Correctness
	Results Accuracy
	Stability
	Simulation Speed

	Summary

	Conclusions
	Dissertation Summary
	Future Directions
	SoC Interposer Network
	Memory-centric Computing and AIMM
	MC2sim

	REFERENCES

