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ABSTRACT

Nuclear waste is one of the significant problems for the sustainable use of nuclear energy. The

Deep-Burn using High-Temperature Reactor (HTR) is one strategy to minimize nuclear waste.

The nuclear waste or TRU incineration problem in HTR is one of the complicated optimization

problems because of the broad design parameter space and constraints. Traditionally, nuclear re-

actor design optimization relied on the experts’ experience and in-depth knowledge of each design

step. It has inherent risks of the local optima. This paper proposes the multi-objective optimiza-

tion framework consisting of surrogate modeling using regression algorithms and the metaheuristic

search using a hybrid of genetic algorithm and simulated annealing. In our approach, multiple sets

of design parameter inputs and objective value outputs from the Monte Carlo simulation code are

evaluated using objective functions and constraints. In this step, correlation analysis and feasibility

search based on the trust-region method are performed for better learning data sets to the surrogate

model. Then, the Gaussian Process regression algorithm with suitable kernel and hyperparame-

ters makes a surrogate model using the learning data. In the surrogate model, the optimal design

parameters are searched through the iteration process of fitness evaluation, mating, average-bound

crossover, wavelet mutation, and annealing. The fitness is evaluated by objective values processed

with the weighted sum method based on the contribution to the objectives. If the error of optimal

values and the surrogate model is below the threshold, the framework ends. If not, the additional

sets of learning data are added based on the tentative optimal point, and a new surrogate model is

built. The framework is applied to the TRU minimization problem using GT-HTR300 for single-

batch core loading. Each TRU nuclides, initial loading of TRU and U-235 are set objectives,

and 25.9% of TRU destruction rate and 58.7% of Pu-239 destruction rate with 3% of errors were

achieved.
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NOMENCLATURE

HTGR High Temperature Gas Reactor

IAEA International Atomic Energy Agency

EW Exempt Waste

VSLW Very Short-Lived Waste

VLLW Very Low-Level Waste

LLW Low-Level Waste

ILW Intermediate-Level Waste

HLW High-Level Waste

USNRC United States Nuclear Regulatory Commission

DOE The Department of Energy

TRU Transuranics

LLFP Long-lived Fission Products

LWR Light Water Reactor

ANS American Nuclear Society

MOX Mixed OXide

VVER Voda Voda Energo Reactor

RBMK Reaktor Bolshoy Moshchnosti Kanalnyy

FR Fast Reactor

AGR Advanced Gas-cooled Reactor

THORP Thermal Oxide Reprocessing Plant

SFR Sodium-cooled Fast Spectrum Reactor

MA Minor Actinoid
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RBWR Resource-renewable Boiling Water Reactor

VHTR Very-High-Temperature Reactor

ADS Accelerator Driven System

TRISO Tristructural Isotropic

THTR Thorium High-Temperature Reactor

HTTR High-Temperature Test Reactor

HTR High-Temperature Reactor

HEST High-energy External Source Transmuter

GTHTR300 Gas Turbine High-Temperature Reactor 300

NP hard Non-deterministic Polynomial-time hard

GPR Gaussian Process Regression

RBF Radial Basis Function

GA Genetic Algorithm

SA Simulated Annealing

RMSE Relative Mean Squared Error

IRPhEP International Reactor Physics Experiment Evaluation Project

CSV Comma-Separated Values

BOC Beginning of the Cycle

EOC End of the Cycle

HALEU High-Assay Low-Enriched Uranium
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1. INTRODUCTION AND LITERATURE REVIEW

The nuclear reactor design requires adjusting many design parameters within the constraints of

safety requirements and physical limitations. Traditionally, nuclear reactor design optimization re-

lied on the experts’ experience and in-depth knowledge of each design step. It has inherent risks of

the local optima; especially there are nonlinearities between inputs and outputs. This chapter intro-

duces the background of the High-Temperature Gas Reactor (HTGR) waste minimization problem

as a complicated representative system of the multi-objective optimization problem. Also, the

overview of the combinatorial optimization problems and multi-objective optimizations of reactor

design is shown from the viewpoint of metaheuristics.

1.1 Nuclear Waste

Many countries are struggling with the disposal of nuclear waste[1]. Nuclear waste is produced

from various nuclear facilities such as nuclear power plants, research reactors, and accelerators as

a byproduct. The nuclear power plant is a predominant source of waste inventory among these

facilities. Nuclear power is one of the reliable energy sources meeting the carbon-free policy, so

that disposal strategy is essential to keep nuclear power.

1.1.1 Classification of Nuclear Waste

There are several classifications of nuclear waste. Its activity content and half-life usually

classify nuclear waste. Fig. 1.1[2] shows the conceptual illustration of the waste classification

decided by the International Atomic Energy Agency (IAEA). If the radioactivity is less enough

to meet the criteria for clearance or exemption, it is defined as exempt waste (EW). EW is not

treated as nuclear waste in many countries. It can be disposed of as general waste or recycled. If

the half-life of nuclear waste is very short, it is defined as very short-lived waste (VSLW). After

a few years of storage, this waste can be treated as regular waste. Depending on the activity level

of nuclear waste, other wastes are classified as very low-level waste (VLLW), low-level waste

(LLW), intermediate-level waste (ILW), and high-level waste (HLW). VLLW, LLW, and ILW are
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Figure 1.1: Conceptual illustration of the waste classification scheme

disposed to near-surface landfill type facility, engineered near-surface facilities, and intermediate-

depth disposal facilities, respectively. If the activity level of the waste is high enough to generate

significant quantities of heat and radiation, it is HLW, which requires disposal facilities in deep,

stable geological formations more than several hundred meters below the surface.

United States Nuclear Regulatory Commission (USNRC) defines HLW as ‘spent (used) reactor

fuel when it is accepted for disposal or waste materials remaining after spent fuel is reprocessed[3]’.

This definition is a subset of the IAEA definition, and this paper uses the USNRC definition if there

is no additional explanation.
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1.1.2 Current US policy to HLW

Since 1987, Yucca Mountain has been expected to be a repository for HLW. The Department

of Energy (DOE) submitted a construction license application to the USNRC in 2008. How-

ever, the Obama Administration changed the project’s direction and started to seek an alternative

approach in a high-level Blue Ribbon Commission. In 2021, the energy secretary in the Biden

Administration, Jennifer Granholm, confirmed opposition to the Yucca Mountain disposal and

succeeded Obama Administration, which established consensus-based strategies to determine al-

ternative waste disposal sites[4]. The continuous uncertainty of the HLW disposal is potentially

harmful to the current backend of the nuclear fuel cycle. The optimization of nuclear waste and

disposal systems is prominent, as mentioned in the ARPA-E Reauthorization Act of 2019[5].

1.1.3 Transuranics (TRU) and Long-lived Fission Products (LLFP)

When considering deep geological disposal, TRU and LLFP are the major nuclides in HLW.

TRU is an artificially made, radioactive nuclide with a higher atomic number than uranium, such as

neptunium, plutonium, americium, and curium. They are not in the fresh nuclear fuel composing

uranium-235, uranium-238, and oxygen-16. Parts of these uranium nuclides transmute to TRU

nuclides by absorption reaction and radioactive decay through the operation in the nuclear power

plants. After the conventional Light Water Reactor (LWR) operation, typically, 1.1 wt% of fuel

transmutes to the TRU[6]. On the other hand, LLFP is a fission product with a half-life of more than

200,000 years. There are only seven nuclides that can meet this criterion. These seven nuclides are

technetium-99, tin-126, selenium-79, zirconium-93, cesium-135, palladium-107, and iodine-129.

Technetium-99 has the shortest half-life: 211,000 years, and iodine-129 has the longest half-life:

15,700,000 years.

1.1.4 Spent Fuel Policy and Inventory Status in the World

Spent fuel is directly disposed to the disposal site (once-through fuel cycle), or it is reprocessed

to recover fissile material such as U-235 and Pu-239 (closed fuel cycle). Currently, the USA

and Germany adopt a direct once-through cycle, while France, China, Japan, and Russia adopt
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reprocessing and recycling policies to some extent. The UK just ended the reprocessing in 2020.

Their detailed policy is as follows. In the USA, the last reprocessing plant stopped operation

in 1972. Then, the reprocessing of spent fuel from commercial reactors has been prohibited since

1977 due to the proliferation concerns and cost estimation. However, recently, the DOE and the

American Nuclear Society (ANS) have been interested in gradually restarting reprocessing efforts

for advanced reactor technologies in the long term[7][8][9]. Germany reprocessed their spent fuel

in the past on their experimental facility and the UK and French facilities. The total amount of

reprocessed fuel is approximately 6,500 tons. However, their legislature prohibited the shipment

of spent fuel for the reprocessing purpose in mid-2005. Therefore, the resulting spent fuel is

planned for Mixed Oxide (MOX) fuel fabrication, while the remaining spent fuel will be disposed

of directly as HLW [10].

France has been actively reprocessing spent fuel since the start of the La Hague plant in 1967.

Their reprocessing ability is nearly 1,050 tons per year, approximately 91 % of annual spent fuel

production in France. The reprocessed plutonium is mixed with uranium and refabricated to MOX

fuel[11][12]. Japan has reprocessed their spent fuel by their experimental facility in Tokai and the

UK and French commercial facilities. They are constructing a commercial reprocessing facility

in Rokkasho based on the technology of La Hague in France but significantly delayed due to the

vitrification unit problem and new safety standards followed by accident at the Fukushima Daiichi

nuclear power plants[12][13]. China operated a pilot reprocessing plant in 2013. They are expect-

ing to reprocess spent fuel from LWR. Their current commercial plant project with Orano started

in 2020 and plan to complete by 2030[14]. Russia aims to recycle fissile material as a fundamental

practice. Currently, they reprocess spent fuel from Voda Voda Energo Reactor (VVER)-440 and

BN600 at the RT-1 spent fuel reprocessing facility in Ozersk. They are using reprocessed uranium

for fabricating fuel for Reaktor Bolshoy Moshchnosti Kanalnyy (RBMK) and plutonium for MOX

fuel for fast reactors (FRs). They are constructing a full-scale RT-2 facility by 2025[15].

The UK started the reprocessing spent fuel for their Magnox reactor in Windscale in 1956

and then continued in Sellafield from 1964. Then, they expanded their capability for Advanced
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Gas-cooled Reactor (AGR) and LWR in 1994. They were reprocessing their own spent fuels, and

many spent fuels from foreign countries for years but ceased their Thermal Oxide Reprocessing

Plant (THORP) operation for AGR and LWR in 2018 due to less demand and aging. Their Mag-

nox reprocessing plant will also stop in 2020, and there is no plan to build a new reprocessing

plant[12][16].

According to the IAEA, approximately 250,000 tHM of spent fuel is stored, and 120,000 tHM

of reprocessed spent fuel is stored worldwide[1]. The inventory of spent fuel and reprocessed fuel

in each area except for India and Pakistan is shown in Table 1.1[1]. Approximately one-third of

Table 1.1: Inventory of Spent Fuel in the World(tHM).

Wet storage Dry storage Reprocessed Total
Africa 850 50 n/a 900
Eastern Europe 28,600 2,700 3,200 40,000
Western Europe 37,000 4,600 108,400 154,100
Far East 32,100 5,700 8,600 46400
North America 79,300 41,900 n/a 121,200
Latin America 3,000 2,000 n/a 5,000
Global Total 180,800 56,900 120,300 367,600

fuel has been reprocessed, and 75% of the unreprocessed spent fuel is still in the spent fuel pool in

the nuclear power plant sites.

The acceptance of a disposal site for nuclear waste is essential. Although a few countries,

such as the case of Finland in 2015, have already determined to construct a disposal site in the

specific site, the process of disposal site selection is arduous in many countries. The site selection’s

difficulty is partly due to the long half-life of radioactive materials represented by the TRU and

LLFP. The radioactive toxicity of some nuclides remains even after 100,000 years, making a fear

for the residents in the candidate site. Even if the politics of nuclear waste disposal make the

issues more complicated beyond the scientific view, decreasing the amount of waste and radioactive

toxicity will contribute the easier site selection.
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1.2 Waste Minimization

1.2.1 Waste Minimization Overview

Waste minimization strategies and techniques have been proposed to resolve such a compli-

cated situation in the world. Many scenarios have been put forward with different kinds of reactor

types. A Sodium-cooled Fast spectrum Reactor (SFR) is planned to use for burning TRU and

Minor Actinoids (MAs) by taking advantage of the high transmutation ability of fast-spectrum

neutrons[17][18]. Also, a new LWR has been proposed to burn TRU for providing an alternative

option to the SFR, such as the Resource-renewable Boiling Water Reactor (RBWR)[19]. Another

option is a Very High-Temperature Reactor (VHTR) or HTGR[20], utilizing thermalized neutron

and high burnup. A concept beyond the conventional nuclear reactor is Accelerator Driven Sys-

tem (ADS), where neutrons generated by the installed accelerator are directly emitted to a target

assembly containing TRU with fissile materials. This system efficiently induces neutron captures

and fission of TRU, but there are many technical challenges for both accelerator and reactor. In

2011, the US DOE evaluated and screened nuclear fuel cycle options[21]. DOE emphasized the

reduction of nuclear waste through the fuel cycle in these scenarios. Both fast spectrum reactors

and thermal reactors are selected for the candidates of fuel cycle options.

Fast spectrum reactor has the most robust capability to destroy TRU entirely because it has

favorable fission to capture ratio for target nuclides. However, relatively small cross-sections of

TRU nuclides in a fast spectrum region results in a slower depletion process so that multiple cycles

would be necessary to achieve a complete burnup of TRU.

Even though the HTGR option is not favorable to destroy TRU entirely, a relatively large

cross-section of fissile TRU nuclides in the target spectrum and higher burnup achieved by the

Tristructural isotropic (TRISO) fuel make this option feasible for the near-term solution. It can

achieve high transuranic destruction efficiency. HTGR technology was demonstrated in the US,

UK, and Germany in the past. Also, Japan and China are currently operating experimental or

demonstration types of HTGRs. So commercial HTGRs are expected to be deployed shortly. Also,
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a preliminary study showed the advantage of using HTGR in combining SFR for TRU destruction

purposes [22]. In this two-tier scenario, the TRU from LWR is recycled and burned in an HTGR

as the 1st-tier. Then, TRU in spent fuel of HTGR is recycled again to be burned in an SFR as the

2nd-tier. It was shown that the high destruction efficiency of HTGR can reduce the number of SFR

for TRU destruction compared with other recycling scenarios such as MOX+LWR. Considering

TRU destruction efficiency and possible near-term deployment, this study selected HTGR as the

favorable near-term option for TRU burn.

1.2.2 HTGR

HTGR is a thermal-spectrum reactor that can produce higher temperatures than conventional

reactors, and helium is used as a coolant. Inert and low-density helium, the high heat capacity

of graphite core, and the high stability of TRISO fuel realize an inherent safety reactor system.

Historically, Dragon in the UK, AVR and Thorium High-Temperature Reactor (THTR) in Ger-

many, and Peach Bottom and Fort St. Vrain in the US were successfully operated. Nowadays,

High-Temperature Test Reactor (HTTR) in Japan and High-Temperature Reactor(HTR)-10 and

HTR-PM in China are operating, and several companies in the US are pursuing commercial de-

ployments such as X-Energy, Kairos Power, and Framatome.

1.2.3 Deep Burn

The Deep-Burn using HTGR is one strategy to minimize nuclear waste. HTGR uses TRISO

fuel, made of tiny particles with a hundred-millimeter diameter core of oxide fuel kernel sur-

rounded by multiple carbon and silicon carbide layers. This fuel can achieve high fuel burnup

levels compared with the conventional fuel for LWR. Also, graphite, which has lower energy decre-

ment compared with hydrogen, allows non-fissile nuclides to interact with resonance or epithermal

neutrons, which contribute to destruct thermally non-fissile TRU nuclides[23].

Previous studies, VHTR loading nuclear waste, showed a high TRU destruction rate. In the

case of the VHTR model loading spent fuel from AP1000, TRU destruction rates reached ap-

proximately 30%. Furthermore, the destruction rate of Pu-239 was almost 54.3% [24]. This
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research also realized higher incineration performance using High-energy External Source Trans-

muter (HEST)[25]. Another research realized a much higher destruction rate by fuel shuffling up

to 63.7% of TRU destruction[26]. One research investigated the destruction capability for the fuel

shuffling pattern[27][28]. They showed the TRU incineration characteristics for the multiple sce-

narios of shuffling. These studies above are based on prismatic core HTGRs with traditional block

fuels. On the other hand, prismatic core with so-called Pin-in-block type fuels was also attempted

to deploy deep-burn concept in Japan[29] and showed 95% of Pu-239 destruction. They also ex-

pand their target to TRU incineration[30]. Through the research effort shown above, the basic

feasibility of a deep burn strategy was proven in the aspect of neutronics. However, optimization

strategies rely on reactor physics knowledge, and the search space of reactor design parameters and

fuel loading patterns is extensive. Therefore, there is room to explore the global optima of waste

minimization using mathematical optimization.

1.3 Research Objectives

The objective of this research, as documented in this Ph.D. dissertation, is to develop and

demonstrate a consistent optimization framework for reactor design optimization problems using

a combination of regression algorithms and metaheuristics optimization approaches. The TRU

minimization problems applied to HTRs are solved as a demonstration example showcasing ap-

plications of the developed and implemented optimization framework. The main objective will be

considered through the following tasks to accomplish the above:

1. Developing an optimization framework consisting of an automatic input generator and output

assimilation for Serpent2, a trust region-based two-phase iteration algorithm, a regression

system using the Gaussian process regression method, and metaheuristics search algorithms

using the hybrid metaheuristics of genetic algorithms and simulated annealing.

2. Modeling a high fidelity HTTR and Gas Turbine High-Temperature Reactor 300 (GTHTR300)

cores based on a pin-in-block type fuel assembly design using Serpent 2.

3. Developing a set of optimization design parameters, objective functions, and weighed func-
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tion for waste for the waste minimization problems.

4. Developing constraints for criticality and reactivity.

5. Analyzing the feasibility and performance of the developed methods for the TRU minimiza-

tion problems.

1.4 Optimization

This section overviews the mathematical optimization and the representative algorithms used

in the engineering design problems. Mathematical optimization is the process of finding solution

sets for maximizing or minimizing the value of objective functions under the given constraints. Let

S be feasible search space and objective function f such that:

f : S 7→ R. (1.1)

Then, the general problem is to find a optimal solution x∗ such that:

f(x∗)� f(x),∀x ∈ S. (1.2)

Furthermore, the optimal cost is denoted as

f ∗ = f(x∗) = min
x∈S

f(x), (1.3)

and the set of optimal solutions are

x∗ = arg min
x∈S

f(x), (1.4)

where x is a decision variable vector that determines the value of the objective function. In this

equation, the optimization problem is minimization, but a modification for a maximization prob-

lem can be nearly always achievable. S is determined by given constraints. These problems with

9



constraints are called constrained optimization problems. Constraints are explicitly defined as

equations or determined as the result of physical simulations. The simulation model can be the

combination of multiple equations. However, many cases require more complex procedures, in-

cluding stochastic methods.

The objective of the mathematical optimization problem is to find an optimal solution, infeasi-

bility, unbounded, or non-optimal. Even if an optimal solution exists, sometimes it is difficult to

find a globally optimal solution. The concept of neighborhood is introduced to explain the locally

optimal solution. In this problem, the neighborhood is defined as

N(x) ⊆ S, (1.5)

that are in close to x. Here, the locally optimal solution is defined as

f(x∗) ≤ f(x),∀x ∈ S ∩N(x∗). (1.6)

The globally optimal solution is a locally optimal solution. In a complicated optimization problem,

the goal is sometimes set to one of the locally optimal solutions that are good enough to approach

the globally optimal solution in a reasonable time.

1.4.1 Combinatorial Optimization

The combinatorial optimization problem is a problem with a structure of combination in a

feasible search space. In this problem, solutions are typically represented as a combination, per-

mutation, graph, and integers. Traveling salesman problems, minimum spanning tree problems,

and knapsack problems are examples of combinatorial optimization problems. Also, many engi-

neering design problems are categorized as combinatorial optimization problems. Theoretically, all

combinatorial optimization can be formulated as an integer optimization problem. In complicated

combinatorial optimization problems, exhaustive search is not practical because of its NP-hard.

Note that a problem P is called NP-hard if all problems in NP polynomially reduce to P. Also, even
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a globally optimal solution is often difficult to find in a limited time.

The NP-hard combinatorial optimization problem can be solved in three different approaches

of algorithms: exact algorithm, approximation algorithm, and a heuristic algorithm.

1.4.1.1 Exact Algorithm

The exact algorithm finds a globally optimal solution for a given problem. Even a Non-

deterministic Polynomial-time hard (NP-hard) combinatorial optimization problem, some prob-

lems such as political districting problems require a globally optimized solution in nature. In this

approach, the computation time of NP-hard is O(Cn). So, significant effort to find an efficient

algorithm for the specific problem is necessary.

1.4.1.2 Approximation Algorithm

The approximation algorithm finds a feasible solution with provable guarantees on the prox-

imity of the solution to the globally optimal solution for a given problem. In most problems, the

exact optimal solution is not required, so the approximation algorithm is selected to reduce compu-

tation time significantly. Many approximation algorithms need O(nC) computation time. Several

algorithms are well known for the approximation algorithm, such as greedy algorithm, local search

algorithm, and primal-dual methods.

1.4.1.3 Heuristic Algorithm

Heuristic algorithms find a feasible solution that does not guarantee the proximity of the glob-

ally optimal solution for a given problem. There are many algorithms and insights that can apply

to many optimization problems except for a few counterexamples. Also, there are experimentally

good algorithms but cannot guarantee the approximation due to the complex theoretical analysis.

Heuristic algorithms are based on the accumulation of this knowledge and discoveries.

1.4.2 Multi-Objective Optimization

In a multi-objective optimization problem, more than one objectives to maximize or minimize

are set. So instead of a single objective function, an objective vector F(x) is defined as the set of
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objective functionsf(x) such that:

F(x) = f1(x), f2(x), ..., fk(x), (1.7)

where each of fk(x) is a different objective function and k is the number of objective functions.

So, the optimal solution is defined as

F(x∗) = min
x∈S

F(x), (1.8)

This multi-objective optimization problem usually does not have a unique optimal solution because

optimal solutions are different among each objective function. Several methods are proposed to

evaluate each objective function and determine the optimal solution to a unique set of values.

1.4.2.1 Weighted Sum Method

The most straightforward approach is the weighted sum method:

U =
k∑
i=1

wifi(x), (1.9)

k∑
i=1

wi = 1, (1.10)

where w is a weight vector. The relative value of the weights is the relative importance of each

objective. Each objective function can be adjusted depending on the engineering judgment.

1.4.2.2 Weighted Global Criterion Method

For considering the Pareto optimal points, weighted global criterion method is introduced such

that,

U =

{
k∑
i−1

[wi(fi(x)− f ◦i )]p
}1/p

. (1.11)

The solution of this formula depends on both w and p. Depending on how to set the p value, the

behavior of this equation changes.
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1.4.2.3 Lexicographic Method

Lexicographic method will prioritize the objective functions by ordering such that:

min fi(x)

s.t. fj(x) ≤ fj(x
∗
j); j = 1...(i− i); i > 1; i = 1...k,

(1.12)

where i is a function’s position after ordering by the preference, fj(x∗j) is the minimum value for

the jth objective function.

1.4.2.4 Bounded Objective Function Method

The bounded objective function method is the way to focus on a single objective function with

limits on other objective functions such that

li ≤ fi(x) ≤ εi; i = 1...k; i 6= s, (1.13)

where li and εi are the lower and upper bounds for objective function, respectively. This gives a

weakly pareto optimal point and Pareto optimal solution.

1.4.3 Metaheuristics

Metaheuristics is a high-level procedure to find a heuristic combining several ideas based on

basic search algorithms such as greedy and local search algorithms. These algorithms are widely

adopted for combinatorial optimization problems, including a black box problem. Metaheuristic

algorithms are inspired by various natural phenomena and mechanisms: a genetic algorithm is

inspired by evolution theory, and simulated annealing is inspired by physical phenomena. There

are two strategies to find better optimal value: intensification and diversification. Intensification

is a way to search for similar combinations, which were evaluated as good in the past. In most

combinatorial optimization problems, it is known that each good optimal point tends to have a

similar structure. On the other hand, intensification fixes the search area in local optima and

prevents searching for a broader area to find global optima. Hence, diversification is necessary.
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Diversification is a strategy to search different structures of the past combinations. Metaheuristics

iterate the two processes: (1) find a combination based on the record, (2) evaluate the combination

and produce information for the next iteration. Each metaheuristic has different ideas for every

two processes.

1.4.4 Genetic Algorithm

A genetic algorithm is a metaheuristic search algorithm inspired by famous Darwin’s theory of

species evolution[31]. Holland originally proposed the genetic algorithm in 1975,[32] and Gold-

berg popularized it in 1989[33]. This algorithm iterates the group of solutions through the process

of fitting evaluation, crossover, and mutation. This process is similar to natural selection and

species evolution. The genetic algorithm can also be categorized as a variant of stochastic beam

search because successor states are reproduced by merging two-parent states instead of modifying

a single state. Since it does not depend on the derivatives, the genetic algorithm can be applied to

many engineering problems.

Genetic algorithms start with a set of randomly selected candidates. These candidates are called

population. Some technical words of genetic algorithms are borrowed from the study of evolution.

Also, each candidate is named a chromosome, and a single parameter in the candidate is named a

gene. These chromosomes or candidates are selected or modified through the process of selection,

crossover, and mutation. If the termination criteria meet the population after the mutation process,

they will be the last population, and the process ends. If not, the population iterates through the

process until the criteria meet. Table 1.2 shows the typical list of the evolution-inspired technical

term of genetic algorithms. The genetic algorithm term is primarily used in this paper in the context

of genetic algorithm. Fig. 1.2 illustrates the graphical definition of these terms.

At first, the initial population set is generated. Every single parameter xi is a gene, and a series

of genes, which is a possible candidate of the solution are chromosome Xj such that:

X = (x1, x2, ..., xi, ..., xN), (1.14)
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Table 1.2: Comparison between general term and genetic algorithm term.

General term Genetic algorithm term
Decision variable Gene (of chromosome)
Solution Chromosome
Old solution Parent
New solution Children / Offspring
Fitness function Quality of individual
Selection Surviving parents

13 235 23 5 1

72 390 34 7 3

39 235 40 11 2

?
?
?

Gene

Chromosome

Population

Figure 1.2: The graphical definition of gene, chromosome, and generation.

where N is the number of genes. Then, the population P is a group of chromosomes such that:

P =



X1

X2

...

Xj

...

XM


=



x1,1 x1,1 · · · x1,i · · · x1,N

x2,1 x1,1 · · · x1,i · · · x2,N

...
... . . . ... . . . ...

xj,1 x1,1 · · · xj,i · · · xj,N
...

... . . . ... . . . ...

xM,1 x1,1 · · · xM,j · · · xM,N


. (1.15)
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Here, there are M chromosomes generated as the first population, and these candidates will get

through the multiple stages in each iteration.

1.4.4.1 Selection

Each chromosome is evaluated by the quality of individual or fitness function in the selection

process. The chromosomes obtain a higher score in terms of the quality of individual can be the

better candidate. Based on the quality of individual evaluation, some chromosomes are selected

as parents for the mating process or as the next generation. This selection is processed determin-

istically or stochastically by the probability given by the result of the quality of individual. Some

representative selection methods are introduced here. Proportionate selection[33] evaluates each

chromosome as follows:

Pk =
F (Xk)∑M
j=1 F (Xj)

, (1.16)

where Pk is the probability of the kth chromosome being selected, F (X) is the fitness function of

a chromosome. The higher the fitness function value is, the more often selected for the parent in

the next process. This selection method still has a chance to select less favorable chromosomes in

low probability, contributing to diversification.

Another famous selection method is ranking selection. This method ranks all chromosomes

based on the fitness function value at first. Then, ranked chromosomes are assigned a probability

based on their rank with the following equations:

Pk = U − (Sk − 1)× Z, (1.17)

Sk = Rank(Xk), (1.18)

M∑
j=1

Pj = 1, (1.19)

U =
Z(M − 1)

2
+

1

M
, (1.20)

where Sk is the rank of the kth chromosome, Z is an arbitrary value. A higher Z value gives
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more chance to the higher rank chromosome. The last selection method is tournament selection.

Tournament selection consists of two iterative processes. In the first process, the candidate of

the parent is randomly selected with a uniform distribution. So, the first selection process does

not consider the fitness function of chromosomes. Each chromosome can be equally selected

stochastically. Then, the best chromosome in terms of the fitness function is selected from the

chromosomes selected in the first process. Only one chromosome is selected as a parent for each

second process. This iteration continues until all parents are selected. Each selection method

determines how easily getting the convergence in the genetic algorithm iteration is and strengthens

the diversification.

1.4.4.2 Crossover

In the crossover process, selected chromosomes will exchange parts of their parameters in some

manners, and then exchanged chromosomes will be candidates as offspring. They can generate

new chromosomes, which may achieve the more optimal solution. In most cases, some parents

and all children are selected for the next generation. There are two major types of crossover: point

crossover and uniform crossover. Fig. 1.3 illustrates how these crossover work. Point crossover

randomly selects one or multiple points. For example, in the case of one-point crossover, if each

chromosome has five genes, an offspring from the first pair will get the first three genes from the

first parent chromosome and get the remaining two genes from the second parent. In contrast,

the other offspring from the same pair will get the first three genes from the second parent and the

remaining two genes from the first parent. In the case of two-point crossover, a single dotted line on

the figure becomes two dotted lines and exchanges the genes accordingly. The uniform crossover

chooses some pair of genes as shown in (B) of Fig. 1.3 instead of determining the exchange area

by line(s). Also, the result of the one-point crossover is shown as:

Xchild
1 = (x1, x2, ..., xc, x

′
c1
, ..., x′N), (1.21)

Xchild
2 = (x′1, x′2, ..., x′c, xc1 , ..., xN), (1.22)
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Figure 1.3: Examples of how crossover works: (A) point crossover and (B) uniform crossover.

where c is the crossover point and N is number of genes in parent chromosomes.

Typically in the early iteration, the chromosomes have diversity in the population. So, the effect

of crossover is significant. However, in the later iteration, most chromosomes will become similar

so that the impact of the crossover is smaller than the earlier iteration.

1.4.4.3 Mutation

In the mutation, genes are randomly changes to the different values in the range of possible

values such that:

x′i = Random
(
x

(L)
i , x

(U)
i

)
, (1.23)
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where x′i is a new gene value after the mutation, x(U)
i is the upper bound of the gene value, and

x
(L)
i is the lower bound of the gene value. The mutation is essential because it expands the capa-

bility of diversification, and the probability of mutation is set by hyperparameter. Higher mutation

probability can realize more diversification, refrain from the localized search, and interrupt the

convergence.

1.4.4.4 Termination Criteria

After finishing each stage, the termination criteria will decide whether the current population is

selected as the last population or back to the selection process. The standard termination criteria of

the genetic algorithm are the number of iterations, run time of computation, and the improvement

curve of the latest duration of iterations. Fig. 1.4 illustrates the flow of the whole genetic algorithm

process. Until the termination criteria are satisfy with some condition such as number of iterations,

convergence, and accuracy, the process of selection, mating, crossover, and mutation.

1.4.4.5 Hyperparameters

Through the genetic algorithm process, several hyperparameters determine the behavior of the

algorithm: The size of population M , the number of parents, the probability of crossover, and the

probability of mutation. The best combination of hyperparameters depends on specific problems’

search space. It is often required to search for good hyperparameters by multiple experiments.

1.4.5 Simulated Annealing

Simulated annealing is a metaheuristic inspired by physical phenomena: annealing in the met-

allurgy field. Kirkpatrick et al. developed the simulated annealing in 1983[34]. The physical

annealing process heats the solid, and it cools gradually until it has the regular crystal lattice ar-

rangement without faults. The simulated annealing starts from the random solution, called the

current state. Then, a new state in the neighborhood of the current state is generated. If the fitness

function value of the new state is better than the current state, the new state is accepted. Even if

the new state is worse than the current state, the new state is accepted if the acceptance function

decides the acceptance of the new state. The value of the acceptance function depends on the sys-
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Figure 1.4: The flow of the genetic algorithm.

tem temperature. The system temperature is high at the beginning of the optimization process, but

it gradually decreases, and the acceptance of unimproved state changes also decreases.

Initial state X is defined as:

X = (x1, x2, ..., xi, ..., xN), (1.24)

whereN is the number of decision variable and xi is ith decision variable. Then, new neighborhood

decision variables are generated with the random walk such that:

Xnew state
i = (x′1, x

′
2, ..., x

′
i, ..., x

′
N), (1.25)

20



x′i = xi +Random(−ε, ε), (1.26)

where ε is a small value. Then, acceptance function determines whether this newly generated state

is accepted or not. This function is defined as:

P (X,Xnew state) =

 1 if F (Xnew state) < F (X)

e
−∆F
λ Otherwise

 , (1.27)

∆F = |F (Xnew state)− F (X)|, (1.28)

where F (X) is the fitness function value, and λ is the system’s temperature. If the new state is bet-

ter than the previous value, the new state is always accepted. Otherwise, acceptance is determined

by the function depending on the system’s temperature. When the system’s temperature is high,

acceptance is easy, but the acceptance rate decreases when the system’s temperature is low.

The thermal equilibrium at each temperature occurs when many new states are generated. This

number is denoted by β.

The reduction of system’s temperature occurs in the linear decreasing method as follows:

lim
t→+∞

λt = 0, t > 0, (1.29)

λt = λ0 − α× t, (1.30)

α =
λ0 − λT

T
, (1.31)

where t is the interation number of optimization process, λ0 is the initial temperature, λt is the

temperature in tth iteration, T is the total iterations, and α is the cooling factor.

The termination criteria determine whether the algorithm goes to the next iteration or stops.

The criteria are typically the number of iterations, the improvement curve of the states between the

latest iterations, and computation time. Fig. 1.5 illustrates the flow of the whole genetic algorithm

process. The parameters are changed if the acceptance criterion satisfied, and the temperature is

gradually decreasing through the condition change of the thermal equilibrium.
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Figure 1.5: The flow of simulated annealing.

1.4.6 Trust-Region Method

The Trust-region method is a numerical optimization method[35]. It starts from a region around

the initial best point, and the region around the initial point is assumed to be trusted. In other words,

the model is well represented in the region around the initial point. Then, it takes a step forward

within the trust-region and gradually expands the trust-region area. Here, the initial point is defined
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as xk. The set of points around xk is a trust-region in this case. This region is defined as:

B(xk,∆k) = ||x− xk|| ≤ ∆k, (1.32)

where ∆k is a radius of area. When the model is considered quadratic with derivative information

such as:

m(x) = f(xk) +∇Tf(xk)x+ xT∇2f(xk)x. (1.33)

the optimization problem is reduced to solve a trust-region subproblems:


minx = m(x)

s.t. x ∈ B(xk,∆k)

(1.34)

The size of the trust-region is necessary to be updated through the iteration. If the iteration makes

a satisfactory reduction, ∆k becomes larger. If the improvement is limited in the iteration, ∆k is

stationary or decrease. the ratio of actual reduction in the objective function is

ρk =
f(xk)− f(x)

m(x)−m(x)
. (1.35)

The trust-region size is determined by following rule:

∆k+1 =


γinc∆k, if ρk ≥ η1

∆k, if η0 ≤ ρk < η1

γdec∆k, if ρk < η0

(1.36)
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0 ≤ η0 ≤ η1 < 1 (1.37)

0 < γdec < 1 (1.38)

γinc > 1 (1.39)

Also, the trust-region center is determined as follows:

xk+1 =


x, if ρk ≥ η0

xk, if ρk < η0

(1.40)

1.4.7 Regression Algorithm

The regression model is an estimated model from a set of statistical processes in the relation-

ships between datasets and target variables. There are many kinds of regression algorithms. In this

research, two regression algorithms are selected due to their applicability for the small amount of

dataset or dataset with missing data. Gradient boosting regression is often the best accuracy on

many problems and handles a mixture of feature types, and it is unsuitable for very high dimen-

sional sparse feature problems in terms of accuracy and computational cost.

1.4.7.1 Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric, Bayesian approach to regression. In

the beginning, a linear function is assumed such that:

y = wX + ε. (1.41)

The Bayesian approach specifies a prior distribution, p(w), on the parameter,w. Then, probabilities

defined by the data sets are relocated using Bayes’ rule.

p(w|y,X) =
p(y|X,w)p(w)

p(y|x)
. (1.42)
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Here, posterior is shown as likelihood times prior divided by marginal likelihood. The posterior

distribution or updated distribution incorporates information from the prior distribution(p(w)) and

datasets(X). Then, prediction at unknown points(x′) is calculated as:

p(f ′|x′, y,X) =

∫
w

p(y′|x′, w)p(w|y,X)dw. (1.43)

At this point, it is assumed that the prior and likelihood is Gaussian through the integration, and

this Gaussian distribution is the prediction with variance.

Since Gaussian process regression is non-parametric, it calculates the probability distribution

through the functions that fit the datasets. The Gaussian process function is represented using a

mean function m(x) and covariance function, k(x, x′). There are several covariance kernel func-

tions to fit. In this research, constant with radial basis function (RBF) with noise is selected:

k(x, x′) = σ2
f exp− 1

2l2
||x− x′||2. (1.44)

The prediction of the two-dimensional case is modeled with uncertainty, as shown in Fig. 1.6

The points that have sufficient training data have very narrow confidence interval, and the point

without enough training data shows more uncertainty.

1.4.7.2 Gradient Boosting Regression

Gradient boosting[36] is a way to make a prediction model by the ensemble of weak prediction

models. The typical choice of the weak prediction model is decision trees. Gradient boosting

regression is customized to realize higher performance. The representative boosting system is, for

instance, XGBoost[37] The fundamental process of making predictions is as follows. Here, the

objective function which we want to minimize is L. The initial model is described as:

F0(0) = arg min
γ

n∑
i=1

L(yi, γ), (1.45)
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Figure 1.6: The prediction example of GPR.

where yi is ith target value, γ is predictions. n is the number of data. For a given number of

iteration steps M , calculate the pseudo residuals using gradient :

r = −
[
∂L(yi, F (xi))

∂F (xi

]
F (x)=Fm−1(x)

for i = 1, ..., n. (1.46)

Then, fit base learner hm(x) to pseudo residuals r. The updated model is shown using base learner

and previous model with step magnitude multiplier γm:

Fm(x) = Fm−1(x) + γmhm(x). (1.47)

Step magnitude γ is multiplied by learning rate, a factor between 0 and 1 for each gradient step to

realize slow convergence toward observed values.
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1.4.8 Application of Metaheuristics in the Nuclear Engineering Field

Genetic algorithms have been used in the LWR design in the nuclear engineering field, includ-

ing core design[38][39][40], plant design[41], fuel management[42][43], spent fuel management[44],

and fuel loading pattern[45]. Recently, more applications for the Generation IV reactor have been

conducted, such as FR core optimization by genetic algorithm[46] and artificial neural network[47].

Also, an original metaheuristics algorithm combining the characteristics of famous algorithms was

proposed by Bevins and Slaybaugh[48].

Even though these metaheuristics algorithms are powerful tools to optimize the design in the

nuclear engineering field, it is time-consuming because it requires exploring a vast design param-

eter space with many physics model calculations. A recent study attempted to solve this problem

using regression methods in the FR optimization problem based on genetic algorithms[49][50]

and artificial neural networks[51]. They built surrogate models and used them through genetic

algorithms to reduce the computation time of direct Monte Carlo physical simulations.

In the field of TRU minimization, there are multiple pieces of research for optimization, as

shown in the section 1.2.3. However, there is no research considering systematic mathematical

optimization. This paper shows the optimization framework which can be applied to the waste

minimization problem.
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2. METHODOLOGY

This chapter explains the development of an optimization framework for the reactor design

parameters.

2.1 Framework of Optimization

In this optimization framework, the optimal design parameters are searched through the multi-

ple stages of algorithms. The optimization target is assumed to be the nuclear reactor design op-

timization problem which includes black-box constraints in the physics model simulation. These

problems are challenging because of many design parameters, including continuous and discrete,

nonlinear characteristics between design parameters and target output values, and black-box con-

straints. A surrogate model, an equation-oriented approximation of the physics model simulation,

can significantly decrease computation time. However, the optimization process has approximation

errors due to the incompleteness of the surrogate model, and the optimal answer can be inaccurate.

This optimization framework proposes the methodology to reduce the required computation time

and keep necessary accuracy. Fig. 2.1 shows the schematic flow of the framework consisting of

four stages of the process.

The first stage of the optimization process is a sensitivity analysis for investigating and select-

ing the vital optimization design variables. The importance is evaluated based on the sensitivity

coefficient and correlation among design parameters and outputs.

The second stage of the optimization process is a feasible search. In this stage, the feasible

region of the design parameter space is looked over using the trust region method rather than

finding the optimal point.

The third stage of the optimization process is making a surrogate model. The surrogate model

is built using the inputs and outputs data obtained in the sensitivity analysis and the feasible search.

Gaussian process regression is used for the regression algorithms to construct the model due to the

accuracy and speed. The surrogate model can reduce computation time drastically compared with
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Figure 2.1: Schematic flow of the optimization framework.

the original physics simulation.

The fourth stage of the optimization process is optimal search. In this stage, the optimal point

search is performed in the surrogate model. The search algorithm is the hybrid metaheuristics

based on genetic algorithm and simulated annealing.

After the process of each stage, the validity of the surrogate model is evaluated to decide

the optimal point candidate should be finalized or not. Both the cross-validation and the test is

performed for the validation. If the accuracy of the surrogate model does not meet the criteria,

additional data points are added, and then the iteration from stage 2 to stage 4 is performed again.
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2.2 Stage 1: Correlation Check and Sensitivity Analysis

The sensitivity analysis is performed to search the correlation between input parameters and

output parameters such as objectives and constraint parameters. Each input parameter is sampled

using centered Latin Hypercube Sampling with fixed other parameters in the range of design space

limit. The sampling is conducted until their means, and standard deviations reach convergence.

The Pearson correlation coefficients between input parameters, objectives, and constraints values

are calculated to evaluate the linear correlations. The positive coefficient shows that the output

parameter increases when the input parameter increases, while the negative coefficient indicates

that the input parameter’s increase results in the output parameter’s decrease. If a specific input

parameter has negligible correlation coefficients with all objectives and constraint values, this input

parameter is omitted from the optimization problem. The input value is assumed to be a fixed value

through the process.

2.3 Stage 2: Feasible search

The algorithm in the feasible search stage aims to find a feasible point rather than find an opti-

mal point. There is an idea that a trust region-based feasible search is performed before solving an

optimization problem[52]. Some optimization algorithms look for feasible points and simultane-

ously decrease the objectives using penalty-based methods. However, the advantage of a feasible

search is that at least a feasible point is obtained when the code stops for some unexpected error.

It is imperative when the infeasible region is broad in the design search space and the computation

time for the infeasibility and optimization have a significant difference. The feasible search starts

when the initially given parameter is infeasible, and the feasible search continues until a feasible

point is obtained. Fig. 2.2 shows the schematic flow of the feasible search stage. This stage can

be interpreted as the minimization problem for a constraint violation function. The initial input

parameter is generated randomly using centered Latin Hypercube Sampling to spread the sample

points evenly across the design space range. When the given parameter is infeasible, the constraint

violation is calculated. Then, using the trust-region method, the neighborhood of the initial point
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Figure 2.2: Schematic flow of the feasible search stage.

is searched to minimize the constraint violation. This problem is shown as


minx θ

r(x),

s.t. gj(x) ≥ 0 ∀j ∈ {1...q},

||x− xk|| ∈ ∆k,

(2.1)

where θR is the constraint violation, g is the constraint, q is the total number of constraint, xk is

the neighborhood of a point, and ∆k is the range of trust region.

The neighborhood search by the trust region method is iterated, and when the feasible region

is obtained by updating the input parameters, that point is recorded, and the feasible stage ends.

2.4 Stage 3: Regression Analysis

The calculation of the physics simulation model is computationally expensive. Even though

metaheuristic algorithms can efficiently search the design value optima in the design search space,
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it takes a significant amount of time if the search space is vast. So, the surrogate model constructed

by the regression algorithm is often used instead of the physical simulation model. The surrogate

model is built using a Gaussian process regression in this framework. All the input values and

output values from the sensitivity analysis stage and feasible search stage are used for making the

first surrogate model. The optimal search is performed in this surrogate model in the next stage.

The surrogate model is incomplete and inaccurate compared with the original physical model, so

the results obtained in the surrogate model have errors. Hence, the iteration approach is adopted

to build a better surrogate model and reduce errors. If the error is not below the threshold after

the optimal value is obtained in the optimal search stage, the process is back to the feasible search

stage. Then, more input and output parameters emphasizing the vicinity of the optimal point

candidate are added to improve the accuracy of the surrogate model.

2.5 Stage 4: Metaheuristic Optimization Search in Surrogate Model

As mentioned in the chapter 1 , metaheuristic is powerful tool for the black-box optimization

problem. Genetic algorithms and simulated annealing are representative metaheuristic algorithms

and are often selected for engineering black-box optimization problems. However, the original

genetic algorithms and simulated annealing typically do not realize a well-balanced search for

intensification and diversification. Hence, the hybrid of genetic algorithm and simulated annealing

was adopted in this optimization framework. There are several ways to combine genetic algorithms

and simulated annealing. Genetic Algorithm-Simulated Annealing (GA-SA) Hybrid[53] is used as

the base algorithm in this framework.

The schematic flow of the hybrid of genetic algorithm and simulated annealing is shown in

Fig. 2.3. The fundamental flow is similar to the genetic algorithm, but the concept of temperature,

which is used in the simulated annealing, is adopted. If the temperature is high, the chromosomes

can change their genes freely. However, they do not accept the worse chromosomes after the

temperature decreases. The conventional genetic algorithm tends to diverse the parameters through

the algorithm iteration, but the hybrid of genetic algorithm and simulated annealing algorithm

considers more intensification in the later iterations.
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Figure 2.3: Schematic flow of the hybrid of genetic algorithm and simulated annealing algorithm.

The initial population set is generated from the result of the feasibility search stage. So. the

first population matrix is as shown in Eq. 1.15. Each column represents each design parameter. So,
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each column has randomly generated numbers in the range of each design space.

Then, a pair of parents are selected. In this framework, the modified proportionate selection is

employed as a selection method. The probability of the kth chromosome being set is evaluated as

follows:

Pk =
F (Xk)

αt∑M
j=1 F (Xj)αt

, (2.2)

where F (X) is the fitness function of a chromosome, α is a constant parameter depending on the

problem, t is the number of generations in the hybrid algorithm. The fitness function of the mul-

tiobjective is calculated using the weighted sum method shown in equation (1.9). In this modified

selection, the probability of a better fit chromosome being chosen increases when the generation

proceeds. In the earlier generation, less-fit chromosomes have some chance of choice, but their

luck will gradually decrease at the later generation.

An average-bound crossover operation[54] is adopted in the crossover process instead of a tra-

ditional point crossover or uniform crossover. The selected pair of chromosomes will undergo the

crossover operation in the probability of pc ∈ [0, 1], a crossover probability parameter. In this

operation, four new offspring are reproduced from a pair of two parents instead of two offsprings,

typical for the conventional crossover operation, as shown in the section 1.4.4.2. Then two off-

springs are selected from these four offsprings based on the fitness function. The two of these

offsprings are offsprings generated by average crossover as follows:

O1 =
(P1 + P2)

2
, (2.3)

O2 =
(Pmax + Pmin)(1− wa) + (P1 + P2)wa

2
. (2.4)

Also, the other two of the offsprings are offsprings generated by bound crossover as follows:

O3 = Pmax(1− wb) + max(P1,P2)wb, (2.5)

O4 = Pmin(1− wb) + min(P1,P2)wb, (2.6)
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where offspring vector Oj and parent vector Pk is shown as:

Oj = [oj,1, oj,2, ..., oj,i, ..., oj,N ] , j = 1, 2, 3, 4, (2.7)

Pk = [pk,1, pk,2, ..., pk,i, ..., pk,N ] , k = 1, 2, (2.8)

O is a gene of offspring vector, N is the number of genes. w1, w2 ∈ [0, 1] is weight parameters for

average crossover and bound crossover, respectively. When w1 = 1, two offsprings from average

crossover are the same: middle point between two parents. When it approaches 0, an offspring

will gradually increase and reach above a larger parent value. On the other hand, w2 = 1 generates

the offspring that is the maximum or minimum combination of parents. When it approaches 0, the

offspring will gradually reach the highest and the lowest parameters. Pmax and Pmin is a vector

consisting of either maximum or minimum value of each gene parameter. Note that they are not

the maximum or minimum values in the selected parents. They are defined as:

Pmax =
[
x

(U)
1 , x

(U)
2 , ..., x

(U)
i , ..., x

(U)
N

]
, (2.9)

Pmin =
[
x

(L)
1 , x

(L)
2 , ..., x

(L)
i , ..., x

(L)
N

]
, (2.10)

where x(U)
i , x

(L)
i is the maximum or minimum number of gene xi, respectively. max(P1,P2) and

min(P1,P2) is a vector consisting of larger or smaller values of each gene between P1 and P2. For

instance, max([1, 2, 3], [3, 2, 1]) = [3, 2, 3].

Two offsprings are selected based on the fitness function and pooled into the population from

these four offsprings. Four offsprings will have four different characters to efficiently search for

the global optima compared with the conventional crossover operation.

After the crossover operation, the mutation operation is conducted. The wavelet mutation[54]

is adopted in this framework instead of a conventional uniform mutation. The selected pair of
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chromosomes will undergo the mutation operation in the probability of mutation shown as

pm = 1− τ/T, (2.11)

where τ is the current iteration number, and T is the total iteration number. The mutated gene is

calculated as follows:

o′j,i =


oj,i + δ ×

(
x

(U)
i − oj,i

)
, if δ > 0,

oj,i + δ ×
(
oj,i − x(L)

i

)
, if δ ≤ 0,

(2.12)

δ = ψa,0(ϕ) =
1√
a
ψ
(ϕ
a

)
, (2.13)

where ψ is the Morlet wavelet function:

ψ(x) = e−x
2/2 cos(5x), (2.14)

ψa,b(x) =
1√
a
ψ

(
x− b
a

)
. (2.15)

So,

δ =
1√
a
e−

(ϕ/a)2

2 cos
(

5
(ϕ
a

))
, (2.16)

where ϕ ∈ [−2.5, 2.5] and it is generated randomly. The Morlet wavelet function is shown in

Fig. 2.4. This is the symmetry function at zero, and the integral of the Morlet wavelet function is

zero. Also, most of the change in the function is between the interval of −2.5 ≤ x ≤ 2.5.

If |δ| is more significant, the value change by mutation is also more significant, and if |δ| is

smaller, the value change is small. From the property of wavelet function, the total positive and

negative change by mutation should be approximately the same when the sample size is large

enough. a is the dilation parameter which is the function of the algorithm iteration shown in

a = e− ln(g)(1−τ/T )ζ+ln(g), (2.17)
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Figure 2.4: The Morlet Wavelet.

where ζ is the shape parameter, g is the upper limit of a, τ is the current number of iteration, and T

is the total number of iteration. If ζ = 1, log(a) is linearly increases with respect to τ/T . If ζ > 1,

the relation between log(a) and τ/T is concave curve. If ζ < 1, it is convex curve. When the zeta

is low, a does not significantly increase until the later generation. Since larger a has more chance

to obtain larger δ, low ζ keeps large shift of mutation in longer iteration period.

After the crossover and mutation operation, if the new offsprings are better than the worst in

the population, the worst chromosomes are replaced with new offspring. If not, they are replaced

if the acceptance criterion based on temperature is satisfied. This criterion is the same as the

conventional simulated annealing criterion, as shown in inequality (1.27). Then, the temperature

decreases at the end of the iteration. The hybrid algorithm stops and moves into the next stage if

the generation exceeds the pre-set maximum number of generations. If not, it backs to select new

chromosomes from the updated population.

Through the hybrid algorithm, the earlier generation of the population has more chance for

a broad search area to find global optima. However, several parameters depending on the gener-

ation change in the later generation, and the search focuses on the intensification. For example,

higher-quality individuals are selected more in the selection process, the probability of mutation de-

creases, the magnitude of mutation decreases, and the survival probability of less-fit chromosome
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decreases. The hybrid of genetic algorithm and simulated annealing can perform well-balanced di-

versification and intensification to search for better optima in a limited time. In short, the primitive

genetic algorithm is weak for the capability of intensification of the search. However, in this GA-

SA hybrid algorithm, the diversification capability is robust at the earlier stage, and their balance

shifts to the intensification at the later stage.

2.6 Validation

After obtaining a candidate of optimal values by the hybrid algorithm of genetic algorithm and

simulated annealing in the surrogate model, the validation of the model is necessary. Even if the

global optima is achieved in the surrogate model, it does not assure that the optimal point is also

the global optima in the original physics model. So, the validity of the surrogate model is checked.

The surrogate model is evaluated in two steps. The first step is cross-validation, and the second

step is the test. On the cross-validation, parts of data sets are used to evaluate the surrogate model.

On the other hand, the test uses new physical model test data. If the surrogate model does not pass

the test, the date used for the test are abandoned and not used for the regression modeling.

In the cross-validation step, K-fold cross-validation is performed. The data sets used for the

surrogate model are divided into K equal parts. Then, K-1 parts are used for the modeling, and 1

part is used for the test. This process is repeated k times in total. So, each subset of the data sets

experiences a validation set. The example of the 5-fold cross-validation is shown in Fig. 2.5.

The error is calculated using the Relative Mean Squared Error (RMSE).

√√√√ 1

N

N∑
i=1

(
Rmodel,i −Rval,i

Rval,i

)2

≤ ε2, (2.18)

where N is the number of selected data points, Rmodel,i is the ith predicted fit function value in

the surrogate model using subset data, and Rval,i is the ith fit function value by the validation test

subset. ε2 is the RMSE threshold that is required to show the surrogate model is valid. If the

surrogate model is evaluated to be accurate, the test step follows. If not, the process is back to the

stage 2 with additional data points to strengthen the surrogate model.
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Figure 2.5: The example of the 5-fold cross-validation flow.

In the test step, both the accuracy of the optimal point candidate and the model. For the optimal

point, the RMSE should be less than the tight threshold as follows:

√(
RSurrogate −Rphys

Rphys

)2

≤ ε1, (2.19)

Also, the following criterion is used for evaluating the model accuracy.

√√√√ 1

N

N∑
i=1

(
RSurrogate,i −Rphys,i

Rphys,i

)2

≤ ε2, (2.20)

whereRSurrogate,i is the ith predicted fit function value in the surrogate model, andRphys,i is the ith

fit function value by physical calculation. ε1 and ε2 is the RMSE threshold that is required to show

the surrogate model is valid and ε1 < ε2. if the error is not below the threshold, the surrogate model
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is considered inaccurate and back to the previous stage with additional data sets. If the surrogate

model and the optimal point candidate pass both the validation step and the test step, the optimal

point candidate is determined as the optimal design parameters.

2.7 Code Structure of Framework

The framework consists of multiple python modules, as shown in Fig. 2.6. After setting some

httrs.py
(Serpent generator)

output_assimilation.py
(Data procession & plotter)

genetic_control.py

management.py

regression_control.py

GA
module

Figure.png Data.csv

RA
module

multiplication factor
neutron spectrum

spent fuel Inventory
peaking

particle radius
fuel enrichment

TRU ratio
BP configuration
packing fraction

double heterogeneity
core size

depletion step adjustment

httrs.inp
(serpent input)

Gausian process
Gradient boosting

correlation.py

surrogate_modelfeasibility.py

Feasible

 precise
model

No

Yes

No

Yes

cluster_execution.py

serpent outputs

Figure 2.6: A schematic sketch of code structure.

given information such as the target design parameters, the range of design parameters, spent fuel
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configuration, and hyperparameters, the framework can automatically calculate all simulation and

optimization processes. If unforeseen errors happen, the results at that time will be stored, and

users can resume the optimization process at that point. Since each function is modulated, this

optimization framework can be adjusted for the different reactor cores and optimization targets.

management.py controls all of the flows in the framework. It calls each python module, runs

functions to connect each module, writes logs, and finds errors.

correlation.py makes a sufficient set of design parameters in the given range. It gives these

parameters to httrs.py and calculates correlation among design parameters, objective values, and

meaningful outputs.

feasibility.py selects design parameters using the trust-region method and iterates the learning

data generation until feasibility criteria are satisfied.

httrs.py generates serpent input files from the given design parameter information. It can set

a particle radius, fuel enrichment in a different region, TRU ratio, burnable poison enrichment,

packing fraction, and core size. It also creates stochastic geometry data for the heterogeneity of

TRISO fuel particles in the fuel compact by tailoring packing fraction and fuel radius. This module

also calculates all the necessary values for the serpent inputs. Another useful function is the time

step management. Depending on the given design parameters, depletion time is quite different, so

simulating in a fixed time step is time-consuming. This module generates a relatively short period

of steps and checks some constraints such as criticality. If the reactor’s criticality is kept at the end

of the calculation, the calculation continues for additional time steps using preserved information.

This time step management can eliminate unnecessary depletion calculation, and total computation

time can be decreased.

cluster_execution.py is used to run the Serpent on the cluster. The necessary queue on the

cluster is automatically executed until all calculations are ended.

output_assimilation.py extract necessary data from serpent output files. For instance, it con-

verts and caluculates objective values and important output parameters from the output files and

generates Comma-Separated Values (CSV) files. The values at the End of the Cycle (EOC) is
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estimated by the interpolation. It can also visualize representative data such as multiplication fac-

tors through the depletion, neutron spectrum, peaking map in the reactor core. This module uses

SerpentTools[55] for data format conversion.

regression_control.py makes a surrogate model using designated regression algorithms. Scikit-

learn[56] is used for the regression algorithms.

genetic_control.py iterates the optimization process by the genetic algorithm. The algorithm

scheme and hyperparameter can be set in this module.

2.8 Tools

For the implementation of frameowork, following packages are used.

• serpentTools[55]

• NumPy[57]

• pandas[58]

• Scikit-learn[56]

• SciPy[59]
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3. REACTOR MODELS AND OPTIMIZATION RESULTS

The optimization framework is applied to the TRU incineration problem in the HTR. The reac-

tor model is based on the HTTR [60], an existing experimental reactor in Japan, and GTHTR300[61],

a conceptual commercial-scale high-temperature reactor. The reactor is assumed to be a single-

batch core loading in this research scope.

3.1 Serpent Model

The HTTR and GTHTR300 are modeled using Serpent 2.32[62]. The fuel block, control rod

guide block, reflector block are built in the high fidelity 3D model. Traditionally, double hetero-

geneity of the reactor core was the problem to model the high-temperature reactor. In this research,

the double heterogeneity of TRISO fuel is realized using the serpent disperse function. Note that

the movement of the control rod is not considered in this research scope. In the framework, a

code generates the serpent input by setting the design parameters such as packing fraction and fuel

composition.

3.2 HTTR Optimization Problem

The first reactor core model is based on the HTTR. The HTTR is a helium-cooled, graphite-

moderated test reactor in Japan. Since HTTR is a relatively small reactor, the number of neutrons

in the core is insufficient compared with an annular graphite-moderated core such as GT-HTR300.

However, the small core and detailed publications of reactor design parameters are suitable for the

test case of the framework. So, this reactor optimization problem is set for the preliminary case of

the framework application.

3.2.1 HTTR Reactor Parameters

The primary sources to build the model are the IAEA working group report[63] and the Inter-

national Reactor Physics Experiment Evaluation Project (IRPhEP) report[64]. The primary design

specifications are shown in Table 3.1. Since the HTTR is an experimental reactor, the output
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Table 3.1: The Major Design Specification of the HTTR.

HTTR
Thermal Power 30 MW
Outlet Coolant Temperature 850-950
Core Diameter 2.3 m
Core Height 2.9 m
Fuel UO2 (TRISO coated)
Enrichment 3.4 - 9.9 wt%

6 wt% (on average)
Type Pin-in-Block
Block Material Graphite
Coolant Helium
Number of Fuel Blocks 150
Number of Fuel Columns 30
Number of Pairs of Control Rods 16

power and core size are not large. The outlet coolant temperature is one of the highest in the

HTRs. The fuel is TRISO coated Uranium oxide fuel, and there is multiple different Uranium

enrichment depending on the region in the core.

Fig. 3.1 and 3.2 show the horizontal and axial view of the serpent HTTR core model.
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Figure 3.1: Horizontal cross-sectional view of HTTR core.

Figure 3.2: Axial cross-sectional view of HTTR core.
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The composition of TRU is based on the spent fuel from the AP1000 model simulation[65][66].

The AP1000 is operated with the 3 wt% of Uranium oxide fuel for 630 days at a power of 3400MW.

The TRU portion of the spent fuel from AP1000 takes 12 years before loading the GT-HTR300.

The mass fraction of TRU composition is shown in Table 3.8. The mass fraction of TRU compo-

sition is shown in Table 3.2.

Table 3.2: TRU composition of the spent fuel from AP1000.

Nuclide Mass fraction Nuclide Mass fraction
Np-236 7.83E-08 Am-241 5.34E-02
Np-237 3.32E-02 Am-242 1.02E-05
Np-238 7.62E-03 Am-243 5.45E-03
Pu-239 5.11E-01 Cm-243 9.47E-06
Pu-240 2.77E-01 Cm-244 8.62E-04
Pu-241 6.61E-02 Cm-245 4.74E-05
Pu-242 4.50E-02 Cm-246 3.26E-06
Pu-244 9.73E-07

The Energy spectrum in the fuel region one of the GT-HTR300 with 27% of TRU ratio is

shown in Fig. 3.3. The design parameters for this spectrum are 27% of TRU ratio, 287µm of fuel

kernel radius, 15% of packing fraction, 7% of Uranium enrichment, and 5% of boron enrichment.

Compared with the spectrum of HTR with the UO2 fuel, the peak of the thermal region is lower

because some TRU nuclides such as Am-241, Pu-240, and Pu-242 have high absorption capability

of the thermal neutron. If the TRU ratio increases, the spectrum becomes harder. The peak of the

spectrum between 10−8 and 10−6 increases when the TRU ratio decreases, while it decreases when

the TRU ratio increases.
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Figure 3.3: The energy spectrum in the fuel region of the HTTR with 27% TRU ratio.
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3.2.2 Optimization Target

The major reactor core-related design parameters are selected for the optimization target. The

list of design parameters with their value ranges is shown with these ranges in Table 3.3. The fuel

Table 3.3: The target design parameters and their range of values for the HTTR.

Design parameters Value ranges
TRU ratio 10 - 90 %
Radius of fuel kernel 150 - 425 µ m
Packing fraction 15 - 40 %
Uranium enrichment 3 - 15 %
Boron enrichment 1 - 5 %

kernel is composed of a homogeneous mixture of Uranium and TRU. The TRU ratio is the initial

fraction of TRU fuel in the fuel kernel loaded to the HTR. The remaining part of the kernel is en-

riched Uranium. The radius of the fuel kernel has uncertainty in actual fuel production. However,

all fuel kernels are assumed to be the same radius for the design parameter in this problem. The

radius of each coating layer surrounding the fuel kernel is adjusted depending on the radius of the

fuel kernel. The thickness of each layer is the same in any radius cases of fuel kernel. The pack-

ing fraction is the volume percentage of TRISO fuel in the fuel compact. Uranium enrichment is

the weight percentage of U-235 in the uranium portion(U-235 and U-238) of the fuel kernel. The

distribution of the TRISO fuel in the fuel compact was modeled heterogeneously using stochastic

methods. Some sets of fuel blocks are grouped, and stochastic heterogeneous geometry was gener-

ated for each group of fuel blocks for memory reduction of the simulation. The boron enrichment

is the percentage of B-10 in the burnable poison.
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3.2.3 Objective Function

The objective funciton to evaluate the minimization is set destruction rate of the TRU, D. The

objective function for waste minimization is defined as:

max. D = 1−
∑n

i=1mi,EOC∑n
i=1mi,BOC

(3.1)

keff,BOC ≥ 1.0 (3.2)

ρ(t) < 0. (3.3)

where mi,EOC is the total mass of TRU nuclide i at the EOC, mi,BOC is the total mass of TRU

nuclide i at the Beginning of the Cycle (BOC), and N is the total number of target TRU nuclides.

keff,BOC is the effective neutron multiplication factor at the BOC. ρ(t) is the reactivity coefficient.

3.2.4 Selected Algorithm and Hyperparameters

In the HTTR problem, the selected algorithms are simpler than those in Chapter 2. The surro-

gate model is made using the pairs of input design parameters and TRU destruction rates obtained

from the Serpent simulations. The Gaussian process regression is selected for the regression algo-

rithm. The kernel of the Gaussian process regression is the RBF without parameter optimization.

Instead of a hybrid of genetic algorithm and simulated annealing, the conventional genetic

algorithm was applied to search the optima. The detail of the genetic algorithm flow is shown in

Fig. 3.4. Twenty sets of design parameters or chromosomes are randomly selected as the first

generation, and the surrogate model estimates each set to obtain the TRU destruction rate after the

depletion. If there are five design parameters, for example, a chromosome in the generation has

five genes. As a crossover process, ten chromosomes are selected in a roulette method for mating,

and weight is based on the destruction rate so that chromosomes with a higher destruction rate can

survive more for the next generation. Then, each selected mate has two offspring by exchanging

genes depending on the designated crossover probability.

Furthermore, each offspring occasionally occurs mutation in the designated mutation proba-
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Figure 3.4: A macroscopic flow of the genetic algorithms.

bility. When the mutation occurs, a gene randomly changes in the possible range. Finally, all

offspring and original chromosomes with higher destruction rates are selected as the following

generation sets. The genetic algorithm parameters are shown in Table.3.4. Crossover and mutation

probabilities are determined by grid search.
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Table 3.4: The genetic algorithm’s hyperparameters.

Parameter Value
Number of chromosomes per generation 20
Number of generations 300
Crossover probability 0.8
Mutation probability 0.1

3.2.5 Results and Discussion

Fig. 3.5 shows the last iteration of genetic algorithms in the framework, and Table 3.5 shows

the final destruction rate and design parameters.

Through the generation, every parameter has changed to the nearly minimum or maximum

border of each design parameter range. The result is that each parameter has positive or negative

linear correlations to the destruction rate, and there is no infeasible region at the maximum or

minimum boundary combinations of design parameters in this design rage and this reactor. The

trend of each design parameter is analyzed in more detail in the next section.

Also, the TRU destruction rate is shallow. For the TRU incineration problem in the thermal

spectrum, some nuclides such as Pu-239 will decrease the amount by the fission through the bur-

nup, but some TRU nuclides increase the amount because of the capture reactions of the other

nuclides. Even though part of these nuclides can fission after transmutation to the fissile nuclide,

the effect of buildup is significant. In this HTTR case, the buildup of actinoids occurs, but the

fission of dominant TRU nuclides such as Pu-239 does not happen so much compared with the

capture reaction. So, the net TRU destruction rate is low. This reactor has no favorable neutron

flux for the TRU incineration.

Another problem is that the TRU destruction rate does not optimize the problem completely.

For example, if the loading amount of TRU is minimal due to the optimal TRU destruction rate,

it is not suitable for efficient TRU incineration. Solving a multi-objective optimization problem is

necessary to obtain the practical optimal solution.
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Figure 3.5: The change of design parameters through the genetic algorithm iteration.
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Table 3.5: The optimized design parameters for the best TRU destruction rate and the best TRU
destruction rate.

Parameter Value Unit
TRU ratio 13 %
Radius of fuel kernel 410 µ m
Packing Fraction 15 %
Uranium enrichment 15 %
Boron enrichment 4.9 %
TRU destruction rate 5.1 %

3.3 GT-HTR300 Optimization Problem

GT-HTR300 is developed from a successful experience with the HTTR. The previous section

shows that HTTR is an existing experimental reactor and achieved criticality in 1998. GTHTR300

is an ongoing reactor concept, and detailed design configurations are published. GT-HTR300 is

a prismatic block type and deploys pin-in-block type fuel. GT-HTR300 has an annular graphite-

moderated core, and the remaining region is filled with reflector blocks as shown in Fig. 3.6 and 3.7.
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Figure 3.6: The horizontal cross-sectional view of GTHTR300 core.

Figure 3.7: The axial cross-sectional view of GTHTR300 core.
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The reactor core consists of 90 fuel columns arranged in an annular ring. 30 Control rod

columns surround these fuel columns, and the remaining outer and inner parts are filled with re-

movable reflector columns. As the characteristics of the gas-cooled graphite-moderated reactors,

it has low power densities, resistance to the fission product release, and passive safety in the case

of accidents.

3.3.1 GT-HTR300 Reactor Parameters

The fundamental design of GT-HTR300 is similar to the HTTR, but there are many updates for

more sophisticated designs. For example, the fuel rod is integral and sleeveless for higher heat flux,

and particle buffer is enlarged to retain fission products steadily. Also, fuel pins are more densely

arranged. Multiple versions of GTHTR300 are published, so appropriate design parameters are

picked from those publications[61][67][68] and the configuration of HTTR[63][64]. The primary

design configurations of the reactor in this study are included in Table 3.6 and 3.7. The outlet

Table 3.6: The major design specification of the GTHTR300 model.

GTHTR300
Thermal Power 600 MW
Outlet Coolant Temperature 850-950 ◦ C
Core Diameter 5.5 m
Core Height 8 m
Fuel UO2 (TRISO coated)
Enrichment 12 - 19 wt%
Type Pin-in-Block
Block Material Graphite
Coolant Helium
Number of Fuel Blocks 720
Number of Fuel Columns 90
Number of Pairs of Control Rods 30

temperature is the same as the HTTR, but the output thermal power is much higher, and the size

is much larger than the HTTR as a commercial reactor. The fuel is UO2, but the TRU is added to
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this problem. The number of fuel blocks, fuel columns, and control rods are similar to the number

of representative GT-HTR300 designs, and the number of fuel blocks is significantly higher than

the HTTR. Table 3.7 is the detailed geometry of the reactor core design. Each dimension is quite

Table 3.7: The detail specification of the GTHTR300 model.

GTHTR300
Fuel Kernel Radius 150 - 425 µm
Buffer Layer Thickness 140 µm
Inner PyC Layer Thickness 25 µm
SiC Layer Thickness 40 µm
Outer PyC Layer 25 µm
Graphite Shaft Radius 4.5 mm
Fuel Compact Radius 1.2 cm
Fuel Compact Height 8.4 cm
Non-fueled Region Thickness of Compact 1.0 mm
Spacer Height 3.0 mm
Buffer Height 3.0 mm
Upper End Tap Height 9.0 mm
Lower End Tap Height 12.0 mm
Coolant Hole Radius 1.95 cm
Fuel Rod Height 105 cm
Fuel Block Height 105 cm
Fuel Pitch 4.7 cm
Fuel Block Pitch 41 cm

different from the HTTR. For example, the height of the fuel compact is more extended, and the

fuel pitch is denser than that of HTTR.

The composition of TRU is based on the spent fuel from the AP1000 model simulation[65][66]

as same as the HTTR case. The AP1000 is operated with the 3 wt% of Uranium oxide fuel for 630

days at a power of 3400MW. The TRU portion of the spent fuel from AP1000 takes 12 years before

loading the GT-HTR300. However, Neptunium is extracted from the spent fuel because it makes

the burnup period short, and the toxicity of Neptunium is not significant compared with other TRU

nuclides. The PUREX process is assumed to be the method of Neptunium extraction. The mass
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fraction of TRU composition is shown in Table 3.8. The primary component of the TRU is Pu-239

Table 3.8: TRU composition of the spent fuel from AP1000.

Nuclide Mass fraction Nuclide Mass fraction
Pu-238 7.88E-03 Am-242 1.02E-05
Pu-239 5.28E-01 Am-243 5.45E-03
Pu-240 2.87E-01 Cm-243 9.47E-06
Pu-241 6.83E-02 Cm-244 8.62E-04
Pu-242 4.66E-02 Cm-245 4.74E-05
Pu-244 1.01E-06 Cm-246 3.26E-06
Am-241 5.52E-02

and Pu-240. In the simulation model, these nuclides and Uranium are assumed to be homogeneous

in the TRISO fuel.

The Energy spectrum in the fuel region one of the GT-HTR300 with 20% of TRU ratio is

shown in Fig. 3.8. The design parameters for this spectrum are 20% of TRU ratio, 287µm of fuel

kernel radius, 20% of packing fraction, 12% of Uranium enrichment, and 3% of boron enrichment.

Compared with the spectrum of HTR with the UO2 fuel, the peak of the thermal region is low

because some TRU nuclides such as Am-241, Pu-240, and Pu-242 have high absorption capability

of the thermal neutron. The overall shape of the energy spectrum is similar to the case of HTTR.

The effective neutron multiplication factor change through the depletion time is shown in

Fig. 3.9. The neutron multiplication factor starts around 1.08 at the BOC. The neutron multi-

plication factor steadily decreases after the dip at the initial depletion period. The core becomes

subcritical around 1200 days from the start date. The error bar is based on the 3σ of statistical

errors. The design parameters of this depletion are 85% of TRU ratio, 405µm of fuel kernel radius,

18.7% of packing fraction, 12.7 - 18.3% of Uranium enrichment, and 4.6% of boron enrichment.
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Figure 3.8: The energy spectrum in the fuel region of the GT-HTR300 with 20% of TRU ratio.

Figure 3.9: The effective neutron multiplication factor through the depletion of the GT-HTR300.
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3.3.2 Optimization Target

The primary optimization target is the same as the case of HTTR. The list of design parame-

ters is shown with the ranges of values in Table 3.9. The range of packing fraction and uranium

Table 3.9: The target design parameters and their range of values for the GTHTR300.

Design parameters Value ranges
TRU ratio 10 - 90 %
Radius of fuel kernel 150 - 425 µ m
Packing fraction 15 - 35 %
Uranium enrichment in region 1 12 - 19 %
Uranium enrichment in region 2 12 - 19 %
Uranium enrichment in region 3 12 - 19 %
Uranium enrichment in region 4 12 - 19 %
Boron enrichment 1 - 5 %

enrichment is changed for the GT-HTR300. The upper boundary of the packing fraction decreases

to 35%, and the bottom and top boundary of Uranium enrichment increase 12 % and 19 %, re-

spectively. This is because the required enrichment of Uranium is higher in the GT-HTR300 core

compared with HTTR. Also, the definition of boron enrichment is changed. Here, boron enrich-

ment is the weight percentage of the B4C in the B4C-C complex for the burnable poison, and the

boron composition in the B4C is set natural composition. The Uranium enrichment of the Uranium

portion of fuel kernels is set differently depending on the reactor core region. The four regions of

different Uranium enrichment are set as shown in Fig. 3.10 and 3.11. Region one is the bottom

half of the inner reactor core, region two is the bottom half of the outer reactor core, region three is

the top half of the inner reactor core, and region four is the top half of the outer reactor core. The

reactor core usually has heterogeneous Uranium enrichment for flattening the neutron spectrum.

59



Region 3

Region 4

Figure 3.10: The horizontal cross-sectional view of the GTHTR300 region.

Region 3

Region 4

Region 1

Region 2

Figure 3.11: The axial cross-sectional view of the GTHTR300 region.
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3.3.3 Objective Function

The objective funcitons to evaluate the minimization is set destruction rate of the TRU nu-

clides i, Di, and the mass of TRU and U-235 nuclides at the BOC. The objective functions and

constraints for waste minimization are defined as:

max. Di = 1− mi,EOC

mi,BOC

, i = 1, ..., N (3.4)

max. mTRU,BOC (3.5)

min. mU−235,BOC (3.6)

keff,BOC ≥ 1.0 (3.7)

ρ(t) < 0. (3.8)

where mi,EOC is the total mass of TRU nuclide i at the EOC, mi,BOC is the total mass of TRU

nuclide i at the BOC, and N is the total number of target TRU nuclides. mTRU,BOC is the total

mass of TRU at the BOC. mU−235,BOC is the total mass of TRU at the BOC. keff,BOC is effective

neutron multiplication factor at the BOC. ρ(t) is a reactivity coefficient.

The destruction rates of TRU nuclides are individually evaluated instead of the total destruction

rate, and it can model a surrogate model more accurately and consider the toxicity characteristics of

each TRU nuclides. The total mass of TRU with TRU destruction rate can evaluate how much TRU

nuclides can be destroyed in a cycle. The mass of U-235 can evaluate how efficient the expensive

U-235 is used for the TRU incineration. The high enrichment of U-235 and low burnup with a large

U-235 is not economically practical. These objective functions are trade-offs so that the search for

optimal points becomes more complicated than that without U-235 and TRU objectives.

3.3.4 Correlation Check and Sensitivity Analysis

The relationship between design parameters and objective values is investigated to see trends.

Fig. 3.12 - 3.25 show the total TRU destruction rate, each TRU nuclide’s destruction rate, U-235,

and TRU at the BOC for the different combinations of design parameters.
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For each figure, one design parameter is changed in its design range, and the other design pa-

rameters are fixed at the specific values. The fixed values for this analysis are shown in Table 3.10.

The fixed point is set at the median point of the range except for the Uranium enrichment. The

Table 3.10: The default design parameters for the sensitivity analysis.

Fixed Value
TRU ratio 50 %
Radius of fuel kernel 287 µ m
Packing fraction 20 %
Uranium enrichment in region 1 12 %
Uranium enrichment in region 2 12 %
Uranium enrichment in region 3 12 %
Uranium enrichment in region 4 12 %
Boron enrichment 3 %

fixed values of each Uranium enrichment are 12%, which is lower than the middle point.

The range of TRU ratio between 0.1 to 0.4 shows a shallow destruction rate in Fig. 3.12. It

means this combination of design parameters cannot keep the criticality long, and the burnup is

very short. In a higher TRU ratio, some fissile nuclides included in the TRU can help the criticality,

and the depletion can continue enough time to destroy the TRU nuclides. The higher TRU ratio

increases the destruction rate because of the higher burnup. Even though some non-fissile nuclides

can be destroyed eventually after a couple of neutron capture reactions and decays, there is much

more buildup due to the neutron capture reactions of lower actinides.

The balance of fission and capture reactions determines whether the destruction rate is positive

or negative. For example, Am-241 is not a fissile nuclide, but their capture resonance peak is

very high, so the destruction rate is positive. On the other hand, Pu-241 is a fissile nuclide, but

the capture cross-section of the Pu-240 is very high, so the net destruction rate is slightly negative.

Some nuclides with negative destruction rates such as Cm-243 show shallow values compared with

the positive destruction rate of Pu-239(-14.0 vs. 0.35 at 90% of the TRU ratio). However, the fuel’s
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(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

Figure 3.12: The trend of destruction rates depending on the TRU ratio.

initial inventory of these nuclides is minimal compared with Pu-239. Hence, the net destruction

rate can be positive. When the TRU ratio increases, the portion of uranium fuel decreases. So, the

mass of U-235 also decreases. A higher TRU ratio looks preferable if it can meet the constraints

from these characteristics.

Fig. 3.13 shows that the depletion period steadily increases when the TRU ratio rises, and

the low TRU ratio cannot keep the criticality in this combination of design parameters. For the

criticality, higher Uranium enrichment is necessary, for example.
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(a) Loaded U-235 at the BOC. (b) Loaded TRU at the BOC.

(c) Neutron multiplication factor at the BOC. (d) Irradiation time.

Figure 3.13: The trend of objective values and important values depending on the TRU ratio.
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(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

Figure 3.14: The trend of destruction rates depending on the fuel kernel radius.

Fig. 3.14 shows more interesting trends regarding kernel radius. In the trends of kernel radius,

a longer radius has a subcriticality in this combination of the design parameters. The depletion

can only continue short, and the TRU destruction rate becomes close to zero. The performance

of the TRU destruction rate is good for the small fuel kernel. The destruction rate of decreased

nuclides such as Pu-239 and Am-241 also shows similar trends. Regarding the destruction rates of

nuclides which have negative destruction rates, their destruction rates increase as the kernel radius

decreases, but they start to increase again around less than 220 µm of the kernel radius.

The fuel kernel size can significantly affect the neutronics behavior because of the moderation
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(a) Loaded U-235 at the BOC. (b) Loaded TRU at the BOC.

(c) Neutron multiplication factor at the BOC. (d) Irradiation time.

Figure 3.15: The trend of objective values and important values depending on the fuel kernel
radius.

and resonance absorption at the thermal spectrum. When the kernel size becomes smaller, the

graphite moderates neutrons more, and the neutron spectrum becomes softer. The energy spectrum

in the case of 150 µm and 260 µm of kernel radius are shown in Fig. 3.16. There is a higher peak of

around 0.1eV of neutron energy in the case of 150 µm fuel kernel radius. For the fissile nuclides,

The fission cross-section at the thermal energy spectrum is relatively high in resonance absorption,

so their destruction rates improve. However, most of the capture cross-sections of both fissile and

non-fissile nuclides are also high at the resonance peak, leading to the higher actinides’ buildup.
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(a) 150 µ m fuel kernel radius. (b) 260 µ m fuel kernel radius.

Figure 3.16: The energy spectrum of GTHTR-300 in the case of 150 µm and 260 µm fuel kernel
radius.

Some part of Pu-239 is transmuted to the higher actinides. Since the amount of Pu-239 is much

higher than other TRU nuclides, the effect of this buildup looks large in the rate.

On the other hand, a large fuel kernel has some advantages. The large kernel enhances self-

shielding and minimizes the fissile nuclides’ capture/fission reaction value. The fissile nuclides are

used more efficiently to keep the criticality, increasing the total burnup. As for the total amount

of TRU, the small fuel kernel size is a trade-off because the amount of loaded TRU at the BOC

decrease in the smaller fuel kernel size. This trend shows the difficulty of finding the optimal point

between one design parameter and the outputs.

Fig. 3.15 shows the total irradiation time is decreased at 0.015 cm of the fuel kernel radius.

This explains that the minimal fuel kernel is unsuitable for the capture/fission ratio, and the fissile

nuclides are not efficiently used. Because of the shorter irradiation time, the trend of destruction

rate changes at the 0.015 cm of fuel kernel radius.

67



(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

Figure 3.17: The trend of destruction rates depending on the packing fraction.

In the case of the packing fraction trend, as shown in Fig. 3.17, the reactor is entirely subcritical

at a point larger than 27.5 % of the packing fraction. Hence, all parameters are evaluated as

zero over that point. Packing fraction has a similar neutronics impact with kernel radius, and

higher packing fraction leads to the under-moderation of the neutron, while lower packing fraction

can be over-moderation. Hence, the capability of TRU destruction regarding neutronics can be

determined by balancing these two design parameters. This figure also shows that the feasible

region of a design parameter is a very narrow range depending on the other combinations of the

design parameters.
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(a) Loaded U-235 at the BOC. (b) Loaded TRU at the BOC.

(c) Neutron multiplication factor at the BOC. (d) Irradiation time.

Figure 3.18: The trend of objective values and important values depending on the packing fraction.
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(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

Figure 3.19: The trend of destruction rates depending on the Uranium enrichment at region 1.

Fig. 3.19 - 3.23 show the trend of Uranium enrichment in each region. No clear trend can be

observed from the figures with statistical noise, but the uranium enrichment directly affects the

longer burnup. So, depending on the other design parameters, Uranium enrichment can improve

the destruction rate. However, the higher enrichment of Uranium requires a more extensive amount

of U-235 and also high enrichment of High-Assay Low-Enriched Uranium (HALEU) takes cost in

terms of the production and proliferation concern. That makes another trade-off, and the optimiza-

tion problem makes it more difficult.
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(a) Loaded U-235 at the BOC. (b) Loaded TRU at the BOC.

(c) Neutron multiplication factor at the BOC. (d) Irradiation time.

Figure 3.20: The trend of objective values and important values depending on the Uranium enrich-
ment at region 1.
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(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

(e) Loaded U-235 at the BOC. (f) Loaded TRU at the BOC.

Figure 3.21: The trend of objective values depending on the Uranium enrichment at region 2.
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(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

(e) Loaded U-235 at the BOC. (f) Loaded TRU at the BOC.

Figure 3.22: The trend of objective values depending on the Uranium enrichment at region 3.
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(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

(e) Loaded U-235 at the BOC. (f) Loaded TRU at the BOC.

Figure 3.23: The trend of objective values depending on the Uranium enrichment at region 4.
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(a) Destruction rate of TRU. (b) Destruction rate of decreased nuclides.

(c) Destruction rate of increased nuclides. (d) Destruction rate of increased nuclides.

Figure 3.24: The trend of destruction rates depending on the boron enrichment.

Fig. 3.24 and 3.25 show the trend between burnable poison and destruction rate. It also includes

sizeable statistical noise, but there are weak correlations. Burnable poison does not directly affect

the net destruction rate significantly, but Burnable poison also affects the constraints. The neutron

multiplication factor and the irradiation time also have tremendous noises. However, there are

negative correlations between them.

From these results, it can be clarified that finding the optimal design point for the TRU in-

cineration is very difficult even if reactor physics knowledge is applied to the decision-making.

Mathematical optimization is essential with domain knowledge to efficiently search the optimal
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(a) Loaded U-235 at the BOC. (b) Loaded TRU at the BOC.

(c) Neutron multiplication factor at the BOC. (d) Irradiation time.

Figure 3.25: The trend of objective values and important values depending on the boron enrich-
ment.

design parameters within the tolerable computation time.

The Pearson correlation coefficients between these design parameters and TRU destruction

rate is shown in Table 3.11 As confirmed in each figure, the TRU ratio, fuel kernel radius, and

packing fraction have strong positive or negative correlations, and burnable poison enrichment has

a moderate correlation.
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Table 3.11: The Pearson correlation coefficient of design parameters and TRU destruction rate.

Parameters Correlations
TRU ratio 0.93
Radius of fuel kernel -0.91
Packing fraction -0.87
Uranium enrichment in region 1 -0.12
Uranium enrichment in region 2 0.03
Uranium enrichment in region 3 0.13
Uranium enrichment in region 4 0.03
Boron enrichment -0.49

3.3.5 Feasible Search and Regression Analysis

In this GT-HTR300 TRU minimization problem, approximately 30% of the combination of

design parameters is infeasible if the design parameters are randomly selected. Also, a large portion

of the infeasibility is due to the subcriticality of the BOC. Compared with randomly selecting

the design parameters and directly solving the optimization problem, feasible search efficiently

investigated the feasible region.

Then, surrogate models are built using the gaussian process regression algorithm. The combi-

nation of design parameters and objective values is normalized before making a surrogate model

using the regression algorithm. So, the normalization of input data and inverse modification of

output data is also necessary to use the surrogate model for the prediction. The hyperparameter

was tuned for the kernel consisting of constant, RBF, and noise. This hyperparameter is optimized

for every nuclides’ surrogate model. Twelve surrogate models are built for each nuclide’s destruc-

tion rate and the amount of TRU and U-235. In the case of infeasibility, the output parameters are

assumed to be 0.

The setting for the optimization of the hyperparameters is shown in Table 3.12. The α is the

values added to the diagonal of the kernel matrix for preventing numerical problems. The kernel

of Gaussian process regression is the combination of RBFs, constant, and the noise for all except

for the U-235 amount. For the U-235, Matern kernel with ν = 2.5 (twice differentiable functions)
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Table 3.12: The setting for the optimization of the regression algorithm’s hyperparameters.

Setting Values
Length scale bounds for RBF 1.0e-11 - 1.0e+10
Constant value bounds 1.0e-09 - 1.0e+03
Noise level bounds pc 1.0e-15 - 1.0e+03
α 0.5
Optimizer Limited memory BFGS-B
Number of restart 80

are selected. Both RBF kernel and Matern kernel uses the anisotropic kernel for length scale.

The optimized hyperparameters for each objective value are shown in Table 3.13.
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Table 3.13: The regression algorithm’s hyperparameters.
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3.3.6 Metaheuristic Optimization Search

The metaheuristics algorithms such as genetic algorithms and simulated annealing typically

require multiple hyperparameters, depending on the problem characteristics. The hyperparameters

of the GA-SA hybrid algorithm are shown in Table 3.14. The first two design parameters are

Table 3.14: The hyperparameter of the GA-SA hybrid algorithm.

Parameter Values
Number of generation 90
Number of chromosomes per generation 100
Crossover probability pc 0.8
α 0.1
w1 0.5
w2 0.5
g 10000
ζ 2

related to the computation time of the GA-SA hybrid algorithm, and the other parameters affect

the balance of diversification and intensification.

For multi-objective optimization, the weighted sum method is selected. The weight is selected

based on the initial amount of TRU in the fuel inventory for each TRU nuclide. In this research, the

primary focus of the objective is still TRU destruction rate even though considering other factors.

So, the possible differences between the minimum and maximum TRU and U-235 inventory values

are evaluated as the same weight for 2% of the destruction rate. The weight of each objective value

are shown in Table 3.15

In each iteration of adding data, building a surrogate model, and searching the optimal values

in the surrogate model, 50 sets of data are added. In these additional data, 30 % of the data is

selected from the ± 5 % range of optimal points achieved in the previous iteration. Another 30

% of the data is selected from the 10 % range of optimal points achieved in the previous iteration.

The other data is randomly selected using Latin hypercube sampling from all design spaces.
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Table 3.15: The weight of the each objective values.

Objective Weight
Pu-238 7.88e-3
Pu-239 5.28e-1
Pu-240 2.87e-1
Pu-241 6.83e-2
Pu-242 4.66e-2
Am-241 5.22e-2
Am-243 5.64e-3
Cm-243 9.79e-6
Cm-244 8.91e-4
Cm-245 4.90e-5
TRU 2.00e-8
U-235 5.00e-6

The accuracy threshold of the surrogate model regarding cross-validation is set at 6% of the

relative errors. The test thresholds regarding the random point and the optimal point are set 6%

and 3% of the relative errors, respectively.
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(a) TRU ratio. (b) Fuel kernel radius.

(c) Packing fraction. (d) Boron enrichment

Figure 3.26: The last iteration of design parameters in the GA-SA hybrid algorithm.

Fig. 3.26a - 3.28 show each parameter’s design change: TRU ratio, fuel kernel radius, packing

fraction, boron enrichment, and Uranium enrichment at region one to four and the best objective

values through the last iteration of the GA-SA hybrid algorithm. The last iteration is the seventh

iteration. The TRU ratio changes in the higher space of the range between about 60% and 90%.

This trend is reasonable because a high TRU ratio is advantageous for all objective values. A

high TRU ratio can destroy more fissile nuclides, load more total TRU at the BOC, and contain

fewer U-235. Fuel kernel radius and packing fraction also tend to select a lower range of values,

and these trends match the result of the correlation check. The change of boron enrichment does
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(a) Uranium enrichment at region one. (b) Uranium enrichment at region two.

(c) Uranium enrichment at region three. (d) Uranium enrichment at region four.

Figure 3.27: The last iteration of Uranium enrichment parameters in the GA-SA hybrid algorithm.

not show a meaningful trend. Regarding the Uranium enrichment of the different regions, regions

two and four are outside the reactor core, and regions one and three are inside the core. From

these changes, there are no noteworthy trends. The initial part of the generation changes more

parameters because of the room to improve the weighted objective values and the chance of the

crossover and the mutation. In the later generation, the updates of the best performance are few,

and theoretically, relatively few changes should happen more frequently than significant changes.

This last iteration case did not behave like that: the last change is the significant shift around 60

generations. There are no parameter changes after that change around 60 generations due to the
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Figure 3.28: The last iteration of weighted objective values in the GA-SA hybrid algorithm.

stochastic process. The optimal design parameters are shown in Table 3.16. Each parameter is

Table 3.16: The optimal design parameters.

Parameters Values
TRU ratio 73 %
Kernel radius 151 µ m
Packing fraction 15.5 %
Uranium enrichment at region 1 15.8 %
Uranium enrichment at region 2 17.3 %
Uranium enrichment at region 3 15.1 %
Uranium enrichment at region 4 15.0 %
Boron enrichment 4.5 %

defined at 3.3.2 and 3.3.3. The raw values have a long fractional part, and they are rounded.
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The TRU ratio is high, and the kernel radius and packing fraction are close to the lower bound-

aries. This result is similar to the analysis as shown in the correlations between the two values. In

the middle of the generation, the TRU ratio is close to the high boundary, and the kernel radius and

packing fraction were higher values than the later generation. It infers that the minimum kernel ra-

dius and packing fraction are very important for the high objective values, but the TRU ratio does

not affect compared with them. So, the chromosome with a shallow kernel radius and packing

fraction is selected even though the TRU ratio decreases. For the actual optimal point, the TRU

ratio should be much higher. So, more generation is necessary to obtain that value. Even though

the combination of low packing fraction and small fuel kernel decreases the total TRU amount

significantly, the high TRU ratio decreases the amount of U-235 in addition to the amount of TRU.

Hence, the sanction posed by these two objective values is not severe. The uranium enrichment

reached the middle range, not depending on the region. The four regions of fuel area are not

enough to see the trend of the regional effect of fuel enrichment, and it is necessary to subdivide

the region more. The burnable poison enrichment also does not significantly affect the results.

The last iteration of each objective value in the surrogate model with their errors and the sim-

ulated optimal design performance using the optimal design parameters are shown in Table 3.17.

The weighted objective values are evaluated summation of all objective values using the weighted

sum method. Note that the TRU destruction rate is not used to calculate weighted objective values.

The fissile nuclides decrease the amount(positive destruction rate), and the non-fissile nuclides in-

crease the amount(negative destruction rate) through the depletion. The error of weighted objective

values is below 3.00%, and most of the nuclides are in the same order of errors or less. Pu-241 and

Cm-243 destruction rates have a higher order of errors. Significantly, the effect of Pu-241 is rela-

tively crucial due to the weight of this nuclide. The average relative error of the surrogate model is

5.83%. In the design parameters for the best weighted objective values, the TRU destruction rate

recorded 25.9%, and the Pu-239 destruction rate recorded 58.7%.

Even if U-235 and TRU amount is not considered, the accuracy of TRU destruction rate, which

is directly estimated, is slightly better than estimating each nuclide individually (2.32e-02 vs.
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Table 3.17: The optimal design performance.

Objectives Surrogate model values Simulation values Errors
Pu-238 destruction rate -1.18e+00 -1.23e+00 -4.39e-02
Pu-239 destruction rate 5.90e-01 5.87e-01 4.53e-03
Pu-240 destruction rate 2.52e-02 2.53e-02 -8.49e-04
Pu-241 destruction rate -6.47e-01 -7.19e-01 -1.11e-01
Pu-242 destruction rate -3.43e-01 -3.35e-01 2.21e-02
Am-241 destruction rate 4.74e-01 4.59e-01 3.25e-02
Am-243 destruction rate -1.02e+00 -1.11e+00 -8.92e-02
Cm-243 destruction rate -1.67e+01 -1.86e+01 -1.17e-01
Cm-244 destruction rate -2.92e+00 -3.14e+00 -7.82e-02
Cm-245 destruction rate -3.20e+00 -3.39e+00 -6.02e-02
TRU destruction rate 2.65e-01 2.59e-01 2.32e-02
TRU amount at the BOC[g] 8.96e+05 8.65e+05 3.47e-02
TRU amount at the EOC[g] 6.41e+05
U-235 amount at the BOC[g] 3.75e+02 3.88e+02 -3.60e-02
U-235 amount at the EOC[g] 3.17e+02
Weighted objective values 2.85e-01 2.77e-01 2.97e-02
keff at the BOC 1.04e+00
Time at the EOC[day] 4.24e+02

2.37e-02). Still, the individual calculation has some advantage in seeing each nuclides’ charac-

teristics change and weighing the importance for specific aspects such as toxicity, but the direct

estimation of the TRU destruction may be efficient in a simple case.

3.3.7 Discussion

3.3.7.1 Efficiency

In the case of the proposed framework, 600 times simulation is executed to achieve the optimal

values. In the case of brute force search for all design space, even 2500 times of simulation did not

achieve the same performance of the optimal values. So, the proposed framework can be efficient.

However, brute force search is not applied in any context, Practically. The design search space is

tried to be minimized by analysis and engineer’s judgment. Hence the improved efficiency of the

proposed framework is essential. The efficiency of the algorithms depends on the hyperparameters

of hybrid GA-SA algorithms and regression algorithms, the threshold of the accuracy, the number
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of additional simulation data for building the surrogate model in each outer iteration. For each iter-

ation of regression algorithms and hybrid GA-SA algorithms, the optimization of hyperparameters

is not so tricky. It can be done based on cross-validation or grid search.

The limitation of this research scope is that some hyperparameters are not optimized in a strong

logic. For example, the number of additional simulation data will highly affect the total iteration

of the loop. The higher number of data addition in each iteration may achieve a low iteration

number, but the possibility of local optima increases. Also, it may repeat the inefficient iteration.

On the other hand, the small number of additions in each iteration may take much more time to

execute the hybrid GA-SA algorithm. It is difficult to decide these parameters by the grid search or

cross-validation because of the longer computation time. Hence, some efficient sets of optimized

hyperparameters can be achieved, but there remains some room for improvement.

3.3.7.2 Accuracy

The algorithm’s accuracy was confirmed by the optimal point and averaged multiple random

points as relative errors. There are two criteria because the whole surrogate model does not require

very high accuracy compared with the area close to the optimal point because the trend of objective

values is enough to see the design space trend. The threshold of optimal point accuracy is set at

3.00% because there is no significant improvement in the accuracy in terms of iteration and the

original simulation precision. In the vast design space, decreasing the errors of the surrogate model

is costly, but it can be a reasonable data size if it is focused more on the optimal point.
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4. CONCLUSIONS AND FUTURE STUDY

This chapter shows the conclusions of the dissertation and the future study to expand from this

dissertation.

4.1 Summary and Conclusions

In this dissertation, the optimization framework for the nuclear reactor design problem was

developed and tested for the nuclear waste incineration problem utilizing a high fidelity HTTR

and GT-HTR300 reactor model. The framework consists of multiple modules to realize the opti-

mization search efficiently. The framework simulates the necessary input and output data pairs for

building a surrogate model, searches a feasible region using a trust region-based method, builds a

surrogate model using a Gaussian process regression method, and searches the surrogate model us-

ing a hybrid of the genetic algorithms and simulated annealing. For the nuclear waste incineration

problems, two serpent models: HTTR and GT-HTR300, were modeled from scratch. Sub-modules

for the plotting and evaluating the output results were also developed for the convenient simula-

tion. Surrogate models were built using regression algorithms with optimized hyperparameters.

The nested iterations of the hybrid metaheuristics and surrogate model improvement worked in

terms of accuracy and efficiency.

The two cases of the reactor design optimization loading TRU were conducted for TRU in-

cineration. In the case of HTTR, the optimal design to maximize the TRU destruction rate was

investigated. TRU was from the spent fuel of AP1000. As a result of the optimization frame-

work, the 5.1 % of TRU destruction rate is obtained with the design parameters of 13% of TRU

ratio, 410 µm of fuel kernel radius, 15% of packing fraction, 15% of uranium enrichment, and

4.9% of boron enrichment as shown in Table 3.5. Even though the optimal case, the TRU destruc-

tion rate is not high because of the unfavorable neutron flux for the TRU incineration purpose.

However, the framework selected the possible optimal TRU incineration design. In the case of

GTHTR-300, the optimal design to maximize the TRU destruction rate considering initial TRU
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loading and U-235 loading was investigated. TRU was also from the spent fuel of AP1000, but

Neptunium was extracted before fabrication of the TRU fuel kernel. As a result of the optimiza-

tion process of the framework, the 25.9% of TRU destruction rate with 865kg of TRU loading

and 388g of U-235 loading was achieved, as shown in Table 3.17. The selected optimal design

parameters for that destruction rate are 73% of TRU ratio, 151µm of fuel kernel radius, 15.5%

of packing fraction, 15.8%, 17.3%, 15.1%, and 15.0% of Uranium enrichment at regions 1, 2, 3,

and 4, respectively, and the 4.5% of boron enrichment as shown in Table 3.16. The error of the

TRU destruction rate was 2.32%. The optimal value of the fuel kernel radius and packing fraction

were close to the lower boundary, and the TRU ratio is in the higher range of the possible value.

This infers that the achieved optimal point is close to the actual optimal point considering the pa-

rameter sensitivity analysis, but more generations for the search can find the better optimal point.

For efficiency, the framework executed 600 times of simulation to achieve the optimal values. On

the other hand, more than 2500 times of simulations using the brute force search did not achieve

the same performance. The proposed framework showed the applicability and performance to the

waste minimization problem.

4.2 Further Study

The current research showed more systematic ways for the nuclear waste minimization problem

using mathematical optimization. The applicability of the optimization framework to the nuclear

waste incineration problem was clarified. However, there are potentially more ways to improve the

framework and offer more efficient and accurate results to the optimization problem. This section

briefly introduces a set of suggestions.

4.2.1 Non-Stochastic Search Algorithm

To search for a surrogate model, the metaheuristic hybrid GA-SA algorithm was selected in

this research. A metaheuristic is a robust approach, but the computation time is costly. The recent

summary of the surrogate modeling for the black box and gray box optimization[69] summarizes

some latest research not using genetic algorithms to search the surrogate model. These approaches
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may improve the efficiency of the framework.

4.2.2 Fuel Shuffling, Design Parameters, and Constraints

For a higher TRU destruction rate, several batches of depletion are necessary[26]. For the

simple estimation, there is an equation to predict the burnup[70].

Bn−batch =
2n

n+ 1
Bone−batch, (4.1)

where Bn−batch is the discharged burn-up of n batch, Bone−batch is the discharged burn-up of one

batch, and n is the number of batches. The potential TRU destruction rate can be roughly estimated

using it. However, it is necessary to simulate each batch for accurate calculation, and it takes a lot

of computation cost. If the surrogate modeling supports it, the computation time can significantly

decrease.

Additional design parameters such as more detailed uranium enrichment distribution and the

core size are helpful for design optimization. Also, the weight of each objective value can be

adjusted more suitable for specific reasons, such as the toxicity of TRU nuclides.

In this research scope, only the fundamental reactor physics values were evaluated as the con-

straints of design values; however, there are more constraints, such as the thermal-hydraulics as-

pects. To consider these aspects will make the framework more practical and beneficial for the

superiority of the knowledge-based optimization because of more complexity of the problem.

4.2.3 Regression Algorithm

The Gaussian process regression was selected for building a surrogate model in this research

for the balance of accuracy and computational cost. There are several different models for the

choice of the surrogate model. For example, there are some basic functions for simpler modeling,

while there are gradient-boosted tree algorithms and artificial neural networks for more complex

models. Each iteration of building the surrogate model and searching objective values, required

accuracy may vary. So, using another regression algorithm can be a better candidate instead of the

Gaussian process regression.
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4.2.4 Hyperparameters Optimization

Since the hybrid GA-SA algorithm considers the balance of diversification and intensification,

each iteration performs efficiently to some extent. However, some hyperparameters are not entirely

optimized as described at 3.3.7.1. The number of additional simulation data and how to select

the additional data in each interation will affect the framework performance significantly, but the

optimization of those parameters were not performed due to the long computation time for the

sensitivity analysis. So, these parameter improvements are going to achieve better performance in

terms of efficiency and accuracy.

Regarding the hyperparameters of the hybrid GA-SA algorithm, there are two kinds of pa-

rameters: one is for adjusting the diversification and intensification, the other is for adjusting the

computation time and accuracy in addition to the diversification and intensification. The latter is

the number of generations and number of chromosomes in this research. It is imperative to take

enough generations to search for the surrogate model with diversification and intensification be-

cause their focus is shifted from diversification to intensification through the generations. If the

hyperparameter tuning is leaned to one of them, fewer generations are potentially risky. Also, the

hybrid algorithm expanding the genetic algorithm tends to weigh the diversification rather than

the intensification. Furthermore, hyperparameter tuning is performed at the first iteration so that

the model accuracy is not so well. Considering these factors, it can be helpful to weigh more

intensification by adjusting the parameters.
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