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ABSTRACT

A new framework for nonparametrically testing of equality of two densities is proposed. From

this framework, two different tests are constructed. The two tests themselves are then investigated

and compared to other tests on simulated and real data. After establishing their legitimacy, the

tests are applied to choose variables for classification problems. We study the benefit of these

tests, when they are useful and what classification techniques work best in conjunction with them.

The method is then applied to simulated data sets and real data sets where the number of variables

is large.
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1. INTRODUCTION AND ROAD-MAP

1.1 Introduction

This is a sandwich-style dissertation, consisting of three papers, and an introduction and a

conclusion. The goal of this section is to provide an idea as to how the dissertation will flow.

Chapter 2 provides an overview of feature selection methods and other Bayesian tests that

can check for the equality of distributions. Chapter 3 proposes a new Bayesian approach for

testing equality of two distributions, the Cross-Validation Bayes Factor, and compares it to its

Bayesian competitor, the Pólya tree two sample test. Performance is evaluated on simulated and

real datasets, and a proof for consistency of the test is discussed. Chapter 4 eliminates a tuning

parameter in the Cross-validation Bayes Factor, and adapts the Bayesian test to an exact frequentist

style approach, somewhat improving its power and increasing its speed. Consistency of this test is

discussed, and the methodology is applied for checking if data from different classes in univariate

and bivariate problems share the same distribution. Chapter 5 applies the test in Chapter 4 to the

variable selection problem. Cases where this method is suitable for that problem and can do better

than its competitors are discussed, by comparing how the variable selection improves other models

and observing in simulations which of the variable selection methods correctly retain important

variables.
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2. LITERATURE REVIEW

2.1 Introduction

A common problem in many statistical methods is choosing a subset of variables to include

in a model. The purpose of this is two-fold. One, for extremely large data sets, fitting the model

itself can be time consuming, and spending time fitting models and checking how good each one

is can simply take too much time. Fitting a model with fewer predictors can decrease the amount

of time it takes to fit a model by a huge amount, and in some cases is the only way to proceed. The

other purpose is to get rid of variables that are irrelevant for prediction. This is often the case for

data where the amount of samples, n, is significantly smaller than the number of predictors p. This

is a commonly occuring problem in genomic data, where only a small subset of genes is likely

responsible for causing changes in the response.

There has been significant research in the field of variable selection. Even in the field of variable

selection, however, statisticians typically need to preprocess their data sets. Often, it is too time

consuming to apply variable selection methods to a very large data set with a large number of

variables, and instead variables must be screened from a huge set before variable selection begins.

After some important variables are screened, then further variable selection can be done, to pick

the important ones from those that are screened. Proceeding directly to variable selection can make

algorithms incredibly time consuming.

2.2 A review of variable selection in the machine learning literature

A wide variety of feature selection methods have been researched. Trying to list all of them is

essentially impossible, but we can give a review of the general types of methods that are typically

used.

2.2.1 Filtering methods

A filtering method chooses a subset of the variables such that each variable alone provides use-

ful information in a model. These methods are also known as screening methods. These methods
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examine how each variable alone provides information, and as a result tend to be very fast, but can

miss variables that work jointly to predict the response. In addition, it is common for these methods

to pick multiple variables that lie in similar directions, which can result in multicollinearity. For

ultra high dimensional data sets, it is common to run a screening method before applying methods

in general. The advantage of these methods lies in their speed, moreso than in their effectiveness

at choosing the best subset of variables to use.

2.2.2 Wrapper methods

The idea behind wrapper methods is to create several models, and then to evaluate how well

each model is fit. Common methods used for evaluation include: cross-validation error rates, BIC,

and AIC. The problem can then be reduced to searching for a subset where the chosen criterion is

optimized. Forward selection was once a common method in this field, where the best variable set

would be chosen in a greedy fashion. While a greedy method lacks gurantees for finding the opti-

mal subset in a general setting, some sort of heuristic is required in searching for the best subset.

If there are p predictors, then 2p models must be considered if all choices of predictors are con-

sidered. Since p is typically large, a strategy not using a heuristic is computationally prohibitive.

The heuristic’s intention is to decrease the number of models fit and quickly find a good model.

There are search methods outside of greedy strategies though, particle swarm optimization being

one (3). As these methods create the models and evaluate their effectiveness, they typically do

much better than filtering type methods at selecting important variables. However, unlike filtering

methods, because they must create many models, and than in turn evaluate their effectiveness, they

are significantly slower. It is impossible to apply these methods to a full data set and expect a fast

result.

2.2.3 Embedded methods

Embedded methods create a single model that has some sparsity inherently embedded into it.

They fit the model and perform variable selection at the same time, and as a result tend to be

much faster than wrapper methods. They are still slower than filter methods, but some can avoid
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running into problems of multicollinearity. Furthermore, they are capable of picking variables

that alone are not good predictors, but offer predictive power when included with other variables.

LASSO (4), Elastic net (5), Bayesian inference using spike and slab priors (6), and sparse BART

type procedures (DART, soft BART, and spike-and-tree BART are examples) (7) are examples

of embedded methods that are commonly used. However, the computational complexity of these

variable selection methods is still quite high. BART type methods in general are well known for

their accuracy as well as their large run time, while LASSO type methods are known to have

computational complexity scaling cubically with the number of predictors.

There is an argument that viewing LASSO’s time complexity as cubically scaling is pessimistic,

especially considering how fast coordinate descent is at solving it, but there still remains a matter

of selecting a tuning parameter. While there are some defaults (picking by cross-validation), the

choice of tuning parameter can still dramatically change results. In addition, LASSO is applied as a

type of regression. For example, classification can be done with logistic regression with LASSO by

imposing an L1 norm penalty on the coefficients. Some coefficients will be chosen, but changing

the model might result in different variables being selected. Using a probit regression with a L1

norm penalty on the coefficients is an alternative way to use LASSO, but will not necessarily pick

the same coefficients.

While BART was quite fast in the simulations presented later, it should be noted as well that

mixing time of MCMC methods in general can vary in how they scale with the number of predic-

tors. Some conditions have been given that ensure that the mixing time of some MCMC methods

scale linearly with the number of predictors (8), but if they are not met, it is possible that MCMC

times can scale polynomially, or even exponentially with the number of predictors. While the

MCMC methods done on BART are fast, mixing time has been recorded as an issue for high di-

mensions (9). BART type methods typically perform variable selection by choosing predictors that

are used most often in fitting trees. However, it is not obvious how often a variable needs to be

picked to be determined to be a good predictor. This ends up being an important tuning param-

eter that needs to be carefully selected. Typical methods select one by repeatedly permuting the
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response, and examining how often variables are picked in permutations. The probability distri-

bution of the number of times a variable is included can provide instead guidance on picking a

threshold (10), but there are two problems with this. Firstly, repeatedly computing BART models

is time consuming. Even if we are willing to ignore this, BART methods can be improved upon

by screening before application. As a result, a question should be asked as to whether new trees

should be constructed using the variables selected. If they are, then the computation time of this

has grown even more, and a question on when to stop making BART models also arises. A partial

answer to this question will be given later.

The goal of this proposal will be to introduce a new filtering method built for the classification

setting. We can resort to using embedded methods after using a filter method to assess how good

the variables chosen by the filter method were. First we review other filtering methods that have

been seen recently.

2.2.4 A review of recent filtering methods

Sure independence screening (SIS) was built for regression, but can be applied to classifica-

tion as well (11). It is a popular method to perform preliminary screening as it only requires

centering and scaling the data and then computing XTY , where X is the design matrix and Y is

a vector of responses. As a result, the total complexity of the algorithm is only O(np). In the

continuous case, this method corresponds to picking the variables that are most correlated with the

response, or alternatively, picking variables for which XT
j Y is largest, where Xj corresponds to

the jth predictor. As matrix multiplication can be parallelized, this computation can be sped up

further if n and p are prohibitively large. Suppose there is a true underlying model (for example

P (Y = 1|Xs) = logit(XT
s β), where Xs is a subset of columns of X), and a variable Xk is deemed

important if Xk ∈ Xs. The method has been shown to possess a sure screening property, which

guarantees that all important variables are retained with probability tending to 1. For the 2 class

classification setting, (11) suggested that their test devolves into comparing 2-sample t-statistics,

with the samples corresponding to the different classes being compared. Their suggestion then, is

to simply pick variables that correspond to the largest test statistics computed. An iterative proce-
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dure is proposed that uses SIS with LASSO to pick variables that jointly provide information, as

well as screen out variables that can cause issues with multicollinearity.

Model Free Feature Screening (or SIRS) is intended to be used regardless of model as well,

but can easily be applied for the classification setting (12). The goal instead is to pick variables for

which E[xkF (y|xk)]
2 is large in magnitude, where y is a response, and xk is a predictor. This is of

greater time complexity than SIS, as a cdf must be computed every time a variable is picked. To

estimate this for predictor k from the sample, the quantity w̃k = 1
n

∑n
j=1[

1
n

∑n
i=1Xik1[Yi < Yj]]

2

must be computed, which implies the method is O(n2p). Regardless, this computation can be

parallelized across predictors. Variables are picked if the corresponding E[xkF (y|xk)]
2 is higher

than some prespecifed amount γ, an important tuning parameter. The recommended way to choose

this tuning parameter is to generate normal, independent noise, and see how large γ need be before

it can filter out the induced noise. Conditions are provided that give it the property that it will

keep all important variables with probability tending to 1. Similar to SIS, an iterative procedure

is recommended that tries to pick variables that jointly provide information. Whatever the case,

the need to choose a tuning parameter is the biggest criticism of this method, as it is difficult to

directly interpret it.

Kolmogorov Distance Screening shares the sure screening property under weaker conditions

than SIS (13), and is about as fast as SIS. This test is not as general as SIS or SIRS, and instead

restricts its scope solely to binary classification. The idea is to compute Kolmogorov-Smirnov test

statistics and use variables with large test statistics as the important variables.

Model-free feature screening for ultra high dimensional discriminant analysis (or MV SIRS)

uses a version of SIRS that does better for classification (14). Variables are picked instead if∑2
r=1 pr

∫
[Fr(xk) − F (xk)]

2dF (x) is large, where F1(x) = P (X ≤ x|Y = 1), F2(x) = P (X ≤

x|Y = 2), and F (x) = P (X ≤ x). Alternatively, this is the same as picking xk where Exk
[VarY (F (xk|Y )]

is large. This is again of greater time complexity than SIS, and should be of the same time com-

plexity as SIRS. It can intuitively be thought of as picking variables whose cdf conditional on the

class is different in the L1 norm from the unconditional cdf.

6



Robust Model Free Feature Screening (15) is the only method with weaker conditions than

Model Free Feature Screening. This method standardizes all variables, then transforms them into

Gaussian variables using the paranormal transform. On these new variables, Henze-Zirkler’s test

for multivariate normality is applied. This can also be done in parallel and is of complexity O(n2p).

If we want to perform variable selection for classification, then SIRS should devolve into check-

ing how the expected value of the cdf changes with each different class. A more powerful way to

check which variables are useful could heuristically involve checking if the distributions of the

different classes are the same for each predictor. There is the problem of choosing a tuning param-

eter for Zhu’s method; however we would avoid running into this problem if we use tests based

on Bayes factors. The interpretability of Bayes factors in 2-sample tests for checking equality of

distributions provides a natural cutoff to pick. Of course, a procedure to determine a cutoff based

on what Zhu et al. attempted in their method would probably also work. A test that checks if

distributions differ can capture a larger class of variables than those that just check the mean, so

this test might inherit the sure screening property under the same conditions as for SIS. It is likely

that the conditions required for this test to pick all important variables with probability tending to

1 would be weaker than those required by SIS.

Before we delve more into the efficacy of this sort of test, we first review some two-sample

Bayesian tests.

2.3 A review of two-sample Bayesian testing

Suppose X1, X2, ..., Xm are i.i.d. as f and independently Y1, Y2, ..., Yn are i.i.d. as g. A classic

problem is to test the hypothesis that f and g are identical.

2.3.1 Pólya tree-based methods

A nonparametric Bayesian solution to this problem is based on a Pólya Tree prior (1). The

Pólya tree prior itself can be described as a prior on bins of a distribution. We treat f and g as

histograms, and the prior itself specifies a distribution over all potential histograms. To do this, the

Polya process produces histograms in an iterative fashion to draw observations from the underlying
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distribution. Figure 1 illustrates this for an iterative scheme with 3 levels.

Figure 2.1: An iterative scheme for Polya Tree as proposed by Holmes (1). The sample space, Ω,
has been partitioned in to tiny bins and there are probabilities for finding an observation in each
bin.

In the figure the sample space, Ω, has been partitioned. At the first level, a drawn observation

can lie in either bin B0 or B1. The probability it lies in bin B0 is θ and the probability it lies

in bin B1 is 1 − θ. We then partition each bin into two more bins, and may do so indefinitely.

B0 is partitioned into B00 and B01 and B1 is partitioned into B10 and B11. We denote these finer

partitions as the second level. The probability of an observation lying in B00 is given as θθ0 and we

can similarly find the probability that an observation lies in any other bin at the second level. At the

third level, we have 8 bins, with the probabilities of the observations in the 8 bins being as follows:

(θ)(θ0)(θ00), (θ)(θ0)(1− θ00), θ(1− θ0)θ01, θ(1− θ0)(1− θ01), (1− θ)(θ1)θ10, (1− θ)θ1(1− θ10),

(1− θ)(1− θ1)θ11, and (1− θ)(1− θ1)(1− θ11). We do not know the bin probabilities in practice,

so a prior is placed on these probabilities. In the figure, the prior for the 8 probabilities is applied

by placing priors on the 7 parameters: θ, θ0, θ1, θ00, θ01, θ10, and θ11. For each of these parameters,

we use a beta prior. Once we are given draws from a distribution, we can compute the number that

occur in a particular bin, which can be interpreted as a multinomial likelihood. We placed a beta

prior on the probabilities to induce a conjugate form for the posterior, and hence that prior is used so

that marginal likelihoods can be computed easily. Holmes suggests that if the two distributions are
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the same, then the marginal likelihood of the full data set fit under one Pólya tree will be larger than

the product of the marginal likelihoods for the individual datasets. Bayes consistency is proven, the

only problem being how to create bins and how to choose the parameters for the beta prior. Those

parameters do not seem to be too troublesome based on our examination. However choosing the

bins does have a major impact. Holmes et al. (2015) recommend centering and scaling the joint

data set to have 0 mean and standard deviation 1. They then recommend constructing the bins

by using quantiles of the normal distribution. While we can verify that this does work well in

some situations, it tends to work poorly if the data set has heavy tails. If the dataset is Cauchy,

then the mean and variance estimates will be unstable, and results can vary in this case. Holmes

recommends continuing to partition bins until the Bayes factor seems to stabilize upon adding new

bins. The computational complexity of this method is difficult to say, but the rough scaling of it

is O(np2j), where j is the number of times each bin is more further partitioned. The scaling of j

should vary with distribution, but it should scale at worst at a log rate with n.

The optional Pólya tree can be viewed as a generalization of the idea in Holmes et al. (2015)

(16). A rule is given as to when to stop constructing bins. We bisected each bin that was created

in Holmes’s method, whereas in the Ma and Wong (2011) method we draw from a categorical

distribution to determine how finely we divide a bin. Finally, we note that this method is more

computationally intensive than Holmes et al. (2015), as it requires repeated computation of when

to stop, and how many bins to divide a bin into, which is something that Holmes’s method simply

assumes. Finding the computational complexity of this is even more tricky. Due to its computa-

tionally difficult nature, any screening tests based on the Pólya tree should rely on using the version

of Holmes et al. (2015).

9



3. USE OF CROSS-VALIDATION BAYES FACTORS TO TEST EQUALITY OF TWO

DENSITIES

3.1 Abstract

We propose a non-parametric, two-sample Bayesian test for checking whether or not two data

sets share a common distribution. The test makes use of data splitting ideas and does not require

priors for high-dimensional parameter vectors as do other nonparametric Bayesian procedures. We

provide evidence that the new procedure provides more stable Bayes factors than do methods based

on Pólya trees. Somewhat surprisingly, the behavior of the proposed Bayes factors when the two

distributions are the same is usually superior to that of Pólya tree Bayes factors. We showcase the

effectiveness of the test by proving its consistency, conducting a simulation study and applying the

test to Higgs boson data.

3.2 Introduction

In frequentist hypothesis testing, there is no universal statistic whose values are interpretable

across different problems. In contrast, Bayes factors do have a universal interpretation. When

the prior probabilities of two hypotheses are the same, the Bayes factor is the ratio of posterior

probabilities of the two hypotheses. This is a compelling motivation for developing objective

Bayesian procedures that depend only minimally on prior distributions. (17) proposed the use

of cross-validation Bayes factors (CVBFs) to compare the fit of parametric and nonparametric

models. The CVBF is an objective Bayesian procedure in which the nonparametric model is a

kernel density estimate, the simplest version of which cannot typically be used in a Bayesian

analysis since it only becomes a model once it is computed from data. This problem is sidestepped

by computing a kernel estimate from a subset of the data, and then using the estimate as a model

for the remainder of the data. As detailed by (18), the notion of a CVBF is also useful in a purely

parametric context, wherein data splitting allows one to compare two parametric models via a

legitimate Bayes factor that does not require a prior distribution for either model.
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The purpose of the current paper is to explore CVBFs in the problem of comparing densities

corresponding to two different populations. Given independent random samples X1, . . . , Xm and

Y1, . . . , Yn from densities f and g, respectively, we wish to test the null hypothesis that f and g are

identical against the alternative that they are different, without specifying a parametric model for

either density. This is accomplished by means of a Bayes factor that makes use of data splitting and

kernel density estimates. Unlike the setting of either (17) or (18), both hypotheses in the current

setting are nonparametric, which necessitates different techniques to show that CVBFs behave

desirably. In particular, it is of interest to prove that a CVBF is Bayes consistent when either f ≡ g

or the two densities are different. Although the current investigation is restricted to comparison of

two densities, we will lay the groundwork for justifying the use of CVBFs in other settings where

both hypotheses are nonparametric.

A classic Bayesian approach for checking the equality of two densities involves the construc-

tion of priors on the elements of a wide class of distributions. For testing goodness of fit and

obtaining posterior predictive distributions, (19) proposes methodology based on a Pólya tree prior

constructed from a centering distribution. Methods that use a similar strategy for checking equal-

ity of two densities have been suggested by (20), (21) and (1). (22) propose the use of restricted

dependent Dirichlet process priors when testing the equality of distributions against ordered alter-

natives. Both (1) and (21) use their Bayes factors in frequentist fashion, i.e., they choose rejection

regions to produce desired type I error probabilities. In our opinion, such an approach is not truly

Bayesian. If one uses a traditional level of significance such as 0.05, this practice yields a test with

the unsettling property that in some cases the hypothesis of equal densities is rejected when the

Bayes factor favors equal densities. We prefer an approach that chooses the hypothesis of unequal

densities only when the odds in favor of unequal densities has increased in light of the data.

In Section 3.5 it will be seen that any two-sample procedure based on Bayes factors ultimately

depends on the difference between entropy estimates. (23) have suggested using either a kernel

density estimate or histogram to estimate entropy and provide conditions under which these types

of estimators are consistent. In addition, (23) use entropy estimates to check equality of distribu-
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tions. Entropy estimates are also seen in the information gain filter in machine learning methods

for picking important features; see (24). The current paper makes use of results in (25), who proves

consistency of entropy estimates that rely on data-driven smoothing parameters.

An important issue is that of Bayes factor consistency, which we address in Section 3.5. Sup-

pose the Bayes factor is defined so that values smaller than 1 favor the hypothesis of equal densities.

Then consistency means that the Bayes factor converges in probability to 0 when the densities are

equal and diverges to ∞ when the densities are unequal. (1) contains a proof showing that their

Bayes factor is consistent. We argue that our cross-validation Bayes factor is consistent as well.

Moreover, when the densities are equal, we argue that a cross-validation Bayes factor converges to

0 at a much faster rate than do Bayes factors based on traditional Bayesian methods.

A main motivation for our proposed methodology is its conceptual simplicity. The models used

are kernel density estimates from training data and each one depends on but a single parameter,

a bandwidth. In contrast, the approaches of (19) and (1) depend on choice of base distribution

and 2k parameters, where k is typically at least 10. One also needs to choose a prior for all

these parameters, although (1) propose one that requires specification of just one parameter. In

simulations in Section 3.7 we will compare our method with that of (1), and show that the odds

ratios produced by the latter test can be highly sensitive to the choice of base distribution.

The rest of the paper may be outlined as follows. In Section 3.3 we describe in detail our

methodology for the two-sample problem. Section 3.4.1 considers the choice of kernel and also

the prior used for the bandwidth parameter, and Section 3.4.2 investigates the use of a Laplace

approximation for marginal likelihoods. In Section 3.5 we provide theoretical evidence that our

Bayes factor is consistent, and in Section 3.6 we discuss methods for choosing the training set sizes.

Finally, Sections 6 and 7 are devoted to a simulation study and real-data analysis, respectively, and

concluding remarks are given in Section 8.

3.3 Methodology

Suppose that we observe independent random samples X1, . . . , Xm and Y1, . . . , Yn from cu-

mulative distribution functions F and G, respectively. We assume that F and G have respective
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densities f and g, and the goal is to test the following hypotheses by means of a Bayesian approach:

H0 : f ≡ g vs. Ha : f ̸≡ g.

We wish to use kernel density estimates to do the testing, and in order to do so we will use the

CVBF idea. In contrast to the setting of (17), both the null and alternative hypotheses are non-

parametric, and hence training data will be used to formulate the alternative and null models. The

Bayes factor will then be computed from validation data.

We first introduce some notation. For an arbitrary collection of (scalar) observations Z =

(Z1, . . . , Zn), define the kernel density estimate (KDE) f̂( · |h,Z) by

f̂(x|h,Z) =
1

nh

n∑
i=1

K

(
x− Zi

h

)
,

where the kernel K is a probability density and h > 0 is the bandwidth. For the moment, all we

ask of K is that it be symmetric about 0, unimodal and have finite variance.

Now, partition X1, . . . , Xm into XT = (X1, . . . , Xr) and XV = (Xr+1, . . . , Xm), and likewise

Y1, . . . , Yn into Y T = (Y1, . . . , Ys) and Y V = (Ys+1, . . . , Yn). Under H0 there is a common

density, call it f . The model for f will be M0 = {f̂( · |h,XT ,Y T ) : h > 0}. In other words, we

pool the two training sets together and use these data to estimate the common density f . Under

the alternative we have separate models for f and g, which are MX = {f̂( · |α,XT ) : α > 0} and

MY = {f̂( · |β,Y T ) : β > 0}.

Let π, πX and πY be priors for h, α and β, respectively. The likelihood under H0 is

L0(h) =
m∏

i=r+1

f̂(Xi|h,XT ,Y T )
n∏

j=s+1

f̂(Yj|h,XT ,Y T ).

The likelihood under Ha is

La(α, β) =
m∏

i=r+1

f̂(Xi|α,XT )
n∏

j=s+1

f̂(Yj|β,Y T ) = LX(α)LY (β),
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and the cross-validation Bayes factor (CVBF) is

CV BF =

∫∞
0

∫∞
0

πX(α)πY (β)La(α, β) dαdβ∫∞
0

π(h)L0(h) dh

=

∫∞
0

πX(α)LX(α) dα ·
∫∞
0

πY (β)LY (β) dβ∫∞
0

π(h)L0(h) dh
. (3.1)

Interestingly, each of M0, MX and MY is a parametric model, inasmuch as each depends on

just a single parameter, a bandwidth. It should be acknowledged that we know with certainty that,

for example, MX does not contain the true density f . However, there is a key difference between

MX and a traditional one-parameter model. Since KDEs are consistent estimators, we have reason

to believe that some members of MX will be quite close to f , especially if the training set size r

is large. In contrast, members of a traditional one-parameter model, such as all N(µ, 1) densities,

would be close to the truth only under very special circumstances. So, in spite of being formally

“wrong,” MX can be expected to be a good model, which echoes the sentiment of George Box in

his famous quote about statistical models.

Even if one objects to our models not formally containing the truth, the same criticism can

arguably be leveled against the Pólya tree approach of (1). Each element of the parameter space in

that approach is of histogram type, and since one usually envisions a certain degree of smoothness

in the underlying density, the true density does not necessarily lie in the parameter space employed

by Pólya trees.

We close this section with some remarks about our methodology.

• The quantity (A.8) is referred to as a cross-validation Bayes factor (17) since each data set is

split into two parts. For example, the data X1, . . . , Xm are split into a training set, XT , and

a validation set, XV .

• In spite of the fact that the models being compared in CV BF are formulated from data, it is

important to appreciate that CV BF is a legitimate Bayes factor. This is because the models

are defined from data that are independent of the validation sets XV and Y V . The Bayesian
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paradigm does not specify where posited models must come from, so long as they are not

defined from the data used to evaluate those models.

• By assuming that the bandwidths α and β are a priori independent, the computation of

CV BF reduces to calculating three separate marginals, each of which has the form dealt

with in (17).

• (26) show that the L1 norm difference between a kernel density estimate and the true density

tends to 0 for any kernel integrating to 1 as long as the sample size n tends to ∞, the

bandwidth h tends to 0, and nh → ∞. Because of results like this, the conventional wisdom

in kernel density estimation is that the choice of kernel K is not overly important. This is

not at all the case in the current context. In Section 3.4.1 we will point out the importance of

using relatively heavy-tailed kernels, a specific version of which is proposed.

• Ideally, the value of CV BF should not depend on the particular data split chosen. To deal

with this problem, we advise that one compute an average of log-CV BF values obtained

from multiple splits of the data. Doing so also has the benefit of making the Bayes factor

more stable. Geometric means of Bayes factors have also been employed by (27) in the

context of intrinsic Bayes factors.

• (28) discusses the notion of “updating consistency," according to which the conclusions of a

Bayesian procedure should not depend on whether all available data are considered at once,

or Bayesian analyses are applied sequentially to partitions of the data set. The only way

CVBF can be even provisionally update consistent is if only one data split is considered.

However, if one averages log-CV BF values from different data splits, as advised in the last

bullet point, then CVBF is not update consistent. We therefore acknowledge that CVBF fails

to be Bayesian in the full sense of the term.
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3.4 Implementation issues

Some practical issues must be addressed in order to make use of CVBFs. A kernel has to be

chosen for each of the KDEs, and priors for the bandwidths of the KDEs are needed. Furthermore,

the integrals defining the three marginals cannot (in general) be computed analytically, and hence

approximations of the integrals are necessary. We first address the choice of kernel and priors.

3.4.1 Choice of kernel and priors

For densities f1 and f2, the Kullback-Leibler divergence between f1 and f2 is defined to be

KL(f1, f2) =

∫ ∞

−∞
f1(x) log

(
f1(x)

f2(x)

)
dx.

As will be discussed in Section 3.5, consistency of our proposed Bayes factor depends crucially

on the behavior of KL(f, f̂( · |α,XT )) and KL(g, f̂( · |β,Y T )). (25) shows that, when the band-

widths α and β are chosen by likelihood cross-validation, the right sort of kernel needs to be used

to ensure that these divergences are well-behaved. A number of practical and technical difficulties

arising from tail behavior of the underlying density are eliminated if one uses a relatively heavy-

tailed kernel. A kernel that suffices in this regard is the following that was proposed by (25):

K0(z) =
1√

8πeΦ(1)
exp

[
−1

2
(log(1 + |z|))2

]
, (3.2)

where Φ is the standard normal distribution function.

The perils of using light-tailed kernels in conjunction with leave-one-out likelihood cross-

validation are well-established in the literature (29). The case of finite support kernels illustrates

the problem. If the support of the kernel is (−1, 1), then any bandwidth smaller than the difference

between the two largest order statistics will produce a likelihood of 0. This has disastrous effects

for sufficiently long-tailed distributions (such as the Cauchy) since it entails that the bandwidth

maximizing the likelihood cross-validation function will diverge to ∞. (25) advises that when us-

ing likelihood cross-validation to choose a bandwidth, one should use a kernel with tails that are,
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roughly speaking, at least as thick as those of the true density. Hence, likelihood cross-validation

can fail even when certain infinite support kernels, including the Gaussian, are used. In contrast,

when K0 is used and the data are Cauchy, then (25) shows that the likelihood cross-validation

bandwidth is asymptotic to the minimizer of expected Kullback-Leibler loss. Our theory shows

that these results for the Cauchy distribution are also true for the version of cross-validation used

in the current paper.

If one is confident that the tails of the underlying density are no heavier than those of a Gaussian

density, then it would be appropriate to use a Gaussian kernel in our procedure. Simulations we

have done suggest that the Gaussian kernel produces somewhat more stable Bayes factors than

does K0 in the case of light-tailed densities. In practice, though, we often do not know how thick

the density’s tails are, and so it is better to use K0, which works works well for a wider variety of

densities than do Gaussian and other lighter-tailed kernels. We will thus use K0 for all simulations

and data analyses in this paper.

The prior we propose for each bandwidth is as follows:

π(h|γ) = 2γ√
πh2

exp

(
−γ2

h2

)
I(0,∞)(h). (3.3)

Prior (A.5) is the same type as used successfully by (17). An aspect of (A.5) that we find appealing

is that it tends to 0 as h tends to 0. This is in concert with the fact that, due to the data-driven nature

of our kernel density estimation models, we are (essentially) a priori certain that the very smallest

bandwidths produce untenable densities.

Despite depending on just the one parameter γ, which serves as both location and scale, our

experience suggests that (A.5) works very well as long as γ, the mode of (A.5), is chosen appropri-

ately. We propose that for each marginal, γ be chosen to equal the maximizer of the corresponding

likelihood. For example, for the marginal
∫∞
0

πX(α)LX(α) dα, we take πX ≡ π( · |γ̂), where γ̂

is the maximizer of LX . The scale of π( · |γ) is proportional to γ, which entails that the prior

π( · |γ̂) has low information relative to the likelihood. This is because the standard deviation of the
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cross-validation bandwidth γ̂ is o(γ̂), a fact that is ensured by using the kernel K0. Centering a

low information prior at the maximizer of the likelihood is akin to using a unit reference prior (30)

centered at the data, which by now is a fairly common practice.

Choosing γ to be a constant independent of sample size is not necessarily a good practice. Some

analysis shows that doing so can produce bandwidths that are asymptotically too large unless the

training set size is chosen small enough. For this reason we suggest using (A.5) with γ = γ̂, at

least until more research is done on the question of choosing priors and their parameters.

3.4.2 Laplace approximation

Interestingly, there exists a closed-form expression for each marginal if one uses a Gaussian

kernel in conjunction with a prior of the form (A.5). This results from the fact that, for example,

π(α|γ)LX(α) is a linear combination of functions each of which is proportional to a function of

the form αk exp(−A/α2), whose integral over (0,∞) may be expressed in terms of the gamma

function. The practical usefulness of this closed-form solution is limited for two reasons. First,

as was noted in Section 3.4.1, the Gaussian kernel is not a good all-purpose kernel, and secondly

it turns out that more computations are required for the closed form solution than for standard

methods of approximating integrals. The solution requires rm−r sums to be computed, where r is

the size of the training set and m − r the size of the validation set. For these reasons we will not

pursue the closed form solution further.

In general, the integrations required to calculate a CV BF cannot be done analytically. (17)

used numerical integration to approximate marginal likelihoods, either by simple or adaptive

quadrature. Other methods that could be used are importance sampling, bridge sampling or a

Laplace approximation. A Laplace approximation has the advantage of being less computationally

intensive. Let ĥ be the maximizer of L0 and define

Ĥ = − ∂2

∂h2
logL0(h)

∣∣∣
h=ĥ

.
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Then the Laplace approximation of
∫
π(h)L0(h) dh is

∫
π(h)L0(h) dh ≈

√
2π

Ĥ
· π(ĥ)L0(ĥ).

The quantity Ĥ can be expressed as a functional of kernel estimates based on the kernel K and

two other related kernels. An expression for Ĥ may be found in the Supplementary material.

To investigate how well the Laplace approximation works in our context we generate samples

from standard normal and standard Cauchy distributions and compare the Laplace approximation

of the marginal likelihood with an approximation using the R function integrate (which uses

adaptive quadrature). Samples of sizes 200, 500 and 1000 were generated from each of the two

distributions. The kernel used was K0, and the prior was (A.5) with γ taken to be the maximizer

of the likelihood. The training set size was always 1/4 of the sample size, and 500 replications for

each n and distribution were considered. Table 1 summarizes the results.

Normal data
n Median Interquartile range

200 6.99 · 10−4 3.46 · 10−4

500 2.66 · 10−4 1.80 · 10−4

1000 1.33 · 10−4 2.77 · 10−4

Cauchy data
n Median Interquartile range

200 2.10 · 10−5 3.21 · 10−6

500 3.32 · 10−6 3.99 · 10−7

1000 8.09 · 10−7 1.07 · 10−7

Table 3.1: Relative error of Laplace approximation of marginal likelihood. Each median and
interquartile range is based on 500 replications. The measure of error is |(logM̂−logM)/ logM |,
where M and M̂ are quadrature and Laplace approximations, respectively, of the marginal.

The Laplace approximations were excellent. The median relative error was no larger than

0.000699 for any n or distribution, and for each distribution the error became smaller as the sample

size increased. A plot of the results for n = 500 is given in Figure 3.1. We also found that the

computations for our Laplace approximation are 7 to 8 times faster at n = 1000 than those for the

quadrature approximation when running on an 8 core Intel Skylake 6132 CPU running at 2.6GHz
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Figure 3.1: Laplace and quadrature approximations to log-marginal likelihoods. These results are
for the case where the training set and validation sizes were 125 and 375, respectively.

with 32GB of 2666MHz DDR4 memory. For these reasons we will use the Laplace approximation

in all subsequent simulations and examples.

We note that the parameter of our prior is chosen so that the prior mode is equal to the max-

imizer of the likelihood. This has two computational benefits. First of all, our algorithm starts

by determining the maximizer of the log-likelihood, which is necessary to avoid underflow prob-

lems. But once this maximizer has been determined it is not necessary to find the posterior mode

since the two quantities are one and the same. Secondly, choosing the prior parameter in this way

renders null the distinction between the two versions of the Laplace approximation, one using the

maximizer of L0 and the other the maximizer of πL0.

3.5 Bayes consistency

Here we address Bayes consistency of a CV BF in the two-sample problem.

3.5.1 Large sample behavior of CV BF

We begin with a list of assumptions, and then state a theorem.
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A1. The Laplace approximation of each of the three marginals is asymptotically correct in that

the log of the marginal likelihood is equal to the log of the Laplace approximation plus a

term that is negligible in probability relative to the approximation.

A2. The densities f and g are bounded away from 0 and ∞ on (−λ, λ) for each λ > 0, with

f(x) ∼ c1x
−a1 and f(−x) ∼ c2x

−a2 as x → ∞, where both c1 and c2 are positive and

a1 and a2 larger than 1. Density g satisfies the same properties as f , albeit with possibly

different constants.

A3. The second derivatives f ′′ and g′′ exist and are bounded and almost everywhere continuous

on (−∞,∞). In addition, for a constant C2 < ∞,

|f ′′(x)| ≤ C2x
−a1−2 and |f ′′(−x)| ≤ C2x

−a2−2 for x > 1,

where a1 and a2 are the same as in A2. The function g′′ satisfies the same properties as f ′′

with possibly different constants.

A4. The kernel used is K0, as defined in (A.4).

A5. The prior is (3) and its parameter is chosen as described in Section 3.1.

Condition A1 simplifies the proof by allowing us to approximate the ratio of marginal likelihoods

by a likelihood ratio. Conditions A2 and A3 are those of (25) and are needed to ensure that the

maximizer of the likelihood cross-validation criterion is optimal in a Kullback-Leibler sense. (25)

provides another set of conditions that could be used in place of A2 and A3. These conditions deal

with compactly supported densities, but for the sake of brevity we do not repeat these. Assumption

A4 is needed to guard against cases where one or both of the underlying densities are long-tailed. It

is not needed, for example, if the data are Gaussian. In that case it would suffice to use a Gaussian

kernel. However, since one does always know what type of tail behavior to expect, it is better to

use a kernel that works well in all cases, and K0 is one such kernel.
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Theorem 1. Suppose that assumptions A1-A4 hold, and that r and s each tend to ∞ in such a way

that r = o(m), r = o(n), s = o(m) and s = o(n) as m and n tend to ∞. Then if f ≡ g and m

and n tend to ∞

log(CV BF ) = Cf

{
(m− r)

[
1

(r + s)a
− 1

ra

]
+ (n− s)

[
1

(r + s)a
− 1

sa

]}
(3.4)

+op

(
(m− r)

ra
+

(n− s)

sa

)
,

where Cf is a positive constant and 0 < a < 4/5 is a constant determined by f .

If instead
∫
|f − g| > 0, r/(r + s) ∼ m/(m + n), m/(m + n) → q as m,n → ∞ and

0 < q < 1, then as m,n → ∞

log(CV BF ) = (m− r)KL(f, qf + (1− q)g) (3.5)

+(n− s)KL(g, qf + (1− q)g) + op(m+ n).

3.5.2 Some heuristics for the proof

Theorem 1 is proven in our Supplementary material, but here we will provide some heuristics

for the proof. Until further notice we assume that m and n are balanced in the sense that m/n

converges to a positive constant as m and n tend to infinity. The reader is reminded that L0(h) and

LX(α)LY (β) are the likelihoods corresponding to the null and alternative models, respectively. To

a good approximation log(CV BF ) is a log-likelihood ratio:

log(CV BF ) ≈ log(LR) = log (LX(α̂)) + log
(
LY (β̂)

)
− log

(
L0(ĥ)

)
,

where α̂, β̂ and ĥ are the maximizers of LX , LY and L0, respectively. So, roughly speaking, we

can expect our cross-validation Bayes factor to perform as desired when the maximized likelihood

corresponding to the true model is larger than the other maximized likelihood.

To simplify notation, let f̂ , ĝ and f̃ denote the KDEs calculated from the X-training data, the
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Y -training data and all training data, respectively. When f ≡ g, we have

log(LR) ∼ m[K(f̃ , f)−K(f̂ , f)] + n[K(f̃ , f)−K(ĝ, f)]. (3.6)

Each of the four Kullback-Leibler divergences in (3.6) converges in probability to 0, owing to

the consistency of the three kernel density estimates. Importantly, however, each of [K(f̃ , f) −

K(f̂ , f)] and [K(f̃ , f) −K(ĝ, f)] is negative with probability tending to 1 as r and s tend to ∞,

which follows from the results of (25) and the fact that f̃ is based on ever more data than either

f̂ or ĝ. But since (a) each of the Kullback-Leibler divergences tends to 0 no faster than (r + s)−1

and (b) r and s are of smaller order than m and n, it follows that log(LR) diverges to −∞ with

probability tending to 1 as m and n tend to infinity.

A key to appreciating what transpires when
∫
|f − g| > 0 is to understand that f̂ , ĝ and f̃

consistently estimate f , g and qf+(1−q)g, respectively, where q is the limit of the ratio r/(r+s).

In this case the analog of (3.6) is

log(LR) ∼ mK(f, qf + (1− q)g) + nK(g, qf + (1− q)g).

The last expression diverges to infinity when 0 < q < 1 since both of the K-L divergences are

positive in that case.

3.5.3 Implications of Theorem 1

We now consider with more rigor implications of Theorem 1. Without loss of generality we

assume that m ≤ n, which entails that q, the limit of m/(m + n), is no more than 1/2. If f ≡ g,

Theorem 1 implies that

log(CV BF ) ∼ Cfnr
−aAq, (3.7)
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where

Aq =

(
q

1− q

)
(qa − 1) +

(
q

1− q

)a

[(1− q)a − 1].

Due to the facts 0 < a < 4/5, r = o(n) and Aq < 0, it follows that CV BF diverges to −∞ as r

and n tend to ∞ and hence Bayes consistency follows in the case f ≡ g.

When f ̸≡ g, i.e.,
∫
|f − g| > 0, Theorem 1 implies that

log(CV BF ) ∼ (n+m) [qK(f, fq) + (1− q)K(g, fq)] , (3.8)

where fq is the mixture density qf +(1− q)g. We have
∫
|f − fq| = (1− q)

∫
|f − g| > 0, and by

Pinsker’s inequality it follows that K(f, fq) > 0. Similarly K(g, fq) > 0, with the consequence

that Bayes consistency holds in the alternative case as well.

Concerning the sizes of r and s, Theorem 1 suggests that these quantities be allowed to grow

with m and n at a very slow rate. For example, if m = n, r = s and r ∼ logm, then logCV BF

will tend to −∞ at the rate n/(log n)a when f ≡ g and to ∞ at rate n when
∫
|f − g| > 0. On

the other hand, the quality of the asymptotics underlying Theorem 1 relies on the sizes of r and s,

and this is a motivation to avoid extremely small values of r and s. For example, the estimate of

[q/(1−q)]KL(f, fq)+KL(g, fq) resulting from use of small training set sizes may be inadequate.

A remarkable aspect of Theorem 1 is its implication that, under the null, CV BF tends to 0 at

a much faster rate than is typical for traditional Bayesian tests. Suppose, for example, that m = n,

r = s and r ∼ nγ for 0 < γ < 1. Then log(CV BF ) ∼ −Cn1−aγ for a positive constant C.

Since 0 < a < 4/5, this entails that log(CV BF ) tends to −∞ at a rate that can be arbitarily close

to n. In contrast, when one uses a nonparametric Bayesian procedure in which the null model is

nested within the alternative, the log-Bayes factor typically diverges to −∞ at a rate that is only

logarithmic in the sample size; see, for example (31).

It is also important to point out that Theorem 1 remains true for an average of finitely many

log(CV BF ) values (corresponding to different training samples). The benefit of an average would

show up in the op terms of (A.6) and (A.7), although it is beyond the scope of the current paper
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to quantify the benefit. The reader is referred to (18) for a theoretical result concerning average

log(CV BF ) in the context of parametric models.

3.5.4 Ratio of training set sizes differs from ratio of sample sizes

Theorem 1 assumes that r/(r + s) and m/(m + n) have the same limit, q. This is done to

make the presentation of results more concise and to allow us to use results from (25) to prove the

theorem. It turns out that this assumption is not necessary for consistency under either hypothesis.

Suppose that r/(r + s) → ρ and m/(m+ n) → q, where ρ ̸= q (and q > 0). First of all, if f ≡ g,

the only difference from the result in Theorem 1 is that the constant Aq in (3.7) is replaced by a

different negative constant. The same proof as before applies because of the fact that f̂X , f̂Y and

f̂X,Y all estimate the same density.

For each 0 ≤ p ≤ 1, let fp(x) = pf(x)+(1−p)g(x). To appreciate how ρ ̸= q affects the case

f ̸≡ g, it is important to recognize that in this setting there are two mixture densities at play: fρ

and fq, which represent the limiting distributions of the combined training data and the combined

validation data, respectively. It turns out that this fact has a profound impact on the behavior of ĥ,

the maximizer of L0. Unlike classical bandwidth theory, ĥ need not tend to 0 when ρ ̸= q and f

differs from g. To describe what happens, define, for each h > 0, the density

fρ,h(x) =

∫
1

h
K

(
x− y

h

)
fρ(y) dy.

Importantly, if h > 0 is fixed as r, s tend to ∞, then f̂(·|h,XT ,Y T ) is consistent for fρ,h.

Now, the quantity (n+m− r − s)−1 logL0(h) is an unbiased estimator of the risk function

J(h) =

∫
fq̃(x) log fq̃(x) dx− E

[
K(fq̃, f̂(·|h,XT ,Y T ))

]
,

where q̃ = (m − r)/(m + n − r − s). This suggests that the maximizer of L0 converges to the

minimizer, h0, of the K-L discrepancy K(fq, fρ,h). (It has been verified in multiple special cases
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that, indeed, h0 need not be 0.) The consequence of these results for CVBF is that

log(CV BF ) ∼ (n+m) [qK(f, fq) + (1− q)K(g, fq) +K(fq, fρ,h0)] . (3.9)

Note that (3.9) agrees with (3.8) when ρ = q since in that case h0 = 0 and hence fρ,h0 ≡ fq.

The most important thing about (3.9) is its implication that CV BF is still Bayes consistent when

ρ ̸= q. Indeed, the constant in (3.9) is at least as big as that in (3.8).

3.5.5 Unbalanced sample sizes: m/(m+ n) → 0

Inspection of (3.8) indicates a problem when the sample sizes are unbalanced, i.e., m/(m +

n) → 0. In that case the terms qK(f, fq) and (1 − q)K(g, fq) are each o(1), which is true in the

latter case since K(g, fq) tends to 0 when q → 0. This implies that log(CV BF ) is o(n), bringing

into question whether or not CV BF is even consistent. The problem is that when m/(m + n) is

very small, the log-likelihood is dominated by the Y -sample, and if r/(r + s) is also very small,

the KDE computed from the combined training data will look very similar to the KDE computed

from the Y -training data. This problem can be rectified by selecting r and s in such a way that

r/(r+ s) does not tend to 0. We recommend that the two training set sizes be chosen so that r ∼ s

as m and n tend to ∞. Then, when f ̸≡ g, expression (3.9) becomes

log(CV BF ) ∼ nK(g, f1/2,h0).

We cannot absolutely rule out the possibility that K(g, f1/2,h0) could be 0, but it seems as if this

would happen only in pathological cases.

3.6 Choice of training set size

We now discuss the choice of training set sizes r and s for given sets of data. Two competing

ideas are at play when choosing these quantities. First of all, it is desired that the KDEs from the

training data be good representations of f and g, a desire that calls for large r and s. On the other

hand, we would like as much data as possible for computing the Bayes factor, which asks that
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m− r and n− s be large.

3.6.1 General considerations

The sizes of r and s as well as r/s have an impact on the behavior of CVBF. We recommend, as

discussed in the previous section, that r/s be asymptotic to 1/2. Doing so will, in general, produce

consistent Bayes factors whether the sample sizes are balanced or not. This leaves us with the

question of how to choose r (since once this is done s = r.) Our theory suggests that r should be

large but very small relative to m. As noted previously, however, there is a price to pay for taking

r to be too small. Simply put, when r and s are too small, the resulting density estimates may

be poor enough that the larger of the two maximized likelihoods does not coincide with the truth.

Ultimately, though, we view our methodology as being the most appropriate when m and n are

quite large. In such cases we have found that choice of r is not problematic, in that any of a large

number of values for r will result in high quality density estimates while leaving plenty of data for

validation. In many cases choice of r becomes moot. Let CV BF (r) denote the value of CV BF

corresponding to a training set size of r, and suppose that one regards a Bayes factor larger than

T to be convincing evidence against f ≡ g, and a Bayes factor less than 1/T to be convincing

evidence in favor of f ≡ g. Then if either CV BF (r) > T or CV BF (r) < 1/T for all r over a

reasonable range of r values, then the conclusion is clear without the necessity of choosing r.

When m and n are large, but only in the hundreds, say, it is more important that r be a sub-

stantial fraction of m, since otherwise the size of the training sets may be too small. In such cases

we feel that reasonable choices for r and s are r = [m/2] and s = [n/2], where [x] denotes the

integer closest to but not larger than x. Aside from the issue of statistical efficiency, r = [m/2]

and s = [n/2] are not suggested for very large sample sizes since they maximize the length of

time needed to compute the Bayes factor. To explain why, consider the marginal based on just

X1, . . . , Xm. This marginal requires calculation of m− r kernel estimates, each of which involves

r additions. So, a total of r(m− r) operations are required for each likelihood evaluation, and this

number is maximized when r = m/2. This result is of particular interest for extremely large data

sets. In this case it is unlikely that half of the full data set is required for computing a good training
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density, and hence significant reductions in computing time can be gained by choosing a training

set size that is much smaller than the validation set size.

Dependence of Bayes procedures on tuning parameters or hyperparameters, especially in non-

parametric settings, is not at all unusual. For example, the Pólya tree method of (1) relies upon

specifying the prior precision parameter c. The authors of that article state that values of c be-

tween 1 and 10 work well in practice, but they also recommend checking the sensitivity of their

Bayes factor to choice of c. When employing our CVBF methodology the training set sizes may

be regarded as tuning parameters, and as with any Bayes procedure it is recommended that one

investigate sensitivity of CV BF to different choices for (r, s). As mentioned previously, if all the

Bayes factors are in basic agreement, then choice of (r, s) becomes moot.

3.6.2 A permutation-based method

Here we propose a more objective method of choosing r. This method is analogous to choosing

the rejection region of a frequentist test to achieve a particular size. The idea is to choose r in such

a way that desirable behavior of CV BF is more or less guaranteed when it is assumed that f ≡ g.

This is achieved by using the notion of a permutation test.

Let Z = (X,Y ) be the set of all m+ n observations, and suppose that a random sample, X∗,

of size m is chosen from Z without replacement. Let Y ∗ be the remaining n observations in Z

that were not chosen. Given a set R of values of r, we may compute CV BF ∗(r) from (X∗,Y ∗)

for each r ∈ R. (We recommend that the largest value in R not exceed m/2.) If N splits of the

original data (X,Y ) are to be used, then one should also consider N splits of (X∗,Y ∗), leading

to an average log-Bayes factor at each r ∈ R. This whole procedure may be repeated M times and

at each r the M (average) log-Bayes factors plotted. A good choice for r would be one for which

all M log-Bayes factors lie below a threshold that is considered strong evidence in favor of f ≡ g.

There may be a number of r-values that produce the desired behavior, but we have found that the

largest such r is usually a good choice, since this makes it more likely that the training sets will

produce good enough kernel estimates to conclude that f and g are different, if in fact that is the

case.
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3.7 Simulations

Results in Section 3.5 suggest that the way in which bandwidths are selected in our methodol-

ogy is important. We use a version of cross-validation in which the data are split into two parts,

KDEs are calculated from one part, and then the bandwidth of the KDE is chosen by maximizing a

likelihood calculated from the second part of the data. This version of likelihood cross-validation

has been studied by (32). (25) studies the leave-one-out version of cross-validation. In simulation

results described in our Supplementary Material we provide evidence that, when using the kernel

K0, our cross-validation method of selecting a bandwidth tends to be somewhat more efficient than

the leave-one-out version. It is also demonstrated how poorly likelihood cross-validation behaves

when the data are long-tailed and a Gaussian kernel is used.

We turn now to simulations investigating various aspects of our CVBF methodology. Part of

this investigation addresses how our test fares in comparison to the Kolmogorov-Smirnov (KS)

test and to the Pólya tree test of (1). For each case where the Pólya tree test is run, the precision

parameter c is taken to be 1. We do this for two reasons. Primarily, this choice proved to be

successful in the study of (1). Secondly, choosing c to be closer to 0 seems to have the effect of

making the test depend less on the centering distribution utilized and more on the empirical cdf,

which is what would be desired in the non-parametric setting (19).

For the null case, we generate data from a standard normal distribution, taking m = n for

sample sizes 200, 400 and 800. For the CVBF training set sizes we took r = s, with r = 50,

75 and 112 at sample sizes 200, 400, and 800, respectively. So, the training set size increases by

fifty percent when the sample size doubles. The value of CVBF for a given replication was the

geometric mean of CVBFs corresponding to 30 pairs of randomly selected training sets, and 1500

replications were performed at each n. The kernel K0 was used for all our simulations, and the

prior for each bandwidth was (A.5) with γ equal to the maximizer of the corresponding likelihood.

The results are shown in Figure 3.2. All but two of the 4500 values of log(CV BF ) computed

were smaller than 0. At n = 400, all 1500 replications produced a value of log(CV BF ) that was

smaller than 0, and just two values larger than − log(20), a value considered to be the threshold for
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Figure 3.2: Values of log(BF ) for the Pólya tree and log(CV BF ) when the null hypothesis is true.
The red and black values correspond to Pólya tree and CVBF, respectively. Each point corresponds
to X and Y samples each of size n from a N(0, 1) distribution. The standard deviations of the
Pólya tree log-Bayes factors are 2.05, 2.52 and 3.31 for n = 200, 400, and 800, respectively. The
standard deviations of the log(CV BF ) values are 1.60, 1.95 and 2.41 for n = 200, 400, and 800,
respectively.

“strong” evidence in favor of the null hypothesis (33). At n = 800 all 1500 values of log(CV BF )

were smaller than − log(20), and at n = 200 all but 46 values of log(CV BF ) were below this

threshold. The near linear decrease in the estimates of E(log(CV BF )) is evidence for the expo-

nential rate of convergence of CV BF that was discussed in Remark R6. The Pólya tree Bayes

factors do not behave as well as the CVBFs. For example, at n = 400, the median log(CV BF )

is −10.26, while the median Pólya tree log(BF ) is but −4.06. At n = 800, 5% of the Pólya tree

log(BF ) values are actually larger than 0, while the largest log(CV BF ) is −7.83. When a partic-

ular model is true, we desire that a Bayes factor provide the strongest possible evidence in favor of

that model, and on this score CVBF has outperformed the Pólya tree method in this example.

Under the alternative hypothesis, we use a version of BayesSim, as proposed by (34), for data

generation. Here, the X sample is drawn from a density f . To obtain the Y sample, we first draw p

from beta(1/2, 1/2), a beta distribution with both parameters equal to 1/2, and then the Y sample is

30



drawn from a mixture of the form (1− p)f(x)+ pg(x), where g is different from f . This approach

allows one to infer the behavior of CVBF for mixing proportions p ranging from 0 to 1, where the

discrepancy between the X and Y densities increases with p. Sample sizes of m = n = 280 were

considered, the training set sizes were selected to be 120, and 500 values of p were selected for

each choice of (f, g). For a given replication, thirty random splits for each of X and Y were used.

For each pair of data sets the data were centered and scaled before applying the Pólya tree test. The

sample median of the combination of the two data sets was subtracted from every value and then

this difference was divided by IQR/1.35, where IQR is the interquartile range of the combined

data.

In performing the Pólya tree test, specification of a precision parameter and a base distribution

are required. (19) recommends centering and scaling the data and using a standard normal distri-

bution as the base distribution. However, doing so turns out not to be efficient when the underlying

distribution has sufficiently heavy tails. In the location shift case, for example, the Cauchy density

turns out to be far better suited for the base distribution than the normal density since the original

density is itself Cauchy. (1) provide a data-driven procedure for choosing a base distribution, but

do not show that the resulting Bayes factor is consistent under the alternative. For this reason, as

well as the fact that the conditional procedure is more computationally intensive, we computed

Pólya tree Bayes factors for both normal and Cauchy base distributions in each simulation setting.

The described simulations were conducted in four different settings in each of which f and g

differ in a particular way:

Scale change: The densities f and g are ϕ (standard normal) and ϕ(x/2)/2, respectively,

and hence differ with respect to scale.

Location shift: The densities f and g are standard Cauchy, fC , and fC(x + 1), respectively,

and so differ with respect to location.

Distributions with different tail behavior: Here f and g are fC and 0.6745ϕ(0.6745x), re-

spectively. Given p, the mixture density in this case has the same median and interquartile
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Figure 3.3: Smoothed curves that show the values of log(BF ) for the Pólya tree, Cross validation
Bayes factors, and KS test B-values for the scale shift case.The pink and yellow curves correspond
to Pólya tree Bayes factors when standard Cauchy and standard normal are used for quantiles,
respectively. The blue and orange curves correspond to CVBF and the K-S test, respectively. In
the case of the K-S test, we used the calibration idea of (2). Define the quantity B by B−1 =
−eP log(P ) for P < 1/e and B−1 = 1 for P ≥ 1/e, where P is the P -value of the K-S test. (2)
show that B is an upper bound for a Bayes factor when the distribution of P under the alternative
hypothesis is a certain class of beta distributions. The orange curve is a loess smooth of all the
logB values.

range as the standard Cauchy, and so the densities of the X and Y samples are different but

have the same location and scale.

Different distributions with same finite support: The densities f and g are U(0, 1) (uniform

on the interval (0, 1)) and beta(1/2, 1/2), respectively.

For each method, we provide a loess smooth of log-Bayes factors as a function of p (Figures

4-7). Plots including the data points themselves can be found in our Supplementary Material.

The following remarks are in order concerning the simulations under alternatives. To facil-

itate the discussion, we refer to the Pólya tree methodology based on normal and Cauchy base

distributions as PN and PC, respectively.

• In general, the average Pólya tree log-Bayes factor tends to increase as the mixing parameter

increases, but, depending on the base distribution, it does not rise above 0 until the mixing
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Figure 3.4: Smoothed curves that show the values of log(BF ) for the Pólya tree, Cross validation
Bayes factors, and KS test B-values for the location shift case. See Figure 3.3 for a legend.
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Figure 3.5: Smoothed curves that show the values of log(BF ) for the Pólya tree, Cross validation
Bayes factors, and KS test B-values for the tail difference case. See Figure 3.3 for a legend.

Pólya tree: Normal Pólya tree: Cauchy
Setting base distribution base distribution CVBF
Scale change 3.87 4.25 3.39
Location shift 5.49 4.56 4.21
Different tail behavior 4.31 2.89 3.56
Finite support 5.78 6.48 4.45

Table 3.2: Estimated standard deviations of log-Bayes factors.
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Figure 3.6: Smoothed curves that show the values of log(BF ) for the Pólya tree, Cross validation
Bayes factors, and KS test B-values for the finite support case. The red line gives the smoothed
values for data-reflected versions of cross-validation Bayes factors [see text for more detail]. See
Figure 3.3 for a legend of the rest of the curves.

parameter is relatively large. This entails that a frequentist strategy would sometimes be

needed to ensure good power for a test based on the Pólya tree methodology.

• The behavior of the Pólya tree Bayes factors definitely depends on the base distribution

used. Worse yet, the PN Bayes factors performed very poorly when at least one of f and

g was Cauchy. In contrast, the performance of CVBFs based on the kernel K0 was always

comparable to or better than that of both PN and PC.

• The PC Bayes factors performed reasonably well in all four settings, suggesting that the

Cauchy might be a good default choice of base distribution. However, the performance of

PC in the finite support setting was not nearly as good as that of PN and CVBF. Also, PC

Bayes factors were usually more variable than the PN Bayes factors, suggesting that PC may

be less powerful in a frequentist sense than PN.

• Taken together, the last two remarks suggest that K0 is at least a very good candidate for

default kernel choice in the CVBF methodology, whereas identifying a good default base
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distribution in the Pólya tree methodology is more of an open question.

• In the cases where f and g differ with respect to scale and tail behavior (Figures 3.3 and 3.5),

the performance of CVBF and at least one of PC and PN was clearly better than that of the

KS test.

• Table 3.2 provides estimated standard deviations for the log-Bayes factors (assuming ho-

moscedasticity over the mixing parameter p). Each standard deviation is the square root of

the following nonparametric variance estimate:
∑500

i=2(bi − bi−1)
2/1000, where bi is the log-

Bayes factor at p(i), i = 1, . . . , 500, and p(1) < p(2) < · · · < p(500) denote the ordered values

of the randomly selected mixing parameters. In most cases, the variability of the log-CVBF

values is smaller than that of the Pólya tree log-Bayes factors. Importantly, the smaller vari-

ability of CVBF is understated as only thirty splits of each data set were used. Recall that in

the null case the standard deviations of log-CVBF were about 3/4 of the standard deviations

of the Pólya tree log-Bayes factors. So, in addition to often providing more evidence in favor

of the correct hypothesis, CVBF appears, in most cases, to be more stable than the Pólya tree

method.

• In the finite support case (Figure 3.6), there are two sets of CVBF results. One set is obtained

as in the other three cases, and the other set uses methodology that adjusts kernel estimates

for boundary effects. Kernel estimates are known to have large bias near a boundary when

the density is positive at the boundary. To deal with the boundary bias we used a data

reflection technique. First, we applied the − log transformation to each of the training data

values (which yields exponential data when the underlying distribution is U(0, 1)). We then

reflected these transformed data across the y-axis, and constructed a kernel density estimate

from a combination of the original and reflected data. Doing so improved the behavior of the

log-Bayes factors remarkably. In general this illustrates another point: methods of improving

the kernel density estimate may be applied, and doing so can positively impact the log Bayes

factors. While this also seems to be the case when choosing which base distribution should
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be used for the Pólya tree test, we assert that there is more literature on modification of kernel

density estimates than for fine-tuning Pólya tree base distributions. See, for example, (35),

(36), and (37).

3.8 Data analysis

We now apply our method to the Higgs boson data set that is available from the UCL Machine

Learning repository. The original data set is quite large. It has 29 columns and 11 million rows.

The first column is a 0-1 variable indicating whether the data are noise or signal, and the rest of the

columns are variables used for distinguishing between noise and signal. The 2nd to 22nd columns

consist of predictors, while the 23rd to 29th columns are functions of columns 2 to 22 that are

typically used for classification. We will illustrate our methodology by applying it to the data in

columns 23 and 29.

Figure 3.7 provides KDEs for the signal and noise data in column 29 and column 23. These

estimates use all 11,000,000 rows of the data set. Since the two estimates are quite different

one would hope that application of our methodology to even "moderate" sized samples from the

two groups would support the hypothesis of unequal densities. To investigate this question, we

randomly selected 20,000 rows of the column 29 and column 23 data to perform our tests. This

resulted in m = 9543 and n = 10, 457 noise and signal observations, respectively. Training

set sizes r = s = 1000, 2000, 3000, 4000, 5000 were considered, and CV BF was computed for

20 different random data splits at each r. The resulting values are also provided in Figure 3.8.

Regardless of the training set size, the evidence in favor of a difference between signal and noise

for distributions in column 29 is overwhelming. Interestingly, the results are in agreement with

expression (A.7), which suggests that when the alternative is true, the weight of evidence in favor of

the alternative tends to decrease with an increase in training set sizes. These results are consistent

with those from the Pólya tree and KS tests. The log-Bayes factor from the Pólya tree test for

column 29 was 234.7242, while the P -value from the KS test was essentially 0. We verified

that the training sizes were reasonable by utilizing the permutation method described in Section

5.2. Discussion of these results for both data columns is found in Section 6 of the Supplementary
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Material.

For column 23, the difference between the two estimates is extremely small, and so it would not

be surprising if Bayes factors based on a small subset of the data support the hypothesis of equal

densities. The log-Bayes factors computed in this case were smaller than −15. This figure shows

that the average of log-CV BF increases as the training set size increases. Based on expression

(A.6), this agrees with what we expect under the null hypothesis of equal distributions. We also

considered the use of the Pólya tree and K-S tests on the column 23 data. These methods reach

the same conclusion as our procedure. The log-Bayes factor of the Pólya tree test was -263.6514,

which is in strong favor of the null hypothesis. The P -value and B for the K-S test are 0.1115 and

1.504, respectively, neither of which is reason to reject the null hypothesis. (See Section 6 for the

definition of B.)

Although our focus has been on testing, it is of some interest to see how our cross-validatory

methodology compares with Pólya trees in estimating the underlying densities. To this end we

compute posterior predictive densities for the column 23 noise data using both our methodology

and Pólya trees. Denote the first 9543 values of the column 23 noise data by x1, . . . , x9543. In

regard to our cross-validation method, the posterior distribution of the bandwidth is

π(h|xV ) ∝ π(h)
9543∏

i=5001

f̂(xi|h,xT ),

where xT = (x1, . . . , x5000) are the training data and xV = (x5001, . . . , x9543) the validation

data. We drew 250 values, h1, . . . , h250, from π( · |xV ) using an independence-sampler version

of Metropolis-Hastings with a normal proposal distribution that was a close match to the posterior.

Our approximation ppred of the posterior predictive density was

ppred(x) =
1

250

250∑
i=1

f̂(x|hi,xT ),

which is plotted in Figure 3.9 along with the Pólya tree posterior predictive density.

The Pólya tree method is well known for producing spurious modes in the posterior predictive
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(a) Kernel density estimates for column 29 of the Higgs boson data. The blue curve is for
the noise data and the black for signal.

(b) Kernel density estimates for column 23 of the Higgs boson data. The blue curve is for
the noise data and the black for signal.

Figure 3.7: Kernel density estimates of different columns of the Higgs Boson data
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(a) Values of log-CVBF computed from column 29 of the Higgs boson data. The lines connect the
averages of log-CVBF at different training set sizes.

(b) Values of log-CVBF computed from column 23 of the Higgs boson data. The lines connect the
averages of log-CVBF at different training set sizes.

Figure 3.8: Performance of CVBF on different columns of the Higgs Boson data
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Figure 3.9: Plots of posterior predictive densities for the column 23 Higgs boson noise data. The
black line is a KDE based on all 5,170,877 noise data. Because of the size of the data set, we
regard this KDE as the truth. The red curve is the posterior predictive density corresponding to the
Pólya tree method, and in purple is a cross-validation posterior predictive density.

density (19). This is evident in Figure 3.9 in the right tail of the Pólya tree density where the data

are relatively sparse. The cross-validation density does not seem to be subject to this problem, at

least not to the same degree. In any event, the cross-validatory method has produced at least as good

an estimate of the underlying density without the necessity of a complex prior distribution. This

illustrates a basic tenet of this paper: one may devise a good Bayesian nonparametric procedure

that does not depend on a large number of parameters and the attendant prior specification.

3.9 Discussion

We have proposed a non-parametric, Bayesian two-sample test for checking equality of dis-

tributions. The methodology uses CVBFs, defining kernel density estimate models from training

data and then calculating a Bayes factor from validation data. We advocate that a CVBF be used

in genuine Bayesian fashion and interpreted as the relative odds of the two hypotheses. This is in

contrast to the proposal of (1), who evaluate a Pólya tree Bayes factor in frequentist fashion using

a permutation test. We argue the CVBF is Bayes consistent under both hypotheses, and under the

null hypothesis it converges in probability to 0 at an exceptionally fast rate. We provide a supple-

mentary R package that calculates CVBFs and the Pólya tree Bayes factor of (1), assuming that a
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base distribution is supplied for the latter method.

The success of CVBFs stems in large part from how well the kernel density estimates estimate

the underlying densities. Our simulation results show that ways of improving KDE performance,

such as adjusting for boundary effects, can improve the behavior of CVBF. On the other hand,

evidence associated with poor KDEs may not accurately reflect the relative evidence of f ≡ g and

f ̸≡ g. While one will not always be certain of when the KDEs are inadequate. A useful diagnostic

is to examine CV BF for a number of data splits. When the log-Bayes factors are highly volatile

and yield differing conclusions, the procedure may be regarded as inconclusive. Our experience

suggests this occurs due to poor kernel estimates resulting from poor bandwidth choices and using

a heavy-tailed kernel, such as K0, fixes the problem.

In particular, CVBF computations do not scale as well with the size of the data set as do those

of the Pólya tree procedure, and so CV BF can be slower than calculating the Pólya tree Bayes

factor. This is because maximizing (with respect to bandwidth) the likelihood of kernel density

estimates can be time consuming. A future research problem involves speeding up the test by

utilizing techniques that speed bandwidth selection.

Finally, the idea of CVBF can be generalized in a fairly straightforward fashion to deal with

other inference problems, including comparison of multivariate densities, comparison of more than

two densities and comparison of regression functions.

41



4. A BAYESIAN MOTIVATED TWO-SAMPLE TEST BASED ON KERNEL DENSITY

ESTIMATES

4.1 Abstract

A new nonparametric test of equality of two densities is investigated. The test statistic is an

average of log-Bayes factors, each of which is constructed from a kernel density estimate. Critical

values are determined by a permutation distribution, conditional on the data. An attractive property

of the methodology is that a critical value of 0 leads to a test with type I error probability tending

to 0 as sample sizes tend to ∞. The test is proven to be consistent in a frequentist sense, and its

characteristics are studied via simulation. Extensions to multivariate data are straightforward, as

illustrated by an application to bivariate connectionist data.

4.2 Introduction

(38) proposed the use of cross-validation Bayes factors in the classic two-sample problem of

comparing two distributions. Their basic idea is to randomly divide the data into two distinct parts,

call them A and B, and to define two models based on kernel density estimates from part A. One

model assumes that the two distributions are the same and the other allows them to be different. A

Bayes factor comparing the two part A models is then defined from the part B data. In order to

stabilize the Bayes factor, (38) suggest that a number of different random data splits be used, and

the resulting log-Bayes factors averaged.

In the current paper we consider a special case of this approach in which the part A data consists

of all the available observations save one. If the sample sizes of the two data sets are m and n,

this entails that a total of m+ n log-Bayes factors may be calculated. The average of these m+ n

quantities becomes the test statistic here considered, and is termed ALB.

Although ALB is an average of log-Bayes factors, it does not lead to a consistent Bayes test

because each of the log-Bayes factors is based on just a single observation. (38) suppose that

the validation set size grows to ∞, while in our case it remains of size 1. This results in the
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ALB converging to the Kullback-Leibler divergence of the two densities, not ∞ like in the case

of (38). We therefore use frequentist ideas to construct our test. The exact null distribution of

ALB conditional on order statistics is obtained using permutations of the data. Doing so leads to a

consistent frequentist test whose size is controlled exactly. The problem of bandwidth selection is

dealt with by using leave-one-out likelihood cross-validation applied to the combination of the two

data sets. This method is computationally efficient in that the resulting bandwidth is invariant to

permutations of the combined data, and therefore has to be computed just once. Our methodology

is easily extended to bivariate data, and we do so in a real data example.

(39) also use a permutation test based on kernel estimates for the two-sample problem, their

statistic being based on an L2 distance. (40) shows how other distances and divergences compare

when applying them to the general k-sample problem, restricting his comparisons to the one-

dimensional case. Our method mainly differs from these procedures by virtue of its Bayesian

motivation. Existing methodology that most closely resembles ours is that of (41), who use a

kernel-based marginal likelihood ratio to test goodness of fit of parametric models for a distribu-

tion. Their marginal likelihood employs a prior for a bandwidth, as does ours.

4.3 Methodology

We assume that X = (X1, . . . , Xm) are independent and identically distributed (i.i.d.) from

density f , and independently Y = (Y1, . . . , Yn) are i.i.d. from density g. We are interested in the

problem of testing the null hypothesis that f and g are identical on the basis of the data X and

Y. Let U = (U1, . . . , Uk) be an arbitrary set of k scalar observations, and define a kernel density

estimate by

f̂K(u|h,U) =
1

kh

k∑
i=1

K

(
u− Ui

h

)
, −∞ < u < ∞,

where K is the kernel and h > 0 the bandwidth.

4.3.1 The test statistic

Let Zi = Xi, i = 1, . . . ,m, Zi = Yi−m, i = m+1, . . . ,m+ n, Z = (Z1, . . . , Zm+n) and Zi be

the vector Z with all its components except Zi, i = 1, . . . ,m+n. Also, let Xi be all the components
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of X except Xi, i = 1, . . . ,m, and Yj all the components of Y except Yj , j = 1, . . . , n. If we

assume that f is identical to g, then potential models for f are M0i = {f̂K( · |h,Zi) : h > 0},

i = 1, . . . ,m+n. Suppose that 1 ≤ i ≤ m. If we allow that f and g are different, then a model for

the datum Zi is M1i = {f̂K( · |a,Xi) : a > 0}. In this case a legitimate Bayes factor for comparing

M0i and M1i on the basis of the datum Zi has the form

Bi =

∫∞
0

π(a)f̂K(Zi|a,Xi) da∫∞
0

π(h)f̂K(Zi|h,Zi)dh
, i = 1, . . . ,m,

where, mainly for convenience, we have assumed that the bandwidth priors are the same in all

cases. Likewise, if i = m+ 1, . . . ,m+ n, then M1i = {f̂K( · |b,Yi−m) : b > 0} is a model for the

datum Zi, and a Bayes factor for comparing M0i and M1i is

Bi =

∫∞
0

π(a)f̂K(Zi|a,Yi−m) da∫∞
0

π(h)f̂K(Zi|h,Zi)dh
, i = m+ 1, . . . ,m+ n.

When m and n are large, it is expected that each of M1i, i = 1, . . . ,m + n, will be a good

model for either f or g. Likewise, each of M0i will be a good model for the common density

on the assumption that f and g are identical. However, none of B1, . . . , Bm+n will be Bayes

factors that can provide convincing evidence for either hypothesis simply because each one uses

likelihoods based on a single datum. At first blush one might think that a solution to this problem

is to take the average of the m+ n log-Bayes factors:

ALB =
1

(m+ n)

m+n∑
i=1

logBi. (4.1)

However, this results in a statistic that will consistently estimate 0 or a positive constant in the

respective cases f ≡ g or f ̸≡ g. In neither case does the statistic have the property of Bayes

consistency, i.e., the property that the Bayes factor tends to 0 and ∞ when f ≡ g and f ̸≡ g,

respectively.

The discussion immediately above points out a fundamental fact that seems not to have been
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widely discussed: combining a large number of inconsistent Bayes factors does not necessarily

lead to a consistent Bayes factor. A guiding principle in (38) was that of averaging log-Bayes

factors from different random splits of the data with the aim of producing a more stable log-Bayes

factor. However, in order for this practice to yield a consistent Bayes factor, it is important that

each of the log-Bayes factors being averaged is consistent. And to ensure this consistency, it is

necessary that the sizes of both the training and validation sets tend to ∞ with the samples sizes m

and n. Obviously this is not the case when the size of each validation set is just 1, as in the current

paper.

An advantage of the approach proposed herein is that the practitioner does not have to choose

the size of the training sets. The cost is that the resulting statistic does not have the property of

Bayes consistency. We thus propose that the statistic be used in frequentist fashion. An appealing

way of doing so is to use a permutation test, which (save for certain practical issues to be discussed)

leads to a test with exact type I error probability for all m > 1 and n > 1. Let Z(1) < Z(2) <

· · · < Z(m+n) be the order statistics for the combined sample. Let j = (j1, . . . , jm+n) be a random

permutation of 1, . . . ,m+n, and define T (j) to be the statistic (4.1) when the X-sample is taken to

be Zj1 , . . . , Zjm and the Y -sample to be Zjm+1 , . . . , Zjm+n . It follows that, conditional on the order

statistics Z(1), . . . , Z(m+n), the (m + n)! values taken on by T (·) are equally likely. Therefore,

if tm,n is a 1 − α quantile of the empirical distribution of T (·), then the test that rejects f ≡ g

when T ≥ tm,n will have an (unconditional) type I error probability of α. As will be shown in

the Appendix, ALB is negative with probability tending to 1 as m,n → ∞, implying that for

any α > 0 tm,n will be negative for m and n large enough. From an evidentiary standpoint, it is

nonsense to reject H0 for a negative value of ALB. We therefore suggest using the critical value

max(0, tm,n), which ensures that the test is sensible and has level α.

4.3.2 The effect of using scale family priors

Let π0 be an arbitrary density with support (0,∞). A possible family of priors is one that

contains all rescaled versions of π0. For b > 0, using the prior π(h) = π0(h/b)/b and making the
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change of variable h/b = u in the denominator of Bi, we have

∫ ∞

0

b−1π0(h/b)f̂K(Zi|h,Zi)dh = f̂L(Zi|b,Zi),

where the kernel L is

L(z) =

∫ ∞

0

u−1π0(u)K(z/u) du, for all z. (4.2)

So, by using this type of prior, each marginal likelihood comprising ALB becomes a kernel density

estimate with bandwidth equal to the scale parameter of the prior. In one sense this is disappointing

since it means that averaging kernel estimates with respect to a bandwidth prior does not actually

sidestep the issue of choosing a smoothing parameter. One has simply traded bandwidth choice for

choice of the prior’s scale. However, it turns out that there is a quantifiable advantage to using a

prior for the bandwidth of K. As we will subsequently detail, likelihood cross-validation is often

more efficient when applied to f̂L rather than to f̂K .

When using a scale family of priors, the result immediately above implies that

(m+ n)ALB =
m∑
i=1

log(f̂L(Xi|b,Xi)) +
n∑

j=1

log(f̂L(Yj|b,Yj))

−
m+n∑
i=1

log(f̂L(Zi|b,Zi)), (4.3)

and so the proposed statistic is proportional to the log of a likelihood ratio. The two likelihoods

are cross-validation likelihoods, and the numerator and denominator of the ratio correspond to the

hypotheses of different and equal densities, respectively.

In practice one will be faced with choosing b, the bandwidth of the kdes based on kernel L. The

denominator of exp((m + n)ALB) as a function of b is the likelihood cross-validation criterion,

as studied by (25), based on the combined sample. We propose using b = b̂, the maximizer of

this denominator. This bandwidth has the desirable property that it is invariant to the ordering of
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the data in the combined sample. Let ALB∗ be the value of test statistic (4.1) for a permuted data

set. One should use the principle that ALB∗ is the same function of the permuted data as ALB

is of the original data. So, in principle the bandwidth should be selected for every permuted data

set, but because of the invariance of b̂ to the ordering of the combined sample, this data-driven

bandwidth equals b̂ for every permuted data set. This results in a large computational savings

relative to a procedure that selects the bandwidth differently for the X- and Y -samples. Using the

same bandwidth under both null and alternative hypotheses also fits with the principle espoused by

(42).

4.3.3 Choice of kernel

By far the most popular choice of kernel in practice is the Gaussian kernel, K(x) = ϕ(x),

−∞ < x < ∞, where ϕ is the standard normal density. For ν > 0, define

π0(u) =
2(ν/2)ν/2

Γ(ν/2)
u−(ν+1) exp

(
− ν

2u2

)
, u > 0. (4.4)

If one takes K to be the the standard normal kernel and uses prior (4.4), then the corresponding

kernel L is a t-density with ν degrees of freedom. An interesting aspect of these kernels is that they

have heavier tails than those of the Gaussian kernel. This is especially true for the more diffuse, or

noninformative priors, i.e., those for which ν is small.1

The fact that the kernel L is more heavy-tailed than K in the previous example is not an isolated

phenomenon, as indicated by the following proposition (which is straightforward to prove): If π0

has support (0, C) with 1 < C ≤ ∞ and the tails of K decay exponentially, then the tails of L are

heavier than those of K in that K(u)/L(u) → 0 as u → ∞.

(25) established results that imply that the previous result can be quite beneficial. He showed that

kernels must be relatively heavy-tailed in order for them to perform well with respect to likelihood

cross-validation. In particular, he shows that likelihood cross-validation fails miserably as a method

1The mean and variance of (4.4) exist for ν > 2. At ν = 3, the two are 1.382 and 1.090, respectively, and as
ν → ∞ they converge to 1 and 0.
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for choosing the bandwidth of a kde based on a Gaussian kernel. The tails of the kernel must be

considerably heavier than those of a Gaussian density in order for likelihood cross-validation to be

effective. So, Proposition 4.3.3 shows that the Bayesian notion of averaging commonly used kernel

estimates with respect to a prior brings the resulting estimate more in line with the conditions of

(25). This can have a substantial benefit for our statistic inasmuch as we are using a likelihood

cross-validation bandwidth in its construction.

In principle, many different choices of π0 and K could produce the same kernel L. Or, one

might ask “given kernel K, what prior π0 would produce a specified L?" When K is Gaussian,

the latter question is answered by solving an integral equation. Unfortunately, doing so, at least in

a general sense, exceeds our mathematical abilities. In the case where K is uniform, though, an

elegant solution exists, as seen in the next section.

4.3.4 When K is uniform

In the special case where K is uniform on the interval (−1/2, 1/2), it is easy to check that, for

all u,

L(u) =

∫ ∞

2|u|
α−1π0(α) dα. (4.5)

If π0 has support (0,∞), then L has support (−∞,∞), and hence we see again that averaging

kernels with respect to a prior leads to a more heavy-tailed kernel.

Since our statistic ends up being a log-likelihood ratio based on kernel L, an interesting ques-

tion is “what prior π0 gives rise to a specified kernel L?" Taking u ≥ 0, (4.5) implies that

π0(2u) = −uL′(u). (4.6)

When L is decreasing on [0,∞) it follows that π0 is a density. (Under mild tail conditions on L and

assuming that L′(0+) exists finite, it is easy to show using integration by parts that (4.6) integrates

to 1 on (0,∞).)
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Consider the following kernel proposed by (25):

L0(u) =
1√

8πeΦ(1)
exp

[
−1

2
(log(1 + |u|))2

]
.

Suppose that a kde is defined using kernel L0 and its bandwidth is chosen by likelihood cross-

validation. (25) shows that, in general, this cross-validation bandwidth will be asymptotically

optimal in a Kullback-Leibler sense. In contrast, using cross-validation to choose the bandwidth

of a uniform kernel kde will produce a bandwidth that diverges to ∞ as the sample size tends to

∞.

Using (4.6) the prior, shown in Figure 4.1, that produces L0 is

π0(2u) = L0(u)
u log(1 + u)

1 + u
.

This shape for the bandwidth prior could be considered canonical inasmuch as L′ will be similarly

shaped for kernels that are decreasing on (0,∞).

4.3.5 Further properties of ALB

In the Appendix we will show that the ALB test is consistent in the frequentist sense. In other

words, for any alternative the power of an ALB test of fixed level tends to 1 as m and n tend to ∞.

Interestingly, ALB has the property of being sharply bounded above. It can be rewritten as

follows:

m∑
i=1

log(f̂L(Xi|b,Xi)/f̂L(Xi|b,Zi)) +
n∑

j=1

log(f̂L(Yj|b,Yj)/f̂L(Yj|b,Zm+j)).

Defining pm,n = (m− 1)/(m+ n− 1),

f̂L(Xi|b,Zi) = pm,nf̂L(Xi|b,Xi) + (1− pm,n) f̂L(Xi|b,Y), i = 1, . . . ,m,
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Figure 4.1: The prior that produces the Hall kernel when K is uniform.

and therefore

f̂L(Xi|b,Xi)

f̂L(Xi|b,Zi)
=

1

pm,n

· pm,nf̂L(Xi|b,Xi)

pm,nf̂L(Xi|b,Xi) + (1− pm,n) f̂L(Xi|b,Y)
≤ 1

pm,n

.

A similar bound applies for the other component of ALB, implying that

ALB ≤ −
[(

m

m+ n

)
log(pm,n) +

(
1− m

m+ n

)
log

(
n− 1

m+ n− 1

)]
. (4.7)

Using the fact that −[x log(x)+ (1−x) log(1−x)] has its maximum at x = 1/2 when 0 ≤ x ≤ 1,

bound (4.7) implies that

ALB ≤ log(2) ·max

(
m

(m− 1)
,

n

(n− 1)

)
.

Unless one of m and n is very small, the effective bound on ALB is log(2). This reinforces the fact
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that ALB does not have the property of Bayes consistency. While it is true that ALB is an average

of Bayes factors, none of these Bayes factors can ever provide compelling evidence in favor of the

alternative. To reiterate, this problem is overcome by employing ALB in frequentist fashion.

While ALB can take on positive values when the null hypothesis is true, our proof of frequen-

tist consistency shows that, under H0, P (ALB < 0) → 1 as m,n → ∞. This implies that if 0

is used as a critical value, then the resulting test level tends to 0 as m,n → ∞. So, even though

|ALB| does not tend to ∞, the sign of ALB provides compelling evidence for the hypotheses of

interest when the sample sizes are large.

The exact conditional distribution of ALB is known under the null hypothesis, as we use a

permutation test. Nonetheless, it is of some interest to have an impression of the unconditional

distribution of ALB. To this end, we randomly select two normal mixture densities that differ. The

number of components M in the first mixture is between 2 and 20 and chosen from a distribution

such that the probability of m is proportional to m−1, m = 2, . . . , 20. Given M = m, mixture

weights are drawn from a Dirichlet distribution with all m parameters equal to 1/2. Given M = m

and mixture weights, variances σ2
1, . . . , σ

2
m of the normal components are a random sample from

an inverse gamma distribution with both parameters equal to 1/2. Finally, means µ1, . . . , µm of

the normal components are such that µ1, . . . , µm given σ1, . . . , σm are independent with µj|σj ∼

N(0, σ2
j ), j = 1, . . . ,m. The second normal mixture is independently selected using exactly the

same mechanism.

We draw a sample of size 100 from each of the two randomly generated densities (so that

m = n = 100), and then compute ALB. This procedure is replicated on the same two densities

100 times. After this, we repeat the whole procedure for nine more pairs of randomly selected

densities. The results are seen in Figure 4.2. Save for case 3, the proportion of positive ALBs is

nearly 1 in all cases.

We repeated a similar procedure for the null hypothesis setting. The simulation was exactly the

same except that in each of the ten cases, only one density was generated, and a pair of independent

samples (of size 100 each) was selected from this same density. The resulting ALB distributions
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can be seen in Figure 4.3. The proportion of the cases where ALB < 0 for the 10 densities

were, respectively, 0.89, 0.83, 0.83, 0.84, 0.85, 0.87, 0.91, 0.84, 0.84, and 0.76. These results are

consistent with the fact that P (ALB < 0) tends to 1 with sample size.
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Figure 4.2: Distribution of ALB under various alternative hypotheses.
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We feel that ALB has potential for screening variables in a binary classification problem. Since

ALB is negative with high probability under H0, we feel that 0 is a nicely interpretable cutoff for

variable inclusion. However, we leave this topic for future research.
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Figure 4.3: Distribution of ALB under various null hypotheses.
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4.4 Simulations

We perform a small simulation study to investigate the size and power of our test. The kernel

L is taken to be the Hall kernel, L0, as defined in Section 2.4. To explore the effect of the number

of permutations, we generate 500 pairs of data sets, with one data set being a random sample of

size m = 50 from a standard normal distribution, and the other a random sample of size n = 50

from a normal distribution with mean 0 and standard deviation 2. For each of the 500 pairs of

data sets, the 95th percentile of ALBs is approximated using a range of different numbers (N ) of

permutations starting at 100 and increasing by a factor of 1.5 up to 3845. Results are indicated by

the boxplots in Figure 4.4. The percentiles are centered at approximately the same value for all N .

Not surprisingly, the variability of the percentiles becomes smaller as N increases. This implies a

certain amount of mismatch between percentiles at N = 3845 and those at smaller N .
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Figure 4.4: Effect of number of permutations on the 95th percentile of permutation distributions.

The consequence of the mismatch just alluded to can be investigated by determining the true
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conditional and unconditional levels of tests based on small N . For the null case, two data sets,

each of size 50, are generated from a common normal distribution. Since the distribution of ALB is

invariant to location and scale in the null case, we use a standard normal without loss of generality.

For each pair of data sets, the data are randomly permuted 338 times, which leads to 338 values of

ALB. A second set of 3845 permutations is then performed, leading to 3845 more values of ALB.

The proportion of ALBs from the second set that exceed the 95th percentile of the ALBs formed

from the first set is then determined. This proportion is approximately equal to the conditional

level of the test based on 338 permutations. This same procedure is used for each of 500 data

sets, and the resulting distribution of approximate levels is shown in Figure 4.5. The histogram
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Figure 4.5: Distribution of approximate conditional levels of permutation tests under the null
hypothesis. Each conditional level is the proportion of 3845 ALBs from permuted data sets that
exceed the 95th percentile of ALBs formed from 338 permuted data sets. Results are based on
500 replications in each of which both distributions are standard normal.

is centered near 0.05, and 87% of the conditional levels are between 0.03 and 0.07. Furthermore,

an approximation to the unconditional level is
∑500

i=1 α̂i/500 = 0.053, where α̂i is the approximate

conditional level for the ith data set, i = 1, . . . , 500. Based on these results, use of only 338

permutations is arguably adequate.

The same experiment is repeated except now the two data sets are drawn from different distri-

butions, a standard normal and a normal with mean 0 and standard deviation 2. Results from this

experiment are given in Figure 4.6. As in the null case, the conditional levels based on the use of
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Figure 4.6: Distribution of approximate conditional levels of permutation tests under an alternative
hypothesis. Each conditional level is the proportion of 3845 ALBs from permuted data sets that
exceed the 95th percentile of ALBs formed from 338 permuted data sets. Results are based on
500 replications in each of which one distribution is standard normal and the other is normal with
mean 0 and standard deviation 2.

338 permutations are quite good. Eighty-eight percent of the levels are between 0.03 and 0.07, and

the approximate unconditional level is .051.

The proportion of ALBs from permuted data sets that are larger than the ALB computed

from the original data provides a P -value. The P -values obtained with our method (based on 3845

permutations) are compared to the P -values obtained with the Kolmogorov-Smirnov test and Bow-

man’s two-sample test. Results are summarized in Figures 4.7 and 4.8. In 98% of the replications

the K-S P -value was larger than the ALB P -value, and in 57% of the cases the Bowman P -value

was equal to or larger than the ALB P -value. These results suggest that in this case our test has

much better power than that of the Kolmogorov-Smirnov test and power at least comparable to that

of Bowman’s test.

4.5 A bivariate extension of the two-sample test and application to connectionist bench data

Our method can be extended to the bivariate case by using a bivariate kernel density estimate.

Assume now that X = (X1, ..., Xm) are independent and identically distributed from density f

and Y = (Y1, ..., Ym) are independent and identically distributed from g, where Xi and Yj are each

bivariate observations, i = 1, . . . ,m, j = 1, . . . , n.

A product kernel K will be used, i.e., the bivariate kernel K is the product of two univariate
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Figure 4.7: Kolmogorov-Smirnov P -values versus ALB P -values. Results are based on 500 data
sets in each of which one distribution is standard normal and the other is normal with mean 0 and
standard deviation 2. The ALB P -value is less than the KS-test P -value in 98% of cases. There
are only 183 P -values from the KS-test that are less than 0.05.
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Figure 4.8: Bowman P -values versus ALB P -values. Results are based on 500 data sets in each
of which one distribution is standard normal and the other is normal with mean 0 and standard
deviation 2. The number of P -values less than 0.05 for Bowman’s test and the ALB test are 454
and 458, respectively. The ALB P -value is less than, more than and equal to the Bowman P -value
in 49%, 43% and 8% of cases, respectively.
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kernels. For k arbitrary bivariate observations U = (U1, . . . , Uk), Ui = (Ui1, Ui2), i = 1, . . . , k,

and u = (u1, u2), the kernel estimate is defined by

f̂K(u|h,U) =
1

kh1h2

k∑
i=1

K

(
u1 − Ui1

h1

)
K

(
u2 − Ui2

h2

)
,

where −∞ < u1 < ∞, −∞ < u1 < ∞ and h = (h1, h2) is a two-vector of (positive) bandwidths.

We will use the same sort of notation as before, i.e., Zi = Xi, i = 1, . . . ,m, Zi = Yi−m,

i = m+ 1, . . . ,m+ n, Z = (Z1, . . . , Zm+n) and Zi is the object Z with all its components except

Zi, i = 1, . . . ,m+ n. In this case the ith Bayes factor is defined as

Bi =

∫∞
0

∫∞
0

∫∞
0

π(h1, h2)f̂K(Zi|h,Xi) dh1dh2∫∞
0

∫∞
0

π(h1, h2)f̂K(Zi|h,Zi)dh1dh2

, i = 1, . . . ,m,

and similarly for i = m+1, . . . ,m+n. As before the test statistic is ALB =
∑m+n

i=1 logBi/(m+n).

This form may seem daunting, but reduces to a more familiar form if we take π(h1, h2) =

π0(h1/b1)π0(h2/b2)/(b1b2). In this case, proceeding exactly as in Section 2, Bi has the form

Bi =
f̂L(Zi|b,Xi)

f̂L(Zi|b,Zi)
, i = 1, . . . ,m,

and similarly for i = m+ 1, . . . ,m+ n, where b = (b1, b2) and L is defined by (4.2).

We will analyze the connectionist bench data, which consist of measurements obtained after

bouncing sonar waves off of either rocks or metal cylinders. The data may be found at the UCI

Machine Learning repository. There are 60 variables in the data set, with m = 111 and n = 97

measurements of each variable for the metal cylinders and rocks, respectively. We will apply our

test to see if the first two variables have a different distribution for rocks than they do for metal

cylinders. In our analysis K is taken to be ϕ, the standard normal density, and π0 to be of the form

(4.4). In this event L is a t-density with ν degrees of freedom. We will use ν = 3, leading to a

fairly heavy-tailed kernel, which is desirable for reasons discussed previously.

The data for each variable are inherently between 0 and 1, and bivariate kernel estimates display
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boundary effects along the lines x = 0 and y = 0, with the largest bias near the origin. We therefore

use a reflection technique to reduce bias along these two lines. Suppose one has k observations

(x1, y1), . . . , (xk, yk) on the unit square. Each observation (xi, yi) is reflected to create three new

observations: (xi,−yi), (−xi,−yi) and (−xi, yi), i = 1, . . . , k. One then simply computes, at

points in the unit square, a standard kernel density estimate from the data set of size 4k, and

multiplies it by 4 to ensure integration to 1. The value of ALB is computed as described previously

except that each leave-out estimate leaves out four values: the observation at which the estimate

is evaluated plus its three reflected versions. In this way the kde is constructed from data that are

independent of the value at which the kde is evaluated.

Kernel density estimates for variables 1 and 2 in the form of heat maps are shown in Figures

4.9 and 4.10, and contours of the estimates are given in Figure 4.11. The latter figure suggests that

the distributions for metal cylinders and rock are different. The value of ALB turned out to be

0.013, and an approximate P -value based on 10,000 permuted data sets was 0.0076. So, there is

strong evidence of a difference between the rock and metal bivariate distributions. Interestingly,

the percentage of negative ALBs among the 10,000 permutations was 0.9785. A kernel density

estimate based on the 10,000 values of ALB∗ is shown in Figure 4.12.
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Figure 4.9: A heat map of the first two variables of the signals bounced off the metal cylinder.
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Figure 4.10: A heat map of the first two variables measured of the signals bounced off the rock
object.
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Figure 4.11: Contour plots of the first two variables of both rock and cylinder objects. The blue
contour corresponds to the measurements of rocks and red contours correspond to the measure-
ments of the cylinder.
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Figure 4.12: A kernel density estimate computed using 10,000 values of ALB from permuted data
sets. The value of ALB for the original data set was 0.013.

4.6 Conclusion and future work

We have proposed a new nonparametric test of the null hypothesis that two densities are equal.

An attractive property of the test is that its critical values are defined by a permutation distribution,

allaying essentially any concern about test validity. The fact that the statistic is an average of

log-Bayes factors leads to another attractive property: a critical value of 0 leads to a test with

type I error probability tending to 0 with sample size. A simulation study showed the new test

to have much better power than the Kolmogorov-Smirnov test in a case where the two densities

differed with respect to scale. An application to connectionist data illustrated the usefulness of our

methodology for bivariate data.

Future work includes efforts to increase the speed of computing the test statistic and its permu-

tation distribution, especially for large data sets. We are also interested in applying the new test to

the problem of screening variables prior to performing binary classification. A common method

of doing so is to compute a two-sample test statistic for each variable, and to then select vari-

ables whose statistics exceed some threshold. An inherent problem in this approach is objectively
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choosing a threshold. Results of the current paper suggest that 0 would be a natural and effective

threshold for variable screening.

4.7 Appendix

4.7.1 Consistency

Here we prove

R1. frequentist consistency of our test, and

R2. P (ALB < 0) → 1 as m,n → ∞.

Our proof uses the following assumptions.

A1. Under the null and alternative hypotheses the following integrals exist finite:

IX =

∫ ∞

−∞
f(x) log f(x) dx and IY =

∫ ∞

−∞
g(y) log g(y) dy.

When the alternative hypothesis is true, f and g are assumed to be different in the sense that

the total variation distance, δ(f, g), is positive.

A2. The kernel L in ALB (expression (4.3)) is the Hall kernel, L0.

A3. The combined data likelihood cross-validation is maximized over an interval of the form

[(m + n)−1+ϵ, (m + n)−ϵ], where ϵ is an arbitrarily small positive constant. The maximizer

of this cross-validation is denoted b̂m+n.

A4. The ratio m/(m+ n) tends to ρ, 0 < ρ < 1, as m,n tend to ∞.

A5. The densities f , g and ρf(x) + (1− ρ)g(x) satisfy the conditions of (25) that are needed for

the asymptotic optimality of a likelihood cross-validation bandwidth.

A6. Under the null hypothesis, let ℓk(b) be the Kullback-Leibler risk of a kernel density estimate
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based on sample size k, kernel L0 and bandwidth b. Then ℓk satisfies

ℓk(b) = CV (nb)
−1+a + CBb

4 + o
(
(nb)−1+a + b4

)
for positive constants a, CV and CB with 0 < a < 1.

Before proceeding to the proof, remarks about assumption A6 are in order. This condition

is needed only in proving R2, and represents a subset of the cases studied by (25). It has been

assumed merely to allow a more concise proof of R2, which remains true under more general

conditions on ℓk.

The critical values of a test with fixed size α > 0 will tend to 0 as m,n tend to ∞ so long

as ALB tends to 0 in probability under the null hypothesis. Therefore, the power of the test will

tend to 1 if we can show that ALB tends to a positive constant under the alternative. Our proof of

consistency thus boils down to showing that, as m,n tend to ∞, ALB converges in probability to

0 and a positive number under the null and alternative hypotheses, respectively.

For data U = (U1, . . . , Uk), define

CV (b|U) =
1

k

k∑
i=1

log(f̂L(Ui|b,Ui)), b > 0.

The statistic ALB may then be written

ALB =

(
m

m+ n

)
CV (b̂|X) +

(
n

m+ n

)
CV (b̂|Y)− CV (b̂|Z),

where b̂ maximizes CV (b|Z) for b ∈ [(m+ n)−1+ϵ, (m+ n)−ϵ].

Now suppose that U is a random sample from density d, ℓk(b) is the expectation of the

Kullback-Leibler loss of f̂L(·|b,U) and define

Q(k) =
1

k

k∑
i=1

log d(Xi)−
∫

d(x) log d(x) dx,
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where
∫
d(x) log d(x) dx exists finite. Then if d satisfies the conditions of (25) and k → ∞,

CV (b|U) =

∫
d(x) log d(x) dx− ℓk(b) +Q(k) + op(ℓk(b)) (4.8)

uniformly in b ∈ [k−1+ϵ, k−ϵ], where ϵ is arbitrarily small. By the strong law of large numbers

Q(k) converges to 0 in probability. Furthermore, maxb∈[k−1+ϵ,k−ϵ] ℓk(b) tends to 0 as k → ∞. If

the maximizer b̃ of CV (b|U) is in [k−1+ϵ, k−ϵ] it therefore follows that CV (b̃|U) converges in

probability to
∫
d(x) log d(x) dx as k → ∞.

In the null case, (4.8) implies that

(
m

m+ n

)
CV (b|X) +

(
n

m+ n

)
CV (b|Y)− CV (b|Z) =

−
[(

m

m+ n

)
ℓm(b) +

(
n

m+ n

)
ℓn(b)

]
+ ℓm+n(b) + op(ℓm(b)), (4.9)

uniformly in b ∈ [(m + n)−1+ϵ, (m + n)−ϵ], where we have used all of A1-A5. Since b̂m+n ∈

[(m + n)−1+ϵ, (m + n)−ϵ], (4.9) implies that ALB converges to 0 in probability as m,n → ∞,

which proves one part of R1.

To prove R2, we first observe that the bias component of ℓk(b) is free of sample size, and hence

the first order term of (4.9) is free of bias components. Along with A3 and A6, this implies that

(
m

m+ n

)
CV (b|X) +

(
n

m+ n

)
CV (b|Y)− CV (b|Z) =

−CV ((m+ n)b)−1+a (ρa + (1− ρ)a − 1) + op
(
((m+ n)b)−1+a + b4

)
, (4.10)

uniformly in b ∈ [(m+ n)−1+ϵ, (m+ n)−ϵ]. By A5, b̂m+n is asymptotic in probability to bm+n, the
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minimizer of the Kullback-Leibler risk ℓm+n. Along with (4.10), this implies that

ALB = −CV ((m+ n)bm+n)
−1+a (ρa + (1− ρ)a − 1)

+op
(
((m+ n)bm+n)

−1+a + b4m+n

)
.

By A6, we have

bm+n ∼ C0(m+ n)−(1−a)/(5−a),

where

C0 =

[
CV (1− a)

4CB

]1/(5−a)

.

Combining the previous results yields

ALB = −
(

CV

C1−a
0

)
(ρa + (1− ρ)a − 1) (m+ n)−4(1−a)/(5−a)

+op((m+ n)−4(1−a)/(5−a)).

Using the fact that (ρa + (1− ρ)a − 1) > 0 it now follows that P (ALB < 0) → 1 as m,n → ∞.

Turning to the alternative case, we apply (4.8) to conclude that CV (b̂|X), CV (b̂|Y) and

CV (b̂|Z) are consistent for
∫
f(x) log f(x) dx,

∫
g(x) log g(x) dx, and

∫
fρ(x) log fρ(x) dx, re-

spectively, where

fρ(x) = ρf(x) + (1− ρ)g(x).

It follows that ALB is consistent for ∆ = ρKL(f, fρ) + (1 − ρ)KL(g, fρ), where KL(f1, f2)

denotes the Kullback-Leibler divergence between f1 and f2. By the Csiszár-Kemperman-Kullback-

Pinsker inequality,

∆ ≥ log e

2
·
[
ρδ(f, fρ)

2 + (1− ρ)δ(g, fρ)
2
]

=
log e

2
·
[
ρ(1− ρ)2δ(f, g)2 + (1− ρ)ρ2δ(f, g)2

]
=

(
log e

2

)
ρ(1− ρ)δ(f, g)2 > 0,
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with the last inequality following by assumption. This completes the proof of R1.
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5. SCREENING METHODS FOR CLASSIFICATION BASED ON NON-PARAMETRIC

BAYESIAN TESTS

5.1 Abstract

Feature or variable selection is a problem inherent to large data sets. While many methods have

been proposed to deal with this problem, some can scale poorly with the number of predictors in

a data set. Screening methods scale linearly with the number of predictors by checking each

predictor one-at-a-time, and are a tool used to decrease the number of variables to consider before

further analysis or variable selection. For classification, there is a variety of techniques. There

are parametric based screening tests, such as t-test or SIS based screening, and non-parametric

based screening tests, such as Kolmogorov distance based screening (13), and MV-SIS (14). We

propose a method for variable screening that uses Bayesian-motivated tests, compare it to SIS

based screening, and provide example applications of the method on simulated and real data. It is

shown that our screening method can lead to improvements in classification rate. This is so even

when our method is used in conjunction with a classifier, such as DART, that is designed to select

a sparse subset of variables. Finally, we propose a classifier based on kernel density estimates that

in some cases can produce dramatic improvements in classification rates relative to DART.

5.2 Introduction

Classification involves predicting a class label for an observation, given a set of predictor vari-

ables. The techniques for doing this now are of a wide range, including support vector machines

(43), Tree based methods (44), Bayesian trees (7) and gradient boosting trees (45).

It is common to encounter a data set with many features, but rarely are all of them important.

Picking a subset of these features quickly is a task that is desired, but can be tricky for very large

data sets. Removing unimportant variables can result in dramatic improvement for some of the

previously mentioned classification methods. Feature selection is not a new field, and can be

divided into three categories: screening or filter based methods, wrapper methods, and embedded
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methods (46). Screening methods examine each variable one at a time to see if it provides useful

information, and as a result scale linearly with the number of predictors. However, examining each

variable individually can cause information on joint behavior of variables to be lost, or can cause

collinear variables to be selected (46). Wrapper methods fit different models, and then evaluate

each one according to some criterion. The model that does best according to this criterion is

selected. While this tends to select good variable subsets, fitting every model can be extremely

time-consuming, especially if the data set is very large (46). Embedding methods produce a model

that has some sparsity built into it, producing a set of useful variables and a model built with them,

simultaneously. The speed of different embedding methods varies with the strategy used to obtain

sparsity, but these are typically slower than screening methods (46).

Our focus in this paper will be on screening methods. It is a common strategy to employ

a screening method and then employ an embedding method (such as LASSO) afterwards. Fan

(11) employs this strategy and improves both the time it takes to run LASSO and the accuracy

of the model as a whole. Since then several filter methods have popped up. For classification in

particular, maximum marginal likelihood screening (47), MV-SIS (14), and Kolmogorov distance

screening (13) are some of the screening tests that have been published. Most of these methods

are applied to linear discriminant analysis and show improvement in applying these methods to

a data set after the screening has been performed. This paper proposes a new screening method

when the number of classes is known to be two, and show that it results in improved classification

accuracy in settings where the simple model underlying linear discriminant analysis does not hold.

Our screening method identifies informative features by using a two-sample Bayesian test that

checks whether two data sets share the same distribution(48). One of our goals is to show that

classification methods, including BART (7), DART (7) and SVM (43), can be improved when

preceded by our screening procedure.

5.3 Methodology

Our screening method is based on computing a statistic for each individual feature. We will

use kernel density estimates of the two distributions corresponding to the two classes. The idea
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is similar to that of Kolmogorov distance screening: if it seems likely that the two classes have

different distributions for a feature, then we will keep the feature. We define a test statistic that can

make this determination.

Suppose we observe the data X, an (m+n)×p matrix whose ith row, (Xi1, . . . , Xip), contains

the values of the p variables for one subject. The ith element, Yi, of vector Y is 0 or 1 and indicates

the class to which the ith subject belongs, i = 1, . . . ,m + n. For now, suppose that Y1, . . . , Yn

are 0 and Yn+1, . . . , Yn+m are 1. We have n + m data vectors and p features. Consider the data

Xj = (X1j, . . . , X(m+n)j) for feature j and define ĥi(·|Xj, b) to be a kernel density estimate that

has bandwidth b and uses all the data in Xj except that of the ith subject:

ĥi(x|Xj, b) =
1

nb

∑
r ̸=i,1≤r≤n+m

K

(
x−Xrj

b

)
.

We also compute kernel estimates from the data sets consisting of observations where Y = 0 and

Y = 1. These are

f̂i(·|Xj, b) =
1

nb

∑
r ̸=i,1≤r≤n

K

(
x−Xrj

b

)
and

ĝi(·|Xj, b) =
1

nb

∑
r ̸=i,n<r≤n+m

K

(
x−Xrj

b

)
.

Then we define the test statistics ALBj , j = 1, . . . , p:

(m+ n)ALBj =
m∑

i=n+1

log(ĝi(Xij|Xj, b)) +
n∑

i=1

log(f̂i(Xij|Xj, b))−

n+m∑
i=1

log(ĥi(Xij|Xj, b)).

Define fj,mix = (nfj + mgj)/(n + m), where fj and gj are the densities of feature j for classes

0 and 1, respectively. The statistic ALBj is an approximately unbiased estimator of the following

quantity: (
n

m+ n

)
KL (fj, fj,mix) +

(
m

m+ n

)
KL (gj, fj,mix) .
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In the case f ≡ g, ALB converges to 0 in probability. The null distribution of ALB can be

assessed using a permutation-based procedure to determine if two sets of observations arise from

a common distribution. We refer to (48) for a thorough exploration of this procedure.

In (48), it is encouraged to use a bandwidth that is selected by leave-one-out cross validation.

While this strategy has potential, we believe it to be too computationally expensive to pick a band-

width for every variable using this procedure. We only have to do this p times, suggesting linear

scaling with the variable length, but this introduces quadratic scaling with n, which is prohibitive

for large data sets. Instead, we opt to use a normal plug-in bandwidth in conjunction with the heavy

tailed Hall kernel, which is:

K0(z) =
1√

8πeΦ(1)
exp

[
−1

2
(log(1 + |z|))2

]
.

Simulation results show that the constant for the plug-in is 0.162 to 3 decimal places, resulting in

the following plug-in rule:

bplug-in(X1, X2, ..., Xn) = 0.162n−1/5s,

where s is an estimate of the underlying standard deviation. One possibility is to take s to be the

sample standard deviation, but we prefer the more robust choice sR = IQR(X1, X2, ..., Xn)/1.35.

Suppose we have computed ALB1, ALB2, ALB3, ..., ALBp. The matter still remains in choos-

ing a cutoff for the ALBs such that we select all variables with ALB larger than the cutoff. Below

are some possible ways of doing so.

A1. Choose the cutoff to be some percentile of ALB1, ALB2, ALB3, ..., ALBp. This is in line

with what some of the authors in SIS and SIRS propose. Suppose we expect d features to

be important in the data set, then we can set our cutoff to be the 100(1 − d/p)th percentile.

Clearly, the largest d test statistics are the most likely to be significant. This does have some

flaws, as a good choice of d may not be obvious. The authors in SIS (11) and SIRS (12)

argue that a conservative choice for d is n or n log(n), but this can be argued to be arbitrary.
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A2. Simulate l data sets, each of size m+n, that are all random samples from a standard normal

distribution. The first m and last n values of each sample become two data sets, from which

ALB is calculated. We pick the cutoff to be the largest of the l ALB values. This is also an

idea proposed by SIRS (12), but it is unclear what l should be. An important fact that makes

this procedure sensible for our purposes is that the null distribution of ALB is invariant to

location and scale.

A3. Permute the response vector Y with a randomly chosen permutation matrix P . Rather

than use the permutation matrix on a single predictor, we use it on all the predictors to

form X∗
1 = PX1,X

∗
2 = PX2, ...,X

∗
p = PXp. We then compute ALB∗

1 , . . . , ALB
∗
p from

X∗
1, . . . ,X

∗
p, respectively. This procedure is repeated B − 1 times using B − 1 more ran-

domly chosen permutation matrices, with the result being a total of Bp values of ALB∗.

The cutoff is selected to be a percentile of these Bp values. This procedure approximates the

null distribution of ALB for a randomly selected feature conditional on the observed data.

Our experience says that B need not be extremely large in order for the approximation to be

good. Another possibility is to use different permutations on different features, as proposed

in A4.

A4. Randomly select a covariate, say Xj . For this covariate, permute the labels, and compute

the test statistic, call it ALB∗
1 . Using the same feature Xj , repeat this procedure d times,

resulting in ALB∗
1 , . . . , ALB

∗
d . We randomly select another covariate without replacement,

and repeat the previous steps B times, resulting in a total of Bd values of ALB. Once

this is done, we choose the cutoff to be a percentile of these Bd values. This method also

approximates the null conditional distribution of ALB for a randomly selected feature, but

potentially has the advantage of requiring fewer statistics to be computed than in A3.

A5. Choose the cutoff based on an interpretive approach. A feature Xj can be considered

“useful" if either fj(x)/gj(x) > T or fj(x)/gj(x) < 1/T , where T > 1. Defining
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p = n/(m+ n), these inequalities are true if and only if

fj(x)

fj,mix(x)
>

T

pT + (1− p)
or

gj(x)

fj,mix(x)
>

T

(1− p)T + p
,

where 0 < p < 1. As noted previously ALBj estimates

p

∫
log

(
fj(x)

fj,mix(x)

)
fj(x) dx+ (1− p)

∫
log

(
gj(x)

fj,mix(x)

)
gj(x) dx

which suggests that we define a variable as useful if

ALBj ≥ p log

(
T

pT + (1− p)

)
+ (1− p) log

(
T

(1− p)T + p

)
.

This requires a somewhat subjective choice of T , but is a strategy with fairly low computa-

tional resources required. The analogy of density ratios and Bayes factors suggest that we

use Jeffreys’ scale to choose T . Jeffreys’ cutoff for substantial evidence is T =
√
10, but

in our experience this cutoff is too conservative. We recommend a cutoff of T = 2, which

results in an ALB threshold of 0.288 when m = n. This can be made higher or lower based

on the field to which the method is applied.

A6. An empirical but computationally daunting way to approach this problem is to proceed with

two training sets and a classification method. We can choose the cutoff that minimizes the

error rate of the classification method when it is trained on one of the training sets and then

applied to the other. To keep the computational scaling of the procedure linear with p, we

recommend restricting the number of candidate cutoff values to be fairly small, say no more

than ten.

A7. The Bayes factor interpretation of ALBj entails that variable j should never survive screen-

ing when ALBj < 0. Picking 0 as a cutoff corresponds to using T = 1 in A5. While this

choice may seem liberal, (48) show that an ALB cutoff of 0 produces a test whose type I
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error probability tends to 0 as m+ n tends to ∞.

We note the following in regards to each procedure. Simulating i.i.d. random normal variables

and performing a permutation based procedure both result in ALBs that offer insight on how ALBs

behave in the case where the data from classes do not differ in distribution. Simulating normal

random variables is a smaller computational burden than repeatedly permuting the labels, but the

distributions sampled from permutation will often be closer to those of the observed features, and

hence more relevant.

It should be noted that a particular screening method will work differently with different clas-

sifiers, although this is perhaps to be expected. We encourage the use of a classifier that can take

advantage of differences in distribution other than location differences. A popular classifier is lin-

ear discriminant analysis (LDA), by which we mean the version that assumes equal covariance

matrices for the two classes. Features identified as important due to a scale difference between

classes will usually be of no use to LDA.

The least computationally expensive procedures involve (a) choosing a cutoff based on the

interpretability of ALB, and (b) choosing the cutoff to be one of the top percentiles of the ALBs.

As previously discussed, two interpretable ALB cutoffs are 0 and one resulting from choosing

T = 2. Using either of these cutoffs produces a test with power tending to 1 as m + n tends to

∞, since ALBj converges to 0 in probability when fj ≡ gj (48). Choosing a cutoff as in (b) is

recommended if there is a strong idea as to how many variables are expected to be relevant or if

there is a critical number of variables that are needed for another classifier to work well.

Lastly we wish to note that each ALB has a finite upper bound, as it is easily shown that

ALBj ≤ log(2) ·max

(
m

(m− 1)
,

n

(n− 1)

)
,

which implies that ALBj is essentially bounded by log(2) so long as m and n are not too small.

An alternative strategy for choosing a cutoff is to specify q in log(2q), where .5 ≤ q ≤ 1. We

recommend q = .6 in this approach. Choosing q = .5 results in an ALB cutoff of 0, and choosing
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q = 1 results in a cutoff of log(2). The larger the q value, the harsher the screening method and the

less variables survive the cutoff.

5.4 Consistency results

We begin with the assumption that every variable satisfies conditions A1-A5 in (48). We will

also assume that the numbers, m and n, of samples for the two classes tend to infinity, and the num-

ber of variables, p, is fixed. Suppose that a variable belongs to class D if the variable marginally

offers information, which means that the variable has a different distribution for one class than it

does for the other. Finally, we assume that the variables are independent.

Theorem 2. If the above assumptions hold, then

lim
n,m→∞

P (max
i∈Dc

ALBi < min
j∈D

ALBj) → 1. (5.1)

If we choose a cutoff as in A7 (in our Section 3) and call it Z, then we also have the following

result:

lim
n,m→∞

P (min
j∈D

ALBj > Z ∩max
j∈Dc

ALBj < Z) → 1. (5.2)

Proof. We consider the case where Z = 0, although the actual value of Z is immaterial. Result

(5.2) implies (5.1), so we only prove the former. Using the fact that P (A∩B) ≥ 1−P (Ac)−P (Bc),

it is enough to show that both P (minj∈D ALBj > 0) and P (maxj∈Dc ALBj < 0) tend to 1.

We only consider P (maxj∈Dc ALBj < 0) as the proof for the other probability is similar. We

have

P (max
j∈Dc

ALBj < 0) = P

( ⋂
j∈Dc

{ALBj < 0}

)
=

∏
j∈Dc

P (ALBj < 0)

≥
(
min
j∈Dc

P (ALBj < 0)

)N

, (5.3)
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where N is the number of elements in Dc. For each j ∈ Dc, (48) show that P (ALBj < 0) → 1 as

m and n tend to ∞. Since N is finite, this implies that the quantity on the right-hand side of (5.3)

tends to 1, from which the result follows.

It is clear that if p tends to ∞ at a sufficiently slow rate, then Theorem 1 remains true. However,

determining the precise rate at which p can increase relative to m and n requires stronger results

than provided by (48), and we will not pursue this direction further.

We now show simulation results for various values of m = n, p and r, where r represents

the proportion of important variables, i.e., variables for which the class distributions are different.

We generate 500 variables for a binary classification problem in the following fashion. If it is

important, the variable is drawn for one class from a t-distribution with 4 degrees of freedom, and

drawn from the other class from a mixture of two normal distributions, where the mixing parameter

is 1/2, the standard deviation of both normal distributions is 1, and the means are -2.5 and 2.5. If

instead the variable is unimportant, suppose that it is drawn from a standard normal. We will name

the method of generating variables in this setting “a shape difference". Finally, each variable is

determined to be important or not by performing a binomial trial with success probability r = 1/2.

Figures 5.1, 5.2, and 5.3 show how the cdfs of the ALBs change depending on m and n.
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Figure 5.1: Comparison of ALB CDFs in when the training set sizes are equal to 10 and variables
are generated according to “a shape difference".
The black curve denotes the CDF of ALBs generated from data where the classes are permuted.
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Figure 5.2: Comparison of ALB CDFs in when the training set sizes are equal to 20 and variables
are generated according to “a shape difference".
The black curve denotes the CDF of ALBs generated from data where the classes are permuted.
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Figure 5.3: Comparison of ALB CDFs in when the training set sizes are equal to 40 and variables
are generated according to “a shape difference".
The black curve denotes the CDF of ALBs generated from data where the classes are permuted.

As the sample sizes m and n increase, the ALBs for important variables gradually increase.

Even when the total number of observations is only eight percent of the total number of variables,

we achieve the property that the largest ALB of the unimportant variables is smaller than the
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smallest ALB of the important variables. The black curve shows the cdf of ALBs computed by

permuting the labels for each variable three times and computing the ALB each time. A cutoff of 0

is not larger than the largest unimportant variable for any n, but is still useful for discarding a large

portion of the unimportant variables. On the other hand, using a large percentile of the permuted

variables can result in discarding almost all of the unimportant variables, and at the largest sample

size, choosing the cutoff to be the maximum of the permuted ALBs does indeed almost perfectly

separate the important and unimportant variables.

5.5 Discussion of classification methods

Ideally, one should choose the screening method and classifier that work best together. Good

examples of this principle are provided by the relationship that classification methods such as

logistic regression, support vector machines, and linear discriminant analysis have with t-test based

screening. Discriminant analysis, support vector machines without a kernel trick, and logistic

regression are designed to take advantage of location differences between classes. It is therefore

natural to precede them with t-test screening, which, of course, is designed to detect differences

between means. On the other hand, support vector machines that use a kernel trick create a hyper-

plane that best separates the two classes essentially after a transformation is performed, and can

therefore deal effectively with many types of differences between distributions. To take advantage

of this ability, it is thus best to use a screening method that can detect non-location differences. In

summary, t-test screening is a natural method to use when linear discriminant analysis or logistic

regression are deemed to be appropriate classifiers, but is not necessarily a good method when a

support vector machine with a kernel trick is required.

In Figures 5.4 and 5.5 two (important) variables are generated according to a “shape differ-

ence". The bimodality of one of the two class distributions makes the classes hard to separate with

a plane. Figure 5.4 shows the performance of a support vector machine when only two relevant

variables are used for classification, while Figure 5.5 shows the improvement in the same situation

when the kernel trick is applied to detect non-location based differences.

Our method seeks to outperform t-test screening by considering differences other than ones
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of location type. Of course, this performance is not free. It comes with the cost that we lose

some power in detecting differences of means. For our method to work better with a classifier,

the classifier must have the ability to distinguish classes that display non-location differences. For

example, a set of variables whose classes differ only with respect to scale would not be useful to

support vector machines without the kernel trick and LDA, as there would be no hyperplane that

nicely separates the classes. A kernel trick or increasing the number of variables by considering

interactions and squared terms can sidestep this issue. But adding variables is not ideal, as a goal

of our methodology is to decrease computational complexity.
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Figure 5.4: Prediction accuracy of two important variables in the setting of “κ" using a "linear"
svm. The colors represent the predictions that the SVM produces. The line represents the discrim-
inator that a linear SVM produces to discriminate the classes. The triangle and circle represent
which class the observation arises from.

Finally, we would like to add that even though SVM with the kernel trick is a fine classification

method that uncovers many different types of differences between variables, its performance can

be degraded harshly by the presence of noisy variables. To illustrate this, we use data in the

same setting as the “shape difference". We constructed a training and testing set such that both

consist of 10 observations from each class. Five hundred variables were used, with only 10% on
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Figure 5.5: Prediction accuracy of two important variables in the setting of “κ" with an SVM that
uses a kernel trick. The colors represent the predictions that the SVM produces when a kernel trick
is applied. The triangle and circle represent which class the observation arises from. Classification
is much better in this case because the trick enables the classification method to become capable
of capturing differences outside of location shifts.

average being important. All data for unimportant variables have a standard normal distribution.

If a variable is important, then its distribution in one class is a bimodal mixture of two normals

and in the other class a t-distribution with 4 degrees of freedom. The normal distributions in the

mixture both have standard deviation 1 and means of -2.5 and 2.5. We trained an SVM with the

radial basis kernel on all of the observations, and trained another SVM with the radial basis kernel

but used only variables whose ALB value was larger than the interpretative cutoff of log(1.2).

Choosing this cutoff is an example of A5, and tends to be more “conservative" than a permutation

based procedure with significance level of 0.01 or more. We repeat this procedure 100 times, and

report on its accuracy in Figure 5.6. In general, classification accuracy is greatly improved, false

negatives rarely happen after screening and the number of false positives is reduced.

The ALB screening method need not be the final say as to which variables to include. Two

variables that are individually important but highly correlated might be selected, although this

may not be ideal for some classifiers. Screening can simply be a precursor that simplifies the

job of a classifier, which does further variable selection. Even methods that can perform variable
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Figure 5.6: Boxplots displaying the accuracy of SVM models when the data are generated from
model where 10% of the variables are important and differ according to a “shape difference".
To illustrate the accuracy of the methods, we do the following. First, suppose a positive case
corresponds to an observation being in class 1 and a negative case corresponds to an observation
being in the other class. Then to show the accuracy of the SVMs, we show boxplots on the number
of “True Positives", “True Negatives", “False Positives", and “False Negative" occurrences.
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selection and modeling simultaneously can benefit from having the number of variables reduced

dramatically by screening. This is observed in SIRS (12), SIS (11), and is also true in our case.

5.6 Interaction with BART and a tailored classification method

We have recommended using classification methods that can take advantage of features for

which the classes have non-location differences. Methods that do further variable selection or that

can handle sparse data sets can also fare quite well with our screening methods. BART and DART

are methods having few parametric assumptions and that are able to capture a large variety of fea-

tures from the data. BART has issues as the number of predictors grow, and DART has been pro-

posed as a solution for this issue (7). While DART can handle the case where many predictors are

irrelevant, there is a cost. Mixing times of the chains for DART are increased compared to BART,

and a prior that encourages sparsity may cause DART to get trapped in a posterior mode when

the MCMC procedure to estimate it is run (9). While we cannot directly abate these problems,

decreasing the number of variables helps speed up the MCMC procedure. Our screening method

can decrease the number of variables at a faster rate than DART can. DART is resilient against

correlated nuisance variables and can therefore eliminate variables that survive ALB screening but

are irrelevant due to collinearity. We provide simulations showing that use of our screening method

before BART or DART can result in improved misclassification rates and computing speeds.

We generate data in the same context as 5.2, but instead roughly 10% of the variables are

relevant. If a variable is irrelevant, the distribution of the variable for both classes is standard

normal. To assess the performance of a classifier, we computed the Rand index, or the percentage

of correct decisions the classifier has made. We compute the Rand index for the BART and DART

procedures applied to all variables, and the Rand index of the same procedures applied to variables

that survive ALB screening. We consider different training set sizes that vary from 5 to 20. The

testing set size for each simulation is the same as the training set size. We repeat this 100 times for

each sample size.

Figures 5.7 and 5.9 show how accurate BART and DART alone are in these settings and Figures

5.8 and 5.10 show how the methods do when variables are screened for importance beforehand.
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There is a notable gain in the Rand index as the training set size gradually increases for both

methods. Of greater note is that the time it takes to run both procedures is decreased. Figure

5.11 shows the amount of time it takes the BART method to run before screening and Figure 5.12

shows how long the method takes after screening. Screening on average shaves off at least 10

seconds of computation time while increasing the average accuracy. This is an interesting result,

as the methods themselves, DART especially, tend to be robust to irrelevant variables. However,

the figures suggest that a larger sample size is required to achieve that robustness.
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Figure 5.7: A box plot of the rand index of BART in the setting of “a shape difference". We vary
m and n but have that m = n, and the training size in the plot denotes m + n. We repeat each
simulation 100 times for each sample size. Roughly 10% of the variables are relevant.

5.6.1 A simple Bayesian classifier

Suppose our goal is to simply leverage the differences between variables, regardless of the type

of difference, and that we assume independence between variables. We can construct a simple

Bayesian method for classification in the following fashion. For each variable, we compute two

kernel density estimates, one for each class. For each variable i, let f̂i and ĝi be kernel density

estimates using all variable i data from classes 1 and 2, respectively. The prior probability that a

variable arises from a class is assumed to be proportional to the number of observations for that

class. Let x = (x1, ..., xp) be an observation to be classified. If the underlying densities are known,
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Figure 5.8: A box plot of the rand index of BART when BART is improved by screening. This is
in the same setting as 5.7. The difference between the two plots is that we screened the variables
with the ALB procedure before applying BART. We choose variables such that all generated ALBs
are larger than the interpretable cutoff of log(.6) + log(2). The power of the classification method
grows large when enough data is accrued. The interpretive cutoff is likely to give variables that
are quite conservative, and power of the approach is likely to be even larger if a permutation based
cutoff is utilized instead.
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Figure 5.9: A box plot of the rand index of DART. This is of the same setting as 5.7, the difference
is we use DART instead of BART as it is capable of automatically performing variable selection.

then the conditional probability that x came from class 1 is

p(x) = P (Y = 1|x) =
n

m+n

∏
i∈D fi(xi)

n
m+n

∏
i∈D fi(xi) +

m
m+n

∏
i∈D gi(xi)

, (5.4)
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Figure 5.10: A box plot of the rand index of DART improved by screening. This is in the same
setting as 5.9. The difference here is we screen the variables with the ALB procedure before
applying DART. We choose variables such that all generated ALBs are larger than the intepretable
cutoff of log(.6) + log(2). The power of the classification method has improved after screening
for variables, despite DART being fully capable of automatically performing variable selection
automatically.
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Figure 5.11: A box plot of the time it took to run DART.
The simulation is of the same setting as 5.7.

where D is the set of indices i such that fi ̸≡ gi. Of course, the densities and D are unknown,

but p(x) can be estimated using kernel density estimates, and D can be replaced by D̂, the set of
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Figure 5.12: A box plot of the time it took to run DART post screening. This is in the same
setting as 5.11. The difference here is we screen the variables with the ALB procedure before
applying DART. The screening procedure itself takes much less than half a second, and as a result
of removing a large number of irrelevant variables, greatly improves the amount of time it takes
for DART to run.

indices such that the corresponding variables survive screening:

p̂(x) =
n

m+n

∏
i∈D̂ f̂i(xi)

n
m+n

∏
i∈D̂ f̂i(xi) +

m
m+n

∏
i∈D̂ ĝi(xi)

. (5.5)

A classifier based on (5.5) can be a powerful tool for capturing marginal differences in distri-

butions, but is incapable of leveraging differences that may lie in the dependence structure of the

variables. To use (5.5), we say that an observation x belongs to class 1 if p̂(x) > n/(m + n) and

to class 2 otherwise. We have found this classifier to have strong accuracy when dealing with inde-

pendent variables, or with settings where the difference in multivariate distributions is dominated

by marginal differences.

To illustrate the effectiveness of the classifier based on (5.5), we perform a simulation similar

to the one referenced in Figure 5.1 but under a variety of different sample sizes. We repeat this

procedure 5 times. For each sample size, we generate a balanced testing set of the same size, and

compute a Rand index. A plot of the Rand indices against the sample size is found in Figure 5.13.

The power of the classification method grows to be quite large at even small m + n values. Since

the interpretive cutoff tends to be conservative, power of the approach is likely to be even larger if
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a permutation based cutoff is utilized instead. At a training size of just 9 samples in each group,

the classifier makes perfect predictions over 75% of the time.
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Figure 5.13: A box plot of the Rand index of the Bayesian classifier. The classifier can be seen by
examining 5.5. We generate data in the same context as 5.2 but vary m and n so that m = n, and
the training size denotes m+ n. We choose variables such that all generated ALBs are larger than
the intepretable cutoff of log(1.2).

5.7 Application on simulated data sets

We want to compare our method to t-test screening and also compare performance of the

different choices of ALB cutoff. There are at least two ways to go about this. One is to compare

the percentage of variables that survive screening from both procedures, and the other is to apply a

classification method after screening and see which method has a better classification rate. These

procedures are carried out in three cases:

Case 1 – Location differences. There are 600 variables, and those that are important arise

from a case where there is a mean difference between classes. If the variable is important,

one class has a standard normal distribution and the other a normal distribution with mean 1

and standard deviation 1. We let roughly 5% of the variables be important by generating 600
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independent Bernoulli variables, each with success probability 0.05. This way of determin-

ing important variables is used in Cases 2 and 3 as well. Also, in this case and the following

two the unimportant variables have standard normal distributions. The classifier we will use

to compare performance in this case is SVM without the kernel trick.

Case 2 – Scale differences. There are 600 variables, and those that are important arise from

a case where there is a variance difference between classes. If the variable is important, one

class has a standard normal distribution and the other a normal distribution with mean 0 and

standard deviation 3. We let roughly 20% of the variables be important, and the classifier

used is the support vector machine with a kernel trick.

Case 3 – Shape differences. There are 600 variables, and those that are important arise from

a case where the class distributions have different shapes. If the variable is important, one

class has a standard t-distribution with 4 degrees of freedom and the other a bimodal mixture

of two normal distributions with means -2.5 and 2.5 and the same standard deviation of 1.

Roughly 10% of the variables are important, and the classifier used is the support vector

machine with a kernel trick.

For all three cases, screening was done and the classifier built from a training set of m + n ob-

servations on each variable, where m = n. The classifier so built was applied to predict m + n

observations, and the resulting Rand index was calculated. In t-test screening, variables were se-

lected when their P -values were smaller than 0.005. We repeated this procedure 100 times for

each sample size. Figures 5.14-5.16 show, respectively, how well the methods performed for three

ways of choosing an ALB cutoff: a “fixed type I error rate" approach, the largest n +m values of

ALB, and a cutoff equal to the interpretable value of log(1.2).

The results of these simulations suggest that ALB screening is effective at detecting location

differences, as in Case 1, but not to the same degree as t-test screening. In Case 1, the perfor-

mance of the SVM with ALB screening is better than with no screening, but worse than with t-test

screening. The proportion of variables that survive ALB screening steadily increases as sample size
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increases, but at a slower rate than with t-test screening. In Cases 2 and 3, t-test screening does no

better than no screening in terms of classification accuracy. Regarding preservation of important

variables, t-test screening does not improve as the sample size increases, but ALB screening does.

5.8 Application to the GISETTE data

The GISETTE data are obtained from m = 3000 and n = 3000 handwritten images of the

digits 4 and 9, respectively. For each of the 6000 images, p = 5000 variables are measured, some

of which are irrelevant probes, and the others pixel intensities. We will perform classification on

these data, using different screening methods to choose different subsets of the variables. We will

rely on DART to be the primary classification method and will explore how it performs when aided

by different screening methods.

The data set was randomly split into two halves. The first half was treated as the training data.

We trained our classifier and computed t-statistics and ALB statistics on these data. The second

half was treated as the validation set, and we computed the Rand index from these data.

Five screening methods were compared. We implemented A4, setting B = 1000 and d = 1

and choosing variables such that ALB was larger than the 99.5th percentile of ALB∗ values. To

compare this with t-test screening, we picked variables whose t-test P -values were less than 0.005.

We tried screening method A5, with the interpretable cutoffs of log(1.2) and 0. We compare the

Rand indices of these methods with that when no screening of variables is used. Before proceeding

with any of the methods, we removed each variable for which all 6000 data values were the same.

As a result there were only 4835 variables in the full data set rather than 5000. A summary of Rand

indices is given in Table 5.1.

For these data, t-test screening does as well as ALB screening based on A4 and the 99.5th

percentile. The difference between the two methods is that ALB retains the same accuracy while

picking roughly 200 fewer variables. The interpretable cutoff rule does the worst, but 75% accuracy

using only four “pixel" measurements is a very interesting result. We believe this is a setting where

most variables, or "pixels," that are marginally important are ones that are colored in for one of

the two numbers (4 or 9) but not the other. This can be interpreted as a location difference, since

88



0.4

0.5

0.6

0.7

10 20 30
Total training size

R
an

d 
in

de
x

0.00

0.25

0.50

0.75

10 20 30
Total training size

P
ro

po
rt

io
n 

of
 c

or
re

ct
 v

ar
ia

bl
es

 th
at

 s
ur

vi
ve

 s
cr

ee
ni

ng

0.4

0.5

0.6

0.7

10 20 30
Total training size

R
an

d 
in

de
x

0.00

0.25

0.50

0.75

10 20 30
Total training size

P
ro

po
rt

io
n 

of
 c

or
re

ct
 v

ar
ia

bl
es

 th
at

 s
ur

vi
ve

 s
cr

ee
ni

ng

0.4

0.5

0.6

0.7

10 20 30
Total training size

R
an

d 
in

de
x

0.00

0.25

0.50

0.75

1.00

10 20 30
Total training size

P
ro

po
rt

io
n 

of
 c

or
re

ct
 v

ar
ia

bl
es

 th
at

 s
ur

vi
ve

 s
cr

ee
ni

ng

Figure 5.14: Simulation results for t-test screening and ALB screening that uses A4. Both the t-test
and ALB screening are performed so that the type I error rate of each test is .05. D is set to 2 and
B is set to 1000. Red, green and blue box plots are for no screening, t-test screening, and ALB
screening, respectively. The first, second and third row of plots correspond to cases 1, 2 and 3,
respectively.
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Figure 5.15: Simulation results for t-test screening and ALB screening that uses variables with
n + m largest values of ALB. The colors of the box plots have the same meaning as they do in
Figure 5.14.
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Figure 5.16: Simulation results for t-test screening and ALB screening with cutoff log(1.2). The
colors of the box plots have the same meaning as they do in Figure 5.14.
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Rand Index Screening Method Number of variables chosen
0.947 ALB > T ∗

0.005 1321
0.942 ALB > 0 1946
0.750 ALB > log(1.2) 4
0.947 Pt < 0.005 1540
0.935 No screening 4835

Table 5.1: Classification and screening results for GISETTE data. All methods used a balanced
training and testing set that both consisted of 3000 observations. The quantities Pt and T ∗

0.005 are,
respectively, the P -value of a t-test and the 99.5th percentile of permuted ALBs.
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Figure 5.17: Rand index for the GISETTE data as a function of number of variables used. The
Rand index is computed for a DART classifier using only those variables having the largest 2j

t-statistics or the largest 2j values of ALB, where j = 3, . . . , 11. The red points correspond to
ALB screening and blue points to t-statistic screening.

the intensity of a colored-in pixel is larger than the intensity of a pixel that is rarely touched.

We also believe this is the reason why t-test screening finds more important variables than does

ALB screening based on the same type I error rate. Despite being a setting where mostly location

differences exist, ALB ends up doing as well as t-test screening in terms of Rand index, at least

when using a type I error rate of 0.005. In general we believe that choosing a cutoff based on a type

I error rate or using 0 as a cutoff is a good strategy for data sets where n and p are both large. A

large amount of data allows us to choose fairly small significance thresholds while still maintaining
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good power. Choosing variables that have the largest n+m values of ALB in this case results in no

variables being screened, and so we elect not to explore that avenue. A cross-validation procedure

for selecting a cutoff is expensive to perform due to the large values of p and n+m.

To explore the impact of choosing a cutoff based on quantiles, we explored the Rand indices

when the cutoff corresponded to using variables with the largest k statistics. We considered values

of k that increased geometrically: k = 8, 16, . . . , 2048. The results can be seen in Figure 5.17.

At each number of variables used, ALB-based screening has a larger Rand index than does t-test

screening. Clearly, ALB and t-test screening are not choosing the same variables, and the ones

chosen by ALB are more effective.

5.9 Application to Leukemia data

The Leukemia data set contains observations on 72 patients, 47 of which have one type of

leukemia and the remainder another type. We have observations of 7129 variables on each patient

to build a classifier that will help decide which type of leukemia a future patient has. This is a case

where p is much larger than n and m. We will apply various screening methods to this problem in

conjunction with DART and compare the accuracy of the methods via Rand indices.

To do this in a fair fashion, we split the data set randomly into two halves. The first half are

validation data, and the second half are training data. We then split the training data in half again

to make two smaller training sets. We do this for two reasons. First, we wish to assess the effect of

training set size on accuracy of the methods. One of the two smaller training sets will be used to

build classifiers, each one corresponding to a different screening method, and then all the training

data will be used to build another set of classifiers. Both sets of classifiers will be used to predict

the data in the validation set. The second reason for dividing the training set in half is that it makes

possible a cross-validation approach for selecting a cutoff. We can train the model on one of the

smaller training data sets, and choose a cutoff that gives the best classification accuracy on the

other training data set. We can then train this best model on the full training set and apply it to the

validation set. This is applying strategy A6 in the methodology, which is feasible because of the

small sizes of m and n.
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Rand Index Screening Method Used Number of variables
0.599 n+m largest ALBs 19
0.529 ALB > T ∗

0.05 617
0.549 ALB > log(1.2) 233
0.599 n+m largest t-statistics 19
0.529 Pt < 0.05 847
0.501 No screening 7129

Table 5.2: Classification and screening results for leukemia data when training set is a quarter
of full set. All results are based on a validation set size that was roughly half that of the full data
set. The quantities Pt and T ∗

0.05 are, respectively, the P -value of a t-test and the 95th percentile of
permuted ALBs. The classifier used was DART.

To carry out our analysis we did the following. We performed four ALB based screening

methods and two t-test based screening methods. The four ALB methods were A1 with the n+m

largest ALBs being selected, A4 with a type I error rate of 0.05, d = 3 and B = 7129, and A5

with the interpretable cutoffs of 0 and log(1.2).

Two methods of t-test screening were used, one using the variables with the m + n largest

t-statistics, and the other using variables whose t-test P -values were smaller than 0.05. The latter

version of t-test screening makes it comparable to choosing a variable using method A4 with

significance level 0.05. Once we determined relevant variables via screening, DART based on

those variables was used to compute a Rand index from the validation set. Tables 5.2 and 5.3

summarize the results.

All screening methods performed similarly when the training set size was a quarter of m + n.

However, ALB screening that chose a cutoff as in A1 or A4 improved remarkably when the sample

sizes were doubled, faring much better than the t-test based screening methods. While DART has

been shown to be an effective classifier, our experience is that it may fail to recover the structure

of the classification problem when the sample size is small. We thus tried the Bayesian classifier

based on (5.5) with the CV-based method to choose a cutoff, and this classifier was able to achieve

decent classification accuracy, surpassing DART if a different cutoff is chosen. We believe this

is the case due to its simplicity, and there should be enough data to construct reasonable kernel
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Rand Index Screening Method Number of variables
0.742 ALB > TCV 12
0.834 ALB > log(1.2) 150

0.834 ALB > TCV 12
0.786 n+m largest ALBs 38
0.572 ALB > T ∗

0.05 1302
0.742 ALB > log(1.2) 150
0.598 n+m largest t-statistics 38
0.572 Pt < .05 1694
0.549 No screening 7129

Table 5.3: Classification and screening results for leukemia data when training set is half of full
set. All results are based on a validation set size that was roughly half that of the full data set. The
first two rows of the table correspond to use of the classifier based on (5.5), and subsequent rows
to use of DART. The quantity TCV is the best cutoff as chosen by cross-validation, and Pt and T ∗

0.05

are as in Table 2. See Section 5.9 for an explanation of how cross-validation was implemented.

density estimates of the underlying distributions.

Figure 5.18 shows the cross-validated Rand indices of the Bayesian classifier as a function of

cutoff. It turns out that the largest cutoff maximizing the Rand index was .288. (The largest cutoff

was chosen since this corresponds to the smallest number of variables maximizing the Rand index.)

Figure 5.19 shows Rand indices of the Bayesian classifier that was trained on the full training set

(i.e., the training set using half of the full data set). This figure shows how well the CV cutoff fared

when it was used to screen variables in the full training set. Figure 5.18 shows how the number of

variables chosen is related to cutoff. Finally, Figure 5.19 also shows how sensitive the Rand index

is to the selected cutoff.

We believe the Bayesian classifier has potential in other settings where there may not be suf-

ficient data to train ensemble methods and there may exist differences between classes that are

not of location type. A potential problem of this method is its sensitivity to variables that are not

useful, but in our experience this can be a problem even amongst classification methods that are

capable of eventually tuning out irrelevant predictors. It is encouraging that the interpretable cut-

off of log(1.2) resulted in close to the best Rand index for the Bayesian classifier, but somewhat
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Figure 5.18: Cross-validation performance of the Bayesian classifier on the training set of the
leukemia data. A plot of the rand index of the method referred to in 5.5 against the number of
variables chosen by the method. The rand indices are the performance of the classifier on one of
the training sets, applied to the other training sets. We chose the cutoff that works best by picking
the cutoff which preserves the fewest variables in a sequence that maximized the rand index. That
cutoff is in blue.

discouraging that the cross-validation approach could not pick a cutoff that resulted in the best

performance for that classifier. The problem here is that the cross-validation approach chose an

optimal cutoff when the classifier was constructed from one quarter of all the data, whereas we ac-

tually needed to know the optimal cutoff when half of all the data were used. Future research can

focus on how an optimal cutoff depends on training set size. If the dependence is simple enough,

it may be possible to estimate the optimal cutoff for a given training set size from cross-validation
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Figure 5.19: Cross-validation performance of the Bayesian classifier on the testing set of the
leukemia data set. The rand indices are on the validation set. The cutoff we chose for cross
validation is in blue and was selected by examining Figure 5.18.

results based on a smaller training set size.

ALB screening tends to do better when using the k variables having the k largest ALBs. Figure

5.21 shows the Rand index resulting from applying DART after using this method of screening.

When using fewer than 500 variables, ALB screening does a better job than the analogous way

of performing t-test screening. After the number of variables included is large enough, t-test

screening does better than ALB screening, but at this point the number of variables included is

large enough that the Rand index becomes suboptimal for both types of screening.
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Figure 5.20: Number of variables picked against the cutoff chosen using the ALB screening method
on the Leukemia test data set.

5.10 Conclusion and future work

We have proposed a new screening method that searches for differences other than those of

location type. For this method to be more effective than t-test screening it needs to be paired with

classification methods that can leverage these differences. In simulations, we pair ALB screening

with BART, DART and a Bayesian classifier and show that it performs better than t-test screening

in situations where class differences are not of location type. The Bayesian classier outperformed

DART when applied to a leukemia data set. Even if the data contain primarily location differences,

ALB screening performs well, although, as expected, not as well as t-test screening.
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Figure 5.21: DART rand indices against number of variables chosen for the Leukemia data set.
We plot the rand index of the DART methods where we choose relevant variables corresponding
to the top number of ALBs or t-test statistics. We vary the number of variables we choose. The
red points denote the rand index of DART models using the top number of ALBs, while the blue
points denote the rand index of DART models using the top number of t-statistics.

Future work includes efforts to increase the speed of computing ALB statistics and their per-

mutation distributions, especially for large data sets. An iterative approach to the screening method

is available for SIS, and future research could involve investigating an ALB procedure that could

capture differences in joint distributions. The simulated data in this paper all leveraged indepen-

dent data, and how sensitive the method is to independence is also a property to explore. The

interaction between ALB screening and random projection or sketching methods of dealing with

settings where n and/or p are very large is also a promising direction for future research.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

A new framework for testing the problem if two samples share the same distribution using

cross-validation Bayes factors is shown in Chapter 3. Chapter 4 extends this methodology by

using ideas in permutation tests, creating a faster and more powerful test at the price of loosing

some interpretability of the Bayes factor. Chapter 5 uses the test for screening and compares it to

t-test screening, showing the method is as competitive for the problem of detecting if digits are

4s or 9s on the GISETTE dataset, a case where most variables probably differ by differences due

to location. Chapter 5 also proposes a simple classifier that gives the probability an observation

belongs to a class, and it does as well as BART and DART on the Leukemia data set.

6.2 Future Work

There are a few immediate direction of future research. The first would be to investigate per-

formance of the new classifier in Chapter 5 in general, and how it performs on other data sets. The

form of this classifier can be seen in equation 6.1. A large weakness of the method is its inability to

leverage how variables may jointly differ, so patching up this weakness is also a research problem.

This problem can be addressed by using a multivariate kernel density estimate rather than a product

of univariate kernel density estimates, but it is not clear if this is an appealing idea immediately.

P (y = 1|x) =
n

m+n

∏p
i=1 f̂

i(xi|X, h)

n
m+n

∏p
i=1 f̂

i(xi|X, h) + m
m+n

∏p
i=1 ĝ

i(xi|X, h)
(6.1)

P (y = 1|x) =
n

m+n
f̂(x|X, h)

n
m+n

f̂(x|X, h) + m
m+n

ĝ(x|X, h)
(6.2)

Substituting a multivariate kernel density estimate with a product of univariate kernel density

estimate allows the density to detect joint differences, but choosing the bandwidth for this new

kernel density estimate is not trivial. In addition, kernel density estimates degrade fairly quickly
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when dimension increases, and this sort of strategy may only be ideal when the dimension size is

small. The form of this classifier appears in equation 6.2.

A compromise to this strategy is to partition the variables into sets where variables in the

sets jointly vary with each other and are independent otherwise. We can then fit multivariate

kernel density estimates onto each of the variables on the set and take the product of those instead.

This alleviates the problem of kernel density estimates degrading significantly when the dimension

increases, and potentially extends it to high dimensions. Of course, finding out which variables are

important, which are important jointly, and which variables vary jointly with each other, is not a

trivial task and suggests that this sort of procedure would best be paired with a more complicated

variable selection method to proceed.

Another direction of future research lies in constructing an iterative method to extent the ALB

screening procedure in Chapter 5 to capture joint differences. The simplest way to implement

this sort of procedure would be pair the method with a classification procedure. We first screen

for important variables, apply the classification method, and then see if classification errors occur

with different distributions under some of the variables that were not originally picked. If a vari-

able does, then that variable jointly offers information for classification with some other variable.

We can repeat this procedure until the misclassification rate is small enough. Research involves

concocting a suitable classification method, how the classification method affects this procedures,

specifically when to stop the iterative procedure, and how effective this procedure is in detecting

different types of joint variability among covariates.

ALB screening is a method for screening when the response variable is categorical and the

other variables are numeric. The situation is well suited for two-sample testing, but an extension of

this to the case where the response variable is categorical is also of interest. T-test screening turns

into correlation based screening, so it is of interest to adapt the current procedure to one that fits

the numeric setting instead. Correlation based screening, like t-test based screening, is sensitive to

detecting location based joint differences, so we would like to develop another procedure that can

detect differences outside of location based joint differences.

101



Finally, the ALB screening method itself is quite slow compared to t-test screening. Chapter

5 uses a plug-in bandwidth which results in a significant speed up compared to performing like-

lihood cross validation to select a bandwidth. Suppose n is the number of observations we have,

then the matter of computing the ALB itself, still requires computing roughly n2 kernel computa-

tions, which is much slower than something like t-test screening which requires a linear number of

operations with respect to n. While this is not a problem for the sake of screening, where p is of

greater concern than n, we still imagine this to become an issue if the data set itself is of too large

a size. The final area of research lies in speedily or approximately computing the ALB.
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APPENDIX A

USE OF CROSS-VALIDATION BAYES FACTORS TO TEST EQUALITY OF TWO

DENSITIES APPENDIX

Here we derive the Hessian used in our Laplace approximation, provide a link to an R package

that can compute cross-validation Bayes factors as well as Pólya tree Bayes factors, provide ad-

ditional simulation results, give a heuristic justification for our Laplace approximation and prove

Bayes consistency of a CV BF .

A.1 Hessian derivation

Here we derive Ĥ , as defined in Section 3.2. Let f̂h be a KDE based on data Z1, . . . , Zk and

kernel K, and for arbitrary scalar quantities u1, . . . , uℓ define L1 as follows:

L1(h) =
ℓ∏

j=1

f̂h(uj).

Then L1 has the same structure as L0 in Section 3.2, and it suffices to consider

∂2

∂h2
logL1(h) =

ℓ∑
j=1

[
f̂h(uj)

∂2

∂h2
f̂h(uj)−

(
∂

∂h
f̂h(uj)

)2
]
/f̂ 2

h(uj). (A.1)

We have
∂

∂h
f̂h(uj) = −1

h

[
f̂h(uj)− êh(uj)

]
, (A.2)

where êh is a kernel estimator based on data Z1, . . . , Zk and kernel J(u) = −uK ′(u). Note that êh

is a “legitimate" kernel estimator in that

∫ ∞

−∞
J(u) du = 1 and

∫ ∞

−∞
uJ(u) du = 0.
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Now,
∂2

∂h2
f̂h(uj) = −1

h

[
2
∂

∂h
f̂h(uj)−

∂

∂h
êh(uj)

]
, (A.3)

and
∂

∂h
êh(uj) = −1

h
[êh(uj)− ĝh(uj)] ,

where ĝh is a kernel estimator based on data Z1, . . . , Zk and kernel L(u) = −uJ ′(u). As before, ĝh

is a legitimate, i.e., consistent, density estimator. Substitution of (A.2) and (A.3) into (A.1) leads

to a readily computable expression for Ĥ .

A.2 R package

An R package that implements cross-validation Bayes factors and also Holmes’s Pólya tree

Bayes factors is available on github.

A.3 More detailed simulation results

The figures in the paper provide smoothed curves of test statistics in each of four cases. Here

we plot the smooth curves and also the log-Bayes factors. For reference we explored the following

four cases:

Scale change: The densities f and g are ϕ (standard normal) and ϕ(x/2)/2, respectively,

and hence differ with respect to scale.

Location shift: The densities f and g are standard Cauchy, fC , and fC(x + 1), respectively,

and so differ with respect to location.

Distributions with different tail behavior: Here f and g are fC and 0.6745ϕ(0.6745x), re-

spectively. Given p, the mixture density in this case has the same median and interquartile

range as the standard Cauchy, and so the densities of the X and Y samples are different but

have the same location and scale.

Different distributions with same finite support: The densities f and g are U(0, 1) (uniform

on the interval (0, 1)) and beta(1/2, 1/2), respectively.
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Figure A.1: Log-Bayes factors and their smooths for the scale shift case. The purple dots represent
Pólya tree log-Bayes factors where a Cauchy is used for quantiles, and their smooth is pink. The
green dots represent Pólya tree log-Bayes factors where a normal distribution is used for quantiles,
and their smooth is yellow. The black points represent the averages of log-cross-validation Bayes
factors across thirty splits, and their smooth is blue. Values of logB for the K-S test are in red,
with their smooth being orange.

Figure A.2: Log-Bayes factors and their smooths for the location shift case. See Figure 1 for the
color legend.
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Figure A.3: Log-Bayes factors and their smooths for the tail difference case. See Figure 1 for the
color legend.
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Figure A.4: Log-Bayes factors and their smooths for the finite support case. The cyan dots are
log-cross-validation Bayes factors based on data-reflected KDEs, and their smooth is brown. See
Figure 1 for the rest of the color legend.
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A.4 Heuristics for Laplace approximation

One of the assumptions for our theorem is that the Laplace approximation of a marginal like-

lihood is asymptotic to that marginal likelihood. We cannot give explicit conditions under which

this assumption holds, but we can provide some heuristics of a proof. The classic Laplace ap-

proximation in a likelihood setting assumes that the maximizer of the likelihood does not occur

on the boundary of the parameter space. A main technical difficulty of justifying the Laplace ap-

proximation in our setting is that the asymptotic maximizer of the likelihood becomes ever closer

to a boundary, namely 0. However, by making an appropriate change of variable in the integral

defining the marginal likelihood, we can effectively sidestep this difficulty.

We assume that the priors are defined as in Section 3.1, in which case the maximizer of, for

example, πX(α)LX(α) with respect to α is γ̂, the maximizer of LX(α). Using results from Hall

(1987) and under very general conditions, γ̂ is asymptotic (in probability) to a quantity of the form

Cn−b, where C is a positive constant and 0 < b < 1. Making the change of variable nbα = u in

the X-sample marginal likelihood, we have

∫ ∞

0

πX(α)LX(α) dα = n−b

∫ ∞

0

πX(n
−bu)LX(n

−bu) du
def
=n−bIn.

It is now plausible that a Laplace approximation, Ln, of In is asymptotic to In. This is because the

maximizer, with respect to u, of the integrand of In is nbγ̂, which converges in probability to C as

n → ∞ and C is not a boundary point. Our heuristic proof is complete by then noting that n−bLn

is exactly equal to our Laplace approximation of the marginal likelihood.

A.5 Consistency proof

For reference we list the assumptions needed for our test to be Bayes consistent.

The Hall kernel and our bandwidth prior will be used frequently, and so they are defined here

for convenience:

K0(z) =
1√

8πeΦ(1)
exp

[
−1

2
(log(1 + |z|))2

]
, (A.4)

111



π(h|γ) = 2γ√
πh2

exp

(
−γ2

h2

)
I(0,∞)(h). (A.5)

A1. The Laplace approximation of each of the three marginals is asymptotically correct in that

the log of the marginal likelihood is equal to the log of the Laplace approximation plus a

term that is negligible in probability relative to the approximation.

A2. The densities f and g are bounded away from 0 and ∞ on (−λ, λ) for each λ > 0, with

f(x) ∼ c1x
−a1 and f(−x) ∼ c2x

−a2 as x → ∞, where both c1 and c2 are positive and

a1 and a2 larger than 1. Density g satisfies the same properties as f , albeit with possibly

different constants.

A3. The second derivatives f ′′ and g′′ exist and are bounded and almost everywhere continuous

on (−∞,∞). In addition, for a constant C2 < ∞,

|f ′′(x)| ≤ C2x
−a1−2 and |f ′′(−x)| ≤ C2x

−a2−2 for x > 1,

where a1 and a2 are the same as in A2. The function g′′ satisfies the same properties as f ′′

with possibly different constants.

A4. The kernel used is K0, as defined in (A.4).

A5. The prior is (A.5) and its parameter is chosen as described in Section 3.1 (of the paper).

Theorem 3. Suppose that assumptions A1-A4 hold, and that r and s each tend to ∞ in such a way

that r = o(m), r = o(n), s = o(m) and s = o(n) as m and n tend to ∞. Then if f ≡ g and m

and n tend to ∞

log(CV BF ) = Cf

{
(m− r)

[
1

(r + s)a
− 1

ra

]
+ (n− s)

[
1

(r + s)a
− 1

sa

]}
(A.6)

+op

(
(m− r)

ra
+

(n− s)

sa

)
,
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where Cf is a positive constant and 0 < a < 4/5 is a constant determined by f . If instead∫
|f − g| > 0, r/(r + s) ∼ m/(m + n), m/(m + n) → q as m,n → ∞ and 0 < q < 1, then as

m,n → ∞

log(CV BF ) = (m− r)KL(f, qf + (1− q)g) + (n− s)KL(g, qf + (1− q)g) (A.7)

+op(m+ n).

Proof: Throughout the proof C0, C1, . . . will denote a sequence of positive constants, and until

further notice it is assumed that f ≡ g. Recall that CV BF is

CV BF =

∫∞
0

∫∞
0

πX(α)πY (β)La(α, β) dαdβ∫∞
0

π(h)L0(h) dh

=

∫∞
0

πX(α)LX(α) dα ·
∫∞
0

πY (β)LY (β) dβ∫∞
0

π(h)L0(h) dh
. (A.8)

Define

B̂F =
πX(α̂)LX(α̂)πY (β̂)LY (β̂)

π(ĥ)L0(ĥ)
,

where α̂, β̂ and ĥ are the maximizers of LX , LY and L0, respectively. By A1,

CV BF ∼

√
2πĤ0

ĤXĤY

· B̂F (A.9)

in probability, where ĤX , ĤY and Ĥ0 are the Hessians for the X , Y and combined samples,

respectively.

Suppose that Ĥ is the Hessian calculated when a KDE is computed from ℓ i.i.d. observations

and an independent validation sample of size k, where ℓ = o(k). Then a consequence of results to

be proven subsequently is that

Ĥ = kC0ℓ
−a/2 + op(kℓ

−a/2), (A.10)
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where 0 < a < 4/5 is a constant determined by the underlying density f . It follows that

log
(
2πĤ0/(ĤXĤY )

)
is, as will be seen subsequently, negligible (in probability) relative to log(B̂F ),

and so going forward it suffices to analyze log B̂F .

Now let X i
T denote all the data in XT except for Xi, and define

ℓ(α) =
r∏

i=1

f̂(Xi|α,X i
T ). (A.11)

For reference recall that

LX(α) =
m∏

i=r+1

f̂(Xi|α,XT ). (A.12)

For each α, R̂r(α) = −(m− r)−1 logLX(α) is an unbiased estimator of the risk function

Rr(α) = E[KL(f, f̂( · |α,XT ))]−
∫

f(x) log f(x) dx.

On the other hand, R̃r(α) = −r−1 log ℓ(α) is only asymptotcally unbiased for Rr(α). Nonetheless,

(25) proves that, as r → ∞, the maximizer of ℓ(α) is asymptotic in probability to αr, the minimizer

of Rr. An examination of the proof of (25) reveals that α̂, the maximizer of LX , is also asymptotic

to αr. Indeed, R̂r is a more efficient estimator of Rr than is R̃r, which is intuitively plausible owing

to the facts (a) the KDE f̂( · |α,XT ) is completely independent of the validation data, and (b) the

estimator R̂r(α) is an average of m− r rather than r random variables (and r = o(m− r)).

We may write

log B̂F = logLR + log(πX(α̂)) + log(πY (β̂))− log(π(ĥ)),

where LR = LX(α̂)LY (β̂)/L0(ĥ). Using A5,

log πX(α̂) = log(2/
√
π)− log(α̂)− 1 = Op(logm),

with the last equality due to the facts that α̂ ∼ αr in probability and the optimal bandwidth αr is of
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order r−a/4 (with a the same as in expression (A.10)). As will be seen subsequently, this implies

that the impact of log πX(α̂) on log B̂F is negliglible. Similarly the impact of the other two prior

terms is negligible, and it suffices to investigate logLR.

To simplify notation, we define the following quantities:

f̂X ≡ f̂( · |α̂,XT ), f̂Y ≡ f̂( · |β̂,Y T ), and f̂X,Y ≡ f̂( · |ĥ,XT ,Y T ).

We may then write

log(LR) = (m− r)

∫
log

(
f̂X(x)

f̂X,Y (x)

)
dFm−r(x)

+(n− s)

∫
log

(
f̂Y (y)

f̂X,Y (y)

)
dGn−s(y), (A.13)

where Fm−r and Gn−s are the empirical cdfs of XV and Y V , respectively. The term log(LR) is

essentially composed of entropy estimates. We can rewrite it as:

log(LR) = (m− r)
[
KL(f, f̂X,Y )−KL(f, f̂X)

]
+(n− s)

[
KL(f, f̂X,Y )−KL(f, f̂Y )

]
+ δ1 + δ2, (A.14)

where

δ1 = (m− r)

{∫
log

(
f̂X(x)

f̂X,Y (x)

)
[dFm−r(x)− dF (x)]

}
and

δ2 = (n− s)

{∫
log

(
f̂Y (y)

f̂X,Y (y)

)
[dGn−s(y)− dF (x)]

}
.

As shown by (25), δ1 and δ2 are negligible in comparison to the other terms in (A.14). Again from

(25),

KL(f, f̂X) = Cfr
−a + op(r

−a),
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where Cf is a positive constant that depends on f , and a is the same constant as in (A.10). The

other two K-L divergences have similar representations, and so

log(LR) = Cf

{
(m− r)

[
1

(r + s)a
− 1

ra

]
+ (n− s)

[
1

(r + s)a
− 1

sa

]}
+op

(
(m− r)

ra
+

(n− s)

sa

)
.

Now we assume that f ̸≡ g, i.e., that
∫
|f − g| > 0. Define the mixture density fq = qf +

(1 − q)g and note that the KDE f̂X,Y (based on r + s observations) is consistent for fq. On the

other hand, f̂X and f̂Y are consistent for f and g, respectively. For future reference we point out

that
∫
|f − g| > 0 implies that

∫
|f − fq| > 0 and

∫
|g − fq| > 0.

The proof that logCV BF = logLR(1 + op(1)) proceeds exactly as in the case f ≡ g. We

have

log(LR) = (m− r)KL(f, fq) + (n− s)KL(g, fq)

+(m− r)

[
logLX(α̂)/(m− r)−

∫
f(x) log f(x) dx

]
+(n− s)

[
logLY (β̂)/(n− s)−

∫
g(x) log g(x) dx

]
−(m+ n− r − s)

[
logL0(ĥ)/(m+ n− r − s)

−
∫

fqm,n(x) log fq(x) dx

]
, (A.15)

where fqm,n ≡ qm,nf +(1− qm,n)g and qm,n = m/(m+n). Since each of
∫
|f −fq| and

∫
|g−fq|

is positive, it follows from Pinsker’s inequality that KL(f, fq) and KL(g, fq) are both positive.

Applying the same argument as in the case f ≡ g, each of the three terms in brackets is op(1), and

the result follows.

Remarks about Assumption A1 are in order. While this assumption may seem exceptionally

strong, it may be defended in two ways. In Section 3.2 we give compelling numerical evidence

that the assumption holds. Furthermore, the point is essentially moot since, as stated in the paper,
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we use Laplace approximations in the simulations and data analyses, and hence our consistency

result does not require Assumption A1 for the statistic used in all our numerical work.

A.6 Distributions of columns 23 and 29 of the Higgs boson data under the null hypothesis

The permutation-based method of Section 5.2 was applied to both the column 23 and 29 data.

The number of permutations in each case was 10 for each different training set size. For the

column 23 data, the largest log-Bayes factor for any training size was less than −20, which suggests

that if the data had supported f ≡ g, we would have obtained a negative log-CV BF with large

magnitude.

The largest log-Bayes factor for column 29 was still less than −30. The similarity of these

results with the column 23 results in Figure 8 of the main paper lend further credence to the notion

that the data better support f ≡ g than f ̸≡ g.
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(a) Values of log-CVBF under the Null hypothesis using the permutation based procedure
computed from column 29 of the Higgs boson data. The lines connect the averages of log-
CVBF at different training set sizes.
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(b) Values of log-CVBF under the Null hypothesis using the permutation based procedure
computed from column 23 of the Higgs boson data. The lines connect the averages of log-
CVBF at different training set sizes.

Figure A.5: Log-CV BF values under the null hypothesis using the permutation-based procedure
for columns 23 and 29 of the Higgs boson data. Our analysis suggests that the two classes in
column 23 have the same distribution, and the classes in column 29 have different distributions.
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