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ABSTRACT

The World Health Organization (WHO) designated the novel COrona VIrus (COVID-19) a

global pandemic. This pandemic combined with the growing and aging population has created a

crisis of unprecedented dimension regarding shortages in health care workforce. COVID-19 has

exacerbated care coordination by pushing the healthcare system to a limit in terms of rationing the

allocation of scarce and valuable social and medical resources. Therefore, in this dissertation, we

consider a Community Health Pathways HUB model to optimize resource scheduling and optimal

vaccination allocation models to control the outbreaks.

Scheduling pathways involves uncertainty in resource availability because as human resources

may not report for work due to unforeseen circumstances such as delays in previous assignments.

Similarly, the vaccination allocation problem involves uncertainty in COVID-19 characteristics,

such as vaccine efficacy towards mutating variants, infectivity, and susceptibility. Stochastic pro-

gramming is a framework for modeling optimization problems that involve data uncertainty. This

dissertation considers three fundamental approaches of stochastic programming: 1) stochastic pro-

gramming with recourse in which infeasibility is not allowed, only recourse/corrective actions with

a certain cost; 2) chance-constrained programming in which infeasibility is allowed up to a certain

probability; and 3) integrated chance-constrained programs that not only allow for infeasibility but

also restrict it up to a certain threshold. The first approach is applied to a community health path-

ways scheduling problem, while the last two approaches are applied to optimal vaccine allocation

under uncertainty for COVID-19.
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1. INTRODUCTION AND MOTIVATION

This dissertation focuses on mathematical optimization models and solutions for health care

related applications involving uncertain parameters. Two important problems are investigated,

one from healthcare and the other from epidemiology. Specifically, we address: 1) community

health pathways modeling and scheduling under uncertainty in resource availability, and 2) optimal

COVID-19 vaccination allocation under uncertainty in transmission characteristics.

1.1 Motivation

The motivation of this dissertation comes from the increasing demand in health care workforce

and lack of coordination in health care system. High cost and disconnected administration are two

of the main characteristics of the U.S. healthcare system [1]. Inadequate care coordination is a key

contributor to annul healthcare cost due to avoidable complications and unnecessary, ineffective,

and wasteful services [2]. The U.S. healthcare system is still undergoing the needed transformation

that aims to achieve the dual goals of cost-effective delivery and improved patient outcomes. At

the core of this transformation is an emphasis on encouraging physicians, hospitals, and other

healthcare stakeholders to work more closely to better coordinate patient care through integrated

goals and data sharing [3]. Performing care coordination involving disparate resources presents

significant challenges in terms of scheduling, adhering to the care activities protocols, and tracking

the progress of these activities for each patient in the system.

In March of 2020, the World Health Organization (WHO) designated the novel COronaVIrus

(COVID-19) a global pandemic. This virus causes a series of respiratory illnesses and has spread

globally with millions of confirmed cases and deaths. The pandemic combined with the growing

and aging population has created a healthcare crisis of unprecedented dimension regarding short-

ages in resources, such as nurses, physicians, community health workers and other health related

professionals. Individuals with complex health needs and chronic health conditions have a higher

risk of having severe conditions if they contract COVID-19. Addressing these complex needs
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requires a combination of multiple services and support from a wide variety of resources at differ-

ent levels of the healthcare system. COVID-19 has exacerbated care coordination by pushing the

healthcare system to a limit in terms of rationing the allocation of scarce and valuable social and

medical resources.

Scheduling and coordinating constrained resources in community healthcare settings at a cen-

tralized community level can be challenging due to limited resources and inherent dynamics of the

processes and the organizational structures. In this work, we adopt the Community Health Path-

ways (CHPs) HUB model. This model provides a delivery system for care coordination services

in a community setting with a goal of improving health outcomes for the high-risk individuals and

provide preventive care [4]. In this HUB model, CHPs are a standardized tool that details multiple

steps of a healthcare-related service and the required resources for each step.

We derive a mathematical model for optimally scheduling pathways under uncertainty in re-

source availability. We devise a simulation model of a Pathways Community HUB to schedule

patients over a period of time. Both models were implemented and applied to data for a real Path-

ways Community HUB of a U.S. county involving multiple CHPs and limited resources. The

computational study shows that patient wait time depends on the HUB resources’ uncertain avail-

ability and patient demand, with high demand resulting in longer waiting time. The study also

shows that workload balancing is beneficial in terms of providing schedules with similar work-

loads across community health workers while providing waiting times that are comparable to the

results with no workload balancing. Several managerial insights are obtained, including the rec-

ommendation to managers to use workload balancing not only to minimize patient waiting time,

but also to guarantee patient schedules that result in equitable use of the limited HUB resources.

The COVID-19 pandemic has exerted great pressure on scarce medical resources. Without an

accurate cure for COVID-19, vaccination is the key to control the outbreaks. In the U.S., at the time

of writing this dissertation, three vaccines are authorized and recommended: Pfizer-BioNTech,

Moderna, and Johnson & Johnson’s Janssen. As of November, more than half of the population

in the U.S. were fully vaccinated against COVID-19. However, SARS-Cov-2 transmission is still

2



at high levels in different regions of the U.S. Just like the other virus, the SARS-CoV-2 virus

keeps changing through mutation. Evidence shows that some of the new variants, such as the

currently circulating Alpha, Delta and Gamma variant, can be more severe in terms of illness and

transmissibility, and the vaccine may be less efficacious [5, 6] compared to its ancestor variant.

There is an urgent need for an effective vaccination strategy to be implemented to compete with

the variant mutation and fading vaccine efficacy.

An effective vaccination allocation strategy is sensitive to the essential and conclusive epidemi-

ological characteristics of the virus, vaccine efficacy, vaccine-induced, and natural immunity. In

addition, household is a significant contributor and high risk setting for COVID-19 transmission,

and a critical factor in community spread. The recent variants have a relatively high transmission

rate within household. If a member in a household is infected, the other members who live in the

same household are more likely to be infected. For those who reside in larger household sizes,

if one of them is infected, there are more members to spread the disease to than those who re-

side in smaller households. To guarantee maximum effectiveness with limited supply, a method

that can capture parameter uncertainty and demographic variability is needed. Therefore, in this

dissertation, we derive mathematical models to account for the uncertainty in parameters for effec-

tive vaccination allocation in communities. In this dissertation, a vaccination policy prescribes the

minimum proportion of population to vaccinate in a community.

Scheduling community pathway involves uncertainty in resource availability because as human

resources may not report for work due to unforeseen circumstances such as delays in previous as-

signments. Similarly, vaccination allocation problem involves uncertainty in COVID-19 character-

istics, such as vaccine efficacy towards mutating variants, infectivity, and susceptibility. Stochastic

programming (SP) is a framework for modeling optimization problems that involve data uncer-

tainty. Random variables are used to model uncertainty in parameters. When the parameters are

uncertain, one might seek a solution that is feasible for all realizations of the random parameters

over a given objective function or a solution that accepts a certain level of infeasibility. This disser-

tation considers three fundamental approaches of SP: 1) SP with recourse in which infeasibility is
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not allowed, only recourse/corrective actions with a certain cost [7, 8]; 2) chance-constrained (CC)

programming in which infeasibility is allowed [9]; and 3) integrated chance-constrained programs

(ICC) that not only allows for infeasibility but also restricts it up to a certain threshold [10, 11].

The first approach is applied to a community health pathways scheduling problem, while the last

two approaches are applied to optimal vaccine allocation under uncertainty for COVID-19.

In the CC approach, infeasibility is accepted up to a specified level, but the amount by which the

constraints are violated is not considered. This approach is applied to a wide range of applications

by practitioners who prefer a qualitative risk measure. However, the feasible set defined by CC is

generally non-convex. Furthermore, the reformulation of CC is a mixed-integer program, which

is also difficult to solve. The mathematical properties of CC motivated researchers to consider

alternatives that accept infeasibility. In 1986, Haneveld introduced ICC to allow for constraint

violation while bounding the amount of violation [10].

In cases where constraint violation is critical to the application, ICC might be more appropriate

since it bounds the amount of violation. In this approach, the constraint violation either above or

below the target is bounded, but not both. A target could be a desired outcome. For instance, in

the optimal vaccination allocation problem the target is one. The goal is to drive post-vaccination

reproduction number to be below one. In practice, constraint violation above and below a target

may be critical for decision making. Therefore, in this dissertation we also consider an extension

of the ICC model for this case. We derive a deterministic equivalent program for solving two-

sided ICC problems. For instances with a large number of scenarios, we consider a reduced form

algorithm based on [11] that adds cuts iteratively to reach the optimal solution.

1.2 Research Contribution

This dissertation makes contributions to the literature on stochastic programming and appli-

cations in two main areas: 1) a stochastic programming model for community health pathways

scheduling under uncertainty in resource availability. A simulation model of a generic Pathways

Community HUB is devised and implemented to evaluate CHPs schedules determined by opti-

mization model; and 2) new CC and ICC models for optimally allocating vaccines in multiple
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communities under uncertainty in transmission characteristics and a computational study based on

real data.

1.2.1 Community Health Pathways Modeling and Scheduling

Under this contribution, a two-stage SP model is derived to handle CHPs scheduling involving

uncertainty in resource availability. To the best of our knowledge, this the first SP with workload

balancing for pathway scheduling under uncertainty to minimize patient waiting time. We also

devise and implement a computer simulation for a Pathways Community HUB. This simulation

model allows modeling and simulating arrivals of pathway requests, booking available resources

based on the optimal solution provided by the model, and updating resource availability. In addi-

tion, this model-based approach allows for progress tracking and notification for individual CHPs

and allows to compute and monitor performance over time.

1.2.2 Optimal COVID-19 Vaccination Allocation

We introduce a new stochastic programming based model to determine optimal vaccination

policies to control epidemics and apply it to COVID-19. This new model considers randomness in

parameters, including human interactions, COVID-19 transmission characteristics, and vaccine ef-

ficacy towards different emerging COVID-19 variants. The model captures the socio-demographic

variations in population’s household types and individual vaccination status. An optimal vac-

cination policy provides the minimum number of vaccinations required to control outbreaks at

pre-determined reliability levels. We perform several case studies to test the new model on a set of

neighboring counties in the U.S. state of Texas to generate optimal vaccination allocation strategies

with homogeneity in population. Results obtained from our model can provide an evidence-based

rationale for health authorities to make critical decisions.

The rest of this dissertation is organized as follows: Chapter 2 reviews closely related literature

on stochastic programming with recourse, CC, ICC, community health pathways and vaccine allo-

cation. The fundamental concepts of stochastic programming models and extension of CC to ICC

model are presented in Chapter 3, along with a reduced form algorithm to efficiently solve ICC
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instances with a large number of scenarios. The SP model and computer simulation for commu-

nity health pathways scheduling under uncertainty in resource availability are presented in Chapter

4. Chapter 5 develops an ICC model with a set of reliability levels to optimally allocate vaccines

under application to optimal vaccine allocation under uncertainty in COVID-19 characteristics.

Finally, concluding remarks and future research are given in Chapter 6.
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2. LITERATURE REVIEW

2.1 Stochastic Programming

In this chapter, we present literature on stochastic programming, pathways and vaccine allo-

cations. Stochastic programming is an approach for modeling optimization problems that involve

uncertainty. There are two well-known approaches on stochastic programming regarding infeasi-

bility. One approach is to penalize the effects of infeasibility, whereas the other one is to restrict

infeasibility. In the case where infeasibility is accepted, CC and ICC are introduced. With CC,

infeasibility is accepted, but only with a specified probability, whereas ICC accepts infeasibility at

a certain cost. The other approach where infeasibility is restricted leads to the models so called

two-stage stochastic programming with recourse. In stochastic programming with recourse, in-

feasibility is not accepted, but corrective actions are taken afterwards with a certain penalty. This

approach gives a foundation of the proposed work on two-sided ICC.

The major historical developments of stochastic programming is presented in Section 2.1.1.

For CC and ICC, the literature is presented in Section 2.1.2. The stochastic programming with

recourse approach is applied to a community health pathways scheduling problem and the literature

on pathways and pathways scheduling are discussed in Section 2.2. CC and ICC are applied to

optimal vaccine allocation under uncertainty, with a focus on COVID-19 and related literature for

this topic is presented in Section 2.3.

Several papers have studied the relation between CC, ICC and stochastic programming with re-

course, and established certain equivalences among these modeling techniques [10, 12, 13]. How-

ever, the mathematical equivalence does not mean that they can be simply exchanged. In CC, risk

is measured qualitatively, and the probability of infeasibility is permitted up to a specified level.

However, the amounts by how much the constraints are violated are not taken into account. In the

case when constraints represent quantitative goals instead of technical or logical necessities, ICC

might be applied to accept a high probability of infeasibility if the constraints are violated by a
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relatively small amount. In ICC, we can impose an upper bound on the expected violation amount.

Unlike ICC, in recourse models, infeasibility is not accepted, the corrective actions are required

afterwards with a certain cost. Depending on the circumstances, some practical applications, the

specification of infeasibility costs might be more appropriate than a specification of a feasibility

probability level, or vice versa. For example, if the application is willing to take recourse actions

with some cost, stochastic programming with recourse can be applied. If the application is willing

to accept infeasibility, CC or ICC approach is more suitable.

If the decisions have to be made before or at least without knowledge of any realization of

the random parameters, we call this here-and-now decision making. For example, in CC and

ICC, without knowing any further information on the realization of the random parameters, all

the decisions are made at the moment. In the case where decision makers are able to wait for

the realization of the random parameters, this is wait-and-see decision making. For example, the

stochastic programming with recourse, the first-stage decisions are made here-and-now without

full information of the uncertain parameters, and the second-stage decisions are made based both

on the first-stage decisions and the realization of the random parameters.

2.1.1 Stochastic Programming with Recourse

Two-stage stochastic programming with recourse was introduced by Dantzig in 1955 [13]. The

first-stage decisions are the ones that are determined now; decisions in the second-stage depend on

both the uncertainty and the first-stage decisions. Since then, numerous studies have sought to de-

velop decomposition methods to solve stochastic programs. As the number of scenarios increases,

there is an increasing chance for the stochastic program to become computationally intractable. In

1961, Dantzig and Wolfe established the Dantzig-Wolfe decomposition (DWD) approach of linear

programming, in particular those with a special block-angular structure [14, 15]. This block-

angular structure often arise in applications where the system is coupled with subsystems.

A classic decomposition dealing with block-diagonal structure was originally introduced by

Benders in 1962 [16]. Before Benders’ method was developed, this block-diagonal structure prob-

lem had to be solved using deterministic equivalent problem, which is computational very expen-
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sive for large instances. Benders partitioned the block-diagonal structures into master problem and

subproblem. However, the subproblem created by Bender’s method is still dense with instances

that have large scenario size. Since Benders decomposition only returns one cut to the master prob-

lem in each iteration, the convergency can be slow for some computationally demanding problems

[17].

Slyke proposed L-shaped method to solve two-stage linear recourse models to accelerate the

convergence rate. The L-shaped method separates the large subproblem into many smaller sub-

problems [18]. At each iteration, the first-stage solutions are passed to the second-stage, and the

second-stage subproblems are solved with the first-stage decisions given. Then the appropriate op-

timality or feasibility cuts are added to the master problem based on the solutions generated from

the subproblems.

To address the computational challenge for dealing large-scale instances, decomposition meth-

ods have been proposed to solve two-stage stochastic programs, including stochastic decompo-

sition [19], subgradient decomposition [20] and disjunctive decomposition [21]. However, the

number of subproblems is associated with the number of scenarios, and the model size increases

exponentially as the number of scenarios increases. These methods can sometimes still be compu-

tationally demanding. Shapiro et al. suggested Sample Average Approximation (SAA) algorithm

that uses a computer simulation-based approach [22]. The subporblems are generated by randomly

sampling some scenarios. The expected objective function is approximated by a sample average

estimate derived form a random sample. The process is repeated with different samples to obtain

candidate solutions.

2.1.2 Chance-constrained and Integrated Chance-constrained programming

Chance-constrained programming was introduced in 1959 by Charnes and Cooper [23], and

established the deterministic equivalent programs (DEP) for CC with constant constraint matrix

[24]. A few years later, Karaoka extended the CC with uncertainty in the A matrix [25]. Prékopa

developed joint chance-constrained programs and proposed DEP under certain assumptions on

the distribution of the random right-hand side [26]. In CC approach, infeasibility is accepted up
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to a certain probability, and it is appealing to some practitioners who prefer to use a qualitative

risk measure. However, it is well known that CC is non-convex when the uncertainty parameters

follow a discrete distribution [27, 28]. Non-convexity brings great computational difficulties, and if

chance constraints are applied as risk constraints, they can only be handled computationally using

discrete distributions. Furthermore, reformulation of CC results in a mixed-integer program, which

is also difficult to solve in general. For linear constraints and finite discrete distribution, cutting

plane approach is available for mixed-integer reformulations [29, 30]. For a small or moderate

size problem, we can use the current available mix-integer program solver to solve, however, the

problem involves big-M generally have a weak LP-relaxation. The mathematical properties of CC

motivate alternative models that accept infeasibility.

In 1986, Haneveld proposed ICC [10] that captures risk quantitatively by accepting infeasibility

with a certain cost. The studies on ICC are limited. Haneveld et al. proposed a reduced form

algorithm that can efficiently solve ICC with discretely distributed random vector by generating

optimality cuts [11], and the other closely related work they have done is multistage ICC model

and conducted a computational study using dynamic stochastic programming approach [31].

2.2 Community Health Pathways Scheduling

Community healthcare agencies in the U.S. are tasked with providing medical, behavioral, and

social services to the individuals in need. With limited resources, providing such services requires

careful coordination. Care coordination is the organization of care activities among individual

clients and providers to facilitate the appropriate delivery of healthcare services [32]. Commu-

nity care coordination works at the community level to improve the quality of care for individuals

by coordinating community-based health and social services. These community-based services

have been shown to play a vital role in addressing some of the nation’s most challenging health

problems, including health disparities and the rising chronic health conditions such as obesity and

diabetes [33]. Addressing these complex needs requires a combination of multiple services (med-

ical services, behavioral health services, and social services) and support from a wide variety of

community-based resources in order to reduce the health and social barriers to improve healthcare
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outcomes [34]. This complexity poses significant challenges in terms of effectively connecting the

different parties (clients, agencies, service providers) and coordinating them to work in concert to

achieve positive outcomes.

Performing care coordination involving disparate resources can be challenging in terms of

scheduling and adhering to the care activities protocols. In this dissertation, we focus on commu-

nity care coordination using Pathways Community HUB model of care coordination. The pathway

model of care coordination is a construct that was introduced to enable coordination of care ac-

tivities of different organizations and their services by focusing on the progress and outcomes of

individual clients as they traverse the care organizations [35]. In turn, pathways coordination can

enable a comprehensive approach to community health service focused on reducing the healthcare

inequalities to improve health outcomes for the community.

In healthcare settings like hospitals, care coordination involves coordinating with all of the dif-

ferent service providers to facilitate the patient’s interactions with the healthcare system to improve

their health outcomes. The service process involves various interfaces and accurate information is

critical for healthcare practitioners to make both quick and right decisions. However, the infor-

mation sometimes gets lost or mistaken while passing through the service delivery. The lack of

care coordination leads to inferior outcomes for patients. For instance, unnecessary or repetitive

diagnostic tests, unnecessary emergency room visits, and preventable hospital admissions and re-

admissions all lead to lower quality of care and ultimately, worse health outcomes. Clinical or

care pathways (treatment protocols), as they are often referred to in clinical settings, can alleviate

such issues. Studies have shown that clinical pathways lead to positive outcomes for various cases

including a reduction in the prescription of laboratory tests and in-hospital complications [36].

The limited number of resources needed to provide community health services requires op-

timization models and methods to aid in scheduling to best utilize the limited resources while

maintaining a high quality of care for all clients. These challenges are compounded by the new

paradigm of value-based purchasing [37], which has drastically changed how services are mea-

sured, reported, and rewarded in healthcare delivery. The new paradigm of healthcare delivery
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asks for new designs and innovative methods to support community health service coordination

and optimization. However, scheduling pathways is a very challenging problem, and literature on

solution methods for this problem is scant. We are aware of a combined genetic algorithm with

particle swarm optimization to schedule the clinical pathways in a hospital setting [38]. Another

approach that has been considered for modeling and scheduling clinical pathways is constraint

programming [39]. In this dissertation, we derived a SMIP with workload balancing model for

individual CHPs scheduling.

2.3 Optimal Vaccine Allocation

In epidemiology modeling, vaccination policies depending on varying factors have been widely

studied. The approaches range from deterministic to stochastic, computer simulation to statistical

prediction[40, 41, 42]. Early deterministic epidemiological models on evaluating and identifying

vaccination strategies to control infectious diseases were developed around the 1960s [9][43][44].

Some of these models are more focused on evaluating the predetermined vaccination strategies

to see which one is more effective, and the rest emphasize more on identifying optimal vaccine

allocation strategies. Ball et al. consider an optimization model in populations that mix at two

levels: global mixing at a community level and local mixing at a household level [45].

Yarmand et al. and Chen et al. developed two-stage stochastic models for vaccination allo-

cation. Yarmand et al. focuses on determining vaccine allocations in different regions [46]. The

first-stage decisions prescribe vaccine distribution quantities in each region at the beginning of

the epidemic, and second-stage decisions provide an opportunity to allocate additional vaccines to

regions in which the outbreak has not been contained by the outcome of previous stage vaccine

allocations and the magnitude of the outbreak. Chen et al. formulated a two-stage stochastic pro-

gram that integrates ordering and allocation decisions [47]. The goal of their model is to minimize

the cost and determine the optimal ordering and vaccine allocation plan under uncertainty in attack

rate, vaccine efficacy, and demand. There are two major assumptions in their work. The first one

is that the vaccine supply is unlimited. The second one is that the ordering quantity is not bounded

by a budget.
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Tanner et al. extended Becker and Starczak’s deterministic model [48] to a stochastic setting,

and developed several chance-constrained stochastic programming models to identify optimal vac-

cine allocation [49]. One is to minimize the total vaccine cost with a certain level of acceptance

on exceeding the vaccination threshold. The second model considers minimizing the probability

of the disease outbreak under a limited budget. The third model explicitly has cost and probability

of the disease outbreak in the objective function. Their study assumes that no one is vaccinated

yet. At the time of writing this dissertation, more than half of the population in the U.S. were

fully vaccinated. Therefore, this assumption no longer holds. To capture the reality, we derived a

stochastic model considers the population heterogeneity in vaccination status.

This chapter reviews three approaches of stochastic programming and related work to path-

ways scheduling and vaccination allocation. Based on the nature of applications and the decision

maker’s preference, one approach might be more suitable than the other one. In applications where

the occurrence of undesired outcomes may be unavoidable and one may consider to accept such un-

desirable outcomes, CC and ICC approach can be applied. If infeasibility is prohibited, stochastic

programming with recourse can be considered. The next chapter is about stochastic programming

models.
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3. PRELIMINARIES: STOCHASTIC PROGRAMMING MODELS

In this chapter, we present three models for solving problems involving uncertain parameters,

including stochastic programming with recourse, CC and ICC. We also derive an extension of one-

sided ICC to two-sided ICC for problems that allow violations in constraints and violations above

and below target are critical.

3.1 Two-stage Stochastic Programming with Recourse

Stochastic programming is used for formulating and optimizing problems involving random pa-

rameters. The probability distribution of these parameters represents the uncertainty of the model

with respect to the realization of the random parameters. The most common representation of

a stochastic program’s objective function uses the expectation. In this dissertation, we consider

two-stage stochastic programs of the following form:

SP2 : Min c>x+ E[f(ω̃, x)]

s.t. Ax ≥ b

x ≥ 0,

(3.1)

where ω̃ is a multivariate discrete random variable with a realization (scenario) ω with probability

of occurrence pω and sample space Ω. E denotes the expectation and for an outcome ω of ω̃, the

recourse function f(ω, x) is given by

f(ω, x) = Min q(ω)>y(ω)

s.t. W (ω)y(ω) ≥ h(ω)− T (ω)x

y(ω) ≥ 0.

(3.2)
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In formulation (3.1), x denotes the first-stage decision vector, c ∈ Rn1 is the first stage cost vector,

b ∈ Rm1 is the first-stage righthand side, and A ∈ Rm1×n1 is the first-stage constraint matrix.

In the second-stage formulation (3.2), y(ω) denotes the recourse decision vector, q(ω) ∈ Rn2 is

the cost vector, h(ω) ∈ Rm2 is the righthand side, T (ω) ∈ Rm2×n2 is the technology matrix, and

W (ω) ∈ Rm2×n2 is the recourse matrix for scenario ω. If T (ω) = T , for all ω ∈ Ω, SP2 is said

to have fixed tenders. Similarly, W (ω) = W , for all ω ∈ Ω, SP2 is said to have fixed recourse. A

scenario defines the realization of the stochastic problem data {W (ω), T (ω), h(ω)}. Subproblem

(3.2) is generally referred to as the scenario problem. Formulation (3.1-3.2) can also be written in

extensive form (deterministic equivalent) as follows:

Min c>x+
∑
ω∈Ω

pωq(ω)>y(ω)

s.t. Ax ≥ b

W (ω)y(ω) ≥ h(ω)− T (ω)x ∀ω ∈ Ω

x ≥ 0, y(ω) ≥ 0.

(3.3)

The decision-making process in two-stage recourse setting is illustrated in Figure 3.1. The first-

stage decisions x are made without full information on the realization of the uncertain parameters.

Then in the second-stage, the decisions y(ω) are made based on both the first-stage decisions and

the realizations of the uncertain parameters.

2 1 Two-Stage Risk-Neutral Stochastic Linear Programming Methods

into smaller problems which can be solved. The basic idea is to decompose the DEP
into a master program and subproblems based on the scenarios. Then through some
coordination and iterative process, we can use the solutions from the master and
subproblems to compute the optimal solution to the original problem.

In stage-wise decomposition of RN-SLPs, the first-stage involves only the here-
and-now decision variable vector x ∈ Rn1

+ , while the second-stage has the recourse
decision variable vector y(ω̃) ∈ Rn2

+ . The multivariate random variable ω̃ is defined
on a probability space (Ω ,A ,P). The realization (scenario) of ω̃ is denoted by
ω, ω ∈Ω . The random cost based on ω̃ is represented by the random cost function
f (x, ω̃). The decision-making process in this setting is illustrated in Figure 1.1. In
the first-stage, we make the decision x without full information on the future real-
ization ω̃ . Then in the second-stage, we make a ‘corrective’ action y(ω) based on
both the decision x that we made in the first-stage and the scenario ω , which only
becomes known in the second-stage. The recourse decision y(ω) is only commit-
ted after ω becomes known. Thus, the decision y(ω) adapts to a given scenario ω .
Essentially, the two-stage recourse decision-making process allows to determine x
while taking into account all possible future scenarios, where the future is repre-
sented by a probability distribution.

First-Stage

Make decision 

x

x  X := {Ax ≥ b, x ≥ 0}

Second-Stage

Take recourse 

decision 

y()

Observe realization 

(scenario)

 of ෥

y()  y := {W y()  ≥  r() - T() x, y() ≥ 0}

Uncertainty
෥

Fig. 1.1 The two-stage recourse decision-making process.

Let us restate the two-stage RN-SLP from Chapter ?? as follows:

RN-SLP : Min
x∈X

E[ f (x, ω̃)], (1.1)

where E : F 7→ R denotes the expected value. We focus on the risk-neutral case
in this chapter and deal with the risk-averse case in Chapter ??. The set X =
{Ax ≥ b, x ≥ 0} is a nonempty polyhedron that defines the set of first-stage fea-
sible solutions. The matrix A ∈Rm1×n1 and vector b ∈Rm1 are the first-stage matrix
and right hand side vector, respectively. The family of real random cost variables
{ f (x, ω̃)}x∈X ⊆F are defined on (Ω ,A ,P), where F is the space of all real ran-
dom cost variables f : Ω 7→R satisfying E[| f (ω̃)|]<+∞. For a given x∈ X the real
random cost variable f (x, ω̃) is given by

f (x, ω̃) := c>x+ϕ(x, ω̃). (1.2)

Figure 3.1: Two-stage recourse decision-making process
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Let X := {x ∈ Rn1
+ : Ax ≥ b} denote the first-stage feasible set. We address instances of SP2

under the following assumptions:

(A1) The random variable ω̃ follows a discrete distribution with finite support Ω and the probabil-

ity of an outcome ω of ω̃ is equal to pω.

(A2) The first-stage feasible set X := {x ∈ Rn1
+ : Ax ≥ b} is nonempty.

(A3) The second-stage feasible set Y (ω, x) := {y(ω) ∈ Rn2
+ : W (ω)y(ω) ≥ h(ω) − T (ω)x} is

nonempty and bounded for all x ∈ X and ω ∈ Ω.

3.2 Chance-constrained Stochastic Programming

Assuming that ω̃ is discrete with finitely many scenarios ω ∈ Ω, each with corresponding

probability p(ω), we can derive a (DEP) formulation for the chance constrained stochastic program.

This leads the study of decomposition approaches for chance constrained stochastic programs. In

this approach, the decision-maker or modeler imposes their level of acceptable risk or reliability

α ∈ (0, 1). This means that the given probabilistic constraint(s) must hold (1 − α).100% of the

time. In practice, the typical values for α are usually between 0.95 and 1.

Consider the linear programming problem with random constraints:

Min c>x

s.t. Ax ≥ b

P{T (ω̃)x ≥ h(ω̃)} ≥ 1− α

x ≥ 0,

(3.4)

where x ∈ Rn1 is the decision variable vector and T (ω̃) ∈ Rm1×n1 is the technology matrix and

h(ω) ∈ Rm1 is the right hand side vector. The objective function in this case is convex in x and in

many applications is in fact linear.

Let Mω be an appropriately sized scalar for scenario ω and let e be an appropriately dimen-

sioned vector of ones. Let us define a binary decision variable z(ω) as follows: z(ω) = 1 if under
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scenario w at least one of the inequalities in the probabilistic constraint is violated, and z(ω) = 0

otherwise. Then a DEP formulation for problem (3.4) can be written as follows:

Min c>x

s.t. Ax ≥ b

P{T (ω̃)x+Mωezω ≥ h(ω̃)} ≥ α∑
ω∈Ω

pωzω ≤ 1− α

x ≥ 0, zω ∈ B,∀ω ∈ Ω.

(3.5)

The total probability of violating the probabilistic constraint is given by P{T ω̃x � h(ω̃)} ≤∑
ω∈Ω pωz(ω) ≤ 1 − α. When z(ω) = 1 it means that scenario ω is excluded from the CC

formulation. Thus we can assume that pω ≤ α, ∀ω ∈ Ω so that the knapsack constraint (3.5) has

a well-defined subset of scenarios that can be excluded from the formulation without exceeding

the risk/reliability level 1 − α. The parameter 1 − α can be thought of as a budget and that the

knapsack is a budget constraint for constraint removal.

3.3 Integrated Chance Constrained Stochastic Programming

ICC is a modeling tool for here-and-now stochastic programming problems.

f(ω, x) = Min c>x

s.t. T (ω)x = h(ω)

x ∈ X,

(3.6)

where X := {x ∈ Rn
+ : Ax = b}.

There are m random constraints Ti(ω)x = hi(ω), i ∈ I := {1, ...,m}, where Ti(ω) is the i−th

row of matrix T (ω), and hi(ω) is the i−th component of vector h(ω). Let’s define ηi(x, ω) :=
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Ti(ω)x − hi(ω), ∀i ∈ I, and ηi(x, ω)− := max{0,−ηi(x, ω)}. In this dissertation, we define

ηi(x, ω)− as shortage. Constraints in formulation (3.6) avoid any positive shortage, however it

might not be impossible to exclude shortage completely due to the randomness in h(ω) and T (ω).

In the situation, where the amount of shortage is critical, we can use mean shortage Eω[ηi(x, ω)−]

and bounded by a fixed risk aversion parameter βi:

X1( βi) := {x ∈ X : Eω[ηi(x, ω)−] ≤ βi}, βi ∈ [0,∞]

For example, in production planning this measure of positive shortage is the deficiency to satisfy

the demand h(ω) in a time period, and the expected shortage must be limited by a certain amount

βi. Let ziω represent the positive shortage for ith constraint. Integrated chance-constrained prob-

lems with finite discrete distribution can be represented in the LP form as follows:

Min c>x

s.t. Ti(ω)x+zi(ω) ≥ hi(ω), ∀i = 1, ..., I

Ω∑
ω=1

p(ω)zi(ω) ≤ βi,∀i = 1, ..., I

zi(ω) ≥ 0,∀ω ∈ Ω, i ∈ 1, ..., I

x ∈ X,X := {x ∈ Rn
+ : Ax = b}.

(3.7)

This DEP formulation has additional |Ω| + 1 constraints and |Ω| variables. Solving DEP for in-

stances with large number of scenarios is computationally demanding. In the next subsection, a

reduced form algorithm is introduced to solve ICC.

Reduced Form Algorithm for Integrated Chance Constrained Program

As mentioned in the previous section, the ICC DEP can be computationally demanding when

more scenarios are involved in an instance. Haneveld and Vlerk introduced a reduced form algo-

rithm to efficiently solve ICC problems [11]. The detailed steps are shown as follows:
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Step 0. Initialization: T̄ =
∑S

s=1 p(ω
s)T (ωs), h̄ =

∑S
s=1 p(ω

s)h(ωs), β > 0 and C0 := {x ∈ Rn :

T̄ x ≥ h̄− β}. Let iteration index t = 0.

Step 1. Define and Solve Current Problem:

f(x) := Min c>x

s.t. x ∈ X

x ∈ Ct,

Step 2. Solve the LP problem CP: If CP is infeasible, stop. Problem is infeasible. If feasible, get

incumbent solution xt.

Step 3. Compute the shortage: Compute Eω[η(xt, ω)−] =
∑S

s=1 p(ω
s)η(xt, ωs)−, and set Kt :=

{s ∈ S : η(xt, ωs)− > 0}.

Step 4. Add feasibility cut and solve:

If Eω[η(xt, ω)−] ≤ β, stop: xt is an optimal solution.

Otherwise, construct feasibility cut dt+1x ≤ et+1, where dt+1 = −∑
k∈Kt pkT k, et+1 =

β −∑
k∈Kt pkhk. Set Ct+1 = Ct ∩ {x ∈ Rn : dt+1x ≤ et+1}. Set t ← t + 1, and return to

Step 1.

Two-sided Integrated Chance-constrained Programming

Stochastic programming with recourse, CC and ICC approaches are presented in Section 3.1,

3.2 and 3.2. Those approaches are the foundations to develop two-sided ICC. In this subsection,

two-sided ICC formulation and its DEP are derived. For instances with a large number of scenarios,

a decomposition algorithm for two-sided ICC is provided in Subsection 3.3.

Let us define a general formulation for two-side ICC problems.

f(ω, x) = Min c>x

s.t. T (ω)x = h(ω)

x ∈ X,

(3.8)
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where X := {x ∈ Rn
+ : Ax = b}.

There are m random constraints Ti(ω)x = hi(ω), i ∈ I := {1, ...,m}, where Ti(ω) is the i−th

row of matrix T (ω), and hi(ω) is the i−th component of vector h(ω). Let’s define ηi(x, ω) :=

Ti(ω)x − hi(ω),∀i ∈ I, ηi(x, ω)− := max{0,−ηi(x, ω)} and ηi(x, ω)+ := max{0, ηi(x, ω)}. In

this dissertation, we refer ηi(x, ω)− as shortage and ηi(x, ω)+ as excess.

Constraints in formulation (3.8) avoids any positive shortage or excess. In certain applications,

shortages and excesses are unavoidable due to the randomness in parameters. In the situation,

where the amount of excesses and shortages is critical, we can use mean shortage Eω[ηi(x, ω)−]

and mean excess Eω[ηi(x, ω)+] and bound them by fixed risk aversion parameter βi and αi respec-

tively.

X1( βi) := {x ∈ X : Eω[ηi(x, ω)−] ≤ βi, Eω[ηi(x, ω)+] ≤ αi}, βi ∈ [0,∞], αi ∈ [0,∞]

Let ziω represent the positive shortage and eiω represent the positive excess for i−th constraint. ICC

with finite discrete distribution can be represented in the LP form as follows:

Min c>x

s.t. Ti(ω)x+ zi(ω)− ei(ω) = hi(ω),∀i = 1, ..., I

Ω∑
ω=1

p(ω)zi(ω) ≤ βi,∀i = 1, ..., I

Ω∑
ω=1

p(ω)ei(ω) ≤ αi, ∀i = 1, ..., I

zi(ω), ei(ω) ≥ 0,∀ω ∈ Ω, i ∈ 1, ..., I

x ∈ X,X := {x ∈ Rn
+ : Ax = b}.

(3.9)

Assume that ω is a discrete random vector, with Pr{ω = ωs} = ps, s ∈ S, and let (ls, hs) =

(l(ωs), h(ωs)), for s ∈ S. Then, for β ≥ 0,
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C1(β) = ∩K⊆S{x ∈ Rn :
∑
k∈K

pk(hk − T kx) ≤ β} (3.10)

For α ≥ 0,

C1(α) = ∩K⊆S{x ∈ Rn :
∑
k∈K

pk(T kx− hk) ≤ α} (3.11)

If S is a finite set, then C1(β) is a polyhedral set defined by 2|S| − 1 linear constraints and C1(α)

is a polyhedral set defined by 2|S| − 1 linear constraints.

Two-sided ICC Algorithm

As mentioned in the previous section, the ICC DEP can be computationally demanding when

more scenarios are involved in an instance. The following two-sided reduced form algorithm is

derived based Haneveld and Vlerk ICC algorithm presented in Section 3.3. The two-sided ICC

algorithm iteratively adds cuts to reach the optimal solution. The detailed steps are shown as

follows:

Step 0. Initialization: T̄ =
∑S

s=1 p(ω
s)T (ωs), h̄ =

∑S
s=1 p(ω

s)h(ωs), β > 0, C0 := {x ∈ Rn :

T̄ x ≥ h̄− β} and D0 := {x ∈ Rn : T̄ x ≤ h̄+ α}. Let iteration index t = 0.

Step 1. Define and Solve Current Problem:

f(x) := Min c>x

s.t. x ∈ X

x ∈ Ct

x ∈ Dt

Step 2. Solve the LP problem CP: If CP is infeasible, stop. Problem is infeasible. If feasible, get

incumbent solution xt.
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Step 3. Compute the shortage and excess:

Compute E[η(xt, ω̃)−] =
∑S

s=1 p(ω
s)η(xt, ωs)−,E[η(xt, ω̃)+] =

∑S
s=1 p(ω

s)η(xt, ωs)+, and

at the same time constructing the index sets

Kt := {s ∈ S : η(xt, ωs)− > 0},

Lt := {s ∈ S : η(xt, ωs)+ > 0}.

Step 4. Add feasibility cut and solve: If E[η(xt, ω̃)−] ≤ β and E[η(xt, ω̃)+] ≤ α, stop: xt is an

optimal solution.

Step 4.1 If E[η(xt, ω̃)−] ≥ β, construct feasibility cut dt+1x ≤ et+1, where

dt+1 = −
∑
k∈Kt

pkT k, et+1 = β −
∑
k∈Kt

pkhk,

and set

Ct+1 = Ct ∩ {x ∈ Rn : dt+1x ≤ et+1}.

Step 4.2 If E[η(xt, ω̃)+] ≥ α, construct feasibility cut lt+1x ≤ rt+1, where

lt+1 =
∑
k∈Lt

pkT k, rt+1 = α +
∑
k∈Lt

pkhk,

and set

Dt+1 = Dt ∩ {x ∈ Rn : lt+1x ≤ rt+1}.

Step 4.3 Set t← t+ 1, and return to Step 1.

Two-sided ICC Algorithm convergence proof

Since ω is discretely distributed, if we can find some x ∈ X where C1(β, x) is a nonempty set,

then we have
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E[η(y(ω̃)−)] =
∑
s∈S

ps max{0,−η(x, ωs)} (3.12a)

=
∑
s∈S

max{0,−psη(x, ωs))} (3.12b)

=
∑
s∈S

(−psη(x, ωs))+ (3.12c)

= max
K⊆S

∑
k∈K

−pkη(x, ωs). (3.12d)

Therefore, we have

C1(β) = ∩K⊆S{x ∈ Rn : −
∑
k∈K

pkη(yk) ≤ β} (3.12e)

= ∩K⊆S{x ∈ Rn :
∑
k∈K

pk(hk − T kx) ≤ β}. (3.12f)

If S is finite, then there are 2|S| − 1 nonempty subsets of S, so that (3.11) describes the convex set

C1(β) using finitely many linear constraints. That is C1(β) is a polyhedral set in this case.
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Now, we show that the C1(α) is a polyhedral set defined by 2|S| − 1 linear constraint.

E[η(y(ω̃)+)] =
∑
s∈S

ps max{0, η(x, ωs)} (3.13a)

=
∑
s∈S

max{0, psη(x, ωs))} (3.13b)

=
∑
s∈S

(psη(x, ωs))+ (3.13c)

= max
K⊆S

∑
k∈K

pkη(x, ωs). (3.13d)

Therefore, we have

C1(α) = ∩K⊆S{x ∈ Rn :
∑
k∈K

pkη(yk) ≤ α} (3.13e)

= ∩K⊆S{x ∈ Rn :
∑
k∈K

pk(T kx− hk) ≤ α}. (3.13f)

Remark 1 For K = S in (3.12), we obtain T̄ ≥ h̄ − β, where T̄ := E[T (ω̃)] and h̄ := E[h(ω̃)].

Because T (ω) and h(ω) depend linearly on ω, this is equivalent to η(x,E[ω̃])− ≤ β. This is

an obvious necessary condition for x ∈ C1(β), since η(x, ω)− ≥ −η(x, ω) for all ω so that

E[η(x, ω̃)] ≥ −η(x,E[ω̃]).
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4. COMMUNITY HEALTH PATHWAYS SCHEDULING

Scheduling and coordinating constrained resources in community healthcare settings at a cen-

tralized Pathways Community HUB is challenging due to limited resources and the inherent dy-

namics of the processes and the organizational structures. In this chapter, we introduce a stochas-

tic programming approach for connected community health for optimally scheduling community

health pathways (CHPs) under uncertainty in resource availability. A CHP is a standardized tool

that details multiple steps of a healthcare-related service and the required resources for each step.

The new methodology was implemented and applied to data for a real Pathways Community HUB

for a U.S. county involving a number of CHPs, community health workers, physicians, and other

resources. The computational study shows that client access time depends on the HUB resources

uncertain future availability and client demand, with high client demand resulting in longer ac-

cess time. The study reveals several managerial insights, including the observation that workload

balancing is beneficial in terms of providing schedules that are equitable across the same type of

community health workers with access times that are comparable to the when no workload balanc-

ing is considered.

4.1 Introduction

Community healthcare agencies in the U.S. such as those at the county level are tasked with

providing medical, behavioral, and social services to community members in need. However,

providing such services requires careful coordination of limited resources. Agency resources in-

clude case managers, community health workers, and office facilities, while external resources

include physicians, nurses, social workers, behavioral health specialists, insurance companies, and

community-based organizations. Care coordination is the organization of care activities among

individual clients and providers to facilitate the appropriate delivery of healthcare services [32].

Performing care coordination involving disparate resources presents significant challenges in terms

of scheduling, adhering to the care activities protocols, and tracking progress of these activities for
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each client in the system. The focus of this chapter is on community care coordination using the

Pathways Community HUB model of care coordination [4]. This model considers the community

level to improve quality of care for individual clients by coordinating community-based health and

social services.

This work introduces a stochastic programming (SP) approach for scheduling and coordinating

community health pathways (CHPs) under uncertainty in the availability of the limited HUB re-

sources and client demand, while providing equity among community health workers via workload

balancing. There are different types of pathways and in this work we focus on CHPs for connected

community health services, which are different from clinical or care pathways [50]. A CHP is

simply a structured and time-framed multidisciplinary care guideline that details essential steps of

a community healthcare process. It provides a sequence of appointments and resources needed for

each appointment together with its duration over a specified time horizon. CHPs are unique in that

they track the individual client being served and each step of the CHP addresses a well defined

action towards resolving the issue addressed by the pathway. Such issues include lack of health

insurance, medical home, homelessness, pregnancy, immunizations, and so on. Each step can deal

with a health, social or cultural issue. A CHP is not considered complete until the issue is success-

fully resolved or until a specific point is reached to close in a documented manner that the CHP that

has not been completed. In addition, CHPs are associated with payment for specific benchmarks

along the pathway with the highest payment given for a successful outcome at completion of the

pathway.

The Pathways Community HUB model of care coordination is a construct that was introduced

to enable coordination of care activities of different organizations and their services. Pathway

models focus on the progress and outcomes of individual clients as they traverse the care organi-

zations [35]. In turn, pathways coordination can enable a comprehensive approach to community

health service focused on reducing the healthcare inequalities to improve health outcomes for the

community. Community-based services have been shown to play a vital role in addressing some

of the nation’s most difficult health problems, including health disparities and the rising chronic
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health conditions such as obesity and diabetes [33]. Effective care coordination at the community

level is a hard task. Many individuals who need community health services have complex health

needs and chronic health conditions [51]. Addressing these complex needs requires a combination

of multiple services (medical services, behavioral health services, and social services) and support

from a wide variety of community-based resources in order to reduce the health and social barriers

to improve healthcare outcomes [34]. This complexity poses major challenges in terms of effec-

tively connecting the different parties (clients, agencies, service providers) and coordinating them

to work in concert to achieve positive outcomes.

The limited number of resources needed to provide community health services calls for op-

timization models and methods to aid in scheduling to best utilize the limited resources while

providing quick access time for all clients. This scheduling challenge is compounded by the new

paradigm of value-based purchasing [37], which has drastically changed how services are mea-

sured, reported, and rewarded in healthcare delivery. The new paradigm of healthcare delivery

asks for new designs and innovative methods to support community health service coordination

and optimization. This work makes a step toward achieving that goal. However, scheduling CHPs

is a very challenging problem and literature on solution methods for this problem is scant. The

few available works are in the hospital setting: constraint programming model [39] and combined

genetic algorithm with particle swarm optimization for scheduling clinical pathways in a hospi-

tal setting [38]. The work of [38] shows that clinical pathways can significantly improve patient

waiting time in a hospital setting. Furthermore, studies have shown that clinical pathways lead to

positive outcomes for various cases, including a reduction in the prescription of laboratory tests

[52] and in-hospital complications [36].

Recent work on scheduling in the general healthcare setting include a physician mixed-integer

programming (MIP) scheduling model to assign physicians to overnight duties based on their pref-

erences and incorporate fairness based on our satisfaction indicator [53], a mixed integer robust

optimization approach for scheduling patient appointment in an infusion center [54], and a radio-

therapy treatment scheduling model considering time window preferences [55]. The work by [56]
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considers schedule configuration of a hybrid appointment system for a two-stage outpatient clinic

with multiple servers. Patient scheduling in outpatient clinics under demand uncertainty has also

been considered to minimize patient waiting times [57].

The main contributions of this chapter include the following: a) an SP model for optimally

scheduling individual CHPs under unknown future resource availability while allowing for work-

load balancing of resources of the same type to enable equity among personnel; b) a Monte Carlo

simulation model that uses the SP model to assess CHPs scheduling and workload balancing in

a structured setting. This model-based approach allows for progress tracking and notification for

individual CHPs as well as computing and monitoring of system performance measures over time;

and c) a computational study based on a real setting to demonstrate the new approach and gain

managerial insights into CHPs scheduling under uncertainty in resource availability and different

client demand scenarios.

The rest of this chapter is organized as follows: In the next section we describe the materials

and methods used in this work, including data collection and analysis, model development and

implementation, experiment design, and the SP pathway scheduling model. Next, we report on

simulation results followed by a discussion and concluding remarks and future work.

4.2 Materials and Methods

Motivated by a real Pathways Community HUB, we developed a computer simulation model to

mimic client appointment requests arrivals for CHPs, scheduling CHPs, and the arrival of clients at

the HUB for their appointment. The goal of the simulation model was to help us gain managerial

insights into the computational performance of the stochastic programming (SP) approach under

different demand cases and resource availability scenarios. Next, we describe our data collection

and analysis, including the real setting and design of experiments. We devote most of the space to

deriving the SP pathway scheduling model.
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Figure 4.1: Pathways Community HUB Model

4.2.1 Data Collection and Analysis

The Pathways Community HUB setting we consider is a county on the east coast of the U.S.

This HUB provides a delivery system for care coordination services in a community setting with

a goal of improving health outcomes for the high-risk and providing preventive care in the county.

For some programs community-based coordination simply refers to transition from a medical fa-

cility (e.g., a hospital) to the community (e.g., residence or nursing home). However, in this case

community involvement is not only limited to the patient’s residence or nursing home, but care

coordination involves multiple providers and multiple services within a larger community setting

as depicted in Figure 4.1. In this HUB, CHPs serve as a documentation and reporting tool that

capture a set of guiding principles for finding those at risk, ensuring that they are treated with

evidence-based medical and social interventions, and measuring the health outcomes and costs

of these efforts. In essence, this supplements clinical services with the social services needed to
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overcome social barriers to healthcare for those most at risk [4].

CHPs include both health and social issues that need to be addressed with a goal of increasing

the likelihood of a positive outcome for the client. The purpose of the HUB is to provide a cen-

tral point for registry and outcome tracking. It connects community care coordination agencies,

providers, and payers, and uses pathways along with defined metrics to track progress at the indi-

vidual level, care coordinator, agency, and regional level. In terms of service payments, pathways

are associated with payment for specific benchmarks along the CHP through to successful out-

comes at completion. Therefore, CHPs provide the ability to link payment to outcomes and thus

enabling linking payments to performance.

The HUB deals with about 40,000 residents with over 90% of the population belonging to

a racial or ethnic minority group. Population diversity and lack of reliable data on residents’

healthcare needs make it more challenging for the county to provide timely access to appropriate

healthcare services. The community care coordination team established a management model

using CHPs at the community health county level to improve the healthcare outcomes. The HUB

operates nine hours a day from 8:00 am to 5:00 pm, Monday through Friday, with one hour lunch

break from 12:00 pm to 1:00 pm. It has several behavioral, social and medical CHPs, 20 of which

are listed in Table 4.1. We give an example of the Insurance CHP in Figure 4.2 in the Appendix.

When residents (we refer to them as clients) need health related services, the HUB clinical

health workers (CHWs) use CHPs as guidelines to establish communications among stakeholders,

such as the hospital, educational institutions, insurers and health care providers. CHWs identify

which CHPs are appropriate for each client and allocate resources to all steps of the assigned CHPs

within specified time frame. However, it is very challenging to find the earliest first appointment

due to the uncertain future availability of the resources for all the steps of a CHP as well as the

limited number of CHWs. When the CHP assigned to a client cannot be scheduled within 10 days,

the CHW will issue a referral to the client to seek another community health center. There are nine

types of resources at this HUB listed in Table 4.2, each with the specific number we used in our

computational study.
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CHP Name Abbreviation Days Steps
1 Acute Coronary Syndrome ACS 22 6
2 Asthma ASM 25 6
3 Behavioral Health Intervention BHI 25 6
4 Care Team CAT 25 4
5 Companion or Care Attendant CCA 15 5
6 Closed Head Injury CHI 20 4
7 Caesarean Birth CSB 9 6
8 Domestic Violence DMV 25 6
9 Dietitian and Nutrition Consultant DNC 22 6

10 Dying Person Care DPC 17 5
11 Food Insecurity FDI 25 7
12 Housing HUS 23 5
13 Insurance INS 25 6
14 Medical Home MDH 10 6
15 Medical Referral MDR 14 3
16 Prime Time Sister Circle PTS 25 8
17 Smoking Cessation SMC 25 6
18 Social Service Referral SSR 25 6
19 Thrombolysis TBS 15 6
20 Transportation-HEZ TRH 3 3

Table 4.1: Community Health Pathways (CHPs) available in the HUB

Resource Name Abbreviation Number
1 Patient Navigator PNT 3
2 Educator EDU 4
3 Liaison LAS 3
4 Outreach Worker OTW 4
5 Patient Counselor PEC 5
6 Health Interpreter HIP 4
7 Training Location TRL 5
8 Community Health Advisor CHA 4
9 Transporter TRS 3

Table 4.2: Resource types available in the HUB

The Insurance CHP in Figure 4.2 takes 25 days to complete and involves six steps after initia-

tion: step 1 (Investigate) on day 1 requires one resource, CHA, for one 15-minute timeslot; step 2

(Application) on day 2 requires one resource, OTW, for two 15-minute timeslots; step 3 (Appoint-

ment, Education) on day 7 requires three resources, OTW for one 15-minute timeslot and EDU and
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TRL for two 15-minute timeslots concurrently and ; step 4 (Processing) on day 14 requires one

resource, HIP, for one 15-minute timeslot and ; step 5 (Processing Verification) on day 21 requires

one resource, HIP; and step 6 (Completion) on day 25 requires one resource, PEC.

4.2.2 Model Development and Implementation

Managing clients and resources in the HUB in extremely challenging, especially as relates

to scheduling clients for different pathways using limited resources whose future availability is

uncertainty. We developed an SP pathway scheduling model together with a simulation model

of the HUB to evaluate the performance of the SP approach. The computer simulation and SP

models were coded in the CPLEX 12.9 Callable Library [58] using C++ and all experiments were

performed on a Dell Precision with a Quad Core 2395 MHz processor and 12.0GB RAM. The

computer simulation model has a client generator and a CHP scheduler as depicted in Figure 4.3.

The Client Generator creates client arrivals on each day of the planning horizon. Clients arrive one

at a time and request services, and CHPs are assigned based on each client’s request and needs as

determined by the CHW. Then the Scheduler searches for the earliest possible appointment for the

assigned CHP that gives minimum workload imbalance, if workload balancing is selected. The

future availability of the resources that are assigned to the CHP steps is updated by the Resource

Allocator according to the assigned resources. If the assigned CHP cannot be scheduled within 10

days, it is recorded as not scheduled and the client leaves the simulation.

After scheduling a CHP for a client, Client Generator generates the next client to request ser-

vices. The simulation ends, when the last client is scheduled on the last appointment day. The

HUB hours of operation are divided into 15-minute timeslots, and the CHP steps are assigned to

timeslots. Thus, there are 32 working timeslots each day with four break timeslots from 12:00 pm

to 1:00 pm.

4.2.3 Experimental Design

We conducted several experiments to assess the schedules determined by the SP model over

a specified time horizon to gain managerial insights. Specifically, we wanted to to study the fol-
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Insurance Pathway: 25-days
Client Name

Date of Birth

Address/Phone

Primary Diagnosis

Pathway Start Date

Step Day Activity Sub-Activities RES1 RES2 RES3 Order

0 Initiation Client is uninsured and needs health insur-

ance

1 1 Investigate 1. Investigate insurance resources

2. Discuss the insurance coverage

3. Discuss the options with client

4. Make the selection

CHA

15

0 0 {0}

2 2 Application 1. Assist client with the application

2. Submit application and verify the date

OTW

30

0 0 {0}

Appointment 1.1 Set appointment with provider

1.2 Date and time of appointment:

1.3 Date client informed of scheduled ap-

pointment with Insurance

1.4 Location of appointment

1.5 Contact person:

OTW

15

EDU

30

TRL

30

{0,1,1}

3 7 Education 2.1 Client educated about the importance

of having Insurance.

2.2 Client educated.

2.3 Provide Client Tips on how to check on

the status of your application

2.4 Date education provided

4 14 Processing Status check HIP

15

0 0 {0}

Processing 1.1 Status check HIP 0 0 {0}
5 21 Verification 2.1 Did client keep the scheduled appoint-

ment to review application and supporting

documents. Yes / No

2.2 Verification: Informed by client /by

Agency Contact /On-line confirmation

15

6 25 Completion Insurance Denied

Client did not complete process

Date of completion

OR Follow up needed

PEC

15

0 0 {0}

Figure 4.2: The Insurance CHP
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Scheduler:

Client arrives

Is cd= rd ?

CHWs assign a pathway to 
client

Initialization: d=0, cd =0

cd = cd + 1

d= d+1

Client Generator: 
generate client cd for day d

End

Search for a schedule

Minimize type 
I delay

Minimize workload 
imbalance

Resource Allocator:
Assign activities to 

resources

Block resource availability for the 
assigned timeslots

Is d = h ?Yes

No

No Yes

Note:
d: day d in planning horizon
h: total days in planning horizon
cd: client ID on day d
rd: arrival rate on day d (given)

Figure 4.3: CHP scheduling simulation flowchart

lowing four main aspects of CHPs scheduling under uncertainty: a) variation of client acess time;

b) resource utilization; c) workload balancing (WB) versus no workload balancing (NWB); and d)

impact of client demand on scheduling.

We considered the following performance measures: access time, number of clients not sched-

uled, number of clients who have to wait at least one day, workload in terms of the number of

timeslots assigned to a resource, workload coefficient of variation (CV), and minimum, mean and

maximum workload.

Client request daily arrival rate is a critical factor in scheduling CHPs. It translates into client

demand volume, which significantly affects scheduling decisions in terms of client access time.

Therefore, we experimented with three cases: low demand (Case I), medium demand (Case II) and
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high demand (Case III). Demand volume is determined by client daily arrival rate at the HUB.

Since daily arrival rate is stochastic, we assumed uniform (U) distributions given in Table 4.3. The

parameters were set based on estimates for the HUB used in this study. Clients were set to be

scheduled over the first 75 days (appointment days) of a planning horizon of 100 business days,

i.e., four months. All the three cases had the same resource types (given in Table 4.2) each with its

uncertainty availability following the Bernoulli (B) distribution as given in Table 4.3. We set the

number of scenarios as shown in the table. Both the number of scenarios and resource availability

B distribution p values was carefully set based on the HUB characteristics. Recall that for each

scenario, the availability of each resource for each of the 32 timeslots per day for 100 days has to

be specified.

Table 4.3: Experiment cases and settings

Case I Case II Case III
Demand Low Medium High
Client daily arrival rate U(5, 15) U(15, 25) U(25, 35)
Number of scenarios 10 10 5

Res Type PNT EDU LAS OTW PEC HIP TRL CHA TRS
p value 0.9 0.9 0.9 0.9 0.9 0.9 1.0 0.9 1.0

We performed three replications for each demand case to guard against spurious cases and

recorded the average (mean) for all the performance measures, and in some cases we also recorded

the minimum and maximum values. We first investigated the impact of using deterministic (as-

sumed to be known) resource availability versus stochastic resource availability on the performance

measures. We specifically compared the results of the WB and NWB settings to evaluate equity

issues among CHW resources of the same type.

4.3 CHPs Scheduling Model

A CHP involves several steps with each step requiring one or more resources and the required

resource(s) for each step have to be scheduled for a specific day and time. This involves scheduling
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multiple care activities that have to be processed at some point between an earliest start time and

a latest completion time, all while satisfying the required resources’ availability constraints. For

example, if a CHP step needs three resources to perform three different activities in order, the

earliest starting time for the second resource has to be no earlier than the end of first activity.

Furthermore, the latest completion time for the second activity has to leave enough time for the

third resource to perform the last activity. The CHPs scheduling problem belongs to the set of

parallel machine scheduling problems with limited resources and is challenging to solve.

We devise a two-stage stochastic programming (SP) formulation of the problem under un-

known future resources’ availability for determining optimal schedules (appointments) that provide

minimum waiting (access) time and equitable workload among the resources. In the first-stage, we

determine here-and-now the client’s schedule for all the steps in the CHP, i.e., we assign a day,

timeslots and required resources for each step of the CHP before availability of the resources is un-

veiled. Then in the second-stage we account for possible future resource availability for each day

and step of the CHP to inform the first-stage in finding an optimal schedule. In this SP approach the

unknown future availability of the resources is characterized by probability distributions. Specifi-

cally, we consider a probability distribution for the availability of each resource for each day and

each timeslot, respectively, in the future.

The SP approach enables to schedule resources in the first-stage such that those resources are

most likely to be available in the future for each step of the CHP to minimize potential appointment

cancellations. We should point out that in reality one can think of finding another resource to sub-

stitute the unavailable resource at the same of the appointment. However, community healthcare

service is often burdened with scheduling large volumes of the clients under limited resources.

Thus a planning tool to aid determining appointments that are unlikely to be canceled is essential.

To formulate the SP model for scheduling a client appointment for a given CHP, we use the fol-

lowing mathematical notation:
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First-Stage Sets

P: Set of CHPs, indexed p.

R(i): Set of resources of type i, indexed r.

I(p): Set of resource types needed for CHP p, indexed i.

I(p, s): Set of resource types needed for step s of CHP p, indexed i.

S(p): Set of steps for CHP p, indexed s.

T: Set of timeslots in a day, indexed t.

D: Set of days in the planning horizon, indexed d.

D(p): Subset of days in the planning horizon on which CHP p can start, indexed d.

D̄(p, d): Given a CHP p starting on day d ∈ D(p), D̄(p, d) is the set of CHP calendar days for all

steps of CHP p, indexed h.

O(p, s): O(p, s) is a set of numbers indicating the resource sequence order for step s of CHP p.

First-Stage Parameters

cd: Cost of starting appointment on day d.

ap,s,i,r,t,h: ap,s,i,r,t,h = 1, if resource r of type i is available for step s of CHP p at start timeslot t

on day h of CHP calendar, ap,s,i,r,t,h = 0 , otherwise.

np,s,i: np,s,i is the number of consecutive timeslots using resource type i for step s of CHP p.

bi,r,h: bi,r,h is the total number of timeslots that resource r of type iis already assigned on

day h when schedule .

ESr: ESr is earliest starting time for type i resource r ∈ R(i).

LSr: LSr is latest starting time for type i resource r ∈ R(i).

EAr: EAr is earliest assigned time for type i resource r ∈ R(i).

LAr: LAr is latest assigned time for type i resource r ∈ R(i).
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First-Stage Decision Variables

zd: zd = 1, if client starts the first appointment on day d ofthe planning horizon,

zd = 0, otherwise.

z: Vector of zd’s, z = (z1, · · · , z|D(p)|).

xp,s,i,r,h: xp,s,i,r,h = 1, if resource r of resource type i is assigned to step s of CHP

p on day h, h ∈ D̄(p, d), xp,s,i,r,h = 0, otherwise.

x: Vector of xp,s,i,r,h’s.

yp,s,i,r,t,h: yp,s,i,r,t,h = 1, if resource r of type i required for step s of CHP p is assigned to

timeslot t on day h of the planning horizon, yp,s,i,r,t,h = 0, otherwise.

y: Vector of yp,s,i,r,t,h’s.

wp,s,i,r,t,h: wp,s,i,r,t,h = 1, if resource r of type i for step s of CHP p starts the assignment

at timeslot t on day h of CHP calendar,wp,s,i,r,t,h = 0, otherwise.

w: Vector of wp,s,i,r,t,h’s.

Second-Stage Sets

Ω: Set of outcomes or scenarios ω, where ω is an outcome of a multivariate random

variable ω̃ that describes resource availability and is defined on a probability space.

Dω(p): Subset of CHP starting days in the planning horizon on which CHP p can start

under scenario ω, indexed dω.

D̄ω(p, dω): Set of CHP calendar days for all steps of CHP p starting on day dω ∈ Dω(p),

indexed h̄.

Second-Stage Parameters

aω
p,s,i,r,t,h̄

: aω
p,s,i,r,t,h̄

= 1, if resource r of type i is available for step s of

CHP p at start timeslot t on day h̄ of CHP calendar

under scenario ω, aω
p,s,i,r,t,h̄

= 0 , otherwise.

bω
i,r,h̄

: bω
i,r,h̄

is the total number of timeslots that resource r of type

i is already assigned on day h̄ when schedule under scenario ω.

38



Second-Stage Variables

zω
d̄

: zω
d̄

= 1, if client starts the first appointment on day d̄ of the

planning horizon under scenario ω, zω
d̄

= 0, otherwise.

zω: zω = 1, if cannot find feasible schedule starting on day d̄,

zω = 0 otherwise.

xω
p,s,i,r,h̄

: xω
p,s,i,r,h̄

= 1, if resource r of resource type i is assigned to

step s of CHP p on day h̄ under scenario ω,

xω
p,s,i,r,h̄

= 0, otherwise.

xω: Vector of xω
p,s,i,r,h̄

’s.

yω
p,s,i,r,t,h̄

: yω
p,s,i,r,t,h̄

= 1, if resource r of type i required for step s of CHP p

is assigned to timeslot t on day h̄ of the planning horizon under

scenario ω. yω
p,s,i,r,t,h̄

= 0, otherwise.

yω: Vector of yω
p,s,i,r,t,h̄

’s.

wω
p,s,i,r,t,h̄

: wp,s,i,r,t,h̄ = 1, if resource r of type i for step s of CHP

p starts the assignment at timeslot t on day h̄ of CHP

calendar under scenario ω, wc
p,s,i,r,t,h = 0, otherwise.

wω: Vector of wω
p,s,i,r,t,h̄

’s.

Lmin,ω

i,h̄
: Lmin,ω

i,h̄
, is the minimum number of timeslots that resource

type i is assigned on day h̄ under scenario ω.

Lmin,ω: Vector of Lmin,ω

i,h̄
’s.

Lmax,ω

i,h̄
: Lmax,ω

i,h̄
, is the maximum number of timeslots that resource

type i is assigned on day h̄ under scenario ω.

Lmax,ω: Vector of Lmin,ω

i,h̄
’s.

We are now ready to derive the SP scheduling model using the given notation. As mentioned

earlier, a CHP typically involves multiple types of resources in some given step. For a CHP p, if

|I(p, s)| = 1 it means that only one resource type is needed in step s of the pathway. If |I(p, s)| ≥ 2

it means that more than two types of resources are required in step s. Based on the pathways we

consider in this work, we shall restrict ourselves to no more than three resource types in a given
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step. Therefore, let us index the resources by i1, i2, i3, in that order. Since the resources are

required to perform a given task in a particular sequence (including concurrently), we shall refer

to this sequence as the resource precedence order. We denote the resource precedence order for

CHP p and step s by O(p, s). Each element, 0, 1, or 2 of O(p, s) will represent the sequence

order. If a single resource type is needed in step s of CHP p, the sequence order will be written as

O(p, s) = {0}. If two resource types are need, the precedence order can be O(p, s) = {0, 0} or

O(p, s) = {0, 1}. The precedence order O(p, s) = {0, 0} means that step s of CHP p requires two

resource types, i1 and i2, concurrently. When O(p, s) = {0, 1} it means that two resource types i1

and i2 are required, with the first resource being available before the second to complete the task.

Notice that the |O(p, s)| is equal to the number of resources required in step s.

If three resources are required for step s, then the following three precedence orders are

possible: O(p, s) = {0, 0, 1}, O(p, s) = {0, 1, 1} and O(p, s) = {0, 1, 2}. Precedence order

O(p, s) = {0, 0, 1} means that resource type i1 must be available at the same time as resource type

i2 and that resource types i1 and i2 must be available before resource type i3. If the precedence

order is O(p, s) = {0, 1, 1}, it means that resource type i1 must be available before i2 and i3,

while resource types i2 and i3 must be available at the same time. If three resource types must

be available one after the next, then we denote the precedence order as O(p, s) = {0, 1, 2}. The

six possible resource precedence orders required in a given step that we consider in thus study are

listed Table 4.4.

Case # Resources O(p, s)
0 |I(p, s)| = 1 {0}
1
2

|I(p, s)| = 2
|I(p, s)| = 2

{0,0}
{0,1}

3
4
5

|I(p, s)| = 3
|I(p, s)| = 3
|I(p, s)| = 3

{0,0,1}
{0,1,1}
{0,1,2}

Table 4.4: Six resource precedence order cases
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In the two-stage SP model, we want to determine here-and-now (first-stage) the client’s sched-

ule for all the appointments in their CHP, while accounting for future uncertainty in the resources’

availability required to complete the CHP. For a given client, the first-stage decision variable vector

v specifies each resource’s schedule, i.e., days and corresponding timeslots the resource is assigned

to each step of the CHP, as well as the start timeslot on each day in the schedule. The first-stage

objective is to minimize the total waiting time from the time of a pathway appointment request to

when the client is first seen, referred to as access time. We want to reduce this access time while

taking into account the resources’ unknown availability in the future. Thus, given the first-stage

decision v, the second-stage objective is to minimize expected future cost associated with workload

balancing based on the resources’ uncertain availability.

Mathematically, the objective can be written as follows:

Min
z,x,y,w

∑
d∈D(p)

cdzd + E[f(z, ω̃)]. (4.1)

The first term of the objective function (4.1) computes the time (in terms of days) from when a

client request for a pathway appointment is made to when the client start their first appointment

over the planning horizon. The scalar cd is a cost factor, with higher values indicating that we want

to schedule the client as soon as possible. We can vary the trade-off between client waiting time

and expected resource workload balance simply by changing the value of cd.

Given a first-stage decision (z, x, y, w) and outcome ω ∈ Ω of ω of ω̃, the second term is the

(second-stage) expected recourse function and it calculates the expected sum of workload differ-

ences among resources of the same type to effect equity. We will give an explicit mathematical

expression of the recourse function f(z, ω) later. Next, we define the first-stage constraints. Given

the subset of days in the planning horizon on which CHP p can start, D(p), the following constraint

selects one possible starting day from the earliest possible days:

∑
d∈D(p)

zd = 1. (4.2)
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To ensure that the needed resource r of type i to perform step s of CHP p ∈ P is selected on day

d, we impose the constraint:

− zd +
∑
r∈R(i)

xp,s,i,r,h = 0, ∀s ∈ S(p), i ∈ I(p, s), d ∈ D(p), h ∈ D̄(p, d). (4.3)

The next constraint ensures that the required resources are assigned to a timeslot:

np,s,i · xp,s,i,r,h −
∑
t∈T

yp,s,i,r,t,h = 0, ∀s ∈ S(p), i ∈ I(p, s),

r ∈ R(i), d ∈ D(p), h ∈ D̄(p, d).

(4.4)

To choose a starting timeslot for the needed resource, the constraint below is added:

zd −
∑
t∈T

∑
r∈R(i)

wp,s,i,r,t,h = 0, ∀s ∈ S(p), i ∈ I(p, s), d ∈ D(d),

h ∈ D̄(p, d).

(4.5)

The following constraint ensures that the resource is assigned to an activity only when the resource

is available:

yp,s,i,r,t,h ≤ ap,s,i,r,t,h, ∀s ∈ S(p), i ∈ I(p, s), r ∈ R(i),

t ∈ {1, ..., |T|}, d ∈ D(d), h ∈ D̄(p, d).

(4.6)

We impose the following constraint to guarantee that consecutive timeslots are selected if step s of
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CHP p using resource r of type i requires more than one timeslot:

t′+np,s,i−1∑
t=t′

yp,s,i,r,t,h − np,s,i · wp,s,i,r,t′,h ≥ 0, ∀s ∈ S(p), i ∈ I(p, s),

r ∈ R(i), t′ ∈ {1, ...|T| − np,s,i + 1}, d ∈ D(p), h ∈ D̄(p, d).

(4.7)

Resource Precedence Order

When multiple resources are involved in a step of a CHP, we add the appropriate precedence

order constraints for each given case. We refer to the list of the possible precedence order cases

in Table 4.4 to ensure that each task in a CHP is assigned the needed resources in the required order:

Case 0: |I(p, s)| = 1 for step s, precedence order O(p, s) = {0}: No additional constraints are

needed.

Case 1: |I(p, s)| = 2 for step s with resources indexed i1 and i2, precedence order O(p, s) =

{0, 0}.

wp,s,i1,r1,t,h =
∑

r2∈R(i2)

wp,s,i2,r2,t,h, ∀ i1, i2 ∈ I(p, s), r1 ∈ R(i1),

t ∈ {1, ...|T| − np,s,i1 + 1}, d ∈ D(d), h ∈ D̄(p, d). (4.8a)

wp,s,i1,r1,t,h =
∑

r2∈R(i2)

wp,s,i2,r2,t,h, r1 ∈ R(i1),

t ∈ {1, ...|T| − np,s,i1 + 1}, d ∈ D(d), h ∈ D̄(p, d). (4.8b)

Case 2: |I(p, s)| = 2 for step s with resources indexed i1 and i2, precedence order O(p, s) =

{0, 1}. Resource type i1 must be available before i2. In this case, we need to include the following
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constraints for step s:

wp,s,i1,r1,t,h ≤
|T|−np,s,i2

+1∑
t′=t+np,s,i1

∑
r2∈R(i2)

wp,s,i2,r2,t′,h, ∀ i1, i2 ∈ I(p, s),

r1 ∈ R(i1), t ∈ {np,s,i1 + 1, ..., |T| − np,s,i1 − np,s,i2 + 1},

d ∈ D(d), h ∈ D̄(p, d).

(4.9)

Case 3: |I(p, s)| = 3 for some step s with resources indexed i1, i2 and i3, precedence order

O(p, s) = {0, 0, 1}. Resource type i1 and i2 must be available at the same time before resource

type i3. In this case, we need to impose the following constraints for step s:

wp,s,i1,r1,t,h =
∑

r2∈R(i2)

wp,s,i2,r2,t,h, ∀i1, i2 ∈ I(p, s), r1 ∈ R(i1),

t ∈ {1, ...|T| − np,s,i1 − np,s,i2 + 1}, d ∈ D(d), h ∈ D̄(p, d). (4.10a)

wp,s,i2,r2,t,h ≤
|T|−np,s,i3

+1∑
t′=t+np,s,i2

∑
r3∈R(i3)

wp,s,i3,r3,t′,h, ∀i2, i3 ∈ I(p, s),

i2 6= i3, r2 ∈ R(i2), t ∈ {np,s,i1 + 1, ..., |T| − np,s,i3 + 1},

d ∈ D(d), h ∈ D̄(p, d). (4.10b)

Case 4: |I(p, s)| = 3 for some step s with resources indexed i1, i2 and i3, precedence order

O(p, s) = {0, 1, 1}. Resource type i1 must be available before resource types i2 and i3, and

resource types i2 and i3 must be available at the same time. In this case, we need to include the
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following constraints for step s:

wp,s,i1,r1,t,h ≤
|T|−np,s,i2

+1∑
t′=t+np,s,i1

∑
r2∈R(i2)

wp,s,i2,r2,t′,h, ∀i1, i2 ∈ I(p, s),

r1 ∈ R(i1), t ∈ {1, ..., |T| − np,s,i1 − np,s,i2 + 1}, d ∈ D(d),

h ∈ D̄(p, d). (4.11a)

wp,s,i2,r2,t,h =
∑

r3∈R(i3)

wp,s,i3,r3,t,h, ∀ i2 6= i3, i2 ∈ I(p, s),

t ∈ {nn,p,s,i1 + 1, ...|T| − np,s,i2 + 1}, d ∈ D(d), h ∈ D̄(p, d). (4.11b)

Case 5: |I(p, s)| = 3 for some step s with resources indexed i1, i2 and i3, precedence order

O(p, s) = {0, 1, 2}. Resource type i1 must be available before resource type i2, and resource type

i2 must be available before resource type i3. In this case, the following constraints are added for

step s:

wp,s,i1,r1,t,h ≤
|T|−np,s,i2

−np,s,i3
+1∑

t′=t+np,s,i1

∑
r2∈R(i2)

wp,s,i2,r2,t′,h, ∀i1, i2 ∈ I(p, s),

r1 ∈ R(i1)t ∈ {1, ..., |T| − np,s,i1 − np,s,i2 − np,s,i3 + 1},

d ∈ D(d), h ∈ D̄(p, d). (4.12a)

wp,s,i2,r2,t,h ≤
|T|−np,s,i3

+1∑
t′=t+np,s,i2

∑
r3∈R(i3)

wp,s,i3,r3,t′,h, ∀i2, i3 ∈ I(p, s),

i2 6= i3, r2 ∈ R(i2), t ∈ {np,s,i1 + 1, ..., |T| − np,s,i2 − np,s,i3 + 1},

h ∈ D̄(p, d). (4.12b)

When there are multiple resources involved in a step, the appropriate precedence order con-

straints given above have to be added to the formulation. For example, in the Insurance CHP

(Figure 4.2), step 3 requires resources types OTW (Outreach Worker), EDU (Educator) and TRL

(Training Location) with precedence order O(p, s) = {0, 1, 1}. Therefore, precedence order Case
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4 in Table 4.4 applicable and constraints (4.11a)-(4.11b) must be included in the formulation.

Tightening Constraints

The purpose of tightening a formulation in integer programming is to reduce the size of the

problem and to speed up computation time. In Table 4.4, we specified resource precedence order

cases and defined the constraints for each. When multiple resources are involved in a step of the

CHP, the resources’ earliest and latest assigned timeslots and start times can be determined. Using

this observation, we can update constraints (4.4) - (4.7) to get a tighter formulation by setting the

appropriate timeslot bounds within which an activity in a given step can occur. We should point

out that in Case 1 when the precedence order is O(p, s) = {0, 0}, the two resources have to be

available at the same time, thus the bound on assigned and start times is the same as for a single

resource. Therefore, in this case we cannot tighten the formulation. However, for the other cases

involving multiple resource types, we can update some of the constraints to eliminate redundant

variables and constraints.

For resource type i (in precedence order), let the earliest assigned timeslot be denoted EAi

and the latest assigned timeslot be denoted LAi. Similarly, let ESi and LSi denote the earliest and

latest start time, respectively. Then appropriate values of EAi, LAi, ESi and LSi for each of the

cases for a given i can be given as shown in Table 4.5.

Using the specifications in Table 4.5, we can tighten the formulation by updating constraints

(4.4) - (4.7) using EAi, LAi, ESi and LSi as follows:

np,s,i · xp,s,i,r,h −
LSi∑

t=ESi

yp,s,i,r,t,h = 0, ∀s ∈ S(p), i ∈ I(p, s),

r ∈ R(i), d ∈ D(p), h ∈ D̄(p, d).

(4.13)
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i EAi LAi ESi LSi

Case 2
1 1 |T| − np,s,i2 1 |T| − np,s,i1 − np,s,i2 + 1
2 np,s,i1 + 1 |T| np,s,i1 + 1 |T| − np,s,i2 + 1

Case 3
1 1 |T| − np,s,i3 1 |T| − np,s,i1 − np,s,i3 + 1
2 1 |T| − np,s,i3 1 |T| − np,s,i1 − np,s,i3 + 1
3 np,s,i1 + 1 |T| np,s,i1 + 1 |T| − np,s,i3 + 1

Case 4
1 1 |T| − np,s,i3 1 |T| − np,s,i1 − np,s,i3 + 1
2 np,s,i1 + 1 |T| np,s,i1 + 1 |T| − np,s,i2 + 1
3 np,s,i1 + 1 |T| np,s,i1 + 1 |T| − np,s,i3 + 1

Case 5

1 1 |T| − np,s,i2 − np,s,i3 1
|T| − np,s,i1
−np,s,i2 − np,s,i3 + 1

2 np,s,i1 + 1 |T| − np,s,i3 np,s,i1 + 1 |T| − np,s,i2 − np,s,i3 + 1
3 np,s,i1 + np,s,i2 |T| np,s,i1 + np,s,i1 |T| − np,s,i3 + 1

+1 +1

Table 4.5: Timeslot bounds for each case involving multiple resource types

zd −
LSi∑

t=ESi

∑
r∈R(i)

wp,s,i,r,t,h = 0, ∀s ∈ S(p), i ∈ I(p, s), d ∈ D(d),

h ∈ D̄(p, d).

(4.14)

yp,s,i,r,t,h ≤ ap,s,i,r,t,h, ∀s ∈ S(p), i ∈ I(p, s), r ∈ R(i),

t ∈ {EAi, ..., LAi}, d ∈ D(d), h ∈ D̄(p, d).

(4.15)

t′+np,s,i−1∑
t=t′

yp,s,i,r,t,h − np,s,i · wp,s,i,r,t′,h ≥ 0, ∀s ∈ S(p), i ∈ I(p, s),

r ∈ R(i), t′ ∈ {ESi, ..., LSi}, d ∈ D(p), h ∈ D̄(p, d).

(4.16)
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Complete Formulation

Putting everything together, the two-stage SP pathway scheduling model can be given as fol-

lows:

Min
z,x,y,w

∑
d∈D(p)

cdzd + E[f(z, ω̃)] (4.17)

s.t. Constraints (4.2)− (4.3)

Constraints (4.8)− (4.12) needed for the CHP

Constraints (4.13)− (4.16)

zd ∈ {0, 1},∀d ∈ D(p), xp,s,i,r,h, yp,s,i,r,t,h, wp,s,i,r,t,h ∈ {0, 1},

∀p ∈ P, s ∈ S(p), i ∈ I(p, s), r ∈ R(i), t ∈ T, h ∈ D̄(p, d).

The recourse function f(z, ω) computes the future cost based on the first-stage schedule defined

by z (start date) and an outcome (scenario) ω of ω̃. The scenario ω reveals the future resource

availability for all steps of the CHP under consideration in the second-stage. Thus, uncertainty is

resolved in the second-stage and we need to find and assign resources to the schedule z for every

day and step of the CHP, while optimizing the workload balance. For a given (z, ω), the recourse

function f(z, ω) can be given explicitly as the value function of the following subproblem:
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f(z, ω) = Min
zω ,zω

d̄
,xω ,yω ,wω ,Lmin,ω ,Lmax,ω

∑
i∈I(p)

∑
h̄∈D(p,dω)

(Lmax,ω

i,h̄
− Lmin,ω

i,h̄
) +Mzω (4.18a)

s.t. zωd̄ + zω = 1, d̄ = d | zd = 1, d ∈ D(p) (4.18b)

− zωd̄ +
∑

r∈R(i)

xωp,s,i,r,h̄ = 0, ∀s ∈ S(p), i ∈ I(p, s), h̄ ∈ D(p, d̄),

d̄ = d | zd = 1, d ∈ D(p) (4.18c)

np,s,i · xωp,s,i,r,h̄ −
LAi∑

t=EAi

yωp,s,i,r,t,h̄ = 0, ∀s ∈ S(p), i ∈ I(p, s), r ∈ R(i),

h̄ ∈ D(p, d̄), d̄ = d | zd = 1, d ∈ D(p) (4.18d)

zωd̄ −
LSi∑

t=ESi

|R(i)|∑
r=1

wω
p,s,i,r,t,h̄ = 0, ∀s ∈ S(p), i ∈ I(p, s), h̄ ∈ D(p, d̄),

t ∈ {ESi, ..., LSi}, d̄ = d | zd = 1, d ∈ D(p) (4.18e)

− yωp,s,i,r,t,h̄ ≥ −aωp,s,i,r,t,h̄, ∀s ∈ S(p), i ∈ I(p, s), r ∈ R(i),

t ∈ {EAi, ..., LAi}, h̄ ∈ D(p, d̄), d̄ = d | zd = 1, d ∈ D(p) (4.18f)

t′+np,s,i−1∑
t=t′

yωp,s,i,r,t,h̄ − np,s,i · wω
p,s,i,r,t′h̄ ≥ 0, ∀s ∈ S(p), i ∈ I(p, s),

r ∈ R(i), t′ ∈ {ESi, ..., LSi}, h̄ ∈ D(p, d̄), d̄ = d | zd = 1, d ∈ D(p) (4.18g)

Lmax,ω

i,h̄
−

LAi∑
t=EAi

yωp,s,i,r,t,h̄ ≥ bωi,rh̄, ∀s ∈ S(p), i ∈ I(p, s), r ∈ R(i),

h̄ ∈ D(p, d̄), d̄ = d | zd = 1, d ∈ D(p) (4.18h)

(4.18i)
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− Lmin,ω

i,h̄
+

LAi∑
t=EAi

yωp,s,i,r,t,h̄ ≥ −bωi,r,h̄, ∀s ∈ S(p), i ∈ I(p, s), r ∈ R(i),

h̄ ∈ D(p, d̄), d̄ = d | zd = 1, d ∈ D(p) (4.19a)

xωp,s,i,r,h̄ ∈ {0, 1}, yωp,s,i,r,t,h̄ ∈ {0, 1}, wω
p,s,i,r,t,h̄ ∈ {0, 1}, zωd̄ ∈ {0, 1},

zω ∈ {0, 1}, Lmax,ω

i,h̄
, Lmin,ω

i,h̄
≥ 0, ∀p ∈ P, s ∈ S(p), i ∈ I(p, s), r ∈ R(i),

t ∈ T, h̄ ∈ D(p, d̄), d̄ = d | zd = 1, d ∈ D(p). (4.19b)

In objective of subproblem (4.18) we minimize the total difference between the maximum and

minimum workload among resources of the same type to enable workload balancing. We add a

sufficiently large penalty M (‘big-M’) to the second term of the objective function term to enforce

relatively complete recourse by allowing zω to take a value of one when we cannot find a feasible

schedule starting on day d̄ = d | zd = 1, d ∈ D(p). This is enforced by constraint (4.18b).

Combining constraints (4.18b)-(4.18g) ensures that given a first-stage schedule starting on day d̄,

we can find a schedule under scenario ω that starts on the day specified in the first-stage by decision

z. Otherwise, zω = 1, implying that we cannot find a schedule that is feasible for scenario ω due to

some resources not being available. More specifically, constraints (4.18c) assigns resources needed

to each step of the CHP for each day required in the CHP. Constraints (4.18d) allocate the number

of consecutive timeslots needed for each step of the CHP for each day required in the pathway.

The start timeslot for each step of the CHP for each day required in the CHP is determined

by constraints (4.18e), while each resource’s availability for each timeslot is set using constraints

(4.18f). Constraints (4.18g) assigns each resource available timeslots for each step of the CHP

for each day required in the CHP. Constraints (4.18h) compute the maximum workload for each

type of resource, while constraints (4.19a) compute the minimum workload. Finally, constraints

(4.19b) enforce the binary and nonnegativity restrictions on the decision variables. This SP model

was implemented and the CPLEX solver used to solve instances of the problems in a simulation
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setting of a Pathways Community HUB. With 15-minute timeslots in an 8-hour day, the maximum

difference between Lmax,ω

i,h̄
and Lmin,ω

i,h̄
is 32. Therefore, since the earliest starting day is desired,

in our implementation we set the minimum value of cd in the model to be 40. Next, we report

the results of a computational study based on a simulation model for a real-setting to evaluate the

performance of the SP approach.

4.4 Results

We first report computational results for all the three demand cases associated with client

scheduling performance measures in Tables 4.6 and 4.7. Table 4.6 shows the results under the

deterministic setting assuming known resource availability scenarios, whereas 4.7 shows the re-

sults for the stochastic settings. In the tables column ‘NWB’ lists the results for no workload

balancing, while column ‘WB’ lists the results for workload balancing. The total of number of

clients generated under NWB and WB for each case is the same as expected.

Table 4.6: Client waiting time results under the deterministic setting

Case I Case II Case III
Performance Measure NWB WB NWB WB NWB WB
Waiting time (days) 1.67 1.50 2.11 2.52 3.35 3.54
Total clients 747 747 1506 1506 2262 2262
Number of clients not scheduled 0.0 0.0 0.7 0.3 33.0 42.7
Number of clients have to wait 24 28 206 256 1041 1233

Table 4.7: Client waiting time results under the stochastic setting

Case I Case II Case III
Performance Measure NWB WB NWB WB NWB WB
Waiting time (days) 1.55 1.8 2.65 2.68 4.03 4.25
Total clients 738 738 1480 1480 2230 2230
Number of clients not scheduled 19.3 20.7 35 35 215 227
Number of clients have to wait 81.3 154 485 515 1529 1571
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Under the deterministic setting, the results show that client waiting time is about 1.5 days for

Case I, about 2.5 days for Case II, and about 3.5 days for Case III. This shows that increased

client demand results in increased waiting time on average. However, for all the three demand

cases workload balancing does not significantly affect waiting time, which is desirable. Under

the stochastic setting, we see that client waiting time increases: about 2 days for Case I, about 3

days for Case II, and about 4 days for Case III. Comparing the deterministic versus the stochastic

settings we can see that the deterministic setting gives optimistic results since different possible

scenario realizations are not considered. Under both settings, however, we observe that increased

client demand results in increased waiting time on average and that workload balancing does not

significantly affect waiting time.

The number of clients that are not scheduled within 10 days due to resource unavailability is

less under the deterministic setting compared to the stochastic setting. Again, this is because the

deterministic setting assumes known resource availability, which in this case is optimistic resulting

in fewer clients waiting. However, the stochastic setting takes a more pragmatic approach and gives

results that are more realistic. Therefore, from hereon we will focus on the results for the stochastic

setting.

We see that the number of clients that are not scheduled within 10 days due to resource un-

availability almost doubles under Case II compared to Case I, and is almost about 11 times under

Case III (about six times compared to Case II). This is an indication that client volume significantly

affect schedules. Clearly, increased arrival while maintaining the same number of resources results

in more clients not being scheduled. In fact, we see that more clients have to wait. Digging deeper

into the results we found that most of the clients that are not scheduled are those assigned the Trans-

portation CHP. One step of this CHP requires transportation time for 12 consecutive timeslots. To

be able to schedule this CHP, we need to find a schedule with 12 consecutive available timeslots

for all scenarios. Combining the number of scenarios and the consecutive timeslots requirement,

the Transportation CHP has a higher chance of not being scheduled.

We also observed that among all the scheduled clients, about 20% have waiting time of about
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two days for both NWB and NB approaches. Thus workload balancing provides a significant

advantage since it does not adversely affect waiting time compared to no workload balancing. In

terms of NWB versus WB, there is no significant impact on the number of clients that are not

scheduled. However, we see a significant increase in the number of clients that have to wait. This

is because workload balancing imposes equity (fairness) among the CHWs by requiring them to

work similar number of timeslots. In turn this results in clients having to wait to be seen.

Computational results for resource utilization for the three demand cases are summarized in

Table 4.8. The first column ‘Res’ lists the resource types, Max, Mean and Min represent maximum,

average and minimum number of timeslots assigned to each resource. CVNWB and CVWB are the

coefficients of variation for each resource type. The coefficient of variation is the ratio of the

standard deviation to the mean and it shows the extent of variability in relation to the mean. The

last column lists the ratio of the CV under NWB to that under WB. From the table we can see

that the CVNWB values are significantly higher than CVWB values, an indication that workload

balancing gives far less variability among the resource types, thus resulting in more equitable

schedules. This is confirmed with the relatively large values of the ratio CVNWB

CVWB
.

To glean further into the results, we include the plots for Case III showing the maximum and

minimum timeslots that are assigned to the resources in Figure 4.4. The plots clearly show that

the SP pathway scheduling model with workload balancing results in an equitable use of the re-

sources. The average difference between maximum and minimum for no workload balancing is

319 timeslots, while that for workload balancing is about 40 timeslots. We can also clearly see

which resource type is being ‘overworked’ the most. Resource PEC (Patient Counselor) stands out

in all the three cases: without workload balancing one of the PEC works 959 timeslots while the

other works only 102 timeslots. This means that one counselor is working eight times more than

the other! With workload balancing, the difference is only 20 timeslots.

4.5 Discussion

The computational study reveals that the SP pathway scheduling model allow to optimally

schedule clients in a Pathways Community HUB by minimizing client waiting time as well as
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Figure 4.4: Resource utilization for Case III
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Table 4.8: Computational results for resource utilization

NWB WB
Max Mean Min CVNWB Max Mean Min CVWB

Res (Time Slots) (Time Slots) CVNWB
CVWB

Case I
PNT 544.7 396.2 238.7 0.3274 409.3 396.2 383.7 0.0268 12.2
EDU 575 475.4 379 0.1694 515.3 475.4 444 0.0559 3.02
LAS 372 268 167.3 0.3137 275.3 268.1 261 0.0239 13.1
OTW 571 390.2 240 0.3406 405.3 390.2 376 0.0295 11.6
PEC 959 335.9 102.3 0.9417 352 335.9 321.3 0.0325 28.9
HIP 544.3 361.5 220 0.3758 373.3 361.5 344.3 0.0385 12.3
TRL 515.3 380.3 278.3 0.2230 407 380.3 365.3 0.0386 5.8
CHA 490.7 334.1 171.7 0.3970 355.3 334.1 312.7 0.0486 8.2
TRS 128 893. 40 0.4200 110 89 58 0.2540 1.7

Case II
PNT 1095 800 609 0.2645 811 800 783 0.0152 17.4
EDU 1010 978.75 838 0.0878 532 526 523 0.0219 4.0
LAS 710 526 413 0.2495 789 783.5 774 0.0072 30.9
OTW 1121 783.5 502 0.2915 789 783.5 774 0.0072 40.2
PEC 2086 678.4 141 1.0610 689 678.6 671 0.0098 108.2
HIP 1251 721.5 390 0.4600 750 721.25 705 0.0239 19.2
TRL 868 743 678 0.1008 771 743 703 0.0306 3.3
CHA 905 659.5 459 0.3064 671 695.5 650 0.0123 24.8
TRS 276 200 114 0.3326 228 200 180 0.1020 3.3

Case III
PNT 1345 1101 877 0.170915 1096 1088.7 1078 0.0071 24.1
EDU 1295 1101 887 0.0894 1151 1138.5 1128 0.0077 11.6
LAS 1003 754.7 543 0.2512 762 754.7 746 0.0087 28.7
OTW 1447 1049.25 791 0.238919 1062 1048.75 1033 0.0099 24.2
PEC 2269 972.2 323 0.7577 979 966.6 956 0.0097 78.5
HIP 1592 995.5 693 0.3551 990 984.5 974 0.0063 56.5
TRL 1121 927.6 838 0.1090 924 910.8 890 0.0129 8.4
CHA 1316 946.3 731 0.2383 948 935 928 0.0082 29.0
TRS 354 272 144 0.3371 282 260 240 0.0662 5.1

enabling workload balance among the CHWs. The results show that the MIP model can be opti-

mistic depending on how the future resource availabilities are set. Therefore, we recommend to

HUB managers to use the SP pathway scheduling model with workload balancing. This is be-

cause this model significantly reduces workload imbalance among the same resource types while

providing the same amount of waiting time as the model with no workload balancing on average.
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We should point out that the SP pathway scheduling model without workload balancing can

create schedules that are disadvantageous to some CHWs. We saw for example, how one patient

counselor (PEC) worked eight times more than another PEC. Clearly, this creates unfairness con-

cerns for the HUB manager. Therefore, we recommend using workload balancing in order to get

client schedules that are equitable in the use of limited resources in the Pathways Community

HUB.

The proposed SP pathway scheduling model can also provide the HUB manager or scheduler a

slew of useful information beyond the schedules and resource utilization. For example, by looking

at the client wait time and/or resource utilization, the results of the model can provide guidance

regarding which CHPs are being assigned the most and what resources are being utilized the most.

This can help the HUB manager with making resource capacity expansion decisions.

Finally, even though we use timeslots in our models and results, knowing each CHW’s hourly

pay rate the manager can compute the cost associated with utilizing each CHW relative to both the

assigned CHPs and the outcomes of the CHPs in terms of meeting the desired HUB objectives.

4.6 Conclusion

Scheduling and coordinating constrained resources in community healthcare settings at a cen-

tralized community level is challenging due to limited resources and the inherent dynamics of the

processes and the organizational structures. Community health pathways (CHPs) have been in-

troduced as a standardized interdisciplinary tool that details multiple steps of a healthcare-related

service and the required resources for each step. However, the time window constraints for each

step and the data uncertainty in resource availability makes this scheduling problem very chal-

lenging. On the other hand rising demand and costs of healthcare motivate the need for efficient

schedules. In this work we developed an SP pathway scheduling model to schedule CHPs and

community healthcare resources under resource availability uncertainty.

A computational study based on a real Pathways Community HUB setting provided several

findings and managerial insights. The results show that the schedules provided by the determin-

istic model can be too optimistic and may not necessary work well under uncertainty in resource
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availability. Client wait time depends on the client demand, with high demand resulting in longer

waiting time. The study also shows that the workload balancing is preferred because it provides

schedules with similar workloads across resources of the same type while providing waiting times

that are comparable to when no workload balancing is applied. Managerial insights include the rec-

ommendation to HUB managers and schedulers to use workload balancing not only to minimize

client waiting time, but also to guarantee client schedules that result in equitable use of limited re-

sources in the Pathways Community HUB. Future work along this line of work include extending

the SP pathway scheduling model to allow for resource capacity expansion decisions and budget

constraints. There is also a need to develop a fast decomposition algorithm for the scheduling

problem to speed up computation time.
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5. OPTIMAL VACCINE ALLOCATION FOR COVID-19

COVID-19 caused by Severe Acute Respiratory Syndrome SARS-CoV-2 virus was declared

a pandemic by the World Health Organization in early 2020. Despite concerted efforts by health

authorities to contain the disease, the virus has continued to spread and mutate leading to new

variants with uncertain transmission characteristics. Therefore, there is a need for new data-driven

models for determining optimal vaccination policies that adapt to the new variants and uncer-

tain vaccine efficacy. Motivated by this challenge, we derive an integrated chance constraints

stochastic programming (ICC-SP) approach for finding optimal vaccination policies for epidemics

that incorporates uncertain disease transmission characteristic and population demographics. An

optimal vaccination policy specifies the proportion of individuals in a given household-type to

vaccinate to bring the reproduction number to below one. The ICC-SP approach provides a quan-

titative alternative to qualitative chance constraints by allowing to bound the expected excess of

a chance constraint by the largest acceptable amount according to the decision-maker’s level of

risk averseness. We derive a multi-community ICC-SP model to determine vaccination policies to

control outbreaks under different risk levels. The model includes census demographics, vaccina-

tion status, age-related heterogeneity in disease susceptibility and infectivity, variants, and vaccine

efficacy. The new methodology was tested on real data for seven neighboring counties in the U.S.

state of Texas. The results are promising and show, among other findings, that vaccination policies

for controlling an outbreak should prioritize vaccinating larger households as well as age groups

with relatively high combined susceptibility and infectivity.

5.1 Introduction

The first outbreak of COronaVIrus Disease of 2019 (COVID-19) caused by Severe Acute Res-

piratory Syndrome Coron-2aVirus (SARS-CoV-2) was reported in December 2019. This highly

contagious virus rapidly erupted, and three months later, the World Health Organization (WHO)

termed the disease a pandemic. It is probably the most devastating pandemic in the last 100 years
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after the Spanish flu. Despite the elaborate efforts by health officials to contain the disease, this

virus spread to all regions of the world within only a few months. At the early stage of COVID-

19 spreading, a variety of non-pharmaceutical interventions were implemented, such as border

closures, restrictions on gathering, social distancing, quarantining, mask mandates, business clo-

sures, religious institutions and schools, travel restrictions and contact tracing. These mitigation

interventions are intended to slow the community transmission of COVID-19.

The basic reproduction number, R0, is one of the important measures of community transmis-

sion of infectious disease. R0 is an epidemiological scale to measure the contagiousness of an

infectious agent and it is defined as the the number of secondary infections caused by a primary

case within a completely susceptible population in the absence of any deliberate intervention in

disease transmission [59, 60]. The value of R0 quantifies the transmissibility of an infectious dis-

ease at the initial stages of an epidemic and it helps the health authorities to understand the course

of a disease transmission and to design various intervention strategies. However, in practice, a

population will rarely be totally susceptible to an infection. Therefore, it is important to evaluate

the time-dependent variation in transmissibility under the impact of mitigation interventions and

decline in susceptible population [61]. This time-dependent variation is captured through the ef-

fective reproduction number Rt, which is defined as the average number of secondary infections

caused by a primary case at time t [61, 62]. Rt suggests that an outbreak is under control if Rt ≤ 1

and continue if the value is greater than 1.

Currently, three vaccines are authorized and recommended in the U.S.: Pfizer-BioNTech, Mod-

erna, and Johnson & Johnson’s Janssen [63]. Recent studies suggest that the currently authorized

mRNA vaccines (Pfizer-BioNTech or Moderna) are highly effective against the ancestral strain and

Alpha variant [64, 65]. Studies for Johnson & Johnson’s Janssen are underway to learn more about

the effectiveness against COVID-19. However, just influenza virus, SARS-CoV-2 virus keeps

changing through mutation. Evidence shows that some of the new variants, such as the currently

dominant Delta variant, can be more severe in terms of illness and transmissibility, and the vaccine

may be less efficacious [5, 6]. As of 16 August, more than half of the population in the U.S. were
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fully vaccinated against COVID-19 [66]. However, SARS-Cov-2 transmission is still at high lev-

els in different regions of the U.S.. There is an urgent need for an effective vaccination strategy to

compete with the variant mutation and fading vaccine efficacy.

5.2 Literature review

In epidemiology modeling, vaccination policies depending on varying factors have been widely

studied. The approaches range from deterministic to stochastic, computer simulation to statistical

prediction [40, 41, 42]. Bubar et al. apply a deterministic approach to evaluate the impact of

vaccine efficacy, susceptibility, infectivity, and population variation on mortality, cumulative inci-

dence, and years of life lost [67]. Manuel et al. investigate the consequences in hospitalization

occupancy when varying the inter-dose interval [68]. Throughout their experiments, they explore

the impact of vaccination strategies under different scenarios regarding efficacy, coverage, vaccine-

induced, and natural immunity. Matrajt et al. compare vaccination strategies under different hypo-

thetical vaccine efficacy [69]. These articles conduct a series of experiments under a broad range

of scenarios in which a single parameter is varying. However, the essential and conclusive epi-

demiological characteristics of the virus, vaccine efficacy, vaccine-induced, and natural immunity

remains under study, and their variations coexist [70]. Therefore, there is need of a stochastic

model to account for multiple scenarios simultaneously. Given that a stochastic program seeks a

feasible solution for all realizations of random parameters over a given objective or a solution that

accepts a certain level of infeasibility.

In this chapter, we build on the stochastic programming framework developed by Tanner et al.

[41]. The authors extend Becker et al. [71] deterministic optimal vaccine allocation model into a

stochastic setting, assuming no one is vaccinated yet in a single community. Currently, about half

of the population in the U.S. was already fully vaccinated against COVID-19 [72]. The assump-

tion that no one is vaccinated yet is no longer valid for an optimal vaccination strategy. Therefore,

we extend the work of Tanner et al. to consider a population with different vaccination statuses

including age-related differences in susceptibility and infectivity and variant related transmissibil-

ity. We implement and test the new approach on data for a population center and its surrounding
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communities with a sparse population. In general, the contagious disease has a higher likelihood

to spread faster in a densely populated area due to the high number of social contacts [73]. The

multi-community stochastic model suggests a vaccination strategy that can contain the outbreak

for a set of communities as a whole rather than as individual entities.

The contributions include a new stochastic programming based methodology to determine the

optimal vaccination policies to control the COVID-19 outbreak (Rt ≤ 1) in a set of communities.

This new methodology considers uncertainty in parameters such as human interactions, transmis-

sion characteristics, and vaccine efficacy towards different emerging COVID-19 variants. This

stochastic model captures the socio-demographic variations including household types and vac-

cination status in the population. We conducted numerical experiments with different accepted

risk levels, which can provide an evidence-based rationale for health authorities to make critical

decisions. The accepted risk levels are often prescribed by health officials based on the historical

severity of the pandemic. Currently, the Delta variant is actively soaring infection numbers, and

CDC suggests moderately to severely immunocompromised individuals who are already fully vac-

cinated to get a booster shot. At the time of writing this chapter, the efficacy of the booster shot

remains unknown [74]. Our setup allows to explore the optimal strategies for additional immu-

nization with hypothetical efficacy to set the basis for possible future vaccination policies.

The rest of this chapter is organized as follows: We derive the new multi-community stochastic

model for optimal vaccination strategies in the next section. in Section 5.4 we describe the model

parameters and population datasets. We report the results of our computational study in Section

5.5. We end the chapter with a summary and future work in Section 5.6.

5.3 Multi-Community Stochastic Model

In this section, we consider a stochastic model for a population under different vaccination sta-

tuses, as well as discuss the demographic data and uncertain parameters used in the model. During

epidemics, it is critical to understand both the course of the transmission path and the likely number

of infections. A common approach to forecast the number of infections is to use epidemic com-

partmental models, such as the susceptible-exposed-infected-recovered (SEIR) model. The SEIR
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model aims to predict the number of individuals who are susceptible to infection, are exposed, are

actively infected, or have recovered from infection at any given time. In this section, we consider

a model of disease transmission in a community based on the work of Becker and Starczak [71]

and Tanner et al. [41]. Tanner et al. extended the deterministic model to the stochastic setting us-

ing chance-constrained approach, where the disease transmission parameters are uncertain. Both

models consider a single community of households and assume that no one in the community is

vaccinated yet. However, in this chapter we extend their approach to multiple communities with

variations in vaccination status in a stochastic setting. An effective vaccination strategy aims to

contain the outbreak by achieving herd immunity and bringing Rt ≤ 1. The optimal solution

gives the proportion of individuals under demographic variation that must be vaccinated to prevent

epidemics. The optimal solution depends on the variants, household sizes, vaccine status, trans-

mission characteristics of each variant. In epidemiology, the term vaccination coverage refers to

the proportion of individuals who are vaccinated. In this work, we are interested in determining an

optimal strategy that has a minimum vaccination coverage based on household size under variation

in vaccination status to ensure that Rt ≤ 1.

As mentioned in Section 5.1, Rt is the effective reproduction number, which refers to the

average of secondary cases generated by an infected case during an infectious period. Rt does not

assume a fully susceptible population and depends on the current immunity of the population [75].

In this chapter, we consider the post-vaccination reproduction number, denoted as RHV c, which

represents the effective reproduction number after vaccination in community c. The vaccination

coverage required is to achieve RHV c ≤ 1 so that the herd immunity induced by vaccination is at a

sufficiently high level to prevent epidemics.

Computing RHV c requires several parameters, which cannot be represented by a single exact

number. For example, vaccine efficacy, transmission rate, and individual contact rate, varies in

a range following a particular distribution. Therefore, instead of the deterministic model using a

point estimate, we consider a stochastic programming model that allows for the parameters to be

random and characterized by discrete probability distributions. In addition, at the time of writing
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this article, the U.S. suggested a booster shot for those who are already vaccinated. However, the

booster vaccine-induced immunity and SARS-CoV-2 transmission capacity from a vaccinated in-

dividual remain unexplained, which has motivated us to explore how vaccination status affects the

optimal vaccination allocation in our case studies. Due to the uncertainty of parameters, in some

scenarios, it might be impossible to bring the post-vaccination reproduction number RHV c below

one. We impose an integrated chance-constraint (ICC) and a chance-constrained (CC) model over

the set of constraints on those scenarios where RHV c exceeds a value of one. In ICC model, the

amount by how much those constraints are violated is bounded by a reliability level αc. Mathe-

matically, ICC is expressed as E[RHV c − 1] ≤ αc, where E is the expectation over all scenarios

in community c. In CC model, the probability of violated scenarios is bounded by γc, and mathe-

matically it can be expressed as P{RHV c ≤ 1} ≥ (1− γc) Next, we define the notation we use in

our mathematical models under heterogeneity in a population with different vaccination statuses.
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Sets and Indices

C Set of communities, element c ∈ C.

N Set of household types, element n ∈ N.

K Set of vaccination status, element k ∈ K.

I Set of person age groups, element i ∈ I.

V Set of vaccination policies, element v ∈ V.

Ωc Set of outcomes (scenarios) for community c ∈ C, element ωc ∈ Ωc.

Parameters

ω̃c Multivariate random variable (defined on a probability space) whose

outcome is ωc ∈ Ωc; describes the uncertain parameters for RHV c.

RHV c Post-vaccination reproduction number for community c ∈ C.

ankvc(ω̃c) Uncertain RHV c parameter that captures the impact of vaccination policy

v ∈ V in a type n household with vaccination status k in community c ∈ C.

mc(ω̃c) Uncertain number of close contacts that an infective makes on average with

persons from other household in the course of his/her infectious period in a

community c ∈ C.

Hkc Number of households with vaccination status k in community c ∈ C.

p(n) Number of persons in a household of type n.

f(n, v) Number of persons to vaccinate in a household size of n when vaccination

policy v ∈ V is implemented.

hnkc Proportion of type n households with vaccination status k in community c ∈ C.

µc Average household size in a community, µc =
∑

n∈N
∑

k∈K p(n)hnkc.

b(ω̃c) Uncertain transmission rate within a household.

βkic(ω̃c) Uncertain susceptibility for i ∈ I age group person with vaccination status

k ∈ K in community c ∈ C.
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λkic(ω̃c) Uncertain infectivity for i ∈ I age group person with vaccination

status k ∈ K in community c ∈ C.

εk(ω̃c) Uncertain vaccine efficacy towards population with vaccination

status k ∈ K.

Decision Variables

xnkvc Proportion of n sized households with vaccination status k

under vaccination policy v ∈ V implemented in community c ∈ C.

We define the expression of RHV c based on Becker and Starczak’s model of disease spread [71]. RHV c

is defined in relation to ankvc(ω̃c), where ankvc(ω̃c) is a random variable depending on ω̃. In this formula-

tion, we consider two vaccination status. If the status index k = 0, it means that no one in that household is

vaccinated, whereas k = 1 means that everyone in that household is vaccinated. Given xnkvc is the propor-

tion of n-sized households with vaccination status k in which vaccination policy v has been implemented,

RHV c for a community c is expressed as follows:

RHV c =
∑
n∈N

∑
k∈K

∑
v∈V

ankvc(ω̃c)xnkvc. (5.1)

In this model, we assume that there are significant age and vaccination status related differences in the

susceptibility and infectivity of individuals. To capture these differences, we define a set of groups of people

I in which susceptibility and infectivity are differentiated by age. We denote the susceptibility and infec-

tivity of group i with vaccination status k in community c by βkic(ω̃c) and λkic(ω̃c) respectively. Here,

We consider three age groups, A,B, and C, as follows: A = (age ≤ 19), B = (20 ≤ age ≤ 64), and

C = (age ≥ 65). The age groups can be expanded as need based on the age-difference related infectivity

and susceptibility. For each household of type n, p(n) represents the total number of members in the house-

hold. pi(n) denotes the number of members in group i for household type p(n), where i ∈ {A,B,C}. The

possible vaccination policies for a type n household are represented by (fA(n, v), fB(n, v), fC(n, v)), the

number of household members vaccinated in group A,B, and C, respectively. Table 5.1 gives an example

illustration for p(n) values of 1 and 2.

Given the proportion of type n household with v vaccinated members, xnkvc, the post-vaccination
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Household
Type

Household
Size

Household
Composition

Total vaccina-
tion policies

Possible vaccination policies for a
type n Household

n p(n) (pA(n), (pA(n) + 1) (fA(n, v), fB(n, v), fC(n, v))
pB(n), (pB(n) + 1)
pC(n)) (pC(n) + 1)

1 1 (1, 0, 0) 2 (0, 0, 0), (1, 0, 0)
2 1 (0, 1, 0) 2 (0, 0, 0), (0, 1, 0)
3 1 (0, 0, 1) 2 (0, 0, 0), (0, 0, 1)
4 2 (2, 0, 0) 3 (0, 0, 0), (1, 0, 0), ( 2, 0, 0)
5 2 (0, 2, 0) 3 (0, 0, 0), (0, 1, 0), ( 0, 2, 0)
6 2 (0, 0, 2) 3 (0, 0, 0), (0, 0, 1), ( 0, 0, 2)
7 2 (1, 1, 0) 4 (0, 0, 0), (0, 1, 0), (1, 0, 0), ( 1, 1, 0)
8 2 (0, 1, 1) 4 (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)
9 2 (1, 0, 1) 4 (0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)

Table 5.1: Example household types and vaccination policies under heterogeneous population for
p(n) = 1 and p(n) = 2

reproduction number RHV c for some community c is given by equation (5.1). Under the assumption

of heterogeneity, the explicit expression for RHV c considers the age-stratified groups. In Becker and

Starczak’s model [71], ankvc(ω̃c) is deterministic, assuming all the parameters are known. On the con-

trary, we model ankvc(ω̃c) as a random variable and the outcome (scenario) of ω̃c, ωc is a quintuple:

ωc := {mc(ωc), b(ωc), ε(ωc), βkc(ωc), λkc(ωc)}. Consequently, this uncertain parameter can be defined

as follows:

ankvc(ω̃c) =
mc(ω̃c)hnkc

µc

{∑
i∈I

βkic(ω̃c)λkic(ω̃c)[(1− b(ω̃c))(pi(n)− fi(n, v)εk(ω̃c)) +

b(ω̃c)fi(n, v)εk(ω̃c)(1− εk(ω̃c))] +

b(ω̃c)
∑
i∈I

∑
r∈I

βkic(ω̃c)λkrc(ω̃c)(pi(n)− fi(n, v)εk(ω̃c))(pi(r)− fi(n, r)εk(ω̃c))
}
. (5.2)

In the absence of effective and successful treatment for optimal COVID-19, vaccination seems to be the

potential way to prevent this epidemic. Then the goal is to haveRHV c =
∑N

n=1

∑
v∈V anvc(ω̃c)xnvc ≤ 1. In

practice, however, there might be some extreme scenarios where the vaccines can not prevent the epidemic.

For instance, if vaccine efficacy is not sufficiently large,RHV c > 1. This means that constraintRHV c ≤ 1 is

violated. Therefore, we use the CC and ICC approach to allow a certain level of infeasibility in constraints.

We now ready to define the minimum coverage problem with CC approach as follows:
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Min
∑
n∈N

∑
k∈K

p(n)∑
v=0

∑
c∈C

fi(n, v)hnkcxnkvc (5.3a)

s.t P{
∑
n∈N

∑
k∈K

p(n)∑
v=0

ankvc(ω)xnkvc ≤ 1} ≥ γc, ∀c ∈ C (5.3b)

n∑
v=0

xnkvc = 1, ∀n ∈ N ; k ∈ K; ∀c ∈ C (5.3c)

xnkvc ≥ 0,∀v ∈ {0, · · · , p(n)}; n ∈ N; k ∈ K; ∀c ∈ C; ∀ω ∈ Ω (5.3d)

The minimum vaccination coverage problem applying ICC approach is defined as follows:

Min
∑
n∈N

∑
k∈K

p(n)∑
v=0

∑
c∈C

fi(n, v)hnkcxnkvc (5.4a)

s.t
∑
n∈N

∑
k∈K

p(n)∑
v=0

ankvc(ω)xnkvc − eωc ≤ 1, ∀c ∈ C; ∀ω ∈ Ω (5.4b)

∑
ω∈Ω

pωeωc ≤ αc, ∀c ∈ C (5.4c)

n∑
v=0

xnkvc = 1,∀n ∈ N ; k ∈ K; ∀c ∈ C (5.4d)

xnkvc, eωc ≥ 0, ∀v ∈ {0, · · · , p(n)}; n ∈ N; k ∈ K; ∀c ∈ C; ∀ω ∈ Ω (5.4e)

The objective function (5.4a) determines the minimum vaccination coverage across communities. RHV c =∑N
n=1

∑
v∈V ankvc(ω̃c)xnkvc ≤ 1 is to prevent an epidemic for each community. Constraints (5.4b) and

(5.4c) are comprised of the integrated chance constraints allowing RHV c ≤ 1 to be violated by z(ω̃c),

and the expected violation E[z(ω̃c)] not to exceed αc. Constraints (5.4d) determine the proportion of per-

sons to vaccinate for each household size in each community. Finally, constraints (5.4e) are nonnegativity

restrictions on decision variables.

5.4 Model Parameters

In this section, we present the uncertain parameters used in the model. The communities are character-

ized by the distribution of household types with different vaccination statuses within the community. For
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the remaining parameters, we create discrete distributions based on the information available for COVID-

19 transmission characteristics, historical values for the effective reproduction number, and the advertised

efficacy of approved vaccines.

• Demographic data: In our model is implemented with the actual population dataset from seven

neighboring counties in Texas: Travis, Williamson, Bastrop, Caldwell, Hays, Burnet, and Blanco.

The household type is a multivariate discrete distribution defined by: 1) the size of the household; 2)

the vaccination status of the household; 3) the number of household members in different age groups.

We consider the household size ranges from one to seven with different vaccination statuses and age

group compositions.The distribution of household sizes and age group composition are downloaded

from 5-year American Survey data (ACS) from census.data.gov for years 2014-2018 [76] and

https://usa.ipums.org/usa/ [77]. From sampled data, the IPUMS provides the weights

of each household type with age group composition, and using the weights, the household types

with age group composition are scaled up to represent the household type distribution. Out of seven

counties, age group composition distribution is only available for Travis, Williamson, and Hays from

IPUMS. Therefore, we assume that the age group composition is similar to that of Hays County for

the remaining countries. As for the distribution of household vaccination status, there is no explicit

database available. The distribution was estimated using the overall proportion of population vacci-

nated in Texas under different age groups [78]. The detailed demographic distribution data utilized

in the experiments is provided in Supplementary File One.

• Household transmission rate b(ω̃): Household transmission rate is a quantitative parameter that

measures how contagious the disease is within a household in a community c. In some studies,

this parameter is referred as household Secondary Attack Rate (SAR). The value of SAR, b(ω̃) is

between 0 and 1, and it represents the probability that an infection occurs among susceptible people

within a household. In the extreme case, b(ω̃) = 0 corresponds to no disease being transmitted

within the household, and b(ω̃) = 1 means all members within the household are infected [71]. In

our model, we assume that members in the same household are highly likely to be infected by the

same variant. Therefore, the distribution of household transmission rate depends on the virus variant.

Currently, three notable COVID-19 variants are actively circulating in the U.S.: Alpha, Gamma, and
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Figure 5.1: This figure shows the demographic distribution for each county. Figure a) shows the
distribution of household sizes in each age group across all seven counties. Notice that the younger
age group mostly resides in middle-size households, and Figure b) shows the distribution of age
groups in each household size across seven counties.

Delta [79]. Tanaka et al. performed a cross-sectional study on SAR in households after the Alpha

variant became dominant in Japan and estimated the Alpha SAR to be 38.7% [80]. Several studies

have shown the potential increase in household transmission rate with Delta and Gamma variants

compared to Alpha [81]. Regrading the current dominating Delta variant, it is estimated to be 1.66

times more transmissible than the Alpha variant. Based on the values in literature, we generated a

discrete distribution for the within household transmission rate, b(ω̃c).

• Vaccine efficacy εk(ω̃c): Mass vaccination efforts in the U.S. started at the beginning of 2021. A

total of 370 million doses were administered, in which 54% were administered by August with Pfizer-

BioNTech, 38% with Moderna, and the rest 8% with Johnson & Johnson [66]. According to several

studies, vaccine efficacy ε(ω̃c) varies based on the COVID-19 variant. Pfizer-BioTech shows high
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effectiveness, 88%-94% against Alpha variant [82, 83], with a reduction of 5 % towards Gamma

and 10% towards Delta variants. For the Moderna vaccine, the efficacy is estimated to be around

90% against Alpha variant, and 89% against Delta variant [64]. The studies regarding the efficacy

of the Johnson & Johnson vaccine towards different variants are very few. We will use the overall

vaccine efficacy presented by Lopez et al. [83] to substitute for Johnson & Johnson. Based on these

estimates, we generated vaccine efficacy distribution for households with vaccination status i = 0 in

Supplementary File 1.

Probability 0.1 0.7 0.2
ε(ω̃c) Pfizer Moderna Johnson Pfizer Moderna Johnson Pfizer Moderna Johnson
Alpha 0.97 0.95 0.67 0.94 0.92 0.64 0.88 0.86 0.58
Delta 0.90 0.88 0.63 0.87 0.85 0.60 0.81 0.80 0.53
Gamma 0.93 0.91 0.65 0.90 0.88 0.62 0.84 0.82 0.56
Other 0.94 0.92 0.65 0.91 0.89 0.62 0.85 0.83 0.56

Table 5.2: Vaccine efficacy ε(ω̃c) towards Alpha, Delta, Gamma and other variants

• Relative susceptibility β(ω̃c): We consider age and vaccination status related differences in sus-

ceptibility to COVID-19. The relative susceptibility captures the variation in susceptibility due to the

differences in social mixing and biological susceptibility between individuals. Current studies suggest

that there is an increase in susceptibility with age for those who are not vaccinated yet [84, 85, 86].

Dattner et al. estimate that that the susceptibility of children (under 20 years old) is 43% (95% CI:

[31%, 55%]) of the susceptibility of adults [87]. Due to the vaccine-induced immunity, the fully

vaccinated people are less likely to be infected, in return, their susceptibility is relatively lower than

those who are not vaccinated. Table 5.3 shows the relatively susceptibility of three age groups with

different vaccination statuses.

• Relative infectivity λ(ω̃c): The relative infectivity captures the variation in infectiousness between

infected individuals due to the differences in social mixing and biological infectivity between indi-

viduals. For the population that is not vaccinated, reports show that younger age (≤ 20 years) was

associated with increased infectivity.Lau et al. statistically synthesize multiple data streams, and in-

dividuals under the age of 60 are 2.78 (95% CI:[2.10, 4.22]) times more infectious than the elderly
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[88]. This nuance is essential to the transmission of COVID-19 because the younger population gen-

erally has more human interactions [89] and does not develop severe symptoms as compared to older

populations. A member of the younger population, then, is more likely to infect a susceptible person.

The relative infectivity for different age groups of a vaccinated population is not explicitly available.

Several studies suggest that vaccines can reduce the symptoms but do not block the infection. There-

fore, in this study, we assume that there is no difference in relative infectivity for the fully vaccinated

group versus the not vaccinated group. The relative infectivity of three age groups with different

vaccination statuses is presented in Table 5.3.

Vaccination status = 0 Vaccination status =1
Age group Group A Group B Group C Group A Group B Group C
Probability 0.03 0.41 0.08 0.24 0.23 0.02
Susceptibility 0.56 1.30 1.71 0.26 1.00 1.41
Infectivity 1.25 1.00 0.36 1.25 1.00 0.36

Table 5.3: Relative susceptibility and infectivity for Group A, Group B and Group C population
with different vaccination statuses

• Outside household close contact m(ω̃c): In our model, we treat the transmission in communities as

a proliferation of infected households. Under this consideration, we need to know the average number

of close contacts that an infective makes with persons of other households. Close contact means being

sufficient for transmitting the disease when the contact is with a susceptible person. Here, m(ω̃c) is

a contact rate. Vaccination does not affect the number of contacts, but it affects the susceptibility

and infectivity of individuals. Even though m(ω̃c) is independent of vaccination, it varies due to

differences in human interactions under the impact of various mitigation measures and demographics

of a community. To estimate the distribution of m(ω̃c) we used the following method:

Note that in Equation 5.2, RHV c is the effective reproduction number after vaccination. When

the factors related to vaccination that are affecting the reproduction number can be excluded

from the right hand, what is left is analogous to Rt. This can be achieved by setting ε(ωc) = 0,

and all xnkvc = 0, for all n ∈ N, k ∈ K, v ∈ 1, ..., p(n, v), c ∈ C. Basically Equation 5.2 is
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reduced to Rt =
∑

n∈N ank0c(ω̃c)xnk0c. We can use Rt [90, 91] values and transmission rates

for each variant to get m. The probability associated with m depends on the distribution of the

variants and the proportion of time period the value of Rt was observed.

The discrete distribution for outside household contact m(ω̃c) is available in Supplementary File 1.

• Reliability level α for CC and ICC approach: The acceptable reliability levels are typically pre-

scribed by health officials based on the historical severity of the epidemic. With the parameters

described in this section, we calculated the excess of effective reproduction number in each county

under scenario ω when there are no vaccines in the future, denoted e(ωc). Table 5.4 shows that the

excess of effective reproduction number ranges from 0.6 to 4.7, which means that the effective repro-

duction number is [1.6, 5.7] across all scenarios. For this study, we use three reliability levels High,

Medium and Low in ICC approach (see Table 5.5). Note that at the highest level of reliability, the

acceptable expected excess is 0.5% of the expected excess E[e(ω̃c)] when there is no vaccines in the

future, and for moderate and relaxed levels, the acceptable excess are set to 0.75% E[e(ω̃c)] and 1%

E[e(ω̃c)], respectively. Table 5.6 presents the reliability levels γ used in CC approach.

County Travis Williamson Bastrop Caldwell Hays Burnet Blanco
E[e(ω̃c)] 2.590 2.532 2.361 2.257 2.416 1.961 1.715
Maximum violation 4.721 4.706 4.468 4.280 4.511 3.649 3.217
Minimum violation 0.994 0.926 0.829 0.788 0.876 0.712 0.611

Table 5.4: Expected, maximum and minimum excess for each county when no vaccines are allo-
cated in the future.

Reliability level Travis Williamson Bastrop Caldwell Hays Burnet Blanco
High 0.013 0.013 0.012 0.011 0.012 0.010 0.009
Medium 0.019 0.019 0.018 0.017 0.018 0.015 0.013
Low 0.026 0.025 0.024 0.023 0.024 0.020 0.017

Table 5.5: Reliability levels for each community used in ICC model
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Reliability Level α Travis Williamson Hays Bastrop Caldwell Burnet Blanco
High 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Medium 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Low 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Table 5.6: Reliability levels for each community used in CC model.

5.5 Results and Discussion

In this section, we present the results of the stochastic model under different reliability levels. The

stochastic model was solved using a set of predetermined levels of αc and γc along with the discrete distri-

butions given in Section 5.4 for the uncertain parameters such as transmission rate, vaccine efficacy, close

contact rate, relative susceptibility, and relative infectivity under different vaccination statuses. In general,

for more populated communities, individuals that have more frequent social interactions can lead to a greater

likelihood of an outbreak of a contagious disease. The outbreak eventually can spread to the surrounding

communities if the more populated community is not under control. Therefore, health officials should pre-

pare for outbreaks in population centers and their surrounding communities. In this study, we consider

seven counties in Texas, Travis, Williamson, Bastrop, Caldwell, Hays, Burnet, and Blanco, in which Travis

is the center of the outbreak with the largest population. We perform several case studies to generate vac-

cination policies for all seven counties under all these uncertain parameters by driving the post-vaccination

reproduction number RHVc ≤ 1.

For each level of reliability, we solve instances of the model for all counties. The vaccination policy

suggested by ICC and CC model is not only governed by uncertain parameters, but also by the population

demographics in each county. The population demographics include the distribution of the household sizes,

age compositions in a household, and vaccination status of the household members. The vaccination pol-

icy prescribes the minimum proportion of a population with different vaccination statuses required to be

vaccinated to control the outbreak in each county.

We report the proportion of population to vaccinate in each county under High, Medium, and Low

reliability levels for both ICC and CC approach in Figure 5.2 and 5.3 respectively. The results show similar

trends for all three levels in each county. From ICC model under High reliability level, the proportions of

the total population required to be vaccinated to control the epidemic for Travis, Williamson, Hays, Bastrop,
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Calwell, Burnet, and Blanco are 0.66, 0.65, 0.60, 0.60, 0.64, 0.60, and 0.52, respectively. From CC model

under High reliability level, the proportions of the total population required to be vaccinated to control the

epidemic for Travis, Williamson, Hays, Bastrop, Calwell, Burnet, and Blanco are 0.65, 0.64, 0.63, 0.62,

0.62, 0.59, and 0.56, respectively. As described in Section 2.1.2, reformulation of CC approach is a mixed-

integer programming. In general, the computation cost is high. Table 5.7 shows that after six hours, CC

instances still have a relatively large gap, where gap is defined as the absolute difference between the best

bound and the best integer solution divided by best integer solution. In contrast, ICC instances are solved in

less than four minutes. CC approach provides a similar vaccination policy to ICC approach across all three

reliability levels. Therefore, in the rest of this section, we present only ICC results.

ICC CC
Reliability level High Medium Low High Medium Low
Gap 2.59% 2.62% 5.9% 0% 0% 0%
Time (seconds) 15000 15000 15000 154 167 203

Table 5.7: Computation time (seconds) and solution gap for CC and ICC model under High,
Medium and Low reliability level

We observe that for a more populated county, we need to vaccinate a higher proportion of the population

to control the epidemics. When looking at the percentage of a population to vaccinate regarding vaccination

status, both models prefer to vaccinate more people that have not been vaccinated yet. This is probably

because those who are not vaccinated are more susceptible than those who are already vaccinated. This is

true for all three reliability levels. In Travis county, under High reliability level, we suggest to vaccinate

66% of the total population, which is 87% of the population that has vaccination status k = 0, and 46% of

the population has vaccination status k = 1 as shown in Figure 5.4. For counties with smaller populations,

there is a noticeable reduction in the proportion of the population to vaccinate for vaccination status k = 0.

In contrast, for vaccination status k = 1, the proportion to vaccinate stays almost at the same level regardless

of population sizes. This is because they were already vaccinated and had a good immunity. They are not as

risk as vaccination k = 0 group to spread the disease. From the figure, we also observe that when we lower

the reliability levels, there is a significant drop in the proportion of population not vaccinated. For those who
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have already been vaccinated, proportions stay almost at the same level across all reliability levels.
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Figure 5.2: Proportion of total population to vaccinate in each county under High, Medium, and
Low reliability levels from ICC model

Households are an important contributor and high risk setting for COVID-19 transmission [92] and are

a critical factor in wider community spread [93]. The recent variants have a relatively high transmission

rate within a household. If a member in a household is infected, the other members who live in the same

household are more likely to be infected. For those who reside in larger household sizes, if one of them is

infected, there are more members to spread the disease to than those who reside in smaller households. The

results indicate that counties should vaccinate a relatively higher proportion of larger size non-vaccinated

households and not vaccinate any household of size one as shown in Figure 5.5. For households that have

been vaccinated, the proportion of population to vaccinate in different sizes of households varies based on

the vaccination status and other population demographic features in each county with no obvious trend. The

observations are similar across all reliability levels. For detailed results on the proportion of the population to
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Figure 5.3: Proportion of total population to vaccinate in each county under High, Medium, and
Low reliability levels from CC model

High reliability Medium reliability Low reliability
County Vaccination

status
k=0

Vaccination
status k=1

Vaccination
status
k=0

Vaccination
status k=1

Vaccination
status
k=0

Vaccination
status k=1

Travis 86.44% 46.44% 80.25% 41.07% 75.65% 40.55%
Williamson 83.68% 45.80% 75.10% 43.76% 70.16% 43.67%
Hays 82.03% 45.02% 71.54% 45.05% 67.72% 43.96%
Bastrop 78.11% 46.67% 70.04% 44.62% 67.55% 42.53%
Caldwell 74.20% 48.74% 68.56% 44.57% 66.12% 42.56%
Burnet 72.64% 46.62% 65.59% 43.68% 62.08% 42.68%
Blanco 66.02% 46.92% 60.57% 43.45% 57.60% 42.49%

Table 5.8: Proportion of population with different vaccination statuses to vaccinate in each county
under high, medium and low reliability level

vaccinate with each vaccination status per household type across all reliability levels, refer to Supplementary

File 2.
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Figure 5.4: Proportion of population with different vaccination statuses to vaccinate under High,
Medium and Low reliability levels for ICC model

Understanding the role of age in transmission and symptom severity is critical for determining the vac-

cination policy. Without effective control measures, regions with larger populations that have relatively high

susceptibility can spread the disease much faster. Under this rationale, in the U.S., at the early stage of vac-

cination deployment, the elderly are the very first tier to get vaccinated in the general population. Figure 5.6

illustrates the proportion of populations with different vaccination statuses to vaccinate in each age group

under three reliability levels. It suggests to release more vaccines to Group B, followed by Group A and

Group C. There are two major reasons why Group C is allocated proportionally fewer vaccines. Firstly, at

the time of writing this study, 80% of the older population, age ≥ 65, are already vaccinated. They gained

some immunity from the vaccines and are not as susceptible as the not vaccinated group. Secondly, the pop-

ulation in Group C primarily reside in smaller households, household size of one or two. If they are infected,

there are few members to spread the disease to within the household. In contrast, the Group A and Group
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Figure 5.5: Proportion of population with different vaccination statuses to vaccinate in each house-
hold size (HH) for each county under High reliability level (this trend holds for Medium and Low
reliability levels

B populations live in relatively larger household sizes compared to the Group C population. If Group B or

Group C people are infected, within the household that they live in, there are more members to transmit the

disease to. In addition, Group A and Group B populations are more likely to live in the same household of

size three and up. We know that Group B population is relatively more susceptible to the disease compared

to Group A population. For a member in the household, Group B population has a higher chance to be

infected, compared to the other Group A population in the same household. Therefore, to effectively control

the outbreak, our model suggests to vaccinate a larger proportion of Group B to prevent them from getting

the disease and spreading the disease to others.

5.6 Conclusion

We consider an integrated chance-constraint and chance-constrained methodology for incorporating un-

certain parameters for finding optimal vaccination policies for epidemics. We specifically derived the ap-
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proach determines household-based vaccination policies to control the outbreak of COVID-19 under three

predetermined reliability levels. A policy captures the demographic structure of households, age-related het-

erogeneity in susceptibility and infectivity, and population vaccination status. The model was implemented

for seven neighboring counties in the U.S. state of Texas, one of which is the center of the outbreak with

largest population size. Under high reliability level, the results suggest to vaccinate 75% of the population

that are not vaccinated and give a booster shot to 43% of the population who have already been vaccinated.

Understanding the role of age in transmission and symptom severity is critical for determining the vaccina-

tion policy. Without effective control measures, regions with a larger population that have relatively high

susceptibility can spread the disease disproportionally faster. Therefore, the model suggests to release pro-

portionally more vaccines to Group B, followed by Group A and Group C. The results also real that a more

effective vaccination policy for controlling an outbreak is to vaccinate households with larger sizes. The
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reason as that a larger size household, if a member is infected, there are more members to spread the disease

compared to a smaller household. Future work along this line of research includes considering vaccines

logistic while deciding vaccination policies, such as vaccination transportation, storing, and distribution.
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6. SUMMARY AND FUTURE WORK

This dissertation explores three stochastic programming models and solutions for two different health

care related applications involving uncertain parameters, namely; pathways scheduling for connected com-

munity health, and optimal vaccination policies for Covid-19. The three approaches of stochastic program-

ming are investigated in this dissertation are: 1) stochastic programming with recourse in which infeasibility

is not allowed, only recourse/corrective actions with a certain cost; 2) chance-constrained programming in

which infeasibility is allowed; and 3) integrated chance-constrained programming where infeasibility is

accepted, but the violation amount is bounded. When decisions are made at different stages and allow

corrective actions in the future stage, stochastic programming with recourse approach can be applied. For

applications where infeasibility is allowed under some scenarios, CC and ICC are appropriate approaches.

However, if the violation amount is critical to the application, ICC should be applied. The first approach is

applied to a community health pathways scheduling problem from healthcare, while the last two method-

ologies are applied to optimal vaccine allocation under uncertainty, with a focus for COVID-19.

6.1 Summary

Scheduling and coordinating constrained resources in community healthcare settings at a centralized

community level is challenging due to limited resources and the inherent dynamics of the processes and

the organizational structures. Community health pathways (CHPs) have been introduced as a standardized

interdisciplinary tool that details multiple steps of a healthcare-related service and the required resources

for each step. However, the time window constraints for each step and the data uncertainty in resource

availability make this scheduling problem very challenging. On the other hand, rising demand and costs of

healthcare motivate the need for efficient schedules. In this work, we developed a stochastic programming

model to schedule CHPs and community healthcare resources under resource availability uncertainty.

A computational study based on a real Pathways Community HUB setting provided several findings

and managerial insights. The results show that the schedules provided by the deterministic model can be

too optimistic and may not necessarily work well under uncertainty in resource availability. client wait

time depends on client demand, with high demand resulting in longer waiting time. The study also shows

that workload balancing is preferred because it provides schedules with similar workloads across resources
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of the same type, while providing waiting times that are comparable to when no workload balancing is

applied. Managerial insights include the recommendation to HUB managers and schedulers to use workload

balancing not only to minimize client waiting time, but also to guarantee client schedules that result in

equitable use of limited resources in the Pathways Community HUB.

For the optimal vaccination allocation problem, we develop an integrated chance-constraint model that

includes uncertain parameters for finding optimal vaccination policies. We derived household-based vacci-

nation policies to control the outbreak of COVID-19 under three predetermined reliability levels. Our policy

captures the demographic structure of households, age-related heterogeneity in susceptibility and infectivity,

and population vaccination status. The model was implemented in seven neighboring counties in the U.S.

state of Texas, one of which is the center of the outbreak with a larger population size. Under high reliability

level, the results suggest to vaccinate 75% of the population that are not vaccinated and give a booster shot

to 43% of the population who have already been vaccinated. Understanding the role of age in transmission

and symptom severity is critical for determining the vaccination policy. Without effective control measures,

regions with a larger population that have relatively high susceptibility can spread the disease much faster.

The solution also suggests to release more vaccines to Group B, followed by Group A and Group C. The

solution also indicates that a more effective vaccination policy for controlling an outbreak is to vaccinate

households with larger sizes. The reason as that in a larger size household, if a member is infected, there are

more members to spread the disease to compared in a smaller household.

6.2 Limitations and Future Research

The CHPs scheduling methodology developed in this dissertation is a step forward towards addressing

pathway scheduling problems. However, there are a few remaining aspects to the problem which serve as

motivation for future research. Problem uncertainty is reflected in resource availability. One extension is

to consider client no-shows for scheduled appointments. For pathways, if a client does not show up for the

appointment of a particular step, they can either end the pathway or reschedule. As future work, no-shows

can be incorporated in the methods by assuming a certain percentage of the pathway steps are rescheduled

or modified. Whenever there is a no-show, the model needs to release those resources that are assigned

to future steps of that pathway. If a client prefers to continue the pathway, then the model must make a

new request to schedule the rest of the pathway based on the future availability of the resources involved.
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Incorporating this rescheduling feature will more accurately capture the real Pathways Community HUB

setting.

In the optimization model, the current formulation determines the pathway starting date and does not

offer clients to choose their preferable start dates. Another extension to this work is to reformulate the

problem to incorporate client preference in the starting date and time. In this work, the SP model is solved

directly via the DEP using a direct solver. Hence, the computational cost is relatively high. Therefore, there

is a need to develop a decomposition algorithm to speed up computation time for the scheduling problem.

For Pathways Community HUBs dealing with CHPs involving high-risk clients, one can also devise a risk-

averse stochastic programming model to take risk into consideration.

COVID-19 is still soaring with new SARS-Cov2 virus mutations. Without a cure, we need new vaccines

to help control the disease. The vaccination strategy suggested by our model is household-based, and the

vaccination status is labeled based-on the household as a unit. If a household has vaccination status equal

to one, then we assume that all members in that household are vaccinated. However, a large proportion

of the population which is 20 years old and younger was not yet vaccinated at the time of this study. To

model reality more accurately, we need to adjust the assumption on vaccination status in our future work.

One possible option is to label vaccination status with respect to the age group in a household. In this way,

younger age population vaccination status can be represented more accurately.

The CC and ICC models introduced in this work capture uncertainty in transmission characteristics and

variability in population demographics, and determines who should be vaccinated under different reliability

levels. However, logistics for vaccine storage, handling, and management are not covered in this dissertation.

Failure to store and handle vaccines properly can result in inadequate immune responses in individuals and

poor protection against COVID-19. As future work, the logistics aspects of vaccine transportation and

storage will need to be considered.
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7. First Appendix

7.1 Supplementary File 1:

This file includes all model parameters presented in Chapter 5 and scenarios for each county.

7.2 Supplementary File 2:

This file includes detailed solution for Chapter 5.
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