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 ABSTRACT 

 

In traditional industrial process design approaches, techno-economic criteria have 

been the primary objectives in the early process design stages. Safety is often considered 

only in the later design stage (e.g., detailed engineering stage). Such a traditional approach 

is that most of the design degrees of freedom, including technology and configuration 

issues, have already been determined when considering safety. Modifying a process is 

costly or unreliable at later stages. To solve this issue, there have been numerous attempts 

to consider process safety during the early design stages in safety engineers and 

researchers. In particular, special attention to adopting inherently safer design (ISD) has 

been made because ISD is deemed the most cost-effective risk reduction strategy at early 

design stages. However, it is still challenging to adopt ISD for process engineers at the 

early design stages because of the lack of guidance and insufficient information on 

upcoming process facilities.  

To address this challenge, this dissertation consists of three peer-reviewed journal 

papers [Articles #1 - #3]. With respect to the progress of inherently safer design (in 

particular, during the early design stage) over the last three decades, Article #1 selects 73 

inherent safety assessment tools, which can be utilized during the early design stages, and 

categorized into three groups: hazard-based inherent safety assessment tools (H-ISATs) 

for 22 tools, risk-based inherent safety assessment tools (R-ISATs) for 33 tools, and cost-

optimal inherent safety assessment tools (CO-ISATs) for 18 tools. The goal of this article 
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is to enable process engineers to use all the available design degrees of freedom to mitigate 

risk early enough in the design process.  

Article #2 analyzes 94 chemical process incidents investigated by the U.S. 

Chemical Safety and Hazard Investigation Board (CSB) reports. To analyze in a 

systematic approach, this article proposes 17 incident cause factors, 6 scenario factors, and 

6 consequence factors to find out whether ISD would have helped to prevent these 

incidents.  

Article #3 proposes hands-on predictive models of the flash point, the heat of 

combustion, lower flammability limit (LFL), and upper flammability limit (UFL). By 

incorporating the nonlinearity and transformation along with linearity of variables, this 

article constructed practical, reliable regression models thoroughly with readily available 

variables—the number of all atoms, molecular weights, and boiling points. The purpose 

is to enable a process engineer to quickly obtain hazardous properties of intended process 

materials.  
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1. INTRODUCTION  

 

1.1. Background 

The development path of sustainable manufacturing has strived to balance the 

three pillars of sustainability: environment, society, and economy (El-Halwagi, 2017). In 

particular, the chemical process industry deals with hazardous materials and processes that 

can have a significant impact on the well-being of surrounding communities and natural 

resources. Therefore, we should extend a broader understanding of sustainability in the 

chemical process industry by including safety along with these three pillars.  

Of various safety strategies, Inherently Safer Design (ISD) is one of the most 

effective risk reduction strategies for achieving sustainable chemical facilities. Instead of 

merely installing safety equipment or devices (CCPS, 2010), ISD is a proactive strategy 

for reducing the likelihood or the impact of incidents and achieving cost-optimal safety 

solutions in the chemical process industry.  

Since early design stages (i.e., conceptual design and preliminary design) offer 

more flexibility to perform ISD, practitioners must consider ISD to apply it during these 

stages. If ISD is impractical to reduce the chance of potential incidents, it may be more 

challenging to achieve tolerable risk ranges with the two other safety strategies. In the 

final step of the risk management system, chemical companies must iterate this hierarchy 

strategy until tolerable risk ranges are obtained.  
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The following chapter (Chapter 2, Article #1) will provide a detailed background 

of ISD, including the necessities for adopting ISD during early design stages and relevant 

challenges.  

 

1.2. Research question 

Despite the shared insights among engineers in the chemical process industry that 

adopting ISD during the early design stages is a strategic tactic, practitioners often 

encounter problems implementing ISD due to the insufficient practical, reliable 

approaches. Therefore, more hands-on research efforts are necessary to appropriately 

enable process researchers or engineers to consider ISD during the early design stages.  

As the first step, to come up with more reliable applicable ISD strategies, this 

dissertation is aimed at addressing the major research question: 

 

 How can we effectively measure inherently safer design levels during early design 

stage in which process information are insufficiently provided? 

 

1.3. Dissertation layout 

This dissertation is composed of three articles to the following questions to answer 

the major question, as shown Figure 1.1. First, Chapter 2 (Article #1) lists the fundamental 

information of safety and ISD principles and reviews feasible safety assessment tools to 

measure ISD levels during the early design stages, along with other sustainability aspects. 

Then, this article categorizes the selected assessment tools based on three risk 
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management purposes: hazard, risk, and cost-optimal assessment. Chapter 2 also identifies 

the common variables that have been used as safety indicators among the selected 

assessment tools. 

 

 

Figure 1.1 An overview of this dissertation layout 

 

Based on the literature review in Chapter 2, Chapter 3 (Article #2) analyzes 94 

chemical process incidents investigated by the U.S. Chemical Safety and Hazard 
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Investigation Board (CSB) to determine which safety indicators are suitable to apply to 

the previous process incidents.  

Next, Chapter 4 (Articles #3) proposes more easy-to-apply machine learning 

predictive models for flammability properties than currently existing predictive models 

such as physical property models, group contribution models, and quantitative structure-

property relationships (QSPR) models. The purpose of this article is to estimate missing 

safety indicators in order to enable practitioners to adopt in a practical way.  In this article, 

the novel predictive models of flammability properties (i.e., flash point, the heat of 

combustion, lower flammability limit, and upper flammability limit of organic 

compounds) are developed via machine learning algorithms. 
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1.4. References of Chapter 1 

CCPS, 2010. Inherently Safer Chemical Processes: A Life Cycle Approach. John Wiley 

& Sons, Incorporated). 

El-Halwagi, M.M., 2017. Sustainable Design through Process Integration: Fundamentals 

and Applications to Industrial Pollution Prevention, Resource Conservation, and 

Profitability Enhancement. Butterworth-Heinemann. 
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2. INCORPORATING INHERENT SAFETY DURING THE CONCEPTUAL 

PROCESS DESIGN STAGE: A LITERATURE REVIEW1 

 

This chapter reviews principal concepts, tools, and metrics for risk management 

and Inherently Safer Design (ISD) during the conceptual stage of process design. Even 

though there has been a profusion of papers regarding ISD, the targeted audience has 

typically been safety engineers, not process engineers. Thus, the goal of this chapter is to 

enable process engineers to use all the available design degrees of freedom to mitigate risk 

early enough in the design process. Mainly, this chapter analyzes ISD and inherent safety 

assessment tools (ISATs) from the perspective of inclusion in conceptual process design. 

This chapter also highlights the need to consider safety as a major component of process 

sustainability. In this chapter, 73 ISATs were selected, and these tools were categorized 

into three groups: hazard-based inherent safety assessment tools (H-ISATs) for 22 tools, 

risk-based inherent safety assessment tools (R-ISATs) for 33 tools, and cost-optimal 

inherent safety assessment tools (CO-ISATs) for 18 tools. This chapter also introduces an 

integrated framework for coordinating the conventional process design workflow with 

safety analysis at various levels of detail.  

 

 

 

1 Reprinted with permission from “Incorporating inherent safety during the conceptual process design stage: 
a literature review” by Park, S., Xu, S., Rogers, W., Pasman, H., & El-Halwagi, M. M. 2020, Journal of Loss 
Prevention in the Process Industries, 63, 104040, Copyright [2020] by Elsevier Ltd. All rights reserved. 
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2.1. Introduction 

The design of industrial processes proceeds via several stages that start with high-

level synthesis and screening of alternatives in the conceptual design stage. Afterward, the 

process continues with more analysis that yields the recommended design in the detailed 

design stage. Traditionally, techno-economic criteria have been the principal objectives in 

the early process design stage. Safety is usually considered in the detailed design stages. 

At this point, most of the design degrees of freedom including technological and 

configurational issues have already been determined. The objective of this chapter is to 

advocate for the consideration of inherent safety aspects in the conceptual design stage; 

specifically, the analysis focuses on how various inherent safety assessment tools (ISATs) 

can be utilized by process engineers. Previous review papers have shown overall views of 

incorporating inherent safety principles (e.g., grouping different types of methods or 

research groups) with the primary target audience being safety experts. This chapter is 

aimed at the process design community to show principal safety concepts, definitions, 

tools, and insights and to enable process engineers to apply inherent safety principles 

during the conceptual design stage. 

 

2.1.1. Safety is a key component of in sustainability  

The development path of sustainable manufacturing has strived to balance the 

three pillars of sustainability—environment, society, and economy (National Research 

Council, 2011). A broader understanding of sustainability in the chemical process 

industries (CPIs) should be extended to include safety along with the three aforementioned 
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pillars, as shown by Figure 2.1. The CPIs in particular deal with hazardous materials and 

processes that can have a major impact on the wellbeing of surrounding communities and 

natural resources. 

 

 

Figure 2.1 Safety as a key pillar towards sustainability 

 

2.1.2. Inherently safer design as a logical component of conceptual process design 

for better sustainability 

Inherently Safer Design (ISD) is one of the most effective risk reduction strategies 

for achieving sustainable chemical facilities. The idea of “removing risks at the design 

stage” was originally developed in a pioneering study by a U.K. process engineer, Houston 

(1971), and was further developed in the ISD concept by Kletz (1985). Instead of merely 

installing safety equipment or devices, ISD is a proactive strategy for reducing the 
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likelihood or the impact of incidents and endeavoring to achieve cost-optimal safety 

solutions in the CPIs. 

Without an appropriate ISD approach, chemical facilities will be at increased risk 

of experiencing devastating events. The lessons learned—from previous catastrophic 

chemical accidents— demonstrated the possible impacts on people, the environment, and 

the economy in our society (Eckerman, 2018). For example, the 1984 Bhopal disaster in 

India resulted in over 2,000–8,000 fatalities, the number depending on different sources 

(Eckerman, 2018; Lees, 2012); this disaster was triggered by methyl isocyanate, an 

extremely toxic intermediate, which was stored for further processing in unnecessary large 

amounts that far exceeded acceptable safety limits. Singh et al. (2010) also highlighted the 

importance of ISD by analyzing the 1998 Piper Alpha disaster, which resulted in 167 

fatalities. Although systematic techniques have been developed to incorporate green 

chemistry in conceptual design (e.g., Julián-Durán and Laura, 2014; Crabtree and El-

Halwagi, 1994), much less attention has been given to including inherently safer chemistry 

during the early stages of process design. 

Natural threats are another reason why a chemical facility must apply ISD. 

Krausmann et al. (2011) concluded that natural events triggered 5% of industrial accidents 

involving process units or stored hazardous substances. In 2017, for instance, all chemical 

facilities in the U.S. Houston area expected flooding from Hurricane Harvey based on 

previous events involving excessive rainfall (DeRosa et al., 2019). However, the excessive 

rainfall from Hurricane Harvey was so unprecedented that the Arkema Crosby facility lost 

back-up power and failed to safely store organic peroxide products at low temperature. 
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Eventually, these organic peroxide products loaded in containers and for Harvey placed 

on trucks spontaneously combusted producing explosion effects, and people within a 1.5-

mile radius were required to evacuate (Chemical Safety Board (CSB) 2018). Such an 

example—of unpredictable natural disasters—represents why process engineers must 

adopt ISD in the first place rather than attempting to control a hazard after an event it 

triggers occurs. By then it may be impossible to control. Specifically, Cozzani et al. (2010) 

referred to chemical accidents triggered by natural hazards (e.g., floods, earthquake, 

lightning, etc.) that lie at the interface of nature and technology as NaTech. 

 

2.1.3. The direction of this chapter 

This chapter comprises six sections. Section 2.2 explains the fundamental concepts 

of safety and ISD based on the developed concept of Kletz and Amyotte (2010), followed 

by an explanation of each process design stage. This section was prepared for both process 

engineers and safety engineers; a process engineer calls for basic safety knowledge, 

whereas a safety engineer desires to understand process design stages. Section 2.3 

highlights a new review paper that mainly analyzes inherent safety assessment tools 

(ISATs) for the conceptual design stage via five previous review papers. Section 2.4 

addresses the methods of reviewing literature to select ISATs in this chapter. Section 2.5 

groups the selected ISATs in three categories and characterizes them. Finally, Section 2.6 

concludes this chapter with recommendations and possible next steps. 
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2.2. Understanding inherently safer design (ISD) 

2.2.1. Hazard vs. Risk 

It is essential to make a clear distinction between hazard and risk. Table 2.1 shows 

key definitions. Risk is the result of a combination of consequence and likelihood, which 

can vary widely depending on the circumstances and conditions (Pasman 2015). On the 

other hand, a hazard is the intrinsic-damage potential (e.g., of a chemical or a process). 

As Kletz (1978) said: “what you don’t have, can’t leak,” if chemical plants were designed 

without storage tanks, then storage tanks could not possibly leak. Similarly, if hazards 

could be eliminated, possible accidents could be completely avoided in advance. 

 

Table 2.1 Definitions for Hazard vs. Risk 

Term Definition 

Hazard a 
A physical or chemical condition that has the potential for causing harm to 
something valued such as people, property, or the environment 

Risk a, b 

The combination of the expected Consequence and Likelihood of a single 
incident or a group of incidents, or in general the effect of uncertainty on 
objectives 
 

Risk 𝑓 Consequence, Likelihood   

Consequence b 
Potential loss that can be expressed in quantifiable units (e.g., monetary: 
$/event) 

Likelihood b The chance of occurrence of the incident (e.g., events/year) 

a CCPS (2008), Guidelines for hazard evaluation procedures 
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b Pasman (2015), and the more general ISO (2009) definition 

 

 Traditionally, the CPIs have focused on reducing risk values with preventive 

measure — attempting to control a hazard by installing add-on safety equipment. Despite 

the chance of failure of protective equipment, it can still lower the risk ranking level, 

implying increased plant safety. However, the traditional process-design approach often 

fails to remove or sufficiently minimize the inherent hazard. To compensate later, it may 

require late design changes or costly preventative and more often protective measures. 

Therefore, in order to reduce or eliminate the inherent hazard, ISD is a much more 

proactive approach to reduce overall risk levels and improve plant safety. This approach 

is best implemented during the conceptual process design stage.  

 

2.2.2. Four guidewords for ISD 

The use of ISD is driven by with four guidewords — Intensification, Substitution, 

Attenuation, and Simplification (Kletz and Amyotte, 2010). ISD excludes/reduces hazards 

with these guidewords. Table 2.2 provides a brief overview of ISD principles. Because 

intensification is used to minimize the amount of hazardous chemicals, its application has 

been developed more actively in the CPIs (Tian et al., 2018) relative to other guidewords. 

  

Table 2.2 Four guidewords for inherently safer design (Adopted from Kletz and 
Amyotte, 2010; CCPS, 2010; Abidin et al., 2016) 

Guideword Description 
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Intensification  
Use smaller quantities of hazardous materials by reducing the size of 
relevant equipment (also called “Minimization”) 

Substitution Use less hazardous materials, reactions, and processes 

Attenuation  
Use more moderate process conditions through dilution, refrigeration, 
and process alternatives, but the total amount of chemicals might not be 
reduced (also called “Moderation”) 

Simplification Eliminate unnecessary complexity to decrease the likelihood of errors 

 

 

2.2.3. Process risk management system incorporating ISD 

For an improved risk management system, ISD should be applied in tandem with 

other safety strategies because ISD is not intended to be a stand-alone strategy. For 

example, Figure 2.2 shows the process risk management system incorporating the 

principles of ISD, domino effects, and layers of protection, based on the notions of Kletz 

and Amyotte (2010) and CCPS (2010). Because early design stages (i.e., conceptual 

design and preliminary design) offer more flexibility to perform ISD, practitioners must 

consider ISD to apply it during these stages. If ISD is impractical to reduce the chance of 

potential incidents, it may be more challenging to achieve tolerable risk ranges with the 

two other safety strategies. In the final step of the risk management system, chemical 

companies must iterate this hierarchy strategy until tolerable risk ranges are obtained.  

The scope of ISD, as originally described by Kletz and Amyotte (2010), excluded 

the concept of domino effects. However, many researchers subsequent to Klets and 

Amyotte have contended that domino effects are an intrinsic characteristic to be 
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considered for ISD. For example, if chemical plants are inherently safer, corresponding 

domino effects are expected to decrease as well. For this reason, this chapter will not cover 

the secondary scope, domino effects.  

     

 

Figure 2.2 Process risk management system incorporating three strategies: 
inherently safer design, avoidance of domino effects, add-on safety and procedures 
(Modified from Kletz and Amyotte (2010) and CCPS (2010)) 
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 Figure 2.2 shows two approaches of ISD: (1) the 1st order ISD approach to 

eliminate hazards in a rigorous approach, and (2) the 2nd order ISD approach to reduce 

hazards (or risks) with its four guidewords (CCPS, 2010). Because the 1st order approach 

is not always applicable, the 2nd order approach should be the alternative. However, for 

both methods, eliminating or reducing hazards – the potentials – is more effective 

compared to reducing risks, as a risk is the result of a specific situation with uncertainty 

as mentioned in Section 2.2.1. Without sufficient information for the relevant situation, 

estimating and reducing risk is essentially impossible. However, if ISD compares two or 

multiple alternatives based on the same or similar conditions, researchers tend to prefer 

the 2nd order approach for risk reduction. 

 

2.2.4. Importance of adopting ISD principles during the conceptual design stage 

Process design proceeds through several stages starting with research and 

development followed by conceptual process synthesis and design where the basic 

chemical routes and primary functional steps are determined along with mass and energy 

balances and high-level techno-economic analysis. During conceptual design, the process 

engineers have substantial freedom in making design decisions. Next, detailed design 

involves thorough analysis, simulation, assessment, and optimization that will define the 

specifications necessary for construction then operation. When feasible during early 

design stages, the principal concepts of ISD are well aligned with sustainability. As can 

be seen from Figure 2.3, early design stages have much more flexibility to incorporate 

ISD features than the subsequent stages. Therefore, the opportunity to adopt ISD is ideal 
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at the research and conceptual design stages; such opportunity decreases, and the project 

cost increases if changes are made during the subsequent design stages. Once a conceptual 

design is completed, the other safety strategies should be applied along with ISD. 

However, in this case, the project cost would significantly increase to have the same risk 

level at the same reliability relative to if ISD was adopted during the conceptual design 

stage. 

 

 

Figure 2.3 Typical opportunities of risk management strategies during chemical 
plant projects  
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Nevertheless, implementing ISD may meet difficulty in the conceptual design 

stage for two main reasons: (1) there is insufficient time to incorporate ISD in a traditional 

approach, and (2) the limitation of available information (Table 2.3) to consider all 

possible hazardous scenarios. Once process designs are determined in basic or detailed 

engineering stages, process engineers develop the relevant documents. Traditionally, plant 

project engineers undertake safety analysis with piping and instrument diagrams (P&IDs) 

following basic engineering design with one of the hazard-identification tools (e.g., 

HAZard and OPerability (HAZOP), Failure Mode and Effect Analysis (FMEA) or What-

if). After preliminary engineering design, it is quite difficult to change the main process 

or materials to increase ISD. Consequently, only opportunities for installing add-on safety 

features will increase instead, as shown in Figure 2.3 which shows typical values of 

opportunities for mitigating risk (expressed as percentages compared to 100% 

opportunities during research and conceptual design). Table 2.3 represents typically 

available information per each plant design stage (Towler and Sinnott, 2012). Although 

the available information is limited, it is crucial to apply the available information 

prudently to perform ISD effectively. 
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Table 2.3 Available information per each plant design stage (Modified from Towler 
and Sinnott, 2012) 

Plant Design Stage Available Information 

Research concept Chemistry, MSDS information 

Conceptual design 
 

Process flow diagram (PFD), Equipment list, Vessel designs, 
Reactor models, Simulation modeling 

Preliminary design  
P&IDs, Process control scheme, Metallurgy, Detailed mass 
and energy balance, Hydraulics, Offsites 

Detailed design engineering 
Mechanical designs, Instrument specs, Vendor details, Plot 
plans 

Procurement, construction Piping isometric, As built specs 

Operation Commissioning log, Operations log, Maintenance log 

 

 

2.3. Necessity of this chapter 

As stated in Section 2.2, the effect of ISD is maximized when ISD principles are 

applied during the conceptual design stages. Thus, process engineers must be consciously 

aware of ISD and apply it with robust safety evaluation tools. Without robust tools, 

engineers may fail to discover a potential hazard or risk, resulting in unsafe design. 

By the early 1990s, multiple safety assessment tools had been developed such as 

HAZOP (Cameron et al., 2017), Dow (1994) Fire & Explosion Index (F&EI), Mond Index 

(Tyler, 1985), and Safety Weight Hazard Index (SWeHi) (Khan et al., 2001). Although 

these tools have contributed to the process safety field, they are inappropriate to use during 

the early design stages; however, they can be applied conditionally during or after the 

preliminary engineering stage. For example, a typical HAZOP study is performed with 
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P&IDs and plot plans that are made after finalizing an accurate process design scheme. 

As the most commonly used safety index, Dow F&EI has functioned to analyze safety for 

basic process design (Qi et al., 2019; Vázquez et al., 2017; Al-Mutairi et al., 2008; Suardin 

et al., 2007). However, this index tool also requires detailed information (e.g., equipment 

sizes, material inventories, flows from P&IDs, and plot plans), which may require many 

assumptions to obtain a total safety index value. Furthermore, Dow, (1994) examines 

hazard, flammability, and reactivity based on NFPA (1991). Because the NFPA standard 

is based on the standard process conditions—defined as a temperature of 20 °C and an 

absolute pressure of 1 atm—it does not enable the consideration of chemicals existing in 

different process conditions. The Mond Index (Tyler, 1985) also requires more detailed 

process design schemes (e.g., pipelines longer than 25 m are regarded as separate process 

units (Edwards and Lawrence, 1993)). Lastly, SWeHi requires information obtained 

during the detailed engineering stage such as plant layout, safety system, and barriers (Roy 

et al., 2016). Consequently, analyzing proper ISATs is necessary to maximize ISD 

principles during the early design stages. 

Many researchers have focused on safety indices because of their quick and 

straightforward attributes (Abidin et al., 2018). A safety index is a tool that assesses the 

relative safety level among alternative processes using safety indicators (or parameters) 

that can differ depending on the index used. A safety indicator, typically represented as a 

numeric value, is the fundamental metric that represents the degree of safety of a process. 

The lower the value of a combination of indicators, the safer the process design is 

compared to alternatives. 
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2.3.1. Recent review papers relevant to inherent safety assessment tools (ISATs) 

There have been several review papers discussing how ISATs have been 

developed. To provide coverage of the topic, five representative review papers focusing 

on various ISATS were selected. For each paper, the suggested tools were checked for 

potential adoption and utilization in the conceptual design stage.  

Srinivasan and Natarajan (2012) examined the key developments of inherent safety 

with 111 articles published between 2000 and 2011. This article divided the research 

topics for inherent safety into eight sub-topics, as shown in Table 2.4.  

As shown in Table 2.4, the authors considered ISD in the framework of risk 

management rather than in a strictly technical sense. Hence, this article expanded the 

scope of ISD beyond the inherently safer principles of Kletz and Amyotte (2010) by 

including the research of layout, add-on safety features, and human factors. Such 

expanded scope with several risk management features is beyond the scope of this paper.  

 

Table 2.4 Eight sub-topics for inherently safety research (Adopted from Srinivasan 
and Natarajan, 2012) 

Sub-topic of inherent safety Note 

Material Defined as chemical’s intrinsic characteristics 

Chemistry 
Defined as chemical reactions including runaway 
concerns 

Unit operation Mainly intensification such as microreactor systems 
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Sub-topic of inherent safety Note 

Flowsheet and layout Including domino effects 

Storage and transportation 
Referred to as the inventory of hazardous materials 
stored  

Process control and safety system 
Including safety instrumented system (SIS),  
safety integrity level (SIL), and 
pressure safety valve (PSV) 

Human factors and management 
systems 

Significantly related to the likelihood of events  

Assessment techniques Shown as ISD indices 

 

Roy et al. (2016) analyzed 25 representative safety indices for their viability at 

each stage of a lifecycle in a plant project. The analysis was performed based on the 

indicators required for executing the safety indices. In the authors’ result, only 1 index 

among the 25 indices was adequate to be utilized during the conceptual design stage. 

However, this result can vary depending on the analysis approach on the safety indices. 

Although Roy and his co-authors regarded inventory as an indicator that can be obtained 

only with data after the conceptual design stage, it can be easily estimated during the 

conceptual design stage. For example, available flow rate data (e.g., kg/hr. or ton/hr.) 

obtained from a process simulation software can be exploited to estimate the potential 

chemical amount of an inventory (e.g., equipment or pipelines). With an emphasis on 

inventory, 9 out of 25 indices were selected to be adequate for usage during the conceptual 

design stage. The nine indices are: 

 Mond Index (Lewis, 1979) 
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 PIIS Index (Edwards and Lawrence, 1993) 

 ISI (Heikkilä, 1999) 

 EHS Index (Koller et al., 1999) 

 GreenPro-I (Khan et al., 2002) 

 Life Cycle Index (Khan et al., 2004) 

 Process Route Index (Leong and Shariff, 2009) 

 Process Stream Index (Shariff et al., 2012) 

 Risk-based Ranking of Hazardous Thermal Chemical (Busura et al., 2014). 

 

It should be noted that the Mond Index should be excluded, given it was already 

deemed unsuitable, as mentioned in the beginning of Section 2.3. As an extension, this 

chapter will also analyze these 8 indices to determine their viability during the conceptual 

design stage.  

Jafari et al. (2018) reviewed inherent process safety indicators through 62 peer-

reviewed articles published between 1990 and 2017. Notably, this study analyzed two 

main aspects—ISD indicators and estimation approaches for ISD. As Figure 2.4 shows, 

the authors divided all indicators they found in the articles into six categories: (1) chemical 

and physical properties of materials, (2) process conditions, (3) reaction properties, (4) 

equipment, (5) types of activities/operations, and (6) consequences. Figure 2.4 presents 

the indicators the authors found in the 62 articles with black-color lining; possible 

indicators proposed by the authors, but not seen in the articles, are presented with red color 

lining. Furthermore, the authors divided the estimation approaches into six categories: 
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 Hybrid approach 

 Equation-based approach 

 Graphical approach 

 Advanced mathematical approach 

 Risk-based approach 

 Relative ranking  

 

Based on these six categories, the authors developed a table on how each indicator 

was estimated. However, the authors did not limit the concept of ISD as introduced by 

Kletz and Amyotte (2010) and included several articles associated with domino effects in 

their review—which is also out of the scope in this paper (see Table 2.2 in Section 2.2.4). 

For example, it may be challenging for process engineers to select appropriate indicators 

to use in order to evaluate the safety status. As an extension of the article, this chapter will 

pursue more practical comparisons among inherently safer indicators for improved 

practical applications. 
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Figure 2.4 Summary of all indicators under six categories (Adopted from Jafari et 
al. (2018)2). 

 

Tang et al. (2018) conducted a literature review of safety indicators commonly 

used in the offshore oil and gas industry. However, there was no specific mention about 

ISATs. 

Athar et al. (2019) reviewed 93 ISATs extracted from 387 articles. The authors 

followed Kletz's ISD concept by analyzing ISATs that can be used during the early design 

stages. The authors found that a two-thirds majority of ISATs developed were hazard-

 

2 Reprinted from Jafari, Mohammad Javad, Mohammadi, Heidar, Reniers, Genserik, Pouyakian, Mostafa, 
Nourai, Farshad, Ali Torabi, Seyed, Miandashti, Masoud Rafiee, 2018. ’Exploring inherent process safety 
indicators and approaches for their estimation: a systematic review. J. Loss Prev. Process. Ind. 52, 66–80, 
with permission from Elsevier 
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based tools rather than risk-based tools. The reviewed tools were tabulated to represent 

their Health, Safety, and Environment scope and output features in checkboxes under the 

following seven method categories: 

 Index (57%) 

 Consequence (13%) 

 Graphical (7%) 

 Numerical (5%) 

 Computer-aid (15%) 

 Optimization (3%) 

 Experimental (1%) 

 

The percentage in parentheses represents the respective proportion of total ISATs 

for each method. However, it is likely too difficult to divide ISATs based on the suggested 

categories due to many hybrid methods among the seven methods (e.g., indexing with 

computer-aid, indexing and graphical, or consequence and computer-aid). 

 

2.4. Method of reviewing literature 

As seen in the background information provided in the previous sections, this 

chapter aims to analyze the characteristics of inherent safety assessment tools (ISATs), 

which can be viable in the conceptual design stage. Various inherent safety tools were 

selected and reviewed. Afterward, the selected ISATs were categorized into risk 

management system terms, ‘hazard and risk’ (Table 2.1); These categories will help 
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practitioners smoothly adopt ISATs as the approach aligns closely with a conventional 

risk management system. Furthermore, this chapter will explore how economic, safety, 

and sustainability can be optimized and reconciled during the conceptual design stage. 

 In addition to the 291 articles from the previous review papers, further journal 

papers were retrieved based on the relevance to the proposed inherent safety tools or cost 

optimization with safety through the Scopus database or ACS website. Among those 

journal papers, ones that can be applied during the conceptual design stage were selected 

(see Table 2.3). The primary scopes of reviewing journal papers in this chapter are safety 

or cost optimization with safety. Inclusion or exclusion of specific ISATs was based on 

its relevance to conceptual design. For instance, a tool requires details that are not typically 

available during conceptual design, then it was excluded. The search for papers has been 

ended in the third week of March 2019. 

   

2.5. Inherent safety assessment tools (ISATs) for the conceptual design stage  

2.5.1. The division of three ISATs 

This chapter analyzes ISATs based on the three categories shown in Figure 2.5: 

Hazard-based ISAT (H-ISAT), Risk-based ISAT (R-ISAT), and Cost-Optimal ISAT (CO-

ISAT) (see Figure 2.6).  

The primary purpose of each ISAT is denoted with bold letters in Figure 2.5. The 

purpose of H-ISATs has been to rank inherent hazard levels among alternatives, while R-

ISATs have selected safer process design(s) via the measures of consequence and 
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likelihood. Finally, CO-ISATs have proposed optimal decision-making for sustainability 

with economic analysis and safety constraints. 

Figure 2.5 shows the essential and supplementary steps for each ISAT 

distinguished with straight and dotted lines, respectively. For example, the consequence 

analysis in R-ISAT is an essential step in selecting an inherently safer process design, 

while the calculation of damage distance is a supplementary step. The connections 

between other ISATs are not requisite steps, so all connection lines are shown as dotted 

lines. The dotted lines between different ISATs represents multi-ISAT frameworks that 

have been proposed by researchers (e.g., ranking inherent levels in H-ISATs, followed by 

estimating inherent risk levels in R-ISATs). 
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Figure 2.5 Schematic representation of three inherent safety assessment tools for the conceptual design stage 
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ISATs may be used independent of each other or in a specific sequence. The usage 

of the three ISATs can be described by the following use cases: (1) H-ISAT followed by 

CO-ISAT, (2) R-ISAT followed by a CO-ISAT, or (3) H-ISAT followed by R-ISAT, 

followed finally by CO-ISAT. The R-ISATs and CO-ISATs have more complex steps in 

comparison with H-ISAT. H-ISATs solely estimate inherent safety level via selected 

indicators on a comparative basis. In some cases, the procedure to determine H-ISATs is 

used as part of R-ISATs. However, R-ISATs select a safer process design based on two 

modes. The first mode, Mode 2.1, utilizes damage distance based on potential 

consequence. Meanwhile, the second mode, Mode 2.2, utilizes inherent risk level along 

with the measure of consequence and its likelihood. Moreover, CO-ISATs can have three 

types of safety constraints from (1) Mode 1: inherent hazard levels via H-ISATs, (2) Mode 

2.1, or (3) Mode 2.2, which are ordered in increasing effort from (1) to (3). The choice 

will depend on the severity of the safety situation.  

According to the above-mentioned points, the detailed analysis for each ISAT will 

be described in the following subsections.  

 

2.5.2. Hazard-based inherent safety assessment tools (H-ISATs) 

This study selected 22 H-ISATs that contains limited but viable information 

applicable during the conceptual design stage. Most of the selected H-ISATs were 

proposed for the safety scope except for two tools (IOHI in Table 2.5 #8, and graphical 

method for inherent occupational health assessment in Table 2.5 #11), which are for 

health. Table 2.5 lists the H-ISATs in chronological order to provide an overview with 
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five primary characteristics: (1) types of H-ISATs, (2) purpose of each tool, (3) computer 

aid, (4) types of chemical component, and (5) process design scopes compared for inherent 

safety levels.  

 

 

Figure 2.6 Distribution of different types among 22 selected H-ISATs 

 

The selected 22 H-ISATs have been characterized into five different types of 

methods (Figure 2.6); index methods were the most commonly proposed methods 

followed by graphical methods, a fuzzy logic method, and a hybrid index plus fuzzy logic 

method.  
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Table 2.5 List of 22 Hazard-based Inherent Safety Assessment Tools (H-ISATs) selected 

No. 
Authors 
(Year) 

H-ISAT 

Remark 
Computer 

aid 

Chemical 
component 

Process design scope compared 
for inherent safety levels 

Name 
Type 

a 
Pure Mixture Route Stream 

Equip-
ment 

etc. 

1 

Edwards and 
Lawrence 
(1993); 

Lawrence 
(1996) 

Prototype Index 
for Inherent 

Safety (PIIS) 
S 

Assessed the inherent 
safety of chemical 
process routes 

       

2 
Heikkilä 
(1999) 

Inherent Safety 
Index (ISI) 

S 

Proposed a practice 
that can be adopted 
quickly by the 
potential practitioners 

       

3 

Palaniappan, 
Srinivasan, 

and Tan 
(2002a); 
(2002b)  

i-Safe  S 

As an extension of 
PIIS ISI, proposed an 
automated tool 
including five 
supplementary 
indices were 
proposed for rigorous 
ranking   

       

4 
Gupta and 
Edwards 
(2003) 

Graphical 
method  

G 

Avoided equalizing 
the same numerical 
value among 
different indicators 

       

5 

Gentile, 
Rogers, and 

Mannan 
(2003); 

Fuzzy logic 
based inherent 
safety index  

F 
Minimized 
uncertainty in scoring 
index with fuzzy 

     
 

Reacto
r 
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No. 
Authors 
(Year) 

H-ISAT 

Remark 
Computer 

aid 

Chemical 
component 

Process design scope compared 
for inherent safety levels 

Name 
Type 

a 
Pure Mixture Route Stream 

Equip-
ment 

etc. 

Gentile 
(2004) 

logic methods, based 
on ISI.  

6 
Leong and 

Shariff 
(2008) 

Inherent Safety 
Index Module 

(ISIM) 
S 

Simplified process 
equipment that have 
unsafe level 
compared to others  

     
 

Reacto
r 

 

7 
Leong and 

Shariff 
(2009) 

Process Route 
Index (PRI)  N 

Estimated the 
outcome of an 
explosion in a non-
scoring system  

       

8 
Hassim and 

Hurme 
(2010a) 

Inherent 
Occupational 
Health Index 

(IOHI)  

N 

Estimated inherent 
occupational health 
hazard using three 
different types of 
index calculations: 
additive-type, 
average-type, and 
worst case-type.  

       

9 
Li et al. 
(2011) 

Enhanced 
Inherent Safety 
Index (EISI) 

S 

Overcame ISI 
limitations—only 
considering 
maximum value for 
indicators and not 
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No. 
Authors 
(Year) 

H-ISAT 

Remark 
Computer 

aid 

Chemical 
component 

Process design scope compared 
for inherent safety levels 

Name 
Type 

a 
Pure Mixture Route Stream 

Equip-
ment 

etc. 

considering 
complexity 

10 
Shariff, 

Leong, and 
Zaini (2012) 

Process Stream 
Index (PSI)  

N 
Compared individual 
streams at one single 
process route  

       

11 
Hassim et al. 

(2013) 

Graphical 
method for 

inherent 
occupational 

health 
assessment  

G 

Developed based on 
IOHI and experts’ 
comments  

       

12 
Gangadhara

n et al. 
(2013) 

Comprehensive 
Inherent Safety 
Index (CISI) 

S 

Proposed a 
connection score 
among process steps 
as an extension of 
EISI 

       

13 
Zaini, Azmi, 
and Leong 

(2014) 

Toxic Release 
Route Index 

(TRRI) 
N 

Compared toxicity 
among multiple 
process routes 

       

14 
Zaini, Azmi, 
and Leong 

(2014) 

Toxic Release 
Stream Index 

(TRSI) 
N 

Compared toxicity 
among all process 
streams in a route 
after estimating TRRI 
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No. 
Authors 
(Year) 

H-ISAT 

Remark 
Computer 

aid 

Chemical 
component 

Process design scope compared 
for inherent safety levels 

Name 
Type 

a 
Pure Mixture Route Stream 

Equip-
ment 

etc. 

15 

Ahmad, 
Hashim, and 

Hassim 
(2014) 

Numerical 
Descriptive 

Inherent Safety 
Technique 
(NuDIST)  

N 

Overcame the 
disadvantages of 
index-based methods 
that evaluated 
inherently safer level 
with discrete safety 
indicators 

       

16 
Ahmad et al. 

(2016) 
NuDIST  

N 

Considered 
flammability limits 
for a mixture 

       

17 

Ahmad, 
Hashim, and 

Hassim 
(2016) 

Graphical and 
Numerical 
Descriptive 

Technique for 
Inherent Safety 

Assessment 
(GRAND)  

2-Diemnsional 
Graphical Rating 

(2DGR)  

G 

Ranked, through 
visualization, 
inherent safety levels  
 
Identified the most 
hazardous chemical  

       

18 
Pasha, Zaini, 
and Shariff 

(2017) 

Inherent Safety 
Index for Shell 
and Tube Heat 

Exchanger 
(ISISTHE) 

N 

Calculated the 
inherent safety level 
of explosion for a 
Shell and Tube Heat 
Exchanger (STHE) 

      
(H/E) 

 



 

35 

 

No. 
Authors 
(Year) 

H-ISAT 

Remark 
Computer 

aid 

Chemical 
component 

Process design scope compared 
for inherent safety levels 

Name 
Type 

a 
Pure Mixture Route Stream 

Equip-
ment 

etc. 

through a similar 
approach of PSI  

19 
Pasha, Zaini, 
and Shariff 

(2017) 

Overall Safety 
Index for Heat 

Exchanger 
Network 

(OSIHEN) 

N 
Considered heat 
exchanger network      

 
(H/E) 

 

20 

Ahmad, 
Hashim, and 

Hassim 
(2017) 

Inherent Safety 
Assessment 

Technique for 
Preliminary 

Design Stage 
(ISAPED) 

N 

Updated a tool as an 
extension of NuDIST 
and GRAND 

       

21 
Song, Yoon, 

and Jang 
(2018) 

Inherent Safety 
Performance 

Indices (ISPI) 
S+F 

Proposed a 
framework based on 
fuzzy logic methods 
with an index method  

       

22 
Athar et al. 

(2019) 

Process Stream 
Characteristic 
Index (PSCI) 

N 

Assessed process 
piping as an 
extension of PSI 

       

a S: Index type in a scoring system, N: Index type in a non-scoring system, G: graph approach, and F: Fuzzy logic approach, H/E: heat 
exchanger   
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59% of the tools in Table 2.5 adopted computer-aided methods to efficiently deal 

with large amounts of data. Prior to utilizing a computer simulator, it has been stated a 

challenge to obtain feasible process data, such as inventory values. In this manner, 

required overall yield was proposed to indirectly quantify the amount of chemicals in a 

process or supplement an inaccurate inventory value (e.g., PIIS, Table 2.5 #1). However, 

enabling practitioners to obtain process data through computer software reduces the time 

and effort required to collect indicator data in a process. For example, integrating data 

between a process simulator (e.g., Aspen Plus or HYSYS) and Visual Basic for 

Application (VBA) language can save significant time and streamline the safety analysis 

process. 

Early H-ISATs calculated inherent safety levels with only pure chemicals, while 

several researchers have considered chemical mixtures since 2009. 

It is worth defining different process scopes—process routes, steps, units, and 

streams—to compare H-ISATs, as authors typically developed their own methods with 

varying definitions. The following selected definitions will help clarify the H-ISATs 

mentioned in Table 2.5: 

 Process route: an overall process compiled of a series of process steps—equipment 

and streams—converting raw materials to a required product and waste via 

intermediate materials (Lawrence, 1996) 

 Process step: a partial process route that can be characterized based on its process 

functions (e.g., reaction steps and distillation trains), which typically includes 

multiple pieces of process equipment 
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 Process unit: defined, according to ISO (2006), as the “smallest element 

considered in the life cycle inventory analysis for which input and output data are 

quantified.” The process unit was referred to as a process step by Palaniappan, 

Srinivasan, and Tan (2002a), whereas Li et al. (2011) and Gangadharan et al. 

(2013) referred to it as process equipment. To avoid confusion, this paper avoids 

usage of the “process unit” term 

 Process stream: referred to as a process pipeline 

 

 

Figure 2.7 Process route configuration with process step (or unit), equipment, and 
stream 

 

Table 2.5 also compared process scopes to estimate inherent safety levels (see 

Figure 2.7). Most of the initial H-ISATs compared multiple process routes to determine 

the safer process routes, while several later H-ISATs compared multiple streams or pieces 

of equipment within a process route to estimate safety levels. Figure 2.8 shows the process 

used in the case studies among 20 H-ISATs. Many authors adopted the same methyl 

Methacrylate process as it was used in the pioneer H-ISAT, PIIS, to have a reference to 

compare with their new method.  
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Figure 2.8 Histogram of process used in the case studies in 22 H-ISATs 

 

All 18 indices in H-ISATs measure an inherent safety level with multiple safety 

indicators that can be classified into two categories: chemical indicators and process 

indicators. Chemical indicators account for the hazard presented by the chemicals in the 

process, while process indicators refer to the hazard presented by the operating conditions 

in the process. However, researchers have not clearly defined the differentiating factors 

between chemical indicators and process indicators. For instance, Edwards and Lawrence 
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(1993) regarded inventory as a chemical indicator, while Heikkilä (1999) regarded it as a 

process indicator. Further, heat of reaction was considered as a chemical indicator by 

Heikkilä (1999), while it was considered as a process indicator by Ahmad et al. (2014). 

This paper will consider whether an indicator is a process or chemical indicator based on 

the majority views among 18 indices. As a result, there were 13 chemical indicators and 7 

process indicators as shown below: 

For the 11 chemical indicators. 

1) Flammability: the tendency of a material to combust in air (Heikkilä, 1999) 

2) Explosiveness: ability to form an explosive mixture with air 

3) Density: used to explain the principle of fluid mechanics that can impact during an 

incident 

4) Lower heat of combustion: measure of energy 

5) Toxicity: property that destroys life or causes injury, measured by the threshold 

limit (or exposure limit or R-phrase for the occupational health hazard in Hassim 

and Hurme (2010a)) 

6) Chemical interaction: consideration of unintended reaction among raw materials, 

intermediates, and byproducts (Palaniappan, Srinivasan, and Tan, 2002b) 

7) Corrosiveness: associated with the reliability and integrity of a chemical plant, as 

corrosion increases the risk of leaks in a process by lessening the strength of an 

equipment material (Heikkilä, 1999) 

8) Material phase (gas, liquid, and solid): related to the way chemicals will be handled 

and exposed (Hassim and Hurme, 2010a). For example, solid processes are likely 
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to be performed manually so that it has more changes to have higher exposure to 

workers 

9) Reactivity: a measure of stability (Palaniappan, Srinivasan, and Tan, 2002a) 

10)  Heat of reaction (heat of main reaction and heat of side reaction): a measure of the 

hazard of the reaction and the possibility to control the reaction 

11)  Viscosity: a measure of the mass of the fluid flow regime inside process piping 

(Athar et al., 2019) 

12)  Volatility: related to inhalation and absorption in terms of occupational health 

hazard. It can be characterized by the vapor pressure or atmospheric boiling point 

in a liquid substance, or by a smaller dusk in a solid substance (Hassim and Hurme, 

2010a) 

13)  Type of reaction: a measure of reactivity to supplement heat of reaction that 

cannot indicate all the reaction characteristic (Song et al., 2018) 

 

For the 7 process indicators (Lawrence, 1996; Heikkilä, 1999). 

1) Temperature: a measure of the thermal energy that cause a fire or an explosion 

(Srinivasan and Nhan, 2008) or of burns to humans (Hassim and Hurme, 

2010a) 

2) Pressure: a measure of the energy present that cause materials to escape from 

the process within a relatively short time 
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3) Inventory: the amount of process material that is closely related to reaction rate 

or conversion in a reactor. Inventory is the key indicator of the inherent safety 

principle, intensification 

4) Type of equipment (ISBL and OSBL): a measure of the possibility that a piece 

of equipment is unsafe 

5) Mode of process: three types of process modes—batch, semi-batch, and 

continuous process—can be related to workplace exposure (Hassim and 

Hurme, 2010a) 

6) Yield: a measure of inventory or flow needed to obtain a required product 

7) Structure: a description of inherent safety associated with the process 

configuration 

 

Figure 2.9 shows the number of indicators used among 18 indices in H-ISATs. In 

terms of the number of indicators, the most used indicator was pressure, followed by 

temperature, explosiveness, and toxicity. On the other hand, some indicators (e.g., 

viscosity, type of equipment, and structure) were used only once. 

Various indices in H-ISATs have been developed with either a scoring system or 

a non-scoring system. Indices in a scoring system grade the indicators depending on their 

scales (Appendix 2A), whereas indices in a non-scoring system utilize the actual indicator 

values in a process without any scoring (Appendix 2B). The two tables rigorously compare 

scores and equations of individual indices based on chemical and process indicators 

mentioned above. 
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Figure 2.9 Histogram of indicators in H-ISATs 

 

Appendix 2A compares 8 indices that score individual indicators via a sub-range 

to calculate total safety scores. Initially, indices in the scoring system served as a yardstick 

that measures inherent safety with possible indicators and their ranges. The range of each 

indicator must be reasonable to effectively compare the indicator among different process 
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routes, steps, units, or streams. Because the calculation approaches are highly dependent 

on the scoring technique, it is imperative to understand the differing guidelines of each 

index. Figure 2.10 represents the origins of the scoring systems among individual 

indicators. Preexisting scoring standards (e.g., Dow F&EI and Mond), adopted by a group 

of authors for one of the indices, are shown by blue colored bars, while authors' own 

discretional choices are shown by yellow-colored bars. The x-axis addresses the number 

of each scoring scale used among 7 indices. The analysis of the results in Figure 2.10 

illustrates that most base standards used were proposed by PIIS and ISI, and these 

standards were reused in other indices. Three new methods were proposed as alternatives 

to scoring-based indices: a fuzzy logic method, non-scoring-based indices, and graphical 

methods. Because each indicator in the scoring-based indices results in subjective ranges 

and discontinuities at the range limits, the alternatives were proposed in an attempt to 

overcome these limitations. First, Gentile et al. (2003) attempted to minimize the 

uncertainty of scaled boundaries with a fuzzy logic method. Second, ten non-scoring-

based indices (Appendix 2B) utilized actual chemical and process condition values for 

each indicator, instead of the value based on a scoring system. For example, operating 

pressure values were exploited in all ten indices in Appendix 2B. Even though Ahmad et 

al. (2014) distinguished their method from a scoring-based index method, NuDIST, which 

is based on statistical analysis, was classified in this paper into a non-scoring index. This 

is because the method is in accordance with our definition of a safety index in Section 2.3. 

Lastly, graphical methods were used in an attempt to visualize an inherent safety level 

instead of showing it with numbers. For example, one graphical method separately plotted 



 

44 

 

five key indicators (temperature, pressure, flammability, explosiveness, and toxicity) 

(Gupta and Edwards, 2003), while another 2-dimensional graphical rating, 2DGR, 

simultaneously plotted the frequency of the most hazardous chemicals with their process 

route and a total safety score for each route (Ahmad et al., 2016a). 
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Figure 2.10 Papers with scoring scales of 8 indices in H-ISATs 

 

2.5.3. Risk-based inherent safety assessment tools (R-ISATs) 

The primary limitations of H-ISATs are the inability to illustrate potential incident 

scenarios and their damage impacts. H-ISATs aggregate multiple indicators for different 

types of hazards, which can be related to potential incidents. However, they do not cover 

the entirety of ISD. 

To resolve these limitations, many researchers have developed R-ISATs, which 

can consider concrete incident scenarios through different approaches in the conceptual 
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design stage. Table 2.9 summarizes 33 selected R-ISATs. Although researchers have 

sought to propose R-ISATs as an easy-to-use method, multiple extra steps are unavoidable 

for R-ISATs in comparison with H-ISATs. For this reason, several frameworks—

including expanded H-ISATs—also were proposed. The column “ISAT used” in Table 

2.9 helps to understand the proposed framework as an extension step of H-ISATs. 

The proposed R-ISATs can be grouped into three types of approaches: (1) 

qualitative-based, (2) index-based, and (3) quantitative-based approaches. The main 

difference among the three approaches is the way the incident scenarios are considered. 

Qualitative approaches depend on the practitioner's creative ideas and knowledge to obtain 

possible scenarios. Thereby, their possible scenarios (e.g., safer process or equipment) are 

enumerated without rigorous numeric values. In contrast, the outcome of quantitative 

approaches is numerically shown in the application of a quantitative risk analysis (QRA). 

During a QRA, a consequence analysis together with its likelihood is carried out to provide 

a measure of risk (AIChE, 2000). Furthermore, index-based approaches follow each 

author's scenarios or concerns through multiple sub-indices. A more detailed comparison 

is shown in Table 2.6. 

 

Table 2.6 Summary of three different approaches in R-ISATs 

 
Qualitative-based 

approaches 
Index-based 
approaches  

Quantitative-based 
approaches  

Basis of 
development  

Brainstorming techniques 
(e.g., HAZOP or 
Checklist)  

 Author’s subjective 
considerations 

QRA 
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Qualitative-based 

approaches 
Index-based 
approaches  

Quantitative-based 
approaches  

Advantages 
Potential to consider all 
hazardous scenarios 

Relatively easy to 
perform  

 Clear approach to 
select the inherent 
safety level or safer 
design among 
alternatives  
 

 More systematic 
approach 

Disadvantages  Essential judgement 
Limited scope for 
the consideration of 
possible scenarios 

Potential to obtain 
enough information in 
the concept design stage 

 

Similar to the conventional distinction between consequence and risk assessment 

tools, R-ISATs are divided into Mode 2.1, referred to as consequence assessment, and 

Mode 2.2, referred to as risk assessment (see Figure 2.5). Figure 2.11 provides the results 

obtained from the analysis of the 33 R-ISATs selected. Various index-based approaches 

have been utilized in Mode 2.1 R-ISATs, while Mode 2.2 is typically associated with 

quantitative-based approaches. This is due to how Mode 2.2 obtains inherent risk as a 

numerical value via possible consequence and its likelihood. Furthermore, it is noted that 

QAISD (Table 2.9 #14) and QI2SD (Table 2.9 #16) were grouped into Mode 2.2 as these 

tools qualitatively take into account the likelihood based on the ISD guideword—

simplicity. Meanwhile, HPS (Table 2.9 #29), which does not include any likelihood 

aspect, was categorized into Mode 2.1. 
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Figure 2.11 The division of R-ISATs into two modes and their approaches 

 

R-ISATs in Mode 2.1 estimates the consequence impact in a selected scenario by 

considering damage distances, human life damages, and structure damages. Because the 

likelihood of possible incidents was not considered in Mode 2.1, the potential damage in 

a worst-cases scenario has been compared among the alternatives. Through this 

comparison, practitioners can determine which process design is safer. 

Mode 2.2 R-ISATs provide the likelihood of possible incidents in detail, except 

for qualitative approaches. Three types of likelihood have been taken into account in a 

scenario to yield an inherent risk as shown in Figure 2.12: (1) initial event likelihood, (2) 

consequence likelihood, and (3) consequence damage likelihood. Fault tree analysis 

(FTA) is often utilized for the initial events, while event tree analysis (ETA) is employed 

for the outcome consequences due to the initial events. Finally, profit functions are for 

consequence damage impacts. Figure 2.12 shows that consequence damage likelihoods 
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are mostly utilized to estimate inherent risk, while initial event likelihoods are the least 

used. 

  

 

Figure 2.12 Three types of likelihoods considered in the quantitative-based and 
index-based Mode 2.2 R-ISATs 

 

Table 2.7 shows the breakdown of R-ISATs in terms of their scopes. Compared to 

health and environment, safety accounts for 67% of all R-ISATs (22/33) and has, 

therefore, been prioritized. However, in order to improve sustainability in chemical plants, 

multiple scopes in 18% R-ISATs have been considered simultaneously. All five studies, 
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including safety, health, and environment, employ index-based approaches to combine 

different scopes after utilizing each sub-index. 

 

Table 2.7 The number of frequency of scopes considered in 33 R-ISATs 

 

The incident scenarios in R-ISATs can be classified into seven events: fire, 

explosion, dispersion of toxic chemicals, or the various combinations of them. Table 2.8 

illustrates the number and frequency of the used scenarios in R-ISATs. In order to suggest 

a more realistic scenario, 46% of studies in the literature rigorously represented all three 

scenarios. As a pioneer, Lawrence (1996) introduced four-factor index without a concrete 

scenario to emphasize the importance of risk assessment in the early design stage 

 

Table 2.8 The number and frequency of the 28 scenario types considered for safety 
scope in R-ISATs 

Scenario 
type 

No 
scenari

o 
Fire 

Explosio
n 

Toxicit
y 

Fire 
+ 

Explosio
n 

Fire 
+ 

Toxicit
y 

Explosio
n 
+ 

Toxicity 

Fire 
+Explosi

on 
+ 

Toxicity
Number 

(Frequenc
y) 

1 
(4%) 

2 
(7%

) 

3 
(11%) 

4 
(14%) 

4 
(14%) 

1 
(4%) 

0 
(0%) 

13 
(46%) 

 

Scope 
considered  

Safety Health Environment 
Safety 

+ 
Health 

Health  
+ Environment 

Safety  
+ Health  

+Environment 

Number 
(Frequency)  

22 
(67%) 

2 
(6%) 

3 
(9%) 

1 
(3%) 

0 
(0%) 

5 
(15%) 
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Several researchers have employed optimization tools to suggest an effective ISD 

solution given multiple aspects to be considered effective. For instance, Patel et al. (2010) 

illustrated the process for obtaining 11 alternative solvents via the optimization-based tool, 

mixture integer non-linear program (MINLP), followed by consequence analysis and 

potential damage distance. Furthermore, Cabezas et al. (1999) optimized possible 

environmental effects. 

Although the layout of a chemical plant is not determined in the conceptual design 

stage, several R-ISATs utilized ISD to propose sound alternatives. For example, in case a 

possible incident occurs, reasonable distances of equipment from an engineering building 

have been illustrated under the given safety criteria (Shariff et al., 2016). 

In the early design stages, there is typically a striking lack of knowledge on lay-

out, plant environment, and distance to residential areas, perhaps, even no idea where the 

plant, if built, will be located. In that case, what remains is in principle the consequence 

part of risk assessment — Mode 2.1 R-ISATs. For that in the first place, data are needed 

on the nature and quantity of the various inventories the plant will have. The reviewed 

Mode 2.1 R-ISATs all require knowledge and effort to calculate potential source terms 

and physical effects, that will impede designers to apply it. 

The main advantage of Mode 2.2 is a well-defined acceptable or tolerable criterion 

that increase the potential for clear decision-making. In case that the inherent risk 

acceptability levels were not below the defined tolerable zone, it is required to find a better 

alternative. For example, Shariff and Zaini (2010) and Shariff and Wahab (2013) proposed 

one alternative that can reduce the potential consequence associated with a column and 
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storage vessel. Pasha et al., (2017) applied two inherently safer design principles-

attenuation and simplification—for alternative designs on heat exchanger networks when 

the basic design did not meet the criterion. For the acceptable/tolerable criteria, “as Low 

as reasonably practicable” (ALARP) principle has been utilized in Mode 2.2 R-ISAT. 

Even though R-ISATs have been developed to overcome the limitations of H-

ISATs, they also have their own notable limitations. First, compared to H-ISATs, R-ISATs 

require additional effort—in terms of time, and safety knowledge (e.g., consequence 

modeling, ETA, FTA, or Probit functions). Second, scenarios considered with R-ISATs 

have inherent uncertainties when compared to conventional risk assessment tools. 

Conventional tools utilize detailed information as they are employed subsequently to 

detailed design. On the other hand, R-ISATs are ideally implemented during the 

conceptual design stage and, as such, can use only limited information available during 

that stage.
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Table 2.9 List of 33 Risk-based Inherent Safety Assessment Tools (R-ISATs) selected 

No. 
Authors 
(Year) 

R-ISAT 
Remark 

H-ISAT 
used 

Mode Scope Likelihood 

Name Type a 2.1 2.2 S H E IL CL DL

1 
Lawrence 

(1996) 
Four-factor 

index 
IN 

Update PIIS based on 
eight experts’ opinions 

         

2 
Cave and 
Edwards 
(1997) 

Environment 
Hazard Index 

(EHI) 
IN 

Assessed the impact of 
hazardous chemicals on 
aquatic and terrestrial 

ecosystem

         

3 
Khan and 

Abbasi 
(1998a) 

Rapid risk 
analysis-based 

design 
(RRABD) 

QN 
Proposed a tool to aid in 
decision-making with a 
scenario-based structure 

         

4 
Khan and 

Abbasi 
(1998b) 

Hazard 
Identification 
and Ranking 

(HIRA) 
 

Fire and 
Explosion 

Damage Index 
(FEDI) 

 
Toxicity 

Damage Index 
(TDI)

IN  
Proposed HIRA including 

two indices: FEDI and 
TDI 
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No. 
Authors 
(Year) 

R-ISAT 
Remark 

H-ISAT 
used 

Mode Scope Likelihood 

Name Type a 2.1 2.2 S H E IL CL DL

5 

Koller, 
Fischer, and 

Hungerbühler 
(1999) 

Assessment of 
environment-, 
health-, and 

safety

IN 
Analyze source and 

starting points of possible 
problems 

  
 

       

6 

Cabezas, 
Bare, and 
Mallick 
(1999) 

WAste 
Reduction 

(WAR) 
algorithm

IN 

utilized conservation 
equation and chemical 
environmental impact 

indices

  
 

    
 

   

7 
Gunasekera 
and Edwards 

(2003) 

Atmospheric 
Hazard Index 

(AHI) 
IN 

Utilized fuzzy set for a 
scaling (weight scheme) to 

incorporate different 5 
categories   

  
 

       

8 

Shah, 
Fischer, and 

Hungerbühler 
(2003);Shah, 
Fischer, and 

Hungerbühler 
(2005) 

Substance, 
Reactivity, 
Equipment 
and Safety-
Technology 
(SREST) 

layer 
assessment 

tool 

IN 

Semi-quantitatively 
likelihood was proposed 

(e.g., Low, medium, high, 
moderate, critical high) 

        
 

 

9 
Shariff et al. 

(2006) 

Integrated 
Risk 

Estimation 
Tool (iRET) 

QN 
selected preliminary 
control room layout 
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No. 
Authors 
(Year) 

R-ISAT 
Remark 

H-ISAT 
used 

Mode Scope Likelihood 

Name Type a 2.1 2.2 S H E IL CL DL

10 
Hassim and 

Edwards 
(2006) 

Process Route 
Healthiness 

Index (PRHI) 
IN 

Quantified health hazards 
for workers 

         

11 

Tugnoli, 
Cozzani, and 

Landucci 
(2007) 

Key 
Performance 

Indicator 
(KPI) 

QN 

defined the potential 
accident scenarios 

associated to each process 
equipment through the 

damage distances 

         

12 
Srinivasan 
and Nhan 

(2008) 

Inherent 
Benign-ness 

Indicator (IBI)
IN 

Quantified hazards, health 
and environmental impact 

of a chemical process 
route based on a statistical 

analysis 

 
 
 

       

13 
Shariff and 

Leong (2009) 

Inherent Risk 
Assessment 

(IRA) 
QN 

Integrated risk 
quantification tool with 
process design simulator  

         

14 
Hassim and 

Hurme 
(2010b) 

Health 
Quotient 

Index (HQI)
IN 

Quantified workers health 
risk from chronic exposure 

         

15 
Patel, Ng, 

and Mannan 
(2010) 

Design tool 
for inherently 
safer solvent 

process

QN 
Determined inherently 

safer solvent incorporating 
an optimization tool 
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No. 
Authors 
(Year) 

R-ISAT 
Remark 

H-ISAT 
used 

Mode Scope Likelihood 

Name Type a 2.1 2.2 S H E IL CL DL

16 
Shariff and 

Zaini (2010) 

TOxic Release 
Consequence 
Analysis Tool 
(TORCAT) 

QN 
Presented an evolution of 

iRET   
   

 
 
 

     

17 
Rusli and 

Shariff 
(2010) 

Qualitative 
Assessment 

for Inherently 
Safer Design 

(QAISD) 

QL 

Prepared work-flow 
diagram including possible 

ISD variables enables 
practitioners 

brainstorming 

   
 

      

18 
Tugnoli et al. 

(2012) 

Inherent 
Safety Key 

Performance 
Indicators (IS-

KPI) 

QN 
As an extension of KPI, 

external threats were 
considered.  

  
 

  
 

   
 

  

19 
Rusli, 

Shariff, and 
Khan (2013) 

Quantitative 
Index of 

Inherently 
Safer Design 

(QI2SD) 
framework 

 
Inherent Risk 

of Design 
Index (IRDI)

IN+QL

Identified risk based on 
two sub-indices, damage 

index (DI) and Likelihood 
index of Hazard Conflicts 

(LIHC) of IRDI   
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No. 
Authors 
(Year) 

R-ISAT 
Remark 

H-ISAT 
used 

Mode Scope Likelihood 

Name Type a 2.1 2.2 S H E IL CL DL

20 
Shariff and 

Wahab 
(2013) 

Inherent Fire 
Consequence 
Estimation 

Tool (IFCET)

QN 
demonstrated its potential 

to minimize the 
consequences of pool fire 

         

21 
Shariff and 

Zaini (2013) 

Toxic Release 
Inherent Risk 
Assessment 
(TRIRA) 

QN 

Demonstrated one of ISD 
principle, attenuation, after 
calculating risk level for a 

selected toxic release 
scenario

         

22 
Rocha-

Valadez et al. 
(2014) 

Inherently 
safer sustained 

casing 
pressure 

testing for 
well integrity 

QN 
Predicted sustained casing 

pressure from early 
pressure buildup 

         

23 

Ordouei, 
Elkamel, and 
Al-Sharrah 

(2014) 

Risk index for 
used in 

conceptual 
design 

IN 
Used incident data for the 
severity and the likelihood 

         

24 

Abidin, 
Rusli, 

Shariff, et al. 
(2016) 

Three-stage 
ISD Matrix 

(TIM) 
QL 

Identified the trade-off 
ISD modification toward 
the risk by combining a 
matrix and guide word 

techniques   
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No. 
Authors 
(Year) 

R-ISAT 
Remark 

H-ISAT 
used 

Mode Scope Likelihood 

Name Type a 2.1 2.2 S H E IL CL DL

25 
Abidin, 

Rusli, Buang, 
et al. (2016) 

A framework 
including TIM 

and HIRA 
IN+QL

Quantified the impact of 
ISD modification 

         

26 
Shariff, 

Wahab, and 
Rusli (2016) 

IFCET QN 
Demonstrated its potential 

to minimize the 
consequences of BLEVE 

         

27 
Jha, Pasha, 
and Zaini 

(2016) 

Enhanced 
Inherent 
Safety 

Intervention 
Framework 
(Enhanced 

ISIF) 

QN 

Proposed a framework that 
can apply inherent safety 

principle by modifying the 
worst stream, selected via 

PRI and PSI  

 PRI 
 PSI 

  
       

 
 
 

28 

Warnasooriya 
and 

Gunasekera 
(2017) 

Inherent 
Chemical 

Process Route 
Index 

(ICPRI) 
 

Environmental 
Toxicity 

Hazard Index 
(ETHI) 

Occupational 
health Hazard 
Index (OhHI)

IN 

Compared routes based on 
inherent safety, health, and 
environmental friendliness 
via weighting scheme 

 

 
 

 PIIS 
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No. 
Authors 
(Year) 

R-ISAT 
Remark 

H-ISAT 
used 

Mode Scope Likelihood 

Name Type a 2.1 2.2 S H E IL CL DL
 

Chemical 
Route Safety 
Index (CRSI)

29 
Pasha, Zaini, 
and Shariff 

(2017) 
IRA QN 

Assessed inherent risk for 
shell and tube heat 
exchanger network 

 ISISTHE 
 OSIHEN 

 
        

30 
Abidin et al. 

(2018) 

Inherent 
Safety 

Benefits Index 
(ISBI) 

IN  
As an extension of TIM, 

quantitively identified the 
benefits of ISD options  

  
 

  
 

 
 

 
 

   

31 
Eljack, Kazi, 
and Kazantzi 

(2019) 

Inherently 
Safer Design 
Tool (i-SDT) 

QN  

Developed a semi-
quantitative safety metric 

that can assess process 
safety based on historical 

incident data. 

         

32 
Athar et al. 

(2019) 

Inherently 
Safer Process 
Piping (ISPP) 

technique 

QN 
Predicted the potential 
damage from a jet fire 

incident 
PSCI         

33 
Ahmad et al. 

(2019) 

Hazard 
Prevention 
Strategies 

(HPS) 

QL 

Proposed a qualitative 
thematic analysis based on 

the extracted data from 
accident databases  

         

S: Safety, H: Health, E: Environment, IL: Initial Likelihood, CL: Consequence Likelihood, DL: Consequence Damage 
Likelihood 
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2.5.4. Cost-optimal inherent safety assessment tools (CO-ISATs) 

This section analyzes CO-ISATs to understand how cost-optimal inherent safety 

solutions are obtained. 

The selected CO-ISATs were developed for the conceptual design stage in the 

same manner as previous ISATs in Sections 2.5.2 Hazard-based inherent safety 

assessment tools (H-ISATs), 2.5.3 Risk-based inherent safety assessment tools (R-ISATs). 

Table 2.12 chronologically lists the selected 18 CO-ISATs to provide an overview with 

four primary characteristics: (1) scopes, (2) ISAT used, (3) safety evaluation modes, and 

(4) decision-making procedures. 

Reviewing used safety tools in CO-ISATs reveals whether the selected CO-ISATs 

were viable in the conceptual design stage. For example, initial CO-ISATs uses SWeHI 

(Table 2.12 #4) and Mond Index (Table 2.12 #5)—which may not be feasible in the 

conceptual design stage (see Section 2.3). That is, these CO-ISATs require additional 

information not available during the conceptual design stage as they were not developed 

based on H-ISATs or R-ISATs. However, these initial attempts at developing CO-ISATs 

(Khan and Amyotte, 2005; Tugnoli et al., 2008) influenced subsequent CO-ISATs. In 

contrast, more recent CO-ISATs have been developed based on H-ISATs (e.g., PRI and 

PSI) and R-ISATs (e.g., FEDI) to address these short-comings. 

 Because the simultaneous evaluation of safety and economy is fundamental in CO-

ISATs, it is essential to comprehend the basis of each evaluation. In terms of safety 

evaluation, this study divides CO-ISATs into three modes depending on the approach to 

account for safety constraints (see Figure 2.5) — Mode 1, Mode 2.1, and Mode 2.2. In 
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Mode 1, safety is taken into account through inherent hazard levels by utilizing one H-

ISAT (e.g., PSI or PRI in Table 2.5). In contrast, Mode 2.1 and Mode 2.2 consider safety 

based on the potential damages and inherent risk levels, respectively. Practitioners can 

utilize one of the three modes depending on the relevancy of each mode's characteristics. 

Table 2.10 summarizes the advantages and disadvantages of each mode of CO-ISATs. 

Furthermore, in terms of economy evaluation, Figure 2.13 represents 19 different types of 

costs considered. It is worth noting that approximately 33% of researchers accounted for 

incident costs (e.g., fatality, injury, environment damages, etc.) along with conventional 

cost evaluations (e.g., ROI, TAC, operating cost, etc.) as the conventional approach is not 

considered sufficient to estimate ISD effects.  

 

Table 2.10 Summary of different safety evaluations in CO-ISATs 

 Mode 1 Mode 2.1 Mode 2.2 

Advantages 

 Easy to perform 
  

 Straight-
forward step 
and results 

 

 Expected incident 
impacts  
 

 Potential to calculate 
incident impacts to 
monetary values 
directly.  

 

 Expected incident 
impacts  
 

 Potential to calculate 
incident impacts to 
monetary values directly 

 
  Results can be 

associated with safety 
policy (e.g., ALARP)  

Disadvantages 

 
 Potential to fail 

possible 
incident 
scenarios  

 

 Required further knowledge (e.g., consequence 
modeling)  

 Complicated calculation steps  
 Reliable incident database for incident scenarios 
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Figure 2.13 The 19 different types of cost considered in the 18 CO-ISATs 

 

Initial attempts required additional information that are unlikely to be available in 

the conceptual design stage. Such information includes vulnerability factors of a specific 

area (Khan et al., 2004), or the cost of an add-on system (Khan and Amyotte, 2004). 

Indirect costs expected the losses arising from business interruptions, insurance, and 

penalties from the authorities, etc. The 12% (2/17) of CO-ISATs accounts for economic 
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aspect along with vulnerability, which is capable of being damaged in the surrounding 

area of the process plant. 

Table 2.11 presents the scope considered in CO-ISATs between safety, health, and 

environment. Similar to R-ISATs, the most considered scope was safety at 44% (8/18) of 

CO-ISATs, followed by the five CO-ISATs in the combination of safety and environment. 

Lastly, four CO–ISATs were able to simultaneously consider the 3 scopes. 

 

Table 2.11 The number and frequency of scopes considered in 18 CO-ISATs 

Note- S: Safety; H: Health; E: Environment 

 

For CO-ISATs, the decision-making tools have been adopted to demonstrate cost 

factors along with safety. The used decision-making procedures in the 15 CO-ISATs are 

divided into the five main categories (Table 2.12): (1) multi-criteria decision-making 

procedure (MCD), (2) multi-objective formulation procedure (MOF), (3) sensitivity 

analysis, (4) index method, and (5) graphical method. 

MCD by itself is not able to establish various solutions (or alternatives) in a single 

run. However, by utilizing a weighting scheme that accounts for the importance of 

individual attributes, MCD is capable of changing a multi-objective problem into a single-

objective problem. For example, Analytical hierarchy process (AHP), which is a type of 

Scope 
considered  

S H E S+H S+E H+E S+ H+E 

Number 
(Frequency)  

8  
(44%) 

0 
(0%) 

1 
(6%) 

0 
(0%) 

5 
(28%) 

0 
(0%) 

4 
(22%) 
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MCD, finds an optimal solution by utilizing weight factors (Khan, Sadiq, and Veitch 2004; 

Khan, Sadiq, and Husain 2002).  

Meanwhile, MOF finds multiple solutions in a single run. For example, Pareto 

front, which is a type of MOFs, presents an array of optimal solutions for multiple 

problems simultaneously. The optimal solution point is then selected using specific 

techniques such as Shannon’s Entropy and Bellman-Zadeh’s techniques (Eini et al. 2018). 

Khan and Abbasi (1997) firstly proposed an index approach to evaluate inherent 

safety along with a cost consideration. The net inherent safety of a selected process is 

calculated with a formulation that combines values obtained from multiple sub-indices.  

Of the multiple sub-indices, an asset density index, which is associated with vulnerability 

of possible incidents, considers economic aspects.  

A graphical approach was adopted to visually compare each alternative (e.g., 

energy, recycle ratio) (Thiruvenkataswamy et al. 2016; Ortiz-Espinoza et al. 2017). 

Sensitivity analysis estimates how different values of an independent variable 

affect a dependent variable. This procedure was utilized with a standalone, MCD, MOF, 

or a graphical approach among the 15 CO-ISATs.  

Around 60% (5/16) of CO-ISATs employ computer-aided software to use their 

tools effectively. Since Medina-Herrera et al. (2014) used Computer-aided Molecular 

Design (CAMD) and MATLAB, all subsequent researchers began utilizing computer-

aided software including process simulators (e.g., Aspen HYSYS and Plus).  
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For reference, even though the optimization of storage vessel layouts is beyond the 

scope of this study, several researchers examined its application during the early design 

stages (de Lira-Flores, Gutiérrez-Antonio, and Vázquez-Román 2018; Bernechea and 

Viger 2013; Bernechea and Arnaldos 2014).  

Table 2.12 shows that CO-ISATs may adopt more enhanced H-ISATs or R-ISATs. 

Some safety tools (e.g., SWeHI or Mond index) used in CO-ISATs may not be feasible in 

the conceptual design stage, as mentioned in Section 2.3. Some of the early ISATs (e.g., 

ISI proposed in 1999) were utilized in some cases. For better decision-making, researchers 

can reconcile a more plausible H-ISATs or R-ISATs when they perform CO-ISATs.   
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Table 2.12 List of 18 Cost-Optimal Inherent Safety Assessment Tools (CO-ISATs) selected 

No. Authors (Year) Remark 
ISAT (or 

safety 
tool) used 

Scope 
Modes used in CO-

ISAT 
Used decision-making 

procedure 
S H E Mode 

1 
Mode 

2.1
Mode 

2.2
MCD MOF IN GA SA 

1 
Khan and Abbasi 

(1997) 

 New tool named 
as Accident 
Hazard Index 
(AHI) 

            

2 
Young, Scharp, and 

Cabezas (2000) 
 Weighting 

scheme  
WAR            

3 
Khan, Sadiq, and 

Husain (2002) 

 New tool named 
as GreenPro-I 

 A holistic and 
integrated 
methodology for 
a cleaner and 
greener process

            

4 
Khan, Sadiq, and 

Veitch (2004) 

 New tool named 
as Life cycle 
indexing system 
(LInX)

            

5 
Khan and Amyotte 

(2004);  

 New tool named 
as Integrated 
Inherent Safety 
Index (I2SI)

SWeHI            
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No. Authors (Year) Remark 
ISAT (or 

safety 
tool) used 

Scope 
Modes used in CO-

ISAT 
Used decision-making 

procedure 
S H E Mode 

1 
Mode 

2.1
Mode 

2.2
MCD MOF IN GA SA 

(Khan and Amyotte 

2005) 

 Similar to the 
HAZOP study 
procedure 

6 
Tugnoli, Santarelli, 

and Cozzani (2008) 

 A specific 
quantitative 
assessment 
procedure with 
normalized 
indicators

Mond 

index 
           

7 
Medina, Arnaldos, 

and Casal (2009) 

 Calculated total 
cost based on the 
cost of equipment 
plus the cost of 
incidents

            

8 
Medina-Herrera et 

al. (2014) 

 Selected safer 
solvent including 
economic 
considerations

            

9 

Medina-Herrera, 

Jiménez-Gutiérrez, 

and Mannan (2014) 

 Selected safer 
distillation 
systems  
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No. Authors (Year) Remark 
ISAT (or 

safety 
tool) used 

Scope 
Modes used in CO-

ISAT 
Used decision-making 

procedure 
S H E Mode 

1 
Mode 

2.1
Mode 

2.2
MCD MOF IN GA SA 

10 Eini et al. (2015)  Optimal decision-
making for 
refrigerant cycles

            

11 
Abidin, Rusli, 

Shariff, et al. (2016) 

 As an extension 
task of TIM, cost 
was estimated  

TIM            

12 

Eini, Shahhosseini, 

Delgarm, et al. 

(2016) and Eini, 

Shahhosseini, 

Javidi, et al. (2016) 

 Considered 
thermo-economic 
analysis along 
with ISD 

            

13 
Thiruvenkataswamy 

et al. (2016) 
 Only considered 
main streams  

FEDI            

14 
Ortiz-Espinoza, 

Jiménez-Gutiérrez, 

 A procedure for 
the inclusion of 
inherent safety, 
economic factors, 

 PRI 
 PSI 
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No. Authors (Year) Remark 
ISAT (or 

safety 
tool) used 

Scope 
Modes used in CO-

ISAT 
Used decision-making 

procedure 
S H E Mode 

1 
Mode 

2.1
Mode 

2.2
MCD MOF IN GA SA 

and El-Halwagi 

(2017) 

and environment 
impact  

15 
Martinez-Gomez et 

al. (2017) 

 Proposed a multi-
objective 
formulation 
approach

            

16 
Guillen-Cuevas et 

al. (2017) 

 New tool named 
as Safety And 
Sustainability 
Weighted Return 
On Investment 
Metric 
(SASWROIM)

 FEDI 
 PRI 

           

17 Eini et al. (2018) 
 Optimal decision-

making for a 
reactor network 
system

            

18 Teh et al. (2019) 

 A systematic tool 
to conduct 
sustainability 
assessment via 
fuzzy 
optimization 

 ISI 
 HQI 
 WAR  
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2.6. Concluding remarks and suggestions 

The primary objective of this chapter was to establish a comprehensive perspective 

of ISATs that can enable process engineers to utilize the principles of inherent safety 

during the conceptual design stage. Therefore, the review focused on various ISATs that 

are potentially viable for including in conceptual design.  

To start with, this review highlighted the fundamentals of safety in Section 2.2 and 

analyzed previous review papers for ISD in Section 2.3. Section 2.2 clarified and 

distinguished the various design stages. Because of the specific nature of conceptual 

design and the limited details available at that stage, it was found that most ISATs are not 

appropriate for immediate adoption by process engineers during conceptual design. 

Section 2.4 described the approach used in selecting and reviewing the literature. In 

Section 2.5, this review study explored viable ISATs that were developed for the 

conceptual design stage. Since safety was prioritized in this study, the selected tools were 

named ISATs. However, various tools for health, environment, and economics — the 

other elements of sustainable process design in CPI — also were taken into account in 

tandem with safety. Reorganizing the ISATs was imperative for deciding purpose and 

categorizing them accordingly. In this study, 73 ISATs were selected, and these tools were 

categorized into three groups: hazard-based inherent safety assessment tools (H-ISATs) 

for 22 tools, risk-based inherent safety assessment tools (R-ISATs) for 33 tools, and cost-

optimal inherent safety assessment tools (CO-ISATs) for 18 tools. The goal of any of these 

ISATs is to discover a safer design and eventually, a more sustainable process design.  

 H-ISATs utilize multiple indicators available in the process design scheme, while 
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R-ISATs estimate potential damages or inherent risk. Furthermore, CO-ISATs account for 

multiple objectives simultaneously — safety and economics with health and/or 

environment as option. This chapter illustrated the necessary measures and goals for each 

ISAT (presented in Figure 2.5) and analyzed the detailed information provided in Section 

2.5. The overall view of 73 ISATs would help practitioners determine the tool that would 

be optimal for them.  

This review attempted to offer a comprehensive overview of ISATs. The review 

also identified that numerous inherent safety tools have been developed with the 

assumption that sufficient process details are available. This is not the case for the 

conceptual design stage during which many of the key design decision are still being made. 

For ISATs to be effectively and efficiently utilized by process engineers, safety 

researchers and engineers should endeavor to develop metrics and tools that are consistent 

with the nature of conceptual design and utilizable by process engineers. On the other 

hand, process engineers should endeavor to apply ISATs and to collaborate with safety 

experts on defining the needs and specifications of such ISATs and the quantification of 

safety features of Intensification, Substitution, Attenuation, and Simplification using 

appropriate level of details available during the conceptual design stage. 

In addition to the aforementioned observations and recommendations, there are 

also needs for more studies in the following areas:   

 

1. ISATs for the offshore industry: Of the 73 ISTATs, only Rocha-Valadez et 

al. (2014) (Table 2.9 #22) suggested an ISAT that could be used in the offshore 
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oil and gas industry. Therefore, further development for the specific case of the 

industry is required.  

2. ISATs utilizing a dynamic simulator to consider abnormal condition: Up 

until now, all simulators used in ISATs have only been for steady-state 

conditions. However, studying abnormal conditions with a dynamic simulator 

would enable process designers to reduce the likelihood of potential adverse 

events, as many incidents occur during abnormal process conditions.  

3. ISATs adopting the integral process design step, process synthesis: In 

general, process designers handle process design via process synthesis —

whose aim is “to optimize the logical structure of chemical process, 

specifically the sequence of step, the choice of chemical employed and the 

source and destination of recycle stream” (Johns 2001; El-Halwagi 2017). In 

other words, rather than compromising feedstock and products, this approach 

seeks an optimal alternative from the given resources.     

4. ISATs for NaTech: The occurrence of natural disasters have increased over 

the last few decades. Due to the intrinsic unpredictable nature of natural threats 

in the CPIs, resulting adverse incidents from natural threats are typically 

difficult to control and will add to the likelihood of an event. Therefore, ISD 

can proactively be applied for these cases. 

5. ISATs for supply chains:  There was a lack of consideration of ISD in the 

context of supply chains. Since numerous incidents have occurred in process 

supply chains, ISD would aid in creating an improved sustainable process 
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system. For example, the safety level and cost benefits can vary depending on 

feedstocks, transported chemicals, or chemical phases. 
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2.7. Appendix 2A Summary of 8 indices using a scoring system in H-ISATs 

Division Indicator Symbol PIIS (1993) ISI (1999) i-Safe (2002) ISIM (2008) 

Chemical indicators 

Flammability ICF 0–4 0–4 0–4 – 

Explosiveness ICE 1–10 0–4 0–4 0–4 

Density ICD – – – – 

Lower heat of 
combustion 

ICH – – – – 

Toxicity ICT 0–8 0–6 0–6 – 

Chemical interaction ICI – 0–4 0–4 – 

Corrosiveness ICC – 0–2 0–2 – 

Material phase ICM – – – – 

Reactivity ICRE – – 0–4 – 

Heat of reaction ICR – 
ICR1: main reaction (0–4) 
ICR2: side reaction (0–4) 

ICR1: main reaction (0–4) 
ICR2: side reaction (0–4) 

 
– 

Viscosity ICV – – – – 

Volatility ICO – – – – 

Type of reaction ICK – – – – 

Total chemical 
indicator 

𝑰𝑪 

𝑰𝑪 𝑰𝑪𝑭 𝑰𝑪𝑬 𝑰𝑪𝑻 𝒎𝒂𝒙 
where IC is the value of the chemical that has the 
highest total chemical score in a process step.  
 

𝑰𝑪 𝑰𝑪𝑭 𝑰𝑪𝑬 𝑰𝑪𝑻 𝒎𝒂𝒙 
𝑰𝑪𝑰 𝑰𝑪𝑪 𝑰𝑪𝑹𝟏 𝑰𝑪𝑹𝟐 

where ICF, ICE, and ICT are the values of the chemical that has 
the highest total chemical score in a process step. 

𝑰𝑪 𝐦𝐚𝐱 𝑰𝑪𝑭 𝑰𝑪𝑬 𝑰𝑪𝑻 𝑰𝑪𝑰 𝑰𝑪𝑪 𝑰𝑪𝑹𝑬 𝑰𝑪𝑹𝟏
𝑰𝑪𝑹𝟐  

where individual indicators are the maximum values for one 
step in a process route for the worst-case. 

– 

Process indicators 

Temperature IPT 0–10 0–4 0–4 0–4 

Pressure IPP 1–10 0–4 0–4 0–4 

Inventory IPI 1–10 0–5 0–5 – 

Type of equipment IPE – – – – 

 ISBL IPE1 – 0–4 0–4 – 

 OSBL IPE2 – 0–3 0–3 – 

Yield IPY 1–10 – – – 

Process modes IPM – – – – 

Structure IPS – 0–5 – – 

Total process 
indicator 

 𝑰𝑷 
𝑰𝑷 𝒎𝒂𝒙 𝑰𝑷𝑻 𝑰𝑷𝑷 𝑰𝑷𝑰 𝑰𝑷𝒀  

where IP is the sum of maximum individual indicators 
from the same process steps as Ic. 

𝑰𝑷 𝒎𝒂𝒙 𝑰𝑷𝑻 𝑰𝑷𝑷 𝑰𝑷𝑰 𝑰𝑷𝑬 𝑰𝑷𝑺  
where IP is the sum of maximum individual indicators from 
the same process step as Ic. 

𝑰𝑷 𝒎𝒂𝒙 𝑰𝑷𝑻 𝑰𝑷𝑷 𝑰𝑷𝑬𝟏 𝑰𝑷𝒀) 
where IP is the sum of maximum individual indicators from 

the same process step as Ic. 
– 

Total hazard score  𝑰𝒕𝒐𝒕𝒂𝒍 
𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝑪

𝒏

𝒊

𝑰𝑷  

where n is the number of process steps. 

𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝑪

𝒏

𝒊

𝑰𝑷  

where n is the number of process steps. 

𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝑪

𝒏

𝒊

𝑰𝑷  

where n is the number of process steps. 

– 
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Division Indicator Symbol IOHI (2010) EISI (2011) CISI (2013)  

Chemical indicators 

Flammability ICF – 0–4 0–4 

Explosiveness ICE – 0–4 0–4 

Density ICD – – – 

Lower heat of 
combustion 

ICH – – – 

Toxicity ICT ICT1 based on OEL0–4 / ICT2 R-phrase: 0–5 0–6 0–6 

Chemical 
interaction 

ICI – 0–4 0–4 

Corrosiveness ICC 0–2 0–2 0–2 

Material phase ICM 1–3 – – 

Reactivity ICRE – – – 

Heat of reaction ICR – – – 

Viscosity ICV – – – 

Volatility ICO 0–3  – – 

Type of reaction ICK – – – 

Total chemical 
indicator 

𝑰𝑪 
𝑰𝑪 𝒎𝒂𝒙 𝑰𝑪𝑻𝟏 𝑰𝑪𝑻𝟐 𝑰𝑪𝑪 𝑰𝑪𝑴 𝑰𝑪𝑶

𝒏

𝒊

 

where n is the number of steps  

𝑰𝑪 𝑰𝑪𝑭𝒊 𝑰𝑪𝑬𝒊 𝑰𝑪𝑻𝒊 𝑰𝑪𝑰𝒊 𝑰𝑪𝑪𝒊

𝒏

𝒊

𝒇𝒍𝒐𝒘 𝒓𝒂𝒕𝒆 𝒊 

where n is the number of chemicals in a process route. 

𝑰𝑪 𝑰𝑪𝑭𝒊 𝑰𝑪𝑬𝒊 𝑰𝑪𝑻𝒊 𝑰𝑪𝑪𝒊 𝒇𝒍𝒐𝒘 𝒓𝒂𝒕𝒆 𝒊

𝒏

𝒊

𝑰𝑪𝑰 𝒕𝒐𝒕𝒂𝒍 𝒇𝒍𝒐𝒘 𝒓𝒂𝒕𝒆  
where n is the number of chemicals in a process route.  

Process indicators 

Temperature IPT 0–3 0–4 0–4 

Pressure IPP 0–3 0–4 0–4 

Inventory IPI – 0–5 0–5 

Type of equipment IPE – – – 

 ISBL IPE1 – 0–4 0–4 

 OSBL IPE2 – 0–3 – 

Yield IPY – – – 

Process modes IPM 1–3 – – 

Structure IPS – 0–5 – 

Total process 
indicator 

 𝑰𝑷 
𝑰𝑷 𝑰𝑷𝑻  𝑰𝑷𝑷 𝑰𝑷𝑴

𝒏

𝒊

 

where n is the number of steps  

𝑰𝑷 𝑰𝑷𝑻𝒊 𝑰𝑷𝑷𝒊 𝑰𝑷𝑰𝒊 𝑰𝑷𝑬𝟏𝒊 𝑰𝑷𝑬𝟐𝒊 𝑰𝑷𝑺𝒊

𝒏

𝒊

𝑵𝒐. 𝒐𝒇 𝒊 

where n is the number of equipment types in a process route. 

𝑰𝑷 𝑰𝑷𝑻𝒊 𝑰𝑷𝑷𝒊 𝑰𝑷𝑰𝒊 𝑰𝑷𝑬𝒊

𝒏

𝒊

𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝒔𝒄𝒐𝒓𝒆 

where n is the number of equipment in a process route. 

Total hazard score   𝑰𝒕𝒐𝒕𝒂𝒍 𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝒄 𝑰𝑷 𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝒄 𝑰𝑷 𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝒄 𝑰𝑷 
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Division Indicator Symbol ISPI (2018) 

Chemical indicators 

Flammability ICF 1–5 

Explosiveness ICE 1–10 

Density ICD – 

Lower heat of 
combustion 

ICH – 

Toxicity ICT 1–9 

Chemical 
interaction 

ICI – 

Corrosiveness ICC – 

Material phase ICM – 

Reactivity ICRE – 

Heat of reaction ICR 1–5 

Viscosity ICV – 

Volatility ICO – 

Type of reaction ICK 0.2–1 

Total chemical 
indicator 

𝑰𝑪 
𝑰𝑪 𝒎𝒂𝒙 𝑰𝑪𝑭 𝑰𝑪𝑬 𝑰𝑪𝑻 𝑰𝑪𝑹 𝑰𝑪𝑲  

where ICF, ICE, and ICT are the values of the chemical that has the highest total 
chemical score in a process step. 

Process indicators 

Temperature IPT 1–5 

Pressure IPP 1–5 

Inventory IPI 1–6 

Type of equipment IPE – 

 ISBL IPE1 0.1–1 

 OSBL IPE2 – 

Process modes IPM – 

Yield IPY – 

Structure IPS – 

Total process 
indicator 

 𝑰𝑷 
𝑰𝑷 𝒎𝒂𝒙 𝑰𝑷𝑻 𝑰𝑷𝑷 𝑰𝑷𝑰 𝑰𝑷𝑬 

where IP is the sum of maximum individual indicators from the same process 
step as Ic. 

Total hazard score   𝑰𝒕𝒐𝒕𝒂𝒍 
𝑰𝑻𝒐𝒕𝒂𝒍 𝐼 𝐼 𝑰𝑺,𝒎𝒂𝒙 

where n is the number of streams or equipment, and𝑰𝑺 is the supplement 
indicators of safeness, complexity, and operability.  
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2.8. Appendix 2B Summary of 10 indices using a non-scoring system in H-ISATs 

Division Indicator Symbol PRI (2009) PSI (2012) TRRI (2014) TRSI (2014) 

Chemical 
indicators 

Flammability ICF – – – – 

Explosiveness ICE 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 UFL  – LFL % 
UFL – LFL % 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

UFL – LFL % 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 – – 

Density ICD 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑘𝑔/𝑚  
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑘𝑔/𝑚 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑘𝑔/𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑘𝑔/𝑚  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑘𝑔/𝑚 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑘𝑔/𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

 

Lower heat of 
combustion 

ICH 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑘𝐽/𝑘𝑔  
𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑘𝐽/𝑘𝑔 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑘𝐽/𝑘𝑔 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 – – 

Toxicity ICT – – 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑝𝑝𝑚  
𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑝𝑝𝑚 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑝𝑝𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 

Chemical 
interaction 

ICI – – – – 

Corrosiveness ICC – – – – 

Material phase ICM – – – – 

Reactivity ICRE – – – – 

Heat of reaction ICR – – – – 

Viscosity ICV – – – – 

Volatility ICO – – – – 

Type of reaction ICK – – – – 

Process 
indicators 

Temperature IPT 
Used for the calculation of 

UFL  and LFL  
Used for the calculation of UFL and LFL  – – 

Pressure IPP 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑏𝑎𝑟  
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑏𝑎𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑏𝑎𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑏𝑎𝑟  

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑏𝑎𝑟  𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑏𝑎𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

 

Inventory IPI – – – – 

Type of equipment IPE – – – – 

 ISBL IPE1 – – – – 

 OSBL IPE2 – – – – 

Process modes IPM – – – – 

Yield IPY – – – – 

Structure IPS – – – – 

Total hazard 
score 

 𝑰𝒕𝒐𝒕𝒂𝒍 𝑰𝑻𝒐𝒕𝒂𝒍
𝑰𝑪𝑬 𝑰𝑪𝑫 𝑰𝑪𝑯 𝑰𝑷𝑷

𝟏𝟎𝟖  
𝑰𝒕𝒐𝒕𝒂𝒍 𝑨𝟎 𝑰𝑪𝑬 𝑰𝑪𝑫 𝑰𝑪𝑯 𝑰𝑷𝑷  

where 𝐴  is a magnifying factor. 𝑨𝟎 𝟏𝟎 was used 
for the case study.  

𝑰𝑻𝒐𝒕𝒂𝒍 𝑨𝟎 𝑰𝑪𝑫 𝑰𝑪𝑻 𝑰𝑷𝑷  
where 𝐴  is a magnifying factor 

𝑰𝒕𝒐𝒕𝒂𝒍 𝑨𝟎  𝑰𝑪𝑫 𝑰𝑪𝑯 𝑰𝑷𝑷  
where 𝐴  is a magnifying factor. 
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Division Indicator Symbol TRSI (2014) NuDIST (2014;2016) ISAPED (2017) 

Chemical 
indicators 

Flammability ICF – 100 1
1

1 3.03𝑒 . where, 𝑥 𝑖𝑠 𝑎 𝑓𝑙𝑎𝑠ℎ 𝑝𝑜𝑖𝑛𝑡  
100 1

1
1 3.03𝑒 .  

where, 𝑥 is a flash point 

Explosiveness ICE – 100
1

1 1096.63𝑒 . 𝑤ℎ𝑒𝑟𝑒, 𝑥 𝑖𝑠 UFL – LFL % 
100

1
1 1096.63𝑒 .  

where 𝑥 𝑖𝑠 UFL  – LFL %

Density ICD 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑘𝑔/𝑚  𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑘𝑔/𝑚  𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 – – 

Lower heat of 
combustion 

ICH – – – 

Toxicity ICT 
𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑝𝑝𝑚  𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑝𝑝𝑚  𝑜𝑓𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 

100 1
1

1 403.4288𝑒 .  

𝑤ℎ𝑒𝑟𝑒𝑟 𝑖𝑠 TLV STEL short term exposure limit

100 1
1

1 403.4288𝑒 .  

𝑤ℎ𝑒𝑟𝑒𝑟 𝑖𝑠 TLV STEL short term exposure limit
Chemical 
interaction 

ICI – – – 

Corrosiveness ICC – – – 

Material phase ICM – – – 

Reactivity ICRE – 100
1

1 207.43𝑒 . where 𝑥 is the NFPA reactivity rating – 

Heat of reaction ICR – 
100

1
1 601.85𝑒 . 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑡 𝑜𝑓 𝑒𝑛𝑑𝑜𝑡𝑒𝑟𝑚𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 

100
1

1 403.43𝑒 . 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑡 𝑜𝑓 𝑒𝑥𝑜𝑡ℎ𝑒𝑟𝑚𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 
– 

Viscosity ICV – – – 

Volatility ICO – – – 

Type of reaction ICK – – – 

Process 
indicators 

Temperature IPT – 

100
1

1 403.43𝑒 .  

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑏𝑜𝑣𝑒 25℃   

100 1
1

1 0.0025𝑒 .  

where 𝑥 is the temperature below 25℃

100
1

1 403.43𝑒 .  

𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑏𝑜𝑣𝑒 25℃ 

100 1
1

1 0.0025𝑒 .  

where 𝑥 is the temperature below 25℃

Pressure IPP 
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑏𝑎𝑟  𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑏𝑎𝑟  𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 100

1
1 148.41𝑒 .  

𝑤ℎ𝑒𝑟𝑒 𝑥 is the operating pressure bar

100
1

1 148.41𝑒 .  

where 𝑥 is the operating pressure bar

Inventory IPI – 100 1
1

1 1339.43𝑒 . where 𝑥 is the percentage yield. – 

Type of 
equipment 

IPE – – – 

 ISBL IPE1 – – – 

 OSBL IPE2 – – – 

Process modes IPM – – – 

Yield IPY – – – 

Structure IPS – – – 

Total hazard 
score  𝑰𝒕𝒐𝒕𝒂𝒍 

𝑰𝒕𝒐𝒕𝒂𝒍 𝑨𝟎 𝑰𝑪𝑫 𝑰𝑪𝑯 𝑰𝑷𝑷  
where 𝐴  is a magnifying factor. 

𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝑪𝑭 𝑰𝑪𝑬 𝑰𝑪𝑻 𝑰𝑪𝑹𝑬 𝑰𝑪𝑹 𝑰𝑷𝑻 𝑰𝑷𝑷 
where each indicator uses the maximum value. 

𝑰𝑻𝒐𝒕𝒂𝒍 𝑰𝑪𝑭 𝑰𝑪𝑬 𝑰𝑪𝑻 𝑰𝑷𝑻 𝑰𝑷𝑷 
where each indicator uses the maximum value. 
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Division Indicator Symbol ISISTHE (2017) OSIHEN (2017) PSCI (2019) 

Chemical 
indicators 

Flammability ICF – – – 

Explosiveness ICE 
UFL  – LFL % 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑇𝐻𝐸

UFL  – LFL % 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠
 

UFL – LFL % 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑇𝐻𝐸
UFL – LFL % 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠

 
UFL  – LFL % 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

UFL  – LFL % 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 

Density ICD – – 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑘𝑔/𝑚 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑘𝑔/𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 

Lower heat of 
combustion 

ICH 
𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑘𝐽/𝑘𝑔  𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑇𝐻𝐸

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔  𝑘𝐽/𝑘𝑔  𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠
 

𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑘𝐽/𝑘𝑔 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑐 𝑆𝑇𝐻𝐸
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑘𝐽/𝑘𝑔 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠

 
𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑘𝐽/𝑘𝑔 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑘𝐽/𝑘𝑔 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 

Toxicity ICT – – – 

Chemical 
interaction 

ICI – – – 

Corrosiveness ICC – – – 

Material phase ICM – – – 

Reactivity ICRE – – – 

Heat of reaction ICR – – – 

Viscosity ICV – – 
𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦  𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 

Volatility ICO – – – 

Type of reaction ICK – – – 

Process 
indicators 

Temperature IPT 
𝐶𝑀𝑇𝐷  𝐶  𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑇𝐻𝐸

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑀𝑇𝐷  𝐶 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠
 

where CMTD is corrected mean temperature difference

𝐶𝑀𝑇𝐷 𝐶 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑇𝐻𝐸
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑀𝑇𝐷 𝐶 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠

 

where CMTD is corrected mean temperature difference 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  𝐶 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

 

Pressure IPP 
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑘𝑃𝑎 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑇𝐻𝐸

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑘𝑃𝑎 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠
 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑘𝑃𝑎 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑇𝐻𝐸
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑘𝑃𝑎 𝑜𝑓 𝑎𝑙𝑙 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑠

 
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑏𝑎𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑎𝑚

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑏𝑎𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠
 

Inventory IPI – – – 

Type of 
equipment 

IPE – – – 

 ISBL IPE1 – – – 

 OSBL IPE2 – – – 

Process modes IPM – – – 

Yield IPY – – – 

Structure IPS – – – 

Total 
hazard 
score 

 𝑰𝒕𝒐𝒕𝒂𝒍 𝑰𝒕𝒐𝒕𝒂𝒍 𝑰𝑪𝑬 𝑰𝑪𝑯 𝑰𝑪𝑻 𝑰𝑷𝑷 
𝑰𝒕𝒐𝒕𝒂𝒍 𝑰𝑪𝑬 𝑰𝑪𝑯 𝑰𝑪𝑻 𝑰𝑷𝑷 𝒊

𝒏

𝒊

 

where i is a specific STHE and n is the number of STHE 

𝑰𝒕𝒐𝒕𝒂𝒍 𝑨𝟎  𝑰𝑪𝑬 𝑰𝑪𝑫 𝑰𝑪𝑯 𝑰𝑪𝑽 𝑰𝑷𝑻 𝑰𝑷𝑷  
 

where 𝐴  is a magnifying factor.  
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3. WHAT CAN THE TROVE OF THE INCIDENT INVESTIGATIONS TEACH US? 

A DETAILED ANALYSIS OF INFORMATION CHARACTERISTICS AMONG 

CHEMICAL PROCESS INCIDENTS INVESTIGATED BY THE CSB3 

 

Understanding the commonalities among previous chemical process incidents can 

help mitigate recurring incidents in the chemical process industry and will be useful 

background knowledge for process designers intending to foster inherent safety. The U.S. 

Chemical Safety and Hazard Investigation Board (CSB) reports provide detailed and vital 

incident information that can be used to identify possible commonalities. This chapter 

aims to develop a systematic approach for extracting data from the CSB reports with the 

objective of establishing these commonalities. Data were extracted based on three 

categories: attributed incident causes, scenarios, and consequences. Seventeen causal 

factors were classified as chemical indicators or process indicators. Twelve chemical 

indicators are associated with the hazards of the chemicals involved in the incidents, 

whereas five process indicators account for the hazards presented by process conditions at 

the time of the incident. Seven scenario factors represent incident sequences, equipment 

types, operating modes, process units, domino effects, detonation likelihood for explosion 

incidents, and population densities. Finally, three consequence factors were selected based 

on types of chemical incidents, casualties, population densities, and economic losses. Data 

 

3 Reprinted with permission from “What can the trove of CSB incident investigations teach us? A detailed 
analysis of information characteristics among chemical process incidents investigated by the CSB” by Park, 
S., Mendez, E., Bailey, J. P., Rogers, W., Pasman, H. J., & El-Halwagi, M. M. 2021, Journal of Loss 
Prevention in the Process Industries, 69, 104389, Copyright [2021] by Elsevier Ltd. All rights reserved. 
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from 87 CSB reports covering 94 incidents were extracted and analyzed according to the 

proposed approach. Based on these findings, this chapter proposes guidelines for future 

collection of information to provide valuable resources for prediction and risk reduction 

of future incidents. 

 

3.1. Introduction 

Past chemical process incidents can hold insights into systematic failure of certain 

safety policies, methodological approaches, or hardware in the process industry. 

Extracting the commonalities in previous incidents may enable us to proactively reduce 

the likelihood of similar incidents in the process industry from occurring. The U.S. 

Chemical Safety and Hazard Investigation Board (CSB) investigation reports are a 

noteworthy resource due to their detailed incident information. Established by the Clean 

Air Act Amendments in 1990, the CSB is responsible for determining the root and 

contributing causes of an incident, issuing safety recommendations, studying chemical 

safety issues, and evaluating the effectiveness of other government agencies involved in 

chemical safety. Since 1998, the CSB has investigated chemical incidents that primarily 

occurred at land-based U.S. industrial facilities, and it has produced detailed reports for 

each investigated incident. Because of each committee's differences in developing a CSB 

report, there have been variabilities in the way information is provided in these reports. 

Such variabilities hamper the establishment of consistent predictive and preventive 

analyses. However, most CSB reports adhere to specific safety standards or guidelines and 

have consequently provided a base level of consistent information. Along with incident 
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causes and consequences, the reports covered whether Process Safety Management (PSM) 

was applied according to the 1992 Occupational Safety and Health Administration PSM 

Rule (OSHA, 1992) in plant, whether the Process Hazard Analysis (PHA) contained in 

the PSM was performed, and recommendations related to PSM were followed. A company 

must apply the PSM standard if it occupies a flammable chemical category (Category 1) 

or if it meets a threshold working quantity for 137 highly toxic and reactive chemicals 

specified by the Occupational Safety and Health Administration, OSHA (2020a). It should 

be emphasized that a number of CSB reports also included other detailed information such 

as incident scenarios and process conditions.  

Several researchers have attempted to consolidate and categorized the CSB reports 

but at a high abstraction level. Most of them analyzed CSB reports based on PSM, PHA, 

and recommendations made to each incident facility. For example, Kaszniak (2010) 

analyzed 21 CSB reports to examine the problems related to PHA, one of the PSM 

elements. Amyotte et al. (2011) analyzed 63 CSB reports and bulletins that mainly 

concerned inherent safety principles and the hierarchy of controls along with PSM 

elements. Baybutt (2016) reviewed 64 CSB reports to identify the top contributing factors 

that were mainly related to PSM elements. 

Nevertheless, an unanswered question remains whether the CSB reports can also 

sufficiently provide lower-level information such as chemical types involved and process 

conditions. In particular, since such lower-level information has been deemed key factor 

in seeking inherently safer design (ISD), the information would help further develop the 

ISD strategy; ISD aims to proactively eliminate hazards or risks and is one of the most 
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effective risk reduction strategies (Park et al., 2020). To check the presence of lower-level 

information in CSB reports, CSB reports are analyzed in more detail.  

In this chapter, Section 3.2 describes the objective in detail. In Section 3.3, the 

methodology used is described, and in Section 3.4, the results are presented. Finally, 

conclusions are summarized, and future work is indicated in Section 3.5. 

 

3.2. Objective and approach of this chapter 

As mentioned, this chapter analyzes CSB reports at a more granular level of detail 

than previously published. The main purpose is to check whether useful information can 

be obtained in the form of commonalities in incident contributing factors to take ISD into 

account. On the basis of the former analysis, this study also checks the data availability of 

the chemical properties associated with the chemicals in the CSB reports; the data is 

obtained from the publicly available databases. Up to July 20, 2020, the CSB has 

investigated 94 incidents that occurred in the U.S., mainly at onshore facilities. The full 

list of those incidents is given in the Appendix 3A. 

To date, there has been no publicly available systematic study to identify the 

commonality of process incident characterizing factors that can be extracted from the 

given incident scenario and other information in the CSB reports. The reason for this lack 

of effort is likely associated with the difficulty in utilizing information from inconsistently 

formatted CSB reports. The lack of consistency poses a significant challenge in obtaining 

and comparing process conditions that, if available, were often referred to in different 

units. In addition, information related to incident scenarios were not methodically 
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described. Hence, additional effort is required to categorize the scenario characteristics 

described in the CSB reports. 

 

3.3. Method 

This section outlines our method of collecting incident data on multiple 

characterizing factors in CSB reports and additional external sources in order to shed more 

light on understanding these chemical process incidents (furthermore briefly referred to as 

‘chemical incidents’). The conceptual flow diagram for this method is illustrated in Figure 

3.1. As mentioned in Section 3.1, the chemical incident data obtained from CSB reports 

have no standard format; however, various incident data can be consistently collected 

based on three groups of factors: (1) factors related to incident causes, (2) factors related 

to incident scenarios, and (3) factors related to incident consequences. Generally, a 

hazardous chemical can trigger a chemical incident after leaking/being released from some 

process equipment. Hence, the knowledge associated with chemical properties at a 

specific process condition is essential to understanding the causes of chemical incidents. 

The data for scenario factors is also reviewed to understand the connection between 

incident causes and consequences. In the last step, this method evaluates data for 

consequence factors from CSB reports and external sources.  
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Figure 3.1 Flow diagram of the proposed method. 

 

3.3.1. Step 1: factors related to chemical incident causes 

Causal factors were divided into two groups – chemical indicators and process 

indicators. Chemical indicators are associated with the hazards of the chemicals involved 

in incidents, whereas process indicators are associated with process conditions when an 

incident occurs (Park et al., 2020). As shown in Table 3.1, 17 causal indicators (twelve 

chemical and five process indicators) were selected in this study because they have been 

often used in previous studies as safety indicators (Park et al., 2020). 
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Table 3.1 List of selected 17 causal factors in two groups: chemical and process 
indicators 

12 Types of Chemical Indicators 5 Types of Process Indicators 

 Chemical involved 

 Molecular weight  

 Flashpoint 

 Autoignition temperature  

 Boiling temperature  

 Flammability limit: Upper 

Flammability Limit (UFL) - 

Lower Flammability Limit 

(LFL)  

 Vapor specific gravity  

 Toxicity— life-threatening 

health effect level of Protective 

Action Criteria for chemicals 

(PAC-3) a  

 NFPA 704 standard: Reactive 

ratings 

 NFPA 704 standard: Special 

properties  

 Heat of combustion 

 Dust relevancy   

 Quantity of chemical 

(inventory)  

 Incident pressure  

 Incident temperature  

 Relevancy of vacuum   

 Equipment type 

a Toxic chemical exposure causing acute effects requires prompt action (Handbook, 
2016). For the 60-minute health effect criteria, PAC-3 is preferred because it provides 
sufficient data, compared to AEGL-3, ERPG-3, and TEEL-3 concentration; for 
definitions, see https://edms.energy.gov/pac/TeelDef).  
 

3.3.1.1. Collecting data associated with chemical indicators 

The 12 chemical property values were collected from various references. First, 

data of chemical involved (type) and dust relevancy was gathered based on the CSB 
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reports' descriptions. Except for the special case CSB reports remarked, data of molecular 

weight, boiling point, flashpoint, autoignition temperature, the heat of combustion, upper 

flammability limit (UFL), and lower flammability limit (LFL) was obtained from Yaw's 

Chemical Properties Handbook (1999), DIPPR (2019), NIST (2020), or numerous 

Material Safety Data Sheets (MSDSs). The data of toxicity criteria, PAC-3, was collected 

from the U.S. Department of Energy (2020). Lastly, standard reactive rating and special 

properties were gathered from NFPA 704 (2017). 

For chemical mixtures, the following guideline was created to prioritize what 

chemical property (i.e., chemical indicators) data should be collected. 

1. If the CSB reports assumed there was a principal chemical that was the main 

contributor to the incident, then select that chemical and add its chemical 

properties. 

2. If the CSB reports did not specify a principal chemical but included the chemical 

composition of a mixture, then calculate the mixture's UFL and LFL via the 

approximate Equations (1) and (2), respectively. 

3. If not all the flammability limits or other properties of the mixture constituents 

were known, then select the severest of the constituents' present — the widest 

range of explosive limits, the heaviest molecular weight, lowest autoignition 

temperature, lowest boiling temperature, highest vapor specific gravity, lowest 

toxicity value, highest reactive rating in NFPA 704 standard, and highest heat of 

combustion. 
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𝑼𝑭𝑳𝒎𝒊𝒙  𝟏

∑
𝒚𝒊

𝑼𝑭𝑳𝒊
𝒏
𝒊 𝟏

                              Equation 3.1 

where 

𝑼𝑭𝑳𝒊 is the upper flammability limit (in volume %) of chemical 𝒊 in fuel and air 

(vapor mixture),  

𝒚𝒊 is the mole fraction of chemical 𝒊, and  

𝒏 is the number of combustible chemical species in a vapor mixture (Crowl & 

Louvar, 2001). 

Similarly,  

𝑳𝑭𝑳𝒎𝒊𝒙  𝟏

∑
𝒚𝒊

𝑳𝑭𝑳𝒊
𝒏
𝒊 𝟏

                            Equation 3.2 

where 

 𝑳𝑭𝑳𝒊 is the lower flammability limit (in volume %) of chemical 𝒊 in fuel and air 

(vapor mixture).  

 

Nevertheless, uncertainties of all selected property values implicitly remained. 

These values were determined by methods differing in detail, while the mixture relations 

were also approximations. Moreover, not all CSB reports did provide the specific chemical 

compositions involved. 

 

3.3.1.2. Collecting data associated with process indicators 

This section reviews the availability of information regarding the amounts of the 

chemicals involved in chemical incidents. 
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Because different types of units (i.e., mass, volume, mass flowrate, and volumetric 

units) were used in the CSB reports to characterize quantities, we converted all quantities 

into a mass unit (Figure 3.2). Of various units representing chemical quantities, a mass 

unit was preferred because mass units are comparable regardless of process conditions. 

To convert volume units, standard densities were employed; the densities at 25 °C if 

available (otherwise, either 15 °C or 20 °C) were used. A fixed chemical release time of 

30 min was adopted for mass flowrate units if there was no estimated release time in the 

CSB reports. Regarding volumetric flowrate units, a 30-min release time and density at 

standard conditions were used together. 

 

 

Figure 3.2 Consolidating the units for chemical quantities into mass units 

 

If a chemical involved was not remarked in the CSB reports, it was impossible to 

convert a given quantity expressed in volume or volumetric flowrate units because the 
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appropriate chemical density was not selected. Meanwhile, when the quantity was not 

reported, an alternative was proposed to estimate the value in this study. For instance, in 

the case of an explosion, it was possible to utilize the equivalent TNT mass method to 

estimate the quantity of chemical involved (Equation 3.3). For estimating the quantity, the 

blast strength of an explosion was measured via a function of distance from the farthest 

damage point to the chemical source. The overpressure for calculating the TNT method 

can be assessed through an incident aftermath photo in a CSB report. 

 

𝒎𝑻𝑵𝑻  𝜼𝒎𝚫𝑯𝒄

𝑬𝑻𝑵𝑻
                                            Equation 3.3 

 where 

 𝒎𝑻𝑵𝑻 is the equivalent mass of TNT (mass),  

𝜼 is the empirical explosion efficiency (unitless number varying between 1% 

and 10%). The value of 1% was adopted to consider maximum chemical 

amount),  

𝚫𝑯𝒄 is the energy of explosion of the flammable gas (energy/mass), and 

𝑬𝑻𝑵𝑻 is the energy of explosion of TNT (Crowl & Louvar, 2001). 

 

Regarding process pressure and temperature values, process conditions at the time of 

each incident were considered instead of normal operating conditions. This is because 

some incidents occur outside of normal operating conditions (e.g., while shutting down or 

maintenance). Hence, the pressure and temperature of an incident can differ from values 
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at normal operating conditions. When the CSB reports merely indicated that an incident 

occurred at the atmospheric conditions but without a specific statement, the pressure and 

temperature at the time of the incident were chosen as 1 atm and 25 °C, respectively. 

In the case that CSB reports did not state a specific value for vacuum pressure, we 

separately checked the information on processes that were operated under the vacuum 

conditions. 

In agreement with the CCPS (1998) categories, ten types of equipment were 

considered to systematically cover all types of equipment in the chemical industry. 

Appendix 3B in Appendix lists the ten types and the detail subtypes for each equipment 

type. 

 

3.3.2. Step 2: factors related to chemical incident scenarios 

For incident scenario factors, the following seven factors were assessed: successive 

incident types, equipment types, operating modes, process units, domino effects, 

detonation relevancy of explosion incidents, and population densities (as indicated earlier 

in Figure 3.1) 

 An incident, e.g., an explosion, may be followed by a fire or a toxic release from 

the same affected part of the plant. Therefore, successive incidents — an initial incident 

and its following incidents — were explored. Here is not meant so-called domino effect 

events, which will be addressed further below. Successive incidents describe a series of 

phenomena appearing during an incident, unlike traditional chemical incident types, which 

are often assigned as one type of incident and will be explained further in Section 3.3.3. 
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The successive incident types were determined along with the incident descriptions in the 

CSB reports. Three successive event types were identified based on the specified 

successive incident types (Table 3.2). For example, if, according to a CSB report, an 

explosion and a fire occurred, such as is the case when a release from a pressurized vessel 

formed a vapor cloud and a rain-out pool, subsequently, the vapor cloud found an ignition 

source and exploded, and by flash-back ignited the pool. In the preceding scenario, there 

was a series of VCE and a pool fire. Such successive incident types were selected in that 

order. When CSB reports did not specify the incident type, a fire and an explosion were 

labeled ‘Unspecified fire’ and ‘Unspecified explosion’, respectively, as illustrated in Table 

3.2. 

  

Table 3.2 14 specified incident types for successive incidents 

 Specified incident types 

Fire  

 Not specified fire 
 Flash fire 
 Fireball 
 Jet fire 
 Pool fire

Explosion 

 Not specified explosion 
 Physical explosion a 
 Vapor Cloud Explosion (VCE) 
 Boiling Liquid Expanding Vapor Explosion 

(BLEVE) 
 Dust explosion

Chemical release   Toxic release 
 Liquid chemical release 

Asphyxiation Asphyxiation 

Blowout Blowout 
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a According to CCPS (2000), a physical explosion is defined as the incident associated 
with a catastrophic rupture of a pressurized gas-filled vessel. The pressurization need not 
but can be caused by an internal gas explosion. 
 

Along with successive incidents, domino effects were considered. Most CSB 

investigators have not employed the technical term ‘domino effect’, although their 

descriptions of incidents occasionally imply a domino effect. Two definitions of a domino 

effect were considered to consistently determine it. First, in Khan and Abbasi's (1998) 

words: “situations when a fire, explosion, missile, and/or toxic load generated by an 

incident in one unit in the industry causes secondary and high order incidents in other 

units”. Second, Antonioni et al. (2009) defined it more strictly as “the secondary effect is 

stronger than the primary one”, which was also called escalation. Since determining a 

domino effect based on the latter definition was challenging due to the lack of information 

obtained from the CSB reports, the former definition was adopted in this study. For 

clarification, the “other units” in the former definition were regarded as “other equipment” 

in a process-related plant. Besides, the incident that led to projectile debris potentially 

causing secondary incidents was not categorized as a domino effect. 

As mentioned in Section 3.1, most researchers have considered only one single 

main equipment type from which a chemical leaked or was released during the chemical 

incident (see Section 3.3.3). However, the relevant equipment types from which the 

released material originated was examined along with the main equipment type. For 

example, when an incident occurred due to hydrocarbon leakage from a pipeline that was 

connected to a process vessel, the process vessel was designated as the relevant equipment 

in such an incident. 
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The incidents of the CSB reports were categorized into 10 types of operating 

modes: 

 Routine operation 

 Startup after a shutdown 

 Startup of new construction/equipment 

 While shutting down 

 Maintenance operation after a shutdown 

 Maintenance operation without a shutdown 

 During special test and trial  

 Loading or Unloading operation 

 Other operation modes 

 Operating modes not reported  

 

Because the CSB reports have not covered merely process-related incidents, but 

also storage and other incidents, process units were distinguished based on three sub-

factors: (1) Inside Battery Limit (ISBL) unit in a chemical process facility, (2) Outside 

Battery Limit (OSBL) unit in a chemical process facility, and (3) Not Applicable (N/A), 

which refers to a facility that is not process-related. 

Besides, detonation was investigated based on the severity of the damage caused 

in relation to the exploded amount, the occurrence or likelihood of detonation, and being 

the most destructive among explosion events. In a number of cases, e.g., with solids or 

liquids able to detonate the occurrence was obvious. However, it should be noted that 
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verifying whether a detonation occurred is rather complicated and uncertain. In particular, 

attempting to distinguish the explosion type in VCE would be necessary to properly 

understand the correlation between incident type and its consequences, because also VCE 

detonations are capable of producing much more damage than deflagrations (Chamberlain 

et al., 2019).4 In case of gas explosions in confined situation, e.g., pipelines, a transition 

from deflagration to detonation is well possible and this study looked whether this 

occurred. 

Finally, the residential population densities surrounding chemical incident 

facilities were collected because these may be relevant to consequence impacts. The data 

was obtained from two data sources: the EPA (https://echo.epa.gov/) and the Missouri 

Census Data Center (http://mcdc.missouri.edu/applications/caps.html). The unit of data 

was persons per square mile.  

 

3.3.3. Step 3: factors related to chemical incident consequences   

Chemical incident consequences were explored through six factors — types of 

chemical incidents, casualties (injuries and fatalities), and economic losses (OSHA and 

EPA penalties); due to lack of information, concrete economic losses and environmental 

damage remain outside consideration. 

Chemical incidents were categorized based on the following nine types: 

 

4 It should be noted that verifying whether a VCE detonation occurred has a long time been rather uncertain 
and a matter of controversy, but in recent years clear detonation markers for VCE have been identified by 
Oran et al. (2020). The authors distinguished detonation impact from typical explosions, such as VCE 
deflagration, BLEVE, or pressure burst. 
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 Liquid chemical release without fire or explosion incident 

 Fire incident 

 Explosion incident 

 Toxic release incident 

 Fire + Explosion incident 

 Fire + Toxic dispersion incident 

 Explosion + Toxic dispersion incident 

 Fire + Explosion + Toxic dispersion  

 Others 

 

The above incident types include successive incidents (Table 3.2) and domino 

effects together. 

For casualties, the CSB reports described four different measures: fatality, injury, 

medical attention, and hospitalization. 

Using direct financial damages in the aftermaths of chemical incidents would be 

preferred way to represent economic losses. However, it is challenging to obtain such 

explicit damage values. Alternatively, OSHA and the EPA penalties were considered in 

this study as possible indicators of economic losses. Once an incident occurs, the OSHA 

penalties are imposed due to the violation of the OSHA guidance associated with onsite 

impacts, whereas the EPA penalties are for offsite impacts. Since the EPA penalties 

require the budget to comply with environmental requirements for our community, the 

penalties imply to a certain extent economic offsite damage. In contrast, the penalties of 
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OSHA do not require the budget of such required compliance. Hence, using the OSHA 

penalties as an economic indicator would grossly understate the actual losses. 

Nevertheless, this study analyzed the OSHA penalties to check whether the values could 

be utilized to investigate any relations with other incident factors, such as a correlation 

between casualties (e.g., fatalities or injuries) and the OSHA penalties. Many OSHA 

penalties differed between its initial and actual penalties, so we examined both OSHA 

penalties. Although labeling penalties of OSHA and the EPA would be more precise than 

the term, “economic losses”, this factor was named as economic losses in order to leave 

the door open for future works. 

 

3.4. Results and discussion 

As explained in Section 3.3, we examined available CSB reports to obtain useful 

information that may explain chemical incidents based on twenty-seven factors. Such 

factors were categorized into three groups: cause, scenario, and consequence factors. This 

section shows the data availability for each factor step-by-step and briefly introduces 

attributes of the obtained data. 

 

 

 

3.4.1. Brief high-level investigation 

Before presenting the lower-level information of the CSB reports in the following 

subsections, we would like to share high-level information aligned with previous 
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researchers' contributions mentioned in the Introduction. A brief overview is given 

regarding the incident facility sites and PHA performance alongside PSM coverage. 

The locations of incidents investigated by the CSB over the last two decades are 

presented in a U.S. map (Fig. 3.3). Most investigated incidents occurred in the states of 

Texas, Louisiana, West Virginia, California, and Ohio. Figure 3.3 distinguishes between 

incidents of PSM standard covered facilities and other incidents through different colors. 

Red dots represent the incidents that met the PSM standard (38.3% of the CSB incidents), 

blue dots represent the incidents that did not meet the PSM standard (41.5%), and orange 

dots represent where there was no clear information regarding the PSM standards (20.1%). 

 

 

 

Figure 3.3 The U.S. map of 94 incidents investigated by the CSB 
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 Although most of the facilities that included highly flammable or toxic chemicals 

are covered by the PSM standard, facilities covered by the standard are not always more 

hazardous. This is because there are often exceptions for the PSM coverages. For example, 

some facilities have insufficient information about chemical mixtures to determine if the 

PSM standard covers them (e.g., #16 and #67 in Appendix 3A). According to OSHA 

guidelines, oil or gas well-operating facilities that include highly flammable hydrocarbons 

are not covered by the PSM standard (e.g., # 80 and #92 in Appendix 3A). Furthermore, 

in many states public sectors do not observe the OSHA guidelines (e.g., #37 in Appendix 

3A). 

 Many CSB investigation teams examined whether the chemical facilities 

performed a PHA prior to an incident. Based on the CSB reports, the correlation between 

the PSM standard coverage and PHA performance was analyzed, as shown in Figure 3.4. 

This figure illustrates PHA performance in terms of the number of incidents at facilities 

covered by the PSM standard. As we intuitively grasped, the facilities covered by the PSM 

standard had actively more often performed a PHA compared to the uncovered facilities. 

The PHA performance ratio was 77.8% (28 in 36) and 46.3% (19 in 40) for the covered 

and uncovered facilities, respectively. However, of the facilities covered by the PSM, a 

considerable percentage, 61.6% (22 in 36), inappropriately performed PHA. 
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Figure 3.4 Number of chemical incidents in the CSB reports based on PSM 
standard coverage and PHA performance 

 

3.4.2. Availability of data related to causal factors and their attributes 

The 84 chemicals that contributed to the 94 chemical incidents were identified 

(Table 3.3). Of the 94 incidents in the CSB reports, 50.0% (47 in 94) involved a single 

chemical and the other half two or more chemicals. Because several CSB reports could 

not apparently provide the main chemical(s) involved in the chemical incident, such 

chemicals were labeled with the same term as the CSB reports. For example, when the 

CSB reports referred to the main chemical merely as ‘hydrocarbons’ without a detailed 

explanation of actual chemical types, the chemical was labeled as ‘hydrocarbons. In 

addition, when any chemical was not determined in the CSB reports, it was categorized as 

‘unknown’. Although such labels, hydrocarbon and unknown, were listed as a reference 

in Table 3.3, their chemical properties (i.e., chemical indicators) were not further 

investigated in this study. 
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Table 3.3 Count of chemicals involved in chemical incidents investigated in the CSB 
reports 

Chemical 
involved 

Count 
Chemical 
involved 

Count Chemical involved Count Chemical involved Count 

Hydrocarbons 6 Acetylene 1 Gasoline 1 
PETN 
(Pentaerythritol, 
tetranitrate) 

1 

Chlorine 4 
Acrylic 
monomer 

1 Gilsonite 1 Phenolic resin dust 1 

Methane  4 
Alkylates 
(Isooctane)

1 Hydrochloric acid 1 Phosgene 1 

Methanol 4 Allyl alcohol 1 Hydrogen fluoride 1 
Propylene glycol 
phenyl 

1 

Propane 4 Allyl chloride 1 Hydrogen sulfide 1 Raffene oil 1 

Sulfuric acid 4 Alpha-pinene 1 hydroxylamine 1 
RDX (hexahydro-
1,3,5-trinitro,1,3,5-
triazocine) 

1 

Unknown 
chemical 

4 Aluminum dust 1 iso-propyl alcohol 1 Silver nitrate 1 

Ammonia 3 
Ammonium 
nitrate 

1 Maltodextrin 1 
Sodium 
hydrosulfide 
(NaHS) 

1 

Hydrogen  3 
Amodel 
(polymer)

1 Methomyl  1 Sodium hydroxide 1 

(Light) naphtha 2 
Antimony 
pentachloride 

1 
Methyl ethyl ketone 
(MEK) 

1 Sucrose 1 

Heptane 2 Benzene 1 Methyl mercaptan 1 
Tetrahydrofuran 
(THF) 

1 

Iron dust 2 
Benzoyl 
peroxide (BPO) 

1 
Methylcyclopenta-
dienyl manganese 
tricarbonyl 

1 Titanium (power) 1 

Isobutane 2 Calcium carbide 1 Mineral seal oil 1 
TNT (2,4,6-
trinitrotoluene) 

1 

Naphtha 2 
Caramel color 
liquid 

1 Mineral spirits 1 
Urea ammonium 
nitrate solution 

1 

Nitrogen 2 Carbon black 1 Mono-nitrotoluene 1 
Vinyl chloride 
monomer (VCM) 

1 

Oleum (fuming 
sulfuric acid) 

2 
Carbon 
monoxide 

1 Nitric acid 1 Vinyl fluoride 1 

Polyethylene 
(dust, wax) 

2 Chloromethane 1 Nitric oxide 1 VM&P naphtha 1 

Propylene 2 
Cyclohexane 
methanol 

1 Nitrous oxide 1 Zinc 1 

Sodium 
hypochlorite 

2 Ethyl acetate 1 n-Propyl alcohol 1 Zinc oxide 1 

2-Ethyl-1-
hexylamine 

1 
Ethylene oxide 
(EO) 

1 
ortho-Nitro 
chlorobenzene 

1 Zirconium 1 
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Chemical 
involved 

Count 
Chemical 
involved 

Count Chemical involved Count Chemical involved Count 

4-Methylcyclo-
hexanemethanol 

1 Gas oil 1 Peroxydicarbonate 1 
Monomethylamine 
(MMA) 

1 

Grand Total 121 

The data availability of 12 chemical indicators was analyzed (Table 3.4). Based on 

the CSB descriptions, the chemicals involved in 90 incidents were determined after they 

were matched with appropriate CAS numbers. The chemicals that could not be matched 

with any CAS number were deemed missing data; there were such chemicals (i.e., 

unknown or hydrocarbons) in four incidents. After that, the data of 10 chemical indicators 

in Table 3.4, except for dust relevancy, were collected from various external databases 

and references. Two categorical variables — reactive rating and special properties — were 

selected based on NFPA 704 standard (2017). Of the remaining 8 continuous variables, 

the values of boiling point, toxic measure PAC-3, and molecular weight were available in 

most cases from external databases, such as Yaw's Chemical Properties Handbook (1999), 

DIPPR (2019), or MSDSs. For the 90 incidents at which main chemicals were known, the 

data of boiling points and molecular weights and PAC-3 was available in most of the 

incidents. In contrast, the data of autoignition temperature and flammability limit was less 

available. The selection of dust relevancy was performed exclusively based on the CSB 

descriptions. 

 

Table 3.4 Available information for each chemical indicator in the CSB report 
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a The value was calculated except for chemicals that cannot be matched with any chemical 
CAS number (i.e., unknown chemicals). 

b There are four types of special properties considered: oxidizer, a substance reacting with 
water, simple asphyxiant gas, and strong corrosive acid or base. 

c The number of incidents was counted when at least one special property was related to 
the incident. 

 

Similarly, the availability of process indicators in the CSB reports was analyzed 

(Table 3.5). Process indicators were expressed in various, often not SI units but probably 

in units used in the facility investigated. To obtain chemical quantities in a consistent unit, 

we converted their numerical values into a SI mass unit, tonne; the types and frequencies 

No. Chemical indicator Count Percentage  
of 94 incidents  

1  Chemical involved 90 a 95.7 % 

2 Molecular weight 86 91.5 % 

3 Flashpoint 63 67.0 % 

4 Autoignition temperature 63 67.0 % 

5 Boiling temperature 88 93.6 % 

6 Flammability limit 54 57.4 % 

7 Vapor specific gravity  77 81.9 %  

8 PAC-3 85 90.4 % 

9 Heat of combustion 57 60.6 % 

10 Reactive ratings in 

NFPA 704 standard 

90 95.7 % 

11 Special properties in 

NFPA 704 standard b 

90 c 

 

95.7 % 

12 Dust relevancy  10 (Yes) + 84 (no) 100 % 
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of the chemical quantity units used in the CSB reports were counted in Table 3.6 for the 

sake of statistics. As shown in Table 3.5, among the three numerical process indicators 

(chemical quantity, incident pressure, and incident temperature), the data of process 

pressure at an incident (here called incident pressure, not to confuse with the term used to 

indicate an incoming shock wave pressure) was more available or predictable in the CSB 

reports, compared to the others. The two categorical process indicators (relevancy of 

vacuum and equipment type) were analyzed in detail in Table 3.7 and Figure 3.5(a), 

respectively. Table 3.7 displays the pressure units and their used frequencies concerning 

vacuum conditions. As shown in this table, various units of process pressures were 

employed. Atm, psig, psi, bara, and mmHg were the most frequently used in that order, 

and 12 incidents were associated with vacuum processes. Finally, the types of main 

equipment related to chemical releases were analyzed; 31.9% of the incidents were related 

to vessels, followed by piping and piping components (26.6%, 25 in 94) and reactors 

(10.6%, 10 in 96). 

 

Table 3.5 Available information for each process indicator in the CSB reports 

No. Process indicator [unit]  Count  
Percentage of 

94 incidents  

1 Quantity of chemical involved [tonne] 71 75.50%

2 Incident pressure [bara] 78 83.00%
3 Incident temperature [℃]  71 75.50%

4 Relevancy of vacuum [unitless]   

12(Yes) 

100.00%81 (No)
1 (Not 

informed)
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5 Equipment type [unitless] See Fig. 3.6(a) 98.90%
 

Table 3.6 Used units to represent quantities of chemicals in the CSB reports 

 Unit Count  Percentage of 94 
incidents  

Flowrate acfm  1 1.1 % 

gpm 2 2.1 % 

kg/h 1 1.1 % 

lb/h  1 1.1 % 

st/d 1 1.1 % 

Subtotal 
(flowrate) 

 6 6.4 % 

Volume barrel 1 1.1 % 

ft3  1 1.1% 

gal 30 32.0 % 

   

Subtotal (volume)   32 34.0 % 

Mass g 2 2.1 % 

lbm 28 29.8 % 

tonne 4 4.3 % 

Subtotal (Mass)   31 46.3 % 

N/A (missing data)  22 23.4% 

Grand Total  94 100.0 % 

acfm, actual cubic feet per minute; gpm, gallon per minute; kg/hr, kilogram per 
hour; lb/hr, pound mass per hour; st/d, standard tonne per day; ft3, cubic feet; gal, 
gallon; oz, fluid ounce; g, gram; lbm, pound-mass  
 

Table 3.7 Used pressure units in the CSB reports concerning vacuum conditions 

Related to 
vacuum 

atm bara mmHg psi psig N/A 
Grand 

Total
No 31 3 0 6 26 15 81
Yes 4 2 1 0 4 1 12
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N/I (no 
information) 

1 0 0 0 0 0 1

Grand Total 
36 5 1 6 30 16 94

38.3% 5.3% 1.1% 6.4% 31.9% 17.0% 100.0%
 

The collected numerical chemical and process indicators were analyzed further 

through their histograms to understand each attribute. Figure 3.5(a) displays the 13 

numerical causal indicators: chemical quantity, incident pressure, incident temperature, 

flash point, boiling point, molecular weight, vapor specific gravity, autoignition 

temperature, LFL, ULF, flammability limit, and PAC-3. As illustrated in Figure 3.5(a), 

the shapes of the three process indicators’ distributions are extremely right-skewed. 

Hence, excluding several outliers would be helpful to grasp the indicators' generic 

attributes. Thereby, after excluding outliers, further analysis of process indicators was 

performed. For example, many chemical quantities of the chemical incidents were under 

2500 tonnes, except for six outliers of chemical quantities (#10, #48, #53, #69, #74, and 

#80 in Appendix 3A). After excluding these outliers, the histogram of chemical quantities 

indicates that most process chemical incidents occurred while chemicals less than 100 

tonnes were leaking (See Figure 3.5(b)). Incident temperature and pressure are also 

redisplayed after excluding their outliers in Figure 3.5(c) and (d), respectively; in this 

study, the threshold of incident temperature's outliers was above 1000 ℃ (#52, #68, and 

#77 in Appendix 3A), and the threshold of the pressure's outlier was above 250 bara (#69 

in Appendix 3A). These figures show that the temperature range of most incidents is from 

25 to 150 ℃, and the pressure range from 1 to 10 bara. 

 



 

124 

 

 

(a) Histograms of all numerical causal factors including outliers 

 

(b) Histogram of chemical quantity without 6 outliers 
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(c) Histogram of incident temperature without 3 outliers 

 

(d) Histogram of incident pressure without 1 outlier 

Figure 3.5 The histograms of numerical indicators of the CSB reports 
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3.4.3. Attributes in collected scenario factors 

This subsection shows the attributes of the collected seven scenario factors: 

relevant equipment types, incident sequences, domino effects, detonations/deflagration, 

operating modes, process units, and population densities. These scenario factors were 

considered either to comprehend causal and consequence factors in detail or to find causal 

relationships between them by adding supplementary reasons. Therefore, the results of 

several scenario factors can be explained along with the aforementioned causal factors 

(Section 3.4.2) or the following consequence factors (Section 3.4.3). 

The gathered information on relevant equipment types was investigated along with 

the main equipment type (Figure 3.6). The frequencies of main equipment types in the 

chemical incidents show the point where chemicals often leaked. Meanwhile, the 

frequencies of relevant equipment types enable us to understand the flow of the chemicals 

involved in the incidents. For example, the two most frequently reported types of main 

equipment are ‘vessel’ (31.9%, 30 in 94) and ‘piping and piping components’ (26.6%, 25 

in 94), as shown in Figure 3.6(a). As shown in Figure 3.6(b), most chemicals leaked at 

‘piping and piping components fed from other equipment, such as mass transfer equipment 

types and vessels, at the time of the incidents. That is, the consequences of the incidents 

became severe because of the chemical supply from other equipment. In contrast, most 

chemicals that leaked from vessels did not flow from other equipment. This is because the 

amount of the chemicals in vessels was sufficient to make the event a severe incident. 
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Figure 3.6 Analysis of equipment related to chemical leakages concerning relevant equipment (scenarios) 
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The information on incident sequence provides the common mechanisms and the 

frequencies of successive incident events. The most frequent first incidents were physical 

explosions (26.6%, 25 in 94), followed by toxic releases (20.2%, 19 in 94), VCEs (13.8%, 

13 in 94), flash fires (9.6%, 9 in 94), unspecified fires (7.4%, 7 in 94), and dust explosions 

(6.4%, 6 in 94). Figure 3.7 shows the frequency of successive incident events; it indicates 

that successive incidents rarely occur when the initial incident is a toxic release or 

asphyxiant event. In contrast, various successive incidents occur more frequently when 

fire or explosions are the initial incidents. 

Aside from incident sequences, the domino effect was also analyzed using the 

guidelines described in Section 3.3. Of the 94 incidents, it was clear that 68% of the 

incidents were not associated with domino effects. However, deciding whether domino 

effects occurred at the rest of the incidents was challenging because of the lack of 

information in the CSB reports. 

Of 64 incidents where explosions occurred, a deflagration to detonation transition 

was likely to have occurred in three incidents (#1, #21, and #79 in Appendix 3A). 
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Figure 3.7 The count of the successive incident scenarios in the CSB reports 
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The process operation modes during the incidents were then analyzed (Table 3.8). 

This showed that 39.4% of incidents occurred during a routine operating mode, and 37.2% 

were associated with a shutdown (#2, #4, #5, and #6 in Table 3.8). Besides, a quarter of 

incidents occurred during maintenance (# 5 and #6 in Table 3.8). 

 

Table 3.8 Process operation modes related to chemical incidents in the CSB report 

No. Process operating mode Count Percentage of 94 
incidents 

1 Routine operation 37 39.4 % 

2 Startup after a shutdown 7 7.4 % 

3 Startup of new construction or 
equipment 

6 5.3 % 

4 While shutting down 4 4.3 % 

5 Maintenance operation after a 
shutdown 

8 8.5 % 

6 Maintenance operation without a 
shutdown 

16 17.0 % 

7 During special test or trial 1 1.1 % 

8 Loading or unloading operation 6 6.4 % 

9 Other operation modes 9 9.6 % 

10 Operating mode not reported   0 0 % 

 Grand total 94 100 % 

 

The examination of process units that are ISBL, OSBL, or other cases showed that 

over 85% of the incidents occurred at chemical process facilities (either ISBL or OSBL). 

57 Chemical incidents in the CSB reports occurred in ISBL units, 28 incidents in OSBL 
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units, and 9 incidents in neither of these units. This indicates that the incidents described 

in the CSB reports are more associated with the main process units, ISBL. 

Regarding the residential population densities, most of the data were extracted 

from the EPA except for 6 incident facilities (#3, #5, #16, #40, #55, #67 in Appendix 3A), 

which were not available in the EPA data. The data of these 6 facilities were obtained from 

the Missouri Census Data Center based in 2010 instead. Based on the collected data, the 

average density per incident type (consequence factor) was illustrated in various ranges of 

residential population densities from 5 to 2,790 persons per square mile, as shown in 

Figure 3.8. In particular, the average population density surrounding the facilities 

associated with toxic dispersion incidents were less dense compared to fire + explosion 

incident cases. This may confirm the expectation that facilities handling toxic materials 

are set up in less densely populated areas. 

 

 

Figure 3.8 Average residential population densities per each incident type 
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3.4.4. Attributes in collected consequence factors 

This subsection shows the information of the analysis of three consequence 

factors: chemical incident types, casualties, and economic losses (penalties). 

All 94 incidents were categorized into 8 chemical incident types (Table 3.9). The 

most frequently investigated incident type was fire + explosion incident (58.5%), followed 

by toxic dispersion (20.2%), fire (7.4%), and explosion (7.4%). Two asphyxiant incidents 

corresponded to the incident type, ‘others’. To specify incidents further, the data of 

incident types can be integrated with the data of incident sequences, described in Section 

3.4.3. 

 

Table 3.9 List of incident types in the CSB reports 

Incident Type Count Percentage of 

94 incidents 

Liquid chemical release without fire or 

explosion 

2 2.1 % 

Toxic dispersion 19 20.2 % 

Fire  7 7.4 % 

Explosion 7 7.4 % 

Fire + Explosion 55 58.5 % 

Fire + Toxic dispersion  2 2.1 % 

Explosion + Toxic dispersion 2 2.1 % 

Others 2 2.1 % 

Grand Total 94 100 % 

 

 Although the CSB reports often showed the number of individuals needing 

medical attention and hospitalization, not all CSB reports recorded such injury types in 
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detail. Alternatively, without distinction between different injury types, the number of 

injuries and fatalities was counted as reported by the CSB. For example, several CSB 

reports (e.g., # 31, #75, and #76 in Appendix 3A) referred to casualties as medical attention 

(treatment) and residents' hospitalization. In such cases, hospitalization was assigned to 

injury, and medical attention was not included in this study. 

The incident fatalities and injuries were analyzed together in various approaches. 

First, the sum of injuries in the 94 incidents was 1,174, whereas the sum of fatalities was 

185. That is, the overall ratio of the sum of fatalities to the sum of injuries is around 6.3 in 

the 94 CSB incidents. Subsequently, the spread of fatalities and injuries in ratio per 

incident was illustrated by means of a scatter plot, as illustrated in Figure 3.9. The color 

in the figure shows incident type details, and the marks are labeled by the incident numbers 

presented in Appendix 3A. Purple dots in this figure indicate that there were significant 

casualties in several fire + explosion incidents. In addition, the different numbers 

aggregated per incident types were analyzed (Figure 3.10). To understand the chemical 

incident casualties in detail, injuries and fatalities were further divided into onsite people, 

emergency responders (ER), and offsite people. Figure 3.10(a) represents the average 

number of all injuries, onsite, ER, and offsite, from left to right. Similarly, Figure 3.10(b) 

shows the average number of all fatalities, onsite, ER, and offsite. These figures indicate 

that the average fatalities were higher than its corresponding injuries at fire incidents, 

unlike the other incident types. Besides, explosion incidents (explosion or fire + explosion) 

generated more emergency responders’ casualties. Meanwhile, toxic dispersion and liquid 
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chemical release incidents significantly impacted surrounding communities because 

considerable people from offsite got injured from such incidents.  

After comparing the average originally and actually imposed OSHA penalties 

depending on incident types, we concluded that PSM coverages affected the increased 

amount of actual OSHA penalties. When PSM covered process facilities of CSB incidents, 

the penalties on the facilities between original and actual penalties were almost the same. 

In contrast, actual penalties of the facilities that were not covered by PSM were often 

reduced. For this reason, the original OSHA penalties were utilized to compare with EPA 

penalties based on incident consequences without PSM coverage.  
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Figure 3.9 Scatter plot of chemical incident injuries versus fatalities from the 94 CSB incidents 
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Figure 3.10 Average number of fatalities and injuries for each incident type
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For the penalties of OSHA and EPA, the number of times being imposed and 

average fine amounts depending on incident type were examined (Table 3.10 and Figure 

3.11). Table 3.10 shows the counts of OSHA- and EPA penalties that were broken down 

by incident types. OSHA imposed penalties in 92.5% (86 in 93) of the incidents, whereas 

the EPA imposed penalties in 34.4% (32 in 93). Since a public sector facility was not 

relevant to these regulatory penalties, one incident (#37 in Appendix 3A) was excluded 

from this analysis. The average of the 86 original OSHA penalties was $1.03 MM, and 

the average of the 32 EPA penalties was $177.90 MM. The two topmost EPA penalties 

(#80 and #38 in Appendix 3A) account for 93.5% and 3.1% of the total EPA penalties, 

respectively. Meanwhile, the two topmost OSHA original penalties (#38 and #58 in 

Appendix 3A) account for 57.6% and 19.0% of the total original OSHA penalties. Hence, 

both penalty distributions are extremely right-skewed by such very severe incidents. 

Therefore, analyzing both average penalty values of each incident type were performed 

after excluding three incidents (#38, #80, and #58 in Appendix 3A). Figure 3.11 shows 

the results of this analysis. It indicates that the average of EPA penalties was much higher 

than the average of OSHA penalties. This is because the EPA domain covers sites and 

surroundings, while the OSHA only covers the sites proper. Nevertheless, fire incidents 

had a tendency of comparatively low impact on surrounding, compared to the other 

incidents. 
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Table 3.10 Count of incident penalties imposed by OSHA and EPA 

  

Liquid 
chemical 
release 
without 
fire or 

explosion 

Toxic 
dispersion 

Fire Explosion 
Fire + 

Explosion 

Fire + 
Toxic 

dispersion 
Others 

Grand 
Total 

Count of 
OSHA 

penalties 
2 16 6 7 51 2 2 86 

Count of 
EPA 

penalties 
2 7 1 1 20 1 0 32 

 

 

 

Figure 3.11 Average original OSHA and EPA penalties for each incident type5 

 

 

 

5 It excludes three incidents (Deep Horizon explosion, BP Texas City, and DuPont Corporation Toxic 
Chemical Releases) that account for the topmost penalties for either OSHA or EPA penalties.  
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3.4.5. Analysis of causal and consequence factors together  

Causal and consequence factors can be utilized together to grasp the collected data 

in detail. This subsection, as an example, shows the data availability of low-level 

information associated with the process and chemical indicators (causal factors) per 

incident type (consequence factor). In particular, missing and observed data patterns 

would be worth examining to unfold the patterns of marked process conditions in the CSB 

reports per incident type. These data patterns also enable us to identify the level of the 

associated chemical characteristics and their properties’ availability from publicly 

available databases. 

Two representative incident types were used to investigate data availability 

patterns: (1) combustion incidents and (2) toxic dispersion incidents. For combustion, a 

total of 69 incidents (55 fire + explosion, 7 fire, 7 explosion incidents) in the CSB reports 

were selected. For toxic dispersion, a total of 21 incidents (19 toxic dispersion and 2 

fire + toxic dispersion incidents) were selected; the 2 fire + toxic dispersion incidents were 

categorized as toxic dispersion incidents here because the CSB investigated them due to 

the severe impact from toxic dispersions. 

Figure 3.12 shows the missing data patterns of 13 numeric chemical and process 

indicators of the 69 combustion incidents. The yellow color represents the missing data, 

and the blue color represents the observed data part. Figure 3.12(a) presents indicators in 

the sequence of high missing ratios in the dataset from left to right. Each value of LFL, 

flammability limit, and combustion heat was missing in more than 40% of the 69 

combustion incidents. The CSB teams tended to pay less attention to chemical quantity 
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estimate than to other process indicators (incident temperature and incident pressure. 

Figure 3.12(b) shows the amount of missing and observed indicators in certain 

combinations of the indicators. The very bottom line of Figure 3.12(b) indicates that the 

numeric indicators at around 36% of the combustion incidents were fully observed. Also, 

it suggests that the data will be more available when the missing data can be estimated. 

Similarly, Figure 3.13 shows the missing data patterns of 13 numerical indicators 

of 21 toxic dispersion incidents. Figure 3.13(a) displays the 13 indicators in the sequence 

of high missing ratios from left to right. The values of six combustion-related properties 

(flash point, autoignition temperature, flammability limit, LFL, UFL, and the heat of 

combustion) were not accessible in more than half of the incidents, while the toxic 

exposure guideline, PAC-3, was accessible for all the incident cases. That is, it obviously 

indicates that the chemicals involved in toxic dispersion incidents are less flammable but 

highly toxic. Furthermore, the CSB teams had a tendency to establish chemical quantities 

for toxic dispersion incidents rather than other process conditions (incident temperature 

and pressures). 
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Figure 3.12 Data availability of numerical process and chemical indicators in 69 
fire and/or explosion incidents 
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Figure 3.13 Data availability of numerical process and chemical indicators in 21 
toxic dispersion incidents 

 

Figures 3.12 and 3.13 indicate that the available information about chemical 

compounds' combustion-related properties was often limited. Although chemical 

compounds' hazardous characteristics are provided most often for combustible or toxic 

chemicals, such information was unavailable for incombustible chemicals. For this reason, 

in the case of chemical incidents due to incombustible chemicals, there is much more 

missing hazardous properties’ data. 
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3.5. Conclusions and future work 

This chapter's primary purpose was to investigate the potential of using the 

incidents investigated by CSB reports for enhancing an inherently safer design (ISD) 

strategy. Chemical indicators (chemical hazardous properties) and process indicators 

(process conditions) are deemed essential metric factors for performing ISD. Several 

indicators, in particular, have widely been adopted in the index-based inherent safety 

assessment tools. The selections of these indicators were often made based on theoretical 

approaches and less on heuristic ones. However, understanding the indicators' 

characteristics from previous chemical process incidents in heuristic approach would 

significantly help select key indicators to enhance the ISD strategy's reliability. Since the 

characteristics of chemical and process indicators are only associated with chemical 

incident causes, the knowledge about such indicators would be more powerful along with 

the characteristics of other risk assessment factors, such as incident scenarios and 

consequence, to properly grasp previous incidents. The posterior characteristics of causal 

factors (chemical and process indicators) can then be utilized in the ISD strategy. Up until 

now, there has not been a U.S. database that concisely represents such detailed information 

associated with previous chemical process incidents. Therefore, the currently available 87 

CSB reports (94 incidents) were analyzed in this chapter because they provide much more 

detailed information than other U.S. incident databases. Depending on the quality of low-

level information of the CSB reports, it may either reinforce a currently existing inherent 

safety assessment tool or propose a more reliable one. 

The key points of this chapter are the following: 
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 Based on the purpose and background, we established a method to collect possible 

incident causal, scenario, or consequence factors in the CSB reports. A guideline 

was introduced to collect the data for the 27 sub-factors that consisted of 17 causal 

factors, 7 scenario factors, and 3 consequence factors. The causal factors were 

further divided into 12 chemical process indicators and 5 chemical indicators. 

 The data availability of causal factors was analyzed after identifying chemicals 

involved in 90 incidents out of the 94 incidents. Based on the CAS numbers 

matched with the identified chemicals, the data of chemical indicators was 

collected. Two categorical chemical indicators, reactive rating and special notes of 

NFPA 704 standards, were fully examined. Then, the 8 numeric chemical 

indicators' available data was collected from external databases. The collected 

numeric chemical indicators showed that boiling point, molecular weight, and 

PAC-3 data were easily available, whereas autoignition temperature and 

flammability limit were less available. Meanwhile, the rest of causal factor data 

were examined merely according to the CSB reports' descriptions. In particular, 

the data of three numerical process indicators, the quantity of chemicals involved, 

incident temperature, and incident pressures, was established (or could be 

estimated) from 75% to 83% of the 94 incidents. The histograms of each numeric 

causal factor were displayed afterward. 

 The analysis of 7 scenario factors were presented: successive incidents, relevant 

equipment type, domino effects, detonation/deflagration, operating modes, process 

units, and population densities. By integrating successive incidents information, 
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the detailed mechanisms of chemical incidents were investigated. While 

determining domino effects through the CSB reports' descriptions was 

problematic, determining the existence of detonation transition was performed as 

it appeared from the damage pattern to be rather obvious. In addition, most 

chemical incidents occurred during routine operation, shutdown, or maintenance 

operation modes. The residential population densities were displayed for each 

incident type. 

 The analysis of consequence factors showed that the most frequently investigated 

incident types were fire + explosion and toxic dispersion incidents. In addition, it 

indicated that incident types were relevant to the number and types of casualties. 

Regarding two regulatory penalties, those by EPA and OSHA, it was observed that 

although the cost of OSHA penalties was generally much less than the EPA ones, 

the frequency of OSHA penalties was higher. 

 This chapter examined the numeric causal factors' availability for the two incident 

types: combustion and toxic dispersion incidents. The result of this analysis 

revealed that the CSB tended to state the quantity of chemicals involved in toxic 

dispersion incidents rather than in case of combustion incidents. In contrast, the 

other process indicators, incident pressure and temperature, were remarked more 

often for the combustion incidents. 

 The data extracted from the CSB reports and currently existing chemical databases 

can be utilized for ISD. However, the small amount of sample size may bias the 

analysis of chemical process incidents. Since the available data about the causal 
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factors were limited due to missing data, further attempts may be required to 

estimate currently unavailable values of indicators. In particular, the missing data 

of numerical chemical properties can be estimated by using currently existing 

group contribution models, Quantitative Structure–Property Relationship (QSPR) 

models, or new hands-on models. This would enable us to utilize more currently 

existing data of the CSB reports. 

 

Although this chapter was initiated to study the potential of low-level information 

extracted from the CSB report to utilize in ISD strategy, such information can also be used 

in other safety risk analysis approaches. As Section 3.4.5 illustrated, the collected data 

(causal, scenario, and consequence factors) may be utilized to analyze various incident 

aspects. As the applications showed in Section 3.4, integrating various aspects (causal, 

scenario, and consequence factors) to describe chemical incidents enables us to analyze 

the factors that caused patterns of incidents. In particular, Industry 4.0 era can benefit from 

the significant potential of such a detailed analysis. 

Even though the CSB reports' information was inspected multiple times, the results 

of this chapter contain uncertainty as it was necessary to estimate unstated parameters. 

Information of the CSB reports may be incorrectly marked as we manually collected it. 

Besides, process conditions may be inappropriately determined. For example, when an 

incident occurred at the atmospheric conditions, if there was no specific CSB report 

statement, the atmospheric conditions were consistently selected as 25℃ and 1atm. That 

is, these conditions may differ from the actual incident condition. In addition, we often 
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faced difficulty in determining the process conditions at the time of the incident; when the 

incident occurred, because of temporary external reasons, such as hot work. 

Although the CSB investigators spelled out causes, scenarios, and consequences 

for each incident, the reports had two major limitations for providing sufficient lower-

level information. First, the reports for each incident were written by various independent 

CSB investigator teams, which led to a lack of consistency in formats and units. Also, we 

cannot guarantee that the incident information is representative of all incidents happening 

in the U.S. because the CSB selected these incidents depending on incident severity or 

public attention. That is, the incidents in CSB reports tend to be catastrophic or high-

profile incidents, rather than representing a typical average chemical incident. 

Given the absence of a standardized incident database, perhaps it is much more 

challenging for researchers to collect data instead of analyzing the data. From this 

perspective, the format inconsistency among CSB reports suggests that standardized 

formats in such incident reports published by regulatory agencies could improve a general 

sharing of incident causes and recommendations. Traditionally, each incident was often 

analyzed for a standalone lesson. For this reason, the consistency among incident reports 

has not been the main issue under consideration. As information technology, however, has 

rapidly developed, the chemical process safety community can easily obtain broader 

insights among similar incidents beyond one single incident. For example, natural 

language processing can be utilized to automatically retrieve data of interest (e.g., 

commonalities and patterns) in a consistent format document, without tremendous human 

efforts. Machine learning or deep learning techniques can also be adopted to numerically 
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analyze the collected data. Using the resultant patterns, a safety assessment technique can 

be proposed; although various safety assessment tools that combine multiple chemical or 

process indicators have been proposed to measure safety levels, the indicators were 

selected in a rather subjective or theoretical way. Hence, the risk-based insights learned 

from a sufficient incident dataset can inversely be utilized to develop a better safety 

assessment, where safety is the complement of risk. 

 

3.6. Appendix 3A 94 incidents investigated by the CSB 

No.1 Incident  Incident 
Date

PSM 
covered

PHA 
performance 

1* Sierra Chemical Co. 
High Explosives 
Accident 

1/7/1998 Yes Yes 

2* Union Carbide 
Corp. Nitrogen 
Asphyxiation 
Incident 

3/27/1998 Unknown No 

3* Herrig Brothers 
Farm Propane Tank 
Explosion 

4/9/1998 No Yes 

4 Morton 
International Inc. 
Runaway Chemical 
Reaction 

4/8/1998 No Yes 

5 Sonat Exploration 
Co. Catastrophic 
Vessel 
Overpressurization 

3/4/1998 No No 

6 Tosco Avon 
Refinery Petroleum 
Naphtha Fire 

2/23/1999 Yes No 

7 Bethlehem Steel 
Corporation Gas 
Condensate Fire 

2/2/2001 Unknown 
** 

No 

8 Concept Sciences 
Hydroxylamine 
Explosion 

2/19/1999 Yes Yes 
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No.1 Incident  Incident 
Date

PSM 
covered

PHA 
performance 

9 BP Amoco Thermal 
Decomposition 
Incident 

3/13/2001 No Yes 

10 Motiva Enterprises 
Sulfuric Acid Tank 
Explosion 

7/17/2001 No Yes 

11 Georgia-Pacific 
Corp. Hydrogen 
Sulfide Poisoning 

1/16/2002 No No 

12 Third Coast 
Industries 
Petroleum Products 
Facility Fire 

5/1/2002 Unknown 
** 

Unknown 

13 DPC Enterprises 
Festus Chlorine 
Release 

8/14/2002 Yes Unknown 

14 BLSR Operating 
Ltd. Vapor Cloud 
Fire 

1/13/2003 No *** Unknown 

15 Environmental 
Enterprises 
Hydrogen Sulfide 
Release 

12/11/2002 No Unknown 

16* Kaltech Industries 
Waste Mixing 
Explosion 

4/25/2002 Unknown No 

17 First Chemical 
Corp. Reactive 
Chemical Explosion 

10/13/2002 No Yes ** 

18 Catalyst Systems 
Inc. Reactive 
Chemical Explosion 

1/2/2003 No No 

19 D.D. Williamson & 
Co. Catastrophic 
Vessel Failure 

4/11/2003 No No 

20 Technic Inc. 
Ventilation System 
Explosion  

2/7/2003 No No 

21 Isotec/Sigma 
Aldrich Nitric 
Oxide Explosion 

9/21/2003 Yes Yes 

22 West 
Pharmaceutical 
Services Dust 
Explosion and Fire 

1/29/2003 No No 
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No.1 Incident  Incident 
Date

PSM 
covered

PHA 
performance 

23 CTA Acoustics 
Dust Explosion and 
Fire 

2/20/2020 No Unknown ** 

24 Honeywell 
Chemical Incidents 
(Chlorine) 

7/20/2003 Yes Yes 

25 Honeywell 
Chemical Incidents 
(Antimony 
pentachloride) 

7/29/2003 No No 

26 Honeywell 
Chemical Incidents 
(Hydrogen fluoride) 

8/13/2003 Yes Yes ** 

27 Hayes Lemmerz 
Dust Explosions 
and Fire 

10/29/2003 No No 

28 Giant Industries 
Refinery Explosions 
and Fire 

4/8/2004 Yes No ** 

29 Acetylene Service 
Company Gas 
Explosion 

1/25/2005 Yes Yes 

30 Sterigenics Ethylene 
Oxide Explosion 

8/19/2004 Yes Yes 

31 MFG Chemical Inc. 
Toxic Gas Release 

4/12/2004 Yes No 

32 Marcus Oil and 
Chemical Tank 
Explosion 

12/3/2004 No No 

33 Formosa Plastics 
Propylene 
Explosion 

10/6/2005 U ** Yes 

34* Valero Refinery 
Asphyxiation 
Incident 

11/5/2005 Unknown No 

35 DPC Enterprises 
Glendale Chlorine 
Release 

11/17/2003 Yes Yes 

36 Formosa Plastics 
Vinyl Chloride 
Explosion 

4/23/2004 Yes Yes 

37 Bethune Point 
Wastewater Plant 
Explosion 2 

1/11/2006 No No  
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No.1 Incident  Incident 
Date

PSM 
covered

PHA 
performance 

38 BP Texas City 
America Refinery 
Explosion 

3/23/2005 Yes Yes 

39 Universal Form 
Clamp Co. 
Explosion and Fire 

6/14/2006 Yes No 

40 Partridge Raleigh 
Oilfield Explosion 
and Fire 

6/5/2006 No *** No 

41 Synthron Chemical 
Explosion and 
Vapor Cloud 
Explosion 

1/31/2006 Yes No 

42 EQ Hazardous 
Waste Plant 
Explosions and Fire 

10/5/2006 No Unknown 

43 CAI / Arnel 
Chemical Plant 
Explosion 

11/22/2006 Yes No 

44 Barton Solvents 
Explosions and Fire 

7/17/2007 No Unknown 

45 Valero Refinery 
Propane Fire 

2/16/2007 Yes Yes 

46 Barton Solvents 
Flammable Liquid 
Explosion and Fire 

10/29/2007 No *** Unknown 

47* Little General Store 
Propane Explosion 

1/30/2007 Unknown No 

48 Allied Terminals 
Fertilizer Tank 
Collapse 

11/11/2008 No *** Unknown ** 

49 T2 Laboratories Inc. 
Reactive Chemical 
Explosion  

12/19/2007 No No 

50 Imperial Sugar 
Company Dust 
Explosion and Fire 

2/7/2008 No No ** 

51 INDSPEC Chemical 
Corporation Oleum 
Release 

10/11/2008 Yes *** Yes 

52 CITGO Refinery 
Hydrofluoric Acid 
Release and Fire 

7/19/2009 Yes Yes 
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No.1 Incident  Incident 
Date

PSM 
covered

PHA 
performance 

53 Kleen Energy 
Natural Gas 
Explosion  

2/7/2010 No No ** 

54 Veolia 
Environmental 
Services Flammable 
Vapor Explosion 
and Fire 

5/4/2009 Yes No 

55 Xcel Energy 
Company 
Hydroelectric 
Tunnel Fire 

10/2/2007 Unknown 
** 

Yes 

56 Bayer CropScience 
Pesticide Waste 
Tank Explosion 

8/28/2008 Yes Yes 

57 Goodyear Heat 
Exchanger Rupture 

6/11/2008 Yes Unknown 

58 DuPont Corporation 
Toxic Chemical 
Releases (Phosgene)

1/23/2010 Yes Yes 

59 DuPont Corporation 
Toxic Chemical 
Releases (Methyl 
chloride) 

1/22/2010 Unknown Unknown 

60 DuPont Corporation 
Toxic Chemical 
Releases (Oleum)  

1/23/2010 Unknown Unknown 

61* DuPont Corporation 
Toxic Chemical 
Releases (Methanol)

9/21/2010 Unknown Unknown 

62* DuPont Corporation 
Toxic Chemical 
Releases 
(Monomethylamine)

12/3/2010 Unknown Unknown 

63* Hoeganaes 
Corporation Fatal 
Flash Fires (Iron 
dust) 

1/31/2011 No Unknown 

64* Hoeganaes 
Corporation Fatal 
Flash Fires (Iron 
dust) 

3/29/2011 No Unknown 

65 Hoeganaes 
Corporation Fatal 

5/27/2011 Yes ** Unknown 
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No.1 Incident  Incident 
Date

PSM 
covered

PHA 
performance 

Flash Fires 
(Hydrogen) 

66 E. I. DuPont De 
Nemours Co. Fatal 
Hot Work 
Explosion 

11/9/2010 Yes Yes 

67* Donaldson 
Enterprises, Inc. 
Fatal Fireworks 
Disassembly 
Explosion and Fire  

 04/08/2011 No No 

68 Carbide Industries 
Fire and Explosion 

3/21/2011 No Unknown 

69 NDK Crystal Inc. 
High-pressure 
vessel rupture 

12/7/2009 No Unknown 

70 Silver Eagle 
Refinery and 
Catastrophic Pipe 
Explosion  

11/4/2009 Unknown 
** 

Unknown 

71* Silver Eagle 
Refinery Flash Fire 
and Explosion 

1/12/2009 Unknown Unknown 

72 Tesoro Refinery 
Fatal Explosion and 
Fire  

4/2/2010 Yes Yes 

73 AL Solutions Dust 
Explosion 

12/9/2010 No Yes ** 

74 US Ink Fire 10/9/2012 Unknown No ** 
75 Millard Refrigerated 

Services Ammonia 
Release  

8/23/2010 Yes ** Unknown 

76* Chevron Refinery 
Fire 

8/6/2012 Yes 3 Yes 

77 Horsehead Holding 
Company Fatal 
Explosion and Fire 

7/22/2010 Unknown 
** 

Unknown 

78 Caribbean 
Petroleum Refining 
Tank Explosion and 
Fire 

10/23/2009 No No 

79* West Fertilizer 
Explosion and Fire  

4/17/2013 No No 

80* Macondo Blowout 
and Explosion  

4/20/2010 No Yes 
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No.1 Incident  Incident 
Date

PSM 
covered

PHA 
performance 

81* Tesoro Martinez 
Sulfuric Acid Spill 

2/12/2014 Yes Yes 

82* Tesoro Martinez 
Sulfuric Acid Spill 

3/10/2014 Yes No 

83* Williams Olefins 
Plant Explosion and 
Fire 

6/13/2013 Yes Yes 

84* AirGas Facility 
Fatal Explosion  

8/28/2016 No No 

85* ExxonMobil 
Refinery Explosion 

2/18/2015 Yes 3 Yes 

86* Freedom Industries 
Chemical Release  

1/9/2014 No No 

87* ExxonMobil 
Refinery Chemical 
Release and Fire   

11/22/2016 Yes Yes 

88* MGPI Processing, 
Inc. Toxic Chemical 
Release 

10/20/2016 No Yes 

89 Packaging 
Corporation of 
America Hot Work 
Explosion  

2/8/2017 No No 

90* Arkema Inc. 
Chemical Plant Fire 

8/29/2017 Yes Yes 

91* Enterprise 
Pascagoula Gas 
Plant Explosion and 
Fire  

6/27/2016 Yes Unknown 

92* Pryor Trust Fatal 
Gas Well Blowout 
and Fire 

1/22/2018 No No 

93* DuPont La Porte 
Facility Toxic 
Chemical Release 

11/15/2014 Yes Yes 

94* Midland Resource 
Recovery Explosion 

5/24/2017 No No 

* Incidents newly added compared to the analysis of Baybutt (2016)  
** Discrepant outcomes compared to the analysis of Baybutt (2016) 
*** There were specific notifications for the PSM standard coverages in the CSB reports, but it was 
determined based on the OSHA guideline (Occupational Safety and Health Administration OSHA, 
2020) 

1 Chronological order based on publishing incident reports  
2 As a public sector, the incident site was not covered by the OSHA standard (OSHA, 2020b).  
3 California’s process safety management (PSM) regulations 
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3.7. Appendix 3B Used 10 equipment categories with their subcategories (CCPS, 

1998)  

Equipment types Sub-categories of each equipment type 

Vessel  In-process vessel (surge drums, flash drums, separators, 
accumulators, etc.) 

 Pressurized tank (spheres, bullets) 
 Atmospheric, fixed rook storage tank (cone/done roof) 
 Atmospheric, floating roof storage tanks 

Reactor  Batch reactors 
 Semi-batch reactors 
 Continuous flow stirred tank reactors (CSTR) 
 Plug flow tubular reactor (PFR) 
 Packed-bed reactor (continuous) 
 Packed-tube reactors (continuous) 
 Fluid-bed reactors

Mass transfer 
equipment 

 Absorption 
 Adsorption 
 Extraction 
 Distillation 
 Scrubbing 
 Stripping 
 Washing

Heat transfer 
equipment 

 Shell and tube exchange 
 Air-cooled exchange 
 Direct contact changers 
 Other types including helical, spiral, plate and frame, 

and carbon block exchange

Dryer  Spray dryers 
 Tray dryers 
 Fluid bed dryers 
 Conveying (flash, mechanical, and pneumatic) dryers 
 Rotary dryers

Fluid transfer 
equipment 

 Blowers 
 Pumps 
 Compressor 

Solid-fluid separators  Centrifuges 
 Filters 
 Dust collectors 
 Cyclones 
 Electrostatic precipitators
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Equipment types Sub-categories of each equipment type 

Solids handling and 
process equipment 

 Mechanical conveyors 
 Pneumatic conveying system 
 Comminution equipment (mills, grinder, crushers) 
 Sieving (screening) equipment 
 Power blenders (mixers) 
 Solid feeders (rotary valves, screw feeders, etc.) 
 Spray granulators and coaters

Fired equipment  Process furnaces 
 Boilers 
 Thermal incinerators 
 Catalytic incinerators

Piping and piping 
components 

 Piping (metallic, nonmetallic, lined, jacketed, double- 
walled) 

 Components (flanges, expansion joints, gaskets, bolts, 
etc.)
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4. FAST, EASY-TO-USE, MACHINE LEARNING-DEVELOPED MODELS OF 

PREDICTION OF FLASH POINT, HEAT OF COMBUSTION, AND LOWER AND 

UPPER FLAMMABILITY LIMITS FOR INHERENTLY SAFER DESIGN 6 

 

This chapter proposes easy-to-apply machine learning-developed models, which 

predict four flammability properties of pure organic compounds: the flash point, heat of 

combustion, lower flammability limit (LFL), and upper flammability limit (UFL). These 

flammability properties pose a strong impact on the inherently safer design of industrial 

processes. Similar to quantitative structure-property relationship (QSPR) or group 

contribution models, machine learning algorithms are utilized in this study to establish 

predictive models. Compared to previous models, this chapter uses readily available 

variables (i.e., the numbers of atomic elements, molecular weights, and normal boiling 

points) as default variables without the analysis of detailed molecular structures or the in-

depth knowledge of chemistry. This chapter consists of two steps: Step (1) building 

multiple linear regression (MLR) models by incorporating default input variables and Step 

(2) building MLR models by incorporating interaction and transformed variables to 

improve the predictions from the models in Step 1. In Step 1, an optimal subset of 

predictors is identified by con- structing an MLR model via the sequential floating 

backward selection (SFBS) algorithm. As a result of Step 1, the two constructed models 

 

6 Reprinted with permission from “Fast, easy-to-use, machine learning-developed models of prediction of 
flash point, heat of combustion, and lower and upper flammability limits for inherently safer design” by 
Park, S., Bailey, J. P., Pasman, H. J., Wang, Q., & El-Halwagi, M. M. (2021) Computers & Chemical 
Engineering, 155, 107524, Copyright [2021] by Elsevier Ltd. All rights reserved. 
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of the flash point and heat of combustion are found to be adequate, while the predictability 

of LFL and UFL are insufficient. In Step 2, MLR models incorporating nonlinearity and 

interaction terms are constructed via the sequential floating forward selection (SFFS) 

algorithm by selecting the optimal subset of default variables. The results show that all the 

constructed models in Step 2 are adequate as predictive models; the mean absolute errors 

(MAEs) of the flash point, heat of combustion, LFL, and UFL are 7.31 (5.67 via the SFBS) 

[K], 60.6 (61.87 via the SFBS) [kJ/mol], 0.21 (0.19 via the SFBS) [vol.%], and 2.44 (2.33 

via the SFBS) [vol.%], respectively. Compared to previous models, the approved models 

in this study provide highly competitive performance with enhanced simplicity and 

interpretability. 

 

4.1. Introduction  

Combustion incidents are among the most commonly occur- ring incident types in 

the process industry. The general prerequisite condition for combustion incidents is that 

the released chemical must be flammable (CCPS, 1999). The released chemical may then 

cause a combustion incident when the surrounding temperature reaches or surpasses the 

chemical’s autoignition or flash point temperature within its flammable range (also called 

explosive range) (Albahri, 2015). The minimum ignition energy (MIE) and the heat of 

combustion are additional flammability properties associated with the combustion 

incidents (Wang et al., 2017). Some flammability properties are often addressed together 

to grasp combustion incidents properly (Park et al., 2020). This was done within the 

context of choice making in inherently safer conceptual design, in which an easy-to-use 
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method for any flammable that would be sufficiently accurate, would support a designer 

in decision making on alternatives. 

Since flammable chemicals such a fuels, solvents, and raw materials are 

indispensable in the process industry, finding sensible strategies for handling flammability 

has been an ongoing topic of investigation. Of several flammability properties, particular 

attributes are adopted as indicators of susceptibility to ignition in academic fields, safety 

standards, and regulatory authorities. For example, the U.S. National Fire Protection 

Association (NFPA) and the U.S. Occupational Safety and Health Administration 

(OSHA) have employed the flash point as a criterion for enforcing the safety handling of 

flammable chemicals. The analysis of Park et al. (2020), which is a review paper for safety 

indices, shows that many studies have often adopted four properties—flash point, heat of 

combustion, and flammable range —as chemical predictor variables in inherent safety 

indices.  

 

Table 4.1 List of selected five chemical properties associated with the hazards of 
chemicals  

Hazardous chemical 
property 

Definition 

Flash point The lowest temperature at which an ignition source causes the 
vapors of a substance to ignite in atmospheric pressure (ASTM, 
2016).  

Heat of combustion  

(Also called enthalpy of 
combustion) 

The net increase in heat content when a substance undergoes 
complete oxidation in its standard state at ambient conditions 
(Yaws, 1999). 
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Hazardous chemical 
property 

Definition 

Lower flammability 
limit (LFL) 

The minimum concentration of a combustible substance that is 
capable of propagating a flame in a homogeneous mixture of the 
combustible and a gaseous oxidizer under the specified conditions 
(ASTM, 2004). 

Upper flammability limit 
(UFL) 

The maximum concentration of a combustible substance that is 
capable of propagating a flame in a homogenous mixture of the 
combustible and a gaseous oxidizer under the specified condition of 
test (ASTM, 2004). 

Flammable range 
(Also, called explosive 
range) 

The difference between UFL and LFL (i.e., UFL-LFL vol.%]).  

 

Flammability properties for specific chemicals are not always available from the 

experimental data. This is because numerous chemicals are newly synthesized in the 

chemical process industry and carrying out experiments for toxic, explosive, or radioactive 

compounds is extremely difficult and costly (High & Danner, 1987; Pan et al., 2010). 

Alternatively, studies have been geared toward predicting chemical flammability 

properties in a practical manner. These studies can be categorized into three models 

(Gharagheizi et al., 2008): (1) a physical property model, (2) a group contribution model, 

and (3) a quantitative structure-property relationship (QSPR) model, as illustrated in Table 

4.2. Predictive models were actively proposed in physical property model approaches 

between the late 1950s and the mid-1990s. Then, more complicated and accurate 

approaches, which were group contribution models and QSPR models, were actively 

proposed from 2000 onward. 
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Table 4.2 Comparison of the three model types of predicting flammability properties 

 Physical property model  Group contribution model   QSPR model 

Predictor variables  Other physical properties: 
boiling points, vapor 
pressure, specific density, 
stoichiometric 
concentration of fuel in 
air, different flammability 
properties with a target 
flammability property, etc. 

 Molecular structures  

 Molecular descriptors (by 
considering molecular 
structures)   

Performance of feature 
selection technique 

 No  No  Yes, most cases   

Advantages  Straightforward to 
perform 
 

 Easy to interpret the 
proposed models  

 

 Estimation without 
considerable computational 
resources like QSPR models  

 Flexible models  
 

 High accuracy via numerous 
input parameters, molecular 
descriptors   

Disadvantage  High dependency from 
other physical properties  
 

 Limited applicability 
scope of chemical 
compounds  

 Required knowledge about 
various molecular structures. 
 

 Difficulty in decomposing 
structures for several 

 Multiple steps to obtain 
molecular descriptor values 
using licensed commercial 
software programs   
 



 

165 

 

 Physical property model  Group contribution model   QSPR model 

 

 Chance of underfitting 
because of few input 
parameters 

concurrent functional groups 
in a considered molecule 

 

 Numerous predictor variables 
(Tens of predictors) 

 

 Limited applicability scope 
of chemical compounds  

 Often required the skill of 
coding to perform machine 
learning algorithms  
 

 Hard to intuitively interpret 
the proposed models. 

Exemplary studies (flash 
point)  

Mack et al. (1923), Butler et 
al. (1956), Affens (1966), 
Affens and McLaren 
(1972), Ishiuchi (1976), 
Fujii and Hermann (1982), 
Kanury (1983), Patil (1988), 
Satyanarayana and Kakati 
(1991), Hshieh (1997), 
Catoire and Naudet (2004), 
Jiao, Ji, et al. (2020)  

Suzuki et al. (1991), Albahri 
(2003), Pan et al. (2007), 
Gharagheizi et al. (2008), J. 
Rowley et al. (2010), Lazzús 
(2010), Carroll et al. (2010a), 
Carroll et al. (2010b), Carroll, 
Godinho, et al. (2011), Carroll, 
Lin, et al. (2011), J. R. Rowley 
et al. (2011), Keshavarz and 
Ghanbarzadeh (2011), Jia et al. 
(2012), Mathieu and Alaime 
(2014), Albahri (2015), 
Frutiger et al. (2016), 
Keshavarz et al. (2016), 
Alibakshi (2018) 

Tetteh et al. (1999), Katritzky et 
al. (2001), Catoire and Naudet 
(2004), Katritzky et al. (2007), 
Gharagheizi and Alamdari 
(2008), Patel et al. (2009), Pan 
et al. (2010), Bagheri, Bagheri, 
et al. (2012), Bagheri, Borhani, 
et al. (2012), Torabian and 
Sobati (2019) 
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 Physical property model  Group contribution model   QSPR model 

Exemplary studies (heat 
of combustion) 

Hshieh (1999), Britton 
(2002),  

- 
Duchowicz et al. (2007), 
Gharagheizi (2008b),  

Exemplary studies 
(LFL) 

Suzuki (1994), Suzuki and 
Ishida (1995), Hshieh 
(1999), Britton (2002), Jiao, 
Ji, et al. (2020) 

Seaton (1991), Frutiger et al. 
(2016), 

Gharagheizi (2008a), Pan et al. 
(2010), Bagheri, Rajabi, et al. 
(2012), Chen et al. (2017), 
Wang et al. (2018), Jiao, Yuan, 
et al. (2020) 

Exemplary studies 
(UFL) 

Suzuki and Ishida (1995), 
Jiao, Ji, et al. (2020) 

Seaton (1991), Frutiger et al. 
(2016), 

Pan et al. (2009b), Pan et al. 
(2010), Wang et al. (2019) 
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All of the three aforementioned approaches find an empirical correlation between 

a target flammability property and predictor variables, based on the assumption that 

structurally similar compounds may have similar flammable activities. Table 4.2 

summarizes the characteristics of each approach to developing a predictive model. As its 

name implies, physical property models use other physical properties (e.g., boiling point 

or vapor pressure) as predictor variables to predict a desirable flammability property 

among structurally similar compounds. In a first step, group contribution and QSPR 

models initially describe molecular structures either by functional groups or 3D-

descriptors with chemistry knowledge or specialized software programs to obtain default 

variables. In particular, QSPR models use molecular descriptors, which are encoded 

molecular structure characteristics, after identifying geometrically optimized molecular 

structures via specialized software programs 7  (Jiao et al., 2019). These descriptors 

numerically express various chemical structural properties such as constitutional, 

topological, geometrical, thermodynamic, quantum chemical, and charge-related 

characteristics. Since thousands of high dimensional descriptors are produced to describe 

numerous compounds’ characteristics, more informative descriptors for the prediction of 

a target property are selected through multiple feature selection procedures. In the last step 

of all models, the selected variables are correlated to target properties by regression 

algorithms. Thus, the type of predictor variables are the main differences among the three 

 

7 Most QSPR models obtain descriptors via specialized software program. However, recently, graph neural 
networks (GNNs) have been attracting attention in the prediction of molecular properties without the need 
to manually select molecular descriptors, as the GNNs learn properties from a molecular graph 
representation in an end-to-end training (Coley et al., 2017).      
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different types of predictive models. Moreover, physical property and group contribution 

models are constructed using determined predictor variables without a feature selection 

procedure, whereas most QSPR models have a feature selection step to identify 

informative variables. Hence, in comparison to the other two, the predictors of QSPR 

models are systematically selected compared to the other models with a feature selection 

procedure. 

To present the big picture of the published predictive models, this study divided 

the previous models into three groups based on predictor variables. However, there are 

often concurrent predictor variables among the three groups. For example, the numbers of 

specific atoms or boiling points, which are typical predictor variables in physical property 

models, are also often adopted as predictor variables in the other model types. For instance, 

the group contribution models proposed by Carroll et al. (2010a) and Godinho et al. (2012) 

use the number of carbon and boiling points along with selected group contribution terms 

to predict the flash point. The group contribution model proposed by Keshavarz and 

Ghanbarzadeh (2011) also counts the number of carbons and hydrogens of the functional 

groups to distinguish between saturated and unsaturated hydrocarbons. The QSPR model, 

which predicts flash points proposed by Katritzky et al. (2001), contains the normal 

boiling point as a predictor variable along with selected descriptors. Hence, since 

predictive models have been enhanced gradually from physical property models to group 

contribution or QSPR models, these predictor variables of physical property models have 

been retained in the other models. Even though the number of specific atoms and the 

boiling point have played important roles as predictors, to our best knowledge, there has 
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been no attempt to systematically check which atomic elements and boiling points are 

more informative to predict a target property, such as through a feature selection 

technique. 

The predictive models have been enhanced by focusing on two primary points: (1) 

providing competitive predictability and (2) including more generic organic compounds. 

Physical property models and QSPR models have expanded the scope of organic 

compounds from hydrocarbons, which are the simplest organic compounds only 

containing carbon and hydrogen, to more generic organic compounds, which contain other 

atomic elements along with carbon and hydrogen. For example, initial predictive models 

(Butler et al.’s physical property model (1956) and Pan et al.’s QSPR model (2010)) are 

only limited to pure hydrocarbons. Then, for covering more generic organic compounds, 

physical property models have been extending more organic compounds by developing 

multiple models based on atomic elements or functional groups. Also, for better 

predictability, complex equation forms that are expressed by polynomial, logarithmic or 

nonlinear terms have been proposed in physical property models. Meanwhile, group 

contribution and QSPR models have been developed by means of the rapid development 

of information technology. Using various machine learning algorithms such as multiple 

linear regression (MLR), artificial neural network (ANN), support vector machine (SVM), 

k-nearest-neighbors (KNN), and random forest (RF), the predictability of these models 

has increased (Alibakshi, 2018; Jiao, Hu, et al., 2020; Katritzky et al., 2007; Keshavarz et 

al., 2016; Lazzús, 2010; Patel et al., 2009; Wang et al., 2019; Yuan et al., 2019). The 

promising results in the previous QSPR studies demonstrate the feasibility of predicting 
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flammability properties based on molecular structures. The recent development of QSPR 

models provides accurate and reliable predictions of target properties (Liu & Liu, 2010). 

Recently, several QSPR models were proposed to estimate the flammability property of 

mixture compounds beyond the pure organic compounds (Jiao, Yuan, et al., 2020; 

Torabian & Sobati, 2019; Wang et al., 2018; Wang et al., 2019). 

Although the proposed QSPR models have resulted in high accuracy predictions, 

there are two main limitations when design and risk analysis practitioners attempt to use 

them. First, these models may be feasible to only a limited group of researchers. Since 

descriptors work as predictor variables in QSPR models, the information of descriptors is 

indispensable for establishing or utilizing a QSPR model (Borhani et al., 2016). To obtain 

the information, utilizing a couple of specialized chemical packages is essential. Thus, the 

generic first step of QSPR that prepares descriptors causes practitioners to struggle when 

predicting a target flammability property. In the process industry (or even other academic 

research groups), practitioners hardly access such computer programs and information. 

Even after obtaining the descriptors, there is another big challenge for practitioners for 

utilizing QSPR models. Often, published QSPR models account for a certain range of a 

target property or the machine learning algorithms creating a model via complicated black 

box model without a concrete equation form from an MLR algorithm. Therefore, to adopt 

a QSPR model, practitioners must be proficient in coding to perform the identical machine 

learning algorithms. Although a variety of predictive models have been proposed in 

academic fields, adopting these models is still difficult for practitioners due to the demand 
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for either in-depth chemistry or computer science knowledge in associated with the 

models. 

The above was substantiated when we analyzed the chemical process incidents 

investigated by the US Chemical Safety and Hazard Investigation Board (CSB) (Park et 

al., 2021), in our quest for more straightforward judgment on whether a change in 

conceptual design improves inherent safety. In terms of the data availability of chemical 

properties associated with the 69 combustion incidents: more than 40% of the incident 

data was missing for the LFL, UFL, and heat of combustion, and more than 20% of the 

data was missing for the flash point. Estimating this missing flammability data could give 

a better understanding of the possible lack of the inherently safer design among previous 

incidents' characteristics. However, due to suitable predictors’ unenviabilities, adopting 

various QSPR models for each flammability property seemed difficult. This difficulty of 

missing data then raised demand regarding practical predictive models for these 

flammability properties. As Pistikopoulos et al. (2021) emphasized the importance of data 

application within scientific chemical engineering, a more practical and simpler 

acquisition method for flammability properties data was considered, which led us to the 

current approach incorporating machine learning techniques. 

In the remainder of this chapter, Section 4.2 provides the study’s objective and 

contributions. Section 4.3 describes the data and methods used. The results and discussion 

are presented in Section 4.4. Finally, concluding remarks are addressed in Section 4.5.  
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4.2. Objective and contributions of this study 

 This study aims to propose practical, reliable predictive models for four 

flammability properties of pure organic compounds: flash points, heat of combustion, 

LFL, and UFL. In order to establish practical models, predictor variables were selected 

among easily accessible variables (i.e., numbers of atomic elements per molecule, 

molecular weight, and boiling point). Apart from the variables’ accessibility, their intrinsic 

characteristics may be associated with molecular structures such as descriptors, which are 

encoded molecular structure properties in QSPR studies. Compared with the limited 

number of default predictor variables in this study, hundreds of descriptors are produced 

in QSPR studies to describe various chemical compounds' characteristics. Given that there 

are often high correlations among the descriptors, this study intuitively creates 

transformed variables from the default input variables and their interaction terms. This 

study assumes that the new variables might be more informative in predicting a target 

flammability property than the original default variables. In other words, in this study, 

more compounded or transformed relationships (e.g., polynomial or logarithm) are 

considered when a simple relationship is insufficient for accurately predicting 

flammability properties. These strategies, in turn, lead to the establishment of MLR 

models incorporating consideration of nonlinear and interaction terms. MLR yields a 

simple equation, so practitioners are easily able to apply the results. Of hundreds of input 

variables (e.g., 119 atom types, boiling points, molecular weight, their nonlinear forms, 

and their numerous interaction terms), more informative ones are selected as predictor 
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variables through feature selection algorithms. Finally, the accuracy of the proposed MLR 

model is evaluated through machine learning validation techniques. 

 

Put simply, the novel contributions of this current study are: 

1. To use easily accessible physical properties, the normal boiling point, 

molecular weight per mole, and all atomic elements as default input 

variables, unlike currently published predictive models. 

2. To selected informative atomic elements in a systematic manner via 

feature selections.  

3. To prepared new input variable transformed from the default input 

variables or from interaction terms between individual input variables.  

4. To establish statistical MLR models, which are tractable models, 

incorporating consideration of nonlinear and interaction predictors by 

using the prepared transformed input variables.  

5. To interpret how likely primary atomic elements and their interactions 

contribute to each flammability property’s characteristics.  

 

4.3. Materials and methods 

A generic schematic in this study is depicted in Figure 4.1. This study consists of two 

steps: Step (1) building MLR models for the four flammability properties by incorporating 

default input variables and Step (2) building MLR models incorporating interaction and 

transformed predictor variables as needed to improve the predictions from the models in 
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Step 1. Specifically, nonlinear and interaction terms allow for more flexible, but not 

necessarily more interpretable, models. In both steps, the MLR can take the form of 

Equation 4.1: 

 

𝒚   𝜷𝟎  𝜷𝟏𝒙𝟏 𝜷𝟐𝒙𝟐 ⋯ 𝜷𝒊𝒙𝒊 ⋯  𝜷𝒏𝒙𝒏                    Equation 4.1 

 

where  

𝑦 represents an observed flammability property of interest,  

𝑥  is the 𝑖  predictor variable, and 

𝛽  is the 𝑖  regression coefficient that correlates between 𝑦 and  𝑥 . 
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Figure 4.1 Flow diagram of the proposed method 
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4.3.1. Comprehensive overview of dataset 

The American Institute of Chemical Engineer’s (AIChE’s) Design Institute for 

Physical Properties Relationships (DIPPR, 2019) database was used in this study to 

establish accurate statistical models. The DIPPR data base contains temperature dependent 

and independent properties of more than two thousand industrially important compounds. 

As our study relates to fire and explosion propensity in view of industrial conceptual 

process design involving mainly organic compounds, we selected those from the data base. 

Dependent on the type of property, this set comprises between 1,700 and 1,850 compounds 

of various types with different functional groups. For this reason, many QSPR models 

have been constructed based on this data. The DIPPR data reference included all of the 

information required for this study, such as molecular formula, molecular weight, boiling 

point, flash point, heat of combustion (net standard enthalpy of combustion at 298 K), 

LFL, and UFL. All necessary information was compiled together based on the chemical 

abstracts service (CAS) numbers or substance names. Organic compounds were then 

selected. The combined available data of a target flammability property and boiling point 

is essential for establishing a predictive model (The organic compounds whose boiling 

points and each target property are exclusively available were analyzed). Consequently, a 

slightly inconsistent dataset was investigated for a different target flammability variable, 

depending on how it matched with the boiling point. The numbers of the dataset for boiling 

point, heat of combustion, LFL, and UFL were 1741, 1850, 1733, and 1711, respectively. 

Depending on the hallmark represented by given data, different tactics should be 

explored. Therefore, understanding the dataset was the first task of this study to obtain an 
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idea of strength (measured by correlation), form (e.g., linear, quadratic, etc.), or direction 

(positive or negative) of any relationship that exists between default variables. 

Figure 2 displays that the data distributions of normal boiling points and flash 

points were roughly normal (or Gaussian) distributions, i.e., a bell shape (Marshall & 

Jonker, 2010). However, the other variables’ data followed non-normal distribution. For 

example, the number of molecular weight values, the number of carbon atoms per 

molecule, and data of LFL and UFL were positively skewed. In contrast, the data 

distribution of heat of combustion was moderately negatively skewed.  

The pairwise correlations were analyzed to capture an insight into the potential of 

boiling points, molecular weight, and carbon elements as predictors (Figure 4.3). Since 

most variables in the study were not normally distributed as illustrated in Figure 4.2, the 

Spearman rank correlation that may be appropriately applied to asymmetric marginal 

distributions was adopted (Maindonald & Braun, 2006). Spearman rank correlations were 

calculated using Equation 4.2. This unitless coefficient is a standardized version of the 

covariance that is between -1 and 1(Rhys, 2020). The higher (in magnitude) the 

correlation, the more associated two variables are. For example, the values of -1 and 1 

indicate that the correlation between a pair of variables is perfectly negative or positive, 

respectively. A correlation of zero implies that there is no relationship at all. For instance, 

the correlation value, 0.98, between boiling point and flash point indicates that they are 

highly related. In contrast, the correlation between the number of carbon atoms and heat 

of combustion is highly negative because their correlation value is -0.97. UFL and LFL 

are also highly negatively correlated with the number of carbons. Figure 4.3 indicates that 
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the four flammability properties (UFL, LFL, heat of combustion, and flash point) are 

highly correlated with any of default possible predictor variables (boiling point, the 

number of carbons, and molecular weight).  

 

𝑺𝒑𝒆𝒂𝒓𝒎𝒂𝒏 𝒓𝒂𝒏𝒌 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 𝟏 𝟔 ∑ 𝒅𝒊
𝟐

𝒏 𝒏𝟐 𝟏
                 Equation 4.2 

where  

𝑛 is the number of observations, 

𝑑  is the difference between the ranks of corresponding variables, and  

Σ denotes a sum of the multiple terms.  
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Figure 4.2 Eight histograms of variables in the collected data (𝒏=1,738) 
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Figure 4.3 Spearman rank correlation plot of eight chemical properties in the entire 
data set (𝒏=1,738) 

 

4.3.2. Preprocessing of dataset 

We prepared a dataset for input variables, which are possible predictor variables, 

based on the compiled data from the DIPPR (2019). In both Steps 1 and 2, the prepared 

input variables were (1) the number of all atomic elements per each molecule, (2) normal 

boiling point, and (3) molecular weight. First, individual atoms within every organic 

compound were counted. After enumerating all atom types of the periodic table of 

elements, the numbers of used atoms were counted in each molecular formula. Even 
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though various previous predictive models utilized the numbers of specific atoms (e.g., 

carbon, halogen groups) as predictors, this study thoroughly examined all 119 atoms as 

possible predictors to ensure that there was no missing information on the atomic 

elements. Second, the normal boiling point was selected. Since its intrinsic characteristics, 

such as volatility, which is correlated to flammability properties, boiling point has been 

exploited as a predictor variable in previous predictive models. In a similar manner, the 

normal boiling point was selected as an input variable in this study. Finally, molecular 

weight was chosen as another input variable. This choice was intuitively made through a 

couple of predictors of physical property models and QSPR models. For instance, instead 

of specific gravity in physical property models, or a gravity index in QSPR models, 

molecular weight may replace their properties to take into account the weight-related 

characteristics of organic compounds. 

To refine the initial model, 122 input variables were additionally constructed by 

transforming or interacting between default input variables in Step 2. First, the 

transformed variables were created via quadratic, square root, or logarithmic forms of 

input variables. Such transformations have been performed to establish a better predictive 

model in other published methods to capture nonlinear relationships. Since generating 

transformed variables of all atomic elements is computationally expensive, 10 atomic 

elements (i.e., C, H, O, F, Cl, Br, I, N, Si, S), which were selected at least once as predictors 

through feature selections in Step 1, were transformed. Such feature selections were 

conducted within a training set (80%) of all data (Further explanation of the training set 

will be provided in Section 4.3.4). Then, their transformation forms were appended as 
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input variables, along with the transformation forms of molecular weight and boiling 

point. Afterward, using the transformed and default input variables, the interaction terms 

were further created. It should be noted that the interaction terms among predictor 

variables were firstly proposed in this study to account for their interaction effects (or 

synergy effects) in a macro scale. Since chemical-physical properties, including 

flammability properties, were often interpreted through either a group bond or a chemical 

bond, we intuitively devised interaction terms to consider such bonds. For example, the 

interaction terms between molecular weight and atomic elements may capture a group 

bond's behavior, which is an integration of two molecular groups. This assumption was 

made because molecular weight might refer to a bulk-related factor. Similarly, the 

interactions between different atoms may also account for chemical bonds between them. 

This assumption was also made because simply the interaction between nonidentical 

atoms might be associated with a polarity-related factor.  For example, the interaction 

terms between the number of carbons and hydrogens may capture the characteristics of 

the alkyl group’s bond types (e.g., single, double, and triple bonds). The ratio of 

electronegativities between different atoms may contribute to chemical potential due to 

the imbalanced charged atoms. For this reason, the fraction (ratio) terms were also 

constructed as an interaction term type. Lastly, the interaction terms between boiling point 

and the other input variables (atomic element and molecular weight) were also considered 

in case the former interaction terms were not enough to capture the characteristics of a 

group or chemical bonds. Finally, a total of 243 variables for each model were employed 
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as input variables in Step 2. All the prepared variables are provided in the Supplementary 

Materials. 

In case the created model’s performance was insufficient (e.g., 𝑅 0.6), some 

distinguishable outliers were discarded for additionally developing a more reliable model. 

  

4.3.3. Selecting a target variable 

In the sequence of flash point, heat of combustion, LFL, and UFL, predictive 

models were proposed. In Step 1, predictive models for each target variable were 

established only using the default input variables. Then, in Step 2, the transformed and 

interaction variables were added into input variables, along with the default predictor 

variables to improve the accuracy of the model.  

 

4.3.4. Developing and validating a model 

The organic compounds were randomly split into a training (80%) and a test set 

(20%). The training set and test set were utilized for model development and model 

validation, respectively. This idea of partitioning the data into a training and test set is a 

standard approach in machine learning to get more accurate predictions of a model’s 

accuracy (Hastie et al., 2009).  

The set of variables was trimmed in order to improve both model accuracy and 

interpretability by using feature selection algorithms. In this study, two feature selection 

algorithms were used: (1) sequential floating forward selection (SFFS) and (2) sequential 

floating backward selection (SFBS). These feature selection algorithms find out a small, 



 

184 

 

optimal subset of input variables to accurately predict a target property via MLR (Rhys, 

2020). The SFFS starts from the empty set and iteratively adds the most significant 

variables. Significance is measured by estimating the mean square error (MSE) (Equation 

4.6) of the result MLR using the selected variables via cross validation techniques. In 

contrast, the SFBS starts with all input variables and successively excludes an insignificant 

variable in each step. Afterward, a series of conditional inclusions are made from excluded 

variables if an improvement can be reinforced to the preceding sets (Pudil et al., 1994). 

These two feature selection algorithms were implemented through the R package, mlr 

(Bischl et al., 2020), based on the training set. Also, every permutation of a predictor 

variable in these algorithms was cross-validated (i.e.,10-fold cross-validation) to calculate 

internal performance within the training set. After performing the two algorithms, the 

established model that best predicted a target property was retained. 

Multicollinearity was then examined for an established model using the subset of 

predictors extracted from the feature selection algorithms in Step 1. Multicollinearity 

refers to the situation collinearity exists among three or more variables, so it results in 

standard errors that are highly inflated (Fred Nwanganga, 2020; James et al., 2017). 

Hence, multicollinearity can generate a problem in linear regression models in terms of 

their reliability. This study used variance inflation factor (VIF) for the diagnosis of 

multicollinearity using Equation 4.3.  

 

𝑽𝑰𝑭 𝜷𝒊
𝟏

𝟏 𝑹𝑿𝒊|𝑿 𝒊
𝟐                                    Equation 4.3  
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where 𝑅 |  is the  𝑅  from a regression of 𝑋  on the remaining explanatory 

variables. 

 

 The value of VIF is between 1 and infinity. The larger the value is, the larger 

multicollinearity exists. In this study, the VIF value of 10 was used as a threshold (Alin, 

2010). When VIF was greater than 10, we dropped pragmatic variables that presented 

multicollinearity in the proposed model from the feature selection algorithms in Step 1. 

 Nevertheless, the high VIFs caused by the inclusion of square or interaction terms 

of other variables were ignored because the p-value for these variables is not affected by 

the multicollinearity (Allison, 2012). For this reason, the analysis of VIF in Step 2 with 

interaction terms was not performed. 

 Next, the predictive capability of the developed model was evaluated using three 

statistical metrics: the coefficient of determination, denoted as 𝑅 , root mean square error 

(RMSE), and mean absolute error (MAE or also called average absolute error (AAE)). 

The equations of these metrics are expressed as follows: 

 

𝑹𝟐 𝟏
∑ 𝒚𝒊 𝒚𝒊

𝒏
𝒊 𝟏

𝟐

∑ 𝒚𝒊 𝒚 𝟐𝒏
𝒊 𝟏

                                  Equation 4.4    

 where 

𝑦  is the observed value of a target variable, 𝑦 is a predicted value,  

𝑦 is the mean of the observed value in the dataset, and 

𝑛 is the number of observed chemical compounds. 
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𝑹𝑴𝑺𝑬
∑ 𝒚𝒊 𝒚𝒊

𝟐𝒏
𝒊 𝟏

𝒏
                               Equation 4.5 

 

𝑴𝑨𝑬
∑ |𝒚𝒊 𝒚𝒊|𝒏

𝒊 𝟏

𝒏
                                     Equation 4.6 

 

The internal predictive capability of the established MLR model was evaluated via 

leave-one-out cross-validation RMSE (𝑅𝑀𝑆𝐸 ) and R-squared (𝑄 ) on each training 

set, which is calculated using Equations 4.7 and 4.8. 

 

𝑹𝑴𝑺𝑬𝑳𝒐𝒐
𝟏

𝒍
∑ 𝒚𝒊 𝒚𝒊𝒄

𝟐𝒍 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕
𝒊 𝟏                      Equation 4.7 

 

𝑸𝑳𝒐𝒐
𝟐 𝟏

∑ 𝒚𝒊 𝒚𝒊𝒄
𝒍 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕
𝒊 𝟏

𝟐

∑ 𝒚𝒊 𝒚𝒕𝒓𝒂𝒊𝒏
𝟐𝒍 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒔𝒆𝒕

𝒊 𝟏

                        Equation 4.8 

 where  

𝑦  and 𝑦  are the observed target variable and mean value in the training data 

set, respectively.  

𝑦  is the predictive variable of 𝑖𝑡ℎ object estimated by a model without using the 

𝑖𝑡ℎ objective (Bagheri, Rajabi, et al., 2012).  

In this validation, the model is repeatedly fit 𝑙 times using 𝑙 1 observed values 

in the training set. 
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The external predictive capability of the MLR models on the external test set was 

calculated by 𝑄 , using Equation 4.9.  

 

𝑸𝒆𝒙𝒕
𝟐 𝟏

∑ 𝒚𝒊 𝒚𝒊
𝒎 𝒕𝒆𝒔𝒕
𝒊 𝟏

𝟐

∑ 𝒚𝒊 𝒚𝒕𝒓𝒂𝒊𝒏
𝟐𝒎 𝒕𝒆𝒔𝒕

𝒊 𝟏
                            Equation 4.9 

 

 𝑅 , 𝑅𝑀𝑆𝐸, 𝑎𝑛𝑑 𝑀𝐴𝐸 were computed using both the training and test set, 

respectively. The 𝑅𝑀𝑆𝐸  and 𝑄  of the training set and the 𝑄  of the test set were 

employed to investigate the model's overfitting by comparing with the RMSE and 𝑅  

of the training set and  𝑅  of the test set.   

 

4.3.5. Assessing the adequacy of the created model 

Finally, the adequacy of the created MLR model was assessed by checking the 

goodness of fit through (1) a scatter plot between the predicted vs. observed points of a 

target flammability property, and (2) a residual plot against the predicted points. In the 

scatter plot between predicted vs. observed points, the diagonal line represents the perfect 

correlation of observed and predicted flammability values. Therefore, we checked the 

vicinity to the diagonal line. Meanwhile, the residual refers to the different between the 

actual of y, 𝑦  and the predicted value of 𝑦 (Sheather, 2009). In the residual plot, a 

discernible pattern is identified in case there is a systematic error. Therefore, when we 

recognized a discernible pattern in the plot, the model was determined as an inadequate 
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model to use. Based on these two observations, adequate models were selected in this 

study.  

 

4.3.6. The computer specification used  

This computation procedure was performed on a 1.90GHz Intel XPS 13 9370 (Dell 

Inc.) with 16GB Ram under window 10 Pro. The results from the SFFS feature selection 

were obtained within 30 minutes and those from the SFBS feature selection were obtained 

in around 3-7 hours.  

 

4.4. Results and discussions 

This section presents more reliable, applicable models among the various 

constructed models via the SFFS and SFBS feature selection algorithms. The models 

created through these two algorithms had relatively different strengths and weaknesses. In 

terms of accuracy, the performances of models constructed by the SFBS were superior 

through various predictors, except for heat of combustion. In terms of applicability or 

generalization, the SFFS algorithm-based models were superior because they had fewer 

predictors and showed a similar performance between training and test sets. In Step 1 

(Figure 4.1), since less than ten predictor variables were selected on the basis of both 

feature selection algorithms, the SFBS-based MLR models incorporating linearity (SFBS-

MLR-L) were determined by taking reliability into account. In contrast, many predictors 

were often selected through the SFBS in Step 2. Such models incorporating many 

predictors could make it complicated for process designers to quickly estimate a target 
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property. For example, the number of generated predictor variables of flash point, heat of 

combustion, LFL, and UFL prediction models via SFBS in Step 2 were 46, 34, 59, and 57, 

respectively. For this reason, more easily applicable models, SFFS-based MLR models 

incorporating nonlinearity and interaction (SFFS-MLR-NLI), were presented in detail in 

this section with the relevant interpretations. To check whether this method can achieve a 

more accurate model in this study, the SFBS-based MLR models incorporating 

nonlinearity and interaction (SFBS-MLR-NLI) of flash point, heat of combustion, LFL, 

and UFL are presented in Appendices 4A-4D, respectively.  

 

4.4.1. Results of flash point models  

The number of matched datasets among the flash point, normal boiling point, and 

molecular weight in the compiled dataset is 1,741.  

First, by performing the SFBS-MLR-L procedure on the training set, the optimum 

subset of eight predictors was achieved in Step 1. The constructed model for predicting 

the flash point is presented as the following: 

 

𝑻𝒇 𝑲 𝒇 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 𝒐𝒇 𝑪, 𝑶, 𝑵, 𝑭, 𝑪𝒍, 𝑺𝒊, 𝑺 𝒂𝒏𝒅 𝑻𝒃

𝟐. 𝟕𝟕𝟑𝟓 𝟏. 𝟖𝟒𝟒𝟑 𝒏𝑪 𝟐. 𝟕𝟒𝟓𝟒𝒏𝑶 𝟐. 𝟑𝟐𝟒𝟏𝒏𝑵 𝟐. 𝟗𝟖𝟖𝟗𝒏𝑭

𝟔. 𝟐𝟐𝟓𝟒𝒏𝑪𝒍 𝟑. 𝟐𝟒𝟖𝟒𝒏𝑺𝒊 𝟕. 𝟗𝟏𝟗𝟖𝒏𝑺 𝟎. 𝟕𝟔𝟔𝟓 𝑻𝒃 

Equation 4.10 
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where 𝑛𝐶, 𝑛𝑂, 𝑛𝑁, 𝑛𝐹, 𝑛𝐶𝑙, 𝑛𝑆𝑖  and 𝑛𝑆  are the numbers of carbon, oxygen, 

nitrogen, fluorine, chlorine, silicon, and sulfur atoms, respectively, 

𝑇  𝑎𝑛𝑑 𝑇  is the flash point [K] and normal boiling point [K] of an organic 

compound of interest. 

 

Given that the boiling point values (i.e., 81.7 - 1,089K) are much higher than the 

rest of the predictors, the most informative predictor would be the normal boiling point. 

Hence, the flash point increases linearly, particularly with the normal boiling point of pure 

organic compounds. The selected seven atoms then assist in improving the fit of the model. 

Of the seven atoms, three atoms contribute to reducing flash point values having negative 

coefficients. Conversely, the remaining four atoms lead to increased flash point values 

with positive coefficients. Although the magnitude of every coefficient is not in proportion 

to its corresponding electronegativities, we could interpret that the atoms having weak 

electronegativities (i.e., carbon, silicon, and sulfur) facilitate the volatility of organic 

compounds, so they function to decrease the flash point values. In stark contrast, the atom 

elements with stronger electronegativities (i.e., oxygen, nitrogen, fluorine, and chlorine) 

than the former three elements prevent organic compounds from volatilizing by leading to 

higher flash point values. However, note that this interpretation is merely valid when the 

boiling point exists in the model. These selected predictors’ coefficients are statistically 

significant (p-value < 0.05), and multicollinearity is less likely to exist (VIT<10), as 

illustrated in Table 4.3.  
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Table 4.3 Selected predictors and their coefficients of the flash point SFBS-MLR-L 
model (Equation 4.10) 

No. Variables Coefficient Std. error p-value VIF
0 Intercept 2.7735E+00 2.5210E+00 0.2715 -
1 𝑛𝐶 -1.8443E+00 1.1823E-01 < 2E-16 3.002
2 𝑛𝐶𝑙 6.2254E+00 8.6501E-01 1.01E-12 1.090
3 𝑛𝐹 2.9889E+00 7.1382E-01 3.00E-05 1.054
4 𝑛𝑁 2.3241E+00 9.0694E-01 0.0105 1.242
5 𝑛𝑂 2.7454E+00 3.4598E-01 4.31E-15 1.618
6 𝑛𝑆 -7.9198E+00 1.7457E+00 6.21E-06 1.064
7 𝑛𝑆𝑖 -3.2484E+00 7.2282E-01 7.57E-06 1.137
8 𝑇  7.6654E-01 7.4290E-03 < 2E-16 3.615

 

Second, by performing the SFFS-MLR-NLI procedure in the training set, the 

optimum subset of fifteen predictors was achieved in Step 2. The constructed model for 

predicting the flash point is presented as the following: 

 

𝑻𝒇 𝑲

𝒇 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 𝒐𝒇 𝑪, 𝑯, 𝑶, 𝑵, 𝑪𝒍, 𝑩𝒓, 𝑰, 𝑺𝒊, 𝑺, 𝑻𝒃, 𝑴𝑾, 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎𝒔  

𝟐𝟓𝟗. 𝟎 𝟕. 𝟓𝟑𝟐𝒏𝑪𝒍 𝟏𝟕. 𝟎𝟒𝒏𝑺𝒊 𝟒𝟗. 𝟑𝟑 𝑻𝒃 𝟖𝟒. 𝟏𝟕 𝒍𝒐𝒈𝟏𝟎𝒏𝑪

𝟑𝟗. 𝟒𝟕 𝐥𝐨𝐠𝟏𝟎 𝑴𝑾 𝟑𝟔𝟔. 𝟕 𝐥𝐨𝐠𝟏𝟎 𝑻𝒃 𝟒. 𝟓𝟔𝟗 𝐞𝐱𝐩 𝒏𝑩𝒓 𝟐𝟕. 𝟕𝟓 𝒏𝑰 𝟐

𝑻𝒃 𝟎. 𝟎𝟐𝟒𝒏𝑺𝒊 𝟎. 𝟏𝟐𝟏𝟕𝒏𝑺 𝟓. 𝟕𝟑𝟑 𝒏𝑪 𝒏𝑺

𝒏𝑪𝒍 𝟐. 𝟎𝟖𝟑𝒏𝑪 𝟏. 𝟑𝟖𝟒𝒏𝑯 𝟓. 𝟒𝟐𝟏𝒏𝑶 𝟏𝟏. 𝟏𝟕𝒏𝑵  

Equation 4.11 

where 𝑛𝐶, 𝑛𝐻, 𝑛𝑂, 𝑛𝑁, 𝑛𝑙, 𝑛𝐵𝑟, 𝑛𝐼, 𝑛𝑆𝑖 and 𝑛𝑆 are the numbers of carbon, hydrogen, 

oxygen, nitrogen, chlorine, bromine, iodine, silicon, and sulfur atoms, respectively. 

𝑀𝑊 is the molecular weight [g/mol] of an organic compound of interest. 
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The selected predictors’ coefficients are statistically significant (p-value < 0.05), 

as illustrated in Table 4.4. This model was constructed by combining two linear, six 

nonlinearity, and eight interaction terms of the eight predictors. Compared to Equation 

4.10 in Step 1, Equation 4.11 newly contains two halogen atoms — bromine, and iodine 

— as predictors by excluding fluorine. The contribution of chlorine atoms in this SFFS-

MNR-NLI model is expressed in various terms, which are its standalone terms and 

multiple interaction terms with carbon, hydrogen, oxygen, and nitrogen. Moreover, the 

normal boiling point is used to accurately fit with the model in the two transformed terms 

and interaction terms with silicon and sulfur atoms. 

Table 4.4 Selected predictors and their coefficients of the flash point SFFS-MLR-
NLI model (Equation 4.11) 

No Variables Coefficient Std. error p-value
0 Intercept 2.5900E+02 5.44E+01 2.16E-06
1 𝑛𝐶𝑙 -7.5320E+00 1.91E+00 8.21E-05
2 𝑛𝑆𝑖 -1.7040E+01 4.49E+00 0.000156
3 𝑇  4.9330E+01 1.28E+00 < 2E-16

4 log 𝐶 -8.4170E+01 3.25E+00 < 2E-16
5 log 𝑀𝑊 3.9470E+01 5.01E+00 6.98E-15
6 log 𝑇  -3.6670E+02 2.99E+01 < 2E-16
7 𝑒𝑥𝑝 𝑛𝐵𝑟  -4.5690E+00 9.62E-01 2.23E-06
8 𝑛𝐼  -2.7750E+01 7.08E+00 9.35E-05
9 𝑇 𝑛𝑆𝑖 2.4040E-02 7.68E-03 0.001796
10 𝑇 𝑛𝑆 -1.2170E-01 8.62E-03 < 2E-16
11 𝑛𝐶 𝑛𝐶𝑙 2.0830E+00 3.64E-01 1.32E-08
12 𝑛𝐶 𝑛𝑆 5.7330E+00 5.68E-01 < 2E-16
13 𝑛𝐻 𝑛𝑆 -1.3840E+00 2.49E-01 3.16E-08
14 𝑛𝑂 𝑛𝐶𝑙 5.4210E+00 1.09E+00 8.09E-07
15 𝑛𝑁 𝑛𝐶𝑙 -1.1170E+01 3.44E+00 0.001193
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Subsequently, the two created models (Equations 4.10 and 4.11) were validated by 

predicting the flash points in the training and test set. As a result, the predicted flash points 

for 1,741 organic compounds in the dataset were computed and presented in the 

Supplementary Materials. Table 5 displays the main resultant statistical metrics. In both 

models, the generated consistent and high values of 𝑅 , 𝑄 , 𝑅 , 𝑎𝑛𝑑 𝑄  

indicate that they are stable predictive models both internally and externally. Two plots of 

the predicted flash point values versus the observed ones in the two models are shown in 

Figure 4.4. As illustrated in this figure, these two model predictions for all organic 

compounds in the dataset are very accurate, with the average absolute difference between 

the predicted value and the observed value with 0.22% and 0.17%, respectively (Moreno 

et al., 2013). Although the accuracy of the SFFS-MLR-NLI (Step 2) appears to be slightly 

better, there is no statistical difference between the two models' performance.  

 

Table 4.5 Predictabilities of the two created models for predicting flash points 

 SFBS-MLR-L model in Step 1 SFFS-MLR-NLI in Step 2 

Statistical metric Training 
set

Test 
set

Entire 
dataset

Training 
set

Test 
set 

Entire 
dataset

R  0.959 0.976 0.963 0.972 0.977 0.973
RMSE 16.37 12.50 15.68 13.56 12.21 13.30

RMSE  17.33 - - 14.88 - -
Q  0.956 - - 0.966 - -
Q  - 0.976 - - 0.977 -
MAE 8.27 8.07 8.23 7.31 7.32 7.31

Std. error 16.43 12.50 15.69 13.64 12.22 13.31
Number of compounds 1,394 347 1,741 1,394 347 1,741
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(a) Predicted (Equation 4.10) vs. observed flash points in Step 1 via the SFBS   

 

(b) Predicted (Equation 4.11) vs. observed flash points in Step 2 via the SFFS 
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(c)* Predicted (Equation 4A1) vs. observed flash points in Step 2 via the SFBS 

Figure 4.4 Correlations between the precited and observed flash point values for 
both training and test sets. The diagonal line represents perfect correlation of observed and 
predicted flash point values. *The detailed SFBS-MLR_NLI model is additionally provided in 
Appendix A to check whether this method can achieve a more accurate model in this study. 
Graphs (b) and (c) show that the predicted flash points via the SFBS-MLR-NLI model are closer 
to the diagonal line than the SFFS-MLR-NLI model.     

 

To determine whether any pattern was missed in the proposed MLR model, 

residual plots were examined. Given the two models (Equations 4.10 and 4.11), we plotted 

the residuals against the fitted values (Figure 4.5). Since both plots, Figure 4.5 (a) and (b), 

are randomly distributed on both sides of the zero line, we can conclude that there is no 

systematic error in developing the proposed models. Hence, these two models are valid 

for predicting the flash points of pure organic compounds. 
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(a) Residuals (Step 1 for flash point via the SFBS) vs predicted values (Equation 10) 

 

(b) Residuals (Step 2 for flash point via the SFFS) vs predicted values (Equation 11) 
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*(c) Residuals (Step 2 for flash point via the SFBS) vs predicted values (Equation 4A1 
in Appendix 4A) 

Figure 4.5 Plots of residuals versus the predicted flash point values by the created 
models. *The detailed model of Graph (c) is additionally provided in Appendix 4A to 
check whether this method can achieve a more accurate model in this study.  

 

Figure 4.5 also indicates outliers for each model. The outliers (>4s) are 

methenamine (C6H12N4), 1-ethyl-3-methylimidazolium ethyl sulfate (C8H16N2O4S), 2-

(acetyloxy)benzoic acid (C9H8O4), acetoacetanilide (C10H11NO2), sucrose (C12H22O11), 

glycerol dioleate (C39H72O5), sucrose acetate isobutyrate (C40H62O19), citraconic acid 

(C5H6O4), and glycerol 1-monooleate (C21H40O4) in Step 1. Although these nine outliers 

in Step 1 still remain as outliers in Step 2, the residuals among the outliers decreased from 

131.8 K to 93.9K. Of the nine outliers, eight chemical compounds contain more than two 

oxygen atoms in their molecular formulas, along with carbon and hydrogen atoms. These 
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outliers’ common characteristics imply that more variables may be required to capture the 

interaction terms of oxygen with other atoms.  

The SFBS-based model in Step 2 is provided in Appendix 4A. As shown in its 

statistical results in Appendix 4A, its predicted vs. observed values in Figures 4.4 (c), and 

residual plot in Figure 4.5 (c), the SFBS-MLR-NLI model is more accurate than the SFFS-

MLR- NLI model and is adequate as a predictive model of the flash point. However, the 

model is less applicable than the SFFS-MLR-NLI model because of 46 predictor terms. 

Table 4.6 summarizes the performance of the adequate three predictive models. 

This table also includes four flash point models constructed either by group contribution 

or by QSPR with the same data source, DIPPR. Although the same data source was utilized 

in all models, it could not be confirmed whether the dataset of the flash point models in 

this study covered the entire dataset the previous models used. Nevertheless, statistical 

metrics such as ℎ𝑖𝑔ℎ𝑒𝑟 𝑅 , 𝑙𝑜𝑤𝑒𝑟 𝑀𝐴𝐸 𝐾 , 𝑙𝑜𝑤𝑒𝑟 𝑅𝑀𝐸 𝐾 ,  and applicability to a 

wider variety of chemical compounds for flash point values indicate that the proposed 

flash point predictive models in this study seem to come out as being slightly better than 

the previous models. 
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Table 4.6 Comparison with the pressure model and previous models (the flash point of organic compounds) 

Model 𝑅  
(𝑅 /

𝑅 ) 

𝑀𝐴𝐸 𝐾  
𝑀𝐴𝐸 /
𝑀𝐴𝐸   

𝑅𝑀𝑆𝐸 𝐾
𝑅𝑀𝑆𝐸 /
𝑅𝑀𝑆𝐸 ) 

Std. error  Dataset 
Size * 

Property 
range 

(Applicable 
range) [K]

Note 

Gharagheizi and 
Alamdari (2008) 

0.967 
(0.967/0.971)

10.2 
( - / - )

- 12.7 
(12.69/12.02) 

1,030 
(824/206) 

- GA-MLR 
QSPR model 

Gharagheizi et 
al. (2008) 

0.976 
(0.977/0.966)

8.10 
(7.90/9.94) 

11.21 
(10.97/13.24)

11.21 
(10.99/13.14) 

1,378 
(1,321/330)

185.0-585.1 MLR 
Group 

contribution 
model 

Bagheri, 
Bagheri, et al. 
(2012) 

0.861 
(0.863/0.860)

21.1 
(21.09/21.39)

28.0 
(28.07/27.89)

- 1,651 
(1,321/330)

85.0-597.0 GA-MLR 
QSPR model 

Bagheri, 
Bagheri, et al. 
(2012) 

0.885 
(0.880/0.905)

19.8 
(19.5/18.33)

25.0 
(26.00/23.42)

- 1,651 
(1,321/330)

85.0-597.0 SVR 
QSPR model 

Step 1  
(Equation 4.10) 

0.963 
(0.959/0.976)

8.23 
(8.27/8.07)

15.68 
(16.37/12.50)

15.69 
(16.63 /12.50) 

1,741 
(1,394/347)

71.0 -694.0 SFBS-MLR-L 
(Step 1 in this 

study)
Step 2  
(Equation 4.11) 

0.973 
(0.972/0.977)

7.31 
(7.31/7.32)

13.30 
(13.56/12.21)

13.31 
(13.64/12.22) 

1,741 
(1,394/347)

71.0 -694.0 SFFS-MLR-
NLI 

(Step 2 in this 
study)

Step 2 (Equation 
A1 in Appendix 
4A) 

0.984 
(0.986/0.976)

5.67 
(5.49/6.41)

10.22 
(9.59/12.43)

10.22 
(9.76/12.45) 

1,741 
(1,394/347)

71.0 -694.0 SFBS-MLR-
NLI 

(Step 2 in this 
study)

*All data reference is DIPPR 801  
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4.4.2. Results of heat of combustion models 

The number of matched datasets among the heat of combustion, normal boiling 

point, and molecular weight in the compiled dataset is 1,850.  

The number of matched datasets among the heat of combustion, normal boiling 

point, and molecular weight in the compiled dataset is 1,850.  

 

∆𝑯𝑪
𝒐 𝒌𝑱

𝒎𝒐𝒍
𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 𝒐𝒇 𝑪, 𝑯, 𝑶, 𝑵, 𝑭, 𝑪𝒍, 𝑺𝒊, 𝑺, 𝑷, 𝑷𝒃 

𝟑𝟎. 𝟓𝟏𝟒 𝟒𝟐𝟓. 𝟖𝟑𝟏𝒏𝑪 𝟗𝟎. 𝟕𝟔𝟔𝒏𝑯 𝟏𝟔𝟗. 𝟕𝟑𝟎𝟔𝒏𝑶

𝟏𝟎𝟔. 𝟗𝟗𝟗𝟔𝒏𝑵 𝟐𝟐𝟒. 𝟑𝟏𝟔𝟖𝒏𝑭 𝟔𝟐. 𝟕𝟓𝟓𝟐𝒏𝑪𝒍 𝟔𝟖𝟑. 𝟏𝟑𝟏𝟗𝒏𝑺𝒊

𝟐𝟗𝟓. 𝟗𝟒𝟓𝟔𝒏𝑺 𝟒𝟏𝟗. 𝟒𝟑𝟒𝟗𝒏𝑷 𝟔𝟒𝟕. 𝟎𝟐𝟎𝟐𝒏𝑷𝒃  

Equation 4.12 

where 𝑛𝐶, 𝑛𝐻, 𝑛𝑂, 𝑛𝑁, 𝑛𝐹, 𝑛𝐶𝑙, 𝑛𝑆𝑖, 𝑛𝑆, 𝑛𝑃, 𝑎𝑛𝑑 𝑛𝑃𝑏 refer to the number of carbons, 

hydrogen, oxygen, fluorine, chlorine, silicon, sulfur, phosphorus, and lead atoms, 

respectively. 

 

It should be noted that the model composes merely these ten atomic elements 

without molecular weight and boiling point terms. The contributions of N, F, Cl, Si, S, P, 

and Pb were derived from 205, 77, 124, 37, 90, 5, and 1 data point in 1,482 training dataset. 

The selected predictors’ coefficients are statistically significant (p-value < 0.05), and 

multicollinearity is less likely to exist (VIF<10), as illustrated in Table 4.7.  
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The heat of combustion, ∆𝐻 , is negative when heat is released into the 

surroundings (i.e., exothermic reaction), and positive when heat is absorbed from the 

surroundings (e.g., endothermic reaction). In this manner, as indicated in Equation 4.12, 

the atomic elements with negative coefficients — C, H, N, Si, S, P and Pb — contribute 

to releasing heat that accompanying the combustion reaction. On the other hand, the three 

atomic elements with positive coefficients — O, F, and Cl — contribute to absorbing heat 

from the surroundings because they are likely to have positive reaction enthalpies, which 

are not common phenomena in combustion reactions. Representative organic compounds 

that absorb heat accompanying the reaction are freon gases such as chlorodifluoromethane 

(𝐶𝐶𝑙𝐹 ) and carbon tetrafluoride (𝐶𝐹 ) in the current dataset.  

 

Table 4.7 Selected predictors and their coefficients of the heat of combustion SFBS-
MLR-L model (Equation 4.12) 

No. Variables Coefficient Std. error p-value VIF
0 Intercept -3.0514E+01 6.8866E+00 1.01E-05 -
1 𝐶 -4.2583E+02 1.4451E+00 < 2E-16 6.730
2 𝐶𝑙 6.2755E+01 5.6633E+00 < 2E-16 1.093
3 𝐹 2.2432E+02 2.0586E+00 < 2E-16 1.118
4 𝐻 -9.0766E+01 7.7990E-01 < 2E-16 7.187
5 𝑁 -1.0700E+02 5.5747E+00 < 2E-16 1.044
6 𝑂 1.6973E+02 2.2941E+00 < 2E-16 1.147
7 𝑃 -4.1943E+02 5.9844E+01 3.65E-12 1.013
8 𝑃𝑏 -6.4702E+02 1.3291E+02 1.25E-06 1.002
9 𝑆 -2.9595E+02 1.3105E+01 < 2E-16 1.029
10 𝑆𝑖 -6.8313E+02 7.0212E+00 < 2E-16 1.191
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 Second, by performing the SFFS-MLR-NLI procedure in the training set, the 

optimum subset of fifteen predictors was achieved in Step 2. The constructed model for 

predicting the heat of combustion is presented as the following: 

 

∆𝑯𝑪
𝒐 𝒌𝑱

𝒎𝒐𝒍

𝒇 𝒕𝒉𝒆 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 𝒐𝒇 𝑪, 𝑯, 𝑶, 𝑵, 𝑭, 𝑪𝒍, 𝑩𝒓, 𝑰, 𝑺𝒊, 𝑺, 𝑷, 𝑻𝒃, 𝑴𝑾, 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎𝒔

𝟖𝟒𝟗. 𝟓 𝟒𝟎𝟑. 𝟗𝒏𝑪 𝟖𝟑. 𝟖𝟑𝒏𝑯 𝟐𝟎𝟑. 𝟒𝒏𝑶 𝟐𝟖𝟐. 𝟔𝒏𝑭 𝟏𝟔𝟐. 𝟗𝒏𝑪𝒍

𝟐𝟓𝟐. 𝟐𝒏𝑩𝒓 𝟓𝟖𝟖𝒏𝑺𝒊 𝟐𝟐𝟒. 𝟒𝒏𝑺 𝟑𝟏𝟗. 𝟐𝒏𝑷 𝟏. 𝟏𝟎𝟗𝑻𝒃 𝟑𝟗. 𝟑𝟐√𝑴𝑾

𝟒𝟐𝟔. 𝟑𝒍𝒐𝒈𝟏𝟎𝑴𝑾 𝟎. 𝟑𝟏𝟖𝟔𝒆𝒙𝒑 𝒏𝑵 𝟐𝟎𝟗. 𝟑𝒆𝒙𝒑 𝒏𝑰

𝑴𝑾 𝟎. 𝟎𝟏𝟖𝑻𝒃 𝟎. 𝟐𝟏𝟏𝟏𝒏𝑵 𝟐. 𝟗𝟎𝟗 𝒏𝑪 𝒏𝑶 𝒏𝑯 𝟔. 𝟕𝟖𝒏𝑭 𝟏. 𝟐𝟖𝟗𝒏𝑶

𝟐𝟗. 𝟎𝟏 𝒏𝑶 𝒏𝑵
𝒏𝑵
𝒏𝑪

𝟏𝟔𝟖 𝟏𝟎𝟓. 𝟕
𝒏𝑵
𝒏𝑪

𝟑𝟑𝟕𝟏𝟎
𝟏

𝑻𝒃 𝒏𝑪
  

Equation 4.13 

 

 The selected predictors’ coefficients are statistically significant (p-value < 0.05), 

as illustrated in Table 4.8. This model was constructed by combining ten linear, four 

transformed, and nine interaction terms of the twenty-three predictors. Compared to 

Equation 4.12 in Step 1, Equation 4.13 contains a new atomic element (Iodine, noted as I) 

and nitrogen (noted N) in their logarithmic terms, and has one atomic element (lead, Pb) 

removed. Furthermore, boiling point, molecular weight, and their interaction terms with 

element atoms are newly included in Equation 4.13. new atomic elements — N and I — 

are included via their logarithmic terms. Once the boiling point physical property is 



 

203 

 

included, the interpretation might conflict with the relationship between the individual 

atomic element and the target property. However, we could infer some insights of the 

interaction terms of Equation 4.13. For example, the ratio term of nitrogen and carbon, 

168 105.7 , could trade off the effect. These terms produce positive values 

whenever the ratio is higher than 1.6. Therefore, the bond between nitrogen and carbon 

atoms positively affects absorbing heat from the surroundings. Besides, hydrogen bonds 

may reinforce exothermic or endothermic heat magnitude. For instance, the interaction 

between hydrogen and fluorine atoms with a positive coefficient value reinforces the 

endothermic heat magnitude of the standalone endothermic heat from fluorine atom. In 

contrast, the interaction between hydrogen and oxygen with a negative value reinforces 

the exothermic heat magnitude of the standalone exothermic heat due to oxygen. Hence, 

such interaction terms between different atoms aid in a better well-fit model.  

 

Table 4.8 Selected predictors and their coefficients of the heat of combustion SFFS-
MLR-Model (Equation 4.13) 

 Variables Coefficient Std. error p-value
0 Intercept -8.4950E+02 2.1380E+02 7.42E-05
1 𝑛𝐶 -4.0390E+02 6.2680E+00 < 2E-16
2 𝑛𝐻 -8.3830E+01 9.5420E-01 < 2E-16
3 𝑛𝑂 2.0340E+02 8.9500E+00 < 2E-16
4 𝑛𝐹 2.8260E+02 8.1580E+00 < 2E-16
5 𝑛𝐶𝑙 1.6290E+02 1.7760E+01 < 2E-16
6 𝑛𝐵𝑟 2.5220E+02 4.0050E+01 3.98E-10
7 𝑛𝑆 -2.2440E+02 1.9390E+01 < 2E-16
8 𝑛𝑆𝑖 -5.8800E+02 1.4800E+01 < 2E-16
9 𝑛𝑃 -3.1920E+02 5.3690E+01 3.45E-09
10 𝑇  1.1090E+00 9.1510E-02 < 2E-16
11 √𝑀𝑊 -8.9320E+01 2.1590E+01 3.70E-05
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 Variables Coefficient Std. error p-value
12 log 𝑀𝑊 4.2630E+02 1.9060E+02 0.025451
13 𝑒𝑥𝑝 𝑛𝑁  3.1860E-01 6.5470E-02 1.26E-06
14 𝑒𝑥𝑝 𝑛𝐼  2.0930E+02 4.1850E+01 6.38E-07
15 𝑀𝑊 𝑇  -1.8320E-03 4.1250E-04 9.58E-06
16 𝑀𝑊 𝑛𝑁 -2.1110E-01 6.7450E-02 0.001785
17 𝑛𝐶 𝑛𝑂 2.9090E+00 5.9270E-01 1.02E-06
18 𝑛𝐻 𝑛𝑂 -1.2890E+00 3.3470E-01 0.000123
19 𝑛𝐻 𝑛𝐹 6.7800E+00 1.9100E+00 0.000399
20 𝑛𝑂 𝑛𝑁 -2.9010E+01 2.5330E+00 < 2E-16
21 𝑛𝑁

𝑛𝐶
 

-1.6800E+02 5.3350E+01 0.001667

22 𝑛𝑁
𝑛𝐶

 
1.0570E+02 3.6160E+01 0.003517

23 1
𝑇 𝑛𝐶

 
3.3710E+04 5.9630E+03 1.88E-08

 

Table 4.9 Predictabilities of the two created models for predicting the heat of 
combustion 

 SFBS-MLR-L model in 
Step 1

SFFS-MLR-NLI in Step 2 

Statistical metric Training 
set

Test set Overall 
dataset

Training 
set

Test 
set 

Overall 
dataset

R  0.9987 0.9992 0.9988 0.9991 0.9994 0.9991
RMSE [kJ/mol] 132.24 102.45 126.87 112.29 86.71 107.68

RMSE  [kJ/mol] 135.81 - - 118.73 - -
Q  0.9986 - - 0.9989 - -
Q  - 0.9992 - - 0.9994 -

MAE [kJ/mol] 73.36 65.77 71.85 61.86 55.53 60.60
Std. error 132.7 102.44 126.90 113.20 86.53 107.70

Number of compounds 1,482 368 1,850 1,482 368 1,850
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(a) Predicted (Equation 4.12) vs. observed heats of combustion in Step 1 via the SFBS 

 

(b) Predicted (Equation 4.13) vs. observed heats of combustion in Step 2 via the SFFS  
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(c)* Predicted (Equation 4B1) vs. observed heats of combustion in Step 2 via the SFBS 

Figure 4.6 Correlations between the predicted and observed heat of combustion 
values for both training and test sets. The diagonal line represents perfect correlation 
of observed and predicted flash point values. *The detailed SFBS-MLR_NLI model is 
additionally provided in Appendix 4B to check whether this method can achieve a more 
accurate model in this study. Graphs (a)- (c) indicate that all of the predicted heats of 
combustion via the three models are closer to the diagonal line. 

 
 

To determine whether any pattern was missed in the proposed MLR model, 

residual plots were examined. Given the two models (Equations 4.12 and 4.13), we plotted 

the residuals against the fitted values (Figure 4.7). Since both plots are randomly 

distributed on both sides of the zero line, we can conclude that there is no systematic error 

in developing the proposed model. Hence, these two models are valid for predicting the 

heats of combustion of pure organic compounds. 
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(a) Residuals (Step 1 for heat of combustion via the SFBS) vs predicted values (Equation 
4.12) 

 

 
 

(b) Residuals (Step 2 for heat of combustion via the SFFS) vs predicted values (Equation 
4.13) 
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(c)* Residuals (Step 2 for heat of combustion via the SFBS) vs predicted values 
(Equation 4B1) 

 

Figure 4.7 Plots of residuals versus the predicted heat of combustion values by the 
two created model. The detailed model of Graph (c) is additionally provided in 
Appendix 4B to check whether this method can achieve a more accurate model in this 
study, but it indicates that the SFBS-MLR-NLI model is overfitting with more outliers 
from the test set than the SFFS-MLR-NLI model. 

 
 

Moreover, Figure 4.7 indicates outliers for each model. The outliers (>4s) are 

trifluoromethyl trifluoro vinyl ether (C3F6O), pentafluoroethyl trifluoro vinyl ether 

(C4F8O), (S)-4-ethenyl-1,3-dioxolan-2-one (C5H6O3), 2,3,3,3-tetrafluoropropene 

(C3H2F4), pentafluoroethyl trifluorovinyl ether (C4F8O), (S)-4-ethenyl-1,3-dioxolan-2-one 

(C5H6O3) and hexadecamethylcyclooctasiloxane (C16H48O8Si8) in both models. Like flash 

point predictive models, these outliers mostly contain more than an oxygen atom in their 

molecular formulas along with carbon and hydrogen atoms.  
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 Although the residuals among the outliers (>4s) slightly decreased from 838.3 

kJ/mol. in Step 1 to 797.1 kJ/mol. in Step 2, there is no outstanding difference between 

the two steps. This result indicates that there are almost no interaction effects for the 

characteristics regarding heat of combustion property.  

 The SFBS-based model in Step 2 is provided in Appendix 4B. As shown in its 

statistical results in Appendix 4B, its predicted vs. observed values in Figure 4.6 (c), and 

residual plot in Figure 4.7 (c), the SFBS-MLR-NLI model is adequate as a predictive 

model. However, this model has slightly poorer performance than the SFFS-MLR-NLI 

model 

summarizes the performance of the three adequate predictive models. This table 

also includes additional models constructed by QSPR with the same data source, DIPPR. 

Although the same data source was utilized in all models, it no confirmation could be 

obtained whether the dataset of the heat of combustion models in this study covered the 

entire dataset the QSPR model used. Nevertheless, statistical metrics such as ℎ𝑖𝑔ℎ𝑒𝑟 𝑅 ,

𝑙𝑜𝑤𝑒𝑟 𝑀𝐴𝐸 𝐾 , 𝑙𝑜𝑤𝑒𝑟 𝑅𝑀𝑆𝐸 𝐾 ,  lower standard error, and applicability to a wider 

variety of chemical compounds for the heat of combustion values indicate that the 

proposed heat of combustion predictive models in this study seem to come out as being 

slightly better than the previous model.  
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Table 4.10 Comparison with the present model and previous models (the heat of combustion of organic compounds) 

Model 𝑅  
(𝑅 /

𝑅 ) 

MAE [kJ/mol] RMSE [kJ/mol] Std. error Dataset 
Size * 

Property range 
(Applicable 

range) 
[kJ/mol]

Note 

Pan et al. 
(2011) 

0.995 
(0.995/0.996

) 

- 
(122.21/104.14)

- 
(210.27/163.23)

- 1,650 
(1,322/328)

-22,100 – 
954.8

ACO1-PLS2

QSPR 
model

Equation 
4.12 

0.999 
(0.999/0.999

) 

71.85 
(73.36/65.77)

126.87 
(132.24/102.45)

126.9 
(132.7/102.44) 

1,850 
(1,482/368)

-39,985.3 – 
982.7

SFBS-
MLR-L 

(Step 1 in 
this study) 

Equation 
4.13 

0.999 
(0.999/0.999

) 

60.60 
(61.86/55.53)

107.68 
(112.29/86.71)

107.70 
(113.2/86.53) 

1,850 
(1,482/368)

-39,985.3 – 
982.7

SFFS-
MLR-NLI 
(Step 2 in 
this study)

Equation 4B1 
(Appendix 
4B) 

0.999 
(0.999/0.999

) 

61.87 
(61.68/62.63)

105.28 
(105.50/104.35)

105.29 
(105.50/104.35) 

1,850 
(1,482/368)

-39,985.3 – 
982.7

SFBS-
MLR-NLI 
(Step 2 in 
this study)

 
*All data reference is DIPPR 801. After constructing the heat of combustion models, one distinguishable outlier, dehydroabietylamine (C20H31N), in all 
models was discarded. The outlier’s input variables used for calculation were 𝑛𝐶 20, 𝑛𝐻 31, 𝑛𝑁 1, 𝑎𝑛𝑑 𝑀𝑊 285.467 . This erroneous 

value could probably be attributed to an experimental error or typo in the DIPPR database. The observed heat of combustion value of dehydroabietylamine 
was -1,550 kJ/mol. from the DIPPR database, whereas its corresponding predicted values were -11,409 kJ/mol. (in Step 1 via SFBS), -11,312 kJ/mol. (in 
Step 2 via SFFS), and -10,847 kJ/mol. (in Step 2 via SFBS). Given that another flammability property database, Yaw’s Chemical Properties Handbook 
(1999), provided its value as -11,440 kJ/mol that was much closer to this study's predicted values, the heat of combustion value of dehydroabietylamine 
in the DIPPR database might incorrectly be addressed. Moreover, the compared study, Pan et al. (2011) also does not include this chemical for its model. 
Therefore, this study recreated the models as shown in Section 4.4.2 and Appendix 4B after the outlier to provide more reliable predictive models.  
1 ACO—ant colony optimization algorithm 
2 PLS—partial least square 



211 

 

4.4.3. Results of LFL models 

The number of matched datasets among the LFLs, boiling points, and molecular 

weights in the compiled dataset is 1,733.  

Initially, the LFL SFBS-MLR-L model was constructed similar to the flash point 

and the heat of combustion SFBS-MLR-L models. However, the performance of this 

model was inadequate after analyzing its performance (a detailed explanation of why this 

model, Equation 4C1, was rejected is given in the section). The rejected model is provided 

in Appendix 4C1 to prevent practitioners applying the unreliable model.     

In a second step, by performing the SFFS-MLR-NLI procedure in the training set, 

the optimum subset of nine predictors was created in Step 2. The created model for 

predicting the heat of combustion is presented as the following: 

 

𝑳𝑭𝑳 𝒗𝒐𝒍. % 𝒇 𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝑪, 𝑯, 𝑶, 𝑭, 𝑪𝒍, 𝑺𝒊, 𝑺

𝟎. 𝟏𝟎𝟏𝟒 𝒏𝑪𝒍 𝟎. 𝟑𝟏𝟎𝟑𝒏𝑶 𝟎. 𝟎𝟔𝟏𝟑𝒏𝑯

𝟏
𝒏𝑪

𝟏𝟎. 𝟑𝟓𝟕𝟗 𝟏. 𝟔𝟕𝟖𝟑𝒏𝑭 𝟐. 𝟎𝟎𝟑𝟐𝒏𝑪𝒍

𝟏
𝒏𝑪 𝟐 𝟏. 𝟏𝟎𝟎𝟕𝒏𝑯 𝟎. 𝟒𝟗𝟔 𝒏𝑶 𝟐 𝟒. 𝟑𝟓𝟕𝟖𝒏𝑺 𝟔. 𝟖𝟗𝟔𝒏𝑺𝒊  

Equation 4.14 

 

The selected predictors’ coefficients are statistically significant (p-value < 0.05), 

as illustrated in Table 4.11. This model was constructed by combining interaction terms 

between atomic elements (Equation 4.14). Thus, the created model implies that the LFL 
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values of organic compounds are determined by diverse molecular interactions rather than 

a single atom’s characteristics. These interaction predictors correspond with the 

descriptors of QSPR models, which are associated with chemical interactions (e.g., Me —

mean atomic Sanderson electronegativity, and GATS1v — information related to the 

atomic Van der Walls volumes of a molecule) (Bagheri, Rajabi, et al., 2012; Pan et al., 

2009a).  

Furthermore, there are two significant findings through the selected fraction terms 

(antoehr interaction type). First, the sign of the fraction terms may be associated with the 

selected atom’s electronegativities. Second, these fractions may describe a wide range of 

LFL among lighter organic compounds (the number of C<2). Regarding the sign of the 

fraction, for example, , , 𝑎𝑛𝑑  terms have the plus sign on their coefficients in 

Equation 4.14. They commonly consider more electronegative atoms than carbon on their 

numerators. On the other hand, , , 𝑎𝑛𝑑  terms on their coefficients, and 

when taken into account, the atoms on the numerators are less electronegative than carbon. 

Then, the fraction terms with the plus sign make increased LFL values, whereas the terms 

with the minus sign make reduced LFL values.  

However, the question remains how certain organic compounds have relatively 

higher LFL values than the other compounds, in particular among lighter compounds 

(C<2). For example, the LFL values of chlorofluoromethane (CH2ClF) and 

dichloromethane (CH2Cl2) are 14.4 and 14.0 vol.%, which are the highest LFL values in 

the dataset. On the other hand, those of carbon disulfide (CS2) and methyl mercaptan 



 

213 

 

(CH4S) are 1.3 and 3.9 vol.%, which are much lower than the former chemicals (DIPPR, 

2019). Such a phenomena can be explained by addressing an organic atmosphere of 

counter charge. According to Huckel and Debye (1923), the atmosphere occurs when 

there is a slight imbalance of charge in ionic solutions because there is a slight excess of 

cations near any anion and a slight excess of anion near any cation (Atkins & De Paula, 

2017). Since each ion is oppositely charged, the energy of the solution is lower than the 

ideal solution, which is uniformly charged, and therefore its chemical potential is lower 

than in an ideal solution. Although this study’s organic compounds are not for ion 

solutions but of high-pressure vapors, which are the precondition of combustions, the 

high-pressure vapors could show a similar behavior by producing a slight imbalance of 

charge. That is, these compounds with such imbalanced charges may have lower chemical 

potential than other vapors.  

To estimate the ratios between the electronegativities of other atoms and the 

electronegativity of carbon atom in a round way, the ratios between the numbers of other 

atoms and the number of carbons were prepared. As a result, when organic compounds 

had fewer carbons, the ratios between the numbers of other atoms and the number of 

carbons tended to increase. Hence, we could conclude that the atmospheres of counter 

charge among the organic compounds with fewer carbons are reinforced because these 

compounds’ charges are easily imbalanced at high pressure. Therefore, when compared 

to other vapor compounds, these organics could have a distinct behavior with a wider 

range of LFL values. When the charges of organic compounds are more imbalanced due 

to more electronegative atoms and fewer carbons, more molecules (i.e., higher LFL % vol.) 
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could be required to accompany a combustion reaction due to their lower chemical 

potentials. For example, some low carbon halogenated organic compounds (e.g., halon 

1211 CF2BrCl) are capable of inhibiting flames or extinguishing materials rather than 

generating flames, although they are banned because of their ozone-hold enlarging 

properties.  

Nevertheless, the magnitudes of coefficients in Equation 4.14 are not directly 

proportional to the electronegativities of individual atoms. This result presents that the 

constructed model takes into account other causes such as chemical’s steric effects along 

with the interaction terms 

 

Table 4.11 Selected predictors and their coefficients of the LFL SFFS-MLR-NLI 
model (Equation 4.14) 

No. Variables Coefficient Std. error p-value
0 Intercept -1.0143E-01 2.3130E-02 1.25E-05
1 𝑛𝐻 𝑛𝐶𝑙 -6.1280E-02 6.2100E-03 < 2E-16
2 𝑛𝑂 𝑛𝐶𝑙 3.1025E-01 3.6580E-02 < 2e-16
3 1

𝑛𝐶
 

1.0358E+01 2.0865E-01 < 2E-16

4 𝑛𝐻
𝑛𝐶

 
-1.1007E+00 6.4580E-02 < 2E-16

5 𝑛𝑂
𝑛𝐶

 
4.9599E-01 3.9590E-02 < 2E-16

6 𝑛𝐹
𝑛𝐶

 
1.6783E+00 7.4730E-02 < 2E-16

7 𝑛𝐶𝑙
𝑛𝐶

 
2.0032E+00 1.0776E-01 < 2E-16

8 𝑛𝑆
𝑛𝐶

 
-4.3578E+00 1.8918E-01 < 2E-16

9 𝑛𝑆𝑖
𝑛𝐶

 
-6.8960E+00 4.0987E-01 < 2E-16
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Subsequently, the created model (Equation 4.14) was validated by predicting the LFL 

values in the training and test set. As a result, the predicted LFL values for 1,733 organic 

compounds in the dataset were computed and presented in the Supplementary Materials. 

The main resultant statistical metrics are presented in Table 4.12, the correlations between 

the predicted and observed LFL values in Figure 4.8, and corresponding residual plots are 

shown in Figure 4.9. 

 As illustrated in Table 4C (a), the low 𝑅  0.5  value indicates that the selected 

predictor variables in Step 1 are not further explaining the variation of LFL values, 

regardless of the variable significance (Table 4C1). Figure 4.8(a) also indicates that the 

values that are obtained from Equation 4C1 in Step 1 failed to predict the observed LFLs, 

because most LFLs points are not close to the regressed diagonal line. Finally, the residual 

plot of the model, which has a non-flat pattern between -3 and 2 predicted LFLs [vol.%], 

evidently reveals that essential predictor variables are missing in Equation 4C1 (Figure 

4.9(a)). Therefore, we concluded that Equation 4.14 incorporating simple linearity is 

invalid in predicting LFL values. 

 In contrast, the SFFS-MLR-NLI model of Step 2 (Equation 4.14) generated 

consistent and high values of 𝑅 , 𝑄 , 𝑅 , 𝑎𝑛𝑑 𝑄 . This result indicates that 

this model is a stable predictive model internally and externally. This result clearly shows 

that the predictive performance significantly increases using various atomic interaction 

terms. The plot of the predicted LFL values versus the observed ones in the model shows 

that most LFL points are close to the regressed diagonal line (Figure 4.8(b)), even though 

there is still room to improve. To determine whether any pattern was missed in the MLR 
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model, residual plots were examined, as shown in Figure 4.9(b)). Since the plot is 

randomly distributed on both sides of the zero line, we could conclude that there is no 

systematic error in developing the proposed SFFS-MLR-NLI model. Therefore, this 

model is valid for predicting the LFL values of pure organic compounds 

 

Table 4.12 Predictabilities of the SFFS-MLR-NLI model for predicting LFL in Step 
2 (Equation 4.14) 

Statistical metric Training set Test set Overall dataset 
R  0.898 0.741 0.868 

RMSE [vol.%] 0.469 0.741 0.535 
RMSE  [vol.%] 0.506 - - 

Q  0.882 - - 
Q  - 0.741 - 

MAE [vol.%] 0.202 0.229 0.207 
Std. error 0.471 0.742 0.535 

Number of compounds 1,388 345 1,733 
 

 

 

(a)* Predicted (Equation 4C1) vs. observed LFLs in Step 1 via the SFBS (the model 
rejected)  
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(b) Predicted (Equation 4.14) vs. observed LFLs in Step 2 via the SFFS  

 

(c)* Predicted (Equation 4C2) vs. observed LFLs in Step 2 via the SFBS  

Figure 4.8 Correlation between the predicted and observed LFLs for both training 
and test sets. The diagonal line represents perfect correlation of observed and predicted 
LFLs. *The detailed models of Graphs (a) and (c) are additionally provided in Appendix 
4C to check whether this method can achieve a more accurate model in this study.  
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(a)* Residuals (Step 1 for LFL via the SFBS) vs predicted values (Equation 4C1) (the 
model rejected) 

 

 

(b) Residuals (Step 2 for LFL via the SFFS) vs predicted values (Equation 4.14) 
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(c)* Residuals (Step 2 for LFL via the SFBS) vs predicted values (Equation 4C2) 

Figure 4.9 Plots of residuals versus the observed LFL values for the constructed 
models. *The detail of the Graphs (a) and (c) model is additionally provided in 
Appendices 4C to check whether this method can achieve a more accurate model in this 
study. This graph shows how the predictabilities gradually increased by adding more 
flexible terms. The most notable outlier, Methyl germanium trichloride (CH3Cl3Ge) in 
the SFBS-MLR-L in Step 1 and the SFFS-MLR-L in Step 2, is not the outlier any more 
in the SFBS-MLR-NLI in Step 2. 

 

Figure 4.9 also indicates outliers of the created LFL models. All outliers (>4s) in 

Step 1, 14 outliers contain less than or equal to two carbon atoms in their molecular 

formulas. The remarkable outliers such as chlorofluoromethane (CH2ClF) and 

dichloromethane (CH2Cl2) indicate that the simple MLR model (Eq. 14) fails to capture 

the behavior of these lighter halogenated organic compounds’ LFL values. Although 

several outliers in Step 1 remain as outliers in Step 2, the average residuals among the 

outliers considerably decreased from 6.8 vol.% to 3.5 vol.%. Presumably, this outlying 



 

220 

 

behavior has to ascribed to halogen radicals' relatively strong influence on flame kinetics 

leading to some degree of suppression.  

The SFBS-based model in Step 2 is provided in Appendix 4C. As shown in its 

statistical results in Appendix 4C, its predicted vs. observed values in Figure 4.8(c), and 

residual plot in Figure 4.9(c), the SFBS-MLR-NLI model is adequate as a predictive 

model. In addition, the model has higher accuracy than the other proposed models. 

However, the model is less applicable than the SFFS-MLR-NLI model because of 59 

predictor terms. 

Table 4.13 summarizes the performance of the two adequate predictive models. 

This table also includes two models constructed by QSPR with the same data source, 

DIPPR. Although the same data source was utilized in all models, it could not be 

confirmed whether the dataset of LFL models in this study covered the entire dataset the 

QSPR models used. Nevertheless, statistical metrics such as ℎ𝑖𝑔ℎ𝑒𝑟 𝑅 , 𝑙𝑜𝑤𝑒𝑟 𝑀𝐴𝐸 𝐾 ,

𝑙𝑜𝑤𝑒𝑟 𝑅𝑀𝑆𝐸 𝐾 , lower standard error, and applicability to a wider variety of chemical 

compounds for the LFL values indicate that the proposed LFL predictive models seem to 

come out as being slightly better than the previous models.  

It is clear from the findings that the SFBS-MLR-NLI model presented here can 

perform competitively to QSPR MLR models in predicting LFL values. That is, rather 

numerous interaction terms are required to capture the characteristics of LFL values. 

Meanwhile, the crisp model, SFBS-MNR-NLI model, enables us to feasibly interpret the 

relationship between atomic elements and LFL by providing reliable, accurate 

performance. On the other hand, the model simply incorporating linearities among default 
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variables fails to predict LFL because the characteristics of LFL may be strongly 

associated with molecular interactions.  
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Table 4.13 Comparison with the current model and previous models (the LFL of pure organic compounds) 

Model 𝑅  
(𝑅 /

𝑅 ) 

MAE  
[vol. %] 

RMSE 
[vol.%] 

Std. error Dataset Size* 
(training/test) 

Property range 
(Applicable 

range) [vol. %]

Note 

Bagheri, 
Rajabi, et al. 
(2012) 

0.906 
(0.906/0.908) 

0.1867 
(0.191/0.162)

0.335 
(0.339/0.318)

- 1,615 
(1,292/323)

0.1-12.0 vol.% QSPR model 
(MLR) 

Bagheri, 
Rajabi, et al. 
(2012) 

0.929 
(0.930/0.926) 

0.153 
(0.158/0.135)

0.287 
(0.290/0.278)

- 1,615 
(1,292/323)

0.1-12.0 vol.% QSPR model 
(ANN) 

Equation 
4.14 

0.868 
(0.898/0.741) 

0.207 
(0.202/0.229)

0.535 
(0.469/0.741)

0.535 
(0.47/0.74)

1,733 
(1,388/345)

0.0002 – 14.4 
vol.%

SFFS-MLR- NLI 
(Step 2 in this 

study)
Equation 4C2  
(Appendix 
4C2) 

0.930 
(0.939/0.894) 

0.188 
(0.188/0.218)

0.389 
(0.365/0.473)

0.389 
(0.37/0.47)

1,733 
(1,388/345)

0.0002 – 14.4 
vol.%

SFBS-MLR- NLI 
(Step 2 in this 

study)
*All data reference is DIPPR 801  
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4.4.4. Results of UFL models 

The number of matched datasets among the UFLs, boiling points, and molecular 

weights in the compiled dataset is 1,711. 

 Initially, the UFL SFBS-MLR-L model was constructed similar to the flash point 

and the heat of combustion SFBS-MLR-L models. However, the performance of this 

model was inadequate after analyzing its performance (a detailed explanation of why this 

model, Equation 4D1, was rejected is given in the section). The rejected model is provided 

in Appendix 4D1 to prevent practitioners applying the unreliable model.  

 In a second step, by performing the SFFS-MLR-NLI procedure in the training set, 

the optimum subset of nineteen predictors was created in Step 2. The created model for 

predicting the UFL is presented as the following.  

 

𝑼𝑭𝑳 𝒗𝒐𝒍. %

𝒇 𝒏𝑪, 𝒏𝑯, 𝒏𝑵, 𝒏𝑶, 𝒏𝑭, 𝒏𝑪𝒍, 𝒏𝑩𝒓, 𝒏𝑰, 𝒏𝑺𝒊, 𝒏𝑺, 𝑴𝑾, 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎𝒔

𝟕. 𝟕𝟖𝟗𝟎 𝟎. 𝟒𝟒𝟑𝟖𝒏𝑯 𝟐. 𝟖𝟖𝟓𝟎√𝒏𝑪 𝟎. 𝟎𝟐𝟒𝟕𝒆𝒙𝒑 𝒏𝑵 𝟎. 𝟎𝟏𝟖𝟒𝒆𝒙 𝒑 𝒏𝑪𝒍

𝟎. 𝟗𝟔𝟖𝟖𝒆𝒙𝒑 𝒏𝑩𝒓 𝟒. 𝟏𝟎𝟑𝟎𝒆𝒙𝒑 𝒏𝑰 𝟎. 𝟎𝟎𝟐𝟑 𝒏𝑯 𝟐 𝟐. 𝟕𝟔𝟗𝟎 𝑺𝒊 𝟐

𝟏. 𝟕𝟎𝟐 𝒏𝑺 𝟐 𝟎. 𝟎𝟎𝟔𝟑 𝑴𝑾 𝒏𝑭 𝟎. 𝟐𝟓𝟕𝟓 𝒏𝑯 𝒏𝑺𝒊

𝒏𝑶 𝟏. 𝟎𝟎𝟏𝟎𝒏𝑺𝒊 𝟏. 𝟕𝟖𝟗𝒏𝑺

𝟏
𝒏𝑪

𝟕𝟑. 𝟎𝟒 𝟐𝟗. 𝟎𝟕
𝟏

𝒏𝑪
𝟒. 𝟒𝟗𝒏𝑯 𝟕. 𝟒𝟓𝟖𝒏𝑶 𝟒𝟓. 𝟓𝟏𝒏𝑺𝒊 𝟎. 𝟐𝟖𝟗𝟗𝑴𝑾  

Equation 4.15 
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The selected predictors’ coefficients are statistically significant (p-value < 0.05), 

as illustrated in Table 4.14. Compared to the performance of Equation 4D1 in Step 1, 

various transformed variables (e.g., squared, logarithmic, exponential, and quadratic), 

interaction terms between atoms, and molecular weights are used as predictors in Equation 

4.15. The created model implies that the UFL values of organic compounds are determined 

by various atomic interactions and bulk-related factors (e.g., weights). These selected 

predictors correspond with the descriptors of QSPR models, which are associated with 

atomic interactions and bulk-related factor (e.g., BELm1 accounts for weighted by atomic 

masses, BEHp1 and BELp1 account for the weighted by atomic polarizabilities, and 

ATS2v considers atomic Van der Waals volumes (Pan et al., 2009b)) 

 

Table 4.14 Selected predictors and their coefficients of the UFL SFFS-MLR-NLI 
model (Equation 4.15) 

 Variables Coefficient Std. error p-value
0 Intercept 7.7890E+00 3.18E+00 1.4350E-02
1 𝑛𝐻 4.4380E-01 7.03E-02 3.6900E-10
2 √𝑛𝐶 -2.8850E+00 8.41E-01 6.1800E-04

3 𝑒𝑥𝑝 𝑛𝑁  2.4740E-02 8.24E-03 2.7400E-03
4 𝑒𝑥𝑝 𝑛𝐶𝑙  1.8430E-02 9.11E-03 4.3222E-02
5 𝑒𝑥𝑝 𝑛𝐵𝑟  9.6880E-01 4.07E-01 1.7359E-02
6 𝑒𝑥𝑝 𝑛𝐼  4.1030E+00 1.46E+00 4.9380E-03
7 𝑛𝐻  -2.3220E-03 4.67E-04 7.4400E-07
8 𝑛𝑆𝑖  -2.7690E+00 6.26E-01 1.0500E-05
9 𝑛𝑆  1.7020E+00 3.66E-01 3.7000E-06
10 𝑀𝑊 𝑛𝐹 6.3250E-03 1.43E-03 1.0600E-05
11 𝑛𝐻 𝑛𝑆𝑖 2.5750E-01 7.78E-02 9.6500E-04
12 𝑛𝑂 𝑛𝑆𝑖 1.0010E+00 3.36E-01 2.9640E-03
13 𝑛𝑂 𝑛𝑆 -1.7890E+00 7.40E-01 1.5715E-02
14 1

𝑛𝐶
 

7.3040E+01 6.27E+00 < 2E-16
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 Variables Coefficient Std. error p-value
15 1

𝑛𝐶
 

-2.9070E+01 4.91E+00 4.1300E-09

16 𝑛𝐻
𝑛𝐶

 
-4.4900E+00 4.79E-01 < 2E-16

17 𝑛𝑂
𝑛𝐶

 
7.4580E+00 6.11E-01 < 2E-16

18 𝑛𝑆𝑖
𝑛𝐶

 
4.5510E+01 3.09E+00 < 2E-16

19 𝑀𝑊
𝑛𝐶

 
-2.8990E-01 2.61E-02 < 2E-16

   

Similar to the LFL SFFS-MLR-NLI model in Step 2, Equation 4.15 can be 

interpreted using the differences between carbon and other atoms’ electronegativity. Like 

the LFL characteristic, lighter organic compounds (the number of C<2) tend to have wider 

ranges of UFLs than the other compounds. However, the UFL range of these lighter 

compounds is even wider than the LFL one among the same compounds. Of the lighter 

compounds, for example, the LFL range is from 1.3 to 14.4 vol.%, whereas the UFL range 

is from 6.35 to 100.0 vol.%. Such phenomena may be explained through the unusual 

exothermic decomposition reaction of several low carbon compounds in the absence of 

air. When the released heat from decomposing a compound is larger than the observed 

heat for the formation of its products, once external energy is added, the remained heat 

could trigger a self-sustaining propagating reaction zone. In other words, a deflagration, 

and in some cases, even a detonation, can propagate without the presence of air. 

Furthermore, the radical reaction mechanism at low temperatures is complex with many 

partially oxygenated intermediates as this reaction leads to slowly decreasing combustion 

heats with decreasing air concentration. These complexities then could cause a relatively 
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wide range of experimental results and challenges when estimating accurate UFL values. 

Pan et al. (2009b) also noticed the different explosive manner of the UFL. 

Subsequently, the created model (Equation 4.15) was validated by predicting the 

UFL values in the training and test set. As a result, the predicted UFL values for 1,711 

organic compounds in the dataset were computed and presented in the Supplementary 

Materials. The main resultant statistical metrics are presented in Table 4.15, the 

correlations between the predicted and observed UFL values in Figure 4.10, and 

corresponding residual plots are shown in Figure 4.11. 

As illustrated in Table 4.15(a), the low 𝑅  0.5  value indicates that the selected 

predictor variables in Step 1 are not explaining much in the variation of UFL values, 

regardless of the variable significance (Table D1). Figure 4.10(a) also indicates that the 

values that are obtained from Equation 4D1 in Step 1 failed to predict the observed UFLs, 

because many UFLs points are not close to the regressed diagonal line. Finally, the 

residual plot of the model, which has a non-flat pattern between -10 and 15 predicted UFLs 

[vol.%], evidently reveals that essential predictor variables are missing in Equation 4D1 

(Figure 4.11(a)). Therefore, we concluded that Equation 4D1 incorporating simple 

linearity is invalid to predict UFL values. 

In contrast, the SFFS-MLR-NLI model of Step 2 (Equation 4.15) generated 

consistent and high values of 𝑅 , 𝑄 , 𝑅 , 𝑎𝑛𝑑 𝑄  0.5  than Equation 

4D1. As can be seen from Table 4.15(b), the  𝑅  and 𝑄 , of Eq. 17 is 0.580 and 

0.516, respectively, both of which were low for a good model. However, the similar 

predictive errors (RMSE and MAE) between training and test sets suggests that the 
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constructed model has both predictive ability and generalization performance. The plot of 

the predicted UFL values versus the observed ones in the model shows that most UFL 

points are close to the regressed diagonal line (Figure 4.10(b)), even though there is still 

room to improve. To determine whether any pattern was missed in the MLR model, 

residual plots were examined, as shown in Figure 4.11(b)). Since the plot is randomly 

distributed on both sides of the zero line, we could conclude that there is no systematic 

error in developing the proposed SFF-MLR-NLI model. Therefore, this model is valid for 

predicting the UFL values of pure organic compounds.  

 

Table 4.15 Predictability of SFFS-MLR-NLI model for predicting UFL in Step 2 
(Equation 4.15) 

Statistical metric Training set Test set Overall dataset 
R  0.602 0.501 0.580 

RMSE [vol.%] 4.833 5.726 5.023 
RMSE  5.159 - - 

Q  0.549 - - 
Q  - 0.501 - 
MAE 2.439 2.463 2.444 

Std. error 4.869 5.733 5.025 
Number of compounds 1,370 341 1,711 
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(a)* Predicted (Equation 4D1) vs. observed UFLs in Step 1 via the SFBS (this model 
rejected)   

 

 

(b) Predicted (Equation 4.15) vs. observed UFLs in Step 2 via the SFFS   
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(c)* Predicted (Equation 4D2) vs. observed UFLs in Step 2 via the SFBS   

Figure 4.10 Correlations between the predicted and observed UFLs for both 
training and test sets. The diagonal line represents perfect correlation of observed and 
predicted UFLs. *The detail of the Graphs (a) and (c) model are additionally provided in 
Appendix 4D to check whether this method can achieve a more accurate model in this 
study. 
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(a)* Residuals (Step 1 for UFL via the SFBS) vs predicted values (Equation 4D1) (this 
model rejected) 

 

 

(b) Residuals (Step 2 for UFL vis the SFFS) vs predicted values (Equation 4.15) 
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(c)* Residuals (Step 2 for UFL vis the SFBS) vs predicted values (Equation 4D2) 

Figure 4.11 Plots of residuals versus the observed UFL values for the constructed 
models. *The details of the Graphs (a) and (c) models are additionally provided in 
Appendix 4D to check whether this method can achieve a more accurate model in this 
study. This graph shows how the predictabilities gradually increased by adding more 
flexible terms. The two notable outliers, carbon monoxide (CO) and methyl 
dichlorosilane (CH4Cl2Si) in the SFBS-MLR-L in Step 1 and the SFFS-MLR-L in Step 
2, are not the outliers any more in the SFBS-MLR-NLI in Step 2.  

 

Figure 4.11 also indicates outliers for the two created UFL models. All outliers 

(>4s) in Step 1, 17 outliers contain less or equal to four carbon atoms in their molecular 

formulas. Although many outliers in Step 1 still remain as outliers in Step 2, the average 

residuals among the outliers considerably decreased from 43.3 vol. % 35.5 vol.%. 

Moreover, several compounds that are outliers in Step 2 are not outliers any more in Step 

2 such as carbon disulfide (CS2) and dichloroacetic acid (C2H2Cl2O2). Hence, the 
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predictability increases by capturing the behaviors of atomic interaction among lighter 

compounds in Equation 4.15, compared to Equation 4D1.  

The UFL SFBS-based model in Step 2 is also provided in Appendix 4D. As shown 

in its statistical results in Appendix 4D, its predicted vs. observed values in Figure 4.10(c), 

and residual plot in Figure 4.11(c), the SFBS-MLR-NLI model is adequate as a predictive 

model. In addition, the model has higher accuracy than the other proposed models. 

However, the model is less applicable than the SFFS-MLR-NLI model because of 57 

predictor terms.  

Although the proposed UFL SFFS-MLR-NLI model is adequate, the model had 

rather low predictability: the value of 𝑅  was 0.58. In order to construct a more generic 

QSPR model, Pan et al. (2009b) excluded 9 outliers by narrowing down the UFL range 

from 2.7 – 100.0 vol.% to 2.7 – 50.0 vol.%. Similar to the study of Pan et al. (2009b), we 

additionally established a more generic UFL model in Step 2 after excluding the SFBS-

MLR-NLI model’s 15 outliers (dichloroacetic acid, ethylene oxide, ethyleneimine, 

methylacetylene, propargyl alcohol, trimethylchlorosilane, trimethoxysilane, diethyl 

ether, diethylene glycol, 1-ethoxy-2-propanol, nitrobenzene, trichlorovinylsilane, 1-

chloro-2-propyne, dimethylacetylene, and sucrose acetate isobutyrate). The range of the 

UFL values was changed from 0.0475 – 100.0 vol.% to 0.0475 – 87.0 vol.%.  

 By performing the SFFS-MLR-NLI procedure in the training set without the 

fifteen outliers, the optimum subset of fifteen predictors was selected. The created model 

for predicting the UFL is presented as the following.  
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𝑼𝑭𝑳 𝒗𝒐𝒍. %

𝒇 𝒏𝑪, 𝒏𝑯, 𝒏𝑶, 𝒏𝑵, 𝒏𝑭, 𝒏𝑪𝒍, 𝒏𝑩𝒓, 𝒏𝑺𝒊, 𝒏𝑺, 𝑴𝑾, 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎𝒔

𝟑. 𝟔𝟑𝟔 𝟎. 𝟎𝟔𝟖𝟔𝒏𝑯 𝟎. 𝟎𝟎𝟎𝟎𝟏 𝑴𝑾 𝟐 𝟎. 𝟐𝟐𝟔𝟔 𝒏𝑶 𝟐 𝟎. 𝟏𝟕𝟒𝟎 𝒏𝑵 𝟐

𝟎. 𝟖𝟐𝟔𝟏 𝒏𝑺 𝟐 𝟎. 𝟎𝟏𝟏𝟖 𝑴𝑾 𝒏𝑶 𝟎. 𝟏𝟕𝟗𝟗 𝒏𝑪 𝒏𝑭 𝟎. 𝟎𝟕𝟒𝟔 𝒏𝑯 𝒏𝑶

𝟏
𝒏𝑪

𝟒𝟔. 𝟔𝟐 𝟓. 𝟒𝟕𝟔𝒏𝑶 𝟑𝟖. 𝟒𝟕𝒏𝑺𝒊

𝟏
𝒏𝑪 𝟐 𝟓. 𝟕𝟒𝟗𝒏𝑯 𝟐. 𝟎𝟓𝟏 𝒏𝑪𝒍 𝟐 𝟕. 𝟎𝟐𝟒𝒏𝑩𝒓 𝟎. 𝟎𝟎𝟎𝟗 𝑴𝑾 𝟐  

Equation 4.16 

 

The selected predictors’ coefficients are statistically significant (p-value < 0.05), 

as illustrated in Table 4.16. Compared to the performance of Equation 4.15, The new 

model was established without iodine atom. Also, the same atomic elements involved in 

Equation 4.15 were contained in this model with rather different transformed terms. 

However, similar to Equation 4.15, this model also composes various atomic interactions 

and bulk-related factors (weights). 

 

Table 4.16 Selected predictors and their coefficients of the UFL SFFS-MLR-NLI 
model (Equation 4.16) 

 Variables Coefficient Std. error p-value
0 Intercept 3.6360E+00 3.5110E-01 < 2E-16
1 𝑛𝐻 -6.8570E-02 1.9000E-02 0.000316
2 𝑀𝑊  1.4150E-05 5.3130E-06 0.007798
3 𝑛𝑂  2.2660E-01 3.7230E-02 1.44E-09
4 𝑛𝑁  1.7400E-01 5.1830E-02 0.000806
5 𝑛𝑆  8.2610E-01 2.5880E-01 0.001439
6 𝑀𝑊 𝑛𝑂 -1.1800E-02 1.4620E-03 1.35E-15
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 Variables Coefficient Std. error p-value
7 𝑛𝐶 𝑛𝐹 1.7990E-01 4.3850E-02 4.26E-05
8 𝑛𝐻 𝑛𝑂 7.4630E-02 1.0610E-02 2.96E-12
9 1

𝑛𝐶
 

4.6620E+01 1.7020E+00 < 2E-16

10 𝑛𝐻
𝑛𝐶

 
-5.7490E+00 4.8460E-01 < 2E-16

11 𝑛𝑂
𝑛𝐶

 
5.4760E+00 4.9130E-01 < 2E-16

12 𝑛𝐶𝑙
𝑛𝐶

 
-2.0510E+00 4.5990E-01 8.72E-06

13 𝑛𝐵𝑟
𝑛𝐶

 
-7.0240E+00 3.4880E+00 0.044192

14 𝑛𝑆𝑖
𝑛𝐶

 
3.8470E+01 1.9300E+00 < 2E-16

15 𝑀𝑊
𝑛𝐶

 
-9.4040E-04 1.6990E-04 3.63E-08

 

 The SFFS-MLR-NLI model (Equation 4.16) without the 15 outliers generated 

consistent and high values of 𝑅 , 𝑄 , 𝑅 , 𝑎𝑛𝑑 𝑄  0.5  than Equation 

4.15. As can be seen from Table 4.17, the  𝑅  and 𝑄 , of Equation 4.16 is 0.677 

and 0.626, respectively. This result indicates that this model is now a stable model 

internally and externally. This result clearly shows that the predictive performance 

significantly increases after excluding the 15 outliers. The plot of the predicted UFL values 

versus the observed ones in the model shows that most UFL points are close to the 

regressed diagonal line (Figure 4.12(a)), even though there is still room to improve. To 

determine whether any pattern was missed in the MLR model, residual plots were 

examined, as shown in Figure 4.13(a)). Since the plot is randomly distributed on both sides 

of the zero line, we could conclude that there is no systematic error in developing the 
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proposed SFFS-MLR-NLI model. Therefore, this model is valid for predicting the generic 

UFL values of pure organic compounds. 

 

Table 4.17 Predictabilities of the two constructed models for predicting UFL 

The resultant statistical parameters of the SFFS-MLR-L model without 15 outliers in 

Step 2 

Statistical metric Training set Test set Overall dataset 
R  0.684 0.646 0.677 

RMSE [vol.%] 3.380 3.155 3.336 
RMSE  4.107 - - 

Q  0.626 - - 
Q  - 0.646 - 
MAE 2.104 2.178 2.119 

Std. error 3.791 3.594 3.737 
Number of compounds 1,359 337 1,696 

 

 

 

 



 

236 

 

 

(a) Predicted (Equation 4.16) vs. observed UFLs without 15 outliers in Step 2 via the 
SFFS 
 

 

(b)* Predicted (Equation 4D3) vs. observed UFLs without 15 outliers in Step 2 via the 
SFBS   

 

Figure 4.12 Correlations between the predicted and observed UFLs for both 
training and test sets. The diagonal line represents perfect correlation of observed and 
predicted UFLs. *The detail of the Graph (b) model is additionally provided in 
Appendix 4D to check whether this method can achieve a more accurate model in this 
study.  
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(a) Residuals (Step 2 for UFL via the SFFS without 15 outliers) vs predicted values 
(Equation 4.16) 
 

 

(b)* Residuals (Step 2 for UFL vis the SFBS with 15 outliers) vs predicted values 
(Equation 4D3) 

Figure 4.13 Plots of residuals versus the observed UFL values for the constructed 
models. *The detail of the Graph (b) model is additionally provided in Appendix 4D3 to 
check whether this method can achieve a more accurate model in this study. This graph 
shows how the predictabilities gradually increased by adding more flexible terms. 
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Table 4.18 summarizes the performance of the four adequate predictive models. 

This table also includes two models constructed by QSPR with the same data source, 

DIPPR. Although the same data source was utilized in all models, it could not be 

confirmed whether the dataset of UFL models in this study covered the entire dataset the 

QSPR models used. Nevertheless, statistical metrics such as ℎ𝑖𝑔ℎ𝑒𝑟 𝑅 , 𝑙𝑜𝑤𝑒𝑟 𝑀𝐴𝐸 𝐾 ,  

𝑙𝑜𝑤𝑒𝑟 𝑅𝑀𝑆𝐸 𝐾 , lower standard error, and applicability to a wider variety of chemical 

compounds for the UFL values indicate that the proposed UFL predictive models in this 

study seem to come out as being slightly better than the previous models. 
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Table 4.18 Comparison with the current model and previous model (the UFL of pure organic compounds) 

Model 𝑅  
(𝑅 /

𝑅 ) 

MAE 
[vol.%] 

RMSE 
[vol.%] 

Std. error Dataset 
Size* 

Property range  
(Applicable 

range) [vol. %] 

Note 

Pan et al. 
(2009b)1 

- 
(0.570/0.523) 

- 
(2.80/2.93)

- 
(6.39/7.46)

- 588 
(470/118)

2.7 – 100.0 
vol.%

QSPR model 
(GA-MLR)

Pan et al. 
(2009b) 

- 
(0.758/0.751) 

- 
(1.85/1.75)

- 
(2.70/2.77)

- 579 2 
(465/114)

2.7 – 50.0 
vol.%

QSPR model 
(GA-MLR)

Equation 4.15 
 

0.580 
(0.602/0.501) 

2.444 
(2.44/2.46)

5.023 
(4.83/5.73)

5.025 
(4.87/5.73)

1,711 
(1,370/341)

0.0475 – 100.0 
vol.%

SFFS-MLR- NLI 
(Step 1 in this study) 

Equation 4D2 
(Appendix 4D2) 

0.639 
(0.679/0.495) 

2.329 
(2.25/2.64)

4.657 
(4.34/5.76)

4.658 
(4.44/5.76)

1,711 
(1,370/341)

0.0475 – 100.0 
vol.%

SFBS-MLR- NLI 
(Step 2 in this study)

Equation 4.16 
 

0.677 
(0.684/0.646) 

2.119 
(2.10/2.18)

3.336 
(3.38/3.16)

3.737 
(3.79/3.59)

1,696 3 
(1,359/337)

0.0475 – 87.0 
vol.%

SFFS-MLR- NLI 
(Step 2 in this study)

Equation 4D3 
(Appendix 4D3) 

0.748 
(0.774/0.615) 

1.991 
(1.92/2.28)

3.303 
(3.18/3.75)

3.303 
(3.25/3.74)

1,696 3 
(1,359/337)

0.0475 – 87.0 
vol.%

SFBS-MLR- NLI 
(Step 2 in this study)

*All data reference is DIPPR 801  
1 Of several QSPR models, this model has the most similar property ranges for the UFL values from the DIPPR 801 reference.  
2 The 9 outliers with more than 50 vol.% UFL values were excluded.  
3 The 15 outliers, which were far from other data points (>4s) of the SFBS-MLR-NLI model, were excluded.  
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4.5. Conclusions 

It is often challenging for practitioners to estimate flammability properties with 

currently existing predictive models. Many practitioners' main challenge is the demand 

for in-depth chemical or computer science knowledge associated with the predictive 

models. Therefore, this study aimed to propose new reliable predictive models that 

practitioners can easily adopt. 

Based on the data obtained from the DIPPR (2019), this study established MLR 

models that predict the flash point, heat of combustion, LFL, and UFL values of pure 

organic compounds. To utilize readily available predictor variables, the numbers of all 

atoms from their molecular formulas, molecular weights, and boiling points were adopted 

as 121 default input variables (possible predictors). Of various machine learning 

algorithms, the MLR algorithm was selected because the algorithms' models would enable 

process engineers to adopt them quickly. However, the MLR method was generally 

limited to linear fitting. To overcome this MLR limitation, atomic interactions and 

transformation terms were additionally prepared by transforming the default input 

variables. This study consisted of two steps to clearly compare the effects of atomic 

interactions and transformation terms. 

 In Step 1, an optimal subset from the 121 variables, which are exclusively 

linear terms, was selected with the SFBS feature selection algorithm. Based on 

the selected predictors, the SFBS-MLR-L models were created for predicting 

each flammability property. After analyzing the four created models, the flash 

points and the heats of combustion of organic compounds could be estimated 
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with the SFBS-MLR-L, with the values of 𝑅  as 0.976 and 0.999 for test sets, 

respectively. In contrast to the former models, the LFL and UFL SFBS-MLR-

L models were not applicable, with the value of 𝑅 as 0.552 and 0.253 for test 

sets, respectively. These observations implied that the combinations of simple 

linear terms were reasonably sufficient at predicting the flash points and the 

heats of combustion but were not applicable for predicting the LFL and UFL 

values. 

 In Step 2, the default variables in Step 1 were transformed to incorporate the 

nonlinear and interaction terms together. With the SFFS feature selection, an 

optimal subset of predictors was selected in Step 2. Similar to Step 1, based on 

the selected predictors, the SFFS-MLR-NLI models were constructed for each 

flammability property. Although the models were constructed by the SFBS in 

Step 2, the SFBS-MLR-NLI models generally showed better accuracies than 

the SFFS-MLR-NLI models except for heat of combustion prediction. Since 

the SFBS-MLR-NLI models included numerous predictors, they were not 

appealing for applications. Therefore, for simplicity and generalization, the 

SFFS-MLR-NLI models were primarily presented in Step 2. All of the four 

SFFS-MLR-NLI models were valid, with the values of 𝑅  as 0.977 (for the 

flash point), 0.999 (for the heat of combustion), 0.741 (for the LFL), and 0.501 

(for the UFL) for each test set. All of the constructed models in Step 2 were 

adequate as predictive models of the four flammability properties. Given that 

the proposed models’ accuracies had a considerably similar accuracy as the 
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QSPR models, we concluded that the prepared variables of Step 2 successfully 

described the various molecular structures to capture the characteristics of 

flammability properties like the QSPR approaches. 

 

Through the SFBS in Step 1, the SFFS in Step 2, and the SFBS in Step 2, the 

constructed models were gradually enhanced. Since the flash point SFBS-MLR-L models 

were already remarkable, there was no significant increase in these models' predictabilities 

in Step 2. The heat of combustion’s SFFS-MLR-NLI model proved exceptionally more 

accurate and generalizable than its corresponding SFBS-MLR-NLI model due to an 

extraordinary outlier in the training set. This result indicated that the linear terms with 

several interaction terms were enough to predict the heat of combustion, and the SFBS-

MLR-NLI overfitted the data. Meanwhile, the LFL and UFL models showed substantial 

improvement in Step 2. Hence, this result indicated that the values of LFL and UFL were 

determined by various atomic interactions and bulk-related factors, such as the Van der 

Waals force and steric effects. The heats of combustion of organic compounds were 

mainly associated with atomic types. 

Since the created models in this study are provided with equation forms, they can 

be utilized as parts of the mathematical formulations in optimization along with other 

process aspects. For example, the LFL and UFL models can be adopted as part of the 

formula nonlinear programming (NLP) or mixed-integer nonlinear programming 

(MINLP) optimization models, while the flash point and heat of combustion with the 
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linear programming formulations. Through these approaches, flammability properties 

would proactively be considered during the early design stages. 

Despite the ease and the acceptable performance of the predictive models in this 

study, these models still have two limitations. First, several proposed models utilize 

another physical property, boiling point, as a predictor variable. However, the boiling 

point is the most applicable property compared to the target flammability properties, so 

this limitation may not be a severe barrier. Second, numerous atomic interaction terms are 

selected, especially when using the SFBS in Step 2, but these interactions are not often 

statistically significant. This result points to the fact that atomic interactions strongly affect 

flammability properties, but the interactions between atoms are rather weak and unstable. 

When an atomic element, for example nitrogen, is selected from the SFBS feature 

selection, multiple variables are selected as predictors to express the nitrogen atom’s 

effect, such as 𝑛𝑁, 𝑛𝑁 , 𝑀𝑊 𝑛𝑁, 𝑇 𝑛𝑁, 𝑛𝑁 𝑛𝐻, 𝑛𝑁 𝑛𝑂, 𝑛𝑁

𝑛𝑆, , 𝑎𝑛𝑑  in predicting the UFL. These multiple terms clearly show that nitrogen 

affects the UFL values with various interactions (intermolecular and intramolecular 

forces) with other atoms along with itself. For this reason, numerous predictors should be 

utilized together to describe interaction effects, in particular via the SFBS in Step 2. Such 

a circumstance clearly demonstrates the complex relationship between atomic interactions 

and a flammability property. However, it makes the proposed model via the SFBS in Step 

2 seem rather complicated. For this reason, we primarily presented and interpreted the 

models constructed via the SFFS in Step 2, which were better for generalization internally 

and externally with fewer predictors. Since this is the first study to clearly incorporate 
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atomic interaction terms, we could revise more effective input variables that can describe 

the complicated interaction terms with few predictors. 

In conclusion, as all the results discussed above showed, the proposed regression 

models in this study possess some apparent advantages. First, the number of predictive 

variables used was readily available. Second, the proposed predictive models are both 

practical and sufficiently accurate to practitioners. Third, the proposed MLR models will 

be favored for their ease of interpretability. Therefore, the chemical engineering 

community could benefit from these results, which would give practitioners the possibility 

to quickly estimate missing data of the flash point, heat of combustion, LFL, and UFL of 

organic compounds.  

 

4.6. Supplementary materials  

Supplementary material associated with this study can be found, in the online 

version, at doi: 10.1016/j.compchemeng.2021. 107524. 
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4.7. Appendix 4A Flash point SFBS-MLR-NLI model in Step 2 

𝑇  𝐾 𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝐶, 𝐻, 𝑂, 𝑁, 𝑆𝑖, 𝑆, 𝐹, 𝐶𝑙, 𝑇 , 𝑀𝑊, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠  

1511 9.2170𝑛𝑁 17.49𝑛𝑆𝑖 0.2634𝑀𝑊 6.827𝑇

173.8 𝑇 118.9 𝑙𝑜𝑔 𝑛𝐶 0.0020𝑀𝑊 0.0022𝑇

0.0416 𝑛𝐻 17.09 𝑛𝑁 3.4710 𝑛𝐶𝑙 7.2740 𝑛𝑆

𝑀𝑊 0.0009𝑇 0.0425𝑛𝐶 0.0259𝑛𝐹 0.1194𝑛𝐶𝑙 0.7915𝑛𝑁

𝑇 0.0077𝑛𝐶 0.0018𝑛𝐻 0.006𝑛𝑂 0.0661𝑛𝑁 0.0801𝑛𝑆

𝑛𝐶 0.1942𝑛𝐻 12.26𝑛𝑁 3.891𝑛𝑆

𝑛𝐻 1.681𝑛𝐶𝑙 0.4372𝑛𝑆𝑖 0.8864𝑛𝑆

𝑛𝑂 13.04𝑛𝑁 2.121𝑛𝑆𝑖 5.679𝑛𝑆 𝑛𝑁 19.49𝑛𝐶𝑙 23.43𝑛𝑆𝑖

1
𝑛𝐶

525.5 184.9
1

𝑛𝐶
𝑛𝑂
𝑛𝐶

 15.65 38.75
1

𝑛𝐶
9.779

𝑛𝑂
𝑛𝐶

5.29
𝑛𝐹
𝑛𝐶

𝑛𝑆𝑖
𝑛𝐶

 127.7 147.0𝑛𝑆𝑖

1
𝑇 𝑛𝐶

 98,550 3,276,000
1

𝑇 𝑛𝐶
0.4932

𝑇
𝑛𝐶

𝑀𝑊
𝑛𝐶

0.771 0.7427
1

𝑛𝐶
 

Equation 4A1 

 

where 𝑛𝐶𝑙, 𝑛𝑆𝑖, 𝑛𝐶, 𝑛𝐵𝑟, 𝑛𝐼, 𝑛𝑆𝑖, 𝑛𝑆, 𝑛𝐻 ,  𝑛𝑂  and 𝑛𝑁  are the numbers of chlorine, 

silicon, carbon, bromine, iodine, silicone, sulfur, hydrogen, oxygen, and nitrogen.  

𝑇  is the normal boiling point [K], and 𝑀𝑊  is molecular weight [g/mol] of the 

chemical compound of interest.  
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Table 4A1 Selected predictors and their coefficients of the flash point SFBS-MLR-
NLI model (Equation 4A1) 
 
No Variables Coefficient Std. error p-value
0 Intercept 1.5110E+03 1.3400E+02 < 2e-16
1 𝑛𝑁 9.2170E+00 3.6690E+00 0.012103
2 𝑛𝑆𝑖 -1.7490E+01 2.7720E+00 3.80E-10
3 𝑀𝑊 -2.6340E-01 9.3060E-02 0.004723
4 𝑇  6.8270E+00 4.3620E-01 < 2E-16
5 𝑇  -1.7380E+02 1.4020E+01 < 2E-16

6 log 𝐶 -1.1890E+02 1.6400E+01 6.94E-13
7 𝑀𝑊  -2.0200E-03 1.6570E-04 < 2E-16
8 𝑇  -2.1910E-03 1.3660E-04 < 2E-16
9 𝑛𝐻  4.1630E-02 9.3360E-03 8.92E-06
10 𝑛𝑁  1.7090E+01 1.8710E+00 < 2E-16
11 𝑛𝐶𝑙  -3.4710E+00 9.9820E-01 0.000523
12 𝑛𝑆  7.2740E+00 2.5300E+00 0.004097
13 𝑀𝑊 𝑇  8.9950E-04 1.9770E-04 5.87E-06
14 𝑀𝑊 𝑛𝐶 4.2480E-02 4.2710E-03 < 2E-16
15 𝑀𝑊 𝑛𝐹 2.5940E-02 5.0490E-03 3.19E-07
16 𝑀𝑊 𝑛𝐶𝑙 1.1940E-01 2.2130E-02 8.06E-08
17 𝑀𝑊 𝑛𝑁 -7.9150E-01 1.1090E-01 1.54E-12
18 𝑇 𝑛𝐶 -7.6950E-03 1.6340E-03 2.75E-06
19 𝑇 𝑛𝐻 1.8330E-03 3.3710E-04 6.39E-08
20 𝑇 𝑛𝑂 6.0160E-03 1.3680E-03 1.19E-05
21 𝑇 𝑛𝑁 -6.6080E-02 1.0280E-02 1.79E-10
22 𝑇 𝑛𝑆 -8.0120E-02 1.6050E-02 6.80E-07
23 𝑛𝐶 𝑛𝐻 -1.9420E-01 3.3890E-02 1.24E-08
24 𝑛𝐶 𝑛𝑁 1.2260E+01 1.5390E+00 3.41E-15
25 𝑛𝐶 𝑛𝑆 3.8910E+00 7.0680E-01 4.40E-08
26 𝑛𝐻 𝑛𝐶𝑙 -1.6810E+00 2.3920E-01 3.35E-12
27 𝑛𝐻 𝑛𝑆𝑖 4.3720E-01 8.6860E-02 5.48E-07
28 𝑛𝐻 𝑛𝑆 -8.8640E-01 2.4400E-01 0.000291
29 𝑛𝑂 𝑛𝑁 1.3040E+01 1.8100E+00 9.68E-13
30 𝑛𝑂 𝑛𝑆𝑖 2.1210E+00 5.6690E-01 0.000192
31 𝑛𝑂 𝑛𝑆 5.6790E+00 1.8380E+00 0.002048
32 𝑛𝑁 𝑛𝐶𝑙 1.9490E+01 4.5740E+00 2.17E-05



 

247 

 

No Variables Coefficient Std. error p-value
33 𝑛𝑁 𝑛𝑆𝑖 2.3430E+01 5.8760E+00 7.05E-05
34 1

𝑛𝐶
  

5.2550E+02 9.9600E+01 1.53E-07

35 1
𝑛𝐶

  
-1.8490E+02 4.7070E+01 9.02E-05

36 𝑛𝑂
𝑛𝐶

 
-1.5650E+01 5.3440E+00 0.003468

37 𝑛𝑂
𝑛𝐶

 
3.8750E+01 7.7380E+00 6.24E-07

38 𝑛𝑂
𝑛𝐶

 
-9.7790E+00 2.5710E+00 0.000149

39 𝑛𝐹
𝑛𝐶

 
5.2900E+00 1.8390E+00 0.004077

40 𝑛𝑆𝑖
𝑛𝐶

 
-1.2770E+02 5.4340E+01 0.018967

41 𝑛𝑆𝑖
𝑛𝐶

 
1.4700E+02 5.6680E+01 0.009596

42 1
𝑇 𝑛𝐶

 
-9.8550E+04 1.4600E+04 2.17E-11

43 1
𝑇 𝑛𝐶

 
3.2760E+06 6.3310E+05 2.64E-07

44 𝑇
𝑛𝐶

 
-4.9320E-01 9.1300E-02 7.78E-08

45 𝑀𝑊
𝑛𝐶

 
7.7100E-01 2.1810E-01 0.00042

46 𝑀𝑊
𝑛𝐶

 
-7.4270E-01 1.9510E-01 0.000147

 

Table 4A2 Predictable capability of the developed flash point model in Step 2 

Statistical metric Training set Test set Entire dataset 
𝑅  0.986 0.976 0.984 

𝑅𝑀𝑆𝐸 9.59 12.43 10.22 
𝑅𝑀𝑆𝐸  12.03 - - 

𝑄  0.976 - - 
𝑄  - 0.976 - 
𝑀𝐴𝐸 5.49 6.41 5.67 

Std. error 9.76 12.45 10.22 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 1,394 347 1,741 
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4.8. Appendix 4B Heat of combustion SFBS-MLR-NLI model in Step 2 

By performing the SFBS-MLR-NLI procedure in the training set, the optimum 

subset of 64 predictors was selected in Step 2. The constructed model for predicting the 

heat of combustion is presented as the following: 

∆𝐻
𝑘𝐽

𝑚𝑜𝑙

𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝐶, 𝐻, 𝑂, 𝑁, 𝐹, 𝐶𝑙, 𝑆𝑖, 𝑆, 𝑃, 𝑃𝑏, 𝑇 , 𝑀𝑊, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠

 7,627 67.58𝑛𝐻 617.9𝑛𝑂 328.1𝑛𝑁 525.2𝑛𝐹 1,401𝑛𝐶𝑙 3,382𝑛𝐵𝑟

187.6𝑛𝑆𝑖 532.5𝑛𝑃 30.52𝑀𝑊 87.9√𝑀𝑊 4,068 𝑒𝑥𝑝 𝑛𝐼 3,535 𝑒𝑥𝑝 𝑛𝑆

3.094 𝑛𝐶  1.341 𝑛𝐻 36.3 𝑛𝑂 32.14 𝑛𝐹 56.34 𝑛𝐶𝑙

5,266 𝑛𝑆

𝑀𝑊 0.0056𝑇 1.17𝑛𝐻 2.265𝑛𝑂 1.561𝑛𝐹 0.8412𝑛𝐶𝑙 1.892𝑛𝐵𝑟

18.67𝑛𝐼 𝑇 0.0422𝑛𝐻 0.8717𝑛𝐹 2.783𝑛𝐵𝑟 9.356𝑛𝐼

𝑛𝐶 12.25𝑛𝐻 26.91𝑛𝑂 27.3𝑛𝐶𝑙 227.4𝑛𝐼 16.79𝑛𝑆

𝑛𝐻 21.17𝑛𝑂 13.04𝑛𝐹 46.96𝑛𝐶𝑙 87.35𝑛𝐵𝑟 163.6𝑛𝐼 16.18𝑛𝑁

30.22𝑛𝑆𝑖 34.58𝑛𝑆

𝑛𝑂 85.9𝑛𝐹 124.3𝑛𝐶𝑙 68.49𝑛𝑁 88.83𝑛𝑆𝑖 110.8𝑛𝑆 135.5 𝑛𝑁 𝑛𝐶𝑙

1
𝑛𝐶

1,558 980
1

𝑛𝐶
1,198𝑛𝐶𝑙 2,617𝑛𝐵𝑟 3,999𝑛𝐼 995.7𝑛𝑆 861.0𝑛𝑖

 
𝑛𝐻
𝑛𝐶

127 154.6
1

𝑛𝐶
 

𝑛𝑂
𝑛𝐶

255.7 109.7𝑛𝑂
1

𝑛𝐶
388𝑛𝐹 396.2𝑛𝑁

36,140
𝑇 𝑛𝐶

0.003
𝑇
𝑛𝐶

𝑀𝑊
𝑛𝐶

37.89 0.0341
𝑀𝑊
𝑛𝐶

                   Equation 4B1 
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Table 4B1. Selected predictors and their coefficients of the heat of combustion 
SFBS-MLR-NLI model (Equation 4B1)   

No. Variables Coefficient Std. error p-value
0 Intercept -7.6270E+03 5.9340E+02 < 2E-16
1 𝑛𝐻 -6.7580E+01 6.6440E+00 < 2E-16
2 𝑛𝑂 6.1790E+02 1.1670E+01 < 2E-16
3 𝑛𝑁 3.2810E+02 1.6550E+01 < 2E-16
4 𝑛𝐹 5.2520E+02 2.8800E+01 < 2E-16
5 𝑛𝐶𝑙 1.4010E+03 5.7460E+01 < 2E-16
6 𝑛𝐵𝑟 3.3820E+03 1.8770E+02 < 2E-16
7 𝑛𝑆𝑖 1.8760E+02 3.0050E+01 5.7000E-10
8 𝑛𝑃 -5.3250E+02 7.9050E+01 2.3600E-11
9 𝑀𝑊 -3.0520E+01 1.3630E+00 < 2E-16
10 √𝑀𝑊 -8.7900E+01 2.6170E+01 8.0300E-04
11 exp 𝑛𝐼  4.0680E+03 5.0060E+02 9.5500E-16
12 exp 𝑛𝑆  3.5350E+03 2.8280E+02 < 2E-16
13 𝑛𝐶  -3.0940E+00 4.7720E-01 1.2200E-10
14 𝑛𝐻  -1.3410E+00 1.1870E-01 < 2E-16
15 𝑛𝑂  -3.6300E+01 9.8340E+00 2.3200E-04
16 𝑛𝐹  3.2140E+01 4.5210E+00 1.8500E-12
17 𝑛𝐶𝑙  -5.6340E+01 1.2490E+01 7.0400E-06
18 𝑛𝑆  -5.2660E+03 4.2860E+02 < 2E-16
19 𝑀𝑊 𝑇  5.6390E-03 1.0530E-03 1.0100E-07
20 𝑀𝑊 𝑛𝐻 1.1700E+00 4.6470E-02 < 2E-16
21 𝑀𝑊 𝑛𝑂 2.2650E+00 6.1420E-01 2.3500E-04
22 𝑀𝑊 𝑛𝐹 -1.5610E+00 2.0580E-01 5.8100E-14
23 𝑀𝑊 𝑛𝐶𝑙 8.4120E-01 3.5010E-01 1.6416E-02
24 𝑀𝑊 𝑛𝐵𝑟 1.8920E+00 5.5110E-01 6.1300E-04
25 𝑇 𝑛𝐻 -4.2150E-02 1.1100E-02 1.5300E-04
26 𝑇 𝑛𝐹 8.7170E-01 1.0770E-01 1.2500E-15
27 𝑇 𝑛𝐵𝑟 -2.7830E+00 5.7490E-01 1.4400E-06
28 𝑇 𝑛𝐼 -9.3560E+00 2.6970E+00 5.3900E-04
29 𝑛𝐶 𝑛𝐻 -1.2250E+01 8.4260E-01 < 2E-16
30 𝑛𝐶 𝑛𝑂 -2.6910E+01 7.5020E+00 3.4600E-04
31 𝑛𝐶 𝑛𝐶𝑙 -2.7300E+01 6.7180E+00 5.0900E-05
32 𝑛𝐶 𝑛𝐼 2.2740E+02 8.3660E+01 6.6370E-03
33 𝐶 𝑛𝑆 -1.6790E+01 5.4720E+00 2.2010E-03
34 𝑛𝐻 𝑛𝑂 -2.1170E+01 1.0500E+00 < 2E-16
35 𝑛𝐻 𝑛𝐹 -1.3040E+01 2.6040E+00 6.1800E-07
36 𝑛𝐻 𝑛𝐶𝑙 -4.6960E+01 3.1450E+00 < 2E-16
37 𝑛𝐻 𝑛𝐵𝑟 -8.7350E+01 4.9930E+00 < 2E-16



 

250 

 

No. Variables Coefficient Std. error p-value
38 𝑛𝐻 𝑛𝐼 -1.6360E+02 1.9000E+01 < 2E-16
39 𝑛𝐻 𝑛𝑁 -1.6180E+01 1.0440E+00 < 2E-16
40 𝑛𝐻 𝑛𝑆𝑖 -3.0220E+01 1.6200E+00 < 2E-16
41 𝑛𝐻 𝑛𝑆 -3.4580E+01 3.3510E+00 < 2E-16
42 𝑛𝑂 𝑛𝐹 -8.5900E+01 1.3270E+01 1.3100E-10
43 𝑛𝑂 𝑛𝐶𝑙 -1.2430E+02 2.3830E+01 2.1000E-07
44 𝑛𝑂 𝑛𝑁 -6.8490E+01 8.9180E+00 2.9400E-14
45 𝑛𝑂 𝑛𝑆𝑖 -8.8830E+01 1.8420E+01 1.5700E-06
46 𝑛𝑂 𝑛𝑆 -1.1080E+02 2.2550E+01 1.0100E-06
47 𝑛𝑁 𝑛𝐶𝑙 -1.3550E+02 2.9040E+01 3.3700E-06
48 1

𝑛𝐶
 

-1.5580E+03 2.7380E+02 1.5400E-08

49 1
𝑛𝐶

 
9.8090E+02 1.7340E+02 1.8700E-08

50 𝑛𝐻
𝑛𝐶

 
1.2760E+02 2.8200E+01 6.5800E-06

51 𝑛𝐻
𝑛𝐶

 
-1.5460E+02 3.4600E+01 8.5600E-06

52 𝑛𝑂
𝑛𝐶

 
-2.5570E+02 6.0630E+01 2.6300E-05

53 𝑛𝑂
𝑛𝐶

 
-1.0970E+02 1.5850E+01 6.8600E-12

54 𝑛𝐹
𝑛𝐶

 
-3.8800E+02 3.3180E+01 < 2E-16

55 𝑛𝐶𝑙
𝑛𝐶

 
-1.1980E+03 9.4690E+01 < 2E-16

56 𝑛𝐵𝑟
𝑛𝐶

 
-2.6170E+03 1.6380E+02 < 2E-16

57 𝑛𝐼
𝑛𝐶

 
-3.9990E+03 3.9530E+02 < 2E-16

58 𝑛𝑆
𝑛𝐶

 
-9.9570E+02 1.0510E+02 < 2E-16

59 𝑛𝑆𝑖
𝑛𝐶

 
-8.6100E+02 9.8410E+01 < 2E-16

60 𝑛𝑁
𝑛𝐶

 
-3.9620E+02 7.4940E+01 1.4400E-07

61 1
𝑇 𝑛𝐶

 
3.6140E+04 1.5910E+04 2.3222E-02

62 𝑇
𝑛𝐶

 
2.9630E-03 8.8680E-04 8.5500E-04
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No. Variables Coefficient Std. error p-value
63 𝑀𝑊

𝑛𝐶
 

3.7890E+01 2.9190E+00 < 2E-16

64 𝑀𝑊
𝑛𝐶

 
-3.4050E-02 7.8200E-03 1.4300E-05

 

Table 4B2. The resultant statistical parameters of the heat of combustion SFBS-
MLR-NLI model in Step 2 

Statistical metric Training set Test set Overall dataset 
R  0.9992 0.9992 0.9991 

RMSE [kJ/mol] 105.50 104.35 105.28 
RMSE [kJ/mol] 126.36 - - 

Q  0.9989 - - 
Q  - 0.9991 - 

MAE [kJ/mol] 61.68 62.63 61.87 
Std. error 107.9 104.16 105.29 

Number of compounds 1,482 368 1,850 
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4.9. Appendix 4C1 LFL SFBS-MLR-L model in Step 1 (rejected) 

𝐿𝐹𝐿 𝑣𝑜𝑙. % 𝑓 𝐶, 𝑂, 𝑁, 𝐹, 𝐶𝑙, 𝐵𝑟, 𝑆𝑖, 𝑇

3.4833 0.0453𝑛𝐶 0.2273𝑛𝑂 0.2622𝑛𝑁 0.7860𝑛𝐹

0.9797𝑛𝐶𝑙 1.0533𝑛𝐵𝑟 0.2144𝑛𝑆𝑖 0.0046𝑇  

Equation 4C1 (the model rejected) 

 

Table 4C1. Selected predictors and their coefficients of the LFL SFBS-MLR-L 
model (Equation 4C1, the model rejected)   

No. Variables Coefficient Std. error p-value VIF
0 Intercept 3.4833E+00 1.6627E-01 < 2E-16 -
1 𝑛𝐶 -4.5279E-02 8.0008E-03 1.85E-08 2.863
2 𝑛𝐹 7.8599E-01 5.3792E-02 < 2E-16 1.038
3 𝑛𝐶𝑙 9.7969E-01 5.7562E-02 < 2E-16 1.077
4 𝑛𝐵𝑟 1.0533E+00 2.2458E-01 3.00E-06 1.014
5 𝑛𝑁 2.6219E-01 5.5235E-02 2.28E-06 1.241
6 𝑛𝑂 2.2732E-01 2.2331E-02 < 2E-16 1.639
7 𝑛𝑆𝑖 -2.1439E-01 4.8017E-02 8.66E-06 1.135
8 𝑇  -4.5567E-03 4.9040E-04 < 2E-16 3.537

 

Table 4C2. Predictable capability of the developed LFL SFBS-MLR-L model in 
Step 1 (Equation 4C1, the model rejected) 

Statistical metric Training set Test set Overall dataset 
R  0.441 0.552 0.463 

RMSE [vol.%] 1.101 0.974 1.077 
RMSE  [vol.%] 1.120 - - 

Q  0.422 - - 

Q  - 0.552 - 
MAE [vol.%] 0.586 0.534 0.57 

Std. error 1.104 0.975 1.077 
Number of compounds 1,388 345 1,733 
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4.10. Appendix 4C2 LFL SFBS-MLR-NLI model in Step 2 

𝐿𝐹𝐿 𝑣𝑜𝑙. %

𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝐻, 𝐶, 𝐹, 𝐵𝑟, 𝑂, 𝑁, 𝑆𝑖, 𝑆𝑖, 𝐶𝑙, 𝐼, 𝑃, 𝑀𝑊, 𝑇 , 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠,

187.7 0.1148𝑛𝐻 00809𝑛𝐶 4.878𝑛𝐹 0.0695𝑀𝑊 0.1267𝑇

1.272√𝑀𝑊 10.92 𝑇 145.7𝐿𝑜𝑔 𝑇 0.0026𝑒𝑥𝑝 𝑛𝐹 16.62𝑒𝑥𝑝 𝑛𝐵𝑟

0.0006𝑀𝑊 0.1444 𝑛𝐶 0.0009 𝑛𝐻 0.1652 𝑛𝑂 0.1829 𝑛𝑁

0.528 𝑛𝐹 19.81 𝑛𝐵𝑟 0.223 𝑛𝑆𝑖 0.5779 𝑛𝑆

𝑀𝑊 0.00004𝑇 0.0199𝑛𝐶 0.0014𝑛𝐻 0.0107𝑛𝐹 0.0205𝑛𝐶𝑙 0.0726𝑛𝐼

0.0043𝑛𝑁 0.0214𝑛𝑆𝑖 𝑇 0.0152𝑛𝐵𝑟 0.0009𝑛𝑆𝑖

𝑛𝐶 0.024𝑛𝐻 0.0758𝑛𝑂 0.3785𝑛𝐶𝑙 1.48𝑛𝐼 0.4329𝑛𝑆𝑖 0.1463𝑛𝑆

𝑛𝐻 0.1718𝑛𝐹 0.0928𝑛𝐶𝑙

𝑛𝑂 0.6683𝑛𝐹 0.6741𝑛𝐶𝑙 0.3221𝑛𝑁 0.2726𝑛𝑆𝑖 0.6509𝑛𝑆 30.46
1

𝑛𝐶

𝑛𝐻
𝑛𝐶

1.516 0.1474
𝑛𝐻
𝑛𝐶

𝑛𝐹
𝑛𝐶

9.43 2.426
𝑛𝐹
𝑛𝐶

1.459
𝑛𝐶𝑙
𝑛𝐶

5.51
𝑛𝑆

𝑛𝐶

8.601
𝑛𝑆𝑖
𝑛𝐶

2.1
𝑛𝑁
𝑛𝐶

𝑛𝑃
𝑛𝐶

24.06 535.36
𝑛𝑃
𝑛𝐶

1
𝑇 𝑛𝐶

6455  262,500
1

𝑇 𝑛𝐶
0.02

𝑇
𝑛𝐶

55.5
𝑀𝑊 𝑛𝐶

𝑀𝑊
𝑛𝐶

0.1108 0.0006𝑀𝑊    

Equation 4C4 
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Table 4C3. Selected predictors and their coefficients of the LFL SFBS-MLR-NLI 
model (Equation 4C2) 

No. Variables Coefficient Std. error p-value
0 Intercept 1.8770E+02 2.5950E+01 7.89E-13
1 𝑛𝐻 1.1480E-01 1.2330E-02 < 2E-16
2 𝑛𝐶 -8.0920E-02 3.2910E-02 0.014078
3 𝑛𝐹 -4.8780E+00 3.5400E-01 < 2E-16
4 𝑀𝑊 -6.9530E-02 8.3570E-03 < 2E-16
5 𝑇  -1.2670E-01 1.9560E-02 1.32E-10
6 √𝑀𝑊 1.2720E+00 1.3170E-01 < 2E-16
7 𝑇  1.0920E+01 1.5830E+00 7.94E-12

8 log 𝑇  -1.4570E+02 1.9410E+01 1.10E-13
9 𝑒𝑥𝑝 𝑛𝐹  -2.6390E-03 1.8690E-04 < 2E-16
10 𝑒𝑥𝑝 𝑛𝐵𝑟  1.6620E+01 2.7080E+00 1.10E-09
11 𝑀𝑊  -6.3140E-04 7.3760E-05 < 2E-16
12 𝑛𝐶  -1.4440E-01 1.7060E-02 < 2E-16
13 𝑛𝐻  -9.3220E-04 4.4160E-04 0.03495
14 𝑛𝑂  1.6520E-01 1.8850E-02 < 2E-16
15 𝑛𝑁  1.8290E-01 2.4410E-02 1.21E-13
16 𝑛𝐹  5.2800E-01 3.8880E-02 < 2E-16
17 𝑛𝐵𝑟  -1.9810E+01 3.7470E+00 1.44E-07
18 𝑛𝑆𝑖  -2.2300E-01 7.9440E-02 0.005079
19 𝑛𝑆  5.7790E-01 9.1260E-02 3.30E-10
20 𝑀𝑊 𝑇  3.7820E-05 6.8790E-06 4.63E-08
21 𝑀𝑊 𝑛𝐶 1.9940E-02 2.2480E-03 < 2E-16
22 𝑀𝑊 𝑛𝐻 1.4210E-03 1.7560E-04 1.31E-15
23 𝑀𝑊 𝑛𝐹 1.0730E-02 1.2460E-03 < 2E-16
24 𝑀𝑊 𝑛𝐶𝑙 2.0530E-02 2.5690E-03 2.87E-15
25 𝑀𝑊 𝑛𝐼 7.2580E-02 1.0280E-02 2.65E-12
26 𝑀𝑊 𝑛𝑁 -4.3130E-03 7.7900E-04 3.71E-08
27 𝑀𝑊 𝑛𝑆𝑖 2.1440E-02 3.4290E-03 5.40E-10
28 𝑇 𝑛𝐵𝑟 -1.5170E-02 2.6470E-03 1.23E-08
29 𝑇 𝑛𝑆𝑖 9.3670E-04 2.7600E-04 0.000709
30 𝑛𝐶 𝑛𝐻 -2.4030E-02 2.7390E-03 < 2E-16
31 𝑛𝐶 𝑛𝑂 -7.5820E-02 1.1840E-02 2.11E-10
32 𝑛𝐶 𝑛𝐶𝑙 -3.7850E-01 5.0300E-02 9.77E-14
33 𝑛𝐶 𝑛𝐼 -1.4800E+00 2.7890E-01 1.31E-07
34 𝑛𝐶 𝑛𝑆𝑖 -4.3290E-01 6.6410E-02 1.01E-10
35 𝑛𝐶 𝑛𝑆 -1.4630E-01 2.4930E-02 5.52E-09
36 𝑛𝐻 𝑛𝐹 1.7180E-01 1.9170E-02 < 2E-16
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No. Variables Coefficient Std. error p-value
37 𝑛𝐻 𝑛𝐶𝑙 -9.2810E-02 1.1100E-02 < 2E-16
38 𝑛𝑂 𝑛𝐹 6.6830E-01 5.4340E-02 < 2E-16
39 𝑛𝑂 𝑛𝐶𝑙 6.7410E-01 5.3660E-02 < 2E-16
40 𝑛𝑂 𝑛𝑁 3.2210E-01 4.2230E-02 4.59E-14
41 𝑛𝑂 𝑛𝑆𝑖 2.7150E-01 4.9670E-02 5.48E-08
42 𝑛𝑂 𝑛𝑆 6.5090E-01 9.2140E-02 2.60E-12
43 1

𝑛𝐶
 

3.0460E+01 1.8710E+00 < 2E-16

44 𝑛𝐻
𝑛𝐶

 
-1.5160E+00 1.4970E-01 < 2E-16

45 𝑛𝐻
𝑛𝐶

 
1.4740E-01 3.1780E-02 3.85E-06

46 𝑛𝐹
𝑛𝐶

 
9.4300E+00 6.2850E-01 < 2E-16

47 𝑛𝐹
𝑛𝐶

 
-2.4260E+00 1.8840E-01 < 2E-16

48 𝑛𝐶𝑙
𝑛𝐶

 
1.4590E+00 1.6540E-01 < 2E-16

49 𝑛𝑆
𝑛𝐶

 
-5.5100E+00 2.3380E-01 < 2E-16

50 𝑛𝑆𝑖
𝑛𝐶

 
-8.6010E+00 4.9210E-01 < 2E-16

51 𝑛𝑁
𝑛𝐶

 
-2.1000E+00 2.4700E-01 < 2E-16

52 𝑛𝑃
𝑛𝐶

 
2.4060E+01 4.0590E+00 3.93E-09

53 𝑛𝑃
𝑛𝐶

 
-5.5360E+01 1.1970E+01 4.12E-06

54 1
𝑇 𝑛𝐶

 
-6.4550E+03 6.2370E+02 < 2E-16

55 1
𝑇 𝑛𝐶

 
2.6250E+05 2.4810E+04 < 2E-16

56 𝑇
𝑛𝐶

 
-2.0050E-02 3.0000E-03 3.39E-11

57 1
𝑀𝑊 𝑛𝐶

 
5.5500E+01 2.2680E+01 0.014537

58 𝑀𝑊
𝑛𝐶

 
1.1080E-01 1.9420E-02 1.44E-08

59 𝑀𝑊
𝑛𝐶

 
-5.6770E-04 1.0080E-04 2.14E-08
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Table 4C4. Predictable capability of the developed LFL SFBS-MLR-NLI model in 
Step 2 

Statistical metric Training set Test set Overall dataset 
R  0.939 0.894 0.930 

RMSE [kJ/mol] 0.365 0.473 0.389 
RMSE [kJ/mol] 0.566 - - 

Q  0.859 - - 
Q  - 0.894 - 

MAE [kJ/mol] 0.188 0.218 0.188 
Std. error 0.373 0.472 0.389 

Number of compounds 1,388 345 1,733 
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4.11. Appendix 4D1 UFL SFBS-MLR-NLI model in Step 1 (rejected) 

𝑈𝐹𝐿 𝑣𝑜𝑙. % 𝑓 𝑛𝐻, 𝑛𝑂, 𝑛𝑁, 𝑛𝐹, 𝑛𝐶𝑙, 𝑛𝑆, 𝑇

23.0538 0.115𝑛𝐻 1.6175𝑛𝑂 2.0730𝑛𝑁 0.9481𝑛𝐹

1.6571𝑛𝐶𝑙 2.5315𝑛𝑆 0.0301 𝑇  

Equation 4D1 (the model rejected) 

 

Table 4D1. Selected predictors and their coefficients of the UFL SFBS-MLR-L 
model (Equation 4D1, the model rejected)   

No. Variables Coefficient Std. error p-value VIF
0 Intercept 2.3423E+01 9.0410E-01 < 2E-16 -
1 𝑛𝐻 -1.1343E-01 2.1116E-02 1.43E-08 1.755
2 𝑛𝑁 2.0397E+00 3.3660E-01 1.81E-10 1.146
3 𝑛𝑂 1.5283E+00 1.3716E-01 < 2E-16 1.386
4 𝑛𝑆 2.4082E+00 7.3911E-01 0.000281 1.044
5 𝑛𝐹 9.1756E-01 3.1154E-01 0.001629 1.045
6 𝑛𝐶𝑙 1.8287E+00 3.7281E-01 4.67E-06 1.078
7 𝑇  -3.0734E-02 2.4110E-03 < 2E-16 2.119

 

Table 4D2. Predictable capability of the developed UFL SFBS-MLR-L model in 
Step 1 (Equation 4D1, the model rejected) 

Statistical metric Training set Test set Overall dataset 
R  0.284 0.253 0.287 

RMSE [vol.%] 6.628 7.002 6.546 
RMSE  6.484 - - 

Q  0.284 - - 
Q  - 0.253 - 
MAE 3.726 3.650 3.711 

Std. error 6.446 7.012 6.548 
Number of compounds 1,370 341 1,711 
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4.12. Appendix 4D2 UFL SFBS-MLR-NLI model in Step 2  

𝑈𝐹𝐿 𝑣𝑜𝑙. %

𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝐻, 𝐶, 𝐹, 𝐵𝑟, 𝑂, 𝑁, 𝑆𝑖, 𝑆𝑖, 𝐶𝑙, 𝐼, 𝑃, 𝑀𝑊, 𝑇 , 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠,

2,937.0 3.298𝑛𝑂 5.838𝑛𝐹 12.86𝑛𝐵𝑟 4.663𝑇 19.38√𝑛𝐶

5.874√𝑀𝑊 276.9 𝑇 2,643 log 𝑇 0.0391 exp 𝑛𝑁 15.41 exp 𝑛𝐵𝑟

126.2 exp 𝑛𝑆 0.0033𝑀𝑊 0.0008𝑇 0.465 𝑛𝐶 0.0109 𝑛𝐻

0.4797 𝑛𝑂 0.7709 𝑛𝐹 5.316 𝑛𝑆𝑖 192.5 𝑛𝑆

𝑀𝑊 0.0788𝑛𝐶 0.0177𝑛𝐻 0.013𝑛𝑂 0.0992𝑛𝐶𝑙 0.0359𝑛𝑁 0.3497𝑛𝑆

𝑇 0.382𝑛𝐼 0.0856𝑛𝑆 𝑛𝐶 0.2222𝑛𝐻 16.67𝑛𝐼 2.065𝑛𝑆

𝑛𝐻 0.2925𝑛𝑂 1.194𝑛𝐵𝑟 0.4011𝑛𝑁 0.5054𝑛𝑆𝑖 0.9694𝑛𝑆

𝑛𝑂 1.763𝑛𝐹 1.514𝑛𝑆𝑖
1

𝑛𝐶
292.9

92.02
𝑛𝐶

4.012
𝑛𝐻
𝑛𝐶

17.35
𝑛𝑂
𝑛𝐶

1
𝑛𝐶

7.835𝑛𝐹 128.6𝑛𝐼
𝑛𝐵𝑟
𝑛𝐶

87.24 116.3𝑛𝐵𝑟 10.62
𝑛𝑆
𝑛𝐶

93.1
𝑛𝑆𝑖
𝑛𝐶

 
𝑛𝑁
𝑛𝐶

24.08
20.73

𝑛𝐶
11.51

𝑛𝑁
𝑛𝐶

𝑛𝑃
𝑛𝐶

154.9 376.5
𝑛𝑃
𝑛𝐶

1,274,000
1

𝑇 𝑛𝐶
1

𝑀𝑊 𝑛𝐶
6,204 56,420

1
𝑀𝑊 𝑛𝐶

𝑀𝑊
𝑛𝐶

2.607 0.0161𝑀𝑊  

Equation 4D2 
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Table 4D3. Selected predictors and their coefficients of the UFL SFBS-MLR-NLI 
model (Equation 4D2)   

 Variables Coefficient Std. error p-value
0 Intercept -2.9370E+03 5.9260E+02 8.11E-07
1 𝑛𝑂 -3.2980E+00 5.2960E-01 6.39E-10
2 𝑛𝐹 -5.8380E+00 1.2440E+00 2.97E-06
3 𝑛𝐵𝑟 -1.2860E+01 5.2160E+00 0.013815
4 𝑇  4.6630E+00 1.0760E+00 1.57E-05
5 √𝑛𝐶 -1.9380E+01 1.7610E+00 < 2E-16

6 √𝑀𝑊 5.8740E+00 5.1440E-01 < 2E-16
7 𝑇  -2.7690E+02 5.9750E+01 3.93E-06

8 log 𝑇  2.6430E+03 5.3470E+02 8.64E-07
9 𝑒𝑥𝑝 𝑛𝑁  -3.9050E-02 1.7790E-02 0.028348
10 𝑒𝑥𝑝 𝑛𝐵𝑟  -1.5410E+01 2.7640E+00 2.98E-08
11 𝑒𝑥𝑝 𝑛𝑆  -1.2620E+02 2.2430E+01 2.26E-08
12 𝑀𝑊  3.2790E-03 2.9400E-04 < 2E-16
13 𝑇  -7.6890E-04 2.0260E-04 0.000154
14 𝑛𝐶  4.6500E-01 5.3000E-02 < 2E-16
15 𝑛𝐻  1.0920E-02 5.0490E-03 0.0307
16 𝑛𝑂  -4.7970E-01 9.8360E-02 1.21E-06
17 𝑛𝐹  -7.7090E-01 1.4590E-01 1.47E-07
18 𝑛𝑆𝑖  -5.3160E+00 6.3560E-01 < 2E-16
19 𝑛𝑆  1.9250E+02 3.3390E+01 1.02E-08
20 𝑀𝑊 𝑛𝐶 -7.8750E-02 6.6570E-03 < 2E-16
21 𝑀𝑊 𝑛𝐻 -1.7730E-02 2.5670E-03 7.67E-12
22 𝑀𝑊 𝑛𝑂 -1.3010E-02 6.2280E-03 0.036935
23 𝑀𝑊 𝑛𝐶𝑙 -9.9190E-02 9.9430E-03 < 2E-16
24 𝑀𝑊 𝑛𝑁 -3.5920E-02 5.9400E-03 1.92E-09
25 𝑀𝑊 𝑛𝑆 -3.4970E-01 4.7750E-02 4.19E-13
26 𝑇 𝑛𝐼 -3.8200E-01 5.1260E-02 1.67E-13
27 𝑇 𝑛𝑆 8.5600E-02 1.9610E-02 1.37E-05
28 𝑛𝐶 𝑛𝐻 2.2220E-01 3.2210E-02 8.19E-12
29 𝑛𝐶 𝑛𝐼 1.6670E+01 3.7650E+00 1.04E-05
30 𝑛𝐶 𝑛𝑆 2.0650E+00 4.9900E-01 3.72E-05
31 𝑛𝐻 𝑛𝑂 2.9250E-01 4.1620E-02 3.35E-12
32 𝑛𝐻 𝑛𝐵𝑟 1.1940E+00 2.9430E-01 5.22E-05
33 𝑛𝐻 𝑛𝑁 4.0110E-01 5.8190E-02 8.48E-12
34 𝑛𝐻 𝑛𝑆𝑖 5.0540E-01 9.3840E-02 8.52E-08
35 𝑛𝐻 𝑛𝑆 9.6940E-01 1.6400E-01 4.33E-09
36 𝑛𝑂 𝑛𝐹 -1.7630E+00 4.6350E-01 0.000149
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 Variables Coefficient Std. error p-value
37 𝑛𝑂 𝑛𝑆𝑖 -1.5140E+00 3.9350E-01 0.000124
38 1

𝑛𝐶
 

-2.9290E+02 3.6700E+01 3.10E-15

39 1
𝑛𝐶

 
9.2020E+01 1.7850E+01 2.90E-07

40 𝑛𝐻
𝑛𝐶

 
-4.0120E+00 3.6710E-01 < 2E-16

41 𝑛𝑂
𝑛𝐶

 
1.7350E+01 1.7960E+00 < 2E-16

42 𝑛𝐹
𝑛𝐶

 
7.8350E+00 2.2930E+00 0.000653

43 𝑛𝐵𝑟
𝑛𝐶

 
-8.7240E+01 2.3730E+01 0.000246

44 𝑛𝐵𝑟
𝑛𝐶

 
1.1630E+02 2.1700E+01 9.99E-08

45 𝑛𝐼
𝑛𝐶

 
1.2860E+02 1.8990E+01 1.95E-11

46 𝑛𝑆
𝑛𝐶

 
1.0620E+01 1.7980E+00 4.35E-09

47 𝑛𝑆𝑖
𝑛𝐶

 
9.3100E+01 7.7940E+00 < 2E-16

48 𝑛𝑁
𝑛𝐶

 
-2.4080E+01 4.0190E+00 2.69E-09

49 𝑛𝑁
𝑛𝐶

 
2.0730E+01 5.3740E+00 0.00012

50 𝑛𝑁
𝑛𝐶

 
1.1510E+01 2.9240E+00 8.68E-05

51 𝑛𝑃
𝑛𝐶

 
-1.5490E+02 4.0140E+01 0.00012

52 𝑛𝑃
𝑛𝐶

 
3.7650E+02 1.3220E+02 0.004457

53 1
𝑇 𝑛𝐶

 
1.2740E+06 1.8810E+05 1.91E-11

54 1
𝑀𝑊 𝑛𝐶

 
6.2040E+03 5.0000E+02 < 2E-16

55 1
𝑀𝑊 𝑛𝐶

 
-5.6420E+04 4.5010E+03 < 2E-16

56 𝑀𝑊
𝑛𝐶

 
2.6070E+00 3.2980E-01 5.61E-15



 

261 

 

 Variables Coefficient Std. error p-value
57 𝑀𝑊

𝑛𝐶
 

-1.61E-02 1.54E-03 < 2E-16

 

Table 4D4. Predictable capability of the developed UFL SFBS-MLR-NLI model in 
Step 2 

Statistical metric Training set Test set Overall dataset 
R  0.679 0.495 0.639 

RMSE [kJ/mol] 4.340 5.757 4.657 
RMSE [kJ/mol] 5.184 - - 

Q  0.554 - - 
Q  - 0.495 - 

MAE [kJ/mol] 2.251 2.644 2.329 
Std. error 4.435 5.763 4.658 

Number of compounds 1,370 341 1,711 
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4.13. Appendix 4D3 UFL SFBS-MLR-NLI model without 15 outliers 

By performing the SFBS-MLR-NLI procedure in the training set without the 

fifteen outliers, the optimum subset of fifteen predictors was selected. The created model 

for predicting the UFL is presented as the following: 

𝑈𝐹𝐿 𝑣𝑜𝑙. %

𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝐻, 𝐶, 𝐹, 𝐵𝑟, 𝑂, 𝑁, 𝑆𝑖, 𝑆𝑖, 𝐶𝑙, 𝐼, 𝑃, 𝑀𝑊, 𝑇 , 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠,

1,718 2.687𝑛𝑂 3.066𝑛𝐹 18.79𝑛𝐵𝑟 2.829𝑇 17.76√𝑛𝐶 5.055√𝑀𝑊

168.3 𝑇 2,596 log 𝑇 0.0318 exp 𝑛𝑁 4.301 exp 𝑛𝐵𝑟

115.4 exp 𝑛𝑆 0.0021𝑀𝑊 0.0005𝑇 0.4112 𝑛𝐶 0.4455 𝑛𝑂

0.4927 𝑛𝐹 5.855 𝑛𝑆𝑖 177.5 𝑛𝑆

𝑀𝑊 0.0616𝑛𝐶 0.0119𝑛𝐻 0.0587𝑛𝐶𝑙 0.0241𝑛𝑁 0.3474𝑛𝑆

𝑛𝐶 0.1809𝑛𝐻 16.01𝑛𝐼 2.38𝑛𝑆

𝑛𝐻 0.2171𝑛𝑂 0.801𝑛𝐵𝑟 0.3446𝑛𝑁 0.6256𝑛𝑆𝑖 0.8274𝑛𝑆

1.071 𝑛𝑂 𝑛𝐹
1

𝑛𝐶
205.3

64.39
𝑛𝐶

3.618
𝑛𝐻
𝑛𝐶

16.1
𝑛𝑂
𝑛𝐶

1
𝑛𝐶

4.214𝑛𝐹 135.0𝑛𝐼 26.93𝑛𝑃

1
𝑛𝐶

24.07 𝑛𝐵𝑟 10.0 𝑛𝑆 101.4𝑛𝑆𝑖 93.1
𝑛𝑆𝑖
𝑛𝐶

 

𝑛𝑁
𝑛𝐶

18.71
17.23

𝑛𝐶
12.47

𝑛𝑁
𝑛𝐶

848,500
1

𝑇 𝑛𝐶

1
𝑀𝑊 𝑛𝐶

3,980 35,950
1

𝑀𝑊 𝑛𝐶
𝑀𝑊
𝑛𝐶

2.091 0.0147𝑀𝑊  

Equation 4D3 
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Table 4D5. Selected predictors and their coefficients of the UFL SFBS-MLR-NLI 
model without fifteen outliers (Equation 4D3)   

No. Variables Coefficient Std. error p-value
0 Intercept -1.7180E+03 4.4980E+02 1.40E-04
1 𝑛𝑂 -2.6870E+00 3.4540E-01 1.48E-14
2 𝑛𝐹 -3.0660E+00 8.2110E-01 0.000196
3 𝑛𝐵𝑟 -1.8790E+01 3.5410E+00 1.31E-07
4 𝑇  2.8290E+00 7.9950E-01 0.000417
5 √𝑛𝐶 -1.7760E+01 1.1500E+00 < 2E-16

6 √𝑀𝑊 5.0550E+00 3.3670E-01 < 2E-16
7 𝑇  -1.6830E+02 4.4640E+01 0.000171

8 log 𝑇  1.5960E+03 4.0250E+02 7.74E-05
9 𝑒𝑥𝑝 𝑛𝑁  -3.1800E-02 1.3020E-02 0.014769
10 𝑒𝑥𝑝 𝑛𝐵𝑟  -4.3010E+00 1.2350E+00 0.000513
11 𝑒𝑥𝑝 𝑛𝑆  -1.1540E+02 1.5620E+01 2.71E-13
12 𝑀𝑊  2.1420E-03 1.5680E-04 < 2E-16
13 𝑇  -4.5360E-04 1.4960E-04 0.002475
14 𝑛𝐶  4.1120E-01 2.8740E-02 < 2E-16
15 𝑛𝑂  -4.4550E-01 4.9110E-02 < 2E-16
16 𝑛𝐹  -4.9270E-01 1.0070E-01 1.12E-06
17 𝑛𝑆𝑖  -5.8550E+00 4.3170E-01 < 2E-16
18 𝑛𝑆  1.7750E+02 2.3310E+01 4.97E-14
19 𝑀𝑊 𝑛𝐶 -6.1580E-02 3.9890E-03 < 2E-16
20 𝑀𝑊 𝑛𝐻 -1.1890E-02 1.4920E-03 3.41E-15
21 𝑀𝑊 𝑛𝐶𝑙 -5.8680E-02 4.9940E-03 < 2E-16
22 𝑀𝑊 𝑛𝑁 -2.4140E-02 4.3130E-03 2.64E-08
23 𝑀𝑊 𝑛𝑆 -3.4740E-01 3.5410E-02 < 2E-16
24 𝑇 𝑛𝐼 -3.2460E-01 3.8340E-02 < 2E-16
25 𝑇 𝑛𝑆 8.3190E-02 1.2710E-02 8.37E-11
26 𝑛𝐶 𝑛𝐻 1.8090E-01 2.1930E-02 3.91E-16
27 𝑛𝐶 𝑛𝐼 1.6010E+01 2.7880E+00 1.16E-08
28 𝑛𝐶 𝑛𝑆 2.3800E+00 3.7910E-01 4.67E-10
29 𝑛𝐻 𝑛𝑂 2.1710E-01 2.2800E-02 < 2E-16
30 𝑛𝐻 𝑛𝐵𝑟 8.0100E-01 1.4910E-01 9.15E-08
31 𝑛𝐻 𝑛𝑁 3.4460E-01 4.2680E-02 1.52E-15
32 𝑛𝐻 𝑛𝑆𝑖 6.2560E-01 6.1880E-02 < 2E-16
33 𝑛𝐻 𝑛𝑆 8.2740E-01 1.1510E-01 1.09E-12
34 𝑛𝑂 𝑛𝐹 -1.0710E+00 3.6540E-01 0.003445
35 1

𝑛𝐶
 

-2.0530E+02 3.3580E+01 1.29E-09
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No. Variables Coefficient Std. error p-value
36 1

𝑛𝐶
 

6.4390E+01 1.5400E+01 3.09E-05

37 𝑛𝐻
𝑛𝐶

 
-3.6180E+00 2.7110E-01 < 2E-16

38 𝑛𝑂
𝑛𝐶

 
1.6100E+01 1.3750E+00 < 2E-16

39 𝑛𝐹
𝑛𝐶

 
4.2140E+00 1.5950E+00 0.008332

40 𝑛𝐵𝑟
𝑛𝐶

 
2.4070E+01 8.5480E+00 0.004938

41 𝑛𝐼
𝑛𝐶

 
1.3500E+02 1.4250E+01 < 2E-16

42 𝑛𝑆
𝑛𝐶

 
1.0000E+01 1.3100E+00 4.48E-14

43 𝑛𝑆𝑖
𝑛𝐶

 
1.0140E+02 5.8120E+00 < 2E-16

44 𝑛𝑁
𝑛𝐶

 
-1.8710E+01 3.0110E+00 6.99E-10

45 𝑛𝑁
𝑛𝐶

 
1.7230E+01 4.7260E+00 0.000277

46 𝑛𝑁
𝑛𝐶

 
1.2470E+01 3.9190E+00 0.0015

47 𝑛𝑃
𝑛𝐶

 
-2.6930E+01 8.7450E+00 0.00212

48 1
𝑇 𝑛𝐶

 
8.4850E+05 1.4800E+05 1.23E-08

49 1
𝑀𝑊 𝑛𝐶

 
3.9800E+03 5.0560E+02 7.34E-15

50 1
𝑀𝑊 𝑛𝐶

 
-3.5950E+04 4.2660E+03 < 2E-16

51 𝑀𝑊
𝑛𝐶

 
2.0910E+00 2.7530E-01 5.84E-14

52 𝑀𝑊
𝑛𝐶

 
-1.4720E-02 1.1610E-03 < 2E-16
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Table 4D6. Predictable capability of the developed UFL SFBS-MLR-NLI model 
without 15 outliers in Step 2 

Statistical metric Training set Test set Overall dataset 
R  0.774 0.615 0.748 

RMSE [kJ/mol] 3.182 3.751 3.303 
RMSE [kJ/mol] 4.242 - - 

Q  0.603 - - 
Q  - 0.615 - 

MAE [kJ/mol] 1.919 2.279 1.991 
Std. error 3.246 3.742 3.303 

Number of compounds 1,370 341 1,711 
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5. CONCLUSIONS 

 

This final chapter begins by presenting a summary of key findings and 

contributions of these findings. Next, it discusses several limitations of this dissertation 

and possible future works based on the current research progress given in this dissertation.  

 

5.1. Summary of key findings and contributions 

This dissertation showed a multifaceted approach to address the key research 

question “how can we effectively measure inherently safer design (ISD) levels during the 

early design stages in which process information are insufficiently provided?”. This 

dissertation sought to answer the following specific research questions to approach the 

key research questions:  

(1) Which safety assessment tools can be utilized for ISD measurement during 

early design stages  

(2) How can we categorize such safety assessment tools for the risk management 

system? 

(3) Which variables can serve as safety indicators among the selected safety 

assessment tools?  

(4) How can we utilize safety indicators for ISD measurement via previous process 

incidents? and  

(5) How can we estimate missing variables that serve as safety indicators? 
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For the first three questions, a literature review (Chapter 2) established a 

comprehensive perspective of inherent safety assessment tools (ISATs) developed over 

the last 30 years by a host of researchers. Even though this review prioritized safety, the 

other elements of sustainable process design — health, environment, and economics — 

were also taken into consideration. This review selected 73 viable ISATs that could be 

adopted with only process information of the early design stages. Afterward, to help 

practitioners to understand the purposes of these ISATs regarding safety in a risk 

management system, the ISATs were reorganized into three groups: hazard-based ISAT 

(H-ISAT), risk-based ISAT (R-ISAT), and cost-optimal ISAT (CO-ISAT) for 22 tools, 33 

tools, and 18 tools, respectively. Based on the overall view provided in this review, 

practitioners could determine the tool that would be optimal for themselves (e.g., the 

preferences of chemical companies or engineers for safety considerations).  

To address the fourth question, “how can we utilize safety indicators for ISD 

measurement via previous process incidents”, this dissertation (Chapter 3) analyzed the 

U.S. Chemical Safety and Hazard Investigation Board (CSB) reports at a more granular 

level of detail than previously published articles. Since the CSB reports often seemed to 

provide detailed process incident information and dealt with high-profile U.S. process 

incidents, it was a noteworthy resource to understand remarkable process incidents and to 

see whether inherently safer design features had been present or not. A guideline was 

established to collect the data after proposing 17 causal factors (12 types of chemical 

indicators and 5 types of process indicators), 7 scenario factors (incident sequences, 

domino effects, equipment types, operating modes, process units, deflagration/detonation, 
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population densities), and 3 consequence factors (incident types, casualties, and economic 

losses). The analysis results indicated that data available was too limited to draw firm 

conclusions on possible risk reduction by ISD features. Even numerous data on causal 

factors that were mostly adopted as safety indicators among existing ISATs was missing. 

Therefore, this dissertation concluded that further efforts were required to estimate 

currently unavailable values of indicators to identify commonalities among more incident 

cases. This research approach was the first to study the potential of low-level information 

extracted from the CSB reports to utilize in ISD strategy. Also, this dissertation raised the 

problem of providing inconsistent formats among the CSB reports, which prevented using 

the CSB information effectively.  

Lastly, because in Chapter 3 (Article #2) there were many hazardous material 

property data that could serve as safety indicators for flammable chemical characteristics 

for determining causal factors, this dissertation attempted in Chapter 4 (Article #3) to 

effectively estimate these missing variable data. Compared to the previous predictive 

models — physical property model, group contribution model, and quantitative structure-

property relationship (QSPR) model, the newly proposed models in this dissertation were 

not only easy-to-use, but also provided highly competitive performance to predict the flash 

point, heat of combustion, LFL, and UFL of pure organic compounds. This dissertation 

used readily available variables — the numbers of atomic elements, molecular weights, 

and normal boiling points — or their combinations as predictors to propose easy-to-use 

models. Then, multiple linear regression (MLR) models were built based on the selected 

predictors via feature selections for the flash point, heat of combustion, LFL, and UFL. 
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Machine learning algorithms were adopted to set proper predictors among numerous 

default variables and built MLR models. Chapter 4 showed that the accuracy of the created 

models was gradually enhanced by adding the interaction terms of default variables. This 

result indicated that the linear terms of default variables were sufficient to predict the flash 

point and the heat of combustion. Meanwhile, the LFL and UFL models’ performance 

significantly increased by adding the interaction terms of the default variables. Since the 

created MLR models in this dissertation were provided with equation forms, they can be 

utilized as parts of the mathematical formulations in optimization along with other process 

aspects.  

Overall, this dissertation would provide practitioners in the chemical engineering 

community an overview of inherent safety assessment tools (Chapter 2), an analysis of 

previous chemical process incidents for trying to provide better understanding of common 

incident mechanisms, and possibly, information available on inherent safety features 

through various safety indicators (Chapter 3). Also, it could offer the possibility to quickly 

estimate missing data of the flammability properties of organic compounds through easy-

to-handle correlation equations (Chapter 4).  

It should be noted that the research results of this dissertation for better 

sustainability in the chemical process industry will continue to be circulated through peer-

reviewed journals and peer-reviewed conference presentations to developers of ISD 

applications and users of information technology in chemical engineering.  
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5.2. Limitations 

With regard to the studied conducted for this dissertation, some limitations need 

to be acknowledged.  

First, the scope of this dissertation for ISATs was limited to the steady-state 

process conditions of fixed process sites. As stated in Chapter 2, there was only one ISAT 

that could be utilized in the offshore oil and gas industry, and currently proposed ISATs 

have only been for steady-state process conditions (for normal process conditions) without 

dynamic conditions (for abnormal process conditions). The currently occurring limitation 

of this dissertation was the same as those of previous journal papers and research regarding 

ISD. In this regard, it is recommended that future studies examine various chemical 

process industries (e.g., offshore industry, supply chain, and green energy industry) 

including their dynamic process conditions.   

Second, the generalizability of the findings for U.S. chemical process incidents 

was limited because of the lack of information. Even though this dissertation (Chapter 3) 

analyzed the process incidents based upon data from the CSB reports that offered detailed 

information, the study suffered from insufficient sample size and availability of possible 

safety indicators. To overcome this issue, this dissertation attempted to propose hands-on 

predictive models for flammable chemical properties in the following chapter (Chapter 4).  

The principal limitation of this dissertation was failed to determine which ISAT 

would be appropriate to apply based on actual data among existing ones or to propose a 

more reliable ISAT. Further research needs to deal with more incident and safety indicator 

information to achieve this major objective. 
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5.3. Future works 

To resolve the limitations in Section 5.2 and answer the major research question 

of this dissertation, further studies on the current topic are therefore recommended, as 

shown in Figure 5.2.  

First, the article (Future work #1) that proposes easy-to-apply machine learning 

predictive models of flammability properties for chemical mixture components is 

suggested. The proposed models in Chapter 4 (Article #3) were promising for quickly 

predicting flammable chemical properties of pure compounds. These results raise 

intriguing questions regarding the extent of chemical mixture compounds’ predictive 

models. Since most chemicals used in the chemical process industry are mixtures, 

establishing hands-on predictive models of chemical mixtures would help to use accurate 

chemical indicators that reflect more realistic incident scenarios.  

Second, an article (Future work #2) that identifies the key safety indicators of ISD 

is recommended. This article can be developed properly based on the sufficient incident 

database and chemical property database. Hence, once the missing flammable chemical 

properties are correctly estimated via Chapter 4 (Article #3) and future #1, we may 

ascertain which variables are more effectively predictable as the key safety indicators of 

ISD based on the CSB reports.  

Finally, based on all the findings of this dissertation, future work #1 and #2, an 

article (Future work #3) that checks the performances of existing ISATs or proposes a 

more reliable ISAT is suggested. The ISAT, well-performed among existing ISATs or 

newly proposed, should be evaluated based on the data-driven approach with previous 



 

286 

 

incident data to prove its reliability, as illustrated in Figure 5.1. This article ultimately can 

offer the answer for the major research question of this dissertation, “How can we 

effectively measure inherently safer design (ISD) levels during the early design stage in 

which process information is insufficiently provided?”.  

 

 

Figure 5.1 Proposed future work for identifying key safety indicators for ISD 
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Figure 5.2 The relationship of this dissertation and possible future works 



288 

 

APPENDIX A COPYRIGHT PERMISSIONS 

Copyright permission for Chapter 2 (Article #1) 

 

 

Copyright permission for Chapter 2 (Figure 2.4) 
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Copyright permission for Chapter 3 (Article #2) 

 

 

Copyright permission for Chapter 4 (Article #3) 

 

 

 


