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ABSTRACT

Wheel loaders, one of the heavy equipment machinery are widely used in Construction and

Mining industries. They typically transport loads over shorter distances. Due to their limited

capacity, they have to perform repetitive loading and unloading operations which is called a Short

Loading Cycle (SLC). Considering the total energy consumed by heavy machinery, there is a lot

of scope to optimize the energy consumed by a wheel loader in an SLC. To analyze the same, a

comprehensive control-oriented model of a wheel loader is developed which comprises complex

mechanical subsystems such as Engine, Hydraulics, Steering, and Transmission, etc. For optimal

fuel consumption, an SLC can be optimized using optimal control techniques such as Dynamic

Programming (DP) and numerical optimal control approaches such as Indirect Methods (IMs) or

Direct Methods (DMs).

DP is an optimal control technique that guarantees global optimum and yields a global control

policy over state and control space. It is preferred for lower-order systems as it is computation-

ally expensive. DMs are computationally efficient for higher-order systems. However, they don’t

guarantee global minimum and convergence and only provide an optimal open-loop control policy

which may not be useful for stochastic systems.

In this thesis, optimization of an SLC of a WL is performed using DP and DM, and their

merits and demerits are compared using different metrics namely computational effort, optimal

cost, convergence, etc. A customized DP method is proposed to solve the higher-order Optimal

Control Problem (OCP) of a WL to address the issue of the curse of dimensionality (COD) and its

result is compared to that of DM.
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NOMENCLATURE

ωe State variable, Engine speed (rad/s)

V State variable, Vehicle speed (m/s)

S State variable, Vehicle displacement (m)

Sbuc State variable, Bucket position of wheel loader (m)

Vbuc State variable, Bucket velocity (m/s)

X State variable, X-coordinate of wheel loader (m)

Y State variable, Y-coordinate of wheel loader (m)

β State variable, Heading Angle (rad)

δ State variable, Steering Angle (rad)

Umf Control input, Fuel mass injection/cycle (mg)

Ubrake Control input, Braking force (N)

Ust Control input, Steering input

Uab Control input, Bucket acceleration (m/s2)

Te Engine Torque (N −m)

ṁf Rate of fuel consumption (ltrs/s)

γ Gear Ratio

rw Wheel Radius (m)

Pload Power consumed by the auxiliary components (W )

Ppump Power at the pump side of the torque converter (W )

Pturb Power at the turbine side of the torque converter (W )

Psteer Power consumed by Steering system (W )

Plift Power consumed by Hydraulic system (W )

vi



Ptrac Power consumed in Traction (W )

Je Engine Inertia (kg m2)

Pim Intake manifold pressure (N/m2)

Ftrac Traction force at wheels (N)

cr Rolling resistance coefficient

Cstr Steering power coefficient

Froll Rolling resistance force (N)

Mtotal Total Mass of the wheel loader (Kg)

Mload Mass of the bucket with load (Kg)

Rturn Turning radius of the wheel loader (m)
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

Mining and Construction industries account for approximately 20% of the energy consumption

in the United States [7]. The mining industry uses the heaviest machinery on the planet. The min-

ing industry has to get rid of overburden, material that lies above coal to extract coal from mines. In

most countries, coal and mineral ore deposits close to the surface are mined and are not available

anymore. Unfortunately, the energy demand has enormously increased and the mining industry

has to search deeper into the earth for fossil fuels to meet the rising demands. The construction

industry also consumes a massive amount of energy to prepare sites, transport materials, and build

structures. All the work mentioned above is performed by either heavy equipment or construction

vehicles. Hence, both industries consume a tremendous amount of resources to excavate materi-

als and transport them. Heavy machinery in both industries consume a lot of energy [8] and they

often deal with harsh environments such as dust, hard cut-resistant rocks, and loose sand with less

ground bearing pressure. They can be very inefficient in operation and can waste a lot of fuel if

not well-maintained.

Heavy Earth Moving Machinery (HEMM) such as Dumpers, excavators, wheel loaders (WLs),

etc play an important role in the construction and mining industries. They are responsible for

loading and transporting material from the working site to the power generators such as power

plants, steel industries, etc. Dumpers or load trucks are used to transport materials over a long

distance, excavators are used for loading-unloading the material, and WL for both purposes. WLs

are used for transportation in workplaces and not for long-range transportation. Excavators and

WLs perform similar jobs i.e load and unload. However, shovels have high bucket capacity and

are very less mobile. On the other hand, WLs have less bucket capacity and hence have to be more

mobile to meet the productivity standards. WLs are the main loading and unloading machines

deployed in open-cast mines.
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HEMMs across the world consume a lot of fuel delivering the needs of people and industries.

Unfortunately, the source of energy is fossil fuels which are not perennial. Some of the machinery

operate on electricity but a majority of them use diesel as the primary energy source. They operate

continuously throughout the day (14 hrs) for 200 days per year. The majority of the equipment per-

forms a repetitive operation cycle and a minor change in its operation can save a significant amount

of time and fuel. Optimization of a cycle of operation of these equipment has been a primary in-

terest for researchers and in the industry. Apart from fuel and time savings, the environment poses

several safety hazards to both machines and humans. Rough terrain with a lot of bumps and lack of

proper vision in a dusty environment lead to accidents (Toppling of machines and health hazards).

Technological advancements in computational power and Artificial Intelligence (AI) are driving

the dream of self-driving vehicles towards a reality. Having Autonomous off-road vehicles can

significantly reduce these threats coupled with energy savings. Mining and construction related

health hazards can be minimized with automation at work sites.

1.2 Literature Review

WLs are indispensable and are the most common type of heavy machinery deployed in the

mining and construction industries. WL is typically used to lift a pile of material from a heap

and unload it onto a dumper or load truck. Due to the limited capacity of a WL, it has to per-

form the loading-unloading cycles repetitively. A WL typically has a mass of 30 tons and it is

ideally preferred to have a low center of gravity. The center of gravity plays an important role in

determining the stability of the vehicle. A typical off-road environment is rough terrain with road

bumps or a sandy road with less ground bearing pressure. The integrity of the ground determines

the stability of the vehicle. While the operator is moving the bucket up, the center of gravity of

the vehicle shifts upward and a bump can drive the vehicle unstable. Hence, WLs are typically

slow compared to the on-road vehicles. For on-road vehicles, EPA tests a series of driving rou-

tines and prescribes a cycle for better fuel economy. Unfortunately, off-road environments are not

generic and it is often difficult to prescribe an operational cycle. Different variants of operating

cycles are followed by operators at mining sites. One such cycle of operation is defined as a Short
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Loading Cycle (SLC). An SLC is shown in Fig.1.1. It has four phases of operation. It typically

starts with the WL with a fully loaded bucket at its lowest position. The first phase is the vehicle

accelerating in reverse. The second phase is braking where the vehicle comes to halt. The third

phase is accelerating forward followed by braking in the fourth phase to stop at its destination. The

bucket will be at the required height to dump the material onto a Dumper or a load truck by the

end of phase-4. Manufacturers and owners of a WL are often interested in performing the cycle

in minimum possible time with minimum possible fuel. Minimum time means more acceleration

and needs more force at the wheels which demand high power requirements and hence high fuel.

On the other hand, minimum fuel means less torque generation meaning less force at the wheels

and the vehicle takes more time to reach its destination. Due to the contradictory nature of both

the goals, one has to settle for a trade-off between the two. Construction and mining sites where

a WL is deployed are often dusty and lack proper vision. The sensors have to be very robust and

should be able to reject disturbances effectively. It is very expensive to mount robust sensors to

take measurements and analyze the system. Data-driven approaches can also be useful but using

neural networks and other machine learning algorithms for optimization requires a lot of data in

various conditions. Considering the environment the WL operates being dusty, remote and bumpy

terrains, obtaining data from sensors becomes more expensive and also noisy. A mathematical

model which can considerably capture the dynamics of the cycle operation can save a lot of time

and resources than physically capturing the data every time.

Several studies have been performed on analyzing the performance of a WL in an SLC. A

systematic approach has been outlined in [9]. It outlines a strategy to minimize fuel in a power-

split hybrid WL. The DP-based approach is used for optimization but only drive train and hydraulic

system are considered and engine dynamics, steering are neglected. Path planning for a bucket

trajectory while scooping has been discussed in [10], [11]. Path planning analysis for a WL has

been outlined in [12]. In this paper, DP is used to optimize the trajectory traversed by the WL.

However, it only focuses on path planning and not the integrated system. A linear model of a

vehicle power train is considered in [13] and Multi-Input, Multi-Output robust controllers such
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Figure 1.1: Trajectory of a WL with four phases of operation. Picture from [1]

as H2 and H∞ are designed. However, the optimality of the result is limited by the linearity

assumption. Nonlinear dynamics, trajectory optimization, and vehicle dynamics are ignored in

this paper. DP and Pontryagin Maximum Principle (PMP) based optimization are outlined in [2].

In this paper, engine dynamics are considered for minimizing fuel consumption based on torque

requirements from subsystems. Subsequently, vehicle dynamics, lift, and tilt dynamics are ignored.

Research on finding a global optimum for a WL SLC is outlined in [14]. This paper focuses on

scooping and lift-tilt dynamics and optimizing the trajectory based on the DP approach. Engine,

vehicle dynamics, and the steering system are not included in this paper. An integrated approach

of including all the major subsystems such as Hydraulics, Engine, Drive train, Steering has been

outlined in [4]. A comprehensive model of WL with all the subsystems has been developed and a

numerical solver (PROPT) has been used to solve the OCP. This software developed in MATLAB

uses pseudo-spectral collocation methods to discretize the states and converts an OCP into a Non-

Linear Program (NLP) and Sparse Nonlinear OPTimizer (SNOPT) algorithm is used to solve the

resulting NLP problem. However, SNOPT is a numerical solver which guarantees local optimum

and not global optimum and may have convergence issues. Other works such as [15] and [16]

include all the major subsystems and owing to the order of the systems being too high and due

to non-linearities and discontinuities, authors have preferred numerical solvers instead of dynamic
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programming, and indirect methods are also ignored.

In this thesis, an SLC is considered for optimization. A WL consists of highly complex systems

such as engine, transmission, steering, hydraulics, etc. The engine is the prime mover which

generates power and three subsystems that consume power are Traction, Hydraulics and Steering.

Traction can be related to longitudinal motion of the WL, Hydraulics to vertical motion of the

bucket, and Steering to the Wl’s lateral motion. Modeling of such systems poses several challenges

such as high non-linearity and being highly parametric. Such models are usually of very high

order and designing a controller is extremely difficult owing to high computational requirements

and convergence issues. Hence, from a modeling and control perspective, the mathematical model

should be of lower order and should also considerably capture the entire system dynamics. A lot

of human factors and environmental factors such as dust and obstacles and uncertainties also play

an important role but they are ignored.

1.3 Optimization Techniques

Some of the widely used techniques to solve an Optimal Control Problem (OCP) are Dynamic

Programming (DP) [17] and numerical approaches [18], [19],[20]. Numerical techniques for solv-

ing OCPs are typically classified into two categories namely direct and indirect methods.

1.3.1 Indirect Methods

Indirect methods are one of the oldest methods. They are based on the calculus of variations.

They utilize the maximum principle to derive necessary conditions of optimality, the adjoint equa-

tions and a Hamiltonian maximization condition, and the boundary conditions, thus converting an

OCP into a boundary value problem. This boundary value problem can be solved by shooting or

discretization methods. Some of the advantages and disadvantages of indirect methods are outlined

below:

• The optimality conditions derived using the maximum principle are necessary but not suffi-

cient conditions. Hence the solution obtained is locally optimal and may not be globally optimal.

Since they discretize the solution after the optimization routine, they provide highly accurate solu-
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tions and are typically used in aerospace applications. They are better than DP and direct methods

as they provide better error estimates and do not suffer from discretization errors [21], [22], [19].

• They are based on differential calculus and as the approach is analytical, it is often difficult

to solve especially higher-order nonlinear systems.

• They require an initial guess for the adjoint variables to solve the necessary conditions of

optimality. This is often difficult if the adjoint equations are high in number. Shooting methods

suffer from difficulties in finding appropriate initial guess for the adjoint variables [21], [22], [19].

• They have a smaller domain of convergence [21].

• It is difficult to handle path constraints as an initial guess has to be provided for the sequence

of constrained/unconstrained arcs of a solution trajectory which is often very hard [21], [22], [19].

1.3.2 Direct Methods

Direct methods, on the other hand, do not rely on maximum principle and directly optimize

the objective function without the formulation of necessary conditions. This has a two-step ap-

proach – one, transcribing a continuous infinite-dimensional OCP into a discrete finite-dimensional

NLP, and two, solving the nonlinear program using existing NLP algorithms such as Sequential

Quadratic Programming (SQP) or Interior Point Methods (IPM). Several numerical NLP solvers

exist such as SNOPT, IPOPT, KNITRO etc [23], [19].

Transcription is usually performed using direct collocation methods or direct shooting meth-

ods. Shooting methods are not practically reliable for higher-order systems. In a direct collocation

method, differential equations are discretized using finite difference methods with a fixed or vari-

able time steps. In between those time steps, time-dependent functions (linear or polynomial) are

used to approximate the solution. These are local collocation or orthogonal collocation methods.

Algorithms typically used for discretization are explicit or implicit schemes. Explicit methods are

first-order accurate and computationally very efficient but face stability issues if the integration

time step is higher than required. Implicit schemes such as Range Kutta (RK4) and Hermite Simp-

son methods are fourth-order accurate and hence computationally expensive compared to explicit

methods. Global or Pseudo-spectral collocation methods involve approximating the state using a
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global polynomial and performing collocation at chosen points. Global methods converge at an

exponential rate as a function of collocation points [19], [20], [21], [18]. The transcribed OCP

in the form of an NLP can be solved using algorithms such as SQP, IPM. Several open-source

and closed source software exist such as CasAdi [24], PROPT [25], GPOPS – II [26], DIDO [27]

etc. More information about the solvers can be found in a survey papers [19], [22]. Some of the

advantages and disadvantages of direct methods are listed as follows:

• They have a larger domain of convergence compared to indirect methods [21].

• They also provide a local solution as indirect methods but have larger leverage on the initial

guess compared to indirect methods. The optimal solution is also deterministic i.e the optimal

control policy obtained is a single trajectory and not a global policy. In other words, the solution is

open-loop and may not be useful for stochastic systems with noise and uncertainties [21]. Methods

that guarantee a global optimum have been a subject of interest among researchers. Some of them

include multi-start approach, Simulated Annealing (SA)[28], Evolutionary Algorithms (EA)[29],

Branch and Bound (B&B), Tabu search, etc. The Multi-start approach is a conventional optimiza-

tion with different initial guesses. Solving an OCP using this approach is a typical manifestation

of the curse of dimensionality (COD). SA is a stochastic method. It also has a trial and error

component and its performance is problem specific. It also has a trade-off between convergence

time and locality of the search[30]. EA are stochastic optimization techniques based on ideas of

natural evolution. They also suffer from the trade-off as mentioned above. Likewise, B&B and

Tabu search methods have their drawbacks. No method can guarantee global optimum at least in

a finite time. A survey on methods to obtain global optimum in non-linear optimization can be

found in [31].

• These methods require smooth objective and constraint functions, differentiable at least twice.

Direct methods are gradient-based methods that require computing first and second-order deriva-

tives which can be done analytically or numerically. Analytical derivatives are exact and yield

faster optimization results. However, it is practically not feasible to use symbolic differentiation in

software development and hence numerical techniques are to be relied upon. Numerical derivatives
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mostly use forward or central finite difference schemes and often are not accurate for highly non-

linear systems and also require the time step to be small enough. These factors play an important

role in the convergence or divergence of the solvers [19].

• Initial guess sensitivity: A decent initial guess is often necessary for the solution to converge

to a local minimum or even to a feasible solution. Interior point methods require the initial guess

to be strictly feasible which is difficult to provide. Some random component is observed in [32]

convergence with relevance to GPOPS – II [26]. It is well known that different initial guesses lead

to different local extremum.

• Real-Time Implementation: In the industry, lookup tables are often used rather than analyt-

ical functions. Calculating gradients is often tedious and using a numerical approach to calculate

gradients may not be accurate and often requires higher sampling for them to be accurate which is

practically challenging [14].

1.3.3 Dynamic Programming

Dynamic Programming: It is a recursive technique employed to solve Bellman’s principle of

optimality [17]. The solution obtained is a sequence of decisions that yields a global optimal policy

and a trajectory. If there exists an optimal sequence of decisions, then every subsequence must also

be optimal. For continuous systems, the DP algorithm boils down to solving a partial differential

equation, the Hamilton Jacobi Bellman (HJB) equation. If a solution exists, then it is guaranteed

to be a global optimum. However, an analytical solution exists only for a limited class of OCPs

that are linear or close to being linear which is not the case with most practical situations. Hence,

the solution has to be found numerically and a discrete DP algorithm is used [33]. Sampling of

state, control and time space remains a challenge as higher sampling means high accuracy but

high computational cost. Lower sampling leads to less accurate solutions and may not yield a

global optimum at all. Integration with respect to time poses the same challenge as seen in direct

methods that explicit methods are fast and but less stable and accurate than implicit methods. A

trade-off between computational cost vs accuracy means that DP is mostly effective only for lower

dimensional systems. Some of the advantages and disadvantages of DP are outlined as follows:
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•Dynamic Programming finds the optimal solution by performing an exhaustive search through

the entire state and control space. Hence, the result obtained will be a global optimum if it exists.

• The sequence of decisions obtained from DP is dependent on the current state of the system

and hence, the control solution is a feedback control or closed-loop control. In practice, there are

model/parameter uncertainties, noise in sensors, etc. Any system in practice is stochastic and DP

can handle stochastic aspects of the control problem [21].

• Curse of Dimensionality (COD): Dynamic Programming being discrete suffers from the

COD. A higher sampling of the state-space system leads to a higher computational load and in-

creases exponentially. The order of computations depends exponentially on the number of states

and control variables. Hence, DP is computationally feasible for lower-order optimal control sys-

tems [21].

Considering the merits and demerits of the above approaches, indirect methods are ignored as

the problem dealt with in this analysis is of higher-order and has path constraints and it also relies

heavily on initial guess for the adjoint states and also has a smaller domain of convergence. For this

thesis, direct methods and dynamic programming are explored with relevance to the WL problem

discussed in the modeling section. The direct method has already been successfully applied on

the fully integrated WL system in [4]. The authors have ignored dynamic programming citing

the COD as the reason. However, considering the merits of DP over direct methods, we aim to

explore the trade-offs between these algorithms in the context of optimization of a WL system.

Considering the challenges posed by direct methods such as convergence issues, local minimum

solutions, initial guess sensitivity, and deterministic solution or open-loop control solution, we

consider exploring DP to solve the system as it does not face any of the issues mentioned above.

However, the major challenge is to overcome the COD as the order of the system is high and

is not computationally feasible as-is and the model has to be modified to account for the same.

Considering the assumptions and modifications, it remains to be seen how DP fares against direct

methods because the solution obtained from DP may not be global owing to the assumptions/

modifications to be discussed in section 4.
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Dynamic Programming for the fully integrated system results in an OCP of a higher-order

system and is not computationally feasible. Two approaches to resolving this issue could be to have

a Reduced Order Model (ROM) or a split stage. Since all the state equations are not independent,

ROM can be a solution and will also be explored.

ROM has been a powerful tool in computational fluid dynamics and the Finite Element Method

(FEM). ROM works on the premise that the states are correlated as we see in continuous systems.

For discrete systems, studies on reduced order modeling have not gained enough attention. The

feasibility of a ROM of the entire system is investigated. Several reduced-order methodologies are

investigated such as Proper Orthogonal Decomposition (POD) and Smooth Orthogonal Decom-

position (SOD) and Discrete Empirical Interpolation Method (DEIM). All the methods try to find

a fundamental basis of all the states and the states can later be retrieved by the basis. The basis

is usually of a lower order than the system order. However, a basis is of a lower order only if

there is a strong correlation between states. WL subsystems are usually independent and do not

have a strong correlation between them. Reduction of system order is not beneficial as without

correlation the accuracy drops significantly with reduced order. With a system of high nonlinear-

ities and discontinuities, a reduced-order approach may render a WL system unstable due to high

inaccuracies.

With a split-stage optimization approach, the integrated system is split into two subsystems and

an optimization routine is performed on both of the systems independently and later the optimal

policies obtained from both the routines are integrated using a flexible approach to obtain the final

solution. Keeping the inaccuracies of ROM in mind, the split-stage approach is found to be more

suitable for this application and is chosen for this thesis.

A block diagram of integrated and split-stage optimization approaches is shown in Fig.3.2 in

chapter III. Integrated OCP suffers from the COD with the order of the system being high. In a

split-stage approach, the full order OCP is split into three stages - path planning, hydraulics opti-

mization and integration of both the stages. This reduces the number of operations at each time

step by a factor of 1000 depending upon the coarseness of the discretization. The first stage focuses
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on path planning i.e an optimal trajectory for the WL to traverse to a desired final destination is

found without considering hydraulic power consumption. This stage gives us the distance that the

WL has to traverse in order to reach the final position. The final distance obtained from stage - 1

becomes a constraint in stage - 2 optimization which finds the optimal hydraulic power consump-

tion profile while obeying the distance constraint set from stage - 1. Finally, the stage - 3 integrates

both the above stages and provides an optimal state and control profile. This approach is discussed

in detail in chapter 3.

The novelty of this thesis is the Split-Stage Optimization strategy, a customized DP based

approach which reduces the computational complexity significantly and enables the application of

DP to solve a higher order WL Optimal Control Problem to be more computationally feasible while

not compromising the optimality of the solution. The formulated OCP is solved using this novel

strategy and compared to the optimal solution obtained from the DM. This thesis also explores the

initial guess sensitivity and convergence issues encountered while solving the OCP using the DM.

1.4 Thesis Overview

This thesis targets to explore the merits and demerits of Dynamic Programming and Direct

Methods of optimal control in the context of autonomous construction machinery, WL to be spe-

cific. A customized Dynamic Programming method is also proposed to address the issue of the

COD. This thesis is divided into 5 main chapters.

Chapter 2 focuses on developing a mathematical model to represent the typical operation of

a WL in the mining and construction sites. Each subsystem is analysed and modeled in detail

separately.

Chapter 3 formally introduces the optimal control problem with an objective function, state

dynamics and constraints etc. It also briefly outlines the approach to the OCP with Dynamic

Programming.

Chapter 4 discusses a DP based approach to solve the OCP in detail. The formulated OCP is

solved using DP and the results are presented and analysed in detail.

Chapter 5 discusses the direct numerical approach to solve the COP in detail. The OCP is
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solved using an open-source solver namely MPOPT (Multi-Phase OPTmizer). The results are

presented and various factors influencing the results are discussed and analysed in detail.

Finally, Chapter 6 is about comparing and analysing the results obtained from both the methods

and their advantages and disadvantages in the context of the current OCP are thoroughly discussed

in detail. This chapter also details the contribution and and a novel approach to solve higher order

OCPs using DP. It concludes this phase of research and proposes possible research ideas to explore

in future.
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2. Modeling

Wheel loaders have complex mechanical components such as a turbocharged diesel engine, hy-

draulic system for lift and tilt mechanism of the bucket, torque converter, and vehicle’s lateral and

longitudinal dynamics. A mathematical representation of these components is highly parametric

and non-linear. Designing a controller for such a mathematical model is usually difficult because

of its high order and non-linearity. Hence, a control-oriented model preferably low in order, and

can significantly capture the dynamics of all the systems is preferred. The majority of the modeling

work is borrowed from [4]. Fig.2.1 shows the overview of all the subsystems constituting a wheel

loader.

Figure 2.1: Component systems in a wheel loader

2.1 Engine Modeling

A turbocharged/supercharged diesel engine model consists of several sub-models of compo-

nents such as air filter, compressor, throttle, turbine, etc which is usually a higher order nonlinear

model and is also highly parametric. A validated mean value model of an engine developed in
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MATLAB/Simulink is available at [2] with experimental data from [34]. Considering optimal con-

trol, a control-oriented engine model is developed which is lower in order and can significantly

capture the engine dynamics. (Te), engine torque is assumed to be a function of engine speed

(We), fuel injection per cycle (Umf ) and intake manifold pressure (Pim). Training data is obtained

from the simulink model for a wide range of inputs of varying pulse-width in steps of 0.1s, 0.5s,

and 1.5s and the simulation was run for 300s. The generated data is used to fit a linear regression

model with basis function Te : R3 → R.

T̂e(ω̂e, P̂im, Ûmf ) = W T [1; ω̂e; ω̂e
2; Ûmf ; P̂im]

Here W T = [w1, w2, w3, w4, w5] denotes the transposed vector of the weights of variables. The

Root Mean Square Error (RMSE) of normalized torque between the predicted and actual data is

found to be about 1.71e − 2 for the training data and 1.68e − 2 for the test data. The RMSE for

the model with intake manifold pressure variable is 9.5e − 3. The difference between both the

above cases with relevance to the inclusion of Pim is very little. Hence, the model is assumed to be

independent of intake manifold pressure. This means that the torque loss because of the low intake

manifold pressure is ignored. Fig.2.2 shows the comparison of the predicted and actual data.
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Figure 2.2: Normalized Predicted and Actual (validated Simulink model [2]) Engine Torque for
test data.

The generated model has a parabolic profile (concave down) with engine speed ωe and has

a positive correlation with Umf . In practice, an engine cannot generate enough torque at lower

engine speeds even with high fuel injection. This is also true when the engine is operating at high

speeds with high fuel injection. Considering the polynomial nature of the function, it does not

perform well at both ends of the engine speed. This can be addressed by introducing a limiting

torque profile for the generated model. The limiting profile is borrowed from [3]. Fig.2.3 shows

the engine model torque and the limiting profile obtained from [3]. The engine speed dynamics

depend on the torque generated and torque utilized by subsystems such as hydraulics, traction, etc.
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Figure 2.3: Engine model Torque and the limiting Torque profile [3].

dωe
dt

=
1

Je
(Te −

Pload
ωe

) (2.1)

where Pload = Ptrac + Plift + Psteer represents the sum of torque requirements from all the

subsystems assuming all the subsystems are connected to the crank shaft.

The rate of fuel consumed by the engine (6 cylinder) is calculated as

ṁf =
3 ∗ 10−6 Umf ωe

8π
(2.2)

2.1.1 Driveline

A typical off-road vehicle driveline is modeled with a torque converter, gearbox, and wheels.

A wheel loader is an off-road vehicle that usually traverses on rough terrain with road bumps,

potholes, etc. The transmission system of the vehicle should be able to dampen the vibrations and

shock loads arising from rough terrains. A torque converter provides smooth gear shifting while

multiplying the torque. A torque converter transmits power through fluid and hence has high losses

through viscous dissipation compared to a manual transmission. Alternatives to torque converter

16



have also been proposed by researchers such as in [35]. Despite its losses and alternatives, torque

converters are widely used in off-road vehicles due to their merits.

A torque converter consists of a pump and turbine where it is assumed that the pump shaft

spins at the speed of the engine and the turbine shaft is directly connected to the gearbox. A

torque converter can transmit power in both directions i.e from the engine to driveline or vice-

versa depending upon the speed ratio φ which is defined as

φ(ωe, V ) =
γV

rwωe
(2.3)

The direction of power transfer depends on the value of φ. Power is transmitted to the driveline

from the engine if the pump shaft rotates faster than the turbine shaft (φ < 1) or from the driveline

to the engine if (φ > 1). This means that in the reverse operation of a torque converter, the power

available from the deceleration of wheels can be used for hydraulics or engine dynamics. however,

in the reverse operation, the efficiency of the torque converter reduces to a third of its normal

efficiency. Modeling of a torque converter is complex due to the presence of lock-up clutches and

split torque modes. Numerous studies have been performed on modeling torque converters. A

dynamic torque converter model was introduced in [5] for restricted operating conditions which

are extended to all operating conditions in [36]. Models of torque converters range from higher-

order differential conditions to polynomial-based functions as in [37]. Bond graph-based method

is also developed in [36]. Keeping DP and its curse of dimensionality in mind, a model which is

lower in order while preserving accuracy is preferred.

A polynomial with lookup table-based model is developed by [37]. In this model, the torque

converter is modeled using two characteristic curves, one each for torque ratio and the torque on

the pump side of the TC vs the speed ratio. As mentioned in [4], the transition at φ = 1 is non-

smooth and discontinuous. Hence, an efficiency-based modeling approach developed in [37] is

used to avoid discontinuity. The model with characteristic curves is as follows:

Ppump = c1 Tpump(φ) ωa1e (2.4)

17



Pturb = c2 Ppump η(φ) ωa2e (2.5)

where c1, c2 are normalization constants, a1 and a2 are tuning parameters, γ is the gear ratio

of the gear box, engine speed ωe is in (rps). Fig.2.4 represents the TC characteristics used in this

model.

Figure 2.4: Torque Converter characteristic curves (Normalized) for efficiency and Pump shaft
Torque [4] .

The gear ratios of the gearbox are assumed to be γ = {−60, 0, 60, 0} for four phases of SLC

respectively.

Vehicle speed dynamics is affected by the forces acting on it. The forces involved are traction

force, rolling resistance and braking if any. Air drag force is neglected in this thesis. Considering

mass of the loaded vehicle, the dynamics of vehicle speed are as follows:

dV

dt
=
Ftrac − sign(V ) (Froll + Ubrake)

Mtotal

(2.6)

dS

dt
= V (2.7)

where Ftrac is the traction force available, Froll is the rolling resistance force on the vehicle, S
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is the displacement of the vehicle and Ubrake is the braking force (a control input) limited to phases

2 and 4 in this thesis. Traction and rolling resistance force are calculated as shown:

Ftrac =
Pturb
ηgb V

(2.8)

Froll = cr Mtotal g (2.9)

where ηgb is the efficiency of the gearbox, cr is the rolling resistance coefficient. While braking

in phase 2 and phase 4, the vehicle is in a neutral state and there is no power transmission from

engine to drive train and hence power required for traction is calculated as

Ptrac = Ppump | sign(γ) | (2.10)

2.1.2 Steering Dynamics

As the wheel loader traverses back and forth through rough terrain at work sites, it is beneficial

to have an articulated wheel loader as opposed to a traditional wheel loader. An articulated wheel

loader is split into two parts and then joined using a revolute joint. Fig.2.5 shows a schematic of

an articulated wheel loader.
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Figure 2.5: Schematic diagram of an articulated wheel loader [5].

This mechanism improves the maneuverability of the wheel loader in tight spatial conditions

compared to a traditional one. Articulated wheel loader’s steering is handled through rear wheels

which frees the front wheels to do their best while scooping and traversing. Numerous studies have

been performed on path planning and trajectory optimization of a wheel loader in SLC e.g [5], [38],

[39]. In this thesis, a kinematic model is considered for the position, steering, and heading angles

of the wheel loader. The governing equations are as follows:

dx

dt
= V cos(β) (2.11)

dy

dt
= V sin(β) (2.12)

dβ

dt
=

V

Rturn(δ)
(2.13)

dδ

dt
= Ust (2.14)

where [X, Y, β, δ] represent the (X, Y ) position of the vehicle, heading, and steering angles
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respectively. Rturn(δ) is the turning radius of the vehicle which is defined as

Rturn(δ) =
L

2 tan(δ/2)
(2.15)

where L (mtr) is the wheelbase obtained from [3].

Power required to steer the wheel loader is assumed to be proportional to square of the steering

input (Ust) as

Psteer = Cst U
2
st (2.16)

where Cst is the steering power coefficient.

2.1.3 Hydraulic Lift and Tilt System

A hydraulic system typically involves a prime mover such as a pump which provides energy

in the form of kinetic and pressure energy in the fluid, proportional valves to control the direction

and flow rate in the system, an actuator such as a hydraulic cylinder or motor depending upon the

application. Various pumps that come under Positive Displacement (PD) pumps and Non-positive

Displacement (NPD) pumps have been modeled by researchers for different applications. A model

for the centrifugal pump model is developed by authors in [40]. For an off-road vehicle that deals

with high-pressure applications, a positive displacement is a better choice. Various positive pumps

with and without pressure compensation or load sensing capabilities have been modeled. A load-

sensing pump model is developed in [9]. A full and reduced-order model with a constant pressure

source is developed as in [41]. The majority of the industrial equipment uses positive displacement

pumps such as gear, vane, piston pumps, etc which are flow source-based and have a constant or

variable displacement based on the nature of the pump. The pressure in the system develops

because of external load or internal resistance such as friction etc. Usually, in on-road vehicles,

all the subsystems receive power simultaneously as the load requirements are less whereas, in an

off-road vehicle, substantial power is required to perform loading/unloading operations and steer

the vehicle to its destination. All the subsystems cannot function at the same time depending upon

power from the engine and the load requirements from subsystems.
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A typical hydraulic system in a wheel loader has lift and tilt functions. Lifting serves the

purpose of raising and lowering the bucket depending upon the height of the load and the load

truck and tilting serves the purpose of loading and unloading the bucket. A SLC in this thesis is

assumed to start from a loaded position and hence the tilt dynamics are neglected. In this thesis,

the majority of the modeling of lift dynamics is imported from [9]. The dimensions required for lift

cylinders are obtained from Volvo’s brochure [3]. The schematic diagram of the model is shown

in Fig.

The above figure represents one of two lift cylinders arranged in a parallel combination for

stability. The following are assumed:

• Bulk Modulus is assumed constant.

• Friction between cylinder and piston is neglected.

• Changes in density and viscosity are neglected.

• Fluid is incompressible.

• Pump shaft is connected to the crankshaft of the engine.

The torque Tp and flow rate Qp of the pump are given by

Tp =
Pp Dp

ηp
(2.17)

Qp =
Dp ωe
ηv

(2.18)

where Pp is the output pressure of the PD pump, Dp is the variable displacement of the pump,

ηp is the mechanical efficiency of the pump, ηv is the volumetric efficiency.

The governing equations representing the hydraulic system are as follows:

Ṗa =
Bmod

Va0 + Aax1
(Qa − Aaẋ1) (2.19)
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Ṗb =
Bmod

Vb0 + Ab(Str − x1)
(Qb + Abẋ1) (2.20)

where Pa and Pb are pressures at the piston and rod sides of the cylinder respectively, Bmod is

the bulk modulus, Va0 and Vb0 are the clearance volumes on both sides of the cylinder, Aa and Ab

are areas of cross-sections on piston and rod end side of the cylinder, x1 is the displacement of the

piston with Str is the stroke of the piston, Qa andQb are the flow rates in/out of the cylinder which

are defined as

Qa =


z1CdA

√
2(Ps − Pa)

ρ
if z1 > 0,

z1CdA

√
2(Pa − PT )

ρ
if z1 < 0,

0 if otherwise;

(2.21)

Qb =


−z2CdA

√
2(Pb − PT )

ρ
if z2 > 0,

−z2CdA

√
2(Ps − Pb)

ρ
if z2 < 0,

0 if otherwise;

(2.22)

where z is the spool valve displacement (m), Cd is the orifice discharge coefficient, A is the

orifice area (m2) and ρ is the density of the fluid in the hydraulic system.

Finally, the dynamics of the piston in a cylinder is modeled as

mpẍ1 = PaAa − PbAb − Fload (2.23)

where mp is the mass of the piston in the lift cylinder, Fload is the load acting on the piston.

2.1.4 Reduced Order Model

2.1.4.1 Overview

Proper Orthogonal Decomposition (POD) is a statistical tool employed to reduce the or-

der of a mechanical system by projecting high dimensional data into low dimensional data. This

method identifies a correlation between states of the dynamical system and creates a new set of
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uncorrelated variables much smaller than the number of original states. The new states are phys-

ically irrelevant as they are a combination of different states and they are purely mathematical.

The main advantage of POD is a reduction of computational effort owing to less number of states.

Control of mechanical systems becomes easier with lesser states. This is highly useful in nonlinear

systems. POD has applications in various fields such as fluid mechanics, finite element modeling,

and structural dynamics. A nonlinear system is considered and the detailed procedure is outlined

in [1] Consider a nonlinear system that is non-dimensionalized:

dy

dt
= Ay(t) + F (y(t)); y(0) = y0 (2.24)

Simulate the system for a time t ∈ [0,T] and the solution at each time is appended to create

a snapshot matrix Y = [y0(t), y1(t), ...., yn(t)] ⊂ <n. Now, we perform singular value decompo-

sition (SVD) to find the dominant vector space in which our data lies. SVD of

Y = UΣV T (2.25)

where U is the orthonormal basis of our data and Σ is the singular value matrix with values

in descending order. The singular values signify the dominance of the corresponding mode in

obtained data. To reduce our model, we consider first k << n dominant modes and form the

orthonormal basis as

φ = [U(:, 1), U(:, 2), ....., U(:, k)] (2.26)

Now we create our reduced order states ŷ as

y = φŷ or ŷ = φTy with φTφ = I. (2.27)
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The original equation reduces to

φ
dŷ

dt
= Aφŷ(t) + F (φŷ(t)) (2.28)

which can be written as

dŷ

dt
= φTAφŷ(t) + φTF (φŷ(t)) with ŷ(0) = φTy. (2.29)

We simulate the reduced order system and the original features are extracted using the relation

y = φŷ

2.1.4.2 Applications to Offroad Vehicles

With Construction and Mining industries using a lot of energy daily, it is certain that a small

optimization in operation can save a significant amount of energy. Also mining and construction

industries are deemed to be hazardous for the workforce, automation of offroad vehicles can pre-

vent injuries for the workforce. With this motivation, there has been a lot of research in energy and

cycle time optimization of a single offroad vehicle such as wheel loaders used in mining. However,

there has been very little research on the automation of the continuous autonomous operation of

wheel loaders. This involves mathematical modeling of various powertrain and drivetrain compo-

nents such as turbocharged engine, torque converter, and also the hydraulics (Lift and Tilt system)

along with the longitudinal dynamics which gives us the order of the system as ∼ 15. Considering

optimization of series of vehicles with the above number of states, the model is highly computa-

tionally intensive to control. This demands a simpler overall model to be controlled with a simple

model for engine, torque converter, and hydraulics. An experimentally validated engine model is

approximated to be linear and validated with test data is used. To further simplify the model, the

order of the whole system can be reduced for less computational effort with a trade-off inaccuracy.

For POD to be effective, the correlation between the states has to be high. Here, the engine,

velocity, hydraulics, and longitudinal kinematics have less correlation between them. Hence, the
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effective possible order reduction is in the hydraulic system as it correlates with lift and tilt system

pressures at piston and rod ends. A 25 % reduction is possible in the hydraulic system which can

play a huge role in the optimization of several vehicles running in parallel. A simple analysis of

Model Order Reduction (MOR) using POD is done for a simple hydraulic system which reduces

the order of the system by 25% and the result is attached:
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Figure 2.6: Full and Reduced-Order Model of Hydraulic System.

2.1.4.3 Observations and conclusions

Results show a considerable match between the Full Order Model (FOM) and Reduced-Order

Model (ROM) for chamber pressures and velocity of the system. However, the piston displacement
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in ROM does not match well with the FOM. Piston displacement also shows non-minimum phase

behavior in the ROM. Piston displacement needs to be highly accurate as it determines the position

of the bucket. It cannot be guaranteed that the ROM will be faster than the FOM in all cases because

of the cost of conversion of states and the governing equations from the FOM to the ROM domain.

Owing to the above reasons, a reduced-order model is not beneficial in this case.

2.1.5 Simplified Hydraulic Model

A comprehensive model is developed to capture the dynamics of the lift and tilt mechanism

of the bucket. To use dynamic programming as a tool, it is preferred to have fewer states to

avoid complexities and the curse of dimensionality. A simplified model would be a better option

for dynamic programming. However, the comprehensive model can be considered for numerical

approach based optimization. A simplified version of lift dynamics is considered for modeling the

bucket dynamics in [4]. It is as follows:

dSbuc
dt

= Vbuc (2.30)

dVbuc
dt

= Ulift (2.31)

where Sbuc is the bucket position, Vbuc is the bucket velocity, and Ulift is the acceleration of the

bucket (Control input).

The power required to lift the bucket Plift is calculated as follows

Fload = Mload(g + Uab) (2.32)

Plift =
FloadVbuc

η
(2.33)

where Mload is the mass of the bucket loaded, g = 9.81m/s2, η is the efficiency of the hydraulic

system.
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2.1.6 Full State Dynamics

A complete model of wheel loader consists of three control inputs and 8 states (simplified

Hydraulics model). Refer to nomenclature for state and control description.

X = [ωe, V, Sbuc, Vbuc, X, Y, β, δ] (2.34)

U = [Umf , Uab, Ust] (2.35)

The governing equations for the entire system are as follows:

dωe
dt

=
1

Ie
(Te −

Ptrac + Psteer + Plift
ωe

) (2.36)

dV

dt
=
Ftrac − sign(V ) (Froll + Ubrake)

Mtotal

(2.37)

dSbuc
dt

= Vbuc (2.38)

dVbuc
dt

= Uab (2.39)

dx

dt
= V cos(β) (2.40)

dy

dt
= V sin(β) (2.41)

dβ

dt
=

V

Rturn(δ)
(2.42)

dδ

dt
= Ust (2.43)

2.1.7 Results and Validation

Experimental validation was not possible due to the lack of data. However, the model devel-

oped in [6] is validated. The same control inputs Umf , Uab are applied to the model having 5 states

excluding the lateral kinematics. The state profile obtained from the current model matches con-

siderably with the validated state profile obtained in [6]. Fig. 2.7 shows the control profile and
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the state profile for comparison. The excluded part of the model that is lateral kinematics is not

parametric and is the same as in [4].
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Figure 2.7: Control profile imported from [6]. Resulting state profiles from the current developed
model and from the paper [6]
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3. Problem Outline

3.1 Formulation - Optimal Control Problem

The augmented wheel loader system dynamics consist of engine, vehicle dynamics, steering,

and hydraulic subsystems. We assume that the power consumed by the steering system is negligible

compared to traction and hydraulics. The system has 8 states, 3 inputs as outlined in the modeling

section. Two cases of optimization of an SLC are considered for comparing DP and DM. An

Optimal Control Problem (OCP) for the two cases is formulated and the approach to solve the

OCP using DP is detailed in this section. DP is focused more in this section as we adopt a split-

stage optimisation approach in this research. The idea is discussed in detail. In case of DM, a

conventional pseudo-spectral collocation based method is adopted. The objective function, phases

in an SLC, constraints in both cases followed by detailed approach to solve the system using DP

and DM are defined.

The objective functions for the optimization problem can be as follows:

• Time Efficiency - The objective of this analysis is to perform the short loading cycle as early

as possible without any regard to the fuel consumed. This can be fairly easily achieved

by injecting maximum fuel into the engine. The vehicle has higher torque available for

maximum acceleration which drives the vehicle faster to the desired destination.

• Fuel Efficiency - Time taken by the wheel loader to perform an SLC is not a concern in this

analysis. The primary purpose of this approach is to have the wheel loader consume as little

fuel as possible.

• Productivity - Here, to maximize productivity, the objective function is a weighted average

of the above objectives. A fixed time is chosen which is between the time taken for the above

two contradictory objectives and then the cycle is optimized for fuel-efficiency. It is assumed

that there is no time delay between any of the phases in an SLC.
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In this research, the latter of the three cost functions is considered. We consider a fixed final

time and optimize the system for fuel consumption. The short loading cycle (SLC) consists of four

phases as described earlier which are differentiated by a parameter γ, gear ratio. However, the

convention is briefly discussed below.

1. Deceleration - In this phase, the wheel loader travels with a reverse gear of gear ratio (γ =

−60). This phase of SLC is assumed to be done in time t1. The bucket position is assumed

to be at its lowest position at the start of this phase.

2. Braking - This phase starts at t1 and ends when the vehicle reaches a stop. During braking,

it is assumed that the driveline is disengaged from the power train. The gear ratio for this

phase is (γ = 0). The duration of phase - 2 depends on the velocity of the vehicle at time t1.

3. Acceleration - After momentarily being at a halt, the wheel loader accelerates forward with

a gear ratio (γ = 60). This phase starts immediately with the end of phase - 2 and ends at

the time (t3).

4. Braking - This phase is similar to phase - 2. It starts at t3 and ends when the vehicle comes

to rest.

The cost function for this OCP only contains an integral term and hence can be expressed in

the lagrange form [42]. The problem is subjected to several limits and constraints such as state

dynamics, path, boundary and box constraints etc. The governing equations for the model can be

found in the modeling section.

Cost function:

φ = min
umf ,ust,uab

(

∫ tf

0

ṁfdt) (3.1)

States:

x = [ωe, V, Sbuc, Vbuc, X, Y, β, δ] (3.2)
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Controls:

u = [Umf , Uab, Ust] (3.3)

State dynamics:

ẋ(t) = f(x, u, t) (3.4)

Constraints:

kmin ≤ f(x) ≤ kmax (3.5)

xmin ≤ x(t) ≤ xmax (3.6)

umin ≤ u(t) ≤ umax (3.7)

In this analysis, the phase times are assumed to be known and to be same in both cases. The

phase times for this multi-phase optimization problem can be considered as variables as considered

in [4]. This increases the complexity of the problem. However, the computations can be run in

parallel and do not cause an increase in run time and that is considered as part of future work. The

initial and final conditions for the optimal control problem for both cases are tabulated in Fig. 3.1

and 3.2. The two cases considered here only differ by the final position the wheel loader has to

reach. The objective is to find the 3 control inputs which lead the wheel loader to the desired final

states while obeying the constraints.

The majority of the box constraints are borrowed from the model in [4]. Constraints for engine

speed and lateral kinematics are imported from Volvo brochure [3]. Box constraints for all the state

and control variables are listed in Table.3.3.

This OCP can be solved using different methods as outlined in the review section. This research

focuses on DP and DM. An approach to solve the OCP along with the procedure is discussed in

the following section.
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Case:1

Variables
Phase - 1 Phase - 2 Phase - 3 Phase - 4

t0 t1 = 4s t1 = 4s t2 t2 t3 = 9s t3 = 9s t4

ωe (rad/s) 57 − − − − − − −

V (m/s) 0 − − 0 0 − − 0

Sbuc (m) 0.7 − − − − − − 5.0

X (m) 0 − − − − − − −2.5

Y (m) 0 − − − − − − 2.5

β (rad) 0 − − − − − − π
2

δ (rad)
π
16

− − − − − − −

Ubrake (N) 0 0 1e5 1e5 0 0 1e5 1e5

Table 3.1: Case:1 - Constraints for the Optimal Control Problem.

Case:2

Variables
Phase - 1 Phase - 2 Phase - 3 Phase - 4

t0 t1 = 4s t1 = 4s t2 t2 t3 = 9s t3 = 9s t4

ωe (rad/s) 57 − − − − − − −

V (m/s) 0 − − 0 0 − − 0

Sbuc (m) 0.7 − − − − − − 5.0

X (m) 0 − − − − − − −3.0

Y (m) 0 − − − − − − 3.5

β (rad) 0 − − − − − − π
2

δ (rad)
π
16

− − − − − − −

Ubrake (N) 0 0 1e5 1e5 0 0 1e5 1e5

Table 3.2: Case:2 - Constraints for the Optimal Control Problem.

3.2 Approach - Dynamic Programming

The continuous system is discretized into finite dimensional system. It is widely known that

DP suffers from curse of dimensionality. The finer the discretization, the accurate the solution

and more the time it takes. The computational effort to solve the problem with DP increases

exponentially with states and control inputs. DP is usually applied for systems with number of
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Parameters Value
ωe [50, 250] (rad/s)
V [−3, 3] (m/s)
Sbuc [0.7, 5] (m)
Vbuc [0, 2] (m/s)
δ [−0.8, 0.8] (rad)
Ubrake {0, 1e5} (N)
Umf [1, 250] (mg/cycle)
Ust [−1.2, 1.2] (rad/s)
Rturn [Rmin, Rmax] (m)

Table 3.3: Box constraints for state and control variables.

states less than 5 and inputs less than 3. The current OCP has 8 states and 3 inputs which in this

state is computationally infeasible to apply DP. Fig.3.1 shows the number of operations at each

time stamp vs number of states or control inputs.
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Figure 3.1: Curse of Dimensionality in DP.

For computational feasibility, one can have coarse discretization which compromises the accu-

racy or split the problem into multiple subproblems. Here, the OCP is split into three stages and

later integrated back together to yield an optimal result. We call this as the split stage approach.
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This approach can compromise the global optimality of the solution. However, the stages are in-

tegrated with flexibility. This reduces the maximum number of states and inputs in each stage of

optimisation are 6 and 2 respectively. Let’s assume that the state and control space is discretized

into k grids each. The integrated approach has 11 in total whereas the split stage approach has

three stages with a maximum of 8. The split stage approach reduces the amount of operations at

each time stamp by a factor of k3. Table.3.4 shows the number of operations at each time stamp

for both the approaches. The framework is shown in Fig. 3.2

Figure 3.2: Flow chart for Split-Stage Optimization approach.
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Integrated Stage - 1 Stage - 2 Stage - 3
States and Control Inputs 8 & 3 6 & 2 5 & 2 4 & 1

Subsystems

1. Engine 1. Engine 1. Engine 1. Engine
2. Longitudinal 2. Longitudinal 2. Longitudinal 2. Longitudinal

3. Lateral 3. Lateral 3. Lateral 3. Lateral
4. Hydraulics 4. Hydraulics 4. Hydraulics 4. Hydraulics

No. of operations k11 k8 k7 k5

Table 3.4: Characteristics of Integrated and split-stage optimization approaches. (Blue - Included
; Red - Ignored)

Considering 20 grid divisions for each state and control input, the number of operations in-

crease by 203 times for the current OCP compared to the usual number for which DP is applied.

Fig.3.3 shows an estimated reduction in the number of operations in a logarithmic scale.
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Figure 3.3: Comparison of number of operations in the Integrated and Split-stage approaches

From the above analysis, split-stage approach seems to be a good trade-off between accuracy

and computational time. Hence, we decided to explore more of this approach. The three stages are

described as follows:

• Stage - 1 involves path planning which includes engine, vehicle dynamics, and steering. A

block diagram of the states and control inputs for stage -1 is shown in Fig.3.4. The primary
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purpose of this stage is to find the approximate distance a wheel loader has to traverse in

an SLC. The hydraulic subsystem is not included in this stage of optimization. The path a

wheel loader should traverse for a weighted fuel and time efficiency case is found with the

following state-space system.

Figure 3.4: State and control flow block diagram for stage - 1 optimization (Path planning)

States:

X = [ωe, V,X, Y, β, δ] (3.8)

Controls:

U = [Umf , Ust] (3.9)

Cost Function:

φ = min
umf ,ust

(

∫ t1

0

ṁfdt+

∫ t2

t1

ṁfdt+

∫ t3

t2

ṁfdt+

∫ t4

t3

ṁfdt) (3.10)

where t1 and t3 are assumed to be known. The second phase starts at t1 and ends when the

vehicle comes to a halt and similarly phase - 4 starts at t3 and ends when the vehicle reaches

its destination. A sample of possible trajectories in an SLC is shown in Fig. 3.5.

• Stage-2 involves optimization of hydraulics which includes engine, vehicle dynamics, and
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(a) Possible Trajectories (b) Fuel Consumption

Figure 3.5: A sample of possible trajectories with fuel consumption in a SLC

hydraulics. A block diagram for this stage of optimization is shown in Fig.3.6. From stage-1

optimization, the path to be traversed by a wheel loader and also the distance traversed is

obtained. An extra state (displacement of the wheel loader) is added to integrate stage-1

to stage-2 optimization. A distance constraint is enforced in this stage to ensure the WL

traverses the same distance as it had in stage - 1 at the end of phase-2 and phase-4 of the

problem as shown in Fig. 3.2. The resulting state-space system is as follows:

Figure 3.6: State and control flow block diagram for stage - 2 optimization (Hydraulics)
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States:

X = [ωe, V, S, Sbuc, Vbuc] (3.11)

Controls:

U = [Umf , Uab] (3.12)

Cost Function:

φ = min
umf ,uab

∫ t1

0

ṁfdt+

∫ t2

t1

ṁfdt+

∫ t3

t2

ṁfdt+

∫ t4

t3

ṁfdt (3.13)

where t1 and t3 are the same as in stage - 1.

• Finally, Stage-3 involves finding the steering input which leads to the wheel loader to the

desired final position. This is not a conventional optimization routine but finding a path that

is close enough to the path obtained in stage-1. The resulting state space system is as follows:

Figure 3.7: State and control flow block diagram for stage - 3 (Integration of stage 1&2)

States:

X = [X, Y, β, δ] (3.14)

39



Controls:

U = [Ust] (3.15)

Cost Function:

ψ̇ = [(X(t)−Xref (t))
2 + (Y (t)− Yref (t))2] (3.16)

φ = min
ust

∫ t1

0

ψ̇dt+

∫ t2

t1

ψ̇dt+

∫ t3

t2

ψ̇dt+

∫ t4

t3

ψ̇dt (3.17)

where t1 and t3 is chosen to be the same as in stage-2.
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4. Dynamic Programming

In this chapter, we solve the OCP with a split-stage approach using DP as outlined in the previ-

ous section. Solving the continuous differential equations is tedious as the system is of higher or-

der and nonlinear. Numerical integration techniques such as explicit, implicit, Range-kutta (RK4),

Hermite-Simpson or Dormand-Prince (DOPRI), etc can be employed to solve the discrete OCP.

Some of them are briefly discussed here.

4.1 Discretization

To perform a discrete search through the reachable state space for optimal control inputs, the

states and controls have to be discretized. There are many algorithms to discretize differential

equations such as explicit, implicit, Range-Kutta (RK4), Dormand Prince (DOPRI) methods, etc.

The explicit integration method usually is unstable for highly stiff systems and the discrete-time

step h has to be as low as possible to ensure stability. RK4 method is widely used as it is a fourth-

order method whereas Euler’s explicit method is the first order. While RK4 is widely used for its

accuracy, it takes more time to estimate a solution. For a non-stiff system, the explicit method is

more useful as it provides an accurate solution in less time. For a stiff system, the time step h has

to be small enough to capture the system dynamics accurately. This increases the time it takes to

estimate the solution. Sample numerical simulations show that the explicit method does not have

any convergence issues and hence it is preferred over the RK4 method for better computational

efficiency.

• Euler Explicit algorithm:

X[k + 1] = X[k] + h f(tk, Xk) X(0) = X0 (4.1)

where X[k] is the state value at time step k, h denotes the discrete time step.
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• Runge-Kutta (RK4) algorithm:

X[k + 1] = X[k] +
h

6
(k1 + 2k2 + 2k3 + k4) X(0) = X0 (4.2)

whereX[k] is the state value at time step k, h denotes the discrete time step and (k1, k2, k3, k4)

can be obtained from



k1 = f(X[k], U [k], t[k]),

k2 = f(X[k] + h
2
k1, U [k], t[k] + h

2
),

k3 = f(X[k] + h
2
k2, U [k], t[k] + h

2
),

k4 = f(X[k] + h k3, U [k], t[k] + h),

(4.3)

4.2 Procedure

4.2.1 Iterative search using DP with region-based gridding

This problem can be solved with either forward-DP or backward-DP. Forward DP is useful only

for deterministic systems while backward-DP is useful also for stochastic systems [43]. However,

both the methods yield the same optimal result. Since this research assumes the system to be de-

terministic, forward-DP and backward-DP are no different. Forward-DP based approach is chosen

for convenience as the optimum is the same in both the methods ideally. For real-time implemen-

tation, backward DP is better as it can handle stochastic systems. After discretizing the state and

control space, for every possible state value at each time step, an exhaustive search is performed

over the control space to find the reachable state space at the next time step. Suppose, at time t[k],

the reachable state space is known and possible reachable states at t[k + 1] is found by projecting

the state x[k] by applying all the possible discretizing control inputs U1[1 : i], U2[1 : j], U3[1 : k] at

time t[k]. The possible reachable state values often may not exactly correspond to the grid points

chosen at t[k + 1] and fall between the grid points. A schematic of the approach is shown in Fig.

4.1 below:
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Figure 4.1: Schematic of forward-DP approach.

Another approach to this forward DP is to divide the state space into finite regions as opposed to

grids. The reachable state space is calculated by projecting the state space at t[k] to time t[k+1] by

applying all the discrete control inputs. If multiple projections fall into the same region, the control

input and the corresponding state which has minimum local cost to that region are chosen. A point

to be noted is that the number of the regions has to be higher enough to avoid local minimum. In

the current problem which has 6 states, the number of grids reaches approximately 206 assuming

20 grids per state which is still a high number. Reducing the number of grids would reduce the

complexity but would compromise the accuracy of the result. One possible way to reduce the

number of grids without compromising with accuracy is to identify the possible regions of each

state where the optimal could lie and perform region-based searching. In this approach, based on

the sample results from simulations, the extremum of states is varied with each time step. This

maintains accuracy as the optimal state trajectory always lies in the selected region of interest. In

the current problem, we can ignore the velocity (V ), X and Y positions, heading (β), and steering

angle (δ) profiles which certainly could not steer the vehicle to its destination. The same cannot be

done for states which exhibit a high degree of transient behavior throughout the entire time such

as engine speed (ωe) and velocity of the bucket (Vbuc) and hence the grid points for these type of

variables have to be dense for an accurate solution.
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4.3 Results

First, we present the results for both cases (1&2) obtained from DP - all three stages individu-

ally and the final profile.

4.3.1 Case - 1:

• Stage-1 of DP focuses on trajectory optimization along with engine and vehicle dynamics.

This section ignores power consumed by the hydraulics unit. The optimal trajectory obtained

from DP is shown in Fig. 4.2(a) along with few other possible trajectories. The optimal path

is chosen according to the final conditions of the problem and minimum cost. The distance

traversed by the wheel loader and also the optimal trajectory is also shown in Fig. 4.2(b)

which forms as a reference for the stage-2 optimization.
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Figure 4.2: Optimal Trajectory and Distance traversed by the wheel loader

• Stage-2 focuses on optimization of the entire system considering the wheel loader to traverse

the same distance as in stage - 1. For the path traversed by the wheel loader to be the same

as in stage-1, we impose a constraint on the distance traversed by the vehicle at the end of
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phase -2 and phase -4 to be the same as obtained in stage -1 with some flexibility as shown

in Fig.4.3.

(a) Distance state space and constraint for stage - 2
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(b) Optimal velocity profile from both stages

Figure 4.3: Distance state space and velocity profiles from stage - 1 and stage - 2

As the algorithm progresses with time, we consider the states to be reachable with distance

traversed lying in the possible distance region (green in the Fig.4.3). Possible state-space

outside this region is ignored as they won’t lead to the same distance as in stage - 1. The

difference between stage - 1 and stage - 2 comes in the form of a velocity profile. Although

the distance profiles would be similar, the constraints in stage - 2 are only applied at the end

of phase - 2 and phase - 4, and the velocity profile is flexible in stage - 2 to some extent. The

optimal velocity profiles in stage - 1 and stage - 2 are shown in Fig.4.3.

The state profile obtained from the optimization routine is shown below in Fig.4.4.
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Figure 4.4: Optimal state and control profile obtained from stage - 2

• Stage-3 focuses again on path planning. This stage is not essentially an optimization routine

but just finding a steering input that leads the vehicle to the desired final position. The inputs

to this stage are the velocity profile obtained from stage-2. The optimal trajectory obtained

is shown in Fig.4.5. The heading angle and steering angle profiles are also shown below in

Fig.4.6
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Figure 4.5: Optimal trajectory obtained from stage - 3
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Figure 4.6: Steering and Heading angle profile from stage - 3
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4.3.2 Case - 2:

This case is quite similar to case - 1 except for the final position of the wheel loader.

• Stage - 1: In this case, the distance traversed by the wheel loader will be more than it has

in case - 1. Fig.4.7 shows the optimal trajectory of the wheel loader and distance traversed

by it ignoring hydraulic fuel consumption. Stage-1 of DP focuses on trajectory optimization

along with engine and vehicle dynamics. The distance profile forms a reference for stage -

2.
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Figure 4.7: Optimal Trajectory and Distance traversed by the wheel loader

• Stage - 2: In this case, it is expected that the fuel consumed in this case would be higher

than case - 1. Hydraulics power consumption will be similar to case - 1 whereas traction

unit consumes more power in case - 2 as the distance traversed in more. Fig.4.8 shows the

constraint on distance traversed and the flexibility of velocity profile of the wheel loader.

The state profile obtained from the optimization routine is shown below in Fig.4.11.

• Stage - 3: As in case - 1, this stage plans the path to be traversed by the wheel loader taking
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Figure 4.8: Distance state space and velocity profiles from stage - 1 and stage - 2
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Figure 4.9: Optimal trajectory obtained from stage - 3

the velocity profile from stage - 2. Fig.4.9 shows the final path traversed by the wheel loader.

The heading angle and steering angle profiles are also shown below in Fig.4.10.
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Figure 4.11: Optimal state and control profile obtained from stage - 2
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5. Direct Method

5.1 Procedure

Numerical methods are divided into two categories - direct and indirect methods. Due to the

disadvantages of indirect methods as described in the introduction section, we explore the DM in

this research. GPOPS-II, PROPT are some of the widely used commercial software but require a

license. We use a software named MPOPT (Multi-Phase Optimizer) [44], an extensible pseudo-

spectral collocation based multiphase non-linear optimal control problem solver mainly it is open

source and uses CasAdi, a widely-used open-source software framework for numerical optimiza-

tion.

Accuracy is often better in DP and Indirect Methods compared to Direct Methods. NLP solvers

search locally and converge to a local minimum and do not guarantee a global minimum. For faster

runtimes and convergence, initial guess selection is vital. This method requires the constraint and

objective functions to be smooth and their first and second derivatives must exist. In practice,

lookup tables are often used based on practical data. Smooth functions have to be fit to the data

obtained. Often, this leads us to a trade-off between bias and variance. A smooth function helps

converge the algorithm faster but suffers a loss of accuracy. On the other hand, if a function is

close to discontinuity, the solver takes a longer time to converge or may not converge at all. Lastly,

the solution determined by numerical approaches are deterministic and usually provide open-loop

controls. DP, on the other hand, converges globally and yields a closed-loop feedback control. This

is particularly useful in a real-time implementation where there are model/parameter uncertainties,

external disturbances, sensor noises, etc.

The procedure of the DM is briefly outlined here. Interested readers can refer to [19] for

detailed procedure. The structure of the optimal control problem to be transcribed to NLP is as
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follows. Suppose, the control inputs u(t) have to chosen to minimize the cost function

φ = min
umf ,uab,ust

∫ t1

0

ṁfdt+

∫ t2

t1

ṁfdt+

∫ t3

t2

ṁfdt+

∫ t4

t3

ṁfdt (5.1)

subjected to

Dynamic Constraints:

ẋ = f(x, u, t) (5.2)

Path Constraints:

g(x, u, t) ≥ 0 (5.3)

State Constraints:

xmin ≤ x(t) ≤ xmax (5.4)

Input Constraints:

umin ≤ u(t) ≤ umax (5.5)

where x(t), u(t) are state and control vector at time t respectively.

The above continuous domain optimal control problem is transcribed into an NLP problem as

following. We discretize the time domain (tI , tF ) into n finite time intervals which yields

tI < tk < tF (5.6)

where k = 1......, n− 1 and each time interval h = tF−tI
n

.

The state and control variables in the continuous domain become the variables to be optimised

in the nonlinear program. Variables:

y = [x1, u1, x2, u2, ......, xF , uF ] (5.7)
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Dynamic Constraints:
yk+1 − yk

h
= f(yk, uk, k) (5.8)

Path Constraints:

g(yk, uk, k) ≥ 0 (5.9)

State and Input Constraints:

ymin ≤ yk ≤ ymax (5.10)

where y is a vector of all the state and control inputs at time steps tk. The transcription shown

here is for a single phase and can be easily extended to multiple phases. The reason for having

multiple phases in this problem is because the vehicle dynamics is discontinuous with a sign func-

tion. For NLP, the functions have to be smooth. Hence, we separate the problem into multiple

phases and have smooth functions as required by the software framework. Here, dynamic con-

straints are discretized using an explicit algorithm for computational advantage. A more accurate

algorithm such as RK4 can also be employed if more accuracy is needed or the model encounters

convergence issues. Numerical solvers use higher-order discretization methods and not the explicit

method for accuracy. This NLP can be solved using several open-source nonlinear optimization

software routines such as SNOPT, IPOPT, KNITRO, etc.

The current OCP has already been solved using numerical approaches in [16]. The authors

in this paper have used PROPT as the solver algorithm for this OCP. PROPT is a closed-source

software and requires a license to be purchased. Hence, in this thesis, to explore both methods,

we use MPOPT, an open-source method that transcribes the OCP into an NLP and has a builtin

interface with CasAdi. CasAdi requires all the constraints and objective functions to be smooth. In

this problem, the engine model has a max function which can be dealt with easily by introducing

a path constraint. Another function to be dealt with is the torque converter model as it is a lookup

table and hence needs to be smoothed. Fourier functions of higher order are curve fit to the torque

converter profiles. Care should be taken that the extent of the curve fit should be close but at the

same time not highly nonlinear and does not have local extremum. Since NLP does not suffer from
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the curse of dimensionality and is highly effective in dealing with higher-order optimal control

problems, we consider the full system of 8 states and 3 control inputs rather than splitting the

problem into stages as been done in DP. Since this is a non-convex problem, initial guess selection

is often vital in determining the optimal solution and for convergence. Random initial guesses have

been chosen and the best solution among the obtained results is selected for comparison. Fig.5.2

shows the best optimal state profile obtained from MPOPT. Fig. 5.1 shows the optimal trajectory.

5.2 Results:

Since DM is computationally efficient for higher order systems too unlike DP, there is no need

for a split-stage optimization approach. The full order system is considered for the OCP and solved

using MPOPT. The optimal state and control profile obtained from NLP varies based on the chosen

initial guess. The profiles for both cases shown below are the best possible local optimum obtained

by randomly varying initial guesses. Influence of initial guess on the optimal solution is analysed

later in this chapter.

5.2.1 Case - 1:

The optimal control and state profiles are shown in Fig.5.2.
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Figure 5.1: Optimal Trajectory - DM (Case - 1).
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Figure 5.2: Optimal state and control profile obtained from DM (Case - 1).
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5.2.2 Case - 2:
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Figure 5.3: Optimal Trajectory - DM (Case - 2).
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Figure 5.4: Optimal state and control profile obtained from DM (Case - 2).

5.3 Initial Guess Sensitivity

It is widely known that initial guess influences the convergence of a NLP to a local optimum.

For interior point based methods, the chosen initial guess must be feasible. Ensuring an initial

guess is also feasible is often difficult. In other methods, a bad or infeasible initial guess may

lead the solution to diverge. For the current OCP, we consider several different initial guesses and

analyse the convergence behavior of the NLP.

Fig.5.5 and 5.6 shows different trajectories obtained from various initial guesses in both cases.

Longer trajectories means that the wheel loader has to traverse longer distances which would con-
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sume more fuel. One such path can be seen the Fig.5.5 and 5.6 which consumes significantly high

amount of fuel compared to other trajectories. The key to avoid bad local minimum traps is to run

the simulation through various initial guesses and pick the best optimum among all. This process

would be computationally more expensive but yields the best possible local optimum. Hence, a

good initial guess is often required to ensure the best local optimum.

Case - 1:
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Figure 5.5: Influence of initial guess on optimal solution (Case - 1)

Case - 2:
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Figure 5.6: Influence of initial guess on optimal solution (Case - 2)

Case No: Variation
1 38 %
2 32 %

Table 5.1: Variation in fuel consumed based on initial guess

From figs 5.6 and 5.5, there is a significant difference in fuel consumption between the best

local optimum and other optimum. Table.5.1 shows the maximum possible increase in fuel con-

sumption with a bad initial guess compared to the best optimal fuel consumption.
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6. SUMMARY AND CONCLUSIONS

6.1 Comparison

Dynamic Programming is a computationally intensive algorithm that performs an iterative

search through the entire state and control space. The solution obtained from DP is expected

to be globally optimal which means the optimal cost from DP should be approximately equal to or

lower than the optimal cost from NLP. However, DP is practically feasible for lower-order systems.

Considering the order of the optimal control problem in this thesis, we have split the problem into

three stages. The effectiveness of the splitting strategy has to be evaluated as this can shorten the

search region of DP and may not include the optimal result in the search profile.

• Fig. 6.1shows the comparison of the fuel consumed vs time for DP and NLP. Results show

that fuel consumption by DP is lower than NLP by 7% in case - 1 and 15% in case - 2 respectively.

The fuel consumption profile shown for NLP is the best that we have obtained from random initial

guesses and ignoring the diverging cases. In the case of NLP, fuel consumption is fairly linear with

time whereas, in DP, it varies significantly.
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Figure 6.1: Fuel consumption in DP and NLP
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• Also, problems with path constraints pose a challenge in robotics applications as observed

[21]. Fig. 6.2 shows several other unique solutions obtained from NLP. For most cases, NLP

converges fairly efficiently to a local minimum. However, the optimal cost and trajectory are

different and dependent on the initial guess. The influence of the initial guess for the solution

is highlighted on [32]. Convergence and a local minimum solution to an NLP problem can be

highly sensitive to initial guesses. Even small problems can exhibit hundreds of unique solutions.

For example, in the Fig. 6.2, two of the cases do not converge to a feasible point and the cost is

expressed as a higher value i.e 0.1. Most of the cases converged and the optimal cost lies between

0.03 to 0.05 liters for a cycle. Comparing the best case scenario from MPOPT to DP, one might

conclude that DP does not have any advantage over MPOPT. It must be taken into consideration

that the solution obtained from MPOPT is the best-case scenario and not usual. The optimal cost

value may not seem high initially. The energy savings are pretty high if we consider the number of

vehicles and the loading cycles for each vehicle operating around the world.
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Figure 6.2: Optimal Cost obtained from MPOPT (with different initial guesses) and DP.

• For real-time implementation, the NLP solution is deterministic and provides a single tra-

jectory through state and control policy and not a global policy as obtained from DP. DP yields a
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feedback control solution that can be used directly for systems with imperfect models, parameter

uncertainties and sensor noises, etc. On the other hand, NLP is an open-loop and has to be run in

real-time where the algorithm has to run faster than the actual time step. Considering the conver-

gence issues and locally optimal solutions and the order of the system, DP may be preferable as it

can be run offline and can be incorporated into a stochastic system too.

• DP, however, is not beneficial for a longer time horizon such as optimization for only fuel

consumption which is obtained in ≈ 27s as in [6]. DP becomes extremely tedious considering the

time frame. In cases where the problem cannot be split and require higher simulation times, NLP

may be a better choice considering the computational effort. However, in the cases with moderate

simulation times, DP can be a better choice.

• Discretization errors can also become influential for highly nonlinear dynamics. To improve

accuracy and stability, higher-order integration methods can be used. However, that would increase

computational load manyfold, and considering DP’s structure, it is not practically feasible. Thus

for a highly nonlinear and a higher-order system, DP may not be a computationally viable option.

• A single simulation with DP works for a wide range of final conditions whereas Direct

Method has to be modified and run again for the changed final conditions. In this thesis, the

results in both the cases are obtained from a single DP run but the initial guesses in DM had to be

modified to generate the optimal result.

The proposed method solving a higher dimensional optimal control problem using DP by split-

stage optimization strategy shows great promise. Although it still suffers from the curse of dimen-

sionality, this only has to be run once and offline. This thesis used forward DP methodology and

this can be easily implemented in a backward fashion which yields an optimal feedback control

policy that can be used for deterministic and stochastic systems as well.

6.2 Contribution

We proposed a method to solve a higher dimensional optimal control problem using a split-

stage optimization approach using DP. The solution obtained is for a short loading cycle of a wheel

loader system consisting of 8 states, 3 control inputs, and 4 phases. This method is an effective way
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to overcome the well-known issue, the curse of dimensionality that DP encounters while solving

higher-order systems. This guarantees global optimal solution does not face convergence issues

and also provides a global control policy.

6.3 Conclusions and Future work

The method proposed shows a great promise in the context of wheel loader optimization. The

potential energy savings using this method is a lot considering the number of wheel loaders and the

number of cycles in the construction and mining industries. Dynamic Programming is better than

Direct methods such as NLP in ways such as global optimum, convergence and feedback control

policy, etc. Direct methods on the other hand are better equipped to handle higher-order systems

and are computationally efficient. The version of DP implemented in this thesis is a forward DP

approach. To implement this method in practice in an efficient way, backward DP is a better

choice as it yields a feedback control. Also, the analysis done in this thesis is for comparison and

fixed times were chosen. We look to apply this algorithm for varying times and that may increase

the computational complexity but that has a negligible effect on the time taken if run parallelly

on multiple cores. Another possible way to efficiently apply DP is through the Reduced Order

Model approach provided the desired accuracy is achieved. A ROM can significantly reduce the

computational complexity and makes DP practically feasible whilst compromising on the accuracy.

The model considered in this thesis is derived from [16] which is practically validated. DM might

be a better option for longer run-time optimization as DP might be computationally infeasible.

Also, in practice, we often deal with lookup tables rather than smooth functions. DP can deal with

raw data fairly easily without any modifications. NLP, on the other hand, requires the functions and

their gradients to be smooth. Fitting the data to a smooth function is often a tedious process that

can although improve convergence and run-times but compromises the accuracy of the solution.

This remains to be seen if this is the case observed. Thus, practical implementation of backward-

based DP for varying times can be explored in a future study to see how both direct methods and

DP fare against each other.
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APPENDIX A

Parameters Value
Je 2.5 Kgm2

w1 101.38
w2 −0.655
w3 0.009
w4 14.12
w5 0
rw 0.7 m
c1 0.0280
c2 0.0126
a1 2
a2 2
croll 0.03
Mtotal 42000 Kg
ηgb 0.9
L 3.7 (m)
Cst 100
Mload 10000 Kg
η 0.9

Table A.1: Parameters of the WL model.
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