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ABSTRACT

The development of a unified approach in nuclear theory, which starts from bare nucleon-

nucleon and multi-nucleon forces and makes accurate predictions on the structure of atomic nuclei

is a major goal of modern nuclear physics. A truly breakneck speed of theoretical advances in this

area during the last three decades, coupled with modern computational techniques and hardware,

has produced an array of new theoretical models, capable of making robust ab initio predictions

for nuclear systems with an ever-growing number of nucleons. Comprehensive and multifaceted

experimental tests of these models are indispensable. Light exotic nuclei are particularly important

for these tests due to a combination of several factors. Ab initio calculations are more manageable

for light nuclei (few nucleons). Exotic nuclei by definition have an imbalance between protons and

neutrons, adding an isospin dimension to the tests. Small (or negative) binding energies of exotic

nuclei make the effects of the continuum more important even for the lowest or ground states,

adding yet another important factor to the model tests. Finally, exotic nuclei are known to often

have unusual structures with experimentally observed or observable signatures, such as neutron

halos, and we expect the ab initio models to reproduce these new features.

A method of studying the structure of exotic, neutron-rich nuclei by populating the correspond-

ing isobaric analogue states in less exotic isobaric partners is discussed in this thesis. It is bench-

marked for the relatively well studied case of 9Li, and then applied to study the exotic, neutron

unbound nucleus 13Be. The isobaric analogue states are populated in proton resonant scattering

with radioactive beams using the so called Thick Target Inverse Kinematics method [1]. The T=3/2

excited states in 9Be (isobaric analogues of 9Li) were populated with 8Li + p scattering using the

RESOLUT radioactive nuclear beam facility [2] at Florida State University. R-matrix calculations

[3] were performed to describe the excitation function for the p+8Li resonance elastic scattering

using already known states in the T=3/2, A=9 isobaric system [4, 5]. This benchmark study demon-

strated that the isobaric analogue (T=3/2) states indeed dominate the p+8Li excitation function at

low (with respect to the T=3/2, A=9 ground state) excitation energies and that reliable spectro-
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scopic information, such as spin-parities and partial widths for these states, can be extracted. The

new T=3/2, Jπ=5/2+ state in 9Be at 18.5 MeV was observed for the first time, confirming the onset

excitation energy of 4 MeV for the 2s1/2 shell in the T=3/2, A=9 isobaric multiplet, which was

recently observed for the first time in 9C [5]. The results of this study are published in Ref. [6].

The Structure of the neutron unbound nucleus 13Be was studied through T=5/2 isobaric analog

states in 13B, populated in proton resonant scattering on 12Be. Previously structure of 13Be has

been extensively studied experimentally [7, 8, 9, 10, 11, 12, 13, 14] and theoretically [15, 16, 17,

18, 19, 20] but no consensus has been achieved on the structure of the ground state and other low-

laying states of this exotic nucleus. The radioactive beam, 12Be, for this experiment was produced

by the TRIUMF ISAC II rare isotope beams facility. The excitation function for p+12Be is shown

to be dominated by T=5/2 resonances. The R-matrix analysis indicates that the experimental data

can be described by two T=5/2 resonances in 13B with spin-parities 1/2+ and 5/2+. These new data

provide strong evidence that the ground state of 13Be has spin-parity of Jπ = 1/2+, resolving the

long-standing puzzle of the structure of 13Be.
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1. INTRODUCTION

1.1 Basic Nuclear Physics

1.1.1 Shell Model

In 1963, half of the Nobel Prize in Physics was awarded to Maria Goeppert Mayer and Johannes

Hans D. Jensen for the development of the shell model of the nucleus. The nuclear shell model, as

proposed by Goeppert Mayer over a decade earlier, described the experimentally observed nuclear

structure surprisingly well. The protons and neutrons in a nucleus form closed shells at particular

numbers of protons or neutrons. Goeppert Mayer was able to describe the experimental observation

by using spin-orbit coupling, which split the levels of the square well potential to create shell gaps.

By the time the nuclear shell model was formulated in 1949, experimental evidence of shell

closures had mounted. There was clear evidence of so called “magic numbers” of protons and

neutrons for shell closures at 2, 8, 20, 28, 50 and 82. The Shell Model of the nucleus was developed

to recover these magic numbers. This model treats the nucleus as individual nucleons with kinetic

energy Ti(ri) moving in a potential field, V (r) [21].

H =
A∑
i

Ti(ri) + V (r) (1.1)

The potential field covers the complex interaction between one nucleon and all the other nucle-

ons in the nucleus. The simplest attempts at producing the structure of the nucleus would be to use

either an infinite square well potential or the harmonic oscillator. Both methods reproduce the 2,

8, and 20 shell closures but not the rest. Additionally, a more realistic potential, the Woods-Saxon

Potential, may be utilized.

V (r) =
−V0

1 + exp[(r −R)/a]
(1.2)

The parameters of this intermediate potential are well defined by the number of nucleons and
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the binding energy with R = r0A
1/3, where r0, the reduced radius, is typically around 1.25 fm,

a is typically around 0.5 - 0.6 fm and V0 is adjusted to get the correct separation energies but

is generally on the order of 50 MeV. Unfortunately, even this, more realistic potential fails to

reproduce the shell closures above 20.

As mentioned above, the major breakthrough was the addition of the spin-orbit interaction to

the potential. In atomic physics, the spin-orbit interaction is electromagnetic in origin, however in

nuclear physics it is the nucleon-nucleon interaction that gives rise to the spin-orbit term. The term

is given by Vsol · s. The term l, of course, is the orbital angular momentum of the level while s is

the spin of the nucleon. As such we represent states using the total angular momentum, j = l+ s,

where nucleons always have a spin with magnitude s = 1/2. Thus the spin-orbit term splits the

level degeneracy into j = l + 1/2 and j = l − 1/2. With this splitting the correct magic numbers

are recovered as seen in Figure 1.1.

1.1.2 Notation for nuclear states

When describing the total state of a nucleus, special notation is used: nuclear spin, notated with

J or I , and parity, π. For nuclei that have an even number of protons and of neutrons, Jπ = 0+

for the ground state. For nuclei that have one set even and the other odd, J = j of the unpaired

nucleon for the ground state. For both protons and neutrons being odd the unpaired nucleons can

couple to any integer value from J = |jp − jn| to J = jp + jn. For example, in the cases of 2H,

6Li, and 14N the ground state spin is 1 and 10B has a ground state spin of 3.

The parity operator produces a mirror reflection image, as such the measure of parity is directly

related to l. The wavefunction for even l is symmetric, thus parity for even l is π = +1, while for

odd l the wavefunction is anti-symmetric leading to π = −1. In this way, for a single nucleon its

parity is π = (−1)l. The parity of a whole nucleus is the product of the parity of all nucleons that

comprise it. Since paired nucleons will always produce a product of 1 we once again only need to

consider unpaired nucleons. For an example, 9Be has 4 protons and 5 neutrons; the only unpaired

nucleon is the spare neutron. The spare neutron is in the p3/2 level in the ground state so it has

Jπ = 3/2−.
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Figure 1.1: The shell model, along with the magic numbers derived as a consequence of potentials
used. The left shows the results with the Woods-Saxon potential while the right shows the results
with the Woods-Saxon potential and the additional spin-orbit term. Reprinted with permission
from [21]
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Figure 1.2: A level scheme showing the 2s1/2 state dropping out of the 2s1d shell into the 1p shell
as seen in beryllium isotopes, most famously 11Be.

1.2 Shell Evolution

1.2.1 Intruder States and Inversion

The Shell Model, in its basic form, works well for stable nuclei, but it has been observed to

describe poorly some exotic nuclei. By 1960, it was recognized that 11Be had a ground state spin-

parity of 1/2+ [24]. The 11Be nucleus has 4 protons and 7 neutrons, therefore the shell model

predicts the 7th neutron to be in the 1p1/2 level which would give Jπ = 1/2−. The explanation of

this discrepancy is that the 2s1/2 level in 11Be is actually at a lower energy than the 1p1/2 level and

is thus filled first [24]. This 2s1/2 level is an example of an “Intruder State” as shown in Figure 1.2.

This inversion is also witnessed in excited states of 9Be and 10Be [24].

This inversion gets more interesting in the case of 12Be where the ground state is actually a

mix of 10Be⊗(2s1/2)
2, 10Be⊗(1p1/2)

2 and 10Be⊗(1d5/2)
2 [25]. While unbound, 13Be continues

the trend of unusual behavior in neutron-rich beryllium isotopes with a general disagreement on

whether the inversion exists in its ground state or not. The topic of the 13Be ground state is studied

in more detail in this thesis.
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1.2.2 Shell Closures and Magic Numbers

Another significant result of shell evolution is the disappearance of shell closures that exist for

stable nuclei as predicted by the shell model. The oxygen isotopes are a classic example of shell

evolution. At present oxygen is the heaviest element where the entire nucleon bound isotopic chain

has been studied. Experiments on 22O and 24O, the heaviest bound oxygen isotopes, showed that

the shifting of states leads to closed shells at N = 14 and N = 16, respectively, for these isotopes.

This evolution in shell closures, and thus the magic numbers, has important consequences for the

structure of the Oxygen isotopic chain and is responsible for 24O being the last bound Oxygen

isotope.

1.3 Ab Initio Models

The study of shell evolution is important to the development of theoretical models of nuclear

structure and the nucleon-nucleon interaction. In the treatment of the Shell Model above, a central

potential and a spin orbit potential were used to describe the interaction of a nucleon with the rest

of the nucleus. Ab initio models seek to do better than this by using the actual interactions between

the individual nucleons. We have a nucleus with A nucleons where each pair ij of nucleons

interact with the nucleon-nucleon interaction which is repulsive at short distances and attractive at

medium distances. This interaction, V (2)(ri − rj), is discussed in more detail below. In addition

to the nucleon-nucleon interaction three body forces between ijk nucleons are also often used,

V (3)(ri − rj, ri − rk).

The main goal would be to exactly solve for the nuclear wave function, Φ(ρ1, ..., ρA−1), where

ρi = ri − S is the position of the nucleon relative to the center of mass of the nucleus. We are in-

terested in the eigensolution, ΦIµ, for a total nuclear spin, I , and z-projection, µ. The Schrödinger

equation then is:

HAΦIµ(ρ1, ..., ρA−1) = EIΦIµ, (1.3)

where EI is the energy eigenvalue of the solution. The Hamiltionian, HA is the sum of the
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kinetic and potential energies of the particles not counting the motion of the center of mass of the

system. One way of writing the kinetic part is to add up the kinetic energy of the particles with

mass mi and position ri then subtract the kinetic energy of the motion of the center of mass with

mass M and position S.

HA = −
A∑
i=1

h̄2

2mi

∇2
ri
+

h̄2

2M
∇2

S +
A∑
i>j

V (2)(ri − rj) +
A∑

i>j>k

V (3)(ri − rj, ri − rk) (1.4)

While an easy problem to set up, solving (HA − EI)ΦIµ is challenging. The nucleon-nucleon

interactions and three body forces are not explicitly known, however realistic calculations of these

potentials have been performed and experimental constraints can be imposed as discussed below.

The computational power required to solve the equations numerically becomes the greatest chal-

lenge. Most ab initio methods use some form of approximation to simplify the problem to make it

solvable. Several ab initio methods exist for performing the calculation and two prominent ones,

Green’s Function Monte Carlo (GFMC) and No Core Shell Model (NCSM) are discussed below.

1.3.1 Nucleon-Nucleon Interaction

The nucleon-nucleon interaction mentioned above is not explicitly known, however there is

much that is known about it from observations of nucleons and nuclei. To start, the nuclear in-

teraction is attractive on the order of the nuclear radius and is much stronger than the Coulomb

interaction. It is also repulsive at the nucleon radius to prevent nucleons from occupying the same

space. Another important property of the nucleon-nucleon interaction is that it is charge indepen-

dent and isospin invariant. Deuterons only have a single bound state, the 1+ ground state, even

though its two nucleons could have the spins be either aligned or anti-aligned. The spin and parity

of 1+ indicates the spins are aligned and the orbital angular momentum of the nucleons is 0 or

2. With the spins aligned the nucleons are bound, but when they anti-align they are no longer

bound as there is no bound 0+ state. This indicates that the interaction between nucleons is spin

dependent.
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For ab initio calculations a better defined nucleon-nucleon interaction is needed. The nucleon-

nucleon interaction at a fundamental level is just the residual strong force interaction that binds

quarks together to form protons and neutrons. The theory of the strong force interaction, Quan-

tum Chromodynamics (QCD), is the field theory that describes the interaction between quarks and

gluons. To bring things up to the nucleon scale an effective field theory based on the symme-

tries of QCD is constructed, called Chiral Effective Field Theory (χEFT). The nucleon-nucleon

(NN) and three-nucleon (NNN) interactions are obtained from calculating higher order terms in

the expansion of the potential.

1.3.2 No Core Shell Model

Shell Model calculations typically utilize an inert core to reduce the model space, therefore

reducing the calculation time. However No Core Shell Model (NCSM) [26] calculations include

every nucleon in the calculation, made possible by advances in computational power. To solve

Equation 1.4 for all nucleons using realistic nucleon-nucleon and three nucleon interactions, such

as those from χEFT, a Harmonic Oscillator basis is used. This basis is truncated at a maximum

total energy,Nmax, of the A-nucleon system to make the calculation feasible by reducing the model

space toNmaxh̄Ω harmonic oscillator states. With a sufficiently large basis size the calculation will

typically converge. NCSM calculations with χEFT interactions have been effective at calculating

low A systems where a significant amount of experimental data is already available, such as A=7,

A=8, and A=10, due to the smaller basis size [26]. NCSM runs into computational limitations

for heavier nuclei, though has been applied up to 20C [26]. The NCSM method is still ongoing

development and will require more experimental data on neutron rich nuclei.

1.3.3 Green’s Function Monte Carlo

While NCSM has been quite successful for ab initio calculations, it is not the only method

employed. Quantum Monte Carlo (QMC) methods have been utilized to calculate many properties

of nuclei, including low energy nuclear spectra and transitions for light nuclei [27]. A few methods

exist that employ QMC methods, but they generally start with the Variational Monte Carlo (VMC)
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method. In VMC, a trial wave function, ΨT , is assumed and variational parameters are optimized

by minimizing the energy. The energy, EV , of the trial wavefunction is always greater than or

equal to the ground-state energy, E0.

EV =
⟨ΨT |H|ΨT ⟩
⟨ΨT |ΨT ⟩

≥ E0 (1.5)

Greens Function Monte Carlo (GFMC) begins with a minimized trial wave function from VMC

and projects the wave function along imaginary time, τ , using Monte Carlo methods.

|Ψ0⟩ ∝ lim
τ→∞

exp[−(H − E0)τ ]|ΨT ⟩ (1.6)

1.4 Reaction Studies

1.4.1 Nuclear Reactions

Ab initio calculations are very effective at calculating the properties of nuclear systems that

have already been studied, however this is often done with less constrained 3-body forces. Testing

the predictive power of these models for less studied exotic nuclei is important. The structure of

exotic nuclei can be studied through a variety of methods, one of which is studying the interac-

tion between two particles. In these reactions a beam particle, or projectile (A), interacts with a

stationary target particle (B) and from there a number of outcomes is possible, the most basic of

which is the binary reaction, B(A,D)C.

A+B → C +D (1.7)

The structure of a nucleus involved in a reaction can be determined from the cross section of

the reaction using various methods such as R-Matrix and Distorted Wave Born Approximation

(DWBA), the former of which is explained in detail in the next chapter.

The simplest binary reaction is elastic scattering, B(A,A)B, where the particles exiting the

reaction are in the same state as they went in. In contrast to elastic scattering there is inelastic
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scattering, B(A,A)B∗ for instance, where some of the energy of the system is used to raise one of

the particles, B here, to an excited state instead of leaving it in the ground state.

Sometimes when the particles are interacting, a nucleon (proton or neutron) or a group of

nucleons may be exchanged where nucleons are removed from one nucleus and transferred to the

other. These kinds of reactions are, appropriately, named transfer reactions. In transfer reactions

some of the nuclei can be treated as a core plus the transferred nucleons, such as neutron transfer

in (A = D + n) + B → (C = B + n) +D.

In capture reactions, the interacting particles form a composite in an excited state that can live

long enough to decay to the ground state either by having the excess energy taken away by another

particle or to decay by γ emission, denoted by B(A, γ)D. Knockout or breakup reactions are a

case where one of the interacting particles breaks up into one or more particles, B(A,C +D)B.

1.4.2 Direct Reactions

Direct reactions are reactions where predominantly the surface nucleons interact. These inter-

actions will be on a very short time scale, on the order of 10−22 s and will typically only involve

a few valence nucleons. Cross section calculations for direct reactions are often performed with

DWBA methods. Calculations done this way are performed using structure information, which can

be determined by comparing the calculation with the experimentally determined cross sections.

1.4.3 Compound Nucleus Reactions

A contrast to direct reactions are compound nucleus reactions. In compound nucleus reactions

an incident nucleon or particle will interact with the entire nucleus, spreading its energy throughout

and temporarily forming a compound nucleus in an excited state (X∗) where all involved nucleons

are interacting. This compound nucleus will be relatively long lived, on the order of 10−16 to

10−21s. Eventually, excited state X∗ decays, for example:

A+B → X∗ → C +D (1.8)

In compound nucleus reactions all information about the initial particles is lost as the com-
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pound nucleus is formed [28]. This loss of information means that the relative probability for each

outgoing channel is independent of the initial reaction.

1.4.4 Resonance Reactions

Nucleons involved in a reaction can become temporarily trapped by a potential barrier. These

nucleons will still be unbound but the state can be relatively long lived at low energies. These

unbound states are called resonances. At higher excitation energies, the lifetimes of resonances

will become shorter, widths becoming larger, leading to a structureless continuum. Resonances can

be described by the R-matrix formalism [3]. The R-matrix, a method detailed in the next chapter

and used in the structure studies in this thesis, is most effective when the number of resonances is

limited as the calculations become very unwieldy as more resonances are included. The statistical

Hauser-Feshbach model [29] can be applied to evaluate the cross section for a compound nucleus

reaction in the energy region where individual resonances cannot be resolved.

Resonances can form for many reasons. A potential barrier, such as the Coulomb barrier for

protons, can temporarily trap protons at low energies. These trapped protons are not fully bound,

but form resonances that survive for a finite time. Another barrier is the centrifugal barrier, which

exists for all nucleons when L > 0, which can also allow nucleons to form resonances. Yet another

consideration is structural limitations on particle decay. An example is isospin conservation for low

laying T = 3/2 states in 9Be (a system studied in this thesis). The two lowest energy T = 3/2

states in 9Be are below the proton decay threshold and the lowest three T = 3/2 states are below

the threshold for neutron decay to isospin allowed T = 1 states in 8Be. Because of this, the lowest

two T = 3/2 states are fairly narrow resonances, on the order of hundreds of eV. It is possible for

nearly-bound, L = 0, single particle neutron states to form a virtual state which manifest in a rapid

rise of the cross section toward zero energy and can be described by a large, negative scattering

length.
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1.5 Conclusion

The study of the structure of exotic nuclei is of interest due to the shell evolution exhibited

by nuclei far from stability. Experimental study of shell evolution informs our understanding of

the nucleon-nucleon interaction and provides a benchmark for further development of ab initio

methods. In this thesis, I present a method for studying the structure of neutron rich nuclei through

their isobaric analogue states using resonant scattering. This method was explored in the study of

high isospin states in 9Be. The method was then applied to the study of the ground and low-laying

states of 13Be through its isobaric analogue states in 13B. The results of both studies are presented

in this thesis.
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2. RESONANT SCATTERING WITH ISOBARIC ANALOGUE STATES

2.1 Introduction

Neutrons and protons have roughly the same mass and while their charge is different, the

Coulomb interaction is quite small compared to the force between nucleons. The nuclear force is

charge independent and symmetric with respect to interchange between protons and neutrons. It

is useful to introduce an isospin symmetry by representing protons and neutrons as two isospin

states of the same particle (nucleon), with the neutron defined by tz = 1/2 and the proton defined

as tz = −1/2, though the sign choice is arbitrary. For the isospin of a composite system of two or

more nucleons, the isospins are coupled to a total isospin

T̂ =
∑
k

t̂k (2.1)

The z-component can be defined as Tz = 1
2
(N−Z) whereN and Z are the number of neutrons

and protons, respectively. In nuclei with the same number of nucleons, levels with the same internal

structure (isospin, spin, and parity) will exist and will have the same energy, perturbed slightly by

the Coulomb interaction. These states are called isobaric analogue states.

The experiments performed and analyzed in this thesis used resonant scattering to study the

structure of isobaric analogue states in exotic nuclei. Resonance elastic scattering performed in

inverse kinematics with radioactive ion beams is an effective way of populating resonances in

exotic nuclei. R-Matrix calculations can be employed to reproduce the excitation function of

resonant scattering and obtain observable information about the energy, width, spin, and parity

of the resonances.

Resonant scattering utilizing the Thick Target in Inverse Kinematics (TTIK) method and an-

alyzed with the R-Matrix, as described in this chapter, has been a powerful tool in the study of

exotic nuclei [30][5]. Applying these same methods to the study of neutron-rich nuclei, however,

is complicated by the need for a neutron target. Studying the proton-rich mirror nuclei is not al-
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ways possible as the mirror of nuclei near the neutron dripline are often unbound. It was suggested

by V. Goldberg [31] that isobaric analogue states could be studied with resonant scattering to infer

information about the structure of neutron-rich nuclei.

2.2 Resonant Scattering

2.2.1 Reaction Kinematics for Elastic Scattering

Resonant scattering experiments study the scattering of two nuclei, populating resonances in

the compound nucleus. The excitation function (cross section as a function of energy) for resonant

elastic scattering provides valuable information about the structure of the resonances in the com-

pound nucleus. Experiments are performed with a stationary target,A, interacting with a projectile,

B, from an accelerator. This simplifies the kinematics so the energy and momentum conservation

of the initial and final states are as follows.

E =
1

2
mBv

2
Bi =

1

2
mAv

2
Af +

1

2
mBv

2
Bf (2.2)

p = mBvBi = mAvAf +mBvBf (2.3)

The scattering angle of the outgoing particles can be related through the following.

sin(θB) =

√
mAEAf

mBEBf

sin(θA) (2.4)

It is useful to look at the center of mass frame instead of the laboratory frame. The transforma-

tion from lab to center of mass energy is

Ecm =
mA

mA +mB

Elab (2.5)

In this frame of reference, the relation between the energy of the particles is easy to calculate

EA =
mB

mA +mB
Ecm (2.6)
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EB =
mA

mA +mB
Ecm (2.7)

The center of mass angle is given by

θcm = π − 2θA (2.8)

The reduced mass of the system is given by

µ =
mamb

ma +mb

(2.9)

In addition to elastic scattering other types of reactions can occur in resonant scattering studies.

Inelastic scattering can occur, where the compound nucleus decays into an excited state of one of

the outgoing nuclei, as well as where the outgoing particles are different from the incoming ones.

In the latter case the difference between the rest energy of the initial and final particles, theQ-value,

must be accounted for in energy conservation.

2.2.2 Cross Section

The cross section, (σ), measured as a function of energy - the excitation function - can be

used to determine information about the structure of nuclei. The cross section is related to the

ratio of the outgoing particles to incoming particles and thus is a measure of the probability of the

reaction occuring. Cross section is measured in cm2, though it is generally reported in units of

barns, 1 barn = 10−24 cm2. Differential cross section, dσ/dΩ, is a measure of the cross section

dependence on scattering angle. Measured experimentally, the efficiency corrected differential

cross section is found with the following

dσ

dΩ
=

N

Nin

1

TtΩ
(2.10)

WhereN is the particles measured in the detector,Nin is the total number of incoming particles

(beam ions), Tt is the number of target particles per unit area for the given energy bin, and Ω is the
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solid angle of the detector seen from the target position.

Finding the differential cross section in the center of mass frame is useful. Converting from

the laboratory frame to center of mass frame differential cross section involves converting the solid

angle from the lab frame to center of mass frame and is given by

dσ

dΩ cm
=
d cos θlab
d cos θcm

dσ

dΩ lab
. (2.11)

For the elastic scattering kinematics for recoil A, the c.m. and lab frame scattering angles are

related as in Equation 2.8 and therefore becomes:

dσ

dΩ cm
=

1

4 sin
(
θcm
2

) dσ
dΩ lab

(2.12)

2.2.3 Thick-Target Inverse Kinematics

Performing resonant scattering in regular kinematics involves using a lighter particle, such as

a proton or an α-particle, as a projectile and a heavier particle as a target. Inverse kinematics,

on the other hand, uses the heavier particle as a projectile and the lighter particle as the target.

An advantage to inverse kinematics is that it allows the use of radioactive ion beams in resonant

scattering to explore the structure of exotic nuclei. Another advantage is improved center of mass

energy resolution as the lab energy will be several times larger than the center of mass energy in

inverse kinematics, but they will be nearly equal in direct kinematics.

The use of inverse kinematics with a thick target, an even more powerful method, was first

introduced in [32]. In this method, called Thick Target Inverse Kinematics (TTIK) [1], the beam

projectiles lose energy as they pass through the target allowing for measurements at a range of lab

energies for a single beam energy. To measure a range of energies with a thin target, the energy of

the beam from the accelerator must be varied, costing time as the accelerator is retuned. Another

advantage is the entire range of energies can be measured simultaneously, yielding higher statistics

for the same run time. This increase in efficiency is important when using radioactive ion beams,

produced as secondary beams, as the number of beam particles per second is typically orders of
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magnitude lower compared to stable primary beams.

2.3 R-Matrix

2.3.1 Introduction

The R-Matrix theory was first introduced in 1947 by Wigner and Eisenbud [33]. Lane and

Thomas [3], in 1958, developed the use of R-Matrix for describing nuclear resonances. R-Matrix

theory divides the configuration space into internal and external regions with the boundary defined

by a parameter called the channel radius, a. The R-Matrix used for calculating resonances is called

the phenomenological R-Matrix [34][35] and parametrizes various physical processes for the cal-

culation of cross sections. The R-Matrix can also be applied as a way of solving the Schrödinger

equation, particularly in coupled-channel problems with many open channels, called the calcula-

ble R-Matrix. For the work in this thesis the phenomenological R-Matrix was a significant tool for

understanding resonant scattering spectra.

2.3.2 Scattering

Solving the Schrödinger equation for scattering in a central potential is used as a starting place.

At large r the potential is merely the Coulomb potential.

V (r) →r→∞ VC(r) =
Z1Z2e

2

4πϵ0r
(2.13)

The potential at smaller r would be the Coulomb potential plus an additional term. For a central

potential in spherical coordinates, the radial and angular wavefunctions can be factored apart as

follows:

ψ(r, θ, ϕ) =
1

r
ul(r)Y

m
l (θ, ϕ) (2.14)

Here the function ul(r) is some radial wavefunction. The radial Schrödinger equation for

partial wave l for the wavefunction ul(r) is
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(Ĥl − E)ul = 0. (2.15)

With Ĥl as the radial Hamiltonian

Ĥl = T̂l + V (r) (2.16)

T̂l = − h̄2

2µc

(
d2

dr2
− lc(lc + 1)

r2

)
(2.17)

The wavefunction, ul(r) must become zero at the origin since ψ(r, θ, ϕ) must be finite at the

origin.

ul(0) = 0 (2.18)

Asymptotically, the wavefunction can be written in terms of the regular and irregular Coulomb

functions, Fl and Gl.

ul(r) → cos δlFl(η, kr) + sin δlGl(η, kr) (2.19)

Here δl is the phase shift and η is the Sommerfeld parameter defined as

η =
Z1Z2e

2µ

4πϵ0h̄
2k
. (2.20)

Alternatively Equation 2.19 can be written as

ul(r) →
i

2

[
Il(η, kr)− UlOl(η,kr)

]
, (2.21)

where Il = Gl−iFl andOl = Gl+iFl and Ul is the scattering matrix, often called the S-Matrix,

defined as
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Ul = e2iδl (2.22)

The total differential cross section can be written as a combination of the solutions for the

Coulomb scattering and for the extra part of the potential.

dσ
dΩ

= |fC(Ω) + f(Ω)|2 (2.23)

where fC(Ω) is the Coulomb scattering amplitude

fC(Ω) = − η

2k sin2 1
2
θ
e2i(σ0−ηln sin 1

2
θ) (2.24)

and f(Ω) is the additional scattering amplitude

f(Ω) =
1

2ik

∞∑
l=0

(2l + 1)e2iσl(Ul − 1)Pl(cos θ) (2.25)

In the scattering amplitudes above, σ is the Coulomb phase shift and k is the wave number.

2.3.3 R-Matrix

As mentioned above the R-Matrix theory separates the external and internal regions. The

external wavefunction can be approximated as the asymptotic behaviour.

uextl =
i

2

[
Il(η, kr)− UlOl(η,kr)

]
(2.26)

At the interface between the internal and external wavefunctions, the channel radius r = a, the

wavefunction can be written in terms of the R-Matrix.

ul(a) = Rl(E)[au
′

l(a)− Bul(a)] (2.27)

Here B is an arbitrary boundary parameter and u′

l(a) is the value of the radial derivative of

ul(r) at r = a. A convenient selection for this boundary parameter will be introduced later. By
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combining this definition with Equation 2.26 the collision matrix can be defined by the R-matrix.

Ul = e2iϕl
1− (L∗

l − B)Rl

1− (Ll − B)Rl

(2.28)

where

Ll = ka
O

′

l

Ol

, (2.29)

with O′

l being the radial derivative of Ol, and

ϕl = arg Il(ka) = − arctan[Fl(ka)/Gl(ka)] (2.30)

where ϕl is the hard-sphere phase shift. The single channel R-matrix, such as in elastic scatter-

ing, for N states is

Rl(E) =
N∑

n=1

γ2n
En − E

(2.31)

There are a few important quantities in this definition of the R-Matrix. The reduced width

amplitude, γn, is related to the observable width, Γ, of the resonance but is not itself an observable

as it depends on choice of channel radius and boundary condition. Likewise the energy eigenvalue

of the resonance, En, is not an observable but can be used to calculate the observable energy of the

resonance.

For multiple channels, c and c′

Rcc′(E) =
N∑

n=1

γncγnc′

En − E
(2.32)

The differential cross section can, therefore, be calculated from the R-Matrix. In principal,

the R-Matrix needs to be defined for all resonances in the compound nucleus and all possible

exit channels. In practice, only the most relevant resonances and channels for the energy range

measured are required.
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As stated above the parameters for the R-Matrix are not observables. These parameters depend

on the choice of channel radius and boundary condition. The observable resonance energy and

width can be calculated from the energy eigenvalue and the reduced width amplitudes. To begin,

the quantity Ll can be rewritten in terms of a penetrability factor, Pl, and a shift factor Sl.

Ll = Sl + iPl (2.33)

Pl(E) =
ka

Fl(ka)2 +Gl(ka2)
(2.34)

Sl(E) = Pl(E)[Fl(ka)F
′

l (ka) +Gl(ka)G
′

l(ka)] (2.35)

With the penetrability factor and the shift factor the observable energy and observable width

for a resonance can be calculated from the energy eigenvalue and the reduced width amplitudes.

Starting with the observable width, ΓR, an observable reduced width amplitude, γRc, is defined

γ2Rc =
γ2c

1 + γ2cS
′
l(En)

(2.36)

The function S ′
l(E) is the derivative of Sl(E) with respect to energy. From here the observable

energy for the resonance, ER can be calculated

ER = En −
∑
c

[Sc(En)− B] γ2Rc (2.37)

Sc is the shift function for channel c. If the quantity in brackets is 0 then the energy eigenvalue

will be equal to the observable resonance energy. This makes it convenient to choose a bound-

ary condition that is equal to the shift function. One must be careful as the choice of boundary

condition can only be made once for each Jπ. For the observable partial width, ΓRc,

ΓRc = 2γ2RcPl(E) (2.38)
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The total width of the resonance, ΓR, is therefore:

ΓR =
∑
c

ΓRc (2.39)

The observable reduced width can be related to the single particle width through

γ2Rc = SC2γ2sp (2.40)

where S is the spectroscopic factor and C is the ispospin Clebsch-Gordan coefficient for the

channel. The single particle width, γsp, is related to the Wigner limit,

γ2w =
h̄2

µa2
, (2.41)

or it can be calculated using a realistic potential, such as Woods-Saxon.

2.3.4 R-Matrix with Isobaric Analogue States

When studying the isobaric analogue states of neutron rich nuclei, these states will generally

be highly-excited states in the continuum, where the width of states may be much greater than the

average separation between states. The higher isospin states of interest, however, may be relatively

narrow due to a limited number of open decay channels as a result of isospin conservation. Gen-

erally the lower isospin states will be broad, forming a background. One way of modeling this

background is to perform optical model calculations and directly use the optical model phase shift

in the R-matrix calculations, as suggested by D. Robson [36]. Alternatively, one can parameterize

the broad continuum states using so called "background" resonances, which are usually introduced

at much higher energy than the region of interest and produce a smooth variation of the phase shift

as a function of energy. I used the second approach in the R-Matrix analysis presented in this

thesis. R-Matrix calculations can thus be performed for the narrow high isospin states of interest

without explicitly including the broad low isospin states.
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3. BENCHMARKING RESONANT SCATTERING WITH ISOBARIC ANALOGUE STATES

THROUGH THE A=9, T=3/2 ISOBARIC QUARTET *

3.1 Introduction

To benchmark the application of resonant scattering with isobaric analogue states 9Be was

chosen as a test case. 9Be makes an interesting nucleus to study since the first three states in the

A=9, T=3/2 isobaric quartet have been, to some degree, studied already in 9Li, 9Be, and 9C, with

the second excited state appearing above the proton threshold in 9Be [37]. Additionally the sd-shell

of the A=9, T=3/2 quartet was expected to be near the energy region of interest. The onset energy

of this shell has recently been identified in 9C [5]. The goal was to perform 8Li(p,p) scattering to

populate the isospin 3/2 states. Knowledge of the system from previous studies on 9Li, 9Be, and

9C can be used to inform the parameters of the R-matrix calculation making the study of 9Be a

good test case of resonant scattering study of isobaric analogue states.

3.2 A=9, T=3/2 Isobaric Quartet

The most recent compilation on the A=9, T=3/2 isobaric quartet was in 2004 [37]. Since then,

studies on 9Li [4, 38, 39] and 9C [30, 40, 5] have shed additional light on the system. The ground

state of the quartet is a 3/2− state, followed by a 1/2− state and a 5/2− state. A 5/2+ state was

recently observed in 9C in the vicinity of the 5/2− state [5]. The level scheme of the quartet is

shown in Figure 3.1. Of particular interest to any R-Matrix analysis involving these states are the

spin, parity, width, and spectroscopic factors (where available).

3.2.1 9Be

The T=3/2 states in 9Be have not been extensively studied above the proton threshold at 16.89

MeV. The first three T=3/2 states in 9Be have been reported at 14.4 MeV, 16.98 MeV and 18.65

*Partially reprinted with permission from “Observation of T = 3/2 isobaric analog states in 9Be using p +8 Li
resonance scattering” by Hunt, C. and Rogachev, G. V. and Almaraz-Calderon, S. and Aprahamian, A. and Avila, M.
and Baby, L. T. and Bucher, B. and Goldberg, V. Z. and Johnson, E. D. and Kemper, K. W. and Kuchera, A. N. and
Tan, W. P. and Wiedenhöver, I., 2020, Phys. Rev. C, vol. 102, p. 014615, Copyright 2020 by American Physical
Society.
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Figure 3.1: A partial level structure and decay channels of 9Li, 9Be and 9C.

MeV [37]. The first two states have been well studied establishing the energy, spin, parity and

isospin of these states. Much less is known about the 18.65 MeV state. Through the study of the

decay of 9
ΛLi (a lithium nucleus where one of the neutrons in substituted with a Lambda baryon

that decays to a proton) in 1985, the state was established as a T=3/2 state with a width of 300 keV

[41]. The spin and parity were not assigned as the study was not sufficiently sensitive to the spin

and parity to make a determination, though the state was associated with the analogous state in 9Li

which is now known to be 5/2−.

3.2.2 9Li

There are several states in 9Li that have been observed: a 3/2− ground state, a 1/2− excited

state at 2.69 MeV, a 5/2− excited state at 4.31 MeV, and additional states at 5.38 MeV and 6.71

MeV [37][4]. The most recent studies of 9Li have all been with transfer reactions analyzed with

Distorted Wave Born Approximation (DWBA), 2H(8Li, p) [4][39] and 2H(9Li, t) [38]. The width

of the 5/2− state of interest in 9Li is 100 keV [4].
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3.2.3 9C

Recent studies on 9C have been performed with elastic and inelastic scattering, greatly expand-

ing our knowledge of 9C and the A=9, T=3/2 isobaric quartet. Inelastic scattering of 9C off a 9Be

target was used to determine the energies and widths of the first four excited states in 9C using the

invariant mass technique [40]. The second excited state was observed at 3.6 MeV, while the third

excited state was observed at an energy of 4.4 MeV and given a tentative spin-parity of 1/2+ or

5/2+. Meanwhile, 8B+p elastic scattering was utilized to give the second excited state a spin-parity

assignment of 5/2-[30]. With a larger energy and angular range via a backgroundless measurement

made possible by the active target approach, a firm 5/2+ assignment has been given for the 4.3

MeV state [5]. The states of interest, the 5/2− and 5/2+, have widths of 1.1 MeV and 4.0 MeV

respectively.

3.3 Experiment

An experiment was carried out at the RESOLUT radioactive nuclear beam facility [2] at the

John D. Fox Superconducting Accelerator Laboratory at Florida State University. The Thick/Thin

Target Inverse Kinematics approach [1] was used with a CH2 target and a radioactive 8Li beam. In

this approach, the thick target causes the beam to lose energy as it passes through, allowing a single

beam energy to probe a range of reaction energies. To provide a unique event identification, the

target is still thin enough for the heavy recoil to leave the target with enough energy to be detected

in coincidence with the light recoil.

The 8Li radioactive beam was produced from the 2H(7Li, 8Li)1H neutron transfer reaction. The

primary 7Li beam was accelerated with the 9 MV FN tandem Van de Graff accelerator followed

by a linear accelerator booster. The target for the primary beam was a deuterium gas cell that

was cooled with liquid nitrogen. The resulting 8Li was selected by momentum, bunched and then

separated from contaminants with the electromagnetic elements of RESOLUT. The final 8Li beam

had a 5% 7Li contaminant from the primary beam. The typical intensity of the 8Li secondary beam

was ≈ 2× 104 pps. The target thicknesses and secondary beam energies allowed for an excitation
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Figure 3.2: S2 detectors in the ∆E-E configuration. This configuration was only used for a single
set of runs to achieve an identification of the light recoils.

function for the 8Li+p resonance elastic scattering in energy range of 1.0-2.8 MeV in c.m. to be

measured.

3.3.1 Setup

Annular, 500-µm-thick silicon strip detectors (S2) were used for charged particle detection. In

the general setup, there were two detectors, one placed 7.6 cm from the target and the other placed

at 26.8 cm from the target as in Figure 3.3. The upstream detector was used for detecting light

recoil particles while the downstream detector was used to detect heavy recoil particles. With this

arrangement, the entire kinematics of the reaction could be determined. The VME-based DAQ

system was set to trigger only if the two S2 detectors were in coincidence within a 100 ns time

window. A secondary arrangement used a thinner, 65 µm, detector in front of the upstream detector

for a ∆E-E arrangement as in Figure 3.2 and Figure 3.4. This second arrangement provides a clean

particle ID using the ∆E-E technique and was used in one short run only to verify the event

identification described in the next section. These detectors were calibrated with a 228Th source.
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Figure 3.3: After identification of the light recoils, the ∆E detector was removed and the remaining
two S2 detectors were moved upstream to reduce scattering events coming from the direct beam.
This configuration was used for the remainder of the runs.

Figure 3.4: Schematic view of the experimental setup used in the 8Li+p experiment for the runs
that had the ∆E S2 detector. This detector was later removed and the remaining two S2 detectors
were moved upstream to optimize the geometry.
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Figure 3.5: The energy deposited in the heavy recoil detector plotted against the light recoil
detector. The different reactions are noted. Importantly, the 8Li(p,p) can be isolated with a simple
graphical cut.

3.4 Analysis

The 8Li+p elastic scattering is only one of several channels open at the center of mass energies

measured (< 3 MeV). Other reactions with significant cross section are inelastic scattering pop-

ulating the first excited state of 8Li (threshold of 980.8 keV c.m.) and the (p,d) nuclear transfer

reaction populating the ground state and first excited state in 7Li with Q-values of 191.95 keV

and -285.0 keV respectively. Due to primary beam leaking through, 7Li+p elastic scattering was

another reaction that was expected to appear. To identify the reactions, the energy of the light and

heavy recoil were plotted against each other in Figure 3.5. The different kinematics of the reactions

caused each reaction to be distinct. A graphical cut was able to separate the 8Li elastic scattering

events from all other reaction channels.

The intensity of 8Li ions was measured every time the beam energy or target was changed.

This was correlated with the trigger rate in the data files for normalization. The normalization was

confirmed by using events from the 8Li(p,d)7Li reaction that could be separated from 7Li+p elastic
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Figure 3.6: Excitation function for 8Li+p elastic scattering for an angular range between 138◦ and
155◦ in c.m. The solid curve is the best R-matrix fit with T=3/2 5/2− at 18.65 MeV and T=3/2
5/2+ at 18.5 MeV states in 9Be with parameters shown in Table 3.1. The blue dashed curve is the
R-matrix calculation with the T=3/2 5/2− state at 18.65 MeV only.

scattering in Figure 3.5 and comparing the resultant cross section to [42]. The excitation function

for the 8Li+p elastic scattering is shown in Figure 3.6. It was obtained by selecting only those

events that correspond to the kinematics of the elastic scattering, as shown in Figure 3.5. This

excitation function is for center of mass angles 138◦-155◦ and is corrected for the solid angle of the

active region seen from the target. The smallest and largest angles of the detectors were excluded

to avoid shadowing effects of the first and the second detector.
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3.5 R-Matrix Calculation

Analysis of the excitation function for 8Li+p elastic scattering was performed with the R-

matrix code MinRMatrix [43]. As was mentioned in the introduction section, some spectroscopy

information on the level structure of 9Li, 9C, and T=3/2 states in 9Be in the relevant energy region

is available. Therefore, many R-matrix parameters can be fixed a priori for this system. Two T=3/2

states at 14.3922 and 16.9752 MeV are well known in 9Be [37]. These are the IAS of the ground

(3/2−) and the first excited (1/2−) states of 9Li and 9C. Note that these states are very narrow -

380 eV each [37]. This is because the isospin-allowed nucleon decay channels are energetically

forbidden and the resonance widths are dominated by small isospin violating admixtures. The third

T=3/2 state is a tentative 5/2− at 18.65(5) MeV [37] and it is a rather broad resonance (∼300 keV)

because the isospin allowed proton and neutron decays are open for this state (see Fig. 3.1). There

is a good reason to assume that the 5/2− spin-parity assignment is correct. The 5/2− state in 9C has

been clearly identified at an excitation energy of 3.6 MeV and well characterized as nearly a single

particle state in three recent experiments [30, 40, 5]. Therefore, one is justified to use a simple

potential model to predict the Thomas-Ehrman [44] shift between the T=3/2, A=9 isobars for this

state. Using conventional parameters for the Woods-Saxon potential with R=1.25×8
1
3 =2.5 fm and

a = 0.65 fm and adjusting the depth to reproduce the 3.6 MeV excitation energy of the 5/2− in

9C, one gets an excitation energy of 5/2− in 9Li at 4.26 MeV. This is less than 40 keV different

from the known tentative 5/2− state at 4.296 MeV in 9Li [37]. Using excitation energies of the

5/2− in 9Li and 9C, an excitation energy of the T=3/2 5/2− IAS in 9Be can be estimated at 18.5

MeV. Therefore we expect to observe a single-particle T=3/2 5/2− state in the measured excitation

energy region - between 18.35 and 19.19 MeV. Moreover, its R-matrix parameters can be tightly

constrained by the fact that neutron decay to the T=0 states in 8Be should be strongly suppressed

due to the isospin conservation. The reduced widths associated with these decays were set to zero.

The reduced widths for neutron decay to the isospin mixed T=0+1 states at 16.626 and 16.922

MeV in 8Be and proton decay to 8Li(g.s.) are defined by the isospin Clebsch-Gordan coefficients,

the nearly unity spectroscopic factor of the 5/2− state [30, 5] and the known isospin mixture of the
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T=0+1 2+ states in 8Be [45]. They are given by the equations below:

γ2p = Sγ2sp

(
C1

1

1
2

− 1
2

3
2
1
2

)2

(3.1)

γ2n = Sγ2sp

(
C1

0

1
2
1
2

3
2
1
2

)2

(3.2)

γ2n(16.626) = γ2n × 0.4 (3.3)

γ2n(16.922) = γ2n × 0.6, (3.4)

where γ2sp is the single particle reduced width which was set to 1.25 MeV to reproduce the

single particle width of a p-wave resonance calculated with the potential model mentioned above

at anR-matrix channel radius of 4.5 fm. The boundary condition was set equal to the shift function

calculated at the resonance energy. Using considerations above, all R-matrix parameters for the

T=3/2 5/2− state at 18.65(5) MeV in 9Be are constrained.

The R-matrix calculations that include only the T=3/2 5/2− state at 18.65 MeV are shown in

Fig. 3.6 with a dashed blue curve. Parameters for the 5/2− state are given in Table 3.1 and are

consistent with [37]. Obviously, the dashed blue curve does not reproduce the experimental data.

Rather, one more T=3/2 state needs to be included. A very broad, purely single-particle ℓ = 0

5/2+ state has been observed in 9C at around 4 MeV excitation energy [5]. Its IAS should be

located at around 18.7 MeV in 9Be. The single-particle nature of this state in 9C allows one to

fix the spectroscopic factor to unity and calculate the reduced width using Equations 3.1-3.4. To

produce the final fit we allowed the excitation energies of the 5/2+ and 5/2− states to vary. We also

allowed variation of the total width of the 5/2− state but we kept the ratio of the reduced widths

fixed, as defined by Equations 3.1-3.4. The best three-parameter fit is shown in Fig. 3.6 as a black

solid curve and the best fit parameters are given in Table 3.1. The reduced χ2 of the best fit is

0.98. The best fit parameters for the 5/2− state are close to the expected values. The excitation

energy of 18.5 MeV for the 5/2+ state is in agreement with the predictions of the potential model

discussed in [5], which works well for the broad 2s1/2 ℓ = 0 scattering states in 8B, 9C, and 10N
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Table 3.1: Best fit R-matrix parameters for the T=3/2 states in 9Be with channel radius of 4.5
fm and γ2sp=1.25 MeV. Eex is an excitation energy in 9Be, Eλ is an energy eigenvalue, Γ is a total
width and S is a spectroscopic factor. The natural boundary condition is used so that it is equal
to the shift function calculated at the resonance energy, making Eλ equal to p+8Li c.m. energy.
The parameters that were varied in the R-matrix fit are boldfaced. The remaining values were
recalculated based on the values of the boldfaced parameters and Eq. (1)-(4). The spectroscopic
factor for the 5/2+ state was set to unity.

Jπ Eex Eλ Γ S γ2p γ2n(16.626) γ2n(16.922)
MeV MeV keV keV keV keV

5
2

− 18.65(2) 1.76(2) 350(40) 1.2(1) 510(50) 410 610
5
2

+ 18.5(1) 1.6(1) 1500 1.0 410 330 490

and predicts that the 5/2+ partial wave should peak at around 1.8 MeV of p+8Li c.m. energy

(18.7 MeV). The uncertainties for the fitted parameters were established using the Monte Carlo

technique, which randomly varied all three fitting parameters simultaneously and accepted only

those sets that resulted in χ2 values within 90% confidence level.

For completeness we note that while proton decay of the T=3/2 states in 9Be to the first excited

state in 8Li (1+ at 0.98 MeV) is energetically possible, it is strongly suppressed by the penetra-

bility factors. We have observed events associated with the inelastic scattering (see Fig. 3.5), but

the cross section was a factor of 30 smaller, therefore inelastic scattering cannot have significant

influence on the elastic scattering cross section and was excluded from the R-matrix fit to reduce

the number of free parameters. Also, the 5/2− state has two sets of reduced widths; one for chan-

nel spin 3/2 and one for channel spin 5/2. As it was discussed in [30, 5], channel spin 5/2 should

dominate and we have excluded the reduced widths associated with the channel spin 3/2. An excel-

lent agreement between the three-parameter R-matrix fit and the experimental data validates these

assumptions.

3.6 Conclusion

The excitation function for 8Li+p resonance elastic scattering was measured in the energy

range that corresponds to the range between 18.35 MeV and 19.19 MeV excitation energy in

9Be. The main goal of these measurements was to provide benchmark data to verify the validity
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of the isospin symmetry considerations and check if the application of the TTIK approach for

spectroscopy studies of neutron rich nuclei with rare isotope beams leads to reliable results. The

measured excitation function was perfectly described by the R-matrix approach, which included

the two T=3/2 states only (5/2− and 5/2+). Moreover, the best fit reduced widths, total widths,

and resonance energies are in agreement with the values expected based on the isospin symmetry

considerations and most recent experimental information on the level structure of the T=3/2 A=9

iso-quartet. We confirm that the excited state at 18.65 MeV in 9Be [37] is indeed a 5/2− T=3/2

IAS. We have also identified a new broad 5/2+ T=3/2 state at 18.5(1) MeV. It appears that the

T=1/2 states play only a minor role in this case. This is probably due to the presence of strong,

single-particle T=3/2 resonances which dominate the cross section for 8Li+p elastic scattering. It

was shown that isospin symmetry considerations are still valid in this case, which features broad

states in the continuum. This is encouraging and validates the application of the TTIK method for

future spectroscopy studies of neutron-rich nuclei with rare isotope beams, such as the study of

13Be in the next chapter.
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4. 12BE + P AT TRIUMF WITH TEXAT

4.1 The 13Be problem

4.1.1 Introduction

The ground state of 11Be is 1/2+, and not 1/2-, as expected from naive shell model considera-

tions. It is an example of parity inversion, where the shell structure has evolved such that the 1p1/2

level is above the 2s1/2 level. The valence nucleons in the ground state of 12Be (10Be+2n) are in

the mixed, 1p1/2+2s1/2, configuration [25]. The ground state spin-parity of 13Be is an open ques-

tion both theoretically and experimentally. In addition to being of interest to developing structure

calculation methods, the structure of the ground state of 13Be is important for understanding the

Borromean nucleus, 14Be through the 12Be + n configuration.

4.1.2 Experimental Studies

The experimental study of 13Be has been carried out with a variety of methods over the last 30

years. One of the earliest experimental studies of 13Be was performed in 1992 by A.N Ostrowski

et al. [7] by measuring the missing mass of 13Be through the 13C(14C,14O)13Be reaction. Two

possible states were observed, one at 2.01 MeV above threshold and one at 3.12 MeV above

that, with the 2.01 MeV state tentatively given a 5/2+ spin-parity assignment based on indirect

arguments. Notably, the 2.01 MeV state was claimed to be the ground state, however a lower

energy ground state could not be ruled out because the cross section of a low energy J = 1/2

state would be too low for their statistics. A similar method of measuring mass excess applied

to 14C(11B, 12N)13Be in 1998 by A.V. Belozyorov et al. [8] reproduced the 2.01 MeV state but,

due to significantly higher statistics, also suggested a ground state at 0.80 MeV above threshold

with a spin of J = 1/2, however they were unable to make an assertion of the parity due to lower

resolution.

Another candidate for the ground state was suggested two years later by M. Thoennessen et al.

[9] by measuring the neutron decays from an 18O beam fragmented on a 9Be target. Two options
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for the ground state were able to fit the relative velocity plot of neutrons and 12Be, either a virtual

s-wave state with a scattering length of as = −20 fm (corresponding to an energy of about 60

keV), or a p-wave state at 50 keV. The virtual s-wave ground state was a better fit, though neither

option could be ruled out. The 2.01 MeV state from previous studies was once again observed,

though insufficient on its own to fit the data. The data measured were not sensitive to the possible

0.80 MeV state.

Most recent experimental studies of 13Be have been performed with the invariant mass method,

populating states in 13Be and looking at the relative momentum and energy between the decay

fragments, 12Be + n [10, 11, 12, 13, 14]. H. Simon et al. [10] looked at the halo nuclei 11Li and

14Be by fragmenting them on a carbon target. The fit to their 12Be + n cross section was done using

the familiar 2.0 MeV state, an s-wave virtual state with a scattering length of as = −3.2 fm, as

well as two 1/2− states, one at 0.8 MeV and one at 3.04 MeV. Y. Kondo et al. [11] explored the

one-neutron removal from the 14Be + p reaction and fit their cross section using a as = −3.4 fm

scattering length virtual s-wave state, a 0.51 MeV p-wave state, and a 2.39 MeV d-wave state. It

is notable that the d-wave state was determined to be at 2.39 MeV instead of 2.0 MeV as noted

in previous studies. Y. Aksyutina et al. [12] also used the 14Be + p reaction but at a much higher

energy and suggested a narrow s-wave resonance at 0.44 MeV, a very wide s-wave resonance at

0.81 MeV, the familiar d-wave resonance at 1.95 MeV, as well as a negative parity resonance, 1/2−,

at 3.0 MeV. G. Randisi et al.[13] used 14,15B beams on carbon targets to explore 13Be, by comparing

their results to shell model calculations it was suggested that they observed a 1/2+ resonance at

0.4 MeV, a 5/2+ resonance at 0.85 MeV, and another 5/2+ resonance at 2.35 MeV. B.R. Marks et

al. [14] used nucleon exchange from 13B on a 9Be target where 13Be was produced, immediately

decaying to 12Be + n. They determined only a single s-wave resonance at 0.73 MeV and a single

d-wave resonance at 2.29 MeV were sufficient to fit their results.

Despite there being many experimental studies on 13Be, a consensus on the structure of the low

laying states has yet to be reached. The most agreed-upon structure is the existence of a 5/2+ state

around 2 MeV. The most recent studies seem to agree that the lowest state is 1/2+ very close to
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threshold, with some casting it as a virtual state and others treating it as a resonance. The existence

and properties of any states between these two is up for some debate. Many of the studies suggest

a 1/2− state near the ground state while others suggest there could be another 5/2+ state and some

suggest no states at all exist between them.

4.1.3 Theoretical Studies

Some of the earliest calculations of the structure of 13Be were p-shell no-core shell model

calculations [15] that determined the ground state of 13Be would be a 1/2− state 1.16 MeV above

the neutron separation energy with a 5/2+ excited state 0.05 MeV above the ground state followed

by a 5/2− 1.28 MeV above ground state and a 1/2+ at 1.55 MeV. Most calculations of the structure

of 13Be, however, involve looking at the 12Be + n and 12Be + n + n systems [16, 17, 18, 19]. These

calculations construct the Hamiltonian as 12Be + n (+ n) and solve the Schrödinger equation. The

results of the calculation are tuned using 12Be + n + n and compared to experimental data for 14Be,

the parameters are then applied to the 12Be + n system to determine structure information for 13Be.

In some cases, the 5/2+ state is defined to be at 2 MeV in accordance with accepted structure of

13Be from experiment [16]. The ground state in these calculations has been found to be 1/2+ and

barely unbound [16, 18] or 1/2− state at lower energy [17, 19]. The application of antisymmetrized

molecular dynamics to look at the N=8 shell closure in 13Be found a low energy 1/2− ground state

below a 5/2+ excited state [20].

4.1.4 Conclusion

Both experimental and theoretical studies give many different answers to the question of what

the structure of the low-lying states in 13Be are. It is generally accepted that there is a 5/2+ state at

2.0-2.4 MeV above the neutron separation threshold. The ground state is likely to be less than 1.0

MeV above threshold with a spin of J = 1/2 but the parity is the subject of some debate. There is

some evidence to suggest other states may exist between the ground state and the 5/2+ state, such

as a negative parity state in the case of a positive parity ground state or another 5/2+ state, but it is

far from conclusive. Studying the isobaric analogue to the low laying states of 13Be in 13B could
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Figure 4.1: A partial level structure and decay channels of 13Be and 13B. [22, 23]

answer the question of what the ground state structure of 13Be is. 12Be+p elastic scattering would

populate the low laying A=13, T=5/2 states in 13B. One advantage would be a potential s-wave

ground state would no longer be virtual if populated with protons. Thus the technique developed

with the 8Li+p experiment could be used with 12Be+p to determine what the spin and parity of the

ground state of 13Be is, in addition to other states in the measured region.

4.2 Texas Active Target (TexAT) detector

4.2.1 Overview

Measurements were performed using the Texas Active Target (TexAT) detector, shown in Fig-

ure. 4.2 [46]. As a Time Projection Chamber (TPC), TexAT uses a highly-segmented Micro-MEsh

GAseous Structure (Micromegas) detector to track particles in the chamber. For additional ampli-

fication a Gas Electron Multiplier (GEM) is placed before the Micromegas mesh. Tracks of the

beam particle and the heavy and light recoil particles are recorded by the TPC. As an active target

TPC, TexAT uses the gas as a target for scattering studies. In TexAT, an array of Si detectors are

placed at the forward wall of the chamber backed by CsI crystal scintillators to measure the energy
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Figure 4.2: Cutaway of TexAT showing the Micromegas plate, Si/CsI detector wall at the back
and ionization chamber.

of the light recoil particles. The particle tracks in the detector are used to reconstruct the reaction

kinematics in conjunction with the total energy measurements in the Si and CsI detectors. An

ionization chamber, located after the upstream window, is typically used to count the number of

beam particles entering the chamber for normalization. Due to poor performance of the ionization

chamber during the experiment, the signal on the GEM was used to count beam particles.

4.2.2 Time Projection Chamber

The TPC in TexAT consists of a segmented Micromegas detector, at the top of the chamber,

and a field cage surrounding the gas-filled active volume. The field cage surrounds the perimeter

of the active volume with resistor separated wires, defining a uniform electric field between the

copper plate cathode at the bottom of the active volume and the Micromegas mesh anode at the
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Figure 4.3: Time vs position in the Micromegas with the timing of the signals on the y-axis and
the position in the TPC along the beam axis on the x-axis. Timing gives a very good determination
of the vertical position of the particles in the TPC. In this case there is a heavy recoil particle
continuing mostly forward and a light recoil particle moving off at an angle upward (lower time
corresponds to positions closer to the top micromegas plate).

top. The field cage covers and area of 316 mm × 346 mm with a distance between the cathode

and anode planes of 135 mm. Within the active region, electrons ionized in the gas drift to the

Micromegas plate, the drift speed is determined by the field strength of the field cage, the gas, and

the gas pressure. By measuring the arrival time of the electrons at the Micromegas, the position of

the particle in the vertical direction can be determined as seen in Figure 4.3.

4.2.2.1 Micromegas

Micromegas detectors are gas-electron amplification devices [47] that consist of an anode

plane, a cathode plane, and a micromesh plane very close to the anode plane as diagramed in Fig-

ure 4.4. In TexAT the distance between the mesh and anode planes is 128 µm. With a sufficiently

strong potential difference between the mesh and the anode, electrons entering the Micromegas

will create an avalanche of electrons, providing gains on the order of 103. The amount of gain is

related to the potential, the type of gas, and the gas pressure. Generally, lower pressure provides
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Figure 4.4: A diagram of a Micromegas detector (not to scale). As charged particles move through
the TPC region the gas is ionized and electrons drift up toward the micromesh and readout pads
due to the potential between the cathode and the mesh. When the electrons drift in between the
mesh and pads, the higher potential gradient causes the electrons to ionize the gas, creating an
avalanche of electrons to be captured by the pads.

higher gains as a longer mean free path for the electrons allows them to gain more energy between

collisions improving the chances of generating more electrons.

The Micromegas in TexAT has an active region that is 224 mm along the beam axis and 245

mm perpendicular to the beam axis. The active region is split into three separate sections: beam

left, beam right, and beam center as shown in Figure 4.5. The beam center region runs along the

beam axis and is segmented into 6 columns of 128 rows of 1.67 mm × 3.42 mm pads. The left and

right regions are identical and are segmented in a strip and chain arrangement. The segmentation of

the Micromegas can be seen in the picture of the Micromegas plate in Figure 4.6. The side regions

are split into 128 rows of pads perpendicular to the beam axis, every other row is a single pad 1.67

mm × 101.5 mm in dimension called a "strip." The remaining rows are split into 64 segments,

1.67 mm × 1.67 mm in dimension, which are connected into "chains" parallel to the beam axis.

By correlating the timing of the signal measured in the strips and chains a particle track can be

resolved as shown in Figures 4.7 and 4.8.
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Figure 4.5: A diagram of the multiplexing for the TexAT Micromegas. The central region, shown
in gold, is segmented into 8 subsections each further segmented into 8 rows of 6 pads. The side
regions use a strip and chain configuration with long pads known as strips in purple and chains of
pads in green. The pads in each chain are linked together, effectively creating pads that run the
length of the plate.

Figure 4.6: A close up picture of the Micromegas plate in TexAT.
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Figure 4.7: A raw track measured by the Micromegas displayed as the energy deposited in each
pad that fired for the area of each pad. The multiplexing of the strips and chains can be seen clearly
on the right side.
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Figure 4.8: The cleaned track from Figure 4.7 using the timing of the signal. The signals in the
strips and chains have been localized to the positions where the timing of the strips and chains
correlate.
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Figure 4.9: Cross section of a 3D model of the GEM used in TexAT. Electrons are funneled into
the holes where they ionize the gas creating more electrons. E. Galyaev, RDI Technologies LLC,
Private Communication.

4.2.2.2 GEM

GEMs are gas-electron amplification devices, similar to Micromegas, that consist of a thin

polymer foil coated in metal on both sides and containing a high density of holes [48]. A cross

section of a model of the GEM used in TexAT is shown in Figure 4.9. By applying a high potential

between the foil a large electric field is created and electrons drift toward the holes. As electrons

pass through the holes, they ionize the gas and create an avalanche of electrons, the majority

of which leave the GEM. Placed before the Micromegas detector in TexAT, the GEM provides

additional gain to what the Micromegas already produces. The GEM used in TexAT is 2 mm thick

with a hole spacing of 140 µm. In TexAT, the charge collected on the electrodes can be measured

for diagnostic purposes. Within this experiment this feature was utilized to count the number of

beam particles entering the chamber as every particle would produce a signal.

4.2.3 Solid State Detectors

TexAT has the option of including Silicon/Cesium-Iodide telescopes for detection of charged

particles (see Figure 4.10). In the full configuration TexAT can have 50 Si/CsI telescopes, sur-

rounding the active region on five sides (the Micromegas plate is on the sixth side). In the config-

uration used in this experiment, only the downstream wall had Si/CsI telescopes. The downstream
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Figure 4.10: Picture of the solid state detector telescopes with one Si detector removed to show
the CsI detector behind it.

wall can have two rows of 5 telescopes, for a total of 10, with the central pair of detectors offset to

provide a detector at 0◦ (see Figure 4.11). These detectors are used to measure the energy of recoil

particles in scattering experiments and can provide identification for particles that have sufficient

energy to "punch through" the Si detector.

4.2.3.1 Silicon Detectors

There are three different types of Si detectors used in TexAT, all of which have active region

dimensions of 50 mm × 50 mm. In the 0◦ position, blue in Figure 4.12, is a W1-500 detector from

Micron Semiconductors. The W1-500 is a 500 µm thick detector with 16×16 segmentation with

16 vertical strips on the front and 16 horizontal strips on the back. This segmentation provides

additional position sensitivity for particles near 0◦. The green coded detectors in Figure 4.12 are

635 µm thick, KDP-1K Si detectors developed at the JSC "Institute in Physics-Technical Prob-

lems", Dubna, Russia for TexAT. The front side is made of four 25 mm × 25 mm segments while

the back is a single 50 mm × 50 mm segment. The remaining positions (red in Figure 4.12) are

filled with MSQ25-1000 detectors from Micron Semiconductors. Similar to the KDP-1K detec-

tors, the MSQ25-1000 detectors have a 4 segment front side and a single segment backside. The

MSQ25-1000 were the thickest detectors, being 1 mm thick.
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Figure 4.11: Picture of the solid state detector telescopes inside the TexAT chamber with the TPC
removed, showing the configuration of the detectors.

  

Figure 4.12: Diagram of the arrangement of the different types of Si detectors. The blue detector is
the 16x16 detector, the green is the 500-µm-thick Dubna detectors, and the red are the 1-mm-thick
Micron detectors.
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4.2.3.2 CsI Detectors

The CsI detectors in the Si/CsI telescopes serve to measure the energy remaining for particles

that have sufficient energy to punch through the Si detectors with good energy resolution (about

5%). Their cross section is 50 mm × 50 mm to match with the Si detectors and their thickness is

40 mm, allowing them to measure the energy of charged particles or gamma rays, though the later

function was not utilized in this experiment. Each crystal is wrapped in aluminized mylar and has

an attached preamp which reads out a Hamamatsu S3204 PIN diode.

4.2.4 General Electronics for TPCs (GET)

The TexAT TPC has 1024 channels, the Si detectors have a total of 77 channels, and the CsI

detectors add an additional 10 channels for a total of 1111 channels. To read out such a large

number of channels, General Electronics for TPCs (GET) is used [49]. The GET system uses

several different modules to perform the various tasks involved in signal readout. The first module,

the AGET chip, gathers the data for up to 64 channel and has a built in pre-amplifier and shaper.

An additional 4 channels, fixed-pattern noise (FPN) channels, are provided that do not carry data

but otherwise are identical to the other 64 and give a measure of the electronic fluctuating baseline

as a function of time. The integration time of the AGET shaper is too short to handle the slow ( 5

µs) CsI detector signals. Additionally, the CsI detectors used in TexAT have built in pre-amplifiers.

Therefore, the AGET pre-amplifier and shaper are bypassed for the CsI detectors, and an external

Mesytec MSCF-16 shaper with 4 µs integration time is used instead.

AsAd boards contain four AGET chips and digitize signals from the AGET chips using on

board analog-to-digital converters. TexAT uses four AsAd boards for the Micromegas and addi-

tional boards for the Si detectors, CsI detectors, and other detectors and signals that need to be

recorded. The digitized signals from the AsAd boards are collected by CoBo boards, which can

handle up to four AsAd boards. The CoBo boards collect and send the data to be stored, with a

time stamp, when a trigger is received. To work with multiple CoBo modules, a MuTAnt module is

needed to synchronize the CoBo boards. GET can use several trigger modes: external, internal by
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Figure 4.13: The waveforms for 1/8th of the central region of the Micromegas showing particles
moving through the section of the TPC.

summing the multiplicity triggers of the CoBos, and a trigger on a predefined pattern of channels.

The output of the GET system is a .mfm file which stores the waveforms for all channels that fired

as seen in Figure 4.13.

4.3 Experiment

The study of 12Be + p was performed at TRIUMF (British Columbia, Canada) using the ISAC-

II facility [50]. The ISAC facility at TRIUMF is used for the production of radioactive ion beams

using the isotope separation on line (ISOL) method. Core to ISAC, and TRIUMF in general, is

a H− cyclotron producing 500 MeV protons at up to 100 µA. These protons are then bombarded

on a target, producing radioactive isotopes. The radioactive isotopes are mass separated and sent

through a series of room temperature accelerators in the ISAC-I hall. The first of these accelerators

is a radiofrequency quadrupole (RFQ) accelerator, which is used to inject particles into the next

stages. At the exit of the RFQ, a thin carbon foil increases the charge state of the ions. These

ions are transported into the next accelerator, the drift tube linac (DTL). For experiments using the

ISAC-II experimental hall, the DTL directs ions into the ISAC-II superconducting linac (SC-linac).

The SC-linac is comprised of eight cryomodules, each with four to eight superconducting cavities
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Figure 4.14: The image of the 12C pilot beam on the 0◦ si detector. The position of the beam
spot corresponds to the center of the chamber. The x-axis is the horizontal position on the detector
and the y-axis is the vertical position on the detector. Each bin represents a single front/back strip
combination. The beam position being off center of the detector vertically is due to the detector
being off center vertically in the setup.

and one superconducting solenoid, and can accelerate ions up to 16 MeV/u.

For this experiment, the ISAC-II experimental hall was used. 12Be ions were produced from

a tantalum target and accelerated through the ion transport system to the SC-linac. The SC-linac

accelerated the 12Be ions to 6 MeV/u. This energy allowed the measurement of the excitation

function in the center of mass frame starting from 6 MeV down to 1 MeV. This corresponds to the

excitation energy region in 13B where low-lying T=5/2 isobaric analogue states are expected (see

Figure 4.1). A 12C beam was used for beam alignment into TexAT with the 0◦ Si detector used to

measure the beam spot as shown in Figure 4.14.

To measure the 12Be(p,p) reaction, TexAT was filled with 260 Torr of isobutane gas which was

used as a proton target. This gas pressure was tuned such that the 12Be beam would stop before

the last 1/8 of the active region of the TPC, shown in Figure 4.15. The TexAT micromegas were

divided into two gain regions, a low gain region for the beam and heavy recoil, and a high gain
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region sensitive to protons. The low gain region was the first 7/8 of the high segmented central

region. The high gain region was the side strip and chain regions and the last 1/8 of the segmented

central region, necessitating the beam stopping before this region. The potential on the Micromegas

mesh was set to -10 V while the low gain region anode had a potential of 370 V and the high gain

potential was 460 V. The potential for the high gain region on the Micromegas was limited by

the electronics, causing current spikes at higher potentials, possibly indicating sparking. For the

GEM a constant gain was used, with potentials of -410 V and -70 V. Ordinarily the ionization

chamber, placed inside TexAT, would count and identify incoming beam particles. With the gas

and pressure used, however, the ionization chamber was unreliable and the signal read off one of

the GEM layers was used instead for a count of beam particles. Identification of beam particles

was not a priority due to the high purity of 12Be beam coming from ISAC-II, which we estimate

to have less than 1% contamination from 12C as discussed below. Events were triggered by hits in

the Si detectors since only events where the energy of the light recoil particles could be measured

were of interest. Because 12Be has a lifetime of 21.47 ms and decays entirely by beta decay, the

majority of triggered events were beta particles from the beam particles stopped in the gas.

4.4 Analysis

4.4.1 Analysis Libraries and Event Viewer

The data from the GET DAQ used with TexAT consists of the waveforms recorded per event

and sorted by CoBo, AsAd, AGET, and channel numbers. To analyze this data, the waveforms

must be processed into energy and time. Due to the complex nature of the TexAT TPC further

processing is required to acquire tracks. A set of ROOT-based libraries were produced to map the

channels to detectors, process the waveforms, manage events, and process tracks. Additionally a

Graphical User Interface (GUI) was written using these libraries for making the viewing of events

more readable and to provide diagnostics for the libraries.
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Figure 4.15: The track of the 12Be beam stopping in the TPC before the final 1/8th of the active
region of the Micromegas.

4.4.2 Waveform processing

The waveforms recorded by GET have a maximum channel of 4096 and 512 time buckets con-

sisting of 40 ns each. The first step of processing the waveforms is to subtract the average of the

FPN channels from the waveform. As mentioned above, the FPN channels are four channels on

each AGET chip that do not carry data, thus serving to measure the electronic noise present. By

averaging the FPN signals and subtracting them from the waveforms this noise can be mitigated.

The next step is to correct the polarity of the front side of the Si detectors and the CsI detectors,

these channels have a negative polarity and must be inverted. The polarity of the different wave-

forms can be seen clearly in the waveform snapshot of an event in Figure 4.16. From here the

baseline subtraction is performed. The baseline is measured by taking the average of time buckets

21 through 29; a range at the end of the 512 time bucket range could not be included due to the

width of the CsI waveforms. A comparison of the raw and processed waveforms is shown in Figure

4.17.
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Figure 4.16: The waveforms for a single event. The top row are the waveforms for the micromegas
separated into central region, strips, and chains. For the micromegas many waveforms will be
recorded and all are plotted here with each channel arbitrarily colored to keep them distinct. The
bottom row has the Si detectors front and back and the CsI detector, arbitrary colors are again used
for different channels to keep them separated. The front side Si detector and the CsI waveforms
are inverted in polarity while the rest of the waveforms are normal polarity.
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Figure 4.17: Top: raw waveforms with FPN channels for the front (left) and back (right) of a
Si detector. Bottom: Fully processed waveforms with polarity correction for the front (left), FPN
channel subtraction, and baseline subtraction.
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To extract the energy and timing information from the waveforms a fitting procedure was uti-

lized. Shapers, ideally, create waveforms that approximate a Gaussian. In reality, however, shaper

signals are not Gaussian and are instead defined by the following function.

c0 + xc1 + (x ≥ c2) ∗ c4
(
x− c2
c3

)c4

e
c5

x−c2
c3 sin

(
x− c2
c3

)
(4.1)

This function is for a waveform that starts at x = c2 with a linear background defined by c0 and

c1. Parameters c4 and c5 are ideally the same value and represent the order of the RC circuit that is

used for shaping. For the AGET shaper the parameters c4 and c5 should be 3, however no shaper is

exactly ideal and c4 was allowed to vary between 2 and 4. For the Mesytec shaper the circuit used

is a 5th order CR-RC5 filter so c4 and c5 should be 5. As with the AGET shaper the Mesytec shaper

is not ideal and c4 was allowed to vary.

After fitting the waveform, the linear parameters are set to zero, effectively subtracting any

remaining linear background. The energy is defined by the maximum of the function. The timing

is defined as a constant fraction of the maximum, the time where the function has a value of 15% of

the maximum. An advantage of fitting the waveforms is the timing information can be determined

consistently.

Fitting the waveforms for the CsI detectors and the side strips and chains was a necessity. For

the CsI detectors the gain was set to be sensitive to low energy signals for particles with less than 1

MeV; the consequence of this was a significant portion of the CsI waveforms were very saturated.

By fitting these saturated waveforms, the energy and timing information was reliably recoverable

as shown in Figure 4.18.

As noted above the side regions of the TexAT Micromegas use a strip and chain arrangement.

The strips and chains form pads with effectively large active areas compared to the central region

pads. It was common for signals in the central region from the beam or heavy recoil particles to

induce an inverted signal on the strip and chains. To remove this induced signal the waveforms

for the strips and chains were fit with a function that was the sum of an inverted waveform and an

non-inverted waveform as shown in Figure 4.19. The parameters of the inverted waveform were
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Figure 4.18: Left: Raw, saturated CsI waveform with FPN channels. Right: Processed waveform
with the waveform fit. The saturation is shown as a roughly horizontal line in the processed wave-
form.

defined by the parameters of the waveform fit done to the central region waveforms, with c4 fixed

to being negative and allowed to otherwise vary freely as the magnitude of the inverted waveform

was smaller than the signals that induced it. The true strip or chain waveform was, thus, defined

by the parameters of the non-inverted waveform.

4.4.3 Track Reconstruction

The process of reconstructing tracks in the TexAT TPC starts with "cleaning" the tracks in the

side strip and chain regions. With the strip and chain configuration it is known which strips and

chains particles passed through, but not the trajectory they followed. To obtain the trajectory the

timing of the signal in the strips and chains is compared by looping over all chains for each strip

and recording which chain had the smallest timing difference for each strip. Using this timing

comparison a "cleaned" track is acquired as seen in the before and after in Figure 4.20.

The next step of track reconstruction is to fit the tracks in 3D with lines for the light recoil,

beam, and heavy recoil. For this experiment the track of the heavy recoil did not deviate far from

the beam, making it impossible to resolve clearly so the fitting was done in two regions: low gain
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Figure 4.19: Top left: Raw waveforms for the central region of the Micromegas with FPN chan-
nels. Top right: Processed waveform for one channel in the central region with the fit drawn in
red. Bottom left: Raw waveforms for the right side strips and the FPN channels. Bottom right:
Processed waveform for one strip with the waveform fit in red and the two waveform components
of the fit in blue.
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Figure 4.20: The effect of track cleaning using timing is shown on the right with the raw strip and
chain information on the left. For the raw track on the left the energy of each micromegas pad is
plotted as a function of position. The cleaned track plots the same but the position of the energy
recorded in the strips and chains is localized to the positions where the timing is the same.
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Figure 4.21: Top left: A cleaned track for an event. Top right: The result of the Hough transform
on the track. The Hough transform does not do well for lines nearly parallel to the y-axis so the
axis are flipped before applying the Hough transform. Bottom left: The Hough transform for the
high-gain region.. Bottom right: The Hough transform for the low-gain region.

and high gain. The low gain region was defined by the first 7/8 of the central region where the

beam and heavy recoil were restricted. The high gain region was defined as the side regions and

the last 1/8th of the central region where the gain was sufficient to detect light recoil particles.

To obtain the fits, rather than fitting with a linear function, the Hough Transform was utilized

[51]. The Hough Transform draws a line from an arbitrary origin then another line perpendicular

to this line that intersects a chosen data point. The distance from the origin to this second line,

hereafter referred to as the radius, and the angle of the first line are the values of interest. By

varying the angle through half a circle and performing the procedure for every data point a plot

of radius vs angle for every data point can be obtained. Anywhere on this plot where several data

points give the same radius and angle represents a line made by those data points.

The Hough transform is used in this experiment by varying the angle in 0.1◦ increments from

0◦ to 180◦. The results of the transform for each data point in a region are stored in a 2D histogram

and the bin with the highest number of counts is selected as the radius and angle defining the line
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Figure 4.22: The energy deposited in the Si detectors vs the CsI detectors for the 600 µm Si
detectors. Protons, deuterons and tritons can be clearly seen as labeled.

perpendicular to the line of interest as seen in the lower plots of Figure 4.21, the upper right plot

shows the lines found by the Hough transform. Figure 4.21 shows an advantage of the Hough

transform over a linear fit, the result of the Hough transform is unaffected by outlier points. This

procedure is done for the plane parallel to the Micromegas (x, y), the plane perpendicular to the

Micromegas but parallel to the beam axis (y, z), and the plane perpendicular to the Micromegas

and beam axis (x, z). The (x, y) and (y, z) results together define a 3D track. The position where

the light recoil track in the (x, y) plane crosses the beam axis is defined as the vertex position

where the reaction occurred.

4.4.4 Reaction Identification

To obtain a final excitation function, events of interest must be determined. The simplest first

step is to look at the energy of the Si detectors against the energy of the CsI detectors. Any protons,

deuterons, or tritons that punch through the Si detector show up on this plot as unique bands as in

Figure 4.22. Another useful set of plots are ones looking at the energy of the light recoil particle in

the Si+CsI telescopes against either the vertex position from track reconstruction or the stopping
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Figure 4.23: Plot of the location in the TPC of the reconstructed vertex vs the energy in the
Si+CsI telescopes for the Dubna detectors. The red points are protons, the blue are deuterons, and
the magenta are tritons as identified by the Si vs CsI plot. The red and blue dashed line is the
graphical cut on 12Be(p,p) and 12Be(p,d) events while the magenta dashed line is the graphical cut
on 12Be(p,t) events. The red, blue, and magenta lines are the calculations based on kinematics and
energy loss in the gas for the reactions.

position along the beam axis of the heavy recoil particle. An energy vs vertex plot is shown

in Figure 4.23 and an energy vs endpoint plot is shown in Figure 4.24. The endpoint is much

more cleanly-defined than the vertex position and was used as the primary method for reaction

identification. The procedures described above were shown to reliably identify events related to

12Be(p,p)12Be elastic scattering, with one notable exception. As can be seen in Figure 4.24 the

12Be(p,p)12Be and 12Be(p,d)11Be(g.s.) reactions (red and blue dots) become kinematically too

close at lower energies and cannot be separated. As a result, deuterons from the 12Be(p,d)11Be(g.s.)

reaction represent a small but not negligible background and have to be subtracted as explained

below.

To further clean the events, the energy deposited in the Micromegas was compared to the

energy of the Si+CsI telescopes and the Z = 1 band could be selected on as shown in Figure 4.25.

The gain on the micromegas was limited by the gas pressure and the physical limitations of the
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Figure 4.24: Plot of the location in the TPC where the heavy recoil track ends vs the energy in the
Si+CsI telescopes for the Dubna detectors. The red points are protons, the blue are deuterons, and
the magenta are tritons as identified by the Si vs CsI plot. The red and blue line is the graphical cut
on 12Be(p,p) and 12Be(p,d) events while the magenta line is the graphical cut on 12Be(p,t) events.
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Figure 4.25: Plot of energy in the Si+CsI telescopes for the Dubna detectors vs the average energy
in the micromegas strips. The red points are protons, the blue are deuterons, and the magenta are
tritons as identified by the Si vs CsI plot. The red line is the cut around Z=1 particles.

strength of the potential fields in the micromegas and GEM. Because of the limited gain in the

micromegas it was impossible to separate protons from deuterons and tritons using this method as

can be seen by the poor p, d, and t separation in Figure 4.25.

Due to the inability to separate protons and deuterons at low energies, the 12Be(p,p) and

12Be(p,d)11Be(g.s.) reactions had to be handled together. The total counts of the mixed (p,p)

and (p,d) reactions is shown in Figure 4.26. To adjust the counts for the (p,d) reaction the cross

section for the (p,d) reaction was assumed to be mostly flat. To obtain the yield of deuterons from

the (p,d) reaction at all energies, we used the measured deuteron yields at higher energies and

extrapolated to lower energies. More specifically, the yield for the (p,d) reaction was obtained by

normalizing the counts by the solid angle and effective target thickness for each energy bin and
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Figure 4.26: Total counts in the lab frame for the 0◦ detector. The red is events identified as (p,p)
from the Si vs CsI plot while the dark blue is (p,p) and (p,d) events.

fitting the higher energy data with the following function:

y(x) =
c0

1 + e
x−c1
c2

(4.2)

The results of this fit are seen in Figure 4.27. The background from deuterons, represented

by the red curve, was subtracted from the combined 12Be(p,p)12Be(g.s.) and 12Be(p,d)11Be(g.s.)

spectrum. Figure 4.28 shows the result of this subtraction (blue histogram), compared to the

clean, background-free 12Be(p,p)12Be spectrum at higher energies (red histogram). The final

12Be(p,p)12Be(g.s.) excitation function obtained this way is shown in Figure 4.29 (lab frame)

and Figure 4.30 (c.m. frame).
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Figure 4.27: A plot of the counts / solid angle / target thickness for a given energy bin in the lab
frame for 12Be(p,d) events for the 0◦ detector. The fit of Equation 4.2 is plotted in red and was used
to estimate the total counts in the mixed spectra associated with the 12Be(p,d) reaction.
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Figure 4.28: Total counts in the lab frame for the 0◦ detector corrected for the (p,d) as detailed in
the text. The red is events identified as (p,p) from the Si vs CsI plot while the dark blue is (p,p)
and (p,d) events with the (p,d) counts removed using the fitting method.
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Figure 4.29: The final cross section for 12Be(p,p) in the lab frame for the 0◦ detector.
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Figure 4.30: The final cross section for 12Be(p,p) in the center of mass frame for the 0◦ detector.
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Figure 4.31: Diagram of how parts of the Si detector wall were grouped for analysis. The divisions
are the 0◦ detector, the bottom two quadrants of the detector above that detector, and the vertical
pairs of quadrants for the rest of the detectors.

4.5 Results

For the analysis the segmentation of the Si detectors was used to group events as seen in Figure

4.31. The four quadrant detectors on the sides were grouped together by the vertical quadrants

while the 0◦ detector was used in its entirety. The top quadrants of the detector above the 0◦

were omitted due to being mostly blocked by the TPC. The outer quadrants of the outer detectors

were omitted due to being partially shadowed by the TPC frame. These groupings allow for the

excitation function to be measured at a range of angles. Due to the energy loss of the beam there

is a correlation between excitation energy and angle for each grouping, with higher energy in the

center of mass corresponding to a larger angle in center of mass and lower energy corresponding to

a smaller center of mass angle. The angle correlation was done by energy bin as the average angle

measurable for the segmentation grouping from the position in the TPC the energy bin corresponds

to. This means that the average angle for the central detector (blue in Figure 4.31) at 4 MeV in the
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Table 4.1: Best fit R-matrix parameters for the T=5/2 states in 13B with channel radius of 4.2 fm
and γ2sp=2.55 MeV. Eex is an excitation energy in 13B, Ecm is the center of mass energy, Γ is a total
width, Γp and Γn are the proton and neutron partial widths respectively, S is a spectroscopic factor,
and γ2p and γ2n are the square of the proton and neutron reduced widths respectively.

Jπ Ecm Ecm Γ Γp Γn S γ2p γ2n
MeV MeV keV keV keV keV keV

1
2

+ 18.22 ± 0.15 2.42 ± 0.15 660 ± 500 180 480 0.17 ± 0.13 87 350
5
2

+ 19.95 ± 0.14 4.15 ± 0.14 720 ± 400 220 500 0.37 ± 0.20 190 760

center of mass will be larger than that for the inner quadrants in the side detectors (green in Figure

4.31) which will be larger than for the next set of quadrants (purple in Figure 4.31).

The excitation function for 12Be+p is expected to be dominated by the T = 5/2 states, like

the 8Li+p excitation function was dominated by T = 3/2 states. The excitation function has been

calculated using two T = 5/2 resonances and additional background “resonances” at high energy

to account for the T = 3/2 continuum. The included T = 5/2 resonances are a 1/2+ resonance

with center of mass energyE = 2.42±0.15 MeV and a 5/2+ resonance with center of mass energy

E = 4.15 ± 0.14 MeV. The widths were calculated from Equations 4.3-4.4 then varied to obtain

the best fit. The results of this fit are shown in Figure 4.32 and the parameters and tentative results

are shown in Table 4.1. The χ2 of the fit is 2.35.

γ2p = Sγ2sp

(
C2

2

1
2

− 1
2

5
2
3
2

)2

(4.3)

γ2n = Sγ2sp

(
C2

1

1
2
1
2

5
2
3
2

)2

(4.4)

This result is consistent with the notion that the structure of low-lying states in 13Be is a 1/2+

ground state with a 5/2+ first excited state. There is no clear evidence for any additional states.

The wavefunction of the T=5/2 states in 13B is dominated by the neutron channel. The energy of

the corresponding states in 13Be is calculated as the energy of the states above the threshold for

neutron decay to the first T=2 state in 12B, 17.61 MeV. Thus, for 13Be, this gives an energy for the

65



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Center of Mass Energy (MeV)

0

20

40

60

80

100

120

140

160

180
C

ro
ss

 S
ec

tio
n 

(m
b/

sr
)

°-180°160

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Center of Mass Energy (MeV)

0

20

40

60

80

100

120

140

160

180

C
ro

ss
 S

ec
tio

n 
(m

b/
sr

)

°-168°144

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Center of Mass Energy (MeV)

0

20

40

60

80

100

120

140

160

180

C
ro

ss
 S

ec
tio

n 
(m

b/
sr

)

°-166°140

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Center of Mass Energy (MeV)

0

20

40

60

80

100

120

140

160

180

C
ro

ss
 S

ec
tio

n 
(m

b/
sr

)

°-166°140

Figure 4.32: The cross section with the R-matrix calculation in red. Top left: 0◦ detector covering
angles 168◦− 180◦; Top right: detector above the 0◦ detector covering angles 144◦− 168◦; bottom
left: inner quadrants of the side Dubna detectors covering angles 140◦ − 166◦; bottom right: outer
quadrants of the side Dubna detectors covering angles 141◦ − 166◦.

1/2+ state as 0.61 ± 0.15 MeV above threshold and for the 5/2+ state as 2.34 ± 0.14 MeV above

the 12Be+n threshold.

In the investigation of possible 12C contamination in the 12Be beam, we have not observed any

evidence of 12C presence, which would show up as a sharp peak in the proton spectrum at a center

of mass energy of 1.6 MeV due to the narrow 5/2+ state in 13N at that center of mass energy. Based

on the fact that the maximum cross section for 12C(p,p) is a factor of four larger than the measured

maximum cross section for 12Be(p,p) and there is no evidence for the narrow peak near 1.6 MeV

(Figure 4.30), we can estimate that any 12C contamination was at a level less than 1%.

4.6 Discussion

Many experimental studies of 13Be have suggested a 1/2+ ground state near the decay threshold

and a 5/2+ first excited state in the 2.0 - 2.4 MeV energy range [8, 9, 14]. Some theoretical

studies have also suggested this configuration [16, 18]. The results here support this configuration,

finding a 1/2+ ground state and a 5/2+ excited state sufficient to reproduce the excitation function
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measured across a number of angles and energies. The location of the 5/2+ state at 2.34 ± 0.14

MeV in 13Be reported here supports recent studies identifying this state in the 2.3-2.4 MeV range

[11, 12, 13, 14]. The 1/2+ ground state at 0.61 ± 0.15 MeV in 13Be supports the experimental

[8, 9, 10, 14, 11, 12, 13] and theoretical [16, 18] suggestions of an s-wave ground state near

threshold.

The possibility of a negative parity ground state has been suggested in theoretical studies [17,

19] and some experimental studies [9]. The result of replacing the 1/2+ ground state with a 1/2−

ground state is shown is Figure 4.33. The 1/2− ground state is unable to reproduce the measured

excitation function at center of mass energies below 3.5 MeV. The negative parity ground state

with a 5/2+ excited state is not supported by these results.

The peak at 4 MeV is described in the R-matrix calculation with a 5/2+ resonance. The option

of a 3/2+ resonance instead was investigated and is shown in Figure 4.33 (magenta dashes). The

magnitude of the cross section for the 3/2+ option does not describe the excitation function as well

as the 5/2+ option, supporting the 5/2+ assignment.

There are suggestions in the literature that there is a 1/2− state around 0.5 MeV [11] with the

1/2+ ground state below that energy. The results presented in this thesis do not support this hy-

pothesis as the 1/2− spin-parity assignment for a state at 0.5 MeV (2.3 MeV center of mass energy

in the p+12Be system) would lead to a strong dip at that energy, which is not observed experimen-

tally (Figure 4.33). Attempts to introduce the 1/2− state at 0.8 MeV, suggested in Reference [10],

always lead to a worse agreement of the fit with the experimental data. The T=5/2 1/2− at 0.8

MeV (2.6 MeV in c.m. for the p+12Be system) would have to be significantly narrower than our

experimental resolution ( 50 keV in center of mass) to escape observation. This means that the

12Be(g.s.)+n spectroscopic factor for this hypothetical 1/2− state at 0.8 MeV would have to be on

the order of 0.01 or below to not show up in the observed spectrum of IAS in 13B.

4.7 Conclusion

The structure of low-lying states in 13Be is a topic of great interest and much debate. Experi-

mental and theoretical studies have thus far been unable to make definitive conclusions about the
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Figure 4.33: The cross section with the R-matrix fit in red, the calculation for a negative parity
ground state in blue dots, and a 3/2+ first excited state in magenta dashes. Top left: 0◦ detector
covering angles 168◦−176◦; Top right: detector above the 0◦ detector covering angles 144◦−168◦;
bottom left: inner quadrants of the side Dubna detectors covering angles 140◦−166◦; bottom right:
outer quadrants of the side Dubna detectors covering angles 141◦ − 166◦.

structure of this nucleus. By studying the isobaric analogue of 13B with TexAT in inverse kine-

matics using 12Be+p it has been shown that the excitation function can be reproduced well with

an R-matrix calculation using only a 1/2+ resonance and a higher energy 5/2+ resonance. The

structure of the low-lying states in 13Be is reported as a 1/2+ ground state at 0.61 ± 0.15 MeV and

a 5/2+ excited state at 2.34 ± 0.14 MeV above the 12Be+n threshold, which are consistent with

several experimental and theoretical studies. A negative parity ground state is not supported, as

suggested in some studies [9, 17, 19], nor are claims of a negative parity state at 0.5 MeV or 0.8

MeV unless that state has a rather small spectroscopic factor (0.01 or less). If the latter is true then

we may miss this state due to finite energy resolution ( 50 keV) and limited statistics.
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5. CONCLUSION

The study of the structure of exotic nuclei is of great interest to the development of ab initio

methods and the understanding of nuclear interactions. It has been demonstrated in this thesis that

neutron rich nuclei can be studied efficiently via their isobaric analogue states in less exotic nuclei

by performing resonance elastic scattering of radioactive beams on proton targets. This technique

has several advantages, which include a well understood reaction mechanism, allowing for the ap-

plication of the R-matrix approach, resulting in reliable spin-parity assignments. It can also be used

with the Thick Target Inverse Kinematics technique, augmented by modern active target detectors,

improving efficiency, energy resolution, and specificity. This method allows studying neutron rich

nuclei with resonant scattering, allowing for the use of R-matrix analysis. This method was bench-

marked using the A=9, T=3/2 system and then applied to establish the low-lying structure of 13Be.

In the study of the A=9, T=3/2 isobaric quartet through 8Li+p resonant scattering, the effec-

tiveness of the method of using resonant scattering to populate the high-isospin states was tested.

The excitation function for resonant elastic scattering populating states in 9Be was dominated by

the high isospin, T=3/2, states. This allowed for the R-matrix method to be applied to the T=3/2

states of interest. The results of the R-matrix analysis reproduced the excitation function very well

using parameters calculated from knowledge of 9Be as well as its isobaric analogues, 9Li and 9C.

Additionally the 5/2+ state previously observed in 9C was also identified in 9Be for the first time,

identifying the onset of the 2s1/2 shell for T=3/2 states in 9Be.

The low-lying structure of the unbound nucleus 13Be was an open and hotly debated question,

with no consensus on the level structure from experimental or theoretical studies. The spectrum

of the T=5/2 isobaric analogue states in 13B, established in this work for the first time, clearly

indicates that the 13Be ground state is 1/2+ and unbound by 0.6 MeV, and the 2.3 MeV resonance

is a 5/2+ excited state. No other states are necessary to reproduce the data.

The experimental method developed and benchmarked in this thesis can now be utilized for

spectroscopy of many other neutron-rich nuclei. An example of applying this method would be
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populating states in the isobaric analogue of 10Li, 10Be, through the 9Li(p,p) reaction which has

been performed at Texas A&M University Cyclotron Institute with analysis ongoing. Another

example of a study where this method could be applied is the structure of low-lying unbound states

in 21O through the 20O(p,p) resonance scattering reaction populating analogous states in 21F.
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