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ABSTRACT

Recent successes in the field of robot learning have combined reinforcement learning algorithms

and deep neural networks. Yet, reinforcement learning has not been widely applied to robotics

and real world scenarios. This can be attributed to the fact that current state-of-the-art, end-to-end

reinforcement learning approaches usually require an impractically large number of data samples to

converge to a satisfactory policy. They are often subject to catastrophic failures during training since

they need to be able to ’explore’ their state space. The environmental interactions require some

finite time each and coupled with the risky exploration stage in RL, imitation learning is a much

more feasible candidate for learning on hardware platforms. However, imitation learning’s simplest

form, behavior cloning, also requires a fairly large number of demonstration trajectories to learn an

effective policy. Humans are able to accomplish the same real-world tasks with much fewer samples

that may be provided in the form of demonstrations. Just a few partial demonstrations in the form

of corrective action are often enough to achieve reliable performance. This suggests that humans

implicitly utilize other modalities of information, such as eye-gaze, apart from just motor actuation

data. This thesis investigates both the incorporation of such modalities in training data, as well as

when and how this training data is collected, such as through corrective action, partial demonstrations

etc. The need to perform multiple experiments across both hardware and simulation-based platforms

with different observation and action-space configurations creates a need for a software library that

is modular, extensible and universal in design. One of the primary contributions of this thesis is

the development of a unique software library that enables single-operator, fault-tolerant operation

of data collection experiments on vehicle platforms. It permits a safe rollout of machine learning

models as controllers while keeping a human-in-the-loop. This thesis demonstrates how the usage

of certain fundamental principles of program design and software architectural patterns results in a

high level of common code execution across experimental configurations. The high level of common

code execution is demonstrated through measurement of configuration-agnostic code coverage

across different experimental runs and is shown to exceed 50%. This simplifies the setup phase for
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any experiment involving machine learning and autonomous systems. The same software library is

used to perform the experiments investigating effects of additional human sensory modalities in

the training data as well as sampling schemes to collect data through interventions. Improvements

in key metrics are such as task completion rate are observed when eye-gaze is incorporated as

a training signal. Task completion rate is shown to increase by 13.7 percentage points with the

incorporation of eye-gaze. Data sampling changes by shifting to intervention-guided data collection

also results in higher task-completion rates (65 % as opposed to 35 % earlier). This improvement in

task completion rate is accompanied with a lower expert data requirement. When compared to an

intervention-free baseline, the intervention-guided data collection routine needs 27.1% fewer expert

samples while having a more proficient policy.
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1. INTRODUCTION

1.1 Problem Overview

1.2 Introduction

Most real-world tasks that are desired to be performed by robots, quickly exceed the capability

of designers to handcraft optimal or even successful policies due to the inability to foresee the

amount of variability in the state-space of such systems. Hand-engineered control policies once

designed can no longer adapt or improve themselves as they gain more experience while attempting

the task. This makes them brittle and unusable for many sensorimotor tasks [41].

On the other hand, data-driven approaches and learning algorithms are well suited to solve

high-level prediction and control problems in an information-rich world. Learning algorithms are

able to learn directly from examples, to search for an underlying pattern.

Reinforcement learning (RL) [73] is a machine learning (ML) approach concerned with how

intelligent agents ought to take actions in an interactive environment in order to maximize the notion

of cumulative reward. It involves both taking random actions to understand environmental dynamics

(exploration) and repeating actions known to be optimal through past experience (exploitation). It

has long been shown to work on specific problems [14, 36] in specific scenarios [38] with well-

designed objective functions (reward functions, in the RL literature) where interactions with the

environment [47] have associated costs which are easily available.

However, in real-world robotic applications explicit reward functions are non-existent (unless

previously designed), and interactions with the hardware are expensive and susceptible to catas-

trophic failures. It can even be infeasible to construct appropriate objective functions in many cases.

This motivates leveraging human interaction to reduce the amount of high-risk interactions with the

environment, and to safely shape the behavior of intelligent robotic agents.

Consequently, the proposed research centers around supervised learning-based approaches to

human-in-the-loop learning. One of the most widely studied modes of human interaction studied is
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teleoperation, which can be further differentiated into Learning from Demonstrations and Learning

from Interventions.

• Learning from Demonstrations (LfD) [6, 52, 26] can be used to provide a more directed path

to these intended behaviors by utilizing examples of humans performing the task. However,

given that it is typically performed offline, it does not provide a mechanism for corrective or

preventative inputs when the learned behavior results in undesirable or catastrophic outcomes,

potentially due to unseen states.

• Learning from Interventions (LfI), where a human acts as an overseer while an agent is

performing a task and periodically takes over control or intervenes when necessary, can

provide a method to improve the agent policy while preventing or mitigating catastrophic

behaviors [65].

A challenge in training and utilizing imitation learning agents is learning from as few demon-

strations as possible to minimize the burden on end-users and allow for real-time learning, while

resolving ambiguity in user intentions and avoiding model overfitting. [26, 32]. This can be resolved

in two ways:

The first would be selecting informative features for the input space. Observations that a human

would depend on to infer the right action would make for a good candidate to be a part of the

input to the policy model. This feature selection can occur through a variety of methods, the

most commonly used being Recursive Feature Elimination. The second would be to incorporate

additional interaction modalities such as eye-gaze data (as investigated in this research) from the

demonstrator (apart from the state-action pairs obtained from teleoperation). This is often enabled

by training a model on multiple prediction tasks simultaneously so that the model implicitly learns

the most relevant features that help in all the related prediction tasks. This approach is commonly

known as Multi-Task Learning [16], which is utilized in this research in by concurrently training the

model on two prediction tasks: behavior cloning and gaze prediction.

However, both these approaches require the ability to rapidly prototype different neural network
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models, testing across multiple vehicular testbeds, sensor configurations and data pipelines. There

exists a major need for a middleware that stitches together simulation environments, hardware APIs

and machine learning libraries while providing for real-time human supervision and maintaining

fail-safe safety overrides. The proposed research aims to fill this software gap.

A framework is an integrated collection of components that collaborate to produce a reusable

architecture for a family of related applications. A software framework is a concrete or conceptual

platform where common code with generic functionality can be selectively specialized or overridden

by developers or users. Frameworks take the form of libraries, where a well-defined application

program interface (API) is reusable anywhere within the software under development. A user

can extend the framework but not modify the code. The purpose of software framework is to

simplify the development environment, allowing developers to dedicate their efforts to the project

requirements, rather than dealing with the framework’s mundane, repetitive functions and libraries

and the proposed research involves the development of such a framework for human-in-the-loop

learning for robotic tasks.

1.3 Relevant Literature

1.3.1 Software Frameworks for Learning-based Robotic Systems

A number of popular tools exist that are purpose-built for either research in robotics or research

in machine learning. On the machine learning side, this includes automatic differentiation libraries

like PyTorch [53] and visualization tools like Tensorboard. On the robotics side this includes

middleware like ROS [56] that enable and regulate the operation of an autonomous system itself

and simulation engines like Gazebo [37] and AirSim [68]. However there exists a vacuum in the

space that stitches these two research domains together. A middleware framework that enables agile

experimentation and interfaces with black-box simulation engines and machine learning libraries

and operates seamlessly across environments and platforms is missing from the landscape.
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1.3.2 Multi Task Learning

Multi-task learning (MTL) comes in many guises: joint learning; learning to learn; and learning

with auxiliary tasks are only some names that have been used to refer to it. Generally as soon as

more than one loss function is being optimized it is effectively a case of doing multi-task learning

(in contrast to single-task learning). Even if only optimizing one loss is the typical case, chances

are there is an auxiliary task that will help improve upon the main task. Caruana [15] summarizes

the goal of MTL succinctly: "MTL improves generalization by leveraging the domain-specific

information contained in the training signals of related tasks". Multi-task learning has another

advantage on inference since it allows for structured predictions (predictions that take structural

biases of the problem at hand into account) with only a single forward pass being required [71].

This reduces the risk of overfitting.

Multi-task learning helps the model focus its attention on input features that actually matter

since optimizing multiple objectives simultaneously forces the model to learn relevant features that

are invariant across each objective [16, 3, 62].

There are various reasons that warrant the use of MTL. Machine learning models generally

require a large volume of data for training. However, this often result in ending up with many tasks

for which the individual datasets are insufficiently sized to achieve good results. In this case, if

some of these tasks are related, e.g. predicting many diseases and outcomes from a patient’s profile,

one can merge the features and labels into a single larger training dataset, so that it is possible to

take advantage of shared information from related tasks to build a sufficiently large dataset.

MTL also improves the generalization of the model. Using MTL, the information learned from

related tasks improves the model’s ability to learn a useful representation of the data, which reduces

overfitting and enhances generalization. MTL can also reduce training time because instead of

investing time training many models on multiple tasks, a single model is trained.

MTL is crucial in some cases, such as when the model will be deployed in an environment

with limited computational power. Since machine learning models often have many parameters

that need to be stored in memory, for applications where the computational power is limited (e.g.
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edge devices), it is preferable to have a single MTL network with some shared parameters, as

opposed to multiple single-task models doing related tasks. For example, in self-driving cars,

multiple perception tasks need to be executed in real-time, including object detection and depth

estimation. Having multiple neural networks doing these tasks individually requires computational

power that might not be available. Instead, using a single model trained with MTL reduces the

compute hardware’s requirements and speeds up inference.

However, multi-task learning requires that the tasks that are jointly learnt be carefully chosen.

Tasks that are related can help incorporate relevant structural biases associated with the overall

problem and guide the optimization process to a general and well-fit solution. On the other hand

if tasks that are unrelated are jointly learnt, the optimization process may be distracted from the

intended goal and lead to a suboptimal solution.

1.3.3 Learning from Demonstrations

An example of prior work that attempts to augment learning from demonstrations with additional

human interaction is the Dataset Aggregation (DAgger) algorithm [60]. DAgger is an iterative

algorithm that consists of two policies: a primary agent policy that is used for direct control of a

system, and a reference policy that is used to generate additional labels to fine-tune the primary

policy towards optimal behavior. As opposed to ’on-the-fly’ interventions, the reference policy’s

actions are not taken but are instead aggregated and used as additional labels to re-train the primary

policy for the next iteration. A further extension of the work applied Dagger to collision avoidance

[61]. There are some drawbacks to this approach. Because the human observer is never in direct

control of the policy, safety is not guaranteed since the agent has the potential to visit previously

unseen states, which could cause catastrophic failures [61]. Additionally, the subsequent labeling by

the human can be suboptimal in terms of the amount of data recorded; perhaps due to recording and

annotating more data in ’easy’ states (in the observation space) than is needed to learn an optimal

policy and lacking in annotations/action-labels for the more ’critical states’.
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1.3.4 Data Augmentation for Imitation Learning

An example of prior work that attempts to augment learning from demonstrations with additional

human interaction is the Dataset Aggregation (DAgger) algorithm [60]. DAgger is an iterative

algorithm that consists of two policies: a primary agent policy that is used for direct control of a

system, and a reference policy that is used to generate additional labels to fine-tune the primary

policy towards optimal behavior. As opposed to ’on-the-fly’ interventions, the reference policy’s

actions are not taken but are instead aggregated and used as additional labels to re-train the primary

policy for the next iteration. A further extension of the work applied Dagger to collision avoidance

[61]. There are some drawbacks to this approach. Because the human observer is never in direct

control of the policy, safety is not guaranteed since the agent has the potential to visit previously

unseen states, which could cause catastrophic failures [61]. Additionally, the subsequent labeling by

the human can be suboptimal in terms of the amount of data recorded; perhaps due to recording and

annotating more data in ’easy’ states (in the observation space) than is needed to learn an optimal

policy and lacking in annotations/action-labels for the more ’critical states’.

1.3.5 Visual Attention and Imitation Learning

Saran et al. highlight the importance of understanding gaze behavior for use in imitation learning.

The authors characterized gaze behavior and its relation to human intention while demonstrating

object manipulation tasks to robots via kinesthetic teaching and video demonstrations. For this type

of goal-oriented task, Saran et al. show that users mostly fixate at goal-related objects, and that

gaze information could resolve ambiguities during subtask classification, reflecting the user internal

reward function. In their study the authors highlight that gaze behavior for teaching could vary for

more complex tasks that involve search and planning, such as the the one presented in this proposal.

Augmenting imitation learning with eye gaze data has been shown to improve policy perfor-

mance when compared to unaugmented imitation learning [79] and improve policy generalization

[43] in visuomotor tasks, such as playing Atari games and simulated driving. [76] also proposed a

periphery-fovea multi-resolution driving model to predict human attention and improve accuracy in
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a fixed driving dataset.

Attention Guided Imitation Learning [79], or AGIL, collected human gaze and joystick demon-

strations while playing Atari games and presented a two-step training procedure to incorporate

gaze data in imitation learning. Training order is first a gaze prediction network modeled as a

human-like foveation system, then a policy network using the gaze predictions represented as

attention heatmaps.

1.4 Research Objectives

The proposed research aims to investigate ways of augmenting behavior cloning through

incorporation of either additional types of sensory input or differing modalities of teleoperation.

In order to meet the requirements of such flexible experimentation, this research aims to develop

a software-based solution specifically designed for such tasks. The solution is a cross-platform

software framework and API optimized for experimental research in human-in-the-loop learning

with minimal coding overhead needed for the end user. When human eye gaze data is post-processed

(for example, through filtering or label correction) to have a high signal-to-noise ratio (SNR), it can

be used to train low-dimensional representations of high-dimensional visual observations, which can

be then used as input to a policy. The generation of efficient low-dimensional representations that

capture the task context also depends on the type of models trained to generate those representations.

Models based on Graph Neural Networks are better suited to generate scene representations where

visual attention belongs to a discrete set of objects in the scene whereas convolutional attention

networks are more suited in scenarios where visual attention is less structured and is more like a

spatial-blob.

This research includes two case studies that investigate the effect of training with teleoperation

data collected in the form of interventions and scene representation features during policy rollouts.

The first case study investigates how human eye gaze can be incorporated into existing imitation

learning architectures to improve performance when learning from expert demonstrations. This

includes learning scene representation from gaze data during training, which, due to the risk of

policies easily overfitting to the signal noise (notwithstanding the high compute requirements),
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prevents us from training a reliable policy in real-time. In order for the improvements to be apparent

when the policy is trained in real-time, the second case study uses fixed and domain-invariant

scene representations instead of learnt scene representations. As a result, we validate improvements

provided by interactive learning on hardware by abstracting the scene representation part out of the

problem and using just AprilTag detections as scene representation. This provides a reliable high

SNR input and makes real-time learning feasible. In the future, the AprilTags can also be replaced

by a well developed task-specific scene representation model trained with a reliable gaze-based

feedback signal in an offline learning setting.

1.5 Research Contributions

The contributions of this research are:

1. Development and evaluation of a novel multi-head policy model trained on a dataset aug-

mented with eye-gaze data, using an asynchronous quadrotor navigation task with high-

dimensional state and action spaces in a high-fidelity, photo-realistic simulation environment.

The proposed model is based in the concept of multi-task learning and leverages training

feedback from passive sensory data to improve behavior cloning.

2. A novel modular and extensible software framework that facilitates research in human-in-

the-loop machine learning by providing for agile experimentation across vehicle, sensor and

environment platforms. The framework is provided as an installable Python library that can

be setup for different experimental configurations through a command-line interface (CLI).

3. A hardware demonstration using the Parrot Anafi vehicle platform that showcases the ef-

fectiveness of training with a combination of demonstration and interventions over just

demonstrations. The goal is to show that for the same number of human interaction episodes,

timely interventions provide a stronger training signal than pure demonstrations as they

effectively cover gaps in the model’s understanding of the task.
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1.6 Organization

This thesis is organized as follows. Chapter 2 details Behavior Cloning and Imitation Learning

in discrete and continuous spaces and how these algorithms are used to replicate human behavior.

Chapter 3 introduces and details one of the core contributions of this work: a software library built

from scratch and specifically engineered to support modular experimentation for machine learning

on autonomous vehicles in real-time. Chapter 4 introduces a theoretical contribution of this thesis:

Gaze-Informed Multi-Objective Imitation Learning from Human Demonstrations. It introduces

a mechanism based on Multi-Task Learning (MTL), to incorporate additional sensory or input

modalities to make behavior cloning more sample-efficient and less prone to overfitting. Chapter 5

explains how to efficiently combine human demonstrations and interventions on learning algorithms

to increase task performance while using fewer human samples. The main study case is learning

from human interaction autonomous landing controllers for unmanned aerial systems.

Conclusions from the various applications and recommendations for future work are summarized

in Chapter 6.
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2. DATA-DRIVEN SHAPING OF AGENT BEHAVIOR

This chapter introduces the elementary basics of machine learning and targets supervised

learning in particular. The fundamentals are built upon to show how autonomous agents can learn

to imitate demonstrated behavior by framing the learning problem as a sequential decision making

problem. Beyond covering the important concepts in machine learning, this chapter also introduces

various mathematical formulations of the sequential decision making problem for intelligent systems

and their respective pros and cons.

2.1 Background

Machine Learning is a field of research that aims to use statistical techniques and models to

discover underlying patterns in data [7]. The available data is often split into different sets, namely

the training set, testing set and the validation set. The training set includes the set of data points

used to learn from to fit the model/function [12]. The validation set is used to repeatedly evaluate

prediction performance of a model. This helps in determining various hyperparameters during the

training phase so that the trained model is be able to generalize to new unseen inputs which form the

test set [12]. The type of machine learning is dependent on the form of the available data and can

be any of: supervised learning, unsupervised learning, and reinforcement learning. In a problem

set up for supervised learning, the training set contains data inputs and desired outputs. During the

training process, model’s parameters are incrementally updated in order to produce outputs closer

to the desired ones given the same input data. In problems where input-output pairs are readily

available, supervised learning is primarily used.

In a problem requiring unsupervised learning no labels are provided and just input data points

are known. Unsupervised learning is often used in problems where the goal is to either uncover

the fundamental structure of the distribution of data or to understand the spatial spread of the

different families of data points present in the overall set. This is often used in problems requiring

grouping of clustering of data without having access to explicit labels. The distinction between
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supervised learning and unsupervised learning is not a hard line and middle-of-the-road techniques

like semi-supervised learning exist that combine a large amount of unlabeled data with a small

amount of labeled data to identify the right predictions for each of the data points in the identified

clusters [12].

Reinforcement learning is a branch of machine learning that does not operate on the basis of

a fixed training set. Training data is collected through a trial-and-error driven interaction of an

untrained model with an environment that provides data points and a reward signal to learn from.

This is often useful in scenarios where training data might not be explicitly provided but can be

cheaply obtained over time through interaction.

2.2 Supervised Learning

The supervised learning problem is a function fitting problem that attempt to fit to a given set of

input-output pairs. [7] Mathematically this given set of input-output pairs (also known as training

set) can be represented as:

D = {(xn, yn), n = 1, . . . , N},

The goal of the problem is to learn a functional transformation between the input x and output y

such that, given an unseen input x′ (not present inD), the predicted y′ output is close to its underlying

true value. This is of course assuming that the pair (x′, y′) belongs to the same underlying data

distribution as D.

If the output y can be only one of a finite set of discrete outcomes, the supervised learning

problem is called classification. On the other hand, if the output y is a continuous variable, the

supervised learning problem is called regression. This distinction is important to define the loss

function used to compute the misfit between true and predicted model, which guides the optimization

process used to learn the model.

2.2.1 Modelling and Fitting Predictors

In the context of machine learning, a model is the mathematical representation of any underlying

function or distribution it aims to approximate. This underlying distribution is also the distribution
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that the training set is sampled from. Appropriate sampling is necessary so that the model learns to to

generalize to unseen data samples from the same distribution and accurately predict the distribution

values/function outputs. Sampling from only a few select regions of the state-space might lead

to learning incorrect or ’overfit’ models. Models, just like any other function are differentiated

based on their structure. The number of layers, type of activation units etc. define the structure of a

model while the actual values of the layer weights uniquely define a neural network. The structure

is chosen based on certain assumptions that help to accurately model a problem while not making

things overly complex. These assumptions include but are not limited to factors such as the degree

of non-linearity in the training data and the level of noise in the collected data among other things.

It is important to note that neural networks always include activate functions that help them model

non-linearities since a stack of neural network layers without activations is just a linear function

which can only model linear data.

2.2.1.1 Structure of Neural Networks

Deep neural networks have an extremely large number of parameters compared to the traditional

statistical models [12, 48, 27]. Neural networks are of multiple distinct (as well as hybrid) types.

The simplest and most commonly studied class of neural networks are called feedforward neural net-

works, or multilayer perceptrons (MLPs) [27]. Feedforward neural networks are essentially a series

of functional transformations which can be understood as a chain of alternating linear transforms

and non-linear activation functions. Neural networks are said to be universal approximators due

to their approximation properties, which are able to approximate any function given a sufficiently

large network capacity [25, 21, 30, 72, 20, 34, 39, 31, 58]. The universal approximation property

however does not guarantee whether the model can be learned or generalized to a satisfactory level.

2.2.1.2 Learning for Neural Networks

Neural networks are trained by sequentially and incrementally updating the weights of each of

the constituent layers with the aim of pushing the the network output ŷi towards the target value or

label yi available for the corresponding input data point. Training progress is evaluated through a
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Figure 2.1: A neural network with D inputs, one hidden layer with M units, and K outputs.
Reprinted from [12].

loss function, generally represented by L(·), which is different for discrete spaces (classification)

in continuous (regression) cases. Common cost functions that exist for classification tasks are

Cross-Entropy and Hinge loss. On the other hand, for regression some commonly used loss

functions include Mean Squared Error (MSE), Mean Absolute Error (MAE), and Huber loss. The

Cross-Entropy (CE) loss, written as

LCE(yi, ŷi) = −
1

N

N∑
i

C∑
j=1

yij log(ŷij),

The cross-entropy loss is useful for behavior cloning setups where the action space is finite and

can be represented as a discretely-valued random vector.

For regression problems, Mean Squared Error (MSE) loss computes the average of the square

of the errors between predicted ŷi and true yi value, which results in an arithmetic mean-unbiased

estimator:

LMSE(yi, ŷi) =
1

N

N∑
i

(yi − ŷi)2.

The MSE loss is commonly used in behavior cloning setups where the output can be represented

as a continuous random vector. This can be a general random vector and the individual components

of the vector need not be independent and identically distributed.
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2.3 Decision Making for Autonomous Systems

Research problems in trajectory generation and sequential decision making are formalized

in one of two ways: The first includes formalization as a Partially Observable Markov De-

cision Process (POMDP) [11] (similar to any other decision-making problem). A POMDP

M = {S,O, E ,A, T , r} is characterized by various vector spaces including its state-space S,

an observation-space O and an action-space A. Also included are various functional tranforms

including an emission probability, E , that controls the probability of observing o ∈ O given an

underlying state s ∈ S, a transition function T (which defines the probability of transitioning

from a given state to another state), and the reward function r : S × A → R. This mathematical

formulation is graphically shown in Figure 2.2. This way is used to model problems where perfect

state information might not be present and noisy sensor data is used to infer state. The second way

includes formalization as a Fully Observable Markov Decision Process (known simply as a Markov

Decision Process (MDP)), the underlying states are directly known. This eliminates observation

vectors and simplifies the process notation toM = {S,A, T , r}. This way is a simpler but less

realistic approach since perfect state information is rarely known in real-world problems.

Figure 2.2: Partially-Observable Markov Decision Process diagram. Reprinted from [40].

2.4 Behavior Cloning

Imitation Learning is a principled approach to learn from demonstrated behaviors by utilizing

examples from an expert policy performing the task. Imitation learning frequently starts from a

random untrained policy and attempts to converge to a more stable policy. This expert policy can

be any of the following: another agent trained with reinforcement learning, a human, or another
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hard-coded controller. The expert simply needs to be able to provide expert trajectories that can be

used as a training signal.

Behavior Cloning (BC) is a subdomain of Imitation Learning where state-action pairs from the

demonstration data are directly used in an attempt to mimic the demonstrated behavior. This is done

by training a model to generate policy outputs/actions/control commands as similar as possible to

the ones seen in the expert control sequences, given the same observations as inputs as seen by the

demonstrating agent. In BC, a policy π is trained in order to fit to a subset D of visited states to

actions taken at those states during a expert demonstration of the task over a time-horizon spanning

T time steps.

When supervision is provided through human demonstrations, the human is sub-consciously

trying to maximize a goal metric for a given task. In BC, this goal metric happens to be the

likelihood that a particular action would be taken at a given state if the expert were performing the

task. This can be seen in Equation 2.1 where πE(aEt |st) represents the expert policy, in which the

optimal action aE is taken at state s for every time step t. By maximizing log-likelihood instead of

likelihood, this equation ties in the optimization objectives in both reinforcement learning (reward

functions) to behavior cloning as both optimize a metric over the temporal length of an episodic

trajectory.

max
a0,...,aT

T∑
t=0

rt(st, at) =
T∑
t=0

log p(πE(aEt |st)) (2.1)

The above equation can be further simplified by assuming the probability distribution of actions

to be taken at any state is a Gaussian distribution centred around the expert action with a unit

variance. This reduces the log-likelihood objective to a mean-squared error term. Mathematically,

in a setting where the expert policy is represented by πE , the learnt policy is represented by π̂, and

the parameterized form of the policy model is represented by πθ, the policy learnt through behavior

cloning can be represented as below:
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π̂ = argmin
θ

T∑
t=0

||πθ(st)− πE(st)||2 (2.2)

The above equation illustrates how behavior cloning can be reduced to a least squares regression

problem, which is also a subset of supervised learning.
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3. A SCALABLE SOFTWARE FRAMEWORK FOR MACHINE LEARNING ACROSS

VEHICLE PLATFORMS

3.1 Problem Definition and Defined Requirements

The software framework that forms the core contribution of this work was born out of a need to

develop a reliable software package that can be readily used for cross-platform machine learning

research on autonomous vehicles. The core requirements were:

• Modularity: Modularity was the core driving principle behind the initial development process.

Machine learning experiments on autonomous vehicle testbeds require multiple components

to be configured. These range from vehicle interfaces, environments to loss functions, data

resampling functions and input-output configurations. Modularity also enables platform

independence since systems do not need to have be able to support all available functionality.

Dependencies can be included or excluded based on the functionality of the library that is

actually utilized for an experiment.

• Extensibility: A major focus behind the software architecture design was to prevent the

codebase from being too rigid and fragile so that new functionality can be added over time

without needing significant code refactoring. Extensibility also requires code design to be

intuitive enough so that new module implementations can be added by external developers

without minimal overhead and no intervention needed by the original code authors.

• Portability: The core software module that controls the vehicle operation and experimentation

routine is built with redundancies and safety overrides to allow for hardware-in-the-loop

experiments. The addition of this functionality should not affect experiments in simulation and

should be seamless compatible across different vehicle types and operational environments

(simulation or real).
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3.2 Software Architecture

The entire software framework is built upon 3 primary categories of components: Rollout,

Training and Other. The Other category includes components that are required during both the

evaluation (by the Simulator (defined below)) and training phases of an experiment.

The decoupling between rollout and training-related components ensures that different machine

learning frameworks can be used in conjunction with the rollout components. For example: RLlib

[42], a popular library that provides abstractions for reinforcement learning can utilize the in-built

Gym Environments and the compatible Vehicle and Sensor classes directly and train policies. This

would not use either the library’s internal Simulator or the Task class, which is purpose-built for

supervised and unsupervised learning workflows.

3.2.1 Rollout Modules

All the class components defined in this section are essential to performing any sort of function-

ality that requires a vehicle (simulated or physical). The core types of component classes/modules

developed as a part of this library are:

• Sensor: Classes of this type interface with actual sensor hardware itself and perform all

data reading, caching and processing operations and return measurements in human-readable

formats. Currently implementations for the Tobii5C EyeTracker, IMU and RGB sensors

onboard the Parrot Anafi and the simulated IMU and GPS sensors in Airsim are provided

out-of-the box.

• Vehicle: Classes of this type interface with either the physical vehicle itself or any intermedi-

ary API that is provided by the vehicle’s original equipment manufacturer (OEM). Currently

the Parrot Anafi and the Parrot ARDrone (in AirSim) are supported out-of-the-box by the

developed software library.

• Environment: An Environment class defines the actual scenario and visuomotor task the

vehicle is expected to perform. Programmatic conditions related to task termination are

18



defined in the class. This class also houses any custom routine that needs to be executed

between episodes such as rebooting the vehicle’s systems etc.

• Controller: Derived classes of the Controller module are responsible for commanding the

vehicle’s actuation. They are responsible for running inference on the policy model and

translating the model output to an action representation that can be consumed by a compatible

Vehicle class.

• RolloutRunner The RolloutRunner is responsible for the execution of the entire experiment

and handles both autonomous policy rollouts and teleoperation for demonstration collection

purposes. The RolloutRunner also handles all auxiliary functionality such as vehicle reposi-

tioning between episodes, self-diagnosed and user-initiated emergency shutdowns, immediate

control transfer on user interventions and data logging/saving. The execution flow of this

module is discussed in further detail in the succeeding section.

3.2.2 Execution Routine for Safe Human-in-the-Loop Learning

The component of this software framework that executes the actual vehicle motion and data

collection is the RolloutRunner. The execution of this module follows a Finite State Machine pattern

which is illustrated in Fig. 3.1. This module activates the vehicle, initializes the entire sensor suite

and allows for the entire experiment to be safely performed with just a single operator. Once the

user initiates the experiment, the vehicle takes off and starts executing the action commands. The

action commands can either come through teleoperation or through a neural network policy that

continuously performs inference in the background. In going with an implicitly safe design, the

NN policy is only actively controlling the vehicle when a deadman’s trigger is continually engaged.

Any disengagement of the trigger reverts the control of the vehicle back to teleoperation and it stays

idle (hover mode for multirotor UAS) till the operator actively resumes providing input.

The termination of an episode can be triggered in two ways. The first is user-provided termination

signal that is mapped to a button on the teleoperation control. The second is automatic episode

termination based on a hard-coded termination condition that can be specified by overriding the
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Figure 3.1: Finite State Machine representation of the experimental workflow
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task_done method in the Environment class being used.

At each episode termination, data is saved and the vehicle shifts to "repositioning mode" which

allows to user to remotely move the vehicle to a new start location for the next episode. If at the end

of the repositioning phase, the data saving process is still pending completion, the vehicle goes into

sleep mode (lands) to conserve power else it resumes flight from that same hovering state. This

saves an extra takeoff-land cycle for UAS. At any point in the experiment, a single-click "emergency

shutdown" option can be utilized that will safely land the vehicle at the current spot and shutdown

all systems (including cutting off propulsive power).

3.2.3 Design for Safety and Fault-Tolerant Vehicle Operation

Safe and interactive machine learning on autonomous vehicle platforms requires several func-

tionally important operations to occur in parallel. These requirements range from needing to ensure

asynchronous data ingestion from various sensors linked to the vehicle platform or even the operator

(such as an eye-gaze tracker), to continuously polling joysticks and other input devices for priority

requests such as emergency shutdown.

Multithreading is often used to implement such parallelism, however it comes at a price. It is

critical to ensure that different threads can access the same resources without exposing erroneous

behavior or producing unpredictable results. This programming methodology is known as “thread-

safety” and is implemented through locks that guard access to a shared resource, such as a variable

that describes a state in the library’s state machine.

The entire core of this library is written in Python for readability and thus is limited by the

restrictions of the Global Interpreter Lock [9]. The Python Global Interpreter Lock or GIL, is a

lock that allows only one thread to hold the control of the Python interpreter. This means that only

one thread can be in a state of execution at any point in time. The impact of the GIL isn’t visible

to developers who execute single-threaded programs, but it can be a performance bottleneck in

CPU-bound and multi-threaded code.Some of the code that is a part of external dependencies is

written in C++ and invoked through Python bindings. These native C++ functions can be split into

two types:
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• Non-blocking: These are functions that explicitly release the GIL allowing for time-consuming

operations to occur in a separate CPU core while not blocking the flow of execution of the

caller program in the library. Use cases include modules that are suited for asynchronous

operation such as ingesting data from sensors or logging non-critical warnings.

• Blocking: These are functions (including those provided through external dependencies) that

do not release the Python GIL, thus forcing the Python runtime to wait for their execution

to finish. Since some of the states in the state machine are guarded by a lock that can only

be acquired once the blocking thread is released, this occasionally results in other Python

threads from being unable to immediately trigger changes in the core state machine.

Multithreading is utilized in this work in implementing various functionality for safe human-in-

the-loop learning. The most prominent use-cases are described below.

• Override threads:

Override functionality is implemented in a simple thread so that mission-critical commands

that need to be executed immediately are not blocked due to a set of instructions awaiting

execution in the main thread. In the event the main thread’s execution is stuck due to a

time-intensive operation, the override thread can acquire the GIL to execute any priority

commands. An exception to this is when the main thread’s execution is stuck while it attempts

to modify a shared resource such as the associated Environment object.

• Sensor threads:

Sensor modules asynchronously process and return measurements/observations and are

implemented as independent Python threads and are of two-type:

– Non-persistent:

These are threads that do not persistently run since the requests for measurement data in

these cases is externally handled outside the library (eg. by the Airsim engine). In these
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Figure 3.2: Operational threads and the bottlenecks affecting the various threads

cases the threads terminate immediately on starting and do not occupy any CPU cores.

They only exist to ensure compliance with the Liskov Substitution Principle [50].

– Persistent:

These have Python code being persistently run (such as the AnafiRGB class), which

depending on their implementation might run into some kind of bottleneck. At the very

least, the Python interpreter’s GIL will pose a bottleneck (if not explicitly released in C++

code). Additional sources of a bottleneck could include, for example, a user-specified

lock on a state, put in place to ensure mutation by only one thread at a time.

An overview of the various threads operational at any time along with the constraint relations is

shown in Fig. 3.2

23



3.3 Design Principles for Software Architecture

The software framework developed has its entire design philosophy based on the SOLID

principles of program design. SOLID is an acronym for five design principles intended to make

software designs more understandable, flexible, and maintainable [45, 70, 17]. Though they apply

to any object-oriented design, the SOLID principles can also form a core philosophy for agile

development. The name SOLID is derived from the first letter of the names of the constituent

principles. The principles that form it are titled:

• Single Responsibility Principle

• Open-closed Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

All of these 5 principles are extensively used in the library’s architectural framework and are

discussed in the following subsections:

3.3.1 Single Responsibility Principle

As the name implies, the Single Responsibility Principle requires each module or class to have

responsibility for one and only one purpose. This principle enables the writing of software with

high cohesion and robustness since singular functionality ensures that it’s implementation is not

tied to the structure of the remaining codebase. It also ensures that individual modules are easily

unit-testable, swappable and allow for partial codebase upgrades. By decoupling functionality,

the complexity of code upgrades reduces from O(SV ) to O(S) where S is the number of Sensor

modules to be modified and V is the number of Vehicle modules that utilize those to-be-updated

modules.
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Figure 3.3: Class design demonstrating Single Responsibility Principle

For example, Figure 3.3 shows how a Sensor class only returns a measurement given an

observation and does not implement any additional logic. Similarly a Vehicle class only actuates

the vehicle (simulated or real). Since a Sensor class does not perform any data processing and thus

would not need modification if the data processing pipeline was desired to be altered. Essentially the

modules in the software framework can be thought of as independent but non-identically distributed

random variables.

3.3.2 Open-closed Principle

The Open-closed Principle [44] dictates that the constituent software modules are open for

extension but closed for modification. This allows new functionality to be added without changing

existing source code.

In practice, the best way to achieve this is polymorphism, particularly with the use of abstract

interfaces. Using abstract interfaces allows for extending a class and specializing its behavior

without changing the interface specification. This principle allows for reusable and maintainable

software.
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Figure 3.4: Class design demonstrating Interface Segregation Principle

The core modules that interface with the actual vehicle and sensors respectively are called

Vehicle and Sensor classes. These classes are primitive interfaces that only encapsulate the essential

and bare-basic functionality that is not to be modified. They provide external developers the ability

to build their own custom implementations for their hardware-specific needs by just defining a

subset of member functions instead of needing to define the entire implementation, which is locked.

3.3.3 Liskov Substitution Principle

The Liskov Substitution Principle [50] states, "If S is a subtype of T, then objects of type T in a

program may be replaced with objects of type S without altering any of the desirable properties of

that program (e.g. correctness).".

This principle requires subclasses to not only satisfy the syntactic expectations but also the

behavioral ones, of its parents. To view things from a different perspective, as a user of a class, one

should be able to utilize any of its children that may be passed to me without caring about which

particular child is being called. This requires ensuring that the arguments as well as all the return

values of the children are consistent. Thus EyeTracker class (child class of Sensor) or a new child

of EyeTracker (say Tobii5EyeTracker) should interact with the rest of the codebase in an identical

fashion.
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Figure 3.5: Class design demonstrating Dependency Inversion Principle

3.3.4 Interface Segregation Principle

The Interface Segregation Principle (ISP) [49] states that "no client should be forced to depend

on methods it does not use". ISP splits interfaces that are very large into smaller and more specific

ones so that clients will only have to know about the methods that are of interest to them.

Fig. 3.4 illustrates how the interface segregation principle is put to use in this software framework.

Both Joystick and AutoAgent modules command the vehicle and derive from a common base class.

However the former operates on human input while the latter operates by running inference on a

trained NN. As a result, both implement methods that are need-specific and are invoked through

act(), a function common to the all modules that share the same base type (Controller). The base

interface is kept free from any unnecessary functionality that is not used by all modules of its type.
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3.3.5 Dependency Inversion Principle

The Dependency Inversion Principle (DIP) states that: "High-level modules should not depend

on low-level modules. Both should depend on abstractions (e.g. interfaces)". As an example of

what this means, in context of this work, the dependency inversion principle requires that the core

implementations of the simulation and environment classes be totally independent of the type of

vehicle and sensors they control. Fig. 3.5 shows how an Environment class has its implementation

independent of the type of Sensor and Vehicle classes that interact with it. This ensures that the

base Gym environment is out-of-the-box compatible with not just aerial vehicles but also ground

vehicles etc. in any sensor-payload configuration.

3.4 Structural Design Patterns Used

3.4.1 Facade

The Facade pattern is a structural design pattern that provides a simplified interface to a library,

a framework, or any other complex set of classes. The core intent is to provide an intuitive and

limited interface to a complex subsystem which contains lots of moving parts. A facade might

provide limited functionality in comparison to working with the subsystem directly. However, it

includes only those features that downstream client programs really care about. This is closely tied

to the concept of abstraction [24] in object-oriented programming. Fig. 3.6 is an example of how a

user can run entire simulation experiments and train policy models by relying on just two function

calls. Essentially, an entire experimental setup can be configured in a JSON file (including vehicle

parameters, machine-learning related parameters etc.) and the library’s internals handle the rest

without the user needing to know what happens behind the scenes.

3.4.2 Proxy

The Proxy pattern is a structural design pattern that lets you provide a substitute or placeholder

for another object. A proxy controls access to the original object, allowing you to perform something

either before or after the request gets through to the original object. For vehicle rollouts in simulation

where no human is required to be present in the loop, forcing a dependency on a Joystick module
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Figure 3.6: Class design demonstrating abstraction of all internal functioning to make only user-need
functions visible.

Figure 3.7: DummyJoystick as a proxy for regular joystick-teleoperation

would be bad design and is thus substituted by a proxy (DummyJoystick) module that follows the

Liskov Substitution Principle and exposes an exactly similar interface to the other modules.

The proxy pattern is also extremely useful for performing integration tests on the mid-to-high

level modules of the library. Essentially, expensive function calls and object creation requiring

unrelated dependencies can be avoided during integration testing of modules by using proxy objects

where possible.

3.4.3 Decorator

The Decorator pattern is a structural design pattern that enables attaching new behaviors to

objects by placing these objects inside special wrapper objects that contain the original behaviors

[33]. Computationally intensive function calls, such as those those involve large matrix computations

(during deep learning training) are decorated with a caching mechanism that enable the results of
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Figure 3.8: Caching of expensive and repeated matrix computations

these computations to be reused while maintaining the same user-facing interface.

3.5 Behavioral Design Patterns Used

3.5.1 Visitor

The Visitor pattern abstracts away algorithms from the objects on which they operate. This

is useful if the objects are closed to any modification which prevents polymorphism from being

an option for implementing object-specific behavior. The Visitor pattern is primarily used in this

work to execute graceful fault handling. Message-passing and event handling with the hardware

platform used in this experiment happens through asynchronous coroutines. A coroutine is a concept

similar to a thread in traditional concurrent programming, but is based on cooperative multitasking.

Cooperative multitasking implies that the switching between different execution contexts is done

by the coroutines themselves rather than the operating system or user-specified handling (as is the

case in multi-threading). Since these message objects are closed to modification and have sealed

definitions within the vehicle software’s API, the visitor pattern allows to have a single stateful

event handler that depending on the type of message received and state of the program, performs

custom operations that ensure safe operation and provide mission assurance.

3.5.2 Chain of Responsibility

The Chain of Responsibility pattern is a behavioral design pattern that lets you pass requests

along a chain of handlers. Upon receiving a request, each handler decides either to process the

request or to pass it to the next handler in the chain.

An example of the use of such a design pattern in the library is how the specific of just the
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Figure 3.9: Chain of responsibility between various component modules

name of the Task class, ensures that the correct set of sensors, vehicles and the Gym environment is

initialized. This is illustrated in Figure 3.9.

3.5.3 State

The State pattern is a behavioral design pattern that lets an object alter its behavior when its

internal state changes. It appears as if the object changed its class. The State pattern is closely

related to the concept of a Finite-State Machine. The main idea is that, at any given moment, there’s

a finite number of states which a program can be in. Within any unique state, the program behaves

differently, and the program can be switched from one state to another instantaneously. However,

depending on a current state, the program may or may not switch to certain other states. These

switching rules, called transitions, are also finite and predetermined.

The state design pattern is extensively used in the Rollout Runner class to decide next course

of action for the vehicle depending on mission state. The state design pattern is also used in the

design of the Vehicle class. Depending on the state of the vehicle hardware (critical faults, degraded
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Figure 3.10: Effect of mutable state variables on the behavior of the Rollout Runner class responsible
for performing the rollouts

sensing etc.), the vehicle can dispatch different actuation commands. This reduces the need for

operator decision-making and intervention in such scenarios.

3.5.4 Lazy Loading

The entire library has a modular architecture with various modules in each module class having

their own set of external and internal dependencies that might need to be installed and loaded

for usage. Since only one of the available modules within any module class may be needed for

a set of experiments (such as doing a set of experiments with the Parrot Anafi), lazy loading of

modules ensures that the Python runtime doesn’t throw up dependency errors while attempting to

initialize unnecessary modules. This also lowers startup times while loading the entire library. In

this work, lazy loading has been implemented through a "virtual proxy" pattern where references to

modules are present wherever needed and the actual object required gets created only when one of

its attributes is accessed for the first time.
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Code Coverage Summary (measured in number of Python statements)
Experiment Shared Code Vehicle-

Specific
Code

% Shared
Code
Execution

Anafi (Physical) 94+32+14+88 80 64.91
ARDrone (Simulated) 94+32+14+88 60 73.68

Table 3.1: Shared code execution across different vehicle platforms and different operating environ-
ments

3.6 Results

In order to measure the modularity of the resulting codebase, code coverage experiments were

conducted wherein a Parrot Anafi was rolled out using a NN policy on hardware and a simulated

Parrot ARDrone was rolled out in Airsim using a NN policy. The Python instructions executed were

logged and the amount of common code that was executed in both the above runs was measured.

The first run involving rolling out a NN policy on a physical Parrot Anafi resulted in execution

of 308 lines of code of which 64.91% was shared code that was also executed during rolling out

a simulated Parrot ARDrone in Airsim. The percentage of shared code execution for it was even

higher due to lesser amount of vehicle-specific code needed. The shared pieces of code were across

the base Environment, base Vehicle and RolloutRunner modules.

Also, all code executed that was specific to either run was attributable to differences in the

vehicle platform being used and was entirely contained in the modules designated to the specific

vehicle platform used.

3.7 Summary

The work described in this chapter highlights how usage of SOLID design principles in a

codebase’s design results in the majority proportion of the code, executed during an experimental

run, being common code (shared across platforms and experimental configurations). This work also

highlights the development of a state machine that regulates the execution of the software to enable

automated and safe evaluation of machine-learning based policies on actual hardware.
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4. CASE STUDY: LEARNING FROM GAZE *

4.1 Problem Definition and Background

In the field of human-robot interaction, learning from demonstrations (LfD), also referred to

as imitation learning, is widely used to rapidly train artificial agents to mimic the demonstrator

via supervised learning [6, 52]. LfD using human-generated data has been widely studied and

successfully applied to multiple domains such as self-driving cars [19], robot manipulation [57],

and navigation [69].

While LfD is a simple and straightforward approach for teaching intelligent behavior, it still

suffers from sample complexity issues when learning a behavior policy directly from images, i.e.

mapping what the robot’s camera sees to what action it should take. The majority of the work on

LfD utilizes only behavioral information from the demonstrator, i.e. what actions were taken, and

ignores other information such as the eye gaze of the demonstrator [6]. Eye gaze is an especially

useful signal, as it can give valuable insight towards where the demonstrator is allocating their visual

attention [23], and leveraging such information has the potential to improve agent performance

when using LfD.

Eye gaze is an unobtrusive input signal that can be easily collected with the help of widely

available eye tracking hardware [55]. Eye gaze data comes at almost no additional cost when

teleoperating robots to collect expert demonstration data, as the human operator is able to do the

task naturally as before. Eye gaze acts as an important signal in guiding our actions and filtering

relevant parts of the environment that are perceived [66], and as such, measuring eye gaze gives us

an indication of visual attention that can be leveraged when training AI agents.

Previous works that have attempted to utilize eye-gaze for imitation learning (such as [79])

have only done so in simple, synchronous environments, limiting their applicability to real-world

domains. This work utilizes multi-objective learning for gaze-informed imitation learning of real-

*Adapted with permission from “Gaze-Informed Multi-Objective Imitation Learning from Human
Demonstrations”[10], by Ritwik Bera, Vinicius G. Goecks, Gregory M. Gremillion, Vernon J. Lawhern, John Valasek,
and Nicholas R. Waytowich, available under a Creative Commons license at https://arxiv.org/abs/2102.13008
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world, asynchronous robotics tasks, such as autonomous quadrotor navigation, which have proven

difficult for traditional imitation learning techniques [59, 13].

This work attempts to frame the problem of visual quadrotor navigation as a supervised multi-

objective learning problem wherein our model has an input space comprised of onboard inertial

measurements, RGB and depth images, and attempts to predict both the demonstrator’s actions as

well as the the demonstrator’s eye gaze while performing a given task, as shown in Figure 4.2. The

benefit behind using a multi-objective optimization, framework is two-fold. First and foremost, if a

task is noisy or data is limited and high-dimensional, it can be difficult for a model to differentiate

between relevant and irrelevant features. Multi-objective learning helps the model focus its attention

on features that actually matter since optimizing multiple objectives simultaneously forces the

model to learn relevant features that are invariant across each objective [16, 3, 62]. Finally, a

multi-objective learning framework, as proposed by this work, enables eye gaze prediction loss to

act as a regularizer by introducing an inductive bias. As such, it reduces the risk of overfitting as

well as the Rademacher complexity of the model, i.e. its ability to fit random noise [8].

The main contributions of this work are:

• A novel multi-objective learning architecture to learn from multimodal signals from human

demonstrations, from both actions and eye gaze data.

• Demonstration of the approach using an asynchronous, real-world quadrotor navigation task

with high-dimensional state and action spaces and a high-fidelity, photorealisitic simulator.

• Quantitative evaluation showing that the gaze-augmented imitation learning model is able to

significantly outperform a baseline implementation, a behavior cloning model that does not

utilize gaze information, in terms of task completion.

4.2 Related Work

4.2.1 Understanding Gaze Behavior

Saran et al. [64] highlights the importance of understanding gaze behavior for use in imitation

learning. The authors characterized gaze behavior and its relation to human intention while
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Figure 4.1: Model architecture illustrating how quadrotor onboard sensor data and cameras frames
are processed, how features are combined in a shared representation backbone, and how multiple
outputs, i.e. the gaze and action prediction networks, are performed via independent model heads.

demonstrating object manipulation tasks to robots via kinesthetic teaching and video demonstrations.

For this type of goal-oriented task, Saran et al. show that users mostly fixate at goal-related objects,

and that gaze information could resolve ambiguities during subtask classification, reflecting the user

internal reward function. In their study the authors highlight that gaze behavior for teaching could

vary for more complex tasks that involve search and planning, such as the the one presented in this

study.

4.2.2 Gaze-Augmented Imitation Learning

Augmenting imitation learning with eye gaze data has been shown to improve policy perfor-

mance when compared to unaugmented imitation learning [79] and improve policy generalization

[43] in visuomotor tasks, such as playing Atari games and simulated driving. Xia et al. [76] also

proposed a periphery-fovea multi-resolution driving model to predict human attention and improve

accuracy in a fixed driving dataset.

Attention Guided Imitation Learning [79], or AGIL, collected human gaze and joystick demon-

strations while playing Atari games and presented a two-step training procedure to incorporate gaze

data in imitation learning, training first a gaze prediction network modeled as a human-like foveation

36



system, then a policy network using the gaze predictions represented as attention heatmaps. The

reported gains in policy performance vary from 3.4 to 1143.8%, depending on the game complexity

and the number of sub-tasks the player has to attend to, which illustrates how the benefit of a

multimodal learning approach is tied to the desired task to be solved. However, to eliminate effects

of human reaction time and fatigue, eye-gaze was collected in a synchronous fashion in which

the environment only advanced to the next state once the human took an action, and game time

was limited to 15 minutes, followed by a 20 minutes rest period. This highlights the challenges

of human-in-the-loop machine learning approaches and real-time human data collection. This

limits the applicability of attention guided techniques to only relatively simple domains where the

environment can easily be stopped and started to synchronously line up with human input, and will

not work on real-world environments such as quadrotor navigation.

Liu et al. proposed two approaches to incorporate gaze into imitation learning: 1) using gaze

information to modulate input images, as opposed to using gaze as an additional policy input; and

2) using gaze to control dropout rates at the convolution layers during training. Both approaches

use a pre-trained gaze prediction network before incorporating it into imitation learning. Evaluated

on a simulated driving task, Liu et al. [43] showed that both approaches reduced generalization

error when compared to imitation learning without gaze, with the second approach (using gaze to

control dropout rates during training) yielding about 24% error reduction compared to 17% of the

first approach when predicting steering wheel angles on unseen driving tasks.

4.3 Methods

A novel multi-objective model is defined via supervised learning to predict actions to accomplish

a given task and the location of eye-gaze of a human operating the quadrotor through a first-person

camera view. The training is accomplished by collecting a set of human demonstrations while

recording the observation space of the quadrotor (i.e. cameras and IMU sensors) as well as the

demonstrator’s eye-gaze position and their input actions while performing a quadrotor search and

navigation task.
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Figure 4.2: Block diagram of the proposed multi-objective learning architecture to learn from
multimodal human demonstration signals, i.e. actions and eye gaze data.

4.3.1 Model Architecture

An end-to-end supervised learning approach is taken to solve the visual search and navigation

problem, aiming to avoid making any structural assumptions with regard to either the task being

performed by the quadrotor, or the environment the quadrotor is expected to operate in. The model

architecture is illustrated in Figure 4.1 and explained in the following paragraphs. The input space

of the model is composed of three modalities:

• The quadrotor has access to a constant stream of RGB frames, 704 by 480 pixel resolution,

captured by its onboard forward-facing camera, which are stored in an image buffer. Each

frame is passed through a truncated version of a pre-trained ResNet34 [28], which includes

only its first three convolutional blocks, generating a feature map of dimensions 128x28x28

(channel, height, width) that are stored in an intermediate buffer. Given the photorealistic

scenes rendered by Microsoft AirSim’s [67] Unreal Engine based simulator, ResNet was
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chosen as the pre-trained feature extractor as it was trained with real-world images. At each

time instant t, the feature map corresponding to time instant t is concatenated with the feature

map corresponding to time instant t-8, across the channel dimension, generating a 256x28x28

dimensional tensor. The concatenated feature maps are passed through a sequence of trainable

convolution layers, as described in Figure 4.1, forming an 484 dimensional vector of visual

features and the first input to the model.

• The quadrotor also has access to depth images, which are generated by the simulated onboard

camera from which the RGB frames are obtained and, consequently, sharing the same

geometric reference frame. The depth images, 704 by 480 pixel resolution, are passed through

a Histogram of Oriented Gradients [22] feature extractor that generates a 512 dimensional

feature vector. This forms the second input to the model, HOG Features in Figure 4.1.

• The quadrotor also outputs filtered data from its simulated gyroscope and accelerometer,

providing the model access to the vehicle’s angular orientation, velocity, and acceleration,

and linear velocity and acceleration, altitude, but no absolute position such as given by a GPS

device, for a total of 16 features, as shown by Kinematic Features in Figure 4.1. The model is

intentionally not provided with absolute position information in order to force it to be reliant

on visual cues to performing the task instead of memorizing GPS information.

The resulting Visual, HOG, and Kinematic Features are concatenated, batch-normalized, and

then passed through two fully connected layers with 128 output units each and ReLU activation

function, forming the shared backbone of the proposed multi-headed model. The intermediate

feature vector is then passed through two separate output heads, the Action Prediction Head and

the Gaze Prediction Head, as seen in the right side of Figure 4.1. Each head has a hidden layer

with 32 units and an output layer. The Action Prediction Head outputs 4 scalar values bounded

between -1 and 1 representing joystick values that control the quadrotor linear velocities associated

with movement in the x, y, and z directions as well as the yaw. The Gaze Prediction Head outputs

2 scalar values bounded between 0 and 1 representing normalized eye gaze coordinates in the
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quadrotor camera’s frame of reference.

4.3.2 Training Objective

The loss function used in the training routine is a linear combination of a Gaze Prediction Loss,

LGP , and a Behavior Cloning Loss, LBC :

L(θ) = λ1 ∗ Gaze Prediction Loss(LGP )+

λ2 ∗ Behavior Cloning Loss(LBC), (4.1)

where θ represents the set of trainable model parameters and λ1 and λ2 are hyperparameters

controlling the contribution of each loss component, defined as the mean-squared error between

ground truth and predicted values:

LGP =
∥∥(πgaze − gt))∥∥2 ,

LBC =
∥∥(πaction − at))∥∥2 ,

where gt is a vector representing the true x, y coordinates of the eye gaze in the camera frame

at instant t, and at is the vector representing the expert joystick actions components for forward

velocity, lateral velocity, yaw angular velocity, and throttle taken at that same time instant t. πgaze

and πaction are the outputs of the Gaze Prediction and Action Prediction Heads, respectively.

4.3.3 Task Description

The experiments were conducted in simulated environments rendered by the Unreal Engine

using the Microsoft AirSim [67] plugin as an interface to receive data and send commands to the

quadrotor, a simulated Parrot AR.Drone vehicle. The task consisted of a search and navigate task

where the drone must seek out a target vehicle and then navigate towards it in a photo-realistic

cluttered forest simulation environment, as seen in Figure 4.3. This environment emulates sun glare

and presents trees and uneven rocky terrain as obstacles for navigation and visual identification of

the target vehicle.
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Figure 4.3: First-person view from the quadrotor illustrating the target vehicle (yellow truck) to be
found and navigated to, and the realistic cluttered forest simulation environment using Microsoft
AirSim [67].

4.3.4 Data Collection Procedure

The task was presented to the demonstrator on a 23.8 inches display, 1920x1080 pixel resolution,

and eye gaze data collection was conducted using a screen-mounted eye tracker positioned at

a distance of 61cm from the demonstrator’s eye. Before the data collection, the height of the

demonstrator’s chair was adjusted in order to position their head at the optimal location for gaze

tracking. The eye tracker sensor was calibrated according to a 8-point manufacturer-provided

software calibration procedure. The demonstrator avoided moving the chair and minimized torso

movements during data collection, while moving the eye naturally. The demonstrator was also

given time to acclimate to the task until they judged for themselves that they were confident in

performing it. To perform the task, the demonstrator was only given access to the first-person view

of the quadrotor and no additional information about their current location or the target current
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Figure 4.4: Bird’s-eye view of possible spawn locations of the quadrotor and the target vehicle in
the simulated forest environment.

location in the map. Using a Xbox One joystick, the demonstrator was able to control quadrotor

throttle and yaw rate using the left joystick and forward and lateral velocity commands using the

right stick, as is standard for aerial vehicles. The complete data collection setup is shown in Figure

4.5.

Training data is collected with both initial locations for the quadrotor and target vehicle randomly

sampled without replacement from a set of 25 possible locations covering a pre-defined area of the

map, as shown in Figure 4.4. This prevents invalid initial locations, such as inside the ground or

trees, while still covering the desired task area. Initial quadrotor heading is also uniformly sampled

from 0 to 360 degrees. In total, 200 human demonstration trajectories representing unique quadrotor
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Figure 4.5: Data collection setup used to record human gaze and joystick data illustrating the
relative positioning between user, task display, joystick, and eye tracker, as noted in the figure. User
is given only the first-person view of quadrotor while performing the visual navigation task.

and vehicle location pairs (from a total number of 25× 24 = 600 pairs) were collected to form an

expert dataset for model training and testing. This includes RGB and depth images, the quadrotor’s

inertial sensor readings, and eye gaze coordinates.

4.3.5 Experimental Setup

The entire dataset of 200 trajectories is split into a training set of 180 trajectories and a test

set of 20 trajectories, for each experimental run. During exploratory data analysis on the collected

dataset, it was found that the yaw-axis actions were mostly centered around zero with a very low

variance. To ensure that the agent is trained with enough data on how to properly turn and not just

43



fly straight, weighted oversampling was employed in the training routine.

Evaluation of each trained model is performed by conducting rollouts in the environment as

follows. A configuration is defined as a pair consisting of an initial spawn location for the quadrotor,

and a target location, where the target vehicle is spawned, that is, the truck. Since there are 25

different starting and ending locations, there are a total of 600 unique configurations. For the

experiment, 200 unique configurations were chosen and 200 demonstration trajectories (1 for

each configuration) collected. The 200 configurations were then split into a training set and a

testing set, following a 90/10 split. This split proportion was chosen to maximize the utilization of

the collected data for training while still having a sufficiently sized set of trajectories (for offline

validation) that are representative of the distribution of the flight trajectories that may be encountered.

Expert demonstrations were collected that accomplish the task for each of those configurations.

180 trajectories (corresponding to the 180 training configurations) were used to train the model,

and the remaining 20 configurations were used to test the model (i.e. performing rollouts in the

environment).

Owing to the stochastic nature of the simulation dynamics and sensor sampling frequency, 5

rollouts are conducted for each configuration to obtain more accurate estimates of the evaluation

metrics, explained in the next section. Since test trajectory provides one unique configuration, a

total of 100 rollouts are conducted while evaluating each model: 5 rollouts per configuration, for 20

different configurations. Since the test configurations remain the same for all models, evaluation

consistency is ensured in each experimental run. All models are evaluated for 6 random seeds under

identical conditions, including random seed value.

In terms of the hardware infrastructure, all experiments were run in a single machine run-

ning Ubuntu 18.04 LTS OS equipped with an Intel Core i9-7900X CPU, 128 Gb of RAM, and

NVIDIA RTX 2080 Ti used only for Microsoft AirSim. In terms of the software infrastructure,

the proposed model was implemented in Python v3.6.9 and PyTorch [54] v1.5.0, data handling

using Numpy [74] v1.18.4 and Pandas [75] v1.0.4, data storage using HDF5 via h5py v2.10.0, data

versioning control via DVC v1.6.0, and experiment monitoring using MLflow [77] v1.10.0. Ran-
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dom seeds were set in Python, PyTorch, and NumPy using the methods random.seed(seed_value),

torch.manual_seed(seed_value), and numpy.random.seed(seed_value), respectively. With respect

to hyperparameters, the loss function is optimized using the Adam [35] optimizer with a learning

rate of 0.0003 for 20 epochs and batch size of 128 data samples. Hyperparameters for model

size, such as number of layers and units, are described in the “Model Architecture" section above.

Hyperparameter tuning was done manually and changes in network size had minor impact in the

proposed approach performance.

4.3.6 Metrics

In real-world robotics based applications such as the one pursued in this work, standard machine

learning metrics such as validation losses, and others that quantify how well a model has been

trained with the given data, tend to not translate into actual high performance models that can

successfully satisfy end-user requirements. To that effect, this research employs certain custom

metrics to evaluate the performance of our model when deployed to a new test scenario and help

demonstrate the effectiveness of using eye gaze as an additional supervision modality. The core

metrics for comparison between the proposed model and baselines include:

• Task Completion Rate: this is evaluated by dividing the number of successful completions

of the task by the total number of rollouts performed with that model. A successful task

completion is defined as the quadrotor finding the target vehicle and intercepting it within a 5

meter radius.

• Collision Rate: this is evaluated by dividing the number of collisions during a rollout with the

total number of rollouts performed with that model.

• Success weighted by (normalized inverse) Path Length (SPL): as defined in [5], is evaluated for

episodes with successful completion by dividing the shortest-path distance from the agent’s

starting position to the target location with the distance actually taken by the agent to reach

the goal. In this work, it is assumed the shortest-path distance is a straight line from the initial

quadrotor location to the target vehicle location, irrespective of obstacles.
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Metric Vanilla BC Gaze BC

Test Completion Rate (%) 16.83 ± 2.84 *30.5 ± 4.47
Collision Rate (%) 52.5 ± 6.21 50.83 ± 5.97
Weighted Path Length (SPL) 0.08 ± 0.02 0.14 ± 0.03

Table 4.1: Metric comparison in terms of mean and standard error between the proposed method,
gaze-augmented imitation learning Gaze BC, and the main imitation learning baseline with no gaze
information, Vanilla BC. Asterisk (*) indicates statistical significance.

4.4 Results

The proposed gaze-augmented imitation learning model, denoted Gaze BC in this section, is

compared against a standard imitation learning model with no gaze information, denoted Vanilla

BC in this section. Note that, when training our proposed gaze-augmented imitation learning model,

the values of both λ1 and λ2 in Equation 4.1 are set at 1.0, while for training the baseline imitation

learning model with no gaze information, λ1 is set to 0.0 while λ2 stays at 1.0.

In terms of policy performance, Table 4.1 provides a summary of the relevant metrics. Task

Completion Rate can be seen to be higher for the Gaze BC model by approximately 13.7 percentage

points. A Wilcoxon signed-rank test, a non-parametric statistical hypothesis test, was performed

using the task completion rate values (one metric value per seed) for both models, to evaluate the

statistical significance of the obtained results. A p-value of 0.0312 was obtained which shows that

our Gaze BC model outperforms the Vanilla BC model in statistically significant terms.

Collision rate remains roughly the same for both the Gaze BC and the Vanilla BC model. This

can be attributed to the fact that both models have access to the same observation space (visual

features, HOG features and kinematic features) and thus both models have the information needed

for collision avoidance.

SPL for the Gaze BC model can be seen to be 1.75x the SPL for the Vanilla BC model. This

shows that whenever the models successfully accomplish the task, the Gaze BC model, on average,

takes a significantly shorter path to reach the goal than the Vanilla BC model. This result again

illustrates the superior performance of a policy trained with eye-gaze data.
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Figure 4.6: “Motion leading" gaze pattern.

Figure 4.7: “Target fixation" gaze pattern.

Figure 4.8: “Saccade" gaze pattern.

Figure 4.9: “Obstacle fixation" gaze pattern.
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Visualization of sequence of three frames illustrating characteristic gaze patterns observed in

the human demonstrations, showed as magenta circles in the figure, which were also learned by the

proposed model, showed as cyan circles (best viewed in color). The Larger, less transparent circle

illustrates the current gaze observation and the smaller, more transparent circles represent gaze (and

gaze prediction) from previous time-steps.

4.5 Discussion

This work introduces a novel imitation learning architecture to learn concurrently from human

actions and eye gaze to solve tasks where gaze information provides important context. Specifically,

the proposed method was applied to a visual search and navigation task, in which an unmanned

quadrotor was trained to search for and navigate to a target vehicle in an asynchronous, photorealistic

environment. When compared to a baseline imitation learning architecture, results show that the

proposed gaze augmented imitation learning model is able to learn policies that achieve significantly

higher task completion rates, with more efficient paths while simultaneously learning to predict

human visual attention.

The closest related work to ours is Attention Guided Imitation Learning [79], or AGIL, which

presented a two-step training process to train a gaze prediction network then a policy to perform

imitation learning on Atari games, as explained in the Related Work section. There was no direct

comparison to AGIL due to fact that AGIL currently operates on synchronous environments which

can be paused, allowing for the game states to be synchronized with the human data. The data

collection process for AGIL requires the advancing of game states one step at a time after the

human performs each action. This is feasible when working with simple environments such as

Atari where the game engine can be paused, however the aim was to develop an approach that could

be translated to real-world applications running asynchronously in real time. Moreover, AGIL’s

architecture does not include any pretrained feature extractor, which significantly increases data

collection requirements when dealing with vision-based robotics tasks like the one featured in this

work.

With respect to the gaze prediction performance, four distinct gaze patterns observed during the
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human demonstrations were also learned by the Gaze Prediction Head of the proposed model, as

seen in Figure(s) 4.6, 4.8, 4.7, 4.9. These patterns were:

1. “Motion leading" gaze pattern where gaze attends to the sides of the images followed by yaw

motion in the same direction, as illustrated in Figure 4.6. This pattern is mostly observed at

the beginning of the episode when the target vehicle is not in the field-of-view of the agent

and is seen towards the beginning of the episodes as it is a behavior picked up from human

flying.

2. “Target fixation" gaze pattern where gaze is fixated at target during the final approach,

as illustrated in Figure 4.7. In this pattern gaze is fixed at the top of the target vehicle,

independent of the current motion of the agent. Consistency between actual eye-gaze and

predicted gaze is a result of the distinct visual features of a unique target in the camera frame.

3. “Saccade" gaze pattern where gaze rapidly switches fixation between nearby obstacles [63],

as illustrated in Figure 4.8. This pattern is characteristic when there are multiple obstacles

between the current agent location and the target vehicle.

4. “Obstacle fixation" gaze pattern where gaze attends to nearby obstacles when navigating

to the target, as learned from multiple demonstrations, which might differ from the current

obstacle user is attending to at the moment, as illustrated in Figure 4.9. This pattern is mostly

observed when the quadrotor is in close distance to an potential obstacle.

This illustrates how the Gaze Prediction Head of the proposed model was able to capture and

replicate similar visual attention demonstrated by the user when performing the task. The gaze

patterns also confirm the hypothesis that the agent learnt representations of the visual scene that

were not simply ’instructing’ control to an eye-gaze notified location but learning control that was

conditioned on both the area of attention and the type of object being attended to.

With respect to the selection of loss weighting parameters, it is to be noted that overweighting of

the gaze prediction task results in the inability to learn an effective control policy in the same training
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time (number of epochs) due to over-focusing on gaze prediction performance. It is important

to note that training for a sufficiently large number of epochs while eventually lead to both the

behavior cloning and gaze prediction losses to converge to their lowest possible values. However,

when training for a fixed number of epochs, it is critical to ensure that the gradient updates for the

model lower both the behavior cloning and gaze prediction losses at a similar scale to avoid any one

task from dominating the other in the training process.

4.5.1 Limitations and Future Work

A limitation of the current work is not being able to complete the proposed task with a higher

rate. This can be attributed to one simple reason, as in all end-to-end learning approaches: the

limited training dataset. This issue is accentuated in human-in-the-loop machine learning tasks,

such as the one used in this work, since human-generated data is scarce. For this work the only data

available was a set of 200 human-generated trajectories and believe that task completion rate could

increase by simply training the model with more data. This additional data could come from more

independent trajectories, by labelling agent-generated trajectory and aggregating to the original

dataset [59], or by tasking the human to overseer the agent and perform interventions when the

agent’s policy is close to fail, also aggregating this intervention data to the original dataset [26].

In this case, the ability of a human trainer to enact timely interventions may be greatly improved

by the gaze predictions the model generates, which would highlight instances where this artificial

gaze deviates from what they expect, potentially indicating subsequent undesirable behavior and

providing some level of model interpretability or explainability.

Another possible avenue for future work is the addition of a one-hot encoded task specifier in

the input space of the model, which could aid in training models that learn, like humans, to adapt

their attention and behavior according to the task at hand. Furthermore, the integration of additional

human input modalities to the proposed approach, such as natural language, could similarly be

used to condition the model to perform multiple different tasks. The combination of gaze and

natural language would enable humans to more naturally interact with learning agents, and enable

those agents to disambiguate demonstrator behavior and attention dynamics that are otherwise
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ambiguous because they are pursuant to distinct tasks and goals that could be grounded to language

commands. The ability to use eye-gaze data to leverage a human’s visual attention opens the door

to adapting this research to learning unified policies that can generalize across multiple context- and

goal-dependent, tasks.
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5. CASE STUDY: LEARNING FROM HUMAN INTERACTION ON A HARDWARE

PLATFORM

5.1 Problem Definition and Background

Figure 5.1: An overview of imitation learning paradigms. Reprinted from [2]

Approaches for real-time machine learning on actual vehicles, that depend on interaction with

the world (such as reinforcement learning) have a major limitation associated with them which

is that the agent needs to have the chance to try (and fail) many times. This is a tough constraint

when operating in the real-world when safety is a concern and catastrophic failure is not an option.

This is also quite impossible in general in real life where each interaction takes time (in contrast

to simulation). This is where imitation learning comes into the picture as it allows for offline and

non-interactive learning from a saved log of expert actions. This work attempts to demonstrate a

combination of offline and safe interactive learning on hardware.

There are primarily three approaches to imitation learning:
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• Offline: This approach involves an expert operator execute the trajectories with the states/observations

and actions being simultaneously recorded. The recorded data is then used by a supervised

learning algorithm to regress from states to actions. Divergence between learner and expert

actions on states from expert demonstrations is measured and utlized by the supervised

learning algorithm. This is also known as behavior cloning and does not require the physical

involvement of the vehicle during the training process.

• Online: This approach involves the vehicle autonomously executing a trajectory (using a

learner policy model) from the same start location as a demonstration trajectory. The delta

between the learner and expert trajectories is measured and the policy model is trained to

minimize this delta. Generative Adversarial Imitation Learning (GAIL) [29] is an algorithm

that uses a discriminator network to measure this delta.

• Interactive: The interactive approach is a version of the offline approach but attempts to cover

the gaps in the policy model’s knowledge of the data distribution by seeking interventions in

areas of poor model performance. An intervention essentially auto-labels the regions of the

input space where the policy model performs poorly. This approach essentially follows the

below routine:

– Step 0: Start with an empty dataset D

– Step 1: Record the vehicle executing a sample trajectory.

– Step 2: Seek intervention where model performs poorly. Append this data to D.

– Step 3: Regress over data in D.

– Step 4: Go back to 1

Divergence between learner and expert actions but on states from learner rollouts is measured.

This approach is known as DAgger [46].
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5.2 Implementation

5.2.1 Model Design

Figure 5.2: Backpropagated gradients from the Gaze Prediction Head update the trainable weights
of the Scene Representation Network

A simplified version of the core model architecture used in the work discussed in Chapter 4 is

shown in Fig. 5.2. Backpropagated gradients that flow from the Gaze Prediction Network update

the weights in the trainable layers of the Scene Representation Network. This results in the scene

representation network learning a representation of the visual scene that is specific to the task

being performed by the expert demonstrator. In order to simplify the architecture and allow for

"unit-testing" of human-in-the-loop learning, the scene representation network’s vector output is

substituted with AprilTag(s)[51] detection vectors that essentially represent the spatial location of

the tag in the image plane. This offers the advantage of demonstrating learning from visual attention

without needing to rely on noisy eye-gaze signal data from the operator. This model is shown in Fig.
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5.3.

Figure 5.3: Reduced model representation

In order to prevent overfitting to values in the kinematic state vector, the model relies on only the

AprilTag feature vector as input. This improves the policy model’s ability to generalize to new initial

locations. Another advantage of using only AprilTag features as the input to the model means that

policies can be trained in simulation and rolled out directly in the real physical environment since

AprilTag features are domain invariant and do not differ between simulation and reality. AprilTag(s)

were also chosen for their quick detection times and minimal need for any parameter tuning for the

detection process itself.

5.2.2 Training Objective

The training objective for the policy model is based on the general loss function formulation for

multi-objective optimization.

Alternatively, MTL can be formulated as multi-objective optimization: optimizing a collection
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of possibly conflicting objectives. This is the approach taken in this work. The multi-objective

optimization formulation of MTL is specified using a vector-valued loss L.

The goal of multi-objective optimization is achieving Pareto optimality, defined mathematically

as:

min
θsh,θ1,...θT

L(θsh, θ1, ...θT ) = min
θsh,θ1,...θT

L(θsh, θ1) + L(θsh, θ2) + .....

In the specific case of gaze-augmented behavior cloning, the above loss function is expressed as:

L(θ) = λ1 ∗ LGP + λ2 ∗ LBC

LGP =
∥∥(πgaze − gt))∥∥2

LBC =
∥∥(πaction − at))∥∥2

In the case of learning with demonstrations and interventions combined, λ1 is set to zero. Since

interventions are essentially partial demonstrations, the mathematical formulation is identical to one

for standard behavior cloning.

5.2.3 Experimental Configuration and Hardware Setup

The experiments were conducted using a Parrot Anafi [4] in an indoor environment where a

yellow cupboard was marked as an object of interest using an AprilTag. The task involves flying

to the object of interest purely visually, from a set of unique initial locations. The set of unique

locations are chosen while ensuring that the object of interest is within the the initial field of view.

For the experiment involving learning with interventions, the input to the policy model consists

of the camera frame coordinates of the detected AprilTag. The episode ends in successful task

completion when the AprilTag’s projected area in the camera’s frame crosses a threshold value, as

this serves as a metric of proximity to the target.

For the experiment involving learning from eye-gaze, the input to the policy model consists

of the raw camera frame image. The policy model consists of a series of pretrained layers on the

input side. These are essentially the MobileNet layers except the output layer. The episode ends in
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Algorithm 1 Human-in-the-Loop Policy Learning
1: procedure MAIN

2: Instantiate and initialize control policy π
3: Record expert dataset from human demos DH
4: Define termination criteria T
5: while termination criteria is false do
6: Read observation o
7: Run policy model (π) inference
8: Sample action aπ ∼ π
9: if Human Override detected (iH) then:

10: Perform human action aH , record any passive human modality iH/aH
11: Add o, iH to DH
12: else
13: Execute aπ
14: if End of Episode then
15: Run Update Policy procedure (line 16)
16: procedure UPDATE POLICY

17: Initialize loss threshold lossTH
18: Load human dataset DH
19: if New Samples then:
20: while loss < lossTH or n epochs do
21: Sample N samples o, i from DH
22: Sample â ∼ π
23: Compute loss(â, aH , o)
24: Update agent policy π
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successful task completion when the pixel coverage of the yellow cupboard exceeds one-third of the

total number of pixels in the camera frame.

Task completion is automatically detected and once the detection triggers in, any autonomous

control command gets overriden and set to idling values for safety. Manual control of the vehicle

is available to allow for repositioning before the next episode. An episode/rollout that involves

teleoperation for any portion of the executed trajectory is termed as a human interaction episode.

The overall setup is illustrated in Figure 5.4.

Demonstrations and rollouts are collected in a manner such that each trajectory has a different

initial configuration (x, y and θz). A top-down spatial overview with illustrative examples for a

training and evaluation trajectory is presented in Fig. 5.4. Different randomized initial yaw positions

are used for the same spatial location. The initial state configuration sets for training and evaluation

are kept non-overlapping to prevent overfitting models from inaccurately influencing metrics such

as task completion rate as they would perform better when used in same regions of the state space

as the training data. Moreover, multi-task models (such as the one developed in this research)

are implicitly regularized due to the multiple objectives they are trained on. They will tend to

perform worse than the non-regularized models when evaluated in the training set itself and their

generalization capabilities wouldn’t be accurately reflected.

For the experiment investigating the effect of sampling data through interventions as well (as

opposed to just demonstrations), a set of initial demonstrations are provided. Following this a

policy trained from scratch on these initial seed demonstrations is rolled out while keeping the

human-in-the-loop. A manual intervention is permissible at any stage and gets recorded to disk.

At the end of each episode where an intervention occurred, the policy is tuned again by training a

randomly initialized model on the aggregate set of human-collected samples so far.

The AprilTag feature vector is prepared by extracting the x, y coordinates of the corners of the

AprilTag. These coordinates are then normalized using the height and width of the image frame the
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Figure 5.4: An overview of the setup used for the experimental operations

AprilTag detector operates on. Thus, the visual feature vector can be expressed as:

ft = [x1 y1 x2 y2 x3 y3 x4 y4]
T

5.2.4 Eye Tracker Calibration

Calibration is the process whereby the geometric characteristics of the human operator’s eyes

are estimated as the basis for a fully-customized and accurate gaze point calculation.

Before an eye tracking recording is started, the user is taken through a calibration procedure.

During this procedure, the eye tracker measures characteristics of the user’s eyes and uses them

together with an internal and anatomical correct, 3D model of the human eye to calculate the

requisite gaze data. This model includes information about shapes, light refraction and reflection

properties of the different parts of the eyes (e.g. cornea, placement of the fovea, etc.). During the
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Figure 5.5: An overview of the spatial setup for the hardware experiments. The non-overlapping
sets of starting configurations between the training and evaluation sets is highlighted.
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calibration the user is asked to look at specific points on the screen. These specific dots are also

known as calibration dots. During this period several images of the human operator’s eyes are

collected and analyzed. The resulting information is then taken into account along with the eye

model and the gaze coordinates (abcissa and ordinate in the screen frame) for each image sample

are calculated.

When the procedure is finished the quality of the calibration is illustrated by green lines of

varying length. The length of each line represents the offset between each sampled gaze point and

the center of the calibration dot. Large offsets (long green lines) can be caused by various factors

such as, the user not actually focusing on the point, the user being distracted during the calibration

or the eye tracker not being set up correctly. However, the user does not have to keep the head

completely still during calibration as long as the focus of the user’s eyes is kept on the moving

dots. The dependence of the calibration procedure on the geometric and other related characteristics

means that the calibration process needs to be redone whenever the human operator is switched or

changes in seating position occur.

There are multiple ways to calculate the gaze coordinates and the two primary ways supported

by the Tobii eye-tracking hardware are the light and dark pupil methods [1]. The bright pupil eye

tracking method is the one where an illuminator is placed close to the optical axis of the imaging

device causing the pupil to appear lit up (similar to the same phenomenon that causes red eyes in

photos), and dark pupil eye tracking, where an illuminator is placed away from the optical axis

causing the pupil to appear darker than the iris. During the calibration both the light and dark pupil

methods are tested to identify the most suitable for the current light conditions and the user’s eye

characteristics.

5.2.5 Hardware Platform Selection

The Parrot Anafi was chosen as the hardware platform of choice for these experiments due to

high-fidelity video streaming capabilities coupled with a highly stable hovering mode. A highly

stable hovering mode is essential in ensuring that the human demonstrations can be provided

intermittently. Intermittent teleoperation reduces the cognitive workload on the human operator
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while ensuring there is enough time provided to the human operator to properly perceive the whole

observation (image frame). This is necessitated by the fact that the central vision cone of a human

is minimal and continuous teleoperation would lead to parts of the image frame being missed due

to poor peripheral vision. Intermittent teleoperation is suited for policy models that are built for

reactive control and are Markovian in nature.

The Parrot Anafi’s hover stabilization works as follow: while hovering, the vehicle’s vertical

camera captures a reference frame. It is then compared to subsequent shots taken at a frequency of

15Hz. The algorithm calculates the camera movement that would minimize the reprojection error

between the reference photo and more recent one. This movement is then used as an instruction

for the autopilot. This method ensures that the Anafi is stable within a 1.5 cm radius-sphere at

1 m height. The algorithm also allows for yaw stabilization and contributes to the overall image

stabilization performance.

The other mission-critical aspect of the vehicle is it’s video streaming capability. Low-latency

and tear-free streaming of first-person video is critical for a controller that relies solely on visual

observations to generate commands to pilot the vehicle. The high-definition video stream is designed

to minimize the impact of packet losses and to dilute any spatial errors. The algorithm combines

slice-encoding and a periodic partial refresh of the frame at a high frequency. The video streaming

algorithm encodes images as 45 slices of 16 pixels height each. It then refreshes all those slices in

batches of 5 slices each, every 3 images. The refresh is complete every 29 images.

Lastly, the Parrot Anafi interfaces with the Python runtime on the Ground Control Station

(GCS) computer through a message-passing mechanism. This message-passing mechanism not

only controls the vehicle but also provides hardware debugging information in real-time on request.

This allows the building of highly robust software systems for hardware operation that can adjust

execution routines to handle hardware failures or other exceptions that degrade mission capability.

This prevents the need to specifically train human operators to handle such circumstances. This

exception handling is discussed in detail in Chapter 3.
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5.2.6 Model Design

The policy model is a feed-forward neural network with two hidden layers having 16 and 8

units each. The output is a 3-dimensional vector. The components of this 3-dimensional vector are

linear velocity along x-axis, linear velocity along y-axis and rotational velocity along z-axis. The

input to the model (the observation space) is a scene representation vector, that is essentially an

8-dimensional vector consisting of the x,y coordinates of the 4 corners of the AprilTag marking the

target for interception.

Exponential Linear Units (ELUs) [18] in contrast to ReLUs have negative values which al-

lows them to push mean unit activations closer to zero like batch normalization but with lower

computational complexity. Mean shifts toward zero speed up learning by bringing the normal

gradient closer to the unit natural gradient because of a reduced bias shift effect. Contrary to

other forms of normalization such as input normalization and batch normalization, normalization

through activation functions such as ELUs is implicit and the propagation through multiple layers

of the neural networks still results in the outputs converging towards a zero mean and unit variance

distribution.

Deep learning is known to be effective at discovering underlying patterns from massive amounts

of data, even with noisy outputs used as ground truth values. However, when extremely limited data

is present, neural networks memorize the samples and learn to model the noise instead of just the

underlying signal [78]. This defeats the purpose behind pattern recognition. The alternative is to

provide as accurate an output signal as possible. Hence, to counter the issue of the model fitting to

the noise, the following two steps are taken:

• Appropriate Model Complexity: The neural network policy is designed to keep the total

number of trainable parameters lesser than the number of data points. Overfit models that

learn to model the noise seen in the outputs usually do so because the number of unique

data points seen during training are lesser or the same as the number of trainable parameters

(analogous to solvable unknowns in a system of equations). Hence, it is important to ensure

that the complexity of a model (in terms of number of trainable parameters) is at least the
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same order of magnitude as the number of training samples available.

• Removing Stochasticity from Ground Truth Data: The raw human piloting data obtained

is post-processed using the following transformation:

aexpert = sgn(aexpert_raw) ∗GV

The gain value (GV) essentially controls the magnitude of the respective component velocities

and is represented as a fraction of the maximum velocity permissible for that component

of the action. The gain value is set to 0.5 for the purposes of this research. The backward

propagated gradient with a mean-square error loss is essentially the difference between the

predicted and ground-truth values. Since, the neural networks are initialized with near-zero

weights, setting a low GV will result in low magnitude gradients being backpropagated thus

significantly slowing down training. Despite the demonstration actions (used as a training

signal) assuming only a finite set of values, MSE is used as the training objective since a

mean squared error loss is well suited for underlying data distributions that are continuous

and normal or similar.

Removing stochasticity in such a way, ensures that not only is the output data fed to the model

during training is as close as possible to the output signal but also is resilient to any outlier

data. Outliers in training data can significantly the trained model’s prediction performance

since model’s trained with mean square error losses converge to the average of the outputs

paired with a given input.

The outputs of the policy model (allowed to have continuous values) are normalized into a

unit vector so that neural network determines just directional movement of the vehicle and the

speed at which it executes the commanded trajectory can be hard-coded based on preferences

related to safety, completion time constraints etc.
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Figure 5.6: Task Completion Rates and Teleoperation Input Required compared for models trained
on demos only and demos+interventions

5.3 Results

Fig. 5.6 shows the comparison between two models. Both are trained with 4 human interaction

episodes but utilize different methods of sampling human data. The former contains 4 demonstration

episodes while the latter consists of 2 demonstration episodes and 2 intervention episodes. Both

models were evaluated over a set of 20 rollouts each. The results shown in Fig. 5.6 confirm

the hypothesis that learning from both demonstrations and interventions results in lesser data

requirement than the scenario in which we learn from demonstrations alone, for the same number

of episodes of human interaction. With this context the higher task completion rate exhibited by

the control policy trained with both demonstrations and interventions is even more significant. A

two-proportion z-test conducted on the task completion rate values for both the models yielded

a p-value of 0.029. This result further supports the hypothesis that a hybrid learning strategy

inherently seeks more useful training data from the human observer (similar to active learning).

Fig. 5.7 shows the comparison between a policy model trained using gaze regularization and

another trained without. Both models are evaluated over a set of 40 rollouts each. The plot shows

how using eye-gaze as a training signal (under an appropriate loss weighting scheme) results in

65



Figure 5.7: Task completion rates for policy models trained with different degrees of gaze regular-
ization. Task completion rates are calculated by averaging binary success indicators over the total
number of rollouts (40) for each policy model.
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higher task completion rate (0.35 vs 0.25). A two-proportion z-test conducted on the task completion

rate values for both the models yielded a p-value of 0.067. This demonstrates the effectiveness of

visual attention data in learning representations of image data that help in visual servoing.

5.4 Discussion

Besides resulting in a higher task completion rate with a lesser degree of piloting input (as seen

in the results above), learning from interventions also has another qualitative advantage. When

implementing the human-demonstration driven learning in real world environments, catastrophic

failures may be seriously damaging to the autonomous agent, and thus unacceptable. Having a

human observer capable of intervening provides a mechanism to prevent this inadmissible outcome.

Further, alternative techniques that attempt to enforce a similar safety override through hand-

engineered code might implicitly limit the exploration of the state space, yielding a less general

or less capable policy. Hand-engineering safety overrides might also not be exhaustive in their

coverage of various scenarios. In conjunction with eye-gaze, learning from interventions could help

teach agents control policies that are more visually aware while trying to avoid ending up in failure

states.
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6. CONCLUSIONS

The following conclusions are made based on the results presented in this thesis:

1. Learning from additional human sensory modalities in addition to learning from demonstra-

tions leads to higher task completion and performance in tasks that require joint perception

and reasoning. As seen in the work described in Chapter 4, an increase of 13.7 percentage

points in task completion was observed when the policy models learnt from both human

eye-gaze data and teleoperation commands as opposed to teleoperation commands only.

Policies trained with eye-gaze achieve a more direct routing to the goal in visual navigation

tasks as is evident in the Success-weighted Path Length metric (0.14 for gaze-regularized vs

0.08 unregularized).

The two results in combination demonstrate the significant role played by visual attention in

guiding directional control of an agent. This is especially important for visual navigation in

unstructured and cluttered environments.

2. A hybrid mix of demonstrations and interventions (total interaction episodes equally split

between the two) has a higher task completion rate (65% vs 35%).

The hybrid mix also requires a lesser number of human samples (27.1% lower) while achieving

higher task completion indicating interventions provide data points that help fit a more general

(that fits better across the whole input space) model. This illustrates how interventions provide

a richer feedback signal to the agent and the data samples collected during interventions

effectively cover regions of the state space where the control policy model’s fit is poor at that

instant.

3. Learning from demonstrations using eye-gaze as an additional training signal is demonstrated

to result in a higher task completion rate (0.35 as opposed to 0.25 for standard behavior

cloning) given the same number of demonstrations (10) on a Go To Target task using a Parrot
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Anafi and relying on just pure visual observations. This reinforces the idea of visual attention

data being helpful in learning representations of image data that are well suited for visual

servoing.

4. Development of a codebase in compliance with the SOLID principles of program design

gives the ability to run experiments with varied configurations while resulting in execution

of majority amount (> 50%) of shared (configuration-agnostic) code. This consequently

results in the ability to add functionality (such as support for a new vehicle or sensor platform)

without the overhead of needing to write boilerplate code. Another advantage of a large

amount of shared code execution is the ability to write plugins that universally work with

different kinds of experimental configurations.
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7. RECOMMENDATIONS

Several recommendations are made based on the research in this thesis:

1. A step towards enhancing the feasibility of eye-gaze as human interaction modality would be

to investigate filtering techniques to make eye-gaze a more reliable training signal. Inatten-

tiveness and saccades corrupt the training signal provided through eye gaze input and thus

make any gradient feedback obtained from a gaze prediction task useless.

Designing hand-engineered rejection mechanisms to filter out inattentiveness coupled with

noise filtering to smooth out the training signal could make learning better and improve

reliability of the eye-gaze training data by making sure it models the signal instead of noise.

2. Learning from visual attention requires perception networks that are specifically designed to

operate on ultra high-dimensional input and have a finite output space. This output space is a

discrete set containing spatial locations. Using neural networks better suited to model visual

attention could help in gaining policy convergence in a much more data efficient manner

making learning from gaze amenable to real-time learning.

Networks that are well suited for this kind of problem include Graph Neural Networks and

Graph Convolutional Neural Networks. These networks have a significantly lower set of

connections and parameters and are thus more sample-efficient. The structure of the said

neural networks models forces gaze predictions to be more spatially aware and entity-focused

rather than being a generic non-parametric distribution over the entire image observation.

This could help in gaining policy convergence in a much more data efficient manner making

learning from gaze amenable to real-time learning.

3. A core requirement is the need to minimize the need to collect data in the real world and

validate policies on physical vehicles. Incorporation of any reinforcement-learning based

technique in the policy training process would also require having a fairly realistic simulated
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environment that transfers well to the real world.

This can be enabled by incorporating research in domain adaptation and sim2real techniques

focused on making control policies transferable from simulation to real-world environments.

Sim2Real refers to a concept of transferring robot skills acquired in simulation to the real

robotic system. Sim2Real draws its appeal from the fact that it is cheaper, safer and more

informative to perform experiments in simulation than in the real world. Further investigation

could cover advances in imitation from observations and transfer learning in simulation.

4. Sample-efficient behavior cloning would require transitioning away from neural networks

towards models that fit better with fewer data points provided. This can lead to better policy

maturity with lesser human piloting needed.

One way forward to accomplish this would be to use Gaussian Processes for regression

problems. Gaussian Processes are extremely sample-efficient and through the Expected Im-

provement metric, provide a good understanding of the existing gaps in a model’s knowledge.

Also, the continuous and differentiable nature of Gaussian Process functions ensures that

nominal variations in the input space do not lead to large variations in the output space.

5. Another avenue of improvement would be the incorporation of active learning techniques for

more efficient sampling of data while filling in the gaps in the policy model’s understanding

of the state space. This would alleviate the cognitive workload imposed on a human operator

throughout a vehicle rollout by not relying solely on their judgement to decide when to

intervene.

Uncertainty quantification of neural network predictions can help in identifying regions of the

state-space where a neural network’s predictions have high variance/uncertainty. Interventions

in such regions even when catastrophic failure is not imminent can improve the policy’s

performance.

6. The approach towards multimodal learning in this work is still based on behavior cloning

and is not immune to its flaws such as overfitting. Moreover, a supervised learning approach
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implies that policy performance will always be limited by the quality of the demonstration

provided.

More robust approaches to imitation learning such as Generative Adversarial Imitation

Learning could be explored as the skeletal framework to which additional modalities can be

added in a manner similar to the one described in this work.
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