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 ABSTRACT 

 

Tropical cyclone tornadoes (TCTORs) are a hazard to life and property during 

landfalling tropical cyclones (TCs). The threat is often spread over a wide area within 

the TC envelope, and must be continually evaluated as the TC moves inland and 

dissipates. To diagnose the risk of TCTORs, forecasters use high-resolution, rapidly-

updating models such as the Rapid Refresh (RAP) and High-resolution Rapid Refresh 

(HRRR), and an ingredients-based approach similar to that used for forecasting 

continental mid-latitude tornadoes. Though RAP and HRRR model errors have been 

identified in typical midlatitude convective environments, this study seeks to evaluate 

the performance of the RAP and the HRRR within the TC envelope up to 800 km from 

the TC center, with particular attention paid to variables identified in previous studies as 

useful for TCTOR forecasting.  

A sample of 1,730 observed upper-air soundings is sourced from 13 TCs that 

made landfall along the US coastline between 2017-2019. The observed soundings are 

paired with their corresponding model grid point soundings from the RAP analysis, RAP 

12-hour forecast, and HRRR 12-hour forecast. Model errors are calculated for both the 

raw sounding variables of temperature, dew point, and wind speed, as well as for the 

quantities of selected sounding-derived parameters. Results show a moist bias that 

worsens with height across all model runs. There are also significant underpredictions in 

stability-related parameters such as convective available potential energy (CAPE) and 

kinematic parameters such as vertical wind shear.  
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1. INTRODUCTION  

 

Tropical cyclone tornadoes (TCTORs) present a critical public hazard and 

forecasting challenge within landfalling and remnant tropical cyclones (TCs). 

Observations of TCTORs are distributed over wide spatial scales and temporal windows 

within the TC envelope (e.g., Edwards 2012), and the evolving tornado threat must be 

monitored as the TC approaches the coast, moves inland, and dissipates. To track short-

term changes in mesoscale features and variables critical to tornado production, 

forecasters rely on models such as the Rapid Refresh (RAP) and High-Resolution Rapid 

Refresh (HRRR), which have high spatial and temporal resolution and frequently 

assimilate new environmental data (Benjamin et al. 2016). Numerous studies have 

verified these models in continental environments, but their performance specifically 

within landfalling TCs has not been investigated. This study evaluates model biases in 

the RAP analysis, and RAP and HRRR forecasts, within the envelopes of TCs that made 

landfall during the 2017-2019 Atlantic hurricane seasons. Errors in vertical profiles of 

temperature, dew point, and wind as well as errors in sounding-derived parameters used 

in tornado forecasting are examined spatially and temporally with respect to the TC. 

This model verification comprises the foundation of an ongoing larger effort to improve 

the TCTOR forecasting and warning process by better understanding differences in the 

near-cell environments of tornadic and non-tornadic cells within TC rainbands.  
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2. BACKGROUND AND HYPOTHESES 

 

While TCTORs comprise less than 10% of overall U.S. tornado activity, they 

account for ~10-25% of the overall tornado activity in each state bordering the Gulf and 

Atlantic coasts from Louisiana to Maryland (Edwards 2010; Schultz and Cecil 2009). It 

is estimated that nearly 1,800 TCTORs occurred during the years 1950-2007, with every 

coastal state from Texas to Virginia experiencing more than 100 of these events during 

that period. Just over 60% of these tornadoes occurred within 100 km of the coastline, 

but the threat of TCTORs can persist much farther inland and many days after the TC 

landfall (Schultz and Cecil 2009). Hurricane Ivan (2004) provided an extreme example 

of this, spawning 118 tornadoes in a multi-day outbreak that occurred in three distinct 

geographical clusters along a path from the Gulf coast of Florida to Maryland (Edwards 

2012). Even in less extreme cases, however, the risk of TCTORs remains elevated for a 

substantial period of time, with the majority of TCTORs occurring between 12 hours 

prior to landfall and 48 hours after landfall (Schultz and Cecil 2009).  

TCTORs most commonly occur in the right-front quadrant relative to the motion 

of the TC while the hurricane or tropical storm is in its mature phase (Figs. 2.1b, c). 

TCTOR reports tend to shift toward the right-rear quadrant as the TC weakens (Fig. 

2.1d) due to the fact that this quadrant of the TC usually moves over land during the 

remnant phase and usually contains higher values of convective available potential 

energy (CAPE; Edwards 2012; McCaul 1991). Combining the reports from all phases 

over the TC life cycle (Fig. 2.1a), 80% of all TCTORs occur in a sector from 350 to 120 
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meteorological degrees, where 0 degrees represents the TC’s direction of motion 

(Schultz and Cecil 2009). Although Figure 2.1 shows the north-relative distributions of 

TCTORs as opposed to motion-relative, Schultz and Cecil (2009) showed that the 

distinctions between the two distribution patterns are minimal. 

 

 

Figure 2.1: TC center-relative plots of 1995–2010 TCTOR records: a) all TCs, b) 

hurricanes, c) tropical storms, and d) tropical depressions, remnant lows and TC 

remnants. Events plotted with respect to north-relative azimuth and range (km as 

labeled) from center position, at the time of each tornado. [Figure and caption reprinted 

from Figure 6, Edwards (2012).] Reprinted with permission from R. Edwards. 
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Further examination of the spatial distribution of TCTORs in Figure 2.1 reveals 

that the overwhelming majority of reports fall within a range of 100-500 km from the 

center (Edwards 2012). This means that even in highly destructive TCs with large 

hurricane-force wind radii, many of the TCTORs that develop can cause a significant 

deterioration of local conditions because they occur outside of the area that prepared for 

hurricane-force winds. Hence, forecasters must closely monitor the favorability of the 

environment for TCTOR production at the regional scale. 

As in non-tropical environments, the most prevalent tornadic storm modes within 

TCs are supercellular. The three most common tornadic storm modes in TCs are 

supercells in clusters, discrete right-moving supercells, and supercells embedded in 

QLCSs; altogether these account for around 80% of TCTOR events (Edwards et al. 

2012). However, the supercells within TCs are generally shallower and narrower, with 

more weakly rotating mesocyclones than those of their non-tropical counterparts (Spratt 

et al. 1997; Edwards 2012).  TCTORs also tend to be weaker than non-tropical 

tornadoes. The TCTOR climatology compiled by Schultz and Cecil (2009) examined the 

distribution of their damage ratings and found that 81% of TCTORs were classified as 

weak (EF0-EF1), while just 74% of overall U.S. tornadoes were classified in this 

category. Conversely, strong tornadoes (EF2-EF3) occurred just 14% of the time in TCs, 

while 21% of overall U.S. tornadoes were rated as such. The diurnal distribution of 

TCTOR frequency is also shifted from that of non-tropical tornadoes. The bulk of 

TCTORs occur between 9 a.m. and 6 p.m. local time, with a distinct peak in reports 

between 3 and 6 p.m.; this is earlier than the early-evening maximum in non-tropical 
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tornado frequency (McCaul 1991). Despite this fact, nocturnal tornadoes are still more 

common in TCs than in the overall U.S. tornado record (Schultz and Cecil 2009).  

Systematic differences between TC and non-tropical tornado environments 

emerge in the moisture, instability, and shear characteristics of the near-cell environment 

of their parent cells. Moisture is much more abundant throughout the column in the TC 

environment, as demonstrated by much higher values of precipitable water compared to 

those observed in non-tropical atmospheric profiles (Edwards et al. 2012). CAPE values, 

on the other hand, tend to be lower throughout the TC envelope than in typical mid-

latitude convective environments (McCaul 1991). A comparison of mixed-layer CAPE 

(MLCAPE) in non-tropical versus TC supercell tornado cases from 2003-2011 found a 

median MLCAPE of 1240 J kg-1 present in the non-tropical environments as opposed to 

just 547 J kg-1 in the TCTOR environments (Edwards et al. 2012). The highest values of 

CAPE are found in the outer regions of the TC on the right side of the track, especially 

toward the right-rear quadrant, and CAPE values then decrease inward toward the TC 

center to values less than 400 J kg-1 (McCaul 1991). Surface-based CAPE (SBCAPE) 

can be enhanced beneath cloud-free slots within the TC envelope that are created and 

maintained by mid-tropospheric drying (Curtis 2004). However, the warm-core nature of 

TCs produces weak thermal lapse rates aloft that tend to cap the vertical extent of the 

buoyancy at just a few kilometers AGL, around the 600-mb level (Edwards 2012; 

McCaul 1991).  

Much stronger low-level vertical wind shear values are observed in TC 

environments than in non-tropical environments (McCaul 1991). In general, low-level 
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shear is stronger and tornado production is more likely in more intense TCs (Verbout et 

al. 2007). Vertical shear decreases with radial distance from the TC center, and the 

strongest shear and largest storm-relative helicity (SRH) values occur in the right-front 

quadrant of the TC (McCaul 1991). This is due to the fact that this quadrant is typically 

co-located with the downshear-left quadrant of the TC, where the background synoptic-

scale flow in the middle and upper troposphere most often overlaps favorably with the 

TC wind structure to enhance deep-layer shear and support wind profiles that veer 

continuously with height (Schenkel et al. 2020). As TCs move farther into the mid-

latitudes after landfall, they encounter stronger westerly flow aloft. This can maintain 

and even enhance vertical wind shear with time when coupled with frictional slowing of 

the wind speeds near the surface. Helicity parameters also tend to increase with time 

after the landfall (Gentry 1983; McCaul 1991).  

Despite all of the aforementioned differences in the values and distributions of 

meteorological variables between the two environment types, the traditional ingredients-

based approach to non-tropical tornado forecasting is also used in TCTOR forecasting. 

Since low-level moisture is in plentiful supply within the TC envelope, TCTOR 

forecasting relies heavily on identifying regions of favorable instability and shear in 

proximity to mesoscale boundaries or other lifting mechanisms. Identifying short-term 

temporal trends, recent or forecasted, in such variables is crucial when diagnosing 

TCTOR potential (Edwards 2012). Mid- and upper-level data are also examined for 

supporting features, such as the super-positioning of background flow to produce wind 

profiles conducive to TCTOR production, or the progression of mid-tropospheric drying 
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visible on 700- or 500-mb relative humidity maps that could be an early warning sign of 

a TCTOR outbreak (Schenkel et al. 2020; Curtis 2004). Nowotarski et al. (2021) showed 

that 0-6 km shear and 0-1 km SRH were the kinematic parameters that best 

discriminated between tornadic and non-tornadic cells within Hurricane Harvey. Also, 

mean values of lowest 100-mb MLCAPE,  0-3 km lapse rate, and the significant tornado 

parameter (STP) were significantly greater for tornadic versus non-tornadic 

environments in their study. These variables that display forecasting utility align with 

those of Edwards et al. (2012), who showed larger values of MLCAPE, 0-6 km shear, 

and STP in the near-cell environments of strong TCTORs (EF2 and EF3) than in the 

near-cell environments of weak TCTORs (EF0 and EF1). Additionally, Davies (2006) 

found that the 0-1 km energy helicity index (EHI), which combines parcel CAPE and 0-

1 km SRH into a single parameter, was notably greater in cases with TCTORs rated EF2 

or higher than in non-tornadic environments. 

In order to evaluate these rapidly evolving conditions on small spatial scales 

within the TC envelope, forecasters employ high-resolution models such as the Rapid 

Refresh model, or RAP (Benjamin et al. 2016). The RAP model domain covers the 

entire North American region at 13-km horizontal resolution and at 51 vertical levels, 

and assimilates radiosonde data as well as observations from surface weather stations, 

ships, aircraft, radars, and satellites. The RAP model analysis is issued every hour, and 

the RAP forecast is issued every three hours. Each forecast is for 18 hours with hourly 

time resolution (Benjamin et al. 2016). The RAP analysis forms the basis of the Real-

Time Mesoscale Analysis (RTMA), produced hourly by the National Centers for 
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Environmental Prediction (NCEP), and the hourly Storm Prediction Center (SPC) 

mesoanalysis fields, both of which are important tools for now-casting (De Pondeca et 

al. 2011; Storm Prediction Center 2016). The RAP analysis also provides the initial and 

lateral boundary conditions for the 3-km High-Resolution Rapid Refresh (HRRR) 

model, which then assimilates radar data before generating hourly convection-allowing 

forecast grids that are relied upon heavily in short-term severe weather forecasting 

(Evans et al. 2018). The HRRR forecasts are generally preferred over RAP forecasts in 

complex convective environments due to their hourly updates and superior spatial 

resolution. An understanding of RAP analysis errors is critical to understanding forecast 

errors that may arise, since the RAP model analysis provides the foundation for the 

HRRR and the other valuable forecasting tools mentioned above. 

Evans et al. (2018) calculated model biases for both RAP and HRRR analyses 

and 11-hr forecasts in environments conducive to convection, as defined by SPC Day 1 

convective outlooks issued during May 2017. They plotted their results for the lowest 5 

km of the atmosphere and found small biases in temperature (< ~0.25°C) for all altitudes 

in both of the analyses, as seen in Figure 2.2a. Both of the 11-hr forecast temperature 

profiles were consistently warm-biased from 0-5 km, with the largest warm bias in both 

models occurring near the surface and the RAP warm bias slightly greater than that of 

the HRRR above the surface layer (Fig. 2.2b). The dew point data showed a slight 

surface dry bias across both models and lead times. However, there was a pronounced 

moist bias above the surface level in both models that worsened with increasing altitude 
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and lead time, exceeding 3°C in the RAP 11-hr forecast around an altitude of 5 km (Fig. 

2.2b).  

 

 

Figure 2.2:  (a) Vertical profiles of sample-mean bias (°C; dashed lines; defined as 

model minus observations) and MAE (°C; solid lines) between 0 and 5 km AGL for 

RAP and HRRR 0-h temperature (red and pink lines, respectively) and dewpoint 

temperature (dark blue and light blue lines, respectively) analyses. Shading depicts the 

interquartile ranges of the error distributions for each variable and model. Solid red and 

blue dots indicate vertical levels at which the temperature and dewpoint temperature 

error distributions, respectively, between the RAP and HRRR are significantly different 

to at least 95% confidence, as assessed using the two-tailed, nonparametric Wilcoxon 

signed-rank test. The number of observations contributing to each sample is depicted 

above each panel. (b) As in (a), but for 11-h forecasts. [Figure reprinted from Figure 4 

and caption reprinted from Figure 3 in Evans et al. (2018).] © American Meteorological 

Society. Used with permission. 

 

 

The Evans et al. (2018) study also examined sounding-derived parameter biases. 

CAPE was overestimated for the mixed-layer parcels in both the analyses and 11-hr 

forecasts due to the moist bias present above the surface, but slightly underestimated for 
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surface-based and most-unstable parcels due to the surface dry bias. Previously, Laflin 

(2013) had performed similar verification of the RAP model in springtime pre-

convective environments, although restricted to the central and northern Great Plains. 

They found underestimations in surface-based and most-unstable CAPE for both 12- and 

6-hour model forecasts, which likely resulted from large dry model biases in the near-

surface layer the model. However, these dry biases extended farther above the surface 

than in the findings of Evans et al. (2018), so MLCAPE was also found to be 

underestimated in the Laflin (2013) study. Fovell and Gallagher (2020) analyzed the 

representation in the contiguous U.S. of the lowest 1 km of the atmosphere in the HRRR 

model. They found small near-surface temperature biases, but small wind biases at the 

analysis time became increasingly positive throughout the 24-hour forecast period and 

the temperature biases displayed a dependence on station elevation. All of these 

verification studies focused on continental conditions, such that it is unclear if these 

errors also exist within the envelope of landfalling TCs where moisture is generally 

much more prevalent and the TC circulation itself results in atypical wind profiles. Thus, 

the proposed study aims to understand RAP analysis and RAP and HRRR forecast errors 

exclusively within landfalling TCs. 

Many studies have examined observations and distributions of TCTORs, the 

characteristics of their near-cell environments, and the characteristics of the broad TC 

environment. A few have examined RAP and HRRR model performance in continental 

environments, but not within tropical cyclone envelopes. This study seeks to bridge the 

gap between these two types of studies by using observed and model atmospheric 
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sounding data within the TC envelope to investigate the representation of TCTOR-

related variables in the widely-used RAP and HRRR forecast models. The existing 

literature on TCTORs and RAP and HRRR model errors in continental environments 

motivates testing of the following hypotheses: 

 

1. Model performance (both in the analysis and forecasts) will improve as the TC 

environment becomes more characteristic of a typical mid-latitude continental 

environment (i.e., as distance from the TC center increases and as TC intensity 

weakens). 

2. Model performance will improve as the TC moves inland and more observations 

from the TC envelope are assimilated into the model analysis. 

3. Forecast errors in both the RAP and the HRRR model will exceed RAP analysis 

errors. 

4. Model errors in sounding-derived parameters specifically related to TCTOR 

forecasting will reflect the model errors seen in the raw sounding variables 

(temperature, dew point, wind speed and direction). 

 

This work is part of a larger study, which is currently being conducted in 

partnership with the National Weather Service, aimed at better understanding differences 

in the near-cell environments of tornadic and non-tornadic cells within the rainbands of 

TCs to ultimately improve the TCTOR forecasting and warning process. However, 

before such analysis can be conducted, this proposed study is necessary to characterize 
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model analysis and forecast parameters in the representation of these near-cell 

environments, particularly in sounding-derived parameters that are often used in tornado 

forecasting. 
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3. DATA AND METHODS 

 

3.1. TC Data 

The environments of TCs that occurred during the 2017-2019 Atlantic hurricane 

seasons are analyzed in this research. From these seasons, only the TCs that made 

landfall along the coastline of the contiguous United States are used to ensure adequate 

observational radiosonde data to compare to the model profiles. Applying this landfall 

constraint yields five TCs from the 2017 season, four from 2018, and four from 2019, 

for a total of 13 TCs. A summary of the names, landfall dates, maximum intensities, and 

categories at peak intensity of these TCs is presented in Table 3.1, along with the 

number of TCTORs associated with each TC or its remnants. These data come from the 

publicly available official Tropical Cyclone Reports released by the National Hurricane 

Center, except for the TCTOR frequency which is sourced from the Edwards TCTOR 

database (Edwards 2010). It should be noted that four of the TCs used in this study have 

fewer than five TCTORs attributed to them. This reinforces that the purpose of this study 

is not to capture specific TCTOR cases or analyze near-cell environments, but rather to 

broadly examine the distributions of environmental variables and model errors critical to 

TCTOR production both spatially within the TC envelope and temporally as the TC 

moves inland and weakens.  
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TC Name 
Mainland U.S. 

Landfall Date 

Number 

of 

TCTORs 

Peak 

Intensity 

(knots) 

Category at 

Peak Intensity 

Cindy 6/22/2017 18 50 TS 

Emily 7/31/2017 1 50 TS 

Harvey 8/25/2017 52 115 4 

Irma 9/10/2017 28 155 5 

Nate 10/8/2017 21 80 1 

Alberto 5/29/2018 4 55 TS 

Florence 9/14/2018 44 130 4 

Gordon 9/4/2018 7 60 TS 

Michael 10/10/2018 16 140 5 

Barry 7/13/2019 1 65 1 

Dorian 9/6/2019 25 160 5 

Imelda 9/17/2019 2 40 TS 

Nestor 10/19/2019 6 50 TS 

 

Table 3.1: The names, landfall dates, maximum intensities, and Saffir-Simpson 

categories at maximum intensity of the TCs used in this study, and the number of 

TCTORs associated with each. 

 

 

 

 Track data for each of the 13 TCs is acquired from the Atlantic HURDAT2 

dataset, which is comprised of post-storm analyzed TC best track data (Landsea and 

Franklin 2013). These are documented observations of the TC every six hours at 00Z, 

06Z, 12Z, and 18Z. An extra data point is often recorded near the time of landfall or at 

the TC’s maximum intensity if these points do not coincide with a standard six-hourly 

time point. The information collected at each point along the track includes: the date and 

time, the latitude and longitude of the TC center at that time, the mean sea level pressure 
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at the TC center, and the intensity of the TC in knots. For this research, any points in the 

TC track data not occurring at 00Z, 06Z, 12Z, or 18Z are discarded and the latitudes, 

longitudes, pressures, and intensities from the remaining 6-hourly points are interpolated 

linearly to yield hourly track data (Fig. 3.1). 

 

 

Figure 3.1:  The tracks of the 13 TCs used in this study, along with the locations of all 

available upper air observing stations. 

 

 

3.2. Observed Soundings 

The TC data are used alongside a National Weather Service AWIPS2 dataset 

containing the latitudes, longitudes, and elevations of upper-air observing sites, hereafter 

“stations,” from which radiosondes are launched. At each hourly time step along each 

TC track, the distance from the TC center to all the stations in the dataset is computed 
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with the Haversine distance formula, which accounts for the curvature of the earth over 

long spatial scales in its calculation of the distance between two locations. Then, all 

stations falling within a radius of 800 km from the TC center at that given time are 

marked as eligible to be included in this study (Fig. 3.2). Finally, the University of 

Wyoming archive of observed soundings is checked for all of the eligible soundings and 

those that exist are downloaded (University of Wyoming 2020). The radius of 800 km is 

chosen in order to fully encompass the broad TC environment, and is consistent with the 

800-km radius used by McCaul (1991) in their assessment of the spatial distributions of 

TCTOR-related environmental variables. 

 

 

Figure 3.2:  Demonstrating the process of selecting the eligible observed soundings for 

analysis using one of the points along the track of Tropical Storm Cindy (shown in blue). 

The stations indicated by pink stars are within 800 km of Cindy’s center at this time step 

and will be included in the analysis, while the stations indicated by black dots fall 

outside of the 800-km radius and are therefore excluded from the analysis. 
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Due to the hourly nature of the interpolated TC track data, any available special 

soundings are collected with this method in addition to the standard soundings at 00Z 

and 12Z. The vast majority of the soundings are obtained from National Weather Service 

forecast offices located in the United States, but data from upper-air observing stations 

in Mexico and the Caribbean are included as permitted by the 800-km radius criterion 

and the domains of the RAP and HRRR models. Each observed sounding contains 

pressure, height, temperature, dew point, and wind speed and direction, which are 

interpolated to 100-meter intervals from 0 to 16 km above ground level (AGL). 

 

3.3. Model Soundings 

As discussed in Chapter 2, the models used in this study are the RAP model with 

13-kilometer grid spacing and the HRRR model with 3-kilometer grid spacing, both run 

by NCEP. For each observed sounding, the RAP analysis vertical profile from the same 

time, and the nearest grid point to the station, is downloaded from the National Centers 

for Environmental Information (NCEI) model data archive (NOAA NCEI 2020). Then, 

the corresponding 12-hour RAP and HRRR forecast soundings valid at the analysis time 

and the nearest model grid point to the station are downloaded. These analysis and 

forecast soundings contain pressure, height, temperature, dew point, and wind data and 

are interpolated in the same way as the observed soundings, to 100-meter intervals from 

0 to 16 kilometers AGL. It should be noted that RAPv4 and HRRRv3 were implemented 

at NCEP on 12 July 2018, so the model soundings from the beginning of this study come 

from RAPv3 and HRRRv2 while the remainder come from RAPv4 and HRRRv3 
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(NOAA Global Systems Laboratory 2020). Also, the RAP analysis and forecast 

initializations are missing for (inclusive) 9/5/2019 03Z - 9/7/2019 12Z, which limits the 

model data and therefore the number of sounding pairs available for Hurricane Dorian. 

 

3.4. Sounding-derived Parameters 

The Sounding and Hodograph Analysis and Research Program in Python 

(SHARPpy) software is used to compute sounding-derived parameters for the observed, 

model analysis, and model forecast soundings (Blumberg et al. 2017). Shear magnitudes 

and lapse rates are calculated over various layers, along with SRH values. CAPE, 

convective inhibition (CINH), lifted condensation level (LCL), level of free convection 

(LFC), and lifted index (LI) are determined for the surface-based, mixed-layer, and 

most-unstable parcels. The mixed-layer parcel has the averaged properties of the lowest 

100 mb of the sounding, and the most-unstable parcel is the parcel with the highest 

equivalent potential temperature in the lowest 300 mb of the sounding. Finally, 

precipitable water, downdraft CAPE (DCAPE), and 0-3 km CAPE are computed, in 

addition to composite parameters such as the supercell composite parameter (SCP), 

significant tornado parameter (STP), and energy helicity index (EHI). CINH-scaled SCP 

values are calculated according to the method detailed by Gropp and Davenport (2018). 

 

3.5. Data Analysis Methods 

After quality control, 1,730 observed soundings are suitable for comparison to 

the model profiles. Model domain restrictions and the aforementioned missing forecast 
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data result in 1,730 corresponding RAP analysis profiles, 1,681 RAP 12-hour forecast 

profiles, and 1,647 HRRR 12-hour forecast profiles. For each sounding pair, model 

errors are calculated for all raw sounding variables and sounding-derived parameters as 

the model value minus the observed value, such that a positive model error represents an 

overprediction of that quantity by the model and a negative model error represents an 

underprediction.  

The investigation of the model errors takes the form of a two-part analysis, the 

first of which is the examination of the RAP analysis, RAP 12-hour forecast, and HRRR 

12-hour forecast errors in the raw sounding variables: temperature, dew point, and wind. 

These errors are initially explored by making two-dimensional plots of the error as a 

function of height only, and later with heat maps that plot the error as a function of 

height and another variable of interest. Five variables of interest are chosen to test the 

hypotheses about the model errors in relation to the TC spatially and temporally; they 

are: distance from the TC center, bearing relative to the TC center, intensity of the TC at 

that time, proximity of the TC to its landfall point, and the amount of time before or after 

landfall. A sixth and final variable of interest is the proximity of the station to the coast. 

The second part of the analysis examines the model analysis and forecast errors 

in the sounding-derived parameters. The same variables of interest from the first part are 

used to gain a better understanding of the errors in relation to the TC, with the only 

difference being the one-dimensional nature of the sounding-derived parameter errors as 

opposed to the two-dimensionality of the height-dependent errors in the raw sounding 

variables. 
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4. RESULTS 

 

4.1. Errors in Raw Sounding Variables 

Mean error profiles of temperature, dew point, and wind speed are generated for 

the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour forecast. The mean error 

profiles are calculated by taking each model value at a certain height minus its 

corresponding observed value, and then averaging across all available sounding pairs at 

that height. The two-tailed, non-parametric Wilcoxon signed-rank test is performed at 

each height of each mean error profile to test whether the errors are significant at the 

95% confidence level, that is, if the median error at that height is significantly different 

from zero. Profiles of mean absolute error for each raw sounding variable are computed 

similarly to the mean error profiles, but the absolute value of each difference is taken 

before averaging at each height. These errors in the raw sounding variables are examined 

in the context of Hypothesis 3 from Chapter 2, which states that the forecast errors are 

expected to exceed the errors in the RAP analysis. 

Mean temperature errors do not exceed a magnitude of 0.4°C at any height in any 

of the three error profiles (Fig. 4.1a). The RAP analysis (-0.36°C), RAP 12-hour forecast 

(-0.16°C), and HRRR 12-hour forecast (-0.12°C) all have cool biases at the surface.  

This surface cool bias is largest in magnitude for the RAP analysis, and the RAP 

analysis temperature errors remain negative throughout much of the column up to about 

9 km before changing to a warm bias in the upper troposphere. The HRRR 12-hour 

forecast has a low-level warm bias starting just above the surface and extending up to 4 
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km; this changes to a cool bias between 4 and 11 km and then back to a warm bias above 

11 km. The temperature errors in the RAP 12-hour forecast have the largest magnitude 

of any of the three profiles within the troposphere. The surface cool bias in the RAP 12-

hour forecast profile is generally maintained up to 2 km, and is followed by a warm bias 

from 2-5.5 km and a strong cool bias above that through the remainder of the 

troposphere. These results differ from those presented by Evans et al. (2018) in their 

analysis of RAP and HRRR thermodynamic errors in continental convective 

environments (Fig. 2.2b); both the RAP and HRRR 11-hour forecasts in their study were 

found to be continuously warm-biased in the layer from 0-5 km. 

Profiles of the mean absolute temperature errors (Fig. 4.1b) show a distinct 

separation between the RAP analysis and the forecasts, with the smallest mean absolute 

temperature errors  in the RAP analysis and the largest in the RAP 12-hour forecast. The 

RAP 12-hour forecast exhibits the greatest mean absolute temperature error of the three 

model runs throughout the profile, and the magnitudes of HRRR-12-hour forecast 

absolute temperature errors fall in between those of the RAP 12-hour forecast and RAP 

analysis. These results support Hypothesis 3. 
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Figure 4.1:  Vertical profiles of temperature (a) mean error and (b) mean absolute error 

from 0-14 km AGL for the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour 

forecast. Solid black, red, and blue dots at the left edge of panel (a) denote the levels at 

which the temperature errors are significant to at least 95% confidence, assessed using 

the two-tailed, non-parametric Wilcoxon signed-rank test. The number of observed-

model sounding pairs contributing to each error profile are as follows: RAP analysis – 

1730, RAP 12-hour forecast – 1681, HRRR 12-hour forecast – 1647. 

  

 

The mean dew point errors (Fig. 4.2a) have larger magnitudes than the 

temperature errors, and increase with height. At the surface, the RAP analysis and 

HRRR 12-hour forecast have dry biases, with that of the HRRR 12-hour forecast being 

larger with a magnitude of nearly 0.5°C. The RAP 12-hour forecast, in contrast, has a 

surface dew point bias that is near zero. Above the surface, the RAP analysis and both 

forecasts have moist biases that worsen with height for the remainder of the vertical 

profile and maximize at nearly 4°C between 12 and 13 km. The mean absolute dew point 
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errors (Fig. 4.2b) are up to 1°C greater in the forecasts than in the RAP analysis, 

supporting Hypothesis 3,  although there is no obvious distinction between the two 

forecasts as was seen in the profiles of the mean absolute temperature errors (Fig. 4.1b). 

 

 

Figure 4.2: Vertical profiles of dew point (a) mean error and (b) mean absolute error 

from 0-14 km AGL for the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour 

forecast. Significance testing results shown as in Figure 4.1, but for dew point errors. 

Sample sizes as in Figure 4.1.  

 

 

While the error profiles for the continental convective environments in Evans et 

al. (2018) were truncated at an altitude of 5 km, similar patterns to those of the dew point 

errors in this study can be observed within this height range. In their study, both the RAP 

and HRRR 11-hr forecasts as well as the RAP analysis had surface dry biases that 

quickly transitioned to moist biases increasing with height. The moist bias in the RAP 
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analysis reached just over 2°C at 5 km (Fig. 2.2a), while the moist biases in the 11-hour 

forecasts increased more rapidly to around 3°C by the same height (Fig. 2.2b). In this 

study of TC environments, the dew point biases are smaller within the lowest 5 km and 

the behavior of the forecasts and the RAP analysis is more similar; all three biases have 

a magnitude of around 1°C at 5 km (Fig. 4.2a). These results contradict Hypothesis 1, 

which posited that the models would perform better under typical mid-latitude 

continental conditions. When contrasted with the continental results in Figure 2.2, the 

results presented in Figure 4.2a suggest that model predictions of moisture are better 

within TC envelopes than in continental environments, at least within the limited vertical 

extent of 5 km AGL. 

Examination of the mean wind speed errors with height (Fig. 4.3a) reveals that 

wind speeds are overpredicted by the RAP analysis and both forecasts in a shallow layer 

near the surface. The largest near-surface overpredictions, exceeding 2.5 kt, occur in the 

HRRR 12-hour forecast. Above 1 km, all three error profiles transition to an 

underprediction of wind speed, with the largest underpredictions in the RAP 12-hour 

forecast. The smallest underpredictions, never exceeding a magnitude of 0.75 kt, occur 

in the HRRR 12-hour forecast such that there are layers where the error is found to be 

insignificant at the 95% confidence level. Despite these small biases in the HRRR 12-

hour forecast, the mean absolute error profiles (Fig. 4.3b) reveal that RAP analysis 

absolute wind speed errors tend to be smaller than those of both forecasts throughout the 

depth of the profile by 1-2.5 kt, which supports Hypothesis 3. Positive wind speed biases 

at the surface and negative wind speed biases aloft are expected to result in 
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underpredictions of vertical wind shear quantities for layers originating at the surface; 

shear will be explored along with other sounding-derived parameters in a later 

subsection of these results. 

 

 

Figure 4.3:  Vertical profiles of wind speed (a) mean error and (b) mean absolute error  

from 0-14 km AGL for the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour 

forecast. Significance testing results shown as in Figure 4.1, but for wind speed errors. 

Sample sizes as in Figure 4.1. 

 

 

 

 

Proper investigation of  Hypotheses 1 and 2 requires analysis of how model 

errors vary as a function of both height and other TC-related variables. Figures 4.4-4.6 

show the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour forecast temperature 
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and dew point errors as a function of height on the y-axis and time relative to TC landfall 

on the x-axis. Time before or after the TC landfall is reported as a negative or positive 

number of days, respectively. The errors are binned according to selected intervals along 

the axes and the mean of each bin is shown by its color.  

 

 

Figure 4.4:  RAP model analysis errors in (a) temperature in °C and (b) dew point in °C. 

The errors are plotted as a function of height in kilometers and time relative to landfall in 

days, such that an x-value of -2.5 corresponds to 2.5 days before landfall and an x-value 

of +2.5 corresponds to 2.5 days after landfall. The vertical dashed line represents the TC 

landfall time.  
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Figure 4.5:  As in Figure 4.4, but for the RAP 12-hour forecast. 

 

 

 

Figure 4.6: As in Figure 4.4, but for the HRRR 12-hour forecast. 
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Comparison of the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour 

forecast errors in Figs. 4.4-4.6 reveals that the temperature and dew point biases have 

larger magnitudes overall in the two forecasts than in the RAP analysis, supporting 

Hypothesis 3. Wind speed is weakly underpredicted by the RAP analysis for all times 

relative to the TC landfall (not shown). There are slight overpredictions of wind speed 

by the RAP and HRRR 12-hour forecasts in the bins from 0-0.5 km, with slightly 

stronger underpredictions than those of the RAP analysis above that and across the rest 

of the time relative to landfall (not shown). 

Before landfall, there is a cold bias in the RAP analysis throughout the column 

up to about 10 km (Fig. 4.4a) that is consistent with the overall model temperature errors 

seen in Figure 4.1a. However, this cold bias switches to an unusual low-level warm bias, 

from the surface up to about 4 km, starting about three days after landfall. A strong 

warm bias is also seen in both the RAP and HRRR 12-hour forecasts beginning about 

three days after landfall, but in both forecasts this occurs after a weaker warm bias has 

already appeared closer to, and even slightly before, the landfall time (Figs. 4.5a, 4.6a). 

Similar to the RAP analysis, both the RAP and the HRRR 12-hour forecast exhibit a 

cold bias in the days leading up to landfall, which is retained in the RAP 12-hour 

forecast between 6 and 12 km for a period of days past the landfall (Fig. 4.5a).  

The moist bias evident in the dew point errors of the analysis and both forecasts 

descends closer to the surface with time, suggesting that the RAP and HRRR are too 

slow to dry out the environment as the TC moves farther inland and conditions become 

more typical of the mid-latitudes (Figs. 4.4b, 4.5b, 4.6b). According to Hypotheses 1 and 
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2, the errors would be expected to diminish in the days following the TC landfall, but 

neither the temperature nor the dew point errors for any of the model runs follow this 

anticipated pattern. 

To further test Hypothesis 1, errors are also examined as a function of the 

intensity of the TC at the time of the observed sounding (Figs. 4.7-4.9). The vertical 

dashed line on each plot marks the 64-knot wind speed threshold between tropical storm 

and category 1 hurricane. The slight cold temperature bias between the surface and 10 

km that was evident in the RAP analysis mean error profile is generally present across 

the entire range of intensity values (Fig. 4.7a), but the cold temperature bias between 0-2 

km worsens with increasing intensity. The RAP and HRRR 12-hour forecasts both have 

a warm bias between 2-6 km when the intensities are sub-hurricane strength, which is 

overlaid by an upper-level cold bias from 6-12 km in the RAP 12-hour forecast (Figs. 

4.8a, 4.9a). At higher intensities of about 90 kt and above, temperatures are generally 

underpredicted throughout the column by both the RAP and the HRRR 12-hour 

forecasts, slightly more so by the RAP.  

For both forecasts and the analysis, the magnitudes of the temperature errors are 

smaller at weaker intensities and increase as the intensity increases, which supports 

Hypothesis 1. However, the dew point errors do not support Hypothesis 1 because they 

are larger at weaker intensities for all model runs, with mid- to upper-tropospheric 

moisture (above 6 km) more severely overpredicted at intensities less than 64 knots 

(Figs. 4.7b, 4.8b, 4.9b). Hypothesis 3 follows the same pattern of being supported by the 

temperature errors and not by the dew point errors: the temperature errors in the two 12-



 

30 

 

hour forecasts are generally larger in magnitude than the RAP analysis temperature 

errors, but a difference in the magnitude of the dew point errors between the analysis and 

the forecasts is not discernible. 

The columns showing mean temperature errors in the RAP and HRRR 12-hour 

forecasts for sounding pairs valid while the TC intensity was within the interval [110, 

120 kt) are representative of a small subset of 19 sounding pairs (Figs. 4.8a, 4.9a). Eight 

of these were valid at a single analysis time during Hurricane Harvey, and nine were 

valid within a 24-hour period during Hurricane Irma. Mean temperature errors in this 

column for both forecasts appear inconsistent with the errors in neighboring columns, 

and could be sensitive to the lack of diversity in the sample. 

 

 

Figure 4.7: RAP model analysis errors in (a) temperature in °C and (b) dew point in °C. 

The errors are plotted as a function of height in kilometers and TC intensity in knots at 

the time the sounding pair is valid. The vertical dashed line represents the threshold 

between tropical storm and category 1 hurricane on the Saffir-Simpson scale. 
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Figure 4.8: As in Figure 4.7, but for the RAP 12-hour forecast. 

 

 

 

Figure 4.9:  As in Figure 4.7, but for the HRRR 12-hour forecast. 
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As a final test of Hypothesis 1, errors are plotted as functions of distance from 

the center of the TC, which ranges from 0 to 800 km in this dataset. The magnitudes of 

the temperature and dew point errors in these heat maps are smaller than their 

magnitudes in the heat map figures presented so far. With the exception of the innermost 

ring within 200 km of the TC center, RAP analysis temperature and dew point errors 

(Figs. 4.10a, b) are nearly uniform as distance from the TC center increases. They mimic 

the RAP analysis mean error profiles for temperature and dew point (Figs. 4.1a, 4.2a), 

with negative temperature errors from the surface up to about 10 km and dew point 

errors gradually increasing with height throughout the depth of the troposphere. The 

temperature errors are more variable with height within the innermost 200 km of the TC 

center, where cold biases from roughly 0-4 and 6-8 km create an alternating pattern with 

the warm biases, which extend from 4-6 km and 8-14 km. This breakdown of 

temperature errors is most likely due to the complex nature of that region of a TC and 

the coexistence of quickly evolving intense rain bands, isolated convective cells, and 

patches of clearing. Similar chaos in the dew point errors within the innermost 200 km is 

likely not seen because of the pervasive presence of moisture that permeates the TC 

envelope. 

 The RAP and HRRR 12-hour forecast dew point errors behave similarly to those 

of the RAP analysis, showing little to no variation with distance (Figs. 4.11b, 4.12b). 

Both forecasts show larger overpredictions of temperature within the innermost 200 km. 

In the range of 200 to 800 km from the TC center, temperature is generally 

overpredicted at low levels and underpredicted aloft in the HRRR 12-hour forecast (Fig. 
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4.12a). This could translate to overpredictions of CAPE. In the RAP 12-hour forecast, 

the temperature errors have a slightly larger magnitude and take on a more stratified 

structure: temperature is underpredicted at low levels, overpredicted at mid-levels, and 

underpredicted again above 6 km (Fig. 4.11a). Conversely, this would likely lead to 

underpredictions of CAPE by the RAP 12-hour forecast.  

Hypothesis 1 is supported only by the slight decrease in magnitude of the 

temperature errors as distance from the TC center increases in the HRRR 12-hour 

forecast. In all other variables and in the RAP analysis and RAP 12-hour forecast, errors 

are too uniform with increasing distance from the center to conclude that model 

performance improves as the environment becomes more characteristic of typical mid-

latitude conditions. 

 

 

Figure 4.10: RAP model analysis errors in (a) temperature in °C and (b) dew point in °C. 

The errors are plotted as a function of height and distance from the TC center, both in 

kilometers. Columns shown in black have a sample size of less than 4 sounding pairs. 
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Figure 4.11:  As in Figure 4.10, but for the RAP 12-hour forecast errors. 

 

 

 

Figure 4.12:  As in Figure 4.10, but for the HRRR 12-hour forecast errors. 
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 Errors are also plotted as a function of north-relative azimuth based on their 

bearing relative to the TC center (not shown). These plots reveal a low-level cold bias on 

the south side of the TC (from 90 to 270 degrees) that is worse in the forecasts than the 

analysis, thereby supporting Hypothesis 3. It is overlaid by a warm bias from 2-5 km on 

the east side of the TC (from 0 to 180 degrees) that only appears in the two forecasts. 

When sounding-derived parameter errors are explored, they will be plotted on polar plots 

with a maximum radius of 800 km so that they can be examined as functions of azimuth 

and distance together and spatial trends relative to the TC center can be more intuitively 

analyzed. 

 

4.2. Errors in Sounding-derived Parameters 

The ingredients-based approach used by forecasters to discern when and where 

tornadoes are probable employs numerous thermodynamic and kinematic sounding-

derived parameters such as CAPE, lapse rates, shear, and storm-relative helicity. 

Favorable conditions need to align in time and space for tornado production, and tornado 

environments can be much more subtle within the TC envelope than in a classic mid-

latitude convective environment. Therefore, understanding common error patterns in the 

widely used RAP and HRRR models specifically in TC environments is beneficial. 

Errors in selected sounding-derived parameters are presented here, being sure to include 

those that have been shown in previous studies to display predictive utility for TCTORs: 

MLCAPE, 0-6 km shear, and the significant tornado parameter (Edwards et al. 2012; 
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Nowotarski et al. 2021), as well as 0-1 km SRH and 0-3 km lapse rate (Nowotarski et al. 

2021).  

Sounding-derived parameter errors are computed by first calculating the values 

of the parameters for each observed and model sounding. Then, the quantities from 

corresponding model and observed soundings are subtracted from each other (model 

value minus observed value) to generate the dataset of error values. “Nan” values are 

produced and later discarded whenever one of the parameters is missing or undefined in 

either the model sounding or the observed sounding. The values are then binned along 

the x axis according to another variable of interest and the mean and standard deviation 

are calculated for each bin. Finally, the two-tailed, non-parametric Wilcoxon signed-rank 

test is performed for each bin along the x-axis to test whether the errors are significant at 

the 95% confidence level. This is the same statistical test performed at each height of the 

mean error profiles, and it tests for significance by testing if the median error in that bin 

is significantly different from zero. Significant results in a bin are depicted with a solid 

circle plotted along the line at the midpoint of that bin. All four of the aforementioned 

hypotheses from Chapter 2 are applicable to this section of the results, but most of the 

focus will be on whether the model errors in sounding-derived parameters reflect the 

errors expected to result from the errors in the raw sounding variables (Hypothesis 4). 

 Surface-based, most-unstable, and mixed-layer CAPE errors are examined first 

as a function of time relative to landfall (Fig. 4.13). MLCAPE errors (Fig. 4.13e) tend to 

be smaller in magnitude, but positive as opposed to the negative biases more consistently 

seen in SBCAPE and MUCAPE. The HRRR 12-hour forecast has larger negative biases 
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than the RAP analysis and forecast in SBCAPE and MUCAPE within the region of 

significant results. This could be partially due to the fact that the HRRR 12-hour forecast 

has the largest dry bias at the surface (Fig. 4.2a). Conversely, the HRRR 12-hour 

forecast outperforms the RAP 12-hour forecast in its prediction of MLCAPE; this could 

be attributed to the slightly smaller dew point errors in the HRRR 12-hour forecast 

throughout the typical depth of a surface-based mixed layer (Fig. 4.2a). These subtle 

distinctions in the results support Hypothesis 4. 

While the magnitudes of the MLCAPE errors decrease during the four days 

following landfall, the magnitudes of the SBCAPE and MUCAPE errors remain more 

steady as time after landfall increases. So, Hypothesis 2 is only supported by the 

MLCAPE errors here. The standard deviation decreases for all CAPEs and all model 

runs as the TC approaches its landfall time and moves inland and more land-based 

observations are able to be assimilated into the model (Figs. 4.13b, d, f). Despite the 

large magnitudes of the standard deviations compared to the mean error values, the 

median errors are significantly different from zero in most of the bins for most of the 

model runs from one day before landfall to four days after landfall. 
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Figure 4.13:  SB-, MU-, and MLCAPE mean errors (a, c, e) and standard deviations of 

the mean error (b, d, f), both in J kg-1, plotted as functions of time relative to landfall for 

the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour forecast. The vertical 

dashed line represents the time of the TC landfall. Solid dots are placed along the line at 

the midpoint of each bin in which the errors are significant at the 95% confidence level. 
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SBCAPE and MUCAPE are also generally underpredicted, and MLCAPE 

overpredicted, as a function of TC intensity at the intensity values for which the errors 

are significant (not shown). The magnitudes of the CAPE errors at lower intensities tend 

to be smaller than at higher intensities, so Hypothesis 1 is supported by these results. 

CAPE errors are plotted as a function of distance and azimuth relative to the TC 

center on north-relative polar plots to allow for easy examination of the spatial 

distribution of the errors. Overpredictions of MLCAPE by the RAP 12-hour forecast 

(Fig. 4.14a) are significant in the entire northern sector of the TC, and these errors range 

from 100 to over 300 J kg-1. The RAP analysis overpredicts MLCAPE nearly 

everywhere within the 800 km radius (Fig. 4.14b). These overpredictions are significant 

east of the center in a sector from 45 to 135 degrees, which tends to be where most 

TCTORs occur (Fig. 2.1; Edwards 2012). Hypothesis 3 is supported by the fact that the 

RAP analysis errors tend to be smaller in magnitude than the RAP 12-hour forecast 

errors when plotted relative to the TC center. 

Overall, the signs of the SB-, MU-, and MLCAPE biases examined parallel those 

of Evans et al. (2018) in the continental convective environments they analyzed. In their 

study, the RAP and HRRR 11-hour forecasts as well as the RAP analysis had surface dry 

biases, which likely contributed to the slight stable biases they observed in the SBCAPE 

and MUCAPE. MLCAPE displayed an unstable bias in their study as well, likely due to 

the moist biases present just above the surface. 
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Figure 4.14: MLCAPE errors plotted in units of J kg-1 as a function of distance and 

azimuth relative to the TC center for (a) the RAP 12-hour forecast and (b) the RAP 

analysis. Bins in which the errors are not statistically significant at the 95% confidence 

level are hatched. 

 

 Lapse rates are often used alongside CAPE in ingredients-based tornado 

forecasting as an additional measure to diagnose stability. Lapse rates for the 0-1 km and 

0-3 km layers are calculated as the temperature difference between the top and bottom of 

each layer, normalized by the thickness of the layer in kilometers. They are positive 

when the environment is cooling with height, so a layer with a more positive lapse rate is 

more unstable. Since errors are calculated in this study as model value minus observed 

value, a positive lapse rate error means that the layer is more unstable in the model than 

in the observations, while a negative lapse rate error corresponds to a stable bias in the 

model. 
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Figure 4.15: 0-1 km and 0-3 km lapse rate mean errors (a, c) and standard deviations of 

the mean error (b, d), both in °C km-1, plotted as functions of time relative to landfall for 

the RAP analysis, RAP 12-hour forecast, and HRRR 12-hour forecast. The vertical 

dashed line represents the time of the TC landfall. Solid dots are placed along the line at 

the midpoint of each bin in which the errors are significant at the 95% confidence level. 

 

Investigation of the lapse rate errors as a function of time relative to TC landfall 

shows a decreasing trend in 0-1 km lapse rate errors for both forecasts and the analysis, 

with underpredictions reaching magnitudes of 0.5 to 1°C km-1 after two days post-

landfall (Fig. 4.15a). The 0-3 km lapse rate errors (Fig. 4.15c) tend to be negative, with 

slight decreases after two days post-landfall and smaller magnitudes than the 0-1 km 
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lapse rates. Most of the significant errors for both the 0-1 and 0-3 km layers occur in the 

period beginning two days before the landfall. This significant stable bias in the models 

in layers starting at ground level is consistent with the CAPE errors (Fig. 4.13) because 

SBCAPE and MUCAPE were both underpredicted by the models during this time period 

relative to TC landfall. The tendency of the lapse rates to be stable-biased also aligns 

with the surface cool bias seen in the mean temperature error profiles of both forecasts 

and the analysis, supporting Hypothesis 4 (Fig. 4.1a). Hypothesis 2, however, is not 

supported because the magnitudes of both the 0-1 and 0-3 km lapse rate errors worsen as 

time after landfall increases and the TC moves farther inland. 

 When examined as a function of TC intensity, the 0-3 km lapse rate errors (Fig. 

4.16c) are generally underpredictions of similar magnitude (<0.5°C km-1) to the errors as 

a function of time relative to landfall (Fig. 4.15c). The 0-1 km lapse rate errors (Fig. 

4.16a) are also negative as a function of intensity, though with larger magnitudes (up to 

1°C km-1) and more variability across the range of intensities than the 0-3 km lapse rate 

errors. Few lapse rate errors in either of the forecasts or the analysis are statistically 

significant at intensities above 100 knots, in either the 0-1 or 0-3 km layer. There is not a 

clear enough trend as intensity decreases to conclude that Hypothesis 1 is supported, i.e., 

that model performance improves as intensity decreases. 
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Figure 4.16: 0-1 km and 0-3 km lapse rate mean errors (a, c) and standard deviations of 

the mean error (b, d), both in °C km-1, plotted as functions of TC intensity for the RAP 

analysis, RAP 12-hour forecast, and HRRR 12-hour forecast. The vertical dashed line 

represents the threshold between a tropical storm and category 1 hurricane on the Saffir-

Simpson scale. Solid dots are placed along the line at the midpoint of each bin in which 

the errors are significant at the 95% confidence level. 

 

 The 0-1 km lapse rate errors are generally negative with respect to distance and 

azimuth, which corresponds to a stable bias. However, the RAP and HRRR 12-hour 

forecasts exhibit unstable 0-1 km lapse rate biases in the northeast quadrant (Fig. 4.17a, 

b). These unstable biases are insignificant like most of the errors within 800 km of the 
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TC center, but notable due to the rarity of unstable biases in the lapse rate errors 

examined across the model runs. Figure 4.15a shows unstable 0-1 km lapse rate biases in 

the period between two and five days before landfall, and the unstable biases in the 

northeast quadrant could have contributed to the magnitude of this unstable bias due to 

the fact that the northeast quadrant is more likely to be moving over land areas with 

observing stations during that time than quadrants on the southern side of the TC.  

 

 

Figure 4.17:  0-1 km lapse rate errors for (a) the RAP 12-hour forecast and (b) the 

HRRR 12-hour forecast, and 0-3 km lapse rate errors for (c) the RAP analysis, plotted in 

units of °C km-1 as a function of distance and azimuth relative to the TC center. Bins in 

which the errors are not statistically significant at the 95% confidence level are hatched.  



 

45 

 

The 0-3 km lapse rate errors tend to be negative, i.e. stable-biased, when plotted 

relative to the TC center, but are smaller in magnitude than the 0-1 km lapse rate errors. 

The plot of RAP analysis 0-3 km lapse rate errors (Fig. 4.17c) has the largest swath of 

significant lapse rate errors of any of the models for either layer; errors are significantly 

negative in a semicircular arc spanning 270 to 90 meteorological degrees and extending 

400-800 km away from the center. The overarching stable biases seen throughout this 

section in the 0-1 and 0-3 km lapse rate errors agree with the mean temperature error 

profiles in Figure 4.1a, thereby supporting Hypothesis 4. Surface temperatures in both 

forecasts and the analysis have a cool bias, which acts to stabilize lapse rates originating 

at the surface.  

 Kinematic parameters are used by forecasters along with information about 

instability to diagnose the likelihood of any thunderstorms that form to rotate and 

potentially become tornadic. Vertical wind shear and storm-relative helicity (SRH) are 

two prominently used kinematic parameters, and the RAP and HRRR errors in these 

quantities within the TC envelope are discussed here. 

 Vertical wind shear (in this case, “shear” refers to the bulk wind difference) in 

the layers 0-1 km, 0-3 km, and 0-6 km is generally underpredicted as a function of 

intensity, local time of day, time relative to landfall, and location relative to the TC 

center for all model runs examined. Hypothesis 4 is supported by the shear results 

because these underpredictions align with the shear errors expected to result from the 

wind error profiles (Fig. 4.3a) and wind error heat maps (not shown) for each of the 

forecasts and the analysis, which show overpredicted winds at the surface and 
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underpredicted winds aloft. Shear in the layer from 0-1 km is underpredicted by 1.5-3 

knots for both the forecasts and the RAP analysis before TC landfall (Fig. 4.18a). The 

magnitude of the 0-1 km shear error decreases with time during the first three days after 

landfall. This is physically consistent with the behavior of the 0-1 km shear errors as a 

function of intensity (Fig. 4.18b); the largest underpredictions occur at higher intensities 

and the magnitude of the underpredictions decreases as the TC weakens. Both 

Hypothesis 2 and Hypothesis 1 are supported by these results. 

 

 

Figure 4.18: 0-1 km shear errors, measured in knots and plotted as a function of (a) time 

relative to landfall in days and (b) TC intensity in knots for the RAP analysis, RAP 12-

hour forecast, and HRRR 12-hour forecast. Solid dots are placed along the line at the 

midpoint of each bin in which the errors are significant at the 95% confidence level. 

 

The RAP analysis significantly underpredicts 0-1 km shear in all but two range-

azimuth spatial bins between 200 and 800 km from the TC center (Fig. 4.19a). Within 

the same range ring in the forecasts, significant underprediction of 0-1 km shear is 

confined to smaller continuous swaths: across the entire northeast half of the TC from 

315 to 135 degrees in the RAP 12-hour forecast (Fig. 4.19b) and within a smaller sector 
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from 315 to 90 degrees in the HRRR 12-hour forecast (Fig. 4.19c). Underpredictions of 

similar magnitude are seen in the 0-3 km shear errors when examined relative to the TC 

center. Most notably, the RAP 12-hour forecast significantly underpredicts 0-3 km shear 

throughout the eastern half of the TC outside of 200 km from the TC center (Fig. 4.19d). 

In the layer from 0-6 km, the RAP 12-hour forecast continues to significantly 

underpredict shear in the majority of the eastern half of the TC. The HRRR 12-hour 

forecast 0-6 km shear errors across most of the spatial domain are also negative, but 

insignificant. 

McCaul (1991) showed that the strongest shear and largest SRH values tend to 

occur in the motion-relative right-front quadrant of the TC, whose characteristics tend to 

align with those of the northeast quadrant in the north-relative reference frame (Schultz 

and Cecil 2009). In the north-relative polar plots created for shear errors (Fig. 4.19), the 

largest continuous swaths of significant errors tend to include or center around the 

northeast quadrant, where mean observed values of shear are strongest and TCTORs are 

the most common relative to the TC center (Edwards 2012). The regions of significant 

SRH errors on similar north-relative polar plots appear small and discontinuous when 

compared to the regions of significant shear errors. The RAP analysis and HRRR 12-

hour forecast have significant 0-1 km SRH errors in the northeast quadrant at a range of 

400 to 600 km, while the same significant errors in the RAP 12-hour forecast are 

generally confined to a small sector from 0 to 45 degrees between 200 and 600 km from 

the TC center (not shown). Within these regions, 0-1 km SRH is underpredicted by 

about 20 m2 s-1. The 0-3 km SRH errors are widely insignificant as a function of location 
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relative to the TC center for the RAP 12-hour forecast (not shown), and across both 

forecasts and the analysis when plotted as a function of time relative to landfall, TC 

intensity, and local time of day. 

 

 

Figure 4.19:  0-1 km shear errors in knots for (a) the RAP analysis, (b) the RAP 12-hour 

forecast, and (c) the HRRR 12-hour forecast, and 0-3 km shear errors for (d) the RAP 

12-hour forecast, plotted as a function of distance and azimuth relative to the TC center. 

Bins in which the errors are not statistically significant at the 95% confidence level are 

hatched. 
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When 0-1 km SRH errors are plotted as a function of time relative to landfall, 

statistically significant underpredictions emerge in the two days on either side of the 

landfall time (Fig. 4.20a). However, the magnitude of these errors does not lessen as 

time after landfall increases, so Hypothesis 2 is not supported by these results. The 0-1 

km SRH underpredictions also tend to be significant in the RAP analysis from the early 

morning through the mid-afternoon hours when examined as a function of local time of 

day (Fig. 4.20b). Overall, 0-1 km SRH errors are more frequently significant across the 

model runs and variables of interest than the 0-3 km SRH errors. 

 

 

Figure 4.20:  0-1 km SRH errors in m2 s-2, plotted as functions of (a) time relative to 

landfall in days and (b) local time of day. Solid dots are placed along the line at the 

midpoint of each bin in which the errors are significant at the 95% confidence level. 

 

 

 Values of selected thermodynamic and kinematic variables are used to calculate 

the significant tornado parameter (STP), which was shown by Nowotarski et al. (2021) 

to discriminate between tornadic and non-tornadic cells within Hurricane Harvey. Their 

study utilized the fixed-layer STP, which is computed using the surface-based lifting 
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condensation level, or SBLCL, along with SBCAPE, 0-1 km SRH, and 0-6 km shear. 

The CINH-scaled STP depends on the mixed-layer thermodynamic quantities MLLCL, 

MLCAPE, and MLCINH, in addition to values of effective-layer SRH and effective 

layer shear. These are the SRH and shear as calculated for a unique effective inflow 

layer, or the layer from which a convective storm sources its updraft. Errors in both the 

fixed-layer STP and the CINH-scaled STP are examined here. 

 When fixed-layer STP errors are plotted relative to the TC center, few bins 

display significant errors. Fixed-layer STP is significantly underpredicted in a small 

sector to the east-northeast of the TC center by the RAP 12-hour forecast (Fig. 4.21a). 

These underpredictions have the largest magnitude within 200-400 km of the TC center, 

and decrease outside of that range. Fixed-layer STP is also significantly underpredicted 

on the east side of the TC center by the HRRR 12-hour forecast through a narrow ring 

from 45-180 degrees and 200-400 km (Fig. 4.21b), and by the RAP analysis in a small 

sector just south of east from 200-600 km (Fig. 4.21c). These results act in accordance 

with the overlapping negative errors already seen in SBCAPE, 0-6 km shear, and 0-1 km 

SRH on the east side of the TC center. In contrast, CINH-scaled STP errors are largely 

insignificant when plotted as a function of position relative to the TC center (not shown). 

Errors in CINH-scaled STP are also widely insignificant across the full range of 

intensities and times relative to landfall. A lack of consistent positive or negative errors 

in CINH-scaled STP could be due to counteracting effects of some of the variables used 

to calculate it: MLCAPE which is typically overpredicted, and effective layer SRH and 

shear whose errors behave erratically as a function of different TC-related variables. 
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Figure 4.21:  Fixed-layer STP errors for (a) the RAP 12-hour forecast, (b) the HRRR 12-

hour forecast, and (c) the RAP analysis, plotted as a function of distance and azimuth 

relative to the TC center. Bins in which the errors are not statistically significant at the 

95% confidence level are hatched. 

 

Fixed-layer STP is significantly underpredicted both at low TC intensities up to 

hurricane strength and from the landfall time up to two days after landfall (Fig. 4.22a, b). 

The results in Figure 4.22a support Hypothesis 1 in that errors are smaller in magnitude 

at the lower intensities. With respect to local time of day, CINH-scaled STP is 

overpredicted in the local midafternoon, and slightly less so in the evening, by both 

forecasts and the RAP analysis (Fig. 4.22c). These positive errors are only significant in 
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the RAP 12-hour forecast and RAP analysis for the midafternoon, and the RAP 12-hour 

forecast for the evening period, but they should be noted as it is not common for STP to 

be overpredicted in any model run or as a function of any variable. 

 

 

Figure 4.22: Fixed-layer STP plotted as a function of (a) TC intensity and (b) time 

relative to landfall, and (c) CINH-scaled STP plotted as a function of local time of day. 

Solid dots are placed along the line at the midpoint of each bin in which the errors are 

significant at the 95% confidence level. 
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5. CONCLUSIONS 

 

This study explores model errors in the RAP analysis and RAP and HRRR 12-

hour forecasts within the TC envelope up to 800 km from the center. Up to 1,730 

sounding pairs are used in the analysis, sourced from 13 TCs that made landfall along 

the coast of the contiguous U.S. during the 2017, 2018, and 2019 Atlantic hurricane 

seasons. First, mean error profiles are created to investigate the representation of the raw 

sounding variables temperature, dew point, and wind speed in the models throughout the 

depth of the troposphere. Then, an understanding is developed of how these model errors 

vary with height as functions of variables related to TCs such as time relative to landfall, 

intensity, and distance from the center. Finally, model errors in sounding-derived 

parameters are explored, paying particular attention to variables previously identified as 

useful for TCTOR forecasting. Results are also compared and contrasted with the RAP 

and HRRR model errors found by Evans et al. (2018) in their examination of continental 

convective environments.  

Surface cool biases are evident in the mean error profiles, which often leads the 

models to be stable-biased in surface-based parameters used to assess static stability. The 

temperature errors from 0-5 km in the RAP and HRRR 12-hour forecasts are not 

consistent with the results of Evans et al. (2018), who found persistent warm biases 

within that layer in continental environments. Dew point errors have larger magnitudes 

and standard deviations than the temperature errors, and there is a pronounced moist bias 

that worsens with height for both of the forecasts and the analysis. This moist bias was 
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also evident in the continental environments analyzed by Evans et al. (2018). However, 

the magnitude of the moist bias from 0-5 km tends to be smaller in the TC environments 

analyzed in this study, suggesting that models predict moisture more accurately within 

TC envelopes. Wind speeds are overpredicted in a shallow layer near the surface and 

then underpredicted throughout the rest of the depth of the profile, which leads to 

underpredictions of vertical wind shear in surface-based layers. 

The four hypotheses tested in this study are listed in Chapter 2. In paraphrased 

form, they are (1) Model performance will improve as the environment becomes more 

characteristic of a typical continental environment (i.e. as intensity decreases and 

distance from the TC center increases), (2) Model performance will improve as the TC 

moves further inland, (3) Forecast errors will exceed analysis errors, and (4) Sounding-

derived parameter errors will reflect errors in the raw sounding variables.  

Hypothesis 3 is supported by the mean error profiles described above; absolute 

errors of temperature, dew point, and wind speed in the 12-hour forecasts exceed those 

in the RAP analysis throughout the profile.  

Hypothesis 1 is tested by examining plots of the errors as functions of intensity 

and distance from the TC center. As expected, temperature errors tend to be smaller at 

lower TC intensities, and at their largest within 200 km of the TC center. However, only 

the HRRR 12-hour forecast shows any marked decrease in temperature error magnitudes 

as distance from the TC center increases outside of 200 km, and dew point errors are 

relatively uniform at all radial distances from the center. Thus, Hypothesis 1 is only 

partially supported by these results. 
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Hypothesis 2 is contradicted by temperature and dew point errors that do not 

diminish as time after landfall increases. SBCAPE and MUCAPE errors show a similar 

failure to decrease in magnitude after landfall. However, MLCAPE errors support 

Hypothesis 2.  

SBCAPE and MUCAPE are generally underpredicted across all model runs and 

as a function of time relative to landfall, intensity, and distance and azimuth relative to 

the TC center, while MLCAPE is generally overpredicted. These broad trends in model 

predictions of CAPE support Hypothesis 4 because they align with what could be 

expected from a cool and dry bias at the surface that transitions to a weaker cool bias and 

moist bias in the mixed layer just above the surface. The signs of the biases in SBCAPE, 

MUCAPE, and MLCAPE are also consistent with the findings of Evans et al. (2018). 

Stable biases also exist in the lapse rate errors, with more variability and larger error 

magnitudes for the lapse rates calculated from 0-1 km than those calculated for the 0-3 

km layer. 

The 0-1, 0-3, and 0-6 km shear values are generally underpredicted for all model 

runs examined. The underpredictions of 0-1 km shear decrease after landfall and at 

weaker intensities, supporting Hypotheses 1 and 2, while the underpredictions of 0-3 and 

0-6 km shear remain more steady as a function of time relative to landfall and intensity. 

Likewise, 0-1 and 0-3 SRH tend to be underpredicted, although with fewer significant 

results across the model runs and TC-related variables. Fixed-layer STP is largely 

underpredicted, while trends are less clear in the CINH-scaled STP. 
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The frequent underprediction of measures of instability and shear by the RAP 

and HRRR is important for forecasters to note. The underpredictions of these variables 

in the model forecasts and analysis have the potential to lead to an underestimation of 

the tornado threat during landfalling TCs. It is worth pointing out several variables that 

are significantly over- or underpredicted within sectors of the TC that have been 

identified as favorable for TCTOR production. MLCAPE is significantly overpredicted 

by 100-200 J kg-1 within a sector on the east side of the TC in the RAP analysis, and by 

200-300 J kg-1 throughout the northern half of the TC in the RAP 12-hour forecast. The 

0-3 km shear values are significantly underpredicted by 2-5 kt in the RAP 12-hour 

forecast throughout the eastern half of the TC, outside of 200 km from the center. The 0-

6 km shear is also significantly underpredicted in the RAP 12-hour forecast, by the same 

magnitude within the majority of the eastern half of the TC. 

Additional forecasting insights could be gleaned by investigating the errors in the 

raw variables and sounding-derived parameters at longer model lead times, to get a sense 

of how the errors tend to evolve leading up to the analysis time. Examining the errors in 

different models such as the Hurricane Weather Research and Forecasting model 

(HWRF), the North American Mesoscale Forecast System (NAM), and the Global 

Forecast System (GFS) would be beneficial since forecasters often compare forecasts 

from a variety of models within the complex TC envelope. Also, the dataset could be 

expanded to include TCs from the most recent Atlantic hurricane seasons in 2020 and 

2021. Any future work will be completed with the same strong focus on operational 

utility and supporting the effort to improve the TCTOR forecasting and warning process. 
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