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ABSTRACT

Explosive growth in the amount of information has infiltrated every aspect of our lives. Rec-

ommender systems, as an effective tool to filter information, have become prevalent and influential

in many domains. This dissertation seeks to improve recommender systems by learning the unique

properties and complex relationships of the rich content information associated with both users

(who seek recommendations) and items (that are recommended to users). However, to do so, there

are key research challenges: (i) the extreme sparsity of the observed item relations; (ii) high het-

erogeneity between user-user relations and user-item interactions; (iii) duplication between content

and collaborative signals; and (iv) the highly skewed long-tail distribution of user feedback towards

items. With these challenges, this dissertation research makes four unique contributions:

• The first research contribution of this dissertation is to mine and integrate the item-side

relations. Concretely, we begin by investigating different types of item relations (e.g., com-

plementary and substitute relations), and build a novel neural item-relationship based model

to uncover the item relationships. We then integrate these item multi-relations into user

sequences through a hierarchical temporal graph to enhance sequential recommendation.

• The second research contribution of this dissertation is to mine and integrate the user-side

relations. We are one of the first to investigate the socio-behavioral phenomenon of social

resonance to closely connect user relations with user interactions towards items. Then we

integrate the user social relations in sequential recommendations to improve fashion rec-

ommendations. We also provide a new large visual dataset of dynamic visual posts by key

fashion bloggers that contain both high-quality dynamic fashion preference shifts over time.

• The third research contribution of this dissertation is to disentangle the content and collab-

orative features to address the duplication problem in content-aware recommendations. We

propose a novel two-level disentanglement approach that supports both content-collaborative

disentanglement and feature disentanglement based on a variational auto-encoder.
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• The fourth research contribution of this dissertation is to decouple the learning process that

tackles the skewed long-tail distribution problem. We propose a novel cross decoupling

framework that utilizes cumulative learning and multi-experts to decouple the learning of

long-tail distribution from prior and conditional knowledge aspects.
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1. INTRODUCTION

Explosive growth in the amount of information over the past decades has infiltrated every as-

pect of our lives. Users are over-exposed to products, news, jobs, media, and more. One effec-

tive and powerful tool to make sense of this deluge of information is the recommender system.

Recommender systems have blossomed, including popular recommenders like those that power

Amazon, Netflix, and YouTube, as well as in domains like education [1] and medical science [2].

Furthermore, recommender systems can be viewed as an important area of study for developing

personalized machine learning methods with broad impact.

The recommendation algorithms that power these systems are typically based on either col-

laborative or content-based approaches. Collaborative approaches seek to exploit collaborative

features from user behavior data (e.g., clicks or likes) to identify items of interest. For example,

the neighbourhood-based collaborative filtering methods [3] usually find a neighborhood of similar

users around a target user (where similarity may be based on similar ratings over a common set

of items), and then calculate the weighted sum of ratings of those similar users to identify items

to recommend to the target user. In contrast, content-based approaches aim to explore content

information about the users and items (e.g., user ages or item images). For example, VBPR [4]

leverages the images associated with items to discover the visual patterns that users prefer (e.g.,

striped shirts or solid shirts) to find good items to recommend. Content-aware recommenders are

ubiquitous in practice and have gained extensive attention due to their strong and robust perfor-

mance [4–7]. Compared with purely collaborative-based methods, content-aware recommenders

can utilize both user and item properties to improve recommendation performance, especially for

cold-start users, and also offer good interpretability at the same time (e.g., to explain that a shirt

was recommended due to a particular pattern).

This dissertation seeks to improve recommender systems by exploiting the unique properties

and complex relationships of the rich content information associated with both users (who seek

recommendations) and items (that are recommended to users). Let’s consider each of these per-
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spectives in turn: item-side content and user-side content.

Item-side Content. Item-side content describes item properties such as the images associated

with an item, its reviews, and multi-relations (e.g., complementary or substitute relations between

items). Item-side content is especially useful for identifying what particular aspects of an item a

user prefers to make recommendations more transparent. Particularly, the relations among items

play an important and unique role [8]. For example, knowing if one item is a substitute for another

(i.e. is interchangeable, as in the case of a camera) or is a complement (i.e. goes well with

one another, as in a specific lens that works with a camera) can facilitate many recommendation

applications, such as helping users find related items, discover new items, and promoting bundle

purchases. Further, when we consider the order of user interaction history (known as sequential

recommendation [9]), item relations play a significant role to influence the user’s next actions

[8,10–12]. An example is, in a short time period, users are more likely to purchase a phone and its

complementary accessories, while later she may tend to purchase another updated phone to replace

her old ones. Therefore, item relations provide further understanding of user sequence patterns and

could help uncover user sequence patterns.

User-side Content. User-side content like the user’s age, location, or social connections can be

helpful to describe users and is of particular significance for improving user cold-start recommen-

dation. User relations, such as friends, colleagues, followers and followees, can heavily influence

the user preference towards items. Indeed, social effects such as social homophily and the im-

portance of social connections in the presence of limited attention have been shown to enhance

recommendation quality [13, 14]. Of special interest in this dissertation of user-side content is the

impact of fashion-specific influencers on recommendation. Fashion is a core cultural phenomenon

with large social impact [15,16]. We can view recommendation in this context as a special type of

sequential recommendation that is complicated by changing trends, the importance of visual sig-

nals, and the impact of fashion leaders. Hence, careful consideration of user-side content is critical

for the development of effective recommenders.

With these two perspectives for content-based recommendation, it motivates us to carefully
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mine the rich user-side and item-side content relationships and then integrate these relationships

with collaborative signals for improved recommendation algorithms. However, to do so, there are

two key research challenges we face:

• Sparsity of Relations. First, from the item-side, while item relationships may be a valuable

signal for improving recommendation, in many scenarios the observed data points of item

relations are quite sparse, especially comparing with the huge number of items. For example,

in a public Amazon dataset, the observed item relations are only present in ~0.01% among

all items [17]. Furthermore, when we consider the time factor, both user sequences and item

relations are even sparser since users interact with very few items. That is, these item-level

relations become less useful as items are updated over time (e.g., an older iPhone being

replaced by a new model). How could we uncover the unobserved item relations and further

integrate those relations with user sequences for improved sequential recommendation?

• High heterogeneity. Second, from the user-side, there is high heterogeneity in terms of the

types of relationships: some platforms support user-user connections based on social rela-

tionships, while some platforms (such as eCommerce ones) may not support direct user-user

relationships but do support user-item connections (via purchasing, rating, or interacting).

How can we mine the mutual interactions of these relationships across these fundamentally

different perspectives? Furthermore, when we consider the time factor, there is high hetero-

geneity in terms of the influence from user social connections over time. For example, in

fashion recommendation, a user could follow fashion bloggers and the fashion preference of

those fashion blogger’s could be evolving over time. How could we integrate those dynamic

changes with user preference towards items in different time periods?

If we can successfully deal with these challenges, we expect to observe improvements gained in

recommendation by mining user-side and item-side content and integrating them with collaborative

signals. However, naively combining content-based methods with collaborative ones may lead to

unintended negative consequences. That is, there are still critical challenges in how we model
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content:

• Duplication. Many recommendation approaches simply concatenate content information

with collaborative signals to learn user and item features. The learned user and item features

derived from these combined sources can be entangled by intermixing the influence from

each, harming recommendation quality. For example, a user, and also many similar users,

may prefer a dress because of its visual appearance, price, and high quality. The known

content information is the dress images. If the user-item interactions and the dress image

are considered separately to learn the features that influence user preference towards items,

the collaborative features and content features could be highly correlated. In essence, both

the collaborative and content features could redundantly encode the visual characteristics of

the dress, meaning there is less capacity to focus on learning other features (like price) that

could influence user preference towards items. How could we disentangle this duplicated

information to gain more diverse knowledge for enhanced content-aware recommendation?

• Skewed distribution. For different items, existing content-aware recommendation methods

usually treat content equally important. However, user interactions towards items generally

exhibit the long-tail distribution: a small fraction of popular items receive most of the user

feedback (which we refer to as head items), while most items only have few user feedback

(which we refer to as tail items). We find that many content-aware recommendation meth-

ods that treat content information equally only bring improvements for tail items, but the

recommendation quality decreases for the head items. Hence, an important question is how

to learn the content information while also considering the distribution gap between head

and tail items, to improve the recommendation performance?

These additional two challenges motivate us to explore novel methods to disentangle and de-

couple representations for improved recommendation. That is, we aim to isolate and augment the

signal contained in content, so that it is not duplicated nor drowned out by other (collaborative)

signals. Indeed, disentanglement and decoupling strategies have been widely studied in computer
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vision [18] and natural language processing [19] due to their robust performance and interpretabil-

ity. Few if any methods have considered the decoupling and disentanglement problem in the con-

text of recommendation with both user behavior data and content information, which is especially

important for building robust and high-quality user-item joint representations for content-aware

recommendation in practice.

1.1 Contributions

With these challenges in mind, this dissertation focuses on improving content-based recom-

mendation through careful mining and integration of the complex relationships among users and

items, and further disentanglement and decoupling of the learned representations. In sum, this dis-

sertation makes unique contributions towards content-aware recommendation as shown in Figure

1.1:

• Mining Item-side Relationships: We first investigate different types of item relations (e.g.,

complementary and substitute relations), and build a neural item-relationship based model to

learn the complex relationships between items. Based on that, we further apply those item

multi-relations into sequential recommendation to enhance the learning of sequence patterns.

By investigating and aggregating the multi-relations among items in user interactions among

items, we can (i) provide a sound sequential recommender that dynamically adapts item dif-

ferent relations to user sequence behavior for improved next-item recommendation; (ii) effec-

tively uncover high-quality sequence patterns in highly-personalized user sequences; and (iii)

alleviate the sparsity issue of items in user sequences for improved recommendation.

• Investigating User-side Social Influence: We propose to investigate the socio-behavioral phe-

nomenon of social resonance wherein users are more influenced by opinions that “strike a

chord”. In recommendation, this social resonance can bridge the gap between a user’s social

connections with other users on an eCommerce platform, to better capture the social influence

for user preference towards items. We then consider the social relations in sequential recom-

mendation. Concretely, we present a key opinion leaders-aware recommendation that fully
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Figure 1.1: Dissertation overview: contributions include the modeling of both user and item con-
tent information and their applications in sequential recommendation, and how to disentangle and
decouple content when both content and collaborative information is considered.

investigates those key opinion influencers on user dynamic preference towards items. We also

provide a new large visual dataset of dynamic visual posts by key fashion bloggers that con-

tains both high-quality fashion features and captures the dynamic aesthetic preference shifts of

users over time.

• Disentangling Diverse Content Information: Then we explore how disentanglement can help

learn different aspects of features that influence user preference towards items. We propose a

two-level disentanglement approach that supports both content-collaborative disentanglement

and feature disentanglement based on the structure of a variational auto-encoder. We success-

fully tackle the duplication problem by theoretically showing that each extracted feature in

our proposed model is disentangled with other extracted features via statistical independence

properties. Such disentanglement representation learning can improve the user and item repre-

sentations, alleviate the high feature correlation influence, and offer a high-quality, stable and

more interpretable recommendation.

• Decoupling Memorization and Generalization: Finally, we propose a cross decoupling

method that separately considers memorization and generalization of items in the highly skewed

long-tail distribution. Concretely, we provide a theoretically analysis and experimental inves-

tigation of previous methods that address the skewed distribution problem. With a compre-
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hensive understanding of the limitations of previous methods, we utilize cumulative learn-

ing and multi-experts to decouple the learning of long-tail distribution from prior and condi-

tional knowledge aspects. Therefore, head items (with lots of user feedback) can be separately

learned from tail items (with little user feedback) with careful consideration of the distribution

gap between them. The proposed method shows improvements for both head and tail items.

The learned item representations also preserve better semantics of items.

1.2 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Chapter 2: Related Work. In this chapter, we discuss related work, especially the content

information utilized in item and user side, with a focus on the item relations and user relations

in recommendation, and their implementation in sequential recommendation. We also discuss

recent advances in decoupling and disentanglement learning.

• Chapter 3: Quality-Aware Neural Complementary Item Recommendation. In this chap-

ter, we propose Encore that learns the item complementary relations based on both item visual

(stylistic) and textual (functional) content information, and further gives a high quality com-

plementary item recommendation based on a novel neural network model.

• Chapter 4: Adaptive Hierarchical Translation-based Sequential Recommendation. In

this chapter, we further consider the item complementary and substitute relations in sequen-

tial recommendation settings. Concretely, we propose a novel translation-based sequential

recommendation HierTrans that integrates item multi-relations to user sequences through a hi-

erarchical temporal graph. The learned user preference towards items can adaptively change

based on both user interacted item relations and the user own preference.

• Chapter 5: Vibe Check: Social Resonance Learning for Enhanced Recommendation.

In this chapter, we investigate the user social relations for improved item recommendation.

Specifically, social resonance effect is explored and we further propose a first social resonance-

aware recommender ResRec. ResRec can closely connect user social connections with user
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interactions towards items through preference-based resonance and multi-hop relation-based

resonance, to futher facilitate the prediction of social influence on user preference towards

items.

• Chapter 6: Instagrammers, Fashionistas, and Me: Recurrent Fashion Recommendation

with Implicit Visual Influence. In this chapter, we further consider the user social relations

in sequential recommendation settings. Particularly, we focus on the social influence in fash-

ion recommendation. We propose to consider the fashion focused key opinion bloggers and

model their influence on user preference towards items. Concretely, we build a BiLSTM that

integrates those fashion blogger posts to user purchase history, and find the influenced fashion

bloggers to different users for further fashion recommendation. We also release a large scale

time-aware visual dataset of further research.

• Chapter 7: Content-Collaborative Disentanglement Representation Learning for En-

hanced Recommendation. In this chapter, we propose DICER, a novel disentanglement gen-

erative recommendation model that disentangled the content aware recommendation from two

level: content-collaborative disentanglement and feature disentanglement, to address the du-

plication problem in content recommendation. Therefore, different types of features can be

effectively learned for user and item representation learning and further give an improved rec-

ommendation.

• Chapter 8: Cross Decoupling: Learning Item Embeddings based on Long-tail Item Dis-

tribution. In this chapter, we propose CDN, a cross decoupling method to address the skewed

long-tail distribution problem in recommendation. CDN decouples the memorization and gen-

eralization through a novel regularized Bilateral-Branch Network and multi-experts structure

to separately consider the head and tail items in the long-tail item distributions. CDN brings

significant recommendation improvement for both head and tail items.

• Chapter 9: Conclusions and Future Directions. We conclude the dissertation with a sum-

mary of contributions, and also discuss potential research extensions.
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2. RELATED WORK

In this chapter, we highlight related work to the themes of this dissertation. We begin with

a discussion of item-side and user-side relationships, and how these relationships can inform the

design of content-based recommender systems. Then we examine decoupling and disentangling

methods.

2.1 Item-side Relations in Recommendation

As we have discussed in the previous chapter, item relations vary greatly. Here we mainly

discuss two important types of relations: complementary and substitute relations. We also highly

how these relations can be impactful in sequential recommendation settings.

2.1.1 Item Relations based Recommendation.

Item recommendation often focuses on finding related items that are similar to an item of in-

terest. The intuition is that a recommender should aim to find items that are very close to a target

item (e.g., Harry Potter Book 2 is similar to Harry Potter Book 1). Such item-to-item recommen-

dation often uses collaborative filtering [20–24] with similarity functions [25–27] such as Pearson

similarity [28], cosine-based similarity [29], conditional probability-based similarity [30], or si-

multaneous regression [SLIM] [31]. Recently, Kabbur et al. [32] introduced a model called FISM

that uses latent factor matrices to learn item-item similarity. Shambour [33] used Euclidean dis-

tance to measure item-item similarity and showed such a method is better than traditional similarity

approaches. Li et al. [34] used the proportion of same users who rated items to measure item simi-

larity. Moreover, many approaches seek to find similar items by incorporating user ratings [35–37]

or images [16, 38, 39]. Similarly, context-based recommenders [40] and phrase-level sentiment

analysis [41] have been proposed to capture additional item features for improved recommenda-

tion.

Recent research has focused on detecting relationships between items – such as substitutes or

complements [10–12,42,43] – that go beyond traditional item similarity. Substitute items are those
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that are interchangeable, such as cameras in different brands. Complementary items are those that

“go well” with one another. Examples include a camera that requires a specific lens or a laptop

that works well with only certain chargers. Those relations can facilitate many recommendation

applications, such as recommendations in different context – ’users who viewed X also viewed Y’

(substitutes), ’users who bought X also bought Y’ (complementary), as illustrated in Amazon and

many other ecommerce platforms [11].

For example, [44] employed an association rule to find implicit relationships between items and

used it as a regularization term in matrix factorization. [43] used user reviews to find relationships

between items such as “albums that are similar with Taylor Swift’s 1989”. McAuley et al. showed

how complementary fashion items like dresses and shoes can be recommended by projecting item

images into a common visual style space [10]. Image-based recommendations are also discussed

to discover substitutable items in a style space [11]. Another improved model based on images of

items was proposed by He et al. [45], in which a mixtures-of-experts framework is built to model

the relative importance of different image aspects. Most existing methods are based on a single

source of item information – such as images or textual information. However, in practice, the

item relationships are complex and the interaction of items in the relationship varies according to

different categories. For example, style-based methods do well for clothing but not for books.

2.1.2 Item Relations in Sequential Recommendation

Sequential dynamics play a key role in many modern recommenders [9, 46–48]. Typically,

there are two major types of sequence models: (i) the order-based models (shown in Figure 4.2

(a)) consider user sequences as item orders and focus on uncovering diverse patterns from these

orders, such as using Markov Chains [49, 50], Recurrent Neural Networks (RNNs) [51–53], Con-

volutional Neural Networks (CNNs) [46, 47, 54] and attention mechanism [9]; (ii) the translation-

based models (shown in Figure 4.2 (b)) treat user sequences as user translation behavior to con-

nect items [55–57]. These translation-based methods can capture higher-order user-item interac-

tions [55] and are more scalable compared with neural network-based models. However, most

assume each user translation vector is static and identical, thus the translation behavior is the same
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across time; (iii) Our proposed model, HierTrans, as shown in Figure 4.2 (c), adaptively aggregates

item high-order multi-relations at the category-level and dynamic user preferences at the item-level

for next-item recommendation. Thus the translation vector can adaptively change.

Different types of item relations have gained attention to improve recommendation [58–60].

Recently, many works focus on those item relations due to their pervasive real-world application,

such as inferring complementary and substitute relations based on content information since these

relations are very sparse [8, 12, 61]. Here, we mainly focus on the category-level relations. Fur-

thermore, few of these methods explore such complement and substitute relations for dynamic

sequential recommendation.

Many research efforts have investigated graph structures [62] for link prediction [63–69].

Specifically, for translation-based models [70, 71], TransE [72] first proposed the core idea that

items were connected by translation vectors in their vector space. The model structure is simple

but achieves powerful performance in many situations. In follow-up work, various methods (such

as TransH [73] and TransR [74]) extend TransE. Different from these methods that are mainly

based on generic graphs, we investigate the specific structure of a user’s dynamic sequence (which

is a path) inside an item’s heterogeneous relational graph.

2.2 User-side Relations in Recommendation

In this section, we discuss about the user-side relations, which is known as the social connec-

tions. Especially, we explore one widely used social effect – social resonance – and also discuss the

social influence in sequential recommendation settings – known as the fashion recommendation.

2.2.1 Social-aware Recommendation

Social-aware recommendation is based on the common assumption that users can be influenced

through their social connections to have similar preferences [75–78]. For example, Reshma et

al. [79] considered directed and transitive trust relations among users to overcome the data sparsity

problem in recommendation; Wu et al. [80] investigated user influence propagation inside the

social network to improve the recommendation performance.
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Recently, many studies further explore different social effects in a social network to enhance

the learning of social influence. For example, Wu et al. [13] explored the social homophily prop-

erties to more accurately estimate the social influence for user preference towards items; Wang et

al. [14] investigated the social network property that users can only accept a limited amount of

social information, thus only focused on a subset of friends to improve recommendation. How-

ever, most of those methods mainly focus on the internal properties of the social network (e.g.,

social homophily), ignoring the mutual social resonance effect and its reinforced influence on user

preference towards items. Furthermore, they usually directly estimate the user social influence on

the user preference towards items (e.g., through an attention mechanism), with less consideration

of the high heterogeneity between user-user social connections and user-item interactions. Both of

them could limit the learning of user social network influence on user preference towards items.

In recent years, many studies have shown that users who have rated or reviewed an item could

heavily influence the preferences of other users towards the item, especially when the explicit

social network is absent [81–84]. For example, Amazon users may refer to the previous ratings

and reviews of an item to help make a purchase decision. We refer to such an influence network

for each item as the item-aware user influence network. Exploiting the latent influence in item-

aware user influence networks has attracted significant attention in recommendation. For example,

Mukherjee et al. [83] utilized users who rate the same item to explore the influence in the item-

aware user influence network and showed great improvement in recommendation. Guo et al. [81]

empirically compared different ways to infer implicit trust among users. Lin et al. [85] illustrated

how potentially influential experts can implicitly influence user preference. However, few of these

works consider the connections between the item-aware user latent influence and the user social

network, which we find especially helpful to bridge the gap between user-user social connection

and user-item interactions to estimate user preference towards items.

2.2.2 Fashion Recommendation.

With the rapid expansion of online shopping for fashion, recommending personalized fashion

items has gained increasing attention [15, 86–90]. Different from traditional item-based recom-
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mendation, visual information plays a significant role in fashion recommendation [15, 91]. For

example, He et al. [15] extracted fashion trends from user’s purchase history and built a visual-

time aware matrix factorization to recommend clothing. Jagadeesh et al. [16] built a visual-aware

complementary recommender to find items of a similar style based on the user’s purchase history.

Recently, Yu et al. [91] used aesthetic visual features extracted from the AVA activities dataset [92]

to improve Amazon clothing recommendation. Gabale et al. [88] explored community influence

on fashion trends and identified the importance of social media on fashion evolution. Our work

exploits trends revealed through fashion bloggers, in contrast to most existing approaches that use

purchase history [15, 16] or static visual datasets [91].

Since fashion evolves over time, time-aware recommendation can be used to model user and

item temporal dynamics [93–96]. Considerable prior works focus on RNN-based models in these

cases. For example, Wu et al. [94] built a recurrent recommender network that can achieve high

performance with fewer parameters for rating recommendation. Beutel et al. [96] used a latent

cross recurrent neural model to effectively model contextual information in neural recommender

systems. Hidasi et al. [53] used a session-based RNN recommender to achieve an improvement

for implicit recommendation. Ko et al. [97] proposed a collaborative sequence model based on

RNNs to capture a user’s contextual state as a personalized hidden vector. Sun et al. analyzed the

importance of user social dynamic influence and built a recurrent recommender with utilizing user

explicit static social network. Different from these works, considering the significant importance

of key fashion opinion leaders (fashion bloggers) in the fashion area [98, 99], we focus on fashion

bloggers and use the implicit influence of their visual posts as a dynamic fashion signal for user

clothing recommendation.

Previous research has shown that fashion bloggers can influence fashion preferences, and even

directly influence user purchase preference, especially for young women [98–100]. For example,

Vineyard [101] examined the relations between fashion bloggers and consumer purchase (e.g. “I

buy one or more products which I have browsed on a blog”) and the results show they are strongly

positively connected (Cronbach’s α = 0.931). Zain [102] interviewed consumers who had com-
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mented on fashion blogs, finding that their purchase preferences are strongly influenced by fashion

bloggers and their posts. Marwick [100] interviewed fashion bloggers to show the high aesthetic

quality of their posts and their commercial value. McQuarrie et al. [98] highlighted the influence

of fashion bloggers on consumption. Among those work, Instagram is regarded as the platform

with the largest number of influential fashion bloggers with a large reach [103]. Many brands

specifically utilize Instagram to promote their clothing [104], with around £1 billion spent per year

to sponsor Instagram posts [99]. We see many commenters show their strong willingness to buy

similar clothing as the blogger posted.

2.3 Content Disentanglement and Decoupling

Previous sections mainly focus on integrating the content information to enhance the recom-

mendation. However, simply aggregating content information usually suffer suboptimal problem.

In the following, we give a detailed discussion and show the recent proposed decoupling and dis-

entanglement techniques.

2.3.1 Disentanglement Learning in Latent Factor-based Recommendation

One of a main approach for content-aware recommendation is latent factor-based models. They

(e.g., matrix factorization and recent neural approaches) [105–110] typically map both users and

items to a latent factor space with a low latent dimension. However, since only user-item inter-

actions are considered, these models usually suffer from sparsity and cold-start problems. Thus,

latent factor models for recommendation have been augmented to incorporate additional content

information of items and users [4,50,111–113]. For instance, Li et.al. [114] combined item content

information and user-item feedback into a variational autoencoder to learn user preference towards

items. Lv et al. [115] proposed a multimodal item similarity-based framework that learned vi-

sual and textual features for recommendations. However, most of these existing content-based

latent factor models extract the content and collaborative features independently and then simply

concatenate them to learn representations for users and items, without fully considering the cor-

relation between user-item feedback and content information. For example, VBPR [4] directly
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concatenates the visual features learned from item images with collaborative features as the joint

item representation and multiplies it with user representations to predict the user preference. This

learned representation may contain duplicated/highly correlated features between images and col-

laborative features, leading to less robust models of user preference.

Recently, disentanglement representation learning has attracted increasing attention due to its

robust performance and interpretability [116–119]. Disentanglement learning aims to identify each

feature that is relatively not influenced by other feature changes. For example, disentanglement

learning on a visual dataset might learn the shape, the color, and the position features of the ob-

ject [120], where each feature is not easily influenced by other feature changes. One popular

method to capture disentangled features is based on statistical independence [121], which has

demonstrated good performance in many applications [122,123]. For example, β-VAE shows that

disentanglement can be achieved if the KL term in the evidence lower bound (ELBO) is highly pe-

nalized. Based on that, Chen et al. [121] introduced β-TCVAE which provides a further decompo-

sition of the ELBO to explain the penalty of KL for feature disentanglement. For recommendation,

Ma et al. [124] learned disentangled latent representations for users and items based on user-item

feedback and showed great improvement in recommendation.

2.3.2 Decoupling Learning for Long-tail Distributions

The large-scale datasets usually exhibit long-tail distributions, which poses many critical chal-

lenges to many tasks in different areas [125–128]. Previous works mainly focus on the three

directions: re-sampling, losses engineering and transfer learning. Re-sampling aims to create

a more balanced data distribution during training, including over-sampling for tail classes and

under-sampling for head classes. However, those methods could easily cause over-fitting/under-

fitting problem to tail/head classes. Losses engineering aims to modify the loss functions, such

as refining the weighting or adding regularization [129], to put more focus on the training of tail

classes. For example, the widely used logQ [130] adds more weights to tail samples based on

the class frequency. However, Those methods is argued to cause unstable training for the highly

skewed datasets [125]. Another way to deal with the long-tail distribution problem is to transfer

15



the learned knowledge from head classes to tail classes, such as transferring the semantic fea-

tures [131] and learning the relation types from head to tail classes [132]. There are also many

methods incorporate the meta learning with transfer learning to better learn the connections be-

tween head and tail classes, such as meta-transferring the model parameters [133] and learning

weight differences in domain adaption [134]. Recently, studies found that those jointly learning

re-balancing framework has different effects on representation and classification. Based on that,

they [18,135] proposed a decouple learning mechanism that separately consider the representation

learning and classification. Those methods achieves powerful performance in image classification

and recognition tasks.

In recommendation, the long-tail distribution problem has attracted many attentions [136,137],

especially for the item side with the rapid increase of number of items. Traditional methods usu-

ally separately consider the tail items as the cold-start items [138, 139]. They focus on investi-

gating efficient ways to incorporate content information, such as transfer learning from different

domains [140], graph learning by leveraging knowledge graph [69] and meta learning [141, 141].

Recently, there are increase efforts focus on the long-tail distribution, instead of purely consider

the tail items, like adding more weights to tail items [142], linking different long-tail distribu-

tions [143], and transfer learning from head items to tail items [144, 145]. However, those works

jointly train user and item embedding learning and their final recommendation, which makes it

unclear how the long-tail distributions influence the recommendation performance. Therefore,

we study the potential opportunities to decouple the learning in recommendation to deal with the

long-tail distribution problem in recommendation.

The interplay between memorization and generalization has been widely studied in different

areas [146,147]. They are closely related to feature mining, model design and model performance.

In recommendation, according to [148], the memorization refers to the learning of co-occurrence

in historical datasets, and generalization is to learn the new feature combinations which rarely

occurred in the historical dataset. The wide and deep learning [148] shows the importance of

achieve both the memorization and generalization, and the wide and deep network has achieved

16



great success in real world application.

17



3. QUALITY-AWARE NEURAL COMPLEMENTARY ITEM RECOMMENDATION*

In this chapter, we tackle the challenges of sparsity of item relations by mining item comple-

mentary relations and giving a complementary item recommendation. We propose a new neural

complementary recommender ENCORE that can jointly learn complementary item relationships

and user preferences. Specifically, ENCORE (i) effectively combines and balances both stylistic

and functional evidence of complementary items across item categories; (ii) naturally models item

latent quality for complementary items through Bayesian inference of customer ratings; and (iii)

builds a novel neural network model to learn the complex (non-linear) relationships between items

for flexible and scalable complementary product recommendations. Through experiments over

large Amazon datasets, we find that ENCORE effectively learns complementary item relationships,

leading to an improvement in accuracy of 15.5% on average versus the next-best alternative.

3.1 Introduction

Complementary items that “go well” with one another abound. Examples include a camera

that requires a specific lens or a laptop that works well with only certain chargers (see Figure 3.1).

While these complements are strictly compatible – that is, they have particular requirements that

allow them to work together – other complements are more loosely related. For example, an aes-

thetically matching shirt and pants outfit. Different from substitutes items that are interchangeable,

complementary items are those that might be purchased together [10].

And yet, it can be challenging to identify complementary items, especially considering large

and varied item populations (e.g., Amazon boasts around 500 million unique items). For example,

one method is to first find exactly compatible items [45]. However, a sample of 500,000 items from

Electronics on Amazon finds only 20% explicitly mention compatibility with other items [10, 12],

with even rarer occurrences of such mentions in categories like books, movies, and fashion. Hence,

*Reprinted with permission from “Quality-Aware Neural Complementary Item Recommendation” by Yin Zhang,
Haokai Lu, Wei Niu, James Caverlee, 2018. Proceedings of the 12th ACM Conference on Recommender Systems.
Copyright 2018 by ACM. DOI:https://doi.org/10.1145/3240323.3240368
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in this chapter we aim to create new methods for complementary item recommendation that can

uncover complementary items across items and categories.

In particular, we identify three critical challenges for accurately recommending complementary

items: First, the dimensions of how items complement each other vary by item and by category.

For example, previous work has shown how to uncover complements based on visual style [11],

but some items match based on size or on specific common interfaces. Identifying these features

requires adaptive methods that can integrate multiple (possibly conflicting) sources of evidence like

images and product descriptions. Second, even if a set of complementary candidate items can be

identified, which ones will actually be preferred by users? For example, dozens of iPhone adapters

may be identified as complements to an iPhone, meaning that complementary item recommenders

must carefully model item quality to discern user preferences. Third, complementary relationships

among items are complex, with potential non-linear relationships among item features and item

quality. Yet, many existing methods rely on linear combinations of single source features (like

visual style) [10–12], meaning that adapting these methods to complementary items may lead to

poor performance.

With these challenges in mind, we address the problem of uncovering complementary item re-

lationships through the creation of a new Neural COmplementary REcommender called ENCORE.

The proposed model is characterized by three unique features:

• ENCORE can effectively model both stylistic and functional evidence of complementary items

through careful balancing of high-level visual features learned by a convolutional neural net-

work and text-based embeddings of titles and descriptions;

• ENCORE naturally models latent item quality through Bayesian inference over user ratings,

leading to an item-relationship based quality-aware ranking method; and

• ENCORE builds a novel neural item-relationship based model to learn the complex complemen-

tary relationships between items. That is, the interplay of style, function, and quality can be

learned for different categories of items, leading to more flexible and scalable complementary

item recommendations.

19



Through experiments over large Amazon datasets, we quantitatively and qualitatively evaluate

the performance of ENCORE versus a suite of state-of-the-art baselines. We find that ENCORE

effectively learns complementary relationships between items, leading to an improvement in accu-

racy of 15.5% on average versus the next-best alternative across multiple categories of items. We

further evaluate how different aspects of the model (e.g., images, text, ratings, neural recommenda-

tion) impact the final complementary item recommendation in different categories. We also show

examples to illustrate the recommended items by ENCORE. Ultimately, we find that ENCORE’s

careful combination of different sources of complementary evidence is necessary for high-quality

recommendation.

3.2 Overall Approach: ENCORE

We assume we have a set of items I = {I1, I2, ...I|I|} and sets of links Ci = {lic1 , lic2 , ...lic|Ci|},

i ∈ {1, 2, ...|I|} that describe relationships between a query item Ii and its complementary items

Ic1 , Ic2 , ..I|Ci| ∈ I. Inspired by [11], our goal is to design a complementary distance function

dj|i(Ii, Ij) that captures a user’s preferences for complementary items given Ii ∈ I. Specifically,

we propose the quality-aware Neural Complementary Item Recommendation framework ENCORE

that decomposes the problem into three phases (see Figure 3.2):

• Detect Complementary Items. First, we aim to construct a distance function d(c)
j|i (Ii, Ij) that

assesses how well an item Ij ∈ I complements the seed item Ii based on stylistic properties

(via the embedding EM ) and functional properties (via the embedding ET ).

• Quality-Aware Recommendation. Second, we augment the first distance with a quality-

aware distance d(r)
j|i (Ii, Ij|θj) to capture user preferences. Specifically, We show how to esti-

mate the latent item quality θj and then asymmetrically incorporate it for ranking candidate

complementary items (i.e. given an item Ii, find the nearest high-quality complementary

items Ij).

• Transform via Neural Model. Finally, to capture the complex relationships between item

properties and ratings, we build a neural-based distance d(n)
j|i (Ii, Ij) that can jointly learn
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complementary item relationships (d(c)
j|i (Ii, Ij)) and user preference in d(r)

j|i (Ii, Ij|θ), leading

to high-quality complementary item recommendation.

3.2.1 Detecting Complementary Items

In this section, we focus on detecting complementary items from two perspectives: style and

function. Our aim is to construct a distance function d(c)
j|i (Ii, Ij) that balances these two perspec-

tives across different categories. For example, complementary fashion items may mainly match on

style (that is, they go well visually with each other). In contrast, a Mac Pro and its charger need to

functionally match based on a common interface (that is, the charger needs to fit specifically with

the laptop, regardless of style). In practice, these notions of style and function vary across cate-

gories and can both be necessary in many cases. For example, while complementary fashion items

may need to be stylistic matches, they also need to have similar functional sizes (e.g., identifying

a woman’s shirt and not one for a toddler). Ultimately, we propose a joint embedding model that

captures both perspectives and the model can be customized for different product categories.

Style-Based Complements. As the first step, we exploit the image-based relationship between

complementary items to find stylistically-related items. Following [11], we first use the high-level

visual features extracted from a convolutional neural network (CNN) proposed by [149]. The CNN

is pre-trained by Caffe 1.2 million ImageNet (ILSVRC12 challenge). Particularly, the features that

we use are the output of the second fully connected layer in CNN based on their strong performance

in previous work [11, 45], and the feature vector length is fm = 4096. After extracting high-level

image features, we can learn a low-rank Mahalanobis transformation for image embedding [11]

(we refer to this method as LMT) and then calculate the Euclidean distance between the high-level

image feature vector mi and mj in the embedding space. The image distance is used to represent

the distance between items Ii and Ij , that is:

d
(cm)
j|i (Ii, Ij) = ||(mi −mj)

TEM ||22, (3.1)

where EM ∈ Rfm×fem is the low-rank Mahalanobis transformation matrix and fem is the embed-
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ding dimension of image. Based on the distance, a shifted sigmoid function is used to calculate the

probability that two items belong to a certain relationship:

P (lij ∈ Ci) = σ(−d(cm)
j|i (Ii, Ij)) =

1

1 + ed
(cm)
j|i (Ii,Ij)−ηd

.

Based on this probability, we can use maximum likelihood to train EM so that it can identify

style-based complements [11].

Functional Complements. Such an image-based approach is well suited for fashion-related items

that demonstrate clear visual style. However, since it relies solely on image-based features, there

may be significant errors introduced for complementary relationship when it is applied to other

product categories. For example, Figure 3.3 shows several items that can confuse image-only ap-

proaches, such as a Panda USB battery and Baymax flash drive which are complementary with

laptops. If they are mis-classified as toys according to their visual appearance, they will be deemed

complementary with other toys rather than a laptop. And even when the images themselves are

identical (as in Figure 3.3), an image-only recommender could mistakenly recommend uncomple-

mentary MacBook Pro chargers for a MacBook Air.

Since the complement criteria varies across products (recall Figure 3.1), instead of using ex-

isting methods to find functional topics of each product, we propose to directly learn the func-

tional complementary features.* Specifically, we propose to exploit text-based embeddings which

can model these more nuanced relationships. That is, we aim to find a compatible text distance

d
(ct)
j|i (Ii, Ij) by ti and tj , where ti includes the title and description of item Ii.

Based on that, we propose to extract ti by using a distributed representation [150,151]. Specif-

ically, we train a representation with a window size of 20 and learning rate 0.1. The final repre-

sentation is a fixed-length feature vector ti ∈ Rft . Through experimental validation, we find that

different dimensions of the text vector, such as 4096, don’t strongly impact the overall results, so

*One initial idea is to mine mentions of complements directly from the text of each product description – e.g., to
seek phrases such as “this charger is compatible with MacBook Pro”. However, only 20% of products in Electronics
(99,304/498,196) contain such explicit mentions [10], with even rarer occurrences of such mentions in categories like
Digital Music and Clothing. The method also can not cover all situations for complementary relationships.
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we use ft = 100. So the distance between items Ii and Ij is calculated by:

d
(ct)
j|i (Ii, Ij) = ||(ti − tj)

TET ||22. (3.2)

where matrix ET ∈ Rft×fet is the trained text embedding to learn text features that are related to

the complementary relationship and fet is the embedding dimension of text.

3.2.2 Quality-Aware Recommendation

By carefully combining d(cm)
j|i (Ii, Ij) and d(ct)

j|i (Ii, Ij), we could immediately begin to recom-

mend the nearest complementary items. E.g., we could combine the two factors as d(c)
j|i (Ii, Ij) =

qd
(cm)
j|i (Ii, Ij) + ρd

(ct)
j|i (Ii, Ij), where q and ρ are hyper-parameters. In practice, however, users may

choose a relatively high-rated complementary item [152], rather than the strictly nearest comple-

mentary one. For example, Figure 3.4 shows three complementary pants for a user who bought

a Bella Ladies hoodie. The nearest pants – (A) and (B) – found by d(c)
j|i (Ii, Ij) are from the same

fashion line Bella Ladies. However, the user’s actual choice is (C), a pair of Spandex pants that are

more distant by d(c)
j|i (Ii, Ij) but that are rated more highly than (A) and (B) (as shown on the right

of Figure 3.4).

Therefore we hypothesize that these complementary items purchase decisions are driven by

both perceived match (stylistic and functional) and by item ratings. However, in practice, item

ratings are noisy and the number of ratings is different across items, which makes it hard to cap-

ture user purchase preference. So we propose to model each item’s latent quality through careful

consideration of item rating distributions [44, 152, 153]. Concretely, we model item latent quality

as the expectation θ that a user will highly rate an item, and so it may be easier to capture user pur-

chase preference. Then based on this θ, we propose a quality-aware distance function d(r)
j|i (Ii, Ij)

that can provide rich user preference information. In the following, we first show an example

(Figure 3.5 and 3.6) to illustrate why Bayesian inference is preferred to estimate θ here. Then we

discuss details of θi estimation and build a quality-aware complementary distance d(r)
j|i (Ii, Ij|θi).

Figure 3.5 shows ratings for three items. Item 1 and item 2 have same average ratings, while
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Table 3.1: Notation of ENCORE.

Notation Explanation
I item set, where I = {I1, I2, ...I|I|}

mi,ti image/text feature vector for item Ii
rik, qik the kth rating for item Ii and its binary
ηd, ηr the thresholds for distance and ratings
θi the expected value of qik after observing ratings
lij the relationship (link) between two items Ii and Ij
Ci the set of items that are complementary with Ii

EM , ET embedding matrix for image and for text
Wk,bk neural network weight matrix/bias term in layer k

d
(n)
j|i (Ii, Ij |θj) neural item distance from query item Ii to Ij

Figure 3.1: Complementary item examples and high-quality complementary items (with red mark).

Image	Input Text	Input User	RatingsImage	Input Text	InputImage	Input Text	Input User	Ratings

Image	Embedding Text	Embedding

Image	Distance Text	Distance

Image	Embedding Text	Embedding

Image	Distance

Non-linear Layers

Non-linear Layers

Text	Distance

Asymmetric Quality-
aware Recommendation

Asymmetric Quality-
aware Recommendation

Figure 3.2: Overall ENCORE model framework.
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Figure 3.3: Image-confusing items.

Figure 3.4: A “Bella Ladies” hoodie and three complementary pants (A,B,C) with their ratings (on
a 1-5 scale).

item 2 has been rated many more times (yielding more confidence in its underlying quality). So

there is high probability that users would prefer item 2 than item 1. By Bayesian inference, the

posterior distributions for the three example items are shown in Figure 3.6. We find that the poste-

rior rating distribution for item 2 is more narrow and close to 1 while the distribution of item 1 is

more spread out, which means the posterior rating distribution can properly indicate users have a

higher probability to highly rate item 2 than item 1. So we leverage it to estimate θi. Concretely,

the steps for generalizing d(r)
j|i (Ii, Ij|θi) are:

Ratings-Based Bayesian Inference. First, suppose item Ii has ratings ri1, ri2 ...ri|Ii| by different

users and we treat each rik ∈ Z as a random variable for product Ii ratings. Since users have

different evaluation scales and there is no big difference between 4-star or 5-star when a 5-scale

rating is used [154], we first smooth rik as a binary random variable qik. Let ηr be a binary threshold

to separate good ratings and bad ratings. If rik > ηr, it means rik is a good rating; otherwise it

means the user thinks there are drawbacks of item Ii. So the probability (qik) that “the kth rating
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Figure 3.5: Ratings distributions for three example items.

Figure 3.6: Posterior distribution for the example items. Ei is the expectation of the ith item.

of item Ii is a good rating” can be represented as:

qik =


1 if rik > ηr

0 otherwise,

and the p.d.f. of qik for item Ii is:

f(qik|θi) =


θqik(1− θ)1−qik for qik = 0, 1

0 otherwise.

Thus qik is Bernoulli distributed qik ∼ B(1, θi). The expectation that item Ii can get a good rating
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is E(qi|θi) =
∑∞

k=1 qikf(qik|θi) = θi and θi ∈ [0, 1] for each item Ii. So θi can be used to measure

user expectations (refer as quality) towards item Ii. If the value of θi is high, it means there is a

high probability that the item Ii can get a good rating (i.e. item Ii has high quality).

But how can we estimate θi? Many previous methods do not consider ratings for recommen-

dation, so they assume the quality of each item is randomly distributed, that is θi ∈ U [0, 1] for all

Ii ∈ I. In contrast, we use Bayes’ theorem [153, 155] to estimate the posterior p.d.f of θi of item

Ii based on users’ ratings (as we previously illustrated), where this uniform distribution is treated

as a prior for items when we have no rating information:

ξ(θi|qi1, qi2...qi|Ii|) =
fi(qi1, qi2...qi|Ii||θi)ξ(θi)

hi(qi1, qi2...qi|Ii|)

∝ fn(qi1, qi2...qi|Ii||θi)ξ(θi),
(3.3)

where hi(·) is the marginal joint p.d.f of qi1, ...qini . ξ(θi) is the prior p.d.f. of θi. Here it is the p.d.f

of uniform distribution U [0, 1]. fi(qi1, qi2...qi|Ii||θi) is the likelihood function:

fi(qi1, qi2...qi|Ii||θi) =
∏

k∈[1,...|Ii|]

f(qik|θi) = θ
∑|Ii|
k=1 qik

i (1− θi)|Ii|−
∑|Ii|
k=1 qik . (3.4)

Let Φ(qi1, qi2...qi|Ii|) := Γ(|Ii|+2)

Γ(
∑|Ii|
k=1 qik+1)Γ(|Ii|−

∑|Ii|
i=1 qik+1)

, where Γ(z) =
∫ 1

0
xz−1e−xdx. According

to Equation 3.3, the p.d.f of posterior distribution ξ(θi|qi1, qi2...qi|Ii|) is:

ξ(θi|qi1, qi2...qi|Ii|) = Φ(qi1, qi2...qi|Ii|)θ
∑|Ii|
k=1 qik

i (1− θ)|Ii|−
∑|Ii|
k=1 qik .

So the posterior distribution of θi is a Beta distribution

θi ∼ Beta(

|Ii|∑
k=1

qik + 1, |Ii| −
|Ii|∑
k=1

qik + 1). (3.5)

Based on the posterior distribution, the expectation of θi is

E(θi|qi1, qi2...qi|Ii|) =
∑|Ii|
k=1 qik+1

|Ii|+2
, which we can use to estimate users expectation for item Ii (same
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as Figure 3.6 examples).

Recommendation with Asymmetric Ratings. In practice, users care more about the quality of a

complementary candidate item Ij , rather than the quality of a query item Ii. So we consider the

latent quality for item Ij in d(r)
j|i (Ii, Ij). Given Ij’s quality estimate, the recommended item quality

should be inversely proportional to item distances: the lower the quality of the candidate Ij , the

larger the distance from the query item. That is:

d
(r)
j|i (Ii, Ij|θj) ∝ E(1− θj|qj1, qj2...qj|Ij |) =

|Ij|+ 1−
∑|Ij |

k=1 qjk
|Ij|+ 2

,

when item Ii is queried and Ij is recommended. But how do we incorporate E(1−θi|qi1, qi2...qi|Ii|)

to item relationship distance for our complementary recommendation?

3.2.3 Neural Recommendation

As shown in Figures 3.3 and 3.4, complementary relationships vary greatly across categories.

Moreover, users may choose a relatively high quality complementary item rather than the strictly

nearest complementary one according to previous analysis of Figure 3.4. Hence, instead of directly

combining three sources of information, we propose a neural-based complementary recommender

that can bring some attractive characteristics for complementary item recommendation: (i) Neu-

ral methods may capture the variability of complementary relationships for different categories;

(ii) Neural models can also offer more flexibility in balancing the style/functional complementary

matches with item quality through activations; and (iii) Many neural methods may be easily par-

allelized for scalable computation [156], which can be beneficial for large item populations with

high-dimensional visual and text features. Concretely, we transform ENCORE’s complementary

distance into a non-linear space d(n)
j|i (Ii, Ij|θj) to capture these complex complementary relation-

ships (see Figure 3.2).

To calculate d(n)
j|i (Ii, Ij|θj) between Ii and Ij , we first extract features of query item Ii and its

candidates complementary item Ij in each space, then use embedding to learn visual and functional

complementary features separately. Instead of directly using their distances, we concatenate the
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embedded features with the expectation quality of candidate item Ij into a multi-modal space. So

ENCORE can learn complementary relationships by feature differences in each source:

cj|i(Ii, Ij|θj) = [(mi −mj)
TEM , (ti − tj)

TET ,E(1− qj|θj))]T ,

where cj|i(Ii, Ij|θj) ∈ R(fem+fet+1). We use it as our asymmetric merged layer of our neural

network (because we only consider the quality of candidate item Ij). Then with adding W1 ∈

R(fem+fet+1)×m1 and bias b1 ∈ Rm1 in the layer:

hj|i(Ii, Ij|θj) = cj|i(Ii, Ij|θj)×W1 + b1.

Then we add the activation function and now the distance becomes:

d
(n)
j|i (Ii, Ij|θj) = || tanh(hj|i(Ii, Ij|θj))W2||2, (3.6)

where tanh(−hj|i(Ii, Ij|θj)) = e
−hj|i(Ii,Ij |θj)−e−hj|i(Ii,Ij |θj)

e
−hj|i(Ii,Ij |θj)+e

−hj|i(Ii,Ij |θj)
∈ Rm1 . And W2 in Equation 3.6 is a

weight vector when features are put into non-linear space. So we can calculate the probability that

item Ii and Ij are complementary when Ii is queried as: P (lij ∈ Ci) = 1

1+e
d
(n)
j|i (Ii,Ijθj)−ηd

, where ηd

is a learned complementary threshold.

Based on the probability, we use the maximum likelihood function to find the maximum ob-

served complementary relationship of set Ci for each Ii. Then the complementary relationship for

the item set I is CI = {C1, C2, ...C|I|}. The log-likelihood function for all items in I is:

l(E,W,b, ηd|CI , C̃I) = −
∑
Ii∈I

∑
lij∈Ci

lnP (lij ∈ Ci|Ii, Ij)−
∑
Ii∈I

∑
lij∈C̃i

(1− lnP (lij ∈ C̃i|Ii, Ij)))

= −
∑
Ii∈I

∑
lij

(yijlnP (rij ∈ C|Ii, Ij) + (1− yij)(1− lnP (lij ∈ C̃|Ii, Ij))),
(3.7)

where yij indicates whether there is a complementary relationship between item Ii and Ij . If

lij ∈ Ci, then yij = 1; otherwise it is 0. In l(E,W,b, ηd|CI , C̃I), E represents {EM ,ET}. W
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represents {W1,W2}. C̃I = {C̃1, C̃2, ...C̃|I|}. Each C̃i is a randomly selected negative set of non-

complementary items. To train parameters, we generate C̃i such that |C̃i| = |Ci| [11].

3.3 Experiments

In this section, we evaluate ENCORE’s complementary item recommendations over large Ama-

zon datasets in comparison with state-of-the-art baselines. Especially, we seek to address the

following key research questions:

• How well does ENCORE perform versus baselines? And does this performance vary by item

types? And also across complementary relationships (i.e. also-bought versus bought-together)?

• What impact do the design choices of ENCORE have? For example, is textual-added comple-

ment more impactful than image-driven complement across different categories? What impact

does the neural recommender model have versus a linear model for complementary recommen-

dation?

Finally, we explore the complementary recommendations of ENCORE through several case studies.

3.3.1 Amazon Dataset

Concretely, we adopt a large real-world dataset from Amazon recently introduced in [11, 45].

The complete dataset contains over 1 million products and 42 million co-purchase relationships

across around 20 top-level product categories. We focus on six main categories that display dif-

ferent complementary aspects: Electronics, Cell Phones & Accessories (C & A), Clothing, Books,

Digital Music, and Movies (see Table 3.2 for details) [11]. Specifically, following with previous

work [11,12,45], we adopt two relationships in Amazon data: the “Bought-together (BT)” relation-

ship, where users bought item Ii and Ij simultaneously, and the “Also-bought (AB)” relationship,

where users who bought item Ii also bought Ij’ [20].

3.3.2 Experimental Setup

We make recommendation based on a single category at a time. We use item title and descrip-

tion for the functional embedding, and item image for the style embedding (which was collected
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Table 3.2: Amazon datasets. The second column is the number of subcategories. The Avg column
is the average number of linked items for each query item. For example, users also-bought 32
complementary items on average in Electronics and bought-together 1.39 items on average.

Dataset # Cat. Also-bought Bought-together
# Items # Edges Avg # Items # Edges Avg

Digital Music 198 164,440 6,912,348 42 5,552 9,590 1.73
Movies 345 118,351 5,248,530 44 80,922 130,640 1.61
Cell phones & Accessory 81 122,031 2,985,220 24 100,567 138,815 1.38
Books 2,752 65,024 2,806,544 43 35,638 54,146 1.52
Electronics 786 140,922 4,446,609 32 140,020 194,309 1.39
Clothing 1,993 658,304 20,546,119 31 569,714 1,645,219 2.89

in [11]). For non-complementary item, we randomly select a negative set such that |C̃i| = |Ci|. All

experiments are trained using Nvidia GeForce GTX Tian X GPU with 12GB memory and 3072

cores using Tensorflow. Since it takes around one week to train a model over the full dataset,

we randomly select 11,000 items from each training set as query items to do the five fold cross-

validation for model training. We find similar performance between models trained over the full

data and this approach [11].

Baselines. We consider a suite of state-of-the-art baselines. To evaluate the model structure of

ENCORE, for fairness, we extend each approach to be trained over the exact same input as ENCORE

– images, product text, and ratings:

• Logistic Regression with Average Rating (LRA): Our first baseline is a straightforward applica-

tion of logistic regression. We concatenate the differences of images, text, and ratings between

queried item Ii and item Ij as input: f ′j|i(Ii, Ij|θj) = [(mi −mj)
T , (ti − tj)

T ,E′(1 − θj)]
T ,

and calculate the probability that two items are complementary. Here E′(1− θj) is the average

ratings without using Bayesian approach.

• Logistic Regression with Bayesian Rating (LRB): This variant is similar to the previous but

uses the Bayesian ratings inference to find E(1− θj|qj) rather than the average ratings. Hence,

the input is fj|i(Ii, Ij|θj) = [(mi −mj)
T , (ti − tj)

T ,E(1− θj|qj)]T .

• Weighted Nearest Neighbor (WNN): This method uses a weighted Euclidean distance to mea-
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sure complement between items Ii and Ij: d = ||fj|i(Ii, Ij|θj) ◦ w||22 where ◦ is Hadamard

product and w is a weight vector.

• Feedforward Neural Network (FNN): We use a 3-layer neural network to measure the non-

linear relationships of complement, where the input is the same as in logistic regression LRB.

We use tanh and softmax as activation functions for the second and third layer. We set the

hidden and final dimensions to 10 in keeping with the other methods.

• Low-rank Mahalanobis Transform (LMT) [11]: This state-of-the-art method uses low-ranked

Mahalanobis embedding matrix parameters [11]. Whereas the original approach in [11] relies

on images only, we adapt it to use images, text, and ratings. The distance between queried

item Ii and item Ij is calculated as d = ||fj|i(Ii, Ij|θj)T × Ef ||22 where Ef is the low-ranked

Mahalanobis transform matrix. We set the embedding dimension K = 10. [11] also further

splits top-categories into smaller categories (such as splitting Clothing into Men’s, Women’s,

Boys, Girls).

• Monomer [45]: Another state-of-the-art method – Mixtures of Non-metric Embeddings method [45]

that learns low-rank embeddings to uncover different aspects of complementary distance and

uses a mixture of experts to find the final complementary distance. We adapt the original

method to consider images, text and ratings as input: fTi = [mT
i , t

T
i ,E(1 − θi|qi)] rather

than just images for each item Ii. The distance between queried Ii and Ij is calculated by

d =
∑
P (n)dn with mixture of weighted experts P (n). dn = ||fTi E0f − fjEnf ||22 where Enf

is the nth embedding matrix. Empirically, we set parameters K = 10 and N = 3.

Variations of ENCORE. In order to evaluate the impact of images, text, ratings, plus the appropri-

ateness of adopting a neural approach, we consider several variations of our proposed approach:

• ENCORE−M : This image-only method is based on [11] and uses the low-ranked Mahalanobis

embedding matrix parameters in Equation 3.1. Note that we do not consider this refinement in

any of the following alternatives.

• ENCORE−MT : This method combines images and text, while ignoring ratings. The comple-
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Figure 3.7: Accuracy and Precision of ENCORE and baselines.

mentary distance between Ii and Ij is q ||(mi −mj)
TEM ||22 + ρ||(ti − tj)

TET ||22. q and ρ is

decided by cross-validation with grid search in the range of {0.1, 0.5, 1, 1.5, 10, 100} in each

datasets.

• ENCORE−MTCos: This method is a simplified version of the previous one, replacing the text-

based embeddings with a simpler cosine-based approach over the original text itself.

• ENCORE−MTR: This method considers images, text, and ratings, but uses a linear model:

d
(r)
j|i (Ii, Ij|θj) = [||(mi −mj)

TEM ||22, ||(ti − tj)
TET ||22, E(1− θj|q)]Tw, where w ∈ R3 is a

model parameter to leverage the contributions of each source of information.

• ENCORE: Finally, we consider the full-blown ENCORE model that incorporates images, text,

and ratings in a non-linear model as shown in Equation 3.6.

Metrics. For each method, we predict whether pairs of items are complementary or not, and
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Table 3.3: Accuracy and precision increase of ENCORE comparing with the next-best alternative.

∆
Digital Music Movies C & A Books Electronics Clothing

Average
AB BT AB BT AB BT AB BT AB BT AB BT

ACC 23% -7% 10% 17% 29% 19% -8% 9% 18% 40% 19% 16% 15.5%
P@5 46% -5% 24% 2% 17% -22% 76% 33% 20% 12% 13% 4% 18.4%
P@10 27% -1% 18% 2% 18% -22% 76% 42% 13% 12% 21% 6% 17.8%

measure the accuracy as:

ACC :=

∑
i(
∑

j S(P (lij ∈ Ci)− 0.5) +
∑

j S(0.5− P (lij ∈ C̃i)))∑
i(|Ci|+ |C̃i|)

,

where S(·) is a thresholding operator defined as: if x > 0, then S(x) = 1; otherwise S(x) = 0.

We also use Precision@k to measure the fraction of correctly predicted complementary items

for each query item:

P@k :=
1

|I|
∑
i

|GT (Ci) ∩ Pred(Ci)@k|
k

, (3.8)

where GT (Ci) is the ground truth set of items that are complementary with Ii and Pred(Ci)@k is

the predicted top-k recommended complementary items.

Parameter settings. For all models, the image and text latent factor dimensions, output dimen-

sions are set to 10 empirically for a trade-off between performance and computational complexity,

as well as for fair comparison across methods. For ratings, the threshold is ηr = 3. Other param-

eters are fine-tuned for all methods. Particularly, in each experiment, five fold cross-validation is

used. Model parameters are first randomly initialized according to truncated normal distributions

with mean 0. The standard deviation is decided by grid search in {0.1, 0.01, 0.001}, and updated

by conducting stochastic gradient descent (SGD). The corresponding learning rate is determined

by grid search in the range of {0.1, 0.05, 0.01, ..., 0.000001}. Generally, training for different cat-

egories of items converges within 30 iterations.
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3.3.3 Evaluating Complementary Recommendation

We begin by investigating the model quality of ENCORE versus each baseline. Since each

approach is built over the same information – images, text, and ratings – we can explore how each

approach models and combines these factors for complementary item recommendation. We report

the accuracy, precision@5, and precision@10 in Figure 3.7 for all methods. Table 3.3 shows the

increase of ENCORE comparing with the next-best alternative (“AB” means “Also Bought”. “BT”

means “Bought Together”. Again, here we have modified these original methods to incorporate

text and ratings, beyond their original image-only approaches).

Focusing on accuracy (the top row of Figure 3.7), we observe that ENCORE results in the

highest accuracy across both also-bought and bought-together items for all categories except for

Books and Digital Music, resulting in an average improvement versus the next-best alternative

of 15.5% ( ACC row in Table 3.3). Since Books and Digital Music demonstrate a fairly weak

notion of compatibility (e.g., phone chargers match with specific phones, but books of course can

be bought with any other books), we see that ENCORE has difficulty, though performing as well as

other sophisticated models like LMT and Monomer. Additionally, ENCORE outperforms the next-

best alternative of the state-of-the-art LMT and Monomer by 16.9% on average. Since all methods

consider same information, these results show the structure of ENCORE introduced via our neural

framework results in an even greater improvement. We also observe that LRA outperforms LRB,

which indicates the number of ratings closely influences a user’s preference for complementary

items (as in Figure 3.4).

Next, we focus on precision – see the middle and bottom rows of Figure 3.7, and increase of

ENCORE comparing with the next best baselines in Table 3.3 row P@5 and P@10. We observe that

for all also-bought categories, ENCORE results in the highest precision@5 and precision@10. EN-

CORE improves versus the next-best alternative an average of 18.4% for precision@5 and 17.8%

for precision@10, and versus the best state-of-the-art alternative an average of 27.5% for preci-

sion@5 and 26.9% for precision@10 shown in Table 3.3. Here, we see further evidence of the

importance of low-rank embedding and neural transformation in comparison with models like Lo-
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gistic Regression and Weighted Nearest Neighbors. And for those models that do consider those

factors, we see the importance of careful modeling of ratings and integrating each sources infor-

mation separately in a lower rank non-linear spaces. Observe that precision values are low for all

methods in bought-together categories – the data in this case is extremely sparse, with most items

having fewer than three ground truth items in the complementary set.

3.3.4 Impact of Encore Model Choices

Given the good performance of ENCORE versus baselines, what impact do the specific design

choices have on complementary item recommendation? Does the functional complement derived

from text improve upon image-only approaches? Does adding a ratings-based recommender im-

prove the quality of prediction? And what impact does the neural approach have? To anwser

those questions, we focus here on accuracy as shown in Table 3.4; note that similar results hold

over precision@5 and precision@10. We additionally report the relative improvement versus the

image-only EncoreM .

Table 3.4: Prediction accuracy of Encore variations. ∆ is the change in accuracy compared with
Encore−M . Encore outperforms the other methods in each experiment for both also-bought and
bought-together relationships.

Dataset ENCORE−M ENCORE−MT ENCORE−MTR ENCORE

ACC ACC ∆ ACC ∆ ACC ∆

Digital
Music

AB 0.661 0.660 0% 0.755 14% 0.763 15%
BT 0.525 0.693 32% 0.722 37% 0.738 40%

Movies
AB 0.686 0.722 5% 0.733 7% 0.746 9%
BT 0.680 0.736 8% 0.748 10% 0.756 11%

C & A
AB 0.780 0.791 1% 0.797 2% 0.806 3%
BT 0.722 0.749 4% 0.784 9% 0.791 10%

Books
AB 0.702 0.712 1% 0.725 3% 0.738 5%
BT 0.580 0.706 22% 0.726 25% 0.737 27%

Electronics
AB 0.713 0.703 −1% 0.712 0% 0.733 3%
BT 0.503 0.583 16% 0.623 24% 0.670 33%

Clothing AB 0.844 0.845 0% 0.855 1% 0.855 1%
BT 0.757 0.810 7% 0.827 9% 0.833 10%

Overall, we see the full-blown ENCORE improves upon all of its variations across all categories,

with an average accuracy of 14.0%.
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From column ENCORE−MT in Table 3.4, Text-based evidence is a strong indicator of functional

complement in addition to what images can provide, especially in Books (∆ 22%), Digital Music

(∆ 32%), and Electronics (∆ 16%) for the bought-together relationship. For also-bought, the

relative accuracy improvement is smaller, with Electronics being the one category with worse

accuracy (∆ -1%).

Our careful modeling of ratings makes a key positive impact for both also-bought and bought-

together items. The accuracy improvement of ENCORE−MTR shows that Electronics, Cell Phones

& Accessories, and Digital Music are all highly influenced by user ratings. Indeed, we calculate

the average rating for predicted complementary items in Electronics and find that ENCORE−MTR

recommends items with ratings higher than ENCORE−M by 4.6%, ENCORE−MTCos by 6.1% and

ENCORE−MT by 1.2%.

Finally, we see that the non-linearity of ENCORE plays a significant role to identify comple-

mentary relationships. On average, ENCORE results in an improvement of 6.29% for also-bought

and 21.91% for bought-together in comparison over EncoreM . The impact is especially large in

the Electronics categories since the complement relationship is quite complex as discussed.

3.3.5 Encore Recommendations

We also generate predictions by ENCORE for several other items to give additional insights.

For a domain like electronics, we see in Figure 3.8 that ENCORE generates different recommen-

dations for different query items. For example, for the computer in first row, it recommends a

keyboard cover, laptop sleeve, and external DVD writer. For an iPhone 5 in last row, ENCORE can

recommend iPhone 5 screen protectors and cases.

3.4 Summary

In this chapter, we have focused on finding “complementary” relationships of items based on

user preferences. We proposed a new neural item relationship-based recommender – ENCORE –

which carefully combines multiple sources of complement evidence. We saw how stylistic com-

plements (via images) and functional complements (via text-based titles and descriptions) could be
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Figure 3.8: Encore predictions examples for a computer, iPad Air, Camcorder, Camera and iPhone
5. Query items are to the left of the line. Predictions are on the right.

combined in a quality-aware framework for uncovering high-quality complementary recommen-

dations. Quantitative and qualitative results show that ENCORE improves upon a state-of-the-art

baseline by 15.5% on average, even when all models are built over the exact same input. In our

continuing work, we are interested in personalizing ENCORE for considering individual user per-

sonality, in addition to the aggregate perspective in the current version. We are also interested to

explore more nuanced models of functional complements to improve the quality of our recommen-

dations.

38



4. ADAPTIVE HIERARCHICAL TRANSLATION-BASED SEQUENTIAL

RECOMMENDATION†

By mining the item relations, we could get a better understanding about the item connections.

In this chapter, we consider the time factor to integrate item relations with user sequences. We

propose an adaptive hierarchical translation-based sequential recommendation called HierTrans

that first extends traditional item-level relations to the category-level, to help capture dynamic

sequence patterns that can generalize across users and time. Then unlike item-level based methods,

we build a novel hierarchical temporal graph that contains item multi-relations at the category-level

and user dynamic sequences at the item-level. Based on the graph, HierTrans adaptively aggregates

the high-order multi-relations among items and dynamic user preferences to capture the dynamic

joint influence for next-item recommendation. Specifically, the user translation vector in HierTrans

can adaptively change based on both a user’s previous interacted items and the item relations

inside the user’s sequences, as well as the user’s personal dynamic preference. Experiments on

public datasets demonstrate the proposed model HierTrans consistently outperforms state-of-the-

art sequential recommendation methods.

4.1 Introduction

Sequential recommendation aims to recommend new items based on a user’s recent behaviors,

e.g., to recommend a smart home device after a user purchases a smart home hub [9, 55]. Exist-

ing sequential recommenders mainly focus on modeling sequential patterns by using user activity

sequences, such as Markov Chains [49], Recurrent Neural Networks, and Convolutional Neural

Networks [53, 54]. However, purely sequence-based recommendation usually faces challenges in

capturing general item relations that are not easily discovered from highly-personalized user se-

quences. For example, Figure 4.1 shows how a purely sequence-based recommender will treat

†Reprinted with permission from “Adaptive Hierarchical Translation-based Sequential Recommendation” by Yin
Zhang, Yun He, Jianling Wang, James Caverlee, 2020. Proceedings of The Web Conference 2020. Copyright 2020 by
ACM. DOI:https://doi.org/10.1145/3366423.3380067
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the two user sequences as fundamentally different, even though there are clear patterns among

the kinds of items being purchased (in this case, laptops and accessories). Though the specific

items are different in each sequence, some items are complements to each other, while others are

substitutes. Hence, there is growing interest in capturing these kinds of multi-relations for im-

proved recommendation [59, 60, 63] and in particular, of leveraging complementary and substitute

relations for their important influence on user purchases [8, 12, 61].

While encouraging, such relation-aware sequential recommendation still faces several key chal-

lenges: (i) Sparsity and Temporal Generalization: Previous works mainly use item-level relations

to improve non-time aware user recommendation. However, both item relations and user sequences

are typically very sparse since users interact with very few items. More importantly, these item-

level relations become less useful as items are updated over time (e.g., an older iPad being replaced

by a new model). Thus, we explore how to view item relations at the category-level as well, since

these categorical relations are denser and more stable over time; (ii) Hierarchical Structure: While

most previous methods can directly connect item-level relations with user interactions (since se-

quences are viewed from an item perspective), a categorical-level perspective introduces a hier-

archical structure of category-level item relations and user-based item-level sequences. Hence,

an important question is how to organize the hierarchical connections so that we can extract the

complex multi-relations among items that are revealed inside user dynamic sequences; (iii) Per-

sonalized Dynamic Adaptation: Translation-based recommendation has received lots of attention

for strong performance with high scalability to large, real-world datasets [9, 57]. These methods

treat users as translation vectors to connect items in a translation space, a natural fit for captur-

ing the interaction between users and the relations among items. However, most translation-based

methods model user translation behavior identically. In practice, user translation behavior can be

influenced not only by a user’s previous interacted items and the item relations among those items,

but also the user’s personal preference towards items and item relations. Thus, this interplay is

crucial for relation-aware sequential recommendation.

Considering these challenges, we propose a hierarchical translation-based recommendation
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Figure 4.1: The hierarchical structure for two user sequences. Though the two users purchase
different items in sequences, they have the same sequence patterns at the category-level and with
respect to category-level item relations.

method called HierTrans. HierTrans has three unique properties: First, HierTrans extends tradi-

tional item-level relations to the category-level, to help capture dynamic sequence patterns that

can generalize across users and across time. Furthermore, these category-level item relations can

effectively alleviate the sparsity problem in both item relations and user sequences; Second, Hier-

Trans is built on a hierarchical temporal graph G that contains item multi-relations at the category-

level and user dynamic sequences at the item-level. The hierarchical graph structure enables us to

more easily extract the high-order complex relation patterns among items that are revealed inside

user dynamic sequences; Third, based on G, we propose a novel hierarchical translation-based

recommendation method that adaptively aggregates item multi-relations at the category-level and

dynamic user preferences at the item-level for next-item recommendation. Specifically, the user

translation vector in HierTrans can adaptively change based on both a user’s previous interacted

items and the item relations inside the user’s sequences, as well as the user’s personal dynamic

preference.

To the best of our knowledge, this work is one of the first to aggregate category-level item

relations to dynamically adapt user translation behavior in translation-based recommendation.

Through extensive experiments on three public datasets, HierTrans consistently outperforms state-

of-the-art methods by 7.02% in recall and 7.72% in NDCG (on average against the next-best alter-
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Figure 4.2: Different sequence models. Suk denotes that user u interacted with items in sequence or-
der. ~ru is the user translation vector. (a) Item order-based models, such as RNN, CNN, and Markov
Chains, mainly focus on the diverse patterns of item orders in user sequences; (b) Translation-based
sequence models treat users as translation vectors to connect items, which models ‘higher-order’
interactions between a user, her previously interacted items and the next interacted item. Since ~ru
stays the same in the user sequence, these models assume a user’s translation behavior connecting
items is the same across time; (c) Our proposed HierTrans considers both user personal preferences
and item relations. The translation behavior (green line) can adaptively change according to both
user preference and the relations of her recent interacted items, making the model more flexible to
capture user complex dynamic preferences over time.

native). We also evaluate different components of HierTrans to better understand their impact on

sequential recommendation.

4.2 Proposed Method: HierTrans

We aim to provide a personalized sequential recommendation that takes advantage of multi-

relations between items.

Problem Statement. Formally, we assume a set of users U , items I and categories C where ci ∈ C

denotes the category of item i. For each user, we have a sequence of items Su = {Su1 , ...Su|Su|} that

u has interacted with. Besides user-item interaction sequences, we assume there are also multi-

types of item relations rk in relation set R. Here we focus on complementary rc and substitutes

rs relations. A triple (i, rk, j) denotes there exists a type of relation rk ∈ R between item i and j

from I. Our task is: given a user sequence Su = {Su1 , ...Su|Su|}, we seek to predict the next item

for the user.*

Based on the task, we face two key questions: (1) First, how can we organize the item multi-

*Notations are shown in Table 4.1. The category of an item is denoted by c with upper corner of the item letter
(e.g., item i’s category is ci). The vector embedding of items and relations are denoted by the same letters with~·. That
is, the vector of item i is denoted as~i and the relation rk embedding vector is denoted as ~rk. Matrices are represented
by boldface uppercase characters.
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Table 4.1: Notation of HierTrans.

Notation Explanation
U , I, C user set, item set, category set
Su historical sequence for user u, {Su1 , Su2 , ...Su|Su|}
Su:n,T the user u previous T interacted items Sun−T+1...S

u
n

G the hierarchical graph, contains GC and GI
GC category-level item relation graph
ci, ~ci item i category and the category embedding vector

(ci, rk, c
j) category of item i and category of item j

are connected by the rk relation
GI item-level user sequence graph
i,~i the item i and the item embedding vector

(i, ru, j) item i and j are connected by the ru relation

relations with user sequences to facilitate modeling the dynamic user sequential behavior? (2)

Second, user behavior can change based on both the relations of previously interacted items and the

user’s dynamic personalized preference. How can we model the joint influence of user preference

and item multi-relations, that at the same time, can also adaptively adjust to the user’s dynamic

personal preferred item/item relations? We deal with each of these questions in the following.

4.2.1 Hierarchical Temporal Graph

We organize/build a hierarchical temporal graph G to facilitate modeling the dynamic joint in-

fluence of the item relations and user personalization. Specifically, the graph G contains three parts,

as shown in Figure 4.3(a)(b): the graph GC captures item multi-relations at the category-level; the

graph GI captures each user’s dynamic sequence at the item-level; and finally, the connections

between the two graphs to integrate the hierarchical connections. In the following, we detail each

step of this construction in order.

Item Multi-Relations Graph: The first graph GC = (V C , EC) is built by the category-level item

connections to facilitate exploiting item high-order semantic multi-relations. The nodes are item

categories V C = ∪i∈Ici. Based on [12], we extend the item relations into category-level relations

with the following rule: if item i complements/substitutes item j, then the category ci of item i

complements/substitutes category cj of item j. That is [12]:
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• For complementary: if (i, rc, j)⇒ (ci, rc, c
j) ∈ GC ;

• For substitutable: if (i, rs, j)⇒ (ci, rs, c
j) ∈ GC ;

We use the category-level relations since the choices of specific items are highly personalized in

user sequences and item-level relations in existing datasets are extremely sparse [8,11]. We observe

that, category-level relations [12] are highly relevant to user sequences, and can usually provide

denser and generic item relation information that can be applied for different user sequences. Fur-

thermore, for sequential recommendation, we should ensure the model can be generalized with

time drift. Considering that items can be updated over time, the category-level relations are more

stable in time dimension. For example, an iPad2 may be updated to iPad3, but they both belong to

the same tablet category. Thus the category-level relations of the iPad2 can also be considered to

the iPad3 [12], such as being complementary to the earbud category.

Therefore, we extend the item-level relations to category-level based on [12] in order to capture

category-level semantic information to help sequential recommendation. That it, we want to cap-

ture if item i and j are related, their categories probably share similar semantic information under

rk, and their representations are closer connected by rk [12]. For example, if a laptop and mouse

are complementary, we can infer the categories of the laptop and mouse are closer correlated in

complementary relations. Furthermore, relations among different items also contain rich informa-

tion. For example, if we know both a keyboard and mouse are complementary to a laptop, then

keyboard and mouse are closer correlated. The built graph structure smooths the way to investigate

them.

Dynamic User Interactions Graph: The second graph GI = (V I , EI) is built by user sequences

to facilitate exploiting user dynamic preference towards specific items. The nodes in GI are specific

items V I = ∪i∈Ii. Concretely, we treat user sequences as a series of transitions the user u has made

between each two adjacent items in Su. Each user represents one type of relation as ru. In sum,

• For user u ∈ U , if item j is next to item i in the user sequence Su, then (i, ru, j) ∈ GI ;

Thus, the node connections in GI can dynamically change with user sequences changes.
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Figure 4.3: Overview of HierTrans on the hierarchical temporal graph G. Dots in GC /GI represent
categories/items. Category nodes are connected (grey lines) by item relations in GC . Each user
connects item nodes by their sequences (red lines) in GI . The item-category connections (in blue
dotted lines) represent the “belongs to” relations shown in (c). With HierTrans, we can predict a
user’s next item based on both user preference and the item relations inside the user sequence, as
shown in (d).

Connecting the Two Graphs: Last, we connect GC and GI :

• For item i, if item i belongs to category ci, then we connect them by the belongs to relation:

(i, rb, c
i);

where rb represents the belongs to relation. The connections naturally aggregate the complex

influence from both item category-level relations and user sequences as shown in Figure 4.3(b).

4.2.2 Recommendation with HierTrans

This section introduces HierTrans that explores the dynamic joint influence between user per-

sonal preference and item multi-relations for next item prediction based on the graph G, as shown

in Figure 4.3(c)(d). Since translation-based methods have shown success at capturing user-item

interactions [55], it motivates us to utilize its structure to investigate the user-item relation inter-

actions in dynamic sequences. The basic idea of traditional translation-based recommendation is:

user sequences, e.g., Su = {Su1 , Su2 ...Su|Su|}, are composed by triples <head, translation relation,

tail>, where the head represents the item that user has previously interacted with, and the tail is the

next item. They satisfy: ~Sun + ~ru ≈ ~Sun+1.
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HierTrans adaptively aggregates the embedding based on GC and GI . The high-level idea of

HierTrans can be formulated as:

~Head(GI ,GC |Su:n,T ) + ~Trans(ru|Su:n,T , rk) ≈ ~S∗un+1, (4.1)

where Su:n,T = [Sun−T+1...S
u
n] is the user u’s previous T interacted items and Sun+1 is the next

item. For each term in Equation (4.1): (i) The head ~Head(GI ,GC |Su:n,T ) captures both user per-

sonal dynamic preferred patterns through GI and item multi-relation patterns through GC inside

the user’s recent sequences Su:n,T by function ~Head; (ii) We propose a novel user translation vector

~Trans(ru|Su:n,T , rk), which models a user’s dynamic personal preferred item relations. Different

from previous translation-based recommendation where the user translation vector ~ru is static and

identical across time, this proposed user translation vector can adaptively change based on both a

user’s previous interacted items and item relations rk inside the user’s sequences, as well as the

user’s personal preference. (iii) Similar to translation-based methods, the tail is the embedding of

user next item learned by HierTrans. In the following, we show the detailed construction.

4.2.2.1 Construction of Relation-aware Head

The head of HierTrans contains both item relations from GC and user personal preference from

GI .

I. Item Category-level Multi-relation in ~Head(GI ,GC |Su:n,T ). To extract item relations inside

user sequences, we first learn the item category relation-aware embeddings in GC . TransE is lever-

aged (note that TransH and TransR can also be easily applied):

~ci + ~rk ≈ ~cj, k ∈ {c, s}. (4.2)

This means that when (ci, rk, c
j) holds, the item j category embedding ~cj should be the nearest

neighbor of ~ci + ~rk.

II. User Personal Preference in ~Head(GI ,GC |Su:n,T ). In GI , different from item relations which
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pair each two nodes, items in user sequences are connected in order. Thus, we explore the unified

items effects. That it, we consider the recent T items Su:n,T = [Sun−T+1...S
u
n] together to extract the

user preference. Based on Su:n,T , we can follow recent models to extract the different patterns (such

as the union and skip patterns by CNN [54]) in Su:n,T . Thus, ~Head here is a function which returns

a vector that has the same dimension as the user translation vector, such as the attention and CNN.

We discussed the choice of ~Head in Section 4.3.2.

III. Relation-aware Pattern Learned by ~Head(GI ,GC |Su:n,T ). With the item embedding~i based

on GI and item category-level relation-aware embedding ~ci based on GC , how can we incorporate

them to capture the dynamic item relations inside user sequences? Different from other relations,

the item and its category are very closely related to each other. So we connect GI and GC by adding

the corresponding embedding vectors: if item i’s category is ci, then

~i∗ =~i+ ~ci, (4.3)

as shown in Figure 4.3(c)(d). That is, for each item in Su:n,T , we apply Equation (4.3) to construct

~Head(GI ,GC |Su:n,T ). Thus HierTrans considers the previous T items relation-aware patterns that

contain both dynamic user preference and item multi-relations.

4.2.2.2 Construction of Adaptive Translation

Many existing translation-based recommendations assume user translation vector is static and

identical [55, 57]. However, in practice, user translation behaviors are dynamic based on both

(1) previously interacted items and those item relations; (2) personal preference towards specific

items and personal preference towards item relations. For example, some users frequently change

cellphones while others do not. For those users, substitutable relation is frequently utilized. Con-

sidering that, we propose a novel adaptive translation vector that considers these influence factors.

We first construct the candidates of user translation choice based on user preference and item

relations:
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~ruk := ~t+ ~tu + ~rk, k ∈ {c, s, n}, (4.4)

where ~t denotes the global transition dynamics across all users [55]. ~tu represents user personal

preference translation. ~rk represents embedding of different item relations (~rn is “not related”).

Then we use the attention mechanisms [157, 158] to capture the relation that the user would

choose for the next item:

~huk = ~Head(GI ,GC |Su:n,T ) + ~tu + ~rk

~uuk = tanh(Wa
~huk +~ba)

αuk =
exp(~u>uk~uw)∑
k exp(~u

>
uk~uw)

~Trans(ru|Su:n,T , rk) =
∑
k

αuk~ruk,

(4.5)

where Wa,~ba and ~uw are learnable [157]. Based on Equation (4.5), through attention mechanisms

and the construction of ~ruk, user’s translation behaviors are adaptively changed according to user

previous interacted items and their relation patterns (by ~Head(GI ,GC |

Su:n,T )), her personal preference (by ~tu) and her preferred item relations (by ~rk). Hence, with

different previous interacted items, the translation vector is adaptively changed.

4.2.3 Optimization

The loss function of HierTrans contains the user dynamic personal preference learning, item

multi-relations learning and regularizer:

arg min
Ω

LI(GI) + LC(GC) +R(Ω).
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Table 4.2: Amazon datasets including item sparsity. Sparsity is item sparsity in the user-item
matrix.

Dataset Users Items Feedback Categories Relations Item Sparsity
Electronics 11,965 22,791 303,125 622 174,255 0.111%
C & A 23,539 11,170 173,464 50 4,704 0.066%
H & K 19,231 20,098 251,825 853 222,911 0.065%

LI(GI) is user item-level personal preference learning and LC(GC) is item category-level relation

learning. Ω is the set of model parameters. R(Ω) is L2 regularizer here [55]. For LI(GI) [55]:

LI(GI) = −
∑
u∈U

∑
j∈Su

∑
j′ /∈Su

ln σ(p̂u,Su:n,T ,j − p̂u,Su:n,T ,j′),

where j denotes the next item of Sun in user sequence Su. σ(·) is the sigmoid function. p̂u,Su:n,T ,j

means the probability that u will prefer j given previous T items, which is calculated by:

p̂u,Su:n,T ,j ∝ βj − d( ~Head(GI ,GC |Su:n,T ) + ~Trans(ru|Su:n,T , rk),~j∗), (4.6)

where βj is item bias. We take ||~x − ~y||2 as the dissimilarity measure d(~x, ~y) to calculate the

probability. For LC(GC) [72]:

LC(GC) =
∑

k∈{c,s}

∑
(ci,rk,cj)∈R

∑
(ci′ ,rk,cj

′ )∈R′
max(0, γ + d(~ci + ~rk,~c

j)− d(~ci
′
+ ~rk,~c

j′)),

where R′ represents the negative sets R′ = ∪k∈{c,s}({(i′, rk, j) ∪ (i, rk, j
′)}). (i′, rk, j) means

i′, j ∈ I but they are not related by rk. Here d(·, ·) uses the same measurement as Equation (4.6).

The γ > 0 is a margin hyperparameter [72].

4.3 Experiments

We adopt three public datasets from Amazon [11]: Electronics (Elec), Cell Phones & Acces-

sories (C & A), and Home & Kitchen (H & K), as shown in Table 4.2. They contain rich types of

item relations and user purchase sequences. Following prior work [9, 54], we convert all numeric
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ratings to implicit feedback of 1. We discard users having less than n feedbacks (n is 20 for Elec,

5 for C & A, and 5 for H & K to obtain different sparsity and number of item relations). We also

remove items having less than 3 feedbacks to keep the original user sequence patterns and alle-

viate the cold-start problem. Category-level relations are trained based on the item-level relation

frequency to alleviate noise.

Similar to prior work in this area [9], we split the user sequences Su into three parts: the most

recent interacted item in each user sequence (Su|Su|) for testing; the second most recent interacted

item (Su|Su|−1) as the validation data; the remaining items are used as training data.

Evaluation Metrics. To be consistent with prior work in sequential recommendation [9, 54], we

adopt two common top-k metrics – recall@k and NDCG@k [9] – for evaluating recommendation

performance. The recall at top-k measures the fraction of user next items that have been predicted

over all purchased items. NDCG@k considers the position of correctly recommended items. Fol-

lowing the setup used in prior work [9,159,160], we randomly sample 100 negative items for each

user and rank these items with the ground-truth items to avoid heavy computation on all user-item

pairs. The evaluation metrics can be calculated based on the 101st items.

Table 4.3: Evaluating HierTrans versus baselines over three datasets (for all metrics, higher is
better). The percentage improvement compares HierTrans versus the next-best alternative.

Dataset Metric BPR TransE TransFM GRU4Rec Caser TransRec SASRec HierTrans Improv.

Elec

R@1 0.1073 0.1161 0.1296 0.1153 0.1570 0.1678 0.1799 0.1927 7.1%
R@5 0.2800 0.2828 0.3200 0.2959 0.3830 0.4028 0.3954 0.4551 13.0%

R@10 0.3942 0.3941 0.4410 0.4162 0.4997 0.5313 0.5117 0.5891 10.9%
N@5 0.1996 0.2020 0.2267 0.2029 0.2739 0.2892 0.2925 0.3285 12.3%
N@10 0.2363 0.2390 0.2653 0.2435 0.3117 0.3308 0.3303 0.3721 12.5%

C&A

R@1 0.1359 0.1197 0.1328 0.1393 0.1423 0.2153 0.1848 0.2300 6.8%
R@5 0.3145 0.2974 0.3295 0.3455 0.3615 0.4660 0.4146 0.4775 2.5%

R@10 0.4144 0.4006 0.4419 0.4742 0.4397 0.5925 0.5327 0.6031 1.8%
N@5 0.2285 0.2114 0.2344 0.2202 0.2615 0.3459 0.3043 0.3591 3.8%
N@10 0.2603 0.2472 0.2703 0.2635 0.2867 0.3867 0.3426 0.3994 3.3%

H&K

R@1 0.0660 0.0688 0.0860 0.0695 0.0809 0.1053 0.0973 0.1158 10.0%
R@5 0.2058 0.2355 0.2467 0.1815 0.1914 0.2817 0.2585 0.2984 5.9%

R@10 0.3041 0.3580 0.3610 0.2712 0.2717 0.3898 0.3696 0.4099 5.2%
N@5 0.1368 0.1539 0.1592 0.1374 0.1403 0.1955 0.1796 0.2096 7.2%
N@10 0.1686 0.1945 0.1976 0.1687 0.1677 0.2304 0.2149 0.2454 6.5%
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Baselines. We compare HierTrans with the following baselines:

• BPR [161]. This is the standard Bayesian personalized ranking (BPR) framework using matrix

factorization;

• TransE [72]. We use user sequences to build the graph and recommend items based on a

nearest neighbor search of the item embeddings. Notice other translation based methods, e.g.,

TransH and TransR, can be easily adapted for HierTrans, thus here we focus on TransE as a

representative method;

• TransFM [57]. For the recent TransFM, we consider the item’s category relation as side infor-

mation;

• TransRec [55]. It treats each user as a translation vector to connect items by user sequences

and learn item embeddings;

• GRU4Rec [53]. This is a session-based recommender based on RNN. We treat each user’s

sequence as a session;

• Caser [54]. A state-of-the-art sequential recommendation method based on a CNN to deal with

high-order Markov Chains;

• SASRec [9]. The recent state-of-the-art sequential recommendation method uses a self-attention

mechanism to capture useful user sequence patterns. We also use two self-attention blocks;

Parameter settings. The number of latent dimensions is empirically set to be 200 and attention

dimension is 100 for all methods. T = 10. γ = 1.0. The regularizer is chosen by grid search from

{0.5, 0.1, 0.05, 0.01, ... 0.00001}, drop out rate is from {0.1, 0.3, 0.5, 0.7, 0.9} and the learning

rate is from {0.0001, 0.001, 0.01, 0.1}. The negative sampling ratio is 1. For HierTrans, other

hyperparameters are tuned based on the validation data. ~Head(·) is the average function for the

three datasets. We discussed the choices of ~Head(·) (such as attention and convolution) in Section

4.3.2.
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4.3.1 Recommendation Performance

Table 4.3 shows the recommendation performance. R@1 and N@1 are the same and precision

can be calculated based on recall for the user’s next purchased item prediction [9]. The last column

(Improv.) shows the percentage improvement of HierTrans over the next-best alternative. Overall,

we observe the full-blown HierTrans improves upon all the baselines on all datasets in recall@k

and NDCG@k. Concretely, HierTrans outperforms the next-best alternative by 7.02% in recall and

7.72% in NDCG on average.

Specifically, HierTrans consistently outperforms TransRec, which shows the importance of

modeling item multi-relations inside user sequences and considering the T previous items. More

importantly, comparing with TransFM, HierTrans consistently achieves a better performance. This

confirms HierTrans can more effectively utilize item category-level information for sequential rec-

ommendation. For different datasets, HierTrans obtains a large improvement in Electronics and

H&K while the improvement in C&A is relatively small. We attribute the good performance of

HierTrans to the rich item relations in both Electronics and H&K based on the Relations column in

Table 4.2. Furthermore, the proposed HierTrans outperforms all baselines on both sparse and dense

datasets. One likely reason is that the incorporated item information in HierTrans can (1) provide

more evidence for user sequential patterns and thus can alleviate the sparsity problem in user se-

quences; (2) also give more insights to effectively learn sequential patterns among the complex

user interactions in dense datasets. We also check different latent dimensions ([50,100,150,200]).

HierTrans consistently outperforms the other methods (omit this part due to space limitation).

4.3.2 Ablation Study

The section introduces several variants of HierTran to analyze their effects: (1) TransRecC: we

only incorporate item category-level relations in TransRec without considering attention of user

translations and multiple previous items; (2) TransRecI: we directly apply item-level relations in

the user sequence graph rather than category-level; (3) Concat: instead of using ~i∗ = ~i + ~ci, we

concatenate the category embedding to item embedding; (4) Connection: we introduce “belongs
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to” relation embedding to connect ~i and ~ci; (5) No Pre-train: we forgo the pre-training phase

for GC and GI ; (6) No Attention: we remove the attention (Equation (4.5)) and use the unified

transition vectors; (7) No Multi-Items: Only the nearest recent item is used: ~Head(GI ,GC |Sun) +

~Trans(ru|Sun, rk) ≈ ~S∗un+1; (8) Item Attention/Convolution: we use self-attention /CNN for ~Head(·).

Hyper-parameters are fine tuned based on the validation datasets.

The results are shown in Table 4.4. The Default row shows HierTrans results. We observe

methods that consider item relations (such as TransRecC and TransRecI) outperform TransRec,

which supports that (category-level) item relations play an important role in sequential recommen-

dation. Specifically, TransRecI achieves higher performance than TransRecC. One likely reason

is that there can be information leakage since the item-level relations in the Amazon dataset are

captured from user purchase history [11]. We also argue that category-level item information is

more general and stable for sequential recommendation.

Table 4.4: Ablation study on Electronics. Similar results hold for the other two datasets.

Setup R@5 N@5 Setup R@5 N@5
Default 0.4551 0.3285 No Pre-train 0.4249 0.3034
TransRecC 0.4150 0.2999 No Attention 0.4497 0.3232
TransRecI 0.4282 0.3122 No Multi-Items 0.4147 0.3016
Concat 0.3994 0.2845 Item Attention 0.4406 0.3161
Connection 0.3931 0.2825 Item Covolution 0.4517 0.3267

The way to incorporate item multi-relations and dynamic user interactions heavily impacts Hi-

erTrans performance. Comparing Concat and Connection, directly adding category embeddings

achieves the best performance. Furthermore, results of No Attention and No Multi-Items show both

the attention and multi-items consideration play an important role to improve sequential recom-

mendation, which confirms our intuition that user sequence patterns are collaboratively influenced

by both item relations and previous T purchased items. For the choice of ~Head(·), we observe

using average performs better than using attention/CNN here. One possible reason is that the three

datasets are very sparse while attention/CNN brings many parameters, which makes the corre-
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sponding method easier to overfit.

4.4 Summary

We propose a novel hierarchical translation-based sequential recommendation that adaptively

aggregates item multi-relations and dynamic user preferences from both a user’s interacted item

patterns and a user’s dynamic translation behavior. Experiments on different datasets show Hi-

erTrans consistently outperforms state-of-the-art sequential recommenders. In the future, we are

interested in exploring the influence of different types of item relations (e.g., movies with the same

director) on dynamic user behaviors.
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5. VIBE CHECK: SOCIAL RESONANCE LEARNING FOR ENHANCED

RECOMMENDATION‡

In this chapter, we consider the user relations and tackle the high heterogeneity by exploring the

powerful social resonance effect between social connections and other users in an eCommerce plat-

form to improve recommendation. Social Resonance is a common socio-behavioral phenomenon

in which users are more influenced by opinions that have similar vibes. That is, opinions from

two different groups of users can mutually reinforce (or resonate with) each other to have an even

stronger impact on the user. To model the social resonance, we first formulate an item-aware user

influence network that connects users who rate the same item. With the social network and item-

aware user influence network, a novel graph-based mutual learning framework is proposed, which

captures the resonance influence from both user local correlations and global connections. We then

fuse these influence paths to predict the resonance-enhanced user preference towards items. Exper-

iments on three public benchmarks show the proposed approach outperforms state-of-the-art social

recommendation methods, and also achieves the best performance for cold-start users. Further, we

show how the social network and item-aware influence network are complementary in improving

item recommendation under different scenarios.

5.1 Introduction

Social Resonance is a common socio-behavioral phenomenon in which users are more influ-

enced by opinions that have similar vibes [162–166]. That is, opinions from two different groups

of users can mutually reinforce (or resonate with) each other to have an even stronger impact

on the user. One of the unique properties for resonance is that it can expand in intensity with

mutual re-enforcement between different sources, leading to more powerful influence on user in-

tentions and actions. This social resonance effect has been widely studied in many areas such as

‡Reprinted with permission from short version “Vibe Check: Social Resonance Learning for Enhanced Recom-
mendation” by Yin Zhang, Yun He, James Caverlee, 2021. International Conference on Advances in Social Network
Analysis and Mining. Copyright 2021 by ACM. DOI:http://dx.doi.org/10.1145/3487351.3488335
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marketing [162, 165, 166], communication [163, 167], and human behavior [168]. These studies

further show social resonance can heavily influence a user’s attitude towards items, impact a user’s

propensity to buy, and also provoke other desired actions.

For example, compared with the dress that is only recommended by Amy’s friends, when both

Amy’s friends and other users in an eCommerce platform strongly recommend the same dress, the

similar mutual “vibe” (or resonance) can potentially strengthen Amy’s intensity of her preference

towards the dress (e.g., leading to a higher chance of purchase). The resonance effect is especially

manifest in eCommerce platforms like Epinions and Ciao [169], where users can make friends to

help them discuss and choose items [170]. The resonance also widely impacts engagement with

online media (e.g., resonating between a user’s friends on Facebook and other users on a platform

like YouTube) and apps (e.g., resonating between communities of reddit users and other users on

the Google Play Store), among others.

However, there is little if any work on explicitly exploring the powerful social resonance effect

on user preference towards items in recommendation. The closest work is social-aware recom-

mendation that utilizes a social network to improve item recommendation. However, most existing

social-aware recommendation methods mainly focus on the intrinsic internal properties of the so-

cial network (e.g., social homophily [13, 171] or social influence diffusion [80]) and their single

directional influence from the social network to an eCommerce platform, ignoring the close mu-

tual interactions with users on the eCommerce platform and the reinforced resonating influence

effect. Hence, this gap between the user-user social network and the user-item interactions on an

eCommerce platform may limit the learning capacity of social effects on user preferences towards

items.

In this work, we propose the first investigation of the powerful social resonance effect to im-

prove recommendation. However, learning the influence of social resonance on user preference is

challenging and largely unexplored. Particularly, it poses three key challenges: (i) There is high

heterogeneity between the social network and the eCommerce platform: the social network cap-

tures user-user connections, while the eCommerce platform exhibits user-item interactions. How
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can we model the mutual interactions of the social resonance effect across these fundamentally

different perspectives? (ii) Social resonance captures the similar mutual vibe between two groups

of users. Therefore, different from traditional user influence that typically focuses on how one

user impacts on a single target user, the resonance effect measures the correlation between two

groups of users, and their correlation’s impact. Hence, an important question is how to model

the correlation influence of social resonance on user preference towards items? (iii) The degree

of resonance could vary greatly depending on both the strength of user connections in the social

network and also the users on the eCommerce platform. Thus another key challenge is: how can

we jointly consider the user relations in both the social network and an eCommerce platform for

their correlations estimation?

With these challenges in mind, we propose a social Resonance Recommendation approach

called ResRec that builds a novel graph-based mutual learning framework to learn social reso-

nance for improved recommendation. Concretely, ResRec first builds an item-aware user influence

network that connects users who rate the same item in the eCommerce platform. Through such

user-user connections, it can naturally bridge the gap between the social network and user behav-

iors in the eCommerce platform to facilitate the exploration of their mutual interaction. Based

on this, ResRec explores the resonance effect thoroughly from two perspectives: (i) preference-

based resonance between a user’s directly connected friends; and (ii) multi-hop relation-based

resonance with distant connected users. We argue that the proposed graph-based back-and-forth

mutual learning about social resonance through preference-based and multi-hop relation-based res-

onance can more comprehensively capture the correlation influence and the degree of resonance

between users in a social network and an eCommerce platform, to enhance the learning of user

preference towards items. As one of the first works to explicitly explore the social resonance effect

in eCommerce recommendation, this chapter finds that ResRec consistently outperforms state-of-

the-art social recommendation methods and also achieves the best performance for cold-start users

over three real-world benchmarks. We further show how the social network and item-aware in-

fluence network in ResRec are complementary to each other, with each augmenting the other for
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improved item recommendation.

5.2 Problem Formulation

In this section, we first introduce the problem setting and key notations toward capturing social

resonance. Suppose we have n users U = {u1, u2, ...un} and m items P = {p1, p2, ...pm}. Users

can rate and review items to show their preferences and opinions towards those items [75]. Let

R ∈ Rn×m denote the rating matrix, where rai ∈ R is user ua’s rating of item pi. Our goal is to

predict a user’s unknown preference for items, i.e., the missing ratings in R. The key notations are

shown in Table 5.1.

To model social resonance, we need to consider two groups of users that can mutually reinforce

each other. Here, we view resonance between a social network that connects users and an eCom-

merce platform where users can engage with items. Concretely, we model the social network and

users in the eCommerce platform as follows:

Social Network GS . First, we assume there is a trust (or friendship) social network which can

be represented as a user-user directed graph GS = (U,ES). In GS , similar as many social rec-

ommendation settings, the nodes are users U and the edges ES ∈ Rn×n are based on the social

connections: if ua trusts (or follows) ub, then eab = 1, otherwise it is 0. The connections mean

ua could be influenced by ub. If the social connections are undirected (such as in a friendship

network), the social graph can be treated as a bidirectional graph.

Item-Aware User Influence Network GP (pi). For the eCommerce platform, we define a network

that connects all the users who have rated or reviewed the same item pi. Similar as [83], users

who rate pi could potentially form a latent influence network, which we denote as the item-aware

user influence network GP (pi) = (U(pi), E
P (pi)) for each item pi. Concretely, the nodes U(pi)

are the users who rate item pi, and the edges EP (pi) connect users who rate before the target

user. That is, to give a recommendation for a target user ua, the user ua is connected to users

GP (pi, ua) = {ub ∈ U(pi)|∃ rai and rbi, and (t(ub, pi) < t(ua, pi))}, where t(ub, pi) is the time ub

rates pi, since a user ua ∈ U(pi) could only be influenced by other users who rate the item before
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ua. Then, similar as [83], we can use models (e.g. attention mechanisms) to estimate the user

actual influence in GP (pi).

An example of such an item-aware user influence network is shown in Figure 5.1. Users u1,

u3, u6, u5 have rated the item p3 before u2. So for u2 connections, she is connected to each

of them since they could potentially influence user u2’s preference towards p3. The connections

between u1, u3, u6, u5 are omitted here for simplicity. Note that different from collaborative

filtering which treats users who rate before and after the targeted user as equally important, we

argue that users who rate before the targeted users can explicitly influence the targeted user’s

preferences towards items [81, 83]. For simplicity in presentation, we refer to GP (pi) as an item-

aware influence network in the rest of the chapter.

Based on these two perspectives, social resonance in recommendation can be defined as:

Given user ua social network GS and users who have rated item pi, the social resonance effect for

a user ua towards item pi (i.e. a user-item pair (ua, pi)) is the mutual correlation between users in

user ua’s social network (GS) and users who have rated the item pi (GP (pi, ua)), which influences

ua’s preference towards items.

5.3 Proposed Approach: ResRec

In this section, we propose a novel graph-based mutual learning framework called ResRec that

learns the reinforced resonance effect between the social network GS and the item-aware influence

network GP for improved recommendation. The overall model architecture of ResRec is shown in

Figure 5.1. The three main components for ResRec are:

• Preference-based resonance. First, the social resonance often occurs when users express sim-

ilar opinions [166]. In our context of item recommendation, if users who rate an item express

similar preferences as my friends, then I am more likely to be influenced. This preference-

based resonance captures the preference correlations between a user’s friends (in the social

network GS) and other users in the eCommerce platform (in the item-aware influence network

GP ). That is, if a user observes other users in GP (pi) express similar preference as her friends

in GS do, then those opinions are more likely to influence the user’s preference towards pi.
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• Multi-hop relation-based resonance. Second, while preference-based resonance focuses on

a user’s direct friends, more distant connections could have a latent influence on a user’s pref-

erences and show the degree of resonance. For example, opinions from directly connected

users in the social network GS are easier to resonate with the user than users many hops away.

Therefore, we further utilize the global graph structure of GS to explore user influence in the

item-aware influence network GP via multi-hop relation-based resonance.

• Social resonance enhanced recommendation. Lastly, we build a resonance enhanced user

embedding (see Figure 5.1) by integrating the mutual resonance effect alongside the internal

influence from each graph to give the final item recommendation.

5.3.1 Preference-based Resonance

We begin by examining the preference-based resonance between a user’s friends (i.e. GS)

and the group of users who have rated the item pi (i.e. GP (pi, ua)). How do these two sources

resonate with each other? To do so, in this section, we introduce a preference mutual learning

module that utilizes the user embeddings to match user preference correlations based on the local

graph structure of GS and GP (pi, ua), as shown in Figure 5.2. The learning module finally builds

a preference resonance matrix Γ(ua, pi) that connects a user’s general preference in GS with item-

aware preference in GP (pi, ua).

Concretely, as in many recommendation models, we first apply a user embedding lookup layer

to describe the user ua as an embedding vector ua that represents the user’s personal preferences.

Similarly, item pi is represented by an embedding vector pi. With the user embedding, to capture

the preference connections, we define a cross correlation scoring function γrelation(·, ·) that exploits

the Euclidean distance to learn the correlation between user preference expressed in both the social

network GS and the item-aware influence network GP (pi): γrelation(us,up) = 1
1+|us−up| , ∀us ∈

GS(ua), up ∈ GP (pi, ua), where us is ua’s friends and up is a user who has rated item pi before ua.

With the correlation scoring function, the preference mutual resonance matrix Γ(ua, pi) for user ua

towards item pi can be formed by her social-oriented and item-aware connections as:
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Table 5.1: Notation of ResRec.

Notation Explanation
U , P user set, item set
R rating matrix
rai ratings of user ua to item pi

P (ua) subset of items rated by ua
U(pi) subset of users rated item pi
GS social network

GS(ua) social friends who ua directly connected with
GP (pi) item pi aware latent social network

GP (pi, ua) users who interacted with item pi before ua
ua, us, up target user, user from GS , user from GP

d latent dimension
ua ∈ Rd user a latent factor
pi ∈ Rd item i latent factor

Γ(ua, pi) = γrelation(GS(ua), G
P (pi, ua)). (5.1)

Each element in Γ(ua, pi) ∈ R|G
S(ua)|×|GP (pi,ua)| denotes the preference correlation between ua’s

friends and a user who rates pi. Through the matrix, Γ(ua, pi) gathers all the correlations of the

user’s friends and users who rate the item pi based on both GS and GP (pi, ui). Furthermore, rather

than directly connecting users in social network with items, Γ(ua, pi) explores user correlations.

Hence, Γ(ua, pi) can closely connect the social network with items, bridging the gap of hetero-

geneity between users and items to better capture the social influence on user preference.

Specifically, each row Γ(ua, pi)[s, :] represents the preference similarity between the user’s sth

friend and users who potentially influence the user at the item-level. Each column Γ(ua, pi)[:

, p] indicates the similarity between the pth user in GP (pi, ua) and user ua’s social connections.

Therefore, the preference resonance scores zS(ub|ua, pi) of user uSb ∈ GS(ua) to user ua, and the

resonance scores zP (uc|ua, pi) of up ∈ GP (pi, ua) to user ua is:

zS(us|ua, pi) =
∑

Γ(ua, pi)[s, :],

zP (up|ua, pi) =
∑

Γ(ua, pi)[:, p].

(5.2)
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Equation (5.2) shows: to predict the preference resonance effect of her friend us ∈ GS to ua,

ResRec measures the preference similarities between us and all the users who rate item pi, denoted

as zS(us|ua, pi); mutually, to predict the resonance effect of up ∈ GP (pi, ua) to ua, ResRec mea-

sures the preference similarities between up and all the user ua’s friends to find whether up has

similar opinions as ua’s friends, denoted as zP (up|ua, pi).

5.3.2 Multi-hop Relation-based Resonance

The preference-based resonance uncovers the preference similarities between a user’s directly-

connected friends and users who rate item pi based on the local graph structure. But of course,

other users beyond those directly connected to our target user could also wield influence on her

preferences, e.g., through information diffusion. Hence, in this section, we further explore the

connections between the social network GS and the item-aware influence network GP from the

perspective of these multi-hop relations. The key idea is to view the importance of each user

uc ∈ GP based on the multi-hop relations in the social network GS to infer the resonance influence

in GP . Different from the preference-based resonance which learns the preference correlations

between users in the local graph structure, this relation-based resonance explores the multi-hop

relation influence of resonance effect based on the global graph structure (via node positions [172]

in the global graph).

To do so, we propose a novel relation-aware mutual module to inject the graph GP (pi, ua)

to the GS graph structure, to explore the relation-based resonance, as shown in Figure 5.3. The

relation-aware mutual module treats the users in GP (pi, ua) as the anchor set for GS and computes

the distance between each user in the anchor set to ua based on the graph structure of GS . Then a

message construction function is used to compute the influence diffusion weights from user up to

ua based on their position distance. We introduce each step as follows.

5.3.2.1 Mutual Anchor Set Construction

We propose to incorporate the social network to help infer the user influence in GP . That is,

since user influence is related to their connections in the social network, we can leverage the node
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positions [172] in the social network to infer user influence in GP . To do so, as shown in Figure

5.3, we first gather all the users who have rated the item pi before ua, i.e. the nodes in GP (pi, ua)

to build the mutual anchor set Smutual for user social graph GS:

Smutual = {up|up ∈ GP (pi, ua) and up ∈ GS}.

Since all the users in Smutual are both from GP (pi, ua) and GS , we can utilize the relative distance

in GS to impact their influence in GP (pi, ua) based on the social resonance effect. More impor-

tantly, since GP (pi, ua) is item-aware, the learned influence in GP (pi, ua) is specific for the item

and helpful to estimate user preference towards the item.

5.3.2.2 Relative Distance Inference

Based on the mutual anchor set, inspired by [172, 173], we then capture the node positions in

GS to infer each user’s influence in GP (pi, ua). To reveal a node’s position in a graph, we compute

the shortest path distance between the target user ua and users in Smutual. Since the computation

time for shortest path distance is high (O(|U |3)), to make ResRec scalable, we adapt the t-hop

shortest path.

Concretely, for each user up ∈ Smutual in the mutual anchor set, as shown in Figure 5.3 orange

color, the t-hop shortest path distance in GS can be computed as:

dt(ua, up|GS) =


d(ua, up|GS) if d(ua, up|GS) ≤ t,

∞ otherwise,

where d(ua, up|GS) is the shortest path distance between user up to user ua in GS . That is, we only

consider the influence if the user in GP (pi, ua) is within t-hops to the target user ua in the shortest

path of GS , which makes ResRec easy to scale.
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5.3.2.3 Resonance Message Computation

With the relative distance, we then build the message passing from users in Smutual to ua, to

learn the relation-based resonance influence inGP based on the graph structure inGS . As indicated

by many works [174], there will be more influence from up to ua if user up is close to ua in graph

GS . Therefore, the message construction function from up to ua is defined as:

mP (up|ua, GS) =
1

dt(ua, up|GS) + 1
, (5.3)

where mP (up|ua, GS) is the message transformation weight from up to ua. Since the calculated

message transformation weightmS(up|ua, GS) is based on the mutual positions inGS , it can give a

reasonable transformation from the social influence to the item-aware local influence. Additionally,

for different items, the mutual anchor sets are different. Therefore, mP (up|ua, GS) can be adapted

for both items (based on Smutual) and user social connections (based on the relative distance in

GS), which makes ResRec more flexible to capture the user’s varying preference towards items.

For the message transformation of users inGS based onGP , which is denoted asm(us|ua, GP ),

since GP does not have explicit social structures, it would be noisy if we utilize GP ’s graph struc-

ture to infer the influence of us. Thus we simply count it as 0.

Integrated Resonances Effect. The preference-based resonance and the multi-hop relation-based

resonance jointly influence the user through the resonance effect from two perspectives (one em-

phasizing local graph structure, while the other emphasizes global graph structure). We finally

aggregate the two types of resonance to represent the joint resonance effect between graph GP and

GS:

reson(GP |GS) = AGG(zP (up|ua, pi),mP (up|ua, GS))up,

reson(GS|GP ) = AGG(zS(us|ua, pi),mS(us|ua, GP ))us,

(5.4)

where AGG is an aggregation function such as MEAN, MAX, SUM, which is permutation invari-

ant. We find using a simple SUM aggregation function experimentally provides good results.
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5.3.3 Recommendation with Social Resonance

With the resonance effect betweenGP andGS , how can we predict the user preference towards

items? In this section, we finally build a resonance-enhanced user embedding and then show how

ResRec makes recommendations.

To build the user embedding for recommendation, in most cases, besides the mutual influence

of resonance effect betweenGS andGP , users could also be influenced from their friends (what we

refer to as the internal influence of GS), especially when the item is new or cold-start. Similarly, a

user with few friends could rely more on the opinions from users who have rated the items (what

we refer to as the internal influence of GP ). Therefore, for each user ub ∈ GS and uc ∈ GP , we

define their influence as:

u+
s = AGG(reson(GS|GP ), inter(GS)),

u+
p = AGG(reson(GP |GS), inter(GP )),

which captures both the mutual resonance effect and the internal influence from GS and GP , as

shown in Figure 5.1. We apply the same AGG as Equation (5.4). Many methods [13, 83, 170]

can be applied to estimate inter(GP ) and inter(GS). Since it is not our focus, here we simply

implement the commonly used methods in [13, 83] for inter(GP ) and inter(GS) estimation. In

the experiments, we also consider [13, 83] as baselines to evaluate the resonance effect for recom-

mendation.

With the influence from GS and GP , the final user resonance-aware embedding is formulated

as:

ũa = σ(WU [uPa ,u
S
a ,u

O
a ] + bU) (5.5)

where WU , bU are the weight matrix and bias vector. [uPa ,u
S
a ,u

O
a ] are concatenated by row.

uSa = fus∈GS(u+
s ) that aggregates all the influence from user ua social friends in GS . uPa =

fup∈GP (u+
p ) that aggregates user influence to ua in GP (pi, ui). Here we utilize the graph attention

mechanism [13, 170] as the aggregation function. It also can help us better evaluate the resonance
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effect for recommendation through the attention mechanism. Note that other methods can also be

applied. uOa represents the user’s own preference which is calculated by uOa = Poold(pj⊗pi, pj ∈

P (ua)) ⊗ ua. With the element-wise product between interacted items pj and the candidate item

pi, the updated user latent embedding uOa captures item aspects that are more important to the user

with respect to item pi to further facilitate prediction of user preference towards items [13]. In

sum, based on Equation (5.5), the learned resonance-aware user embedding ũa in ResRec can be

very flexibly adapted to different user-item pairs based on bothGS andGP mutual interactions and

their own influence, as well as the user own preference.

By capturing the resonance effect, ResRec can be applied to different recommendation methods

to learn item embeddings and thus recommend items that resonate with users. Here we use the

commonly applied method in [13] as the item embedding to better evaluate the effect of mutual

resonance for recommendation. Then with the user and item embedding, the dot product [107] is

used to estimate the user preference towards items.

5.4 Evaluation

In this section, we conduct experiments on three real-world datasets to evaluate ResRec, with

a focus on the mutual learning of social resonance.

5.4.1 Experimental Setup

Datasets. We choose three widely used datasets (see Table 5.2): Epinions [169], LibraryThing

(LThing) [175] and Ciao [169]. The three datasets are publicly accessible and vary in terms of

size, ratings and social link density. To avoid any information leakage in our setup, we split the

data into three parts based on items: we use the most recent rating for each item to construct the

test dataset, the one rating before the most recent as the validation set, and all the other ratings for

training.

Evaluation Metrics. To be consistent with previous work in social recommendation [13, 75], we

use two popular metrics to evaluate rating prediction accuracy: MAE (Mean Absolute Error) and

RMSE (Root Mean Square Error). Smaller values of MAE/RMSE mean the predicted ratings are
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Table 5.2: Summary of the three datasets including social networks.

Epinions LThing Ciao
# Users 22,164 73,882 2,248
# Items 296,277 337,561 16,861
# Item Interaction 922,267 979,053 36,065
# Social Connection 355,800 120,536 57,544
Rating Density 0.014% 0.004% 0.095%
Link Density 0.072% 0.002% 1.139%

closer to the real ratings. Note here, as indicated by [75,160], a small decrease of MAE and RMSE

can bring a significant impact on the quality of top-k recommendation.

Baselines. We select representative and state-of-the-art social recommendation methods as the

baselines:

• PMF [107]. Probabilistic Matrix Factorization is widely used in recommendation due to its

robust and strong recommendation performance [94]. PMF is based on matrix factorization

without considering social influence.

• TrustSVD [176]. TrustSVD is a trust-based matrix factorization method that uses the social

network to overcome the sparsity and cold-start problems.

• GraphRec [75]. This recent state-of-the-art method formulates the social network and user-

item interactions as graphs, and adopts graph neural networks to learn the user and item latent

factors for user rating prediction.

• DANSER [13]. This is another recent state-of-the-art method that captures homophily and

influence from social and item aspects. DANSER is based on graph convolutional and graph

attention networks. It also uses the social network to overcome the sparsity and cold-start

problems.

• GhostLink-S, GhostLink-G and GhostLink-D. These three methods are based on the recently

introduced GhostLink [83], that aims to predict ratings with estimated item-aware latent in-

fluence. Specifically, we first apply GhostLink to infer the item-aware influence network, i.e.

GP (pi). Then to compare the effect of item-aware influence network with social network,

we apply TrustSVD with the learned item-aware influence for recommendation (denoted as
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Table 5.3: Performance comparison of ResRec with other methods. The numbers in the paren-
theses show the relative improvements of ResRec comparing with the corresponding baselines.
The ‘**’ indicates that the improvements over all baselines pass the significance test with p-value
< 0.001. ResRec significantly outperforms the other methods in terms of both MAE and RMSE.

Social Network item-aware Latent Network
PMF TrustSVD GraphRec DANSER GhostLink-S GhostLink-G GhostLink-D ResRec

Epinions
MAE 0.8764 (10.01%) 0.8104 (2.75%) 0.8374 (6.18%) 0.7980 (1.18%) 0.8088 (2.55%) 0.8312 (5.39%) 0.8033 (1.85%) 0.7887**

RMSE 1.1427 (8.33%) 1.0775 (2.86%) 1.0653 (1.70%) 1.0596 (1.16%) 1.0769 (2.81%) 1.0781 (2.92%) 1.0680 (1.96%) 1.0475**

LThing
MAE 0.8364 (14.42%) 0.7686 (7.38%) 0.7423 (3.70%) 0.7268 (1.54%) 0.7694 (7.49%) 0.7606 (6.26%) 0.8075 (12.81%) 0.7158**

RMSE 1.0373 (11.55%) 1.0093 (10.00%) 0.9626 (4.92%) 0.9248 (0.80%) 1.0085 (9.92%) 0.9914 (8.05%) 1.0056 (9.60%) 0.9175**

Ciao
MAE 0.7844 (11.68%) 0.7291 (5.24%) 0.7212 (4.10%) 0.7134 (2.97%) 0.7351 (6.11%) 0.7399 (6.79%) 0.7163 (3.39%) 0.6928**

RMSE 1.0276 (10.50%) 0.9607 (4.46%) 0.9399 (2.19%) 0.9321 (1.35%) 0.9672 (5.17%) 0.9473 (3.01%) 0.9389 (2.09%) 0.9197**

Table 5.4: Performance of methods on cold-start users in terms of MAE and RMSE for all three
datasets. The ‘**’ indicates p-value < 0.001 compared with the best baseline.

Social Network item-aware Latent Network
PMF TrustSVD GraphRec DANSER GhostLink-S GhostLink-G GhostLink-D ResRec

Epinions
MAE 0.9734 (10.66%) 0.8829 (1.49%) 0.9164 (5.10%) 0.8811 (1.30%) 0.8794 (1.10%) 0.9171 (5.17%) 0.8910 (2.39%) 0.8697**

RMSE 1.2726 (9.94%) 1.1966 (4.22%) 1.1590 (1.11%) 1.1590 (1.11%) 1.1951 (4.09%) 1.1889 (3.60%) 1.1597 (1.17%) 1.1461**

LThing
MAE 0.9359 (12.74%) 0.8550 (4.47%) 0.8803 (7.23%) 0.8463 (3.49%) 0.8722 (6.37%) 0.8774 (6.91%) 0.9490 (13.94%) 0.8167**

RMSE 1.1510 (11.16%) 1.0992 (6.97%) 1.1001 (7.05%) 1.0447 (2.12%) 1.1028 (7.28%) 1.1266 (9.24%) 1.1296 (9.48%) 1.0225**

Ciao
MAE 0.7859 (10.55%) 0.7434 (5.43%) 0.7292 (3.59%) 0.7214 (2.54%) 0.7441 (5.52%) 0.7588 (7.35%) 0.7416 (5.20%) 0.7030**

RMSE 1.0217 (8.72%) 0.9913 (5.92%) 0.9485 (1.67%) 0.9477 (1.59%) 0.9939 (6.17%) 0.9627 (3.13%) 0.9725 (4.11%) 0.9326**

GhostLink-S). Similarly, we also apply GraphRec [75] and DANSER [13] with the learned

item-aware influence (as GhostLink-G and GhostLink-D) to evaluate the effectiveness of the

implicit network for recommendation.

Reproducibility. We implement ResRec in Tensorflow. The latent dimensions d for all methods

are fixed to be 10 empirically for a trade-off between performance and computational complexity,

as well as for fair comparison across methods. We use mini-batch gradient descent with a batch

size of 64. The learning rate is determined by grid search in the range of {0.1, 0.01, 0.001}.

The regularization parameter is selected from {0.1, 0.01, 0.001, 0.0001, 0.00001} and dropout

ratio is in {0.0,0.1,...0.8}. Average pooling is used. For methods using policy gradient descent,

the gradient period is experimentally set to be 1000 for all the methods for fair comparison with

corresponding learning rate 0.1.

5.4.2 Overall Comparison

We begin by investigating the overall performance of ResRec comparing with the alternatives

as shown in Table 5.3. The ‘**’ indicates that the improvements over all baselines pass the sig-
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nificance test with p-value < 0.001. In Table 5.3, the numbers in the parentheses show the im-

provements of ResRec comparing with the corresponding baselines. Overall, ResRec consistently

outperforms all the baselines in all three datasets. Concretely:

First, both TrustSVD and Ghostlink-S achieve better performance than PMF. The improvement

confirms that both social networks and item-aware user influence network can help improve item

recommendation, since all those methods are based on matrix factorization. Specifically, for the

same methods with different networks (e.g., GraphRec vs Ghostlink-G), they have similar perfor-

mance. This further verifies that the item-aware influence network indeed can strongly impact the

user preference towards items. We also observe that the performance of GhostLink-G/D methods

are not good in LThing dataset. One possible reason is that LThing is very sparse, thus the learned

item-aware influence network introduce noise that impairs the performance of graph-based meth-

ods.

Second, comparing with the MF-based methods, graph neural network-based models (GraphRec

and DANSER) generally give a better performance. The results demonstrate the power of graph

neural networks in modeling the social network for ratings prediction, since the GNN-based meth-

ods can naturally capture the topological structure of the social network.

Third, ResRec significantly outperforms the other methods, especially the state-of-the-art meth-

ods GraphRec and DANSER, and also Ghostlink-G and Ghostlink-D. Since all of these methods

use graph neural networks, the improvement of ResRec verifies that the modeled social resonance

indeed can help improve the prediction of user preference towards items. Moreover, through the

resonance mutual learning layer, ResRec can simultaneously utilize the two networks to enhance

the learning of each influence.

We also analyze the effect of the key hyperparameter – the number of latent factors – on ResRec

(details omitted due to space constraints). We find that ResRec consistently outperforms the other

methods, with an optimal embedding size dependent on the particular dataset.
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Figure 5.1: ResRec framework. By taking the user-item pair (u2, p3) as an input example. ResRec
explores the mutual resonance effect between users in social network GS and users (u1, u3, u6,
u5) who have purchased p3 through both preference-based and multi-hop relation-based resonance
(the connections between u1, u3, u6, u5 in GP (p3) are omitted here for simplicity.).

Figure 5.2: Preference-based resonance effect for user u2 towards item p3. We explore the prefer-
ence similarities between a user’s friends (in orange) and users who have rated the same item.
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Figure 5.3: Multi-hop relation-based resonance of user u2 towards item p3. With the resonance
effect, users in orange color are constructed as the mutual anchor set to estimate the user influence
in GP (p3, u2) based on the GS graph structure.

5.4.3 Cold-Start Users

In this section, we drill down to the performance of different methods on cold-start users. Based

on the datasets shown in Table 5.2 and previous methods [14, 177, 178], we define the users who

rate fewer than ten items as cold-start users for Epinions and LThing, and fewer than five items

as the cold-start users for Ciao. Results are shown in Table 5.4. Overall, ResRec consistently

significantly outperforms the other methods. Concretely:

First, for cold-start users, the consistent outperformance of ResRec further verifies the impor-

tance to consider item-aware influence and resonance effect in social recommendation. Second,

comparing with the improvement in Table 5.3, for most of the cases ResRec has a higher improve-

ment for cold-start users. This indicates that considering the influence from both GS and GP is

even more beneficial for cold-start users. There are also situations where the overall improvements

are higher. One possible reason is that the resonance could also heavily influence some active

users. This further verifies the benefits to incorporate item-aware influence and resonance in social

recommendation.

5.4.4 Ablation Study

In our ablation study, we evaluate the design choices of ResRec from both accuracy and effi-

ciency aspects, with focus on the item-aware influence and graph-based mutual learning of social

71



Figure 5.4: (a)(b) MAE and RMSE of variants of ResRec on Epinions dataset. Other datasets have
similar performance. (c)(d) MAE and RMSE vs Iterations on Epinions dataset. Other datasets
have similar performance.

resonance. The variants are: (1) ResRec-IP is ResRec without the item-aware influence network

GP , which is similar to traditional social recommendation; (2) ResRec-SR removes the preference

resonance shown in Section 5.3.1; (3) ResRec-GR forgoes the graph-based resonance in Section

5.3.2; (4) ResRec-IN removes the internal influence term inter(GP ).

Figures 5.4(a)(b) show the performance of ResRec and its variants on the Epinions dataset.

Figures 5.4(c)(d) show the prediction accuracy of ResRec and its variants with respect to training

iterations. Similar results hold for the other two datasets. Overall, we see the full-blown ResRec

improves upon all of its variations and ResRec converges much faster than the other methods. In

particular, ResRec significantly outperforms methods that remove each type of resonance (ResRec-

SR and ResRec-PR). This confirms that both kinds of resonances play a critical role to help improve

recommendation. Another finding is that ResRec-SR, ResRec-GR and ResRec-IN show similar

performance. This indicates all three influence factors are important and can not replace each

other.
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5.5 Summary

We have explored the potential of social resonance to enhance the learning of user preference

towards items. The proposed ResRec framework comprehensively learns resonance from pref-

erence and multi-hop relation-based aspects. Furthermore, the learned influence from the two

networks can be flexibly adapted based on both user’s social connections and different items. Ex-

tensive experimental results show that ResRec significantly improves upon state-of-the-art social

recommenders and also achieves the best performance for cold-start users. In our continuing work,

we are exploring additional sources of resonance, e.g., from user reviews.
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6. INSTAGRAMMERS, FASHIONISTAS, AND ME: RECURRENT FASHION

RECOMMENDATION WITH IMPLICIT VISUAL INFLUENCE§

By modeling the social resonance, we find user social network can powerfully influence the

user preference towards items. In this chapter, we consider the item factor. Especially, we con-

sider the social influence of fashion-focused key opinion bloggers for fashion recommendation.

Fashion-focused key opinion bloggers on Instagram, Facebook, and other social media platforms

are fast becoming critical influencers. They can inspire consumer clothing purchases by linking

high fashion visual evolution with daily street style. We build the first visual influence-aware

fashion recommender (FIRN) with leveraging fashion bloggers and their dynamic visual posts.

Specifically, we extract the dynamic fashion features highlighted by these bloggers via a BiLSTM

that integrates a large corpus of visual posts and community influence. We then learn the implicit

visual influence funnel from bloggers to individual users via a personalized attention layer. Finally,

we incorporate user personal style and her preferred fashion features across time in a recurrent rec-

ommendation network for dynamic fashion-updated clothing recommendation. Experiments show

that FIRN outperforms state-of-the-art fashion recommenders, especially for users who are most

impacted by fashion influencers, and utilizing fashion bloggers can bring greater improvements

in recommendation compared with using other potential sources of visual information. We also

release a large time-aware high-quality visual dataset of fashion influencers that can be exploited

for future research.

6.1 Introduction

Opinion leaders can impact consumer purchase and consumption behaviors in a variety of

different markets [83, 179, 180]. Among these, fashion opinion leaders wield outsize influence on

fashion trends [181–184]. And with the rise of visual media platforms like Instagram and Pinterest,

§Reprinted with permission from “Instagrammers, Fashionistas, and Me: Recurrent Fashion Recommen-
dation with Implicit Visual Influence” by Yin Zhang and James Caverlee, 2019. Proceedings of The 28th
ACM International Conference on Information and Knowledge Management. Copyright 2019 by ACM.
DOI:https://doi.org/10.1145/3357384.3358042
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influential fashion leaders are not just celebrities and famous designers, but also fashion bloggers

who have built a name and reputation within the platform itself [98–100]. These fashion bloggers

link high fashion with daily wear through their appealing posts. For example, many bloggers

attend high profile fashion shows, such as New York Fashion Week, to keep up with the frontiers

of fashion trends (like dress design and fashionable colors) [98]. At the same time, connecting

these fashion trends with our daily clothing choices through visual social media, fashion bloggers

can directly disseminate their fashion choices to consumers, as illustrated in Figure 6.1. Typical

example posts on Instagram include “#10 pieces every woman should have in her wardrobe”,

“#OOTD” (outfit of the day), and “#Top Trends of the season”, which are very useful for clothing

choices.

Since those influencers can play a significant role in fashion adoption [181] and consumer

aesthetic evaluation is largely based on current fashion trends [88, 185, 186], we explore in this

chapter the potential of enhancing fashion recommendation by carefully modeling the visual in-

fluence of these fashion bloggers. We collect more than 130,000 Instagram posts by influential

female fashion bloggers, and connect this visual style to Amazon item purchases over time. This

recommender can extract the current hottest fashion clothing based on a user’s visual taste, as well

as capture trends reflected in the choices of these fashion bloggers. While incorporating influencers

into recommendation has great potential value, there are a number of key challenges.

First, the fashion tastes on platforms like Instagram is diffused across millions of posts, and

these tastes vary across bloggers. Moreover, their styles are always in flux, since fashion bloggers

adapt to new trends. How can we extract each fashion blogger’s unique dynamic fashion features

from a large corpora of posts? Second, in practice, it is extremely difficult to directly capture the

explicit connections/influence from a fashion blogger to a user’s purchase [83]. This influence can

also be complicated: users can be directly influenced by a blogger’s posts or indirectly influenced

by the blogger through their friends or communities. Besides, each user’s visual preference is

personal and some users may be strongly influenced by fashion bloggers while others may not

be at all. Hence, how can we learn such personal implicit visual influence funnel from fashion
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bloggers to users for fashion recommendation? Third, the visual influence from bloggers to users

could change over time, as an example shown in Figure 6.1. How can we effectively learn these

temporal dynamics for visual influence-aware fashion recommendation?

In this chapter, our main goal is to address these three challenges to build a personalized visual

influence-aware fashion recommender that can learn both fashion trends and user visual prefer-

ence evolution across time. Specifically, we propose a Fashion visual Influence-aware Recurrent

Network (FIRN) that is characterized by three unique features:

• FIRN uncovers fashion features in each time period through a bidirectional LSTM that captures

each fashion blogger’s style over time as well as the trends in the overall fashion community;

• FIRN naturally models each user’s personal visual taste towards these fashion features by learn-

ing an implicit visual influence funnel from the extracted fashion features to individual users;

• FIRN builds a novel visual influence-aware recurrent neural network that effectively models

temporal dynamics of fashion features from bloggers, users, and their visual preferences.

To our knowledge, this is the first work to leverage influential fashion bloggers and their visual

posts as a dynamic visual signal for user clothing recommendation. Through experiments over

bloggers sampled from Instagram and purchases on Amazon, we quantitatively and qualitatively

evaluate the performance of FIRN. We find that FIRN significantly outperforms the state-of-the-art

fashion recommendation FSVD [15] by 8.38% on average in RMSE with an even greater improve-

ment (14.05%) for users who have previously consistently purchased items that are similar to posts

by fashion bloggers. Furthermore, compared with using other potential sources of visual fashion

influence – i.e. the images of a user’s previous purchases [11] and a dataset of static aesthetic

images (AVA) [92] – fashion bloggers can bring larger improvements in recommendation. These

results further confirm that fashion bloggers can provide strong fashion visual signals across time

and important dynamic influence towards user clothing purchase decisions.
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Figure 6.1: Fashion bloggers and their implicit influence funnel. The top two rows show bloggers
and their posts. The bottom row shows a user and her purchases.

Table 6.1: Notation of FIRN.

Notation Explanation
U , P user set, item set
ru,p(t) ratings of user u to item p at time t
θu(t) visual influence-aware hidden state of user u at time t
θp(t) hidden state of item p at time t
m(p) image vector of item p
Pu(t) users bought item at time t

Π bloggers set
Bk blogger k, Π = {B1,B2, ...}

mi(Bk|t) image vector of ith post for blogger k at time t
I(Bk|t) post set of blogger k at time t
v(Bk|t) visual vector delivered by blogger k at time t

6.2 Visual Influence-Aware Fashion Recommendation

Inspired by these works of fashion bloggers and observations, we explore in this chapter the

potential of integrating fashion bloggers for user clothing recommendation.

Problem Statement. Formally, we assume a set of users U , a set of fashion items P , and their

ratings in time period T . Specifically, ru,p(t) is the rating that user u ∈ U rates p ∈ P at time t ∈ T .

We further assume a set of fashion influential bloggers Π = {B1,B2, ....} and a set of their visual

posts I(Bk|t) for each blogger Bk, which contains fashion features at time t. Notice here that U

and Π are two different groups of people. By leveraging visual posts in I(Bk|t) for each Bk ∈ Π,
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Figure 6.2: Extracting fashion features hk(t) at time t.

we aim to recommend for each user u ∈ U a visual influence-aware and time-dependant list of

items from the set P that considers both user visual preference and fashion features. Notations are

summarized in Table 6.1.

In the following three sections, we present the design of our proposed visual influence-aware

recurrent fashion recommendation FIRN in detail.

6.2.1 Extracting Fashion Features

We begin by extracting fashion features hk(t) from each blogger Bk. These fashion features

represent the blogger’s personal preferred fashion style smoothed by the common popular fashion

trends in the overall fashion community, as shown in Figure 6.2.

Individual Visual Style. We first represent each blogger’s individual visual style by a vector

v(Bk|t) derived from their visual posts. Since raw image vectors are noisy and low-level represen-

tations [11,15], we use an embedding to obtain high-level visual features of each post. Specifically,

a post’s visual features vi(Bk|t) from blogger Bk is represented by:

vi(Bk|t) = Emmi(Bk|t), (6.1)

where Em ∈ RKv×Km is the embedding matrix. Kv is the dimension of the embedded visual

features vi(Bk|t) and Kv < Km.

Then based on vi(Bk|t), similar to [16, 187], we define the fashion blogger individual-level
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visual style v(Bk|t) at time t as:

v(Bk|t) =

∑
i∈I(Bk|t) vi(Bk|t)
|I(Bk|t)|

. (6.2)

Since we observe that posts can be highly visually similar in a short time period (such as one

month), we adopt an average here to convey these similar visual features. In this way, the dynamic

visual vector v(Bk|t) can strengthen the common visual features that the blogger wants to deliver

in the time t across her posts. Furthermore, this approach can effectively deal with the distinct

different number of posts from bloggers in different time periods.

Incorporating Community Trends. This individual-level blogger visual style vector v(Bk|t) is

only a partial view of the current fashion features and maybe is noisy for fashion, since the vector

is barely based on the current posts of a blogger. In practice, for any time period, a blogger may

deliver some visual features that are not closely connected to current fashion trends but only some

randomly posts, which could have an influence on the final fashion recommendation. However, the

overall fashion community may adopt certain fashion trends that can help re-inforce which aspects

of v(Bk|t) are representative of fashion features, rather than quirks of this particular collection of

posts.

Hence, we propose to smooth the individual blogger style vector v(Bk|t) with this community

influence to arrive at our goal of fashion features hk(t). Considering other fashion bloggers can

directly (or indirectly) connect to each other by fashion, we model this flow of fashion ideas at

time t through a Bidirectional Long Short-Term Memory (BiLSTM) [188] among bloggers.*

Specifically, our blogger BiLSTM is based on the traditional LSTM [51, 188] which has been

widely adopted, to capture visual features among bloggers. Formally, we first sort bloggers by the

average number of likes of each post to general modulate the flow of fashion information among

bloggers. Since the LSTM contains the gating units to bridge very long lags and effectively utilize

*Compared with directly using v(Bk|t), experiments in Section 6.3 further show that the BiLSTM can achieve
higher accuracy and also has a good efficiency. Furthermore, note that LSTM is not the only choice. For example, the
bidirectional gated recurrent unit (BiGRU) can also be used. We use LSTMs here since they are slightly more general
as [94] indicated.
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input information, it is able to capture different blogger visual features to re-inforce the fashion

features for each blogger. Concretely, the fashion features across bloggers at time t is built by:

[gk(t), ik(t),ok(t)] = sigmoid(W[h′k−1(t),v(Bk|t)] + b),

qk(t) = tanh(W′[hk−1(t),v(Bk|t)] + b′),

ck(t) = gk(t) ◦ ck−1(t) + ik(t) ◦ qk(t),

h′k(t) = ok(t) ◦ tanh(ck(t)),

(6.3)

where the input gate ik, output gate ok and forget gate gk are used to control how each fashion

blogger influences other bloggers. ◦ denotes the element-wise product. For simplicity, we use

h′k(t) = LSTM(h′k−1(t),v(Bk|t)) to denote these operations.

Based on Equation 6.3, the activations of the forward LSTM and backward LSTM for influence

Bk is denoted as
−→
h k(t) and

←−
h k(t) which represent the fashion flow from other bloggers to blogger

Bk. So the final fashion feature based on blogger Bk at t is denoted as hk(t) = [
−→
h k(t),

←−
h k(t)],

which considers both a blogger’s individual visual posts and their community interactions. This

formulation has the benefit of smoothing each blogger’s fashion features with the overall trends in

the community, so that the extracted fashion features from each blogger are more representative

and with more emphasis on common popular fashion trends.

6.2.2 Implicit Personal Visual Funnel

Given these fashion features hk(t), how can we model the influence from hk(t) of bloggers to

each user u? In practice, it is hard (if not impossible) to get the explicit mapping from fashion

bloggers to users and their purchases in many situations considering privacy constraints (e.g. from

Instagram posts to Amazon purchases). Recently, Mukherjee et al. [83] used review data to build

a user social latent influence without requiring explicit social network and showed great improve-

ments in recommendation. Inspired by their success, we aim to leverage the visual signals from

bloggers to reveal the implicit influence funnel from fashion bloggers to users. We also consider

that the influence from extracted fashion features to users may be personalized in both visual as-
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Figure 6.3: Visual influence-aware recurrent fashion recommendation framework. The vertical
solid/dashed boxes represent the user dynamic states with/without ratings and the item states at the
same time.

pects and degrees. For example, users who like brighter colors would prefer bloggers who post

fashionable clothes in similar colors. And this influence could be highly-receptive for some users

or not at all for others. Hence, we propose to model this heterogeneity in influence of user prefer-

ence towards each blogger through a visual personalized attention layer. Concretely, for each user,

we hypothesize that if the user’s purchased products are visually similar to fashion features across

time, the user is more likely to be influenced by the fashion features. Thus, we use the attention

weights [189] capture the fashion aspects that a user prefers and the visual distance models how

deep the user is influenced by the extracted fashion features.

Specifically, given the learned blogger fashion style vectors (h1(t), h2(t), ..., hK(t)) at time

t, the attention module first transforms each blogger’s learned fashion vector through a single

perceptron to a lower space:

sk(t) = sigmoid(Eshk(t) + bs), (6.4)

where Es and bs is the corresponding embedding matrix and bias. Then the attention module
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compares the similarities between a user u latent influenced visual vector w(u) and the blogger

Bk’s transformed style sk(t) by computing the dot products. So the attention weights αk(u, t) of

user u to blogger Bk is calculated by the softmax of the similarity:

αk(u, t) =
exp(w(u)T sk(t))∑
k′(exp(w(u)T sk′(t)))

. (6.5)

Then the attention module computes each user’s influence-aware visual style vector ĥ(u, t) as the

weighted sum of the blogger’s fashion style:

ĥ(u, t) =
∑
k

αk(u, t)hk(t), (6.6)

where the user u latent influenced visual vector w(u) is a trained parameter to minimize the dis-

tance between user’s influence-aware visual style and user’s previously purchased items by:

min
∑
t

∑
u

||v(u, t)− ĥ(u, t)||F , (6.7)

where v(u, t) is the user visual vector based on the visual features of the user’s purchase history.

Specifically, for unity and to capture the same visual features, v(u, t) is calculated by

v(p) = Emm(p), v(u, t) =

∑
p∈Pu(t) v(p)

|Pu(t)|
,

which is similar to the blogger’s visual vector calculation (Equation 6.2). Em is the same embed-

ding in Equation 6.1. As a result, each user u has a learned influence-aware visual style ĥ(u, t)

that captures the user personal preferred visual fashion features at time t. In the next section, we

discuss how to integrate this personal influence into time-dependent fashion recommendation.

6.2.3 Visual Influence-aware Recurrent Network

Fashion acts as a strong influence factor for user purchase preference across different time pe-

riods. In addition to the fashion influence previously described, other static and dynamic factors
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may also impact user purchase preferences. Examples include the brand of an item (a static fea-

ture), the personal taste drift in clothing materials (a dynamic factor), and so on. In this section, we

incorporate these additional factors with the extracted personal fashion influence to build a joint

visual influence-aware recurrent network for user clothing recommendation.

To capture these dynamic and stationary states, especially the visual influence from fashion

bloggers, we extend recurrent recommendation networks (RRN) [94] with visual influence-aware

personalized fashion factors. Specifically, an RRN can capture temporal dependencies for both

users and items with a dynamic user state and a dynamic item state. Besides modeling user internal

dynamic and stationary states, our proposed FIRN also considers the external fashion drift and its

influence for users. Concretely, for the user state, suppose ru(t) is the rating vector for user u.

That is, ru,p(t) = r is the user rates item p with score r at time t otherwise ru,p(t) = 0. We denote

τt as the wallclock at time step t and 1newbie as the indicator of whether the user is new. So the

constructed input for user at time t in FIRN is [94]:

xu(t) := [ru(t),1newbie, τt, τt−1]. (6.8)

Then the personalized fashion-aware user vector is:

fu(t) = Euxu(t) + Ef ĥ(u, t), (6.9)

where Eu and Ef are transformations to be learned to project source and fashion information into

the joint user embedding space. Specifically, Euxu(t) represents the latent factor of user personal

preference and Ef ĥ(u, t) is the extracted popular fashion features that the user prefers at time t.

The state of u at time t is decided by the user’s previous hidden state θu(t− 1) and fu(t). So:

θu(t) := LSTM(θu(t− 1), fu(t)). (6.10)

For an item’s time dependent state, similarly, the item vector are calculated by fp(t) = Epxp(t)
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where xp(t) := [rp(t),1newbie, τt, τt−1] is the constructed item input. The overall framework for

FIRN is shown in Figure 6.3.

Rating Prediction. Besides dynamic states, users/items also contain stationary components across

time. So we incorporate the time-dependent user states u(t) and item states p(t) with the stationary

state γ̃u and γ̃p respectively. Similar to [94], the rating prediction is calculated by:

r̂u,p(t) :=< θu(t),θp(t) > + < γ̃u, γ̃p > . (6.11)

The γ̃u and γ̃p are affine functions of γu and γp which are γ̃u = E′uγu+bu, γ̃p = E′pγp+bp, where

E′u (E′p) is the transformations of user (item) stationary states, and bu (bp) is the corresponding bias

term. The stationary part of γu and γp is similarly calculated based on the standard factorization. In

sum, we build a recurrent recommender FIRN that incorporates both dynamic fashion features from

fashion bloggers and user’s purchase history to give users a personalized fashion recommendation.

6.2.4 Optimization

In order to predict user ratings that are close to the actual ratings as well as capturing the fashion

blogger’s visual influence for each user across time, we propose an objective function that jointly

learns user’s ratings and their visual preference:

minimize
Ω

∑
(u,p,t)∈Otrain

(ru,p(t)− r̂u,p(t|Ω))2 + λ1||v(u, t)− ĥ(u, t)||2F ) + λ2R(Ω), (6.12)

where ru,p(t)− r̂u,p(t|Ω) is used to yield predictions that are close to the actual ratings. ||v(u, t)−

ĥk(u, t)||2F is to ensure we effectively adapt blogger’s various visual information for different users

in BiLSMT. Here ||·||F is the Frobenius Norm. λ1/λ2 is a hyper-parameter which is used to balance

the visual/regularizer and rating information. Otrain are the observed (user, item, timestep) tuples

in the training set. Ω is the set of model parameters, and R(Ω) is the regularization function. Here

we use the Frobenius Norm for each model parameter. The optimization method is the same as [94]
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(subspace gradient descent).

6.3 Experiments

In this section, we conduct experiments on real-world datasets to evaluate the proposed FIRN

recommender. Specifically, there are two key research questions: (1) How well does FIRN perform

for fashion recommendation; (2) Whether our modeled fashion bloggers implicit visual influence

is really helpful for the recommendation, especially compared with other widely used sources

of visual information? Besides focusing on answering these two questions, we also conduct an

ablation study, as well as explore FIRN performance on different users and their corresponding

recommended items to further evaluate the FIRN architecture and the influence of fashion bloggers.

6.3.1 Experimental Setup

Datasets. We require datasets that contain both time-aware visual posts of influential fashion

bloggers and user fashion purchases in the same time periods to model the dynamic influence.

It is extremely difficult to find available public datasets that satisfy these requirements since few

(if any) previous works consider the influence of fashion bloggers in recommendation. So for

fashion bloggers, we crawled bloggers and their time-aware visual posts from Instagram which

contains many influential and representative fashion bloggers and their rich visual posts [99, 104].

Since other sources of visual fashion could potentially be just as useful as these bloggers, we also

consider a collection of images from user purchase histories on Amazon [15] and the AVA dataset

of static aesthetic images [91]. For user purchases, we follow previous fashion works that use a

public Amazon dataset [15, 91].

• Instagram. As an illustration of fashion bloggers and their visual influence in fashion recom-

mendation, we use a list of 100 influential US female fashion bloggers as a seed set of fashion

bloggers.† While this list is partial and reflects one view on who is influential, it gives us a start-

ing point of many popular fashion bloggers (we further discuss the limitations of this dataset

for fashion recommendation in Section 6.4). We crawl each of their Instagram [190] accounts,

†https://www.aransweatersdirect.com/blogs/blog/46644481-the-top-100-us-female-fashion-bloggers-to-follow-
on-instagram
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collecting all posts that overlap in time with the Amazon dataset. Concretely, we crawl the

images associated with each post and the posted time, the number of likes for each post, the

blogger’s comments on the post, and five user comments featured by Instagram (where the

comments are from accounts with large followings), resulting in 131,883 time-aware visual

posts.

• Amazon. We use a public large real-world Amazon dataset [11] focusing on the Women’s

Clothing category that has been widely used for fashion recommendation [15,91]. The dataset

includes both rating history and item images. Concretely, we forcus on women’s skirts, dresses,

pants and so on (removing Intimates and Socks & Hosiery since they are typically not featured

by fashion bloggers). We select items with an image that are rated between Jun. 2011 and Jul.

2014 (overlapping with our Instagram dataset) and their corresponding users. Keeping users

with at least two ratings, we finally arrive at a ratings matrix with 22,217 users, 27,244 items

and 59,866 ratings.

• AVA Dataset: This is a well-known public Aesthetic Visual Analysis (AVA) dataset [92]. It

contains over 250,000 images with aesthetic ratings from 1 to 10 and we use the images rated

6-10 as aesthetic visual information for fashion recommendation.

Dataset Inspection. Particularly, we investigate the crawled fashion bloggers from different as-

pects to confirm its quality. We first examine the user comments towards those bloggers’ posts.

We find the most frequent unigrams express strong personal affinity – love is the most popular

followed by beauty, cute, like. Further, unigrams want, get, and need also appear in the top-20

most popular unigrams. Those top frequent words prove bloggers’posts contain user favored vi-

sual features and even influence their purchase preference. We then explore the number of users

who directly express their likes towards these posts. Figure 6.4 shows the growth in number of

posts (blue) and the average number of likes per post (red) from 2011 to 2015. For example, one of

our bloggers has a post with 675,000 likes in 2014. The huge amount of likes per post along with

the top frequent words in user comments further confirms our intuition of the widely influence of

fashion blogger’s posts towards user aesthetic preference. Additionally, the fast increases in both
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Figure 6.4: Posts and likes for Instagram fashion bloggers in our dataset grew rapidly.

number of posts and average likes per post shows our crawled bloggers are active across time.

All those observations ensure the high-quality of our crawled data. In sum, the Instagram dataset

naturally contains both dynamic and high aesthetic quality properties, which makes it potentially

valuable for fashion recommendation.

In FIRN, the time variable is used to link Amazon dataset and Instagram dataset, and fashion

information is transferred to capture user visual drift. The time intersection for the two datasets

is from Jun. 2011 to Jul. 2014. We select the corresponding posts and user records in that time

period, and discretize time by month, resulting in 38 time intervals. The choice of granularity, as an

important hyper-parameter, is revisited on model performance in Section 6.3.2. We also compare

our blogger visual features versus visual images from users time-aware purchased products used

in [15] and those derived from the AVA dataset [92] used in [91].

Visual Features. For the visual features in Amazon items (m(p)), Instagram posts (mi(Bk|t)) and

the AVA images, following previous work [11, 15], we use a convolutional neural network (CNN)

proposed by [149] to unify the extracted visual features in the three datasets for fair comparison.

The CNN is pre-trained by Caffe 1.2 million ImageNet. Particularly, the features that we use

are the output of the second fully connected layer in CNN based on their strong performance in

previous work [11]. The visual feature vector length is 4, 096.

Baselines. We compare FIRN against the following baselines:
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Table 6.2: Model comparison: FIRN is personalized, temporally-aware, visually-aware, and con-
siders the impact of fashion bloggers.

Model Personalized
Temporally-

aware
Visually-

aware
Influence-

aware
SVD ! 7 7 7

AutoRecIU ! 7 7 7

TimeSVD++ ! ! 7 7

SGRU ! ! 7 7

RRN ! ! 7 7

NSCR ! 7 ! !

FSVD ! ! ! 7

FIRN ! ! ! !

SVD [191]: This is a widely used method which achieves robust and strong results in rating pre-

diction. It uses user ratings without considering temporal dynamics. The regularization parameter

is 0.01 by cross-validation.

AutoRecIU [192]: This is a recent autoencoder-based method for rating prediction. We use both

item-based and user-based AutoRec methods and report the best performing one. The regulariza-

tion parameter is 1 by cross validation.

TimeSVD++ [93]: One of the most successful models for time-aware recommendation based on

matrix factorization, showing strong results across different datasets [94]. It considers temporal

dynamics for both users and items. The regularization parameter is 0.01 by cross validation.

SGRU [53]: This method uses a session-based recurrent neural network (RNN) method to capture

dynamics in recommendation and has strong results in prediction based on implicit feedback. Here

we adapt it to predict ratings for each user. The loss function is mean square error. The drop out

rate is 0.5.

RRN [94]: This is a recent state-of-the-art method for time-aware rating prediction. It uses a

new RNN method to model long-range dynamics and stationary effects for users and items. The

regularization parameter is 16 by cross-validation.

NSCR [193]: This is a recent state-of-the-art method for cross-domain recommendation. It utilizes
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both user-item attributes and a social network to give an item recommendation. We adapt this

method for fashion recommendation, where the social network part is used to model the influence

from fashion bloggers to user purchase behavior. Item attributes are represented by item visual

vectors and user attributes are denoted by the average visual vectors of their bought items. The

social network between users and bloggers is built by their visual similarity between bought items

and posts. If the similarity is larger than average, then there is a connect.

FSVD [15]: This is a recent state-of-the-art fashion-specific recommender, where fashion trends

are modeled from user purchase history. The method is based on matrix factorization that considers

temporal dynamics and item visual information. The regularization parameter is 0.001 by cross-

validation.

Ultimately these methods are designed to evaluate the impact of temporal dynamics, visual factors,

and FIRN framework for fashion recommendation as shown in Table 6.2.

Table 6.3: FIRN outperforms state-of-the-art methods in terms of RMSE for different time-step
granularity. ∆RRN shows the RSME improvement versus the next-best alternative, while ∆FSV D

shows the RMSE improvement versus the state-of-the-art fashion recommender FSVD. SVD, Au-
toRecUI and NSCR have the same performance cross rows since they are not time-aware.

No time Time aware Visual Time & Blogger ∆
SVD AutoRecUI TimeSVD++ SGRU RRN NSCR FSVD FIRN ∆RRN ∆FSV D

1 month 2.1392 1.6723 1.0775 1.4146 1.0655 1.1306 1.1146 1.0346 3.09% 7.99%
2 months 2.1392 1.6723 1.0805 1.3371 1.0627 1.1306 1.1126 1.0348 2.79% 7.78%
3 months 2.1392 1.6723 1.0774 1.3125 1.0581 1.1306 1.0983 1.0324 2.56% 6.59%
4 months 2.1392 1.6723 1.0884 1.2263 1.0521 1.1306 1.1187 1.0311 2.10% 8.76%
5 months 2.1392 1.6723 1.0964 1.2108 1.0478 1.1306 1.1197 1.0261 2.17% 9.36%
6 months 2.1392 1.6723 1.1015 1.2708 1.0535 1.1306 1.1293 1.0314 2.21% 9.79%

Metrics. For fashion recommendation, following [94], we split the dataset by time into a training

set (Jun. 2011 to Jun. 2013, with 21,112 ratings and 43,870 posts), validation set (Jul. 2013 to

Jan. 2014, with 18,089 ratings and 16,452 posts) and test set (Feb. 2014 to Jul. 2014, with 20,665

ratings and 14,390 posts). Our evaluation consists of calculating how bloggers influence each

user’s ratings for items. So similar to [94], we use the user’s average standard root-mean-square
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error (RMSE) to evaluate rating prediction:

RMSE =
1

|Utest|
(
∑

u∈Utest

1

|Pu(t|Utest)|
||ru,p(t)− r̂u,p(t)||2F )1/2,

where |Utest| is the number of users in the test dataset. Here |Pu(t|Utest)| represents the number of

items that the user u rated at time t in the test dataset.

Reproducibility. All results are reported over the same test set. For a fair comparison, the hidden

dimension for all approaches is set to be 100 empirically for a trade-off between performance and

computation complexity. Specifically, for RRN and FIRN, the dimension of stationary factors

is 90 and the embedding dimension for temporal dynamics is 10. We set the visual dimension

to 100 for all methods that use visual information. The hidden dimension of BiLSTM is 100

and Es ∈ R100×10. The embedding dimension for FIRN is 10 which is the same as embedding

dimension for temporal dynamics. Other hyperparameters are tuned based on the best performance

on the same validation dataset. The regularization hyperparameters are tuned by grid search from

0.001 to 30 for different time-step granularity. Specifically, λ1 = 0.1 and λ2 = 12 for FIRN. Model

parameters are first randomly initialized according to truncated normal distribution with mean 0

and standard deviation 0.01. For the optimization, we use mini-batch gradient descent where the

max batch size is 100,000, and the corresponding learning rate is determined by grid search in the

range of {0.00001, 0.0001, ...,0.1}.

6.3.2 Recommendation Performance of FIRN

We begin by investigating the overall performance of FIRN versus alternatives as shown in

Table 6.3. The rows of the table capture different time-step granularaties. Overall, FIRN results in

the best RMSE, with a 6% to 10% improvement versus the state-of-the-art fashion recommender

FSVD and a 2% to 3% improvement versus the next-best approach (RRN in this case) across rows.

Comparing in different time step granularities, FIRN consistently outperforms other methods,

with relatively little change indicating the stability of FIRN in time-step granularaties. The best

(lowest) RMSE of FIRN is gained when the time interval is five months, which suggests that fash-
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ion trends do not typically change abruptly in a short time period. We also observe that all of

the time-aware methods result in significantly lower RMSEs than static methods (SVD and Au-

toRecUI), verifying the importance of modeling temporal dynamics of fashion preferences. Of the

time-aware methods, SGRU does not perform very well, most likely since it is designed for im-

plicit recommendation rather than rating prediction. Furthermore, both RRN and FIRN outperform

the other methods, which indicates RRN is effective to capture dynamic changes compared with

the other time-aware methods. More importantly, while FIRN and RRN have similar architecture,

FIRN consistently performs better than RRN which highlights that incorporation of dynamic vi-

sual features from fashion bloggers gives FIRN its edge versus the temporal methods. Specifically,

FIRN outperforms TimeSVD++ by 5.52% on average, SGRU by 26.35% on average, and RRN

by 2.49% on average. We also observe that FIRN outperforms the state-of-the-art fashion recom-

mendation method FSVD by 8.38% on average. It further highlights the efficacy of our model

framework and the importance of incorporating fashion bloggers.

6.3.3 Influence of Fashion Bloggers

An important question is does the modeled blogger’s implicit visual influence really help for

the recommendation? Or put differently: does this give better performance in fashion recommen-

dation compared with using other sources of visual information? In Section 6.3.2, we showed that

FIRN consistently outperforms the corresponding alternative without the blogger’s visual fashion

information (RRN). This indicates that our modeled bloggers implicit visual influence improves

the recommendation performance. However, is the improvement based on the blogger’s implicit

visual influence or could another visual source achieve similar performance? Here, we compare

FIRN versus two alternatives that incorporate two widely used sources of visual information in

fashion recommendation:

◦ FIRN-PH: The first approach replaces the posts of fashion bloggers with visual features derived

from the users’ Purchase History. Specifically, we use the average visual features of each user’s

purchase items in each time period.

◦ FIRN-AVA: The second approach uses the AVA dataset [92] as the indicator for user aesthetic
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Figure 6.5: (a) RMSE of FIRN with different visual information; (b) Differences between FIRN
and its variations.

preference [91]. Since AVA is static, we use the highest rated images (with ratings of 6-10) and

cluster those images by their ratings. Each cluster acts as a virtual blogger in our FIRN framework.

Figure 6.5(a) shows RMSEs for the two models and FIRN-Blogger (which is FIRN) – one

using purchase history, one using AVA, and our original FIRN approach with fashion bloggers.

FIRN consistently results in the best performance, illustrating that our modeled blogger’s implicit

visual influence brings the largest improvement in fashion recommendation. Particularly, the out-

performance of FIRN compared with using purchase history indicates the high aesthetics quality

of fashion blogger’s posts. FIRN performs better than AVA. One likely reason is that as user’s

visual interest changes over time with fashion trends, the fashion blogger are able to reflect this

evolution versus the static visual information in AVA. Interestingly, though purchase history and

AVA outperform the baseline RRN which does not use visual information, they do not perform the

best separately, which shows the dynamic and aesthetic visual properties are mutually correlated

and enhance each other for fashion recommendation. This further shows that the learned implicit

visual influence from bloggers, with the unique properties of containing both high-quality and dy-

namic visual features, indeed captures more visual information for user clothing recommendation

than the other two visual datasets.
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Table 6.4: Performance of different methods for the most fashion-sensitive users.

Most Fashion-Sensitive Users
No time Time aware Visual Time & Blogger ∆

SVD AutoRecUI TimeSVD++ SGRU RRN NSCR FSVD FIRN ∆RRN ∆FSV D

100 2.0278 1.6964 1.0078 1.4666 1.0684 1.3828 1.1121 0.9716 9.68% 14.05%
500 2.0558 1.6799 1.0828 1.4666 1.0631 1.2552 1.1198 0.9852 7.79% 13.46%

1,000 2.0763 1.6589 1.0642 1.4398 1.0487 1.3156 1.1289 0.9940 5.47% 13.49%
5,000 2.1291 1.6762 1.0850 1.3279 1.0587 1.0744 1.1661 1.0225 3.63% 14.36%

Figure 6.6: (a) A selection of items purchased by three users. FIRN makes the best predictions for
User 1 (low RMSE); User 2 and User 3 have higher RMSEs; (b) Corresponding recommendations
for those users in Feb. 2014 (201402); (c) The least and most influential bloggers for User 1; (d)
Examples of bloggers posts in 201402.

6.3.4 Ablation Study

This section evaluates the key design choices of FIRN: the impact of personalized attention

layer, the impacts of visual distance between items and blogger’s posts, and the visual distance

choice in loss function. Concretely, method FIRNn uses a non-personalized attention layer (i.e.

αk(t) = softmax(wTk sk(t)) ) and the loss function is to minimize
∑

(u,p,t)((ru,p(t)− r̂u,p(t|Ω))2 +

λ2R(Ω) which does not consider visual distance between items and blogger’s posts. The sec-

ond method FIRNp uses a personalized attention layer but its loss function also does not con-
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sider the visual distance. The third method FIRNcos uses a cosine similarity of user and blog-

ger visual vectors rather than Frobenius Norm (i.e. minimize
∑

(u,p,t)((ru,p(t) − r̂u,p(t|Ω))2 −

λ1cos(v(u, t), ĥk(u, t)) + λ2R(Ω)).

Figure 6.5(b) shows the RMSE differences between FIRN and its variations (∆ is RMSE of

FIRN variations minus RMSE of FIRN) by different time-step granularity. We observe that FIRN

gives an average improvement of 9.8% in RMSE compared with FIRNn. FIRNp performs better

than FIRNn with a average improvement of 8.0%. This confirms the importance of utilizing per-

sonal attention in FIRN for fashion recommendation. Moreover, FIRN offers an 1.8% improve-

ment compared with FIRNp. It illustrates the importance of measuring visual distance between

user bought items and blogger’s posts. Interestingly, we find FIRN just slightly performs better

than FIRNcos, which indicates cosine and Frobenius Norm have similar effects for capturing per-

sonalized visual preference. It is reasonable since both cosine and Frobenius norm measure linear

distance.

6.3.5 Fashion-Sensitive Users

Although FIRN improves the recommendation performance across users, a concern is that

users may be differently influenced by fashion and thus a general good prediction can not ensure

the recommended items are fashionable (e.g., a good prediction for a non-fashion influenced user

can not show the recommended items are fashionable). In this section, we examine the FIRN

performance for the fashion-sensitive users to further evaluate the fashion recommendation quality.

Since it is hard to directly measure the impact of fashion to individual users without knowing user

personal information, according to the experimental results from [101], as a proxy, we assume that

in a small time-step granularity t, if a user purchased an item which is visually similar to posts that

a blogger shares in same time period t, and such similarity is consistent for a long time period,

then there is a higher probability that the user is more influenced by fashion bloggers/fashion.

Hence, based on the assumption, we sort users by the visual distance between the user pur-
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chased items and bloggers’ posts across a long time period T :

dv(u,∪Bk|T ) =
1

|T |
∑
t∈T

min
p∈Pu(t),Bk∈∪Bk

(||m(p)−m(Bk|t)||F ), (6.13)

where m(Bk|t) =
∑
i∈I(Bk|t)

mi(Bk|t)
|I(Bk|t)|

is the blogger’s visual features at time t. Since the influenced

users could buy one or more items that are not similar to the influenced blogger, here we use min

across user bought items p ∈ Pu(t) to find the smallest distance at time t. Similarly, themin is also

calculated across bloggersBk ∈ Π. The sum for the totel time T (38 time intervals in our case) can

drop the probability that we include uninfluenced users who coincidentally bought visually similar

items.

Table 6.4 reports the performance of FIRN for the most fashion-sensitive users according to

Equation 6.13 for different thresholds. For these users who bought items that are most similar to

bloggers (top 100 users), we find an RMSE of 0.9716 which is 9.68% better than the next-best

alternative and 14.05% better than the fashion-aware FSVD. While as more users are considered,

FIRN still maintains its superiority versus the next-best alternative. Furthermore, We observe that

most other methods show approximately flat performance for users with different dv(u,∪Bk|T )

while FIRN shows approximate monotonous relationship, indicating FIRN could gain a better

performance for users with small dv(u,∪Bk|T ). One likely reason is that FIRN considers the

visual distance between bloggers and user purchased products to capture the visual similarity in

Equation 6.13. Those results demonstrate FIRN achieves a significant better performance to these

fashion-sensitive users.

6.3.6 Case Study

To further investigate the implicit visual influence for FIRN recommendation, we also look at

the FIRN recommended items. In particular, we focus on three specific users as shown in Figure

6.6, for whom FIRN provides varying recommendation quality: user 1 (good, RMSE=0.0778),

user 2 (medium, RMSE=0.9767), and user 3 (poor, RMSE=2.7621). Each row of Figure 6.6(a)

shows the purchase history for one user, and Figure 6.6(b) shows the recommendations for the
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corresponding user in the same row made by FIRN for Feb. 2014 (which is the earliest time in the

test set). Figure 6.6(c) shows the predicted most influential blogger (first row) and least influential

blogger (second row) for user 1 (by the value of the attention weight
∑

t αk(u, t)). Figure 6.6(d)

shows the posts by the most influence blogger and a popular blogger (
∑

u αk(u, t) is the largest) in

Feb. 2014 for comparison.

Comparing Figure 6.6(a) and (c), we observe that the most influential blogger for user 1 (as

learned by the attention weights
∑

t αk(u, t)) shares similar style/colors posts to user 1’s purchased

items. For example, the blogger posted a paisley dress (in the second post) and the blue/black

color pairing in the second post. It confirms FIRN does learn visual features from bloggers that

are similar to users. Furthermore, for the recommended items in Figure 6.6(b), we observe FIRN

recommends items that reflect both fashion trends revealed by bloggers and the user’s purchase

history. For example, for user 1, the recommended black suit and black jacket are similar as

bloggers, and blue/black color pairing is similar her purchase history. For user 3 whose RMSE

by FIRN is poor, we observe the recommended items are visually diverse (stylish according to the

fashion bloggers and visually related to the user’s purchase history). This shows the potential of

FIRN to recommend stylish clothing based on the current posts by fashion bloggers.

6.4 Summary and Discussion

In this chapter, we have focused on the fashion blogger’s implicit visual influence towards

user’s purchase preferences. We propose a novel recurrent neural fashion recommender – FIRN –

which utilizes fashion bloggers dynamic visual information to extract fashion features and gives

users personalized visual influence-aware fashion recommendations. The experimental results

show the potential of incorporating dynamic visual fashion trends from fashion bloggers into a

recommender, particularly for those users who are most fashion-sensitive, and utilizing fashion

bloggers can bring greater improvements in fashion recommendation. We also release a large

time-aware high-quality visual dataset for reproducibility and further research. In our continuing

work, we focus on two major issues:

New Fashion-Related Suggestions. We are interested to explore how to best create new recom-
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menders tailored for different kinds of users – the fashion-sensitive, the fashion-neutral, and the

unaffected (such as user 3 in Figure 6.6). For example, are unaffected users interested in seeing

trendy recommendations (derived from fashion bloggers) alongside traditional purchase history

recommendations (that are more suited to their current preferences)? Can we build recommenders

that subtly move users from one group to another, say by tuning the attention weights over time?

Furthermore, since fashion as a cultural phenomenon has a huge social influence, we can not de-

clare that the unaffected users are not influenced by fashion at all. The fashion influence for these

users could merely by invisible when the time span is relatively short. Since FIRN learns personal

influence for each user, FIRN can benefit from the training data which has a relative long time

span.

Expanding the Source of Fashion Trends. One key limitation of the current work is the reliance

on a single source of fashion trends – Instagram fashion bloggers. We have seen how the fashion

features highlighted by these popular and influential bloggers can improve recommendation qual-

ity, but we are interested to explore a wider range of fashion bloggers in our future work. As the

growth of visual social media continues, we anticipate the influence of these unique fashion person-

alities will grow even more in comparison to traditional retailers, designers, and celebrities [101],

enabling even more powerful recommenders based on their fashion leadership.
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7. CONTENT-COLLABORATIVE DISENTANGLEMENT REPRESENTATION LEARNING

FOR ENHANCED RECOMMENDATION||

Successfully modeling item and user relations sheds light on the powerful influence of con-

tent for user preference towards items. In this chapter, we investigate the situation when multiple

sources of content are considered and focus on tackling the duplication between content and col-

laborative signals. We propose to disentangle representations learned from user behavior data and

content information. Specifically, we propose a novel two-level disentanglement generative recom-

mendation model (DICER) that supports both content-collaborative disentanglement and feature

disentanglement: for the content-collaborative disentanglement, DICER decomposes the features

by their marginal distributions based on content and user-item interactions, to ensure the learned

features from each type are statistically independent. For feature disentanglement, by decom-

posing the Kullback-Leibler divergence, we theoretically show that extracted features within each

type are disentangled at a granular level. Furthermore, DICER utilizes a co-decoder that simultane-

ously decodes the content and user-item interactions to ensure the high-quality of learned features.

Through extensive experiments on three real-world datasets, results show that DICER significantly

outperforms other state-of-the-art methods by 13.5% in NDCG and 14.4% in hit ratio on average.

7.1 Introduction

One of the fundamental challenges for recommender systems is to learn user and item represen-

tations that can uncover user preference towards items. Many recent efforts adopt deep approaches

[64,194] over both collaborative features based on user-item interactions (e.g., clicks or likes) and

content information about the users and items (e.g., user ages or item images) [4, 50, 111–113] to

build user and item representations, as shown in Figure 7.1(a). While encouraging, the learned user

and item features derived from these collaborative and content-based perspectives can be entangled

||Reprinted with permission from “Content-Collaborative Disentanglement Representation Learning for Enhanced
Recommendation” by Yin Zhang, Ziwei Zhu, Yun He, James Caverlee, 2020. Proceedings of The Fourteenth ACM
Conference on Recommender Systems. Copyright 2020 by ACM. DOI:https://doi.org/10.1145/3383313.3412239
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by intermixing the influence from each, harming recommendation quality.

For example, a user, and also many similar users, may prefer a dress because of its visual

appearance, price, and high quality. The known content information is the dress images. If the

user-item interactions and the dress image are considered separately to learn the features that influ-

ence user preference towards items, the collaborative features and content features could be highly

correlated. In essence, both the collaborative and content features could redundantly encode the

visual characteristics of the dress, meaning there is less capacity to focus on learning other features

(like price) that could influence user preference towards items. Hence, learning user preferences

based on both content-based features and collaborative features could lead to feature duplication

and high feature correlation, limiting the representation capability for modeling collections of

users with diverse interests. Furthermore, the feature duplication and high correlation among fea-

tures can also result in overweighting these correlated features in learning user preference, leading

to sub-optimal performance and unstable recommendations.

Therefore, we propose to disentangle representations learned from user behavior data and

content information to improve the integrated user and item representation quality for improved

recommendation. Such disentanglement representation learning – which aims to learn disentan-

gled features such that any one feature is relatively not influenced by changes in other features

– has recently demonstrated powerful and robust performance in many areas, especially in com-

puter vision [116–119]. However, there is little work on disentangled representation learning in

recommendation [124], and none on recommendation when both user behavior data and content

information are available. Disentanglement representation learning poses unique challenges in this

context:

• First, most existing disentanglement problems target areas where the features are explic-

itly known (e.g., shape or color features of an image). However, user-item interactions do

not necessarily map to specific apriori collaborative features. Hence, this heterogeneity be-

tween implicit features in user-item interactions and explicit features in content information

makes it extremely difficult to capture the disentanglement across content and collaborative
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features.

• Second, disentanglement across content and collaborative features only ensures that the

learned representations from each type are different. However, the specific features within

the collaborative features could still be highly entangled with each other, and similarly for the

content-based features. Hence, we also face the challenge of granular-level disentanglement,

to simultaneously learn both disentangled and high-quality features within collaborative and

content features for improved recommendation.

With these challenges in mind, we propose a novel two-level disentanglement approach called

DICER – DIsentangling Content-aware collaborative filtering for Enhanced Recommendation –

that supports both content-collaborative disentanglement and feature disentanglement based on

the structure of a variational auto-encoder. For content-collaborative disentanglement, DICER

decomposes the features that influence user preference into content features and content disentan-

gled collaborative features, then utilizes their marginal distributions to learn disentangled features

for each type. For feature disentanglement, we theoretically show that each extracted feature in

DICER is disentangled with other extracted features by decomposing the Kullback-Leibler di-

vergence via statistical independence properties. Furthermore, DICER is characterized by a co-

decoder that simultaneously decodes the content and user-item interactions to ensure the high-

quality of both learned content and collaborative features. Through extensive experiments on three

real-world datasets, results show that DICER significantly outperforms other state-of-the-art meth-

ods by 13.5% in NDCG and 14.4% in hit ratio on average. We also find that DICER captures

relatively independent features through disentanglement measurement and visualization.

7.2 Method

Problem Statement. Suppose we have a set of users u ∈ {1, 2, ..., U} and items i ∈ {1, 2, , ...I}.

To learn user preference, we have two types of information: (1) User-item interactions capturing

the implicit feedback xu,i from user u towards item i, e.g., based on clicks, likes, or purchases.

xu,i = 1 indicates positive feedback, whereas xu,i = 0 means the corresponding feedback is miss-
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Figure 7.1: Disentanglement motivation in content-aware recommendation and our proposed two-
level disentanglement generative recommendation model framework. (a) Both collaborative fea-
tures learned from user-item interactions and content features learned from content information
(like images) can be used to discover user preference. (b) DICER first disentangles the user im-
plicit feedback xi to content information ci and content disentangled collaborative information x′i.
Then within each type (either collaborative or content), we further disentangle learned features at a
granular level (feature disentanglement) to improve the capacity of user and item representations.

ing; and (2) Item content information ci for each item i. This content could correspond to item

images, reviews, descriptive text, or other item-specific information. Our task is to consider both

user-item interactions and item content information to learn their integrated disentangled represen-

tations of users and items for improved recommendation.*

Approach. As we have argued, evidence from both user-item interactions and content information

can lead to entangled representations. Hence, we propose a two-level approach called DICER that

first disentangles features between content and collaborative features – called content-collaborative

disentanglement, and then disentangles each feature within the collaborative features (and each fea-

ture within the content features) – called feature disentanglement. Specifically, as shown in Figure

7.1(b), the proposed DICER approach contains two key variables: content features zci extracted

from item content ci, and content disentangled collaborative features zoi extracted from user-item

interactions xi.

*We could also consider user content information alone (instead of item content information), or both user and
item information together in addition to user-item interactions. We discuss both of these scenarios in Section 7.2.4.
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Table 7.1: Notation of DICER.

Notation Explanation
zoi representation of learned content disentangled

collaborative features, zoi ∈ RK1

xi item i interactions with users
θ = {θ1, θ2} trainable variables for user-item feedback

θ1/θ2 is the encoder/decode trainable variables
zci representation of learned content features, zci ∈ RK2

ci item i content vector
φ = {φ1, φ2} trainable variables for item content

φ1/φ2 is the encoder/decode trainable variables

7.2.1 Content-Collaborative Disentanglement

We begin by disentangling the information that is learned from content and user-item interac-

tions, to ensure zci and zoi capture different aspects of user preference. For example, suppose we

have item images as the content information, and xui = 1 (that user u likes item i) due to the item’s

visual appearance and price. The content-collaborative disentanglement aims to learn the visual

aspect from item images, leaving price-oriented features (that may be hard to precisely learn from

images) to user-item interactions. In this way, zoi can discover other useful features that are not

captured by zci .

To model this content-collaborative disentanglement, we propose to start by modeling the joint

distribution of all the item influence features zi ∈ RK (the features that influence the user prefer-

ence towards items), in order to connect user-item interactions and item content information. Then

we decompose the joint distribution to extract disentangled features from content and user-item

interactions.

Concretely, we first model the user feedback towards items (e.g., click history) xi that is gen-

erated from all the features zi with the following distribution:

pθ(xi) = Ep(zi)pθ(xi|zi), (7.1)
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where θ is the set of model parameters for modeling user-item interactions.

Then, to utilize both the item content and user-item interaction information, and also disentan-

gle features derived from these two types, we propose to decompose zi to be the content features

zci derived from item content ci and the content disentangled collaborative features zoi derived from

user-item interactions xi. Therefore, the distribution of zi can be expressed as the joint distribution

of zci and zoi , i.e. p(zi) = p(zci , z
o
i ). More importantly, to capture the disentangled features from the

two types, similar as many disentanglement approaches [121, 124], we set the extracted features

from the content and user-item interactions to be statistically independent:

p(zi) = p(zci , z
o
i ) = p(zci)p(z

o
i ). (7.2)

That is, based on the disentanglement between zci and zoi , we can further decompose the joint

distribution of zci and zoi to be their marginal distributions. Then, with the disentanglement, our

model Equation (7.1) can be rewritten as:

pθ(xi) = Ep(zi)pθ(xi|zi) =

∫
pθ(xi|zci , zoi )p(zci , zoi )d(zci , z

o
i )

=

∫
p(zci)

∫
pθ(xi|zci , zoi )p(zoi )dzoidzci = Ep(zci )Ep(zoi )pθ(xi|z

c
i , z

o
i ), (7.3)

where p(zoi ) = p(zoi |zci) is based on their statistical independence. With Equation (7.3), to predict

user preference with the known xu,i and ci, we discuss the two main components: p(zci) and

pθ(xi|zci , zoi ) in Equation (7.3), respectively.

For content feature distribution p(zci), it is modeled based on the item content information ci:

pφ(ci) = Ep(zci )pφ(ci|zci), (7.4)

where φ is the model parameters for modeling the content information. Thus, we can use this

content information to get the zci distribution, then capture the zoi distribution based on both xi and

zci .
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For pθ(xi|zci , zoi ), we model it as:

pθ(xi|zci , zoi ) =
∏

xi,u∈xi

pθ(xi,u|zci , zoi ).

which is similar to the VAE-based method [123, 195]. Then the probability of user u’s preference

to item i is pθ(xi,u|zci , zoi ), which can be derived by a user-aware non-linear transformation, such

as a feed-forward neural network. We discuss the details in Section 7.2.3. Thus, we can first learn

zci and zoi , and use the decoder to capture the pθ(xi|zci , zoi ).

Variational Inference. To estimate the model parameters θ in Equation (7.3), we follow the VAE-

based paradigm. Note here, different from traditional VAE based methods [195] that can directly

estimate the posterior distribution of p(zi|xi) for each data point, or the conditional VAE [196] that

knows part of the data information (i.e., labels of the data), our case is more complex. That is, xi is

related to the joint distribution of latent factors zoi and zci , where zci is extracted from item content

information. Thus, we need to calculate the evidence lower bound (ELBO) based on both zoi and

zci , their independent relations, and their relations to xi and ci.

Concretely, xi is generated based on the joint distribution of zci and zoi , where zci can be esti-

mated by item content (such as images or text-based descriptions). The ELBO of lnp(xi) can be

written as:

lnpθ(xi) ≥ Ep(zci )[Eqθ(zoi |xi,zci )(lnpθ(xi|zci , zoi ))−DKL(qθ(z
o
i |xi, zci)||p(zoi ))] ≡ L(xi; θ). (7.5)

Since Eq(zci )[·] and Eq(zoi |xi,zci )[·] are intractable, we utilize the variational inference and reparametriza-

tion trick [123]. Details are discussed in Section 7.2.3.

To estimate φ in Equation (7.4), for consistency, we also use the VAE-based paradigm. The

corresponding ELBO is:

lnpφ(ci) ≥ Eqφ(zci |ci)(lnpφ(ci|zci))−DKL(qφ(zci |ci)||p(zci)) ≡ L(ci;φ). (7.6)
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Through Equation (7.6), we can get an estimation of the item content features zci . Then we trans-

form it into the user-item space to help learn user preference towards this item through Equation

(7.5).

7.2.2 Feature Disentanglement

The content-collaborative disentanglement ensures zci and zoi learn different information from

content and user-item interactions. However, the extracted features in zci (and in zoi ) at a granular

level could also be entangled and confound with each other, making the recommendation unstable

and difficult to generalize. Thus, to ensure the quality of learned representations, we also aim to

disentangle each extracted feature in zci and zoi at a granular level. For example, we might want

to learn features like color and shape from an item image, where changes to each feature (e.g.,

the color) do not strongly depend on other feature changes (e.g., the shape). To do so, consider-

ing each latent dimension represents a single item feature, we disentangle each dimension of the

item representation to extract independent features. That is, we make a feature disentanglement

that forces zci,k,∀k/ zoi,k,∀k to be statistically independent. zci,k is the kth value in the vector zci .

Similar reasoning holds for zoi,k. The user feature disentanglement is jointly modeled with item

disentanglement through a decoder of user-item interactions (for details see Section 7.2.3).

More importantly, in DICER, the content-collaborative disentanglement ensures the correlation

Corri(z
c
i , z

o
i ) = 0 (based on the Equation (7.2)). Thus, the feature disentanglement inside zci and

zoi can further ensure all features in zi that are learned in DICER are independent with each other:

Corri(zi,k, zi,j) = 0, ∀k 6= j.

Concretely, to enforce feature independence inside zci and zoi , we have:

qθ(z
o
i |zci) ≈

K1∏
k=1

qθ(z
o
i,k|zci), qφ(zci) ≈

K2∏
k=1

qφ(zcc,k). (7.7)

Let’s look at each equation separately.

Feature Disentanglement in zoi . For the first equation in Equation (7.7), the aggregated posterior

distribution of qθ(zoi |zci) =
∫
xi
qθ(z

o
i |xi, zci)pfdata(xi)dxi, where pfdata(xi) is the user feedback
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distribution. The posterior distribution captures the aggregated structure of the latent variables

based on the user feedback distribution [197]. Therefore, the KL term in Equation (7.5) can be

decomposed as:

Epfdata(xi)[DKL(qθ(z
o
i |xi, zci)||p(zoi ))] = Iq(xi; z

o
i ) +DKL(qθ(z

o
i |zci)||Πkqθ(z

o
i,k|zci))+∑

k

DKL(qθ(z
o
i,k|zci)||p(zoi,k)),

(7.8)

where Iq(xi; z
o
i ) stands for the mutual information (MI) [198]. A similar decomposition can

be found in [121, 198]. For each term in Equation (7.8): (1) the index-code MI Iq(xi; z
o
i ) =

DKL(qθ(z
o
i ,xi|zci)||qθ(zoi |zci)) is the mutual information between xi and zoi based on the empir-

ical user-item feedback distribution qθ(z
o
i |xi, zci)pfdata(xi). As indicated by many recent stud-

ies [116, 121, 199], penalizing mutual information through the information bottleneck can encour-

age feature disentanglement; (2) the second term DKL(qθ(z
o
i |zci)||Πkqθ(z

o
i,k|zci)) is the total cor-

relation. This penalty can encourage statistical independence of the learned latent representation

in each dimension of zoi under the condition of zci ; (3) the third term
∑

kDKL(qθ(z
o
i,k|zci)||p(zoi,k))

ensures the learned latent representations in each dimension are close to their corresponding priors,

which is known as dimension-wise KL [121].

Thus, based on Equation (7.8), if we use an independent prior distribution for each latent

dimension of zoi , i.e., pθ(zoi ) = Πkpθ(z
o
i,k), the KL penalty term can encourage the disentanglement

of the learned features in zoi from the mutual information and total correlation aspects. At the same

time, it also ensures the close distribution between the posterior distribution and the priors by∑
kDKL(qθ(z

o
i,k|zci)||p(zoi,k)). Hence, the loss function of Equation (7.5) can be refined by adding

a KL penalized parameter β1 > 1:

Lβ1(xi; θ) ≡ Eqθ(zci )
[Eqθ(zoi |xi,zci )(lnpθ(xi|zci , zoi ))− β1DKL(qθ(z

o
i |xi, zci)||p(zoi ))], (7.9)

to encourage each feature disentanglement of zoi .

Feature Disentanglement in zci . For the second equation in Equation (7.7), the aggregated pos-
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terior distribution of qφ(zci) =
∫
ci
qφ(zci |ci)pcdata(ci)dci. The pcdata(ci) is the item content data

distribution. For the disentanglement of the content based representation zci , similarly, we decom-

pose the KL term in Equation (7.6) as:

Epcdata(ci)[DKL(qφ(zci |ci)||p(zci))] = Iq(ci; z
c
i ) +DKL(qφ(zci)||Πkqφ(zci,k))+∑

k

DKL(qφ(zci,k)||p(zci,k)).
(7.10)

Thus, by using an independent prior distribution for each latent dimension of zci and penalizing the

KL term in Equation (7.6), we can encourage the disentanglement of content features. Similarly,

the loss function of Equation (7.6) can be refined by adding a KL penalized parameter β2 > 1:

Lβ2(ci;φ) ≡ Eqφ(zci |ci)(lnpφ(ci|zci))− β2DKL(qφ(zci |ci)||p(zci)), (7.11)

to ensure the feature disentanglement of zci .

In sum, with Equations (7.9) and (7.11), the final loss function for DICER is: L = Lβ1(xi; θ)+

λLβ2(ci;φ), where β = {β1, β2} are parameters used for feature disentanglement. λ is used to

balance the two types of information.

7.2.3 Implementation

In this section, we provide details of the implementation of DICER as shown in the Fig-

ure 7.1(b): p(zci), p(zoi ) (the prior), qθ1(z
o
i |xi, zci) and qφ1(z

c
i |ci) (the encoder), pθ2(xi|zoi , zci) and

pφ2(xi|zoi , zci) (the decoder), where the parameters θ = {θ1, θ2} and φ = {φ1, φ2}. Specifically, the

θ1 and φ1 are parameters for encoders, and the θ2 and φ2 are parameters for decoders.

Prior. To encourage feature disentanglement, as illustrated in Section 7.2.2, we set the prior of zoi

and zci to be the centered isotropic multivariate Gaussian distribution:

zoi ∼ N(0, IK1), z
c
i ∼ N(0, IK2).

The priors ensure the extracted features from different types of information (be they item content
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or the user-item interactions) are statistically independent in each dimension.

Encoder. To extract the content features zci and the content disentangled collaborative features

zoi , there are two parts in DICER: the encoder for the user-item feedback and the encoder for the

item content information. Since both the true posterior distribution pθ(z
o
i |xi, zci) and pφ(zci |ci)

are intractable, here we utilize the variational inference and reparametrization trick [123]. That

is, we use a Gaussian distribution form with a diagonal covariance qθ(zoi |xi, zci) and qφ(zci |ci) to

approximate the true intractable posterior distributions.

Concretely, for zoi , we assume:

lnqθ1(z
o
i |xi, zci) = lnN(µu(xi, z

c
i), diag{σ2

u(xi, z
c
i)}),

where the mean and standard deviation are parameterized by a neural network fnnθ1 :

(µo,σo) = fnnθ1 (xi −Uc · zci
||zci ||

). (7.12)

The Uc ∈ R|U |×K2 here is the user embedding matrix that represents the user preference towards

item content features zc. Each row ucu ∈ RK2 in Uc represents user u embedding. Since xi

is related to the joint contribution of item representation zoi and zci , we extract information in xi

that are not learned from zci by x′i = xi − Uc · zci
||zci ||

. The · is the dot product. Here we first

normalize the item representation and project it to the same space as xi by multiplying with each

user embedding ucu. Thus, the learned representation zoi can capture the remaining factors in the

user-item feedback. The neural network fnnθ1 is leveraged here to model the complex and non-linear

relationship between x′i and zoi .

For zci , the encoder of qφ1(z
c
i |ci) is similar to other VAE-based methods by using variational

inference and fnnφ1 (ci), as shown in Figure 7.1(b).

Decoder. In DICER, we use a co-decoder to ensure the learned latent features in each type of

information are appropriately encoded: one decoder pθ2(xu,i|zoi , zci) is used to predict the user pref-

erence towards item i given both zoi and zci ; the other one is the content-based decoder pφ2(ci|zci)
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to ensure the quality of the encoded content feature representation zci .

For pθ2(xu,i|zoi , zci), we assume the distribution is proportional to the nonlinear transformation

of both zoi and zci :

ln(pθ2(xu,i|zoi , zci)) ∝ ln(g
(u)
θ2

(zoi ) + g
(u)
θ2

(zci)), (7.13)

where g(u)
θ2

(zoi ) = exp(cosine(zoi ,u
o
u)) and g(u)

θ2
(zci) = exp(cosine(zci ,u

c
u)). Here, uou ∈ RK1 is

the user u embedding, which represents the user u preference towards features in zoi . The cosine

similarity is used to connect user and item embeddings rather than the inner product similarity,

since it can prevent mode collapse [124, 198]. Note here since item features are disentangled, the

cosine also ensures the disentanglement of user features in each dimension [124].

For pφ2(ci|zci), similar to other VAE-based methods, we use the normal distribution with a

single hidden fully-connected neural network and we found it has good performance. That is:

lnpφ2(ci|zci) = lnN(µ′i,σ
′2
i I),where µ′i and σ′i are calculated based on zci by using neural network

gnnφ2 [123].

7.2.4 Variations of DICER

Our presentation so far has focused on a scenario in which we have user-item interactions

and content information associated with items. In practice, DICER can also be used when only

user content information is available (in place of item information) or when both user and item

information are available. When only user content information is known, we can simply change

DICER from item-based to user-based by reversing users and items. That is, instead of encoding

each item feedback xi across users, we encode each user feedback xu towards different items.

When both user and item content information are known, we can do both user- and item-based

DICER, and combine the results together, similar to many integrated auto-encoder based methods.

7.3 Experiments

In this section, we investigate the following key research questions: (i) What is the recom-

mendation performance of DICER compared with state-of-the-art methods that do not disentangle
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Table 7.2: Summary of the three Amazon datasets.

Dataset # Users # Items # Feedback Sparsity
Clothing 2,872 28,586 43,418 0.053%
Beauty 2,513 39,746 91,044 0.091%
Toys&Games 2,771 58,306 106,131 0.066%

content-collaborative information? How does this performance vary for different numbers of latent

dimensions? (ii) What impact do the disentanglement design choices have on DICER? and (iii)

Are the learned features in DICER really disentangled? Finally, we visualize the disentanglement

learning representation to illustrate how it facilitates recommendation.

7.3.1 Datasets

To evaluate the importance of disentangling content-collaborative information, we require

datasets containing interaction data (e.g., clicks, purchases) as well as content information. Hence,

we adopt three real-world publicly accessible Amazon datasets [11,45] which cover rich and com-

monly used content information for items – visual images and text descriptions. Other kinds of

content information can be easily incorporated into the proposed model as discussed in Section

7.2.4. For items, we choose three domains that are widely used: Clothing, Toys&Games, and

Beauty. We select users with more than 10 reviews in Clothing, 20 reviews in Beauty and 25 re-

views in Toys&Games for different levels of feedback sparsity, as shown in Table 7.2. We extract

UserID, ItemID, and the rating scores to indicate whether the user purchased the item (1 represents

a user purchase, 0 otherwise). For item-based content information, we consider the images associ-

ated with each item (which were collected in [11]) and the text-based descriptions provided by the

seller. Note here all the items are considered. Thus the datasets have a long-tail distribution, which

is challenging in recommendation since many items have very little feedback [7]. We randomly

partition the implicit feedback of each user into 80% for training, and the remaining as testing,

reserving 20% of the training data as validation.
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7.3.2 Setup

Modeling Item Content. For the content information ci, here we consider the widely used item

images and text-based descriptions [4, 8, 114]. For fairness, all content-aware baselines use the

same item content as input. Other sources of item content could also be incorporated into DICER,

and other pre-processing steps can also be adapted here. Concretely, for item images, we apply

the same method as [8, 11, 45] to get the high-level visual feature vector mi ∈ R4096. For item

descriptions, we use the same word2vec-based method [8] which turns the description paragraph

into a fixed-length feature vector ti. Based on [8], here we set ti ∈ R1000. The ci ∈ R5096 is the

concatenation of mi and ti.

Evaluation Metrics. Following many previous works [159], we adopt NDCG at top-k (N@k) and

hit ratio at top-k (HR@k) for evaluating personalized ranking. The HR@k measures the fraction

of purchased items that appear in top-k recommendation lists across all users. The N@k takes the

position of correctly recommended items into account by assigning higher scores to the top hits.

Baselines. We compare DICER with the following competitive baselines, with particular emphasis

on VAE-based methods for comparison.† The same content information is used for all content-

based methods.

• POP. Items are ranked by their popularity based on user’s interactions with items.

• CDAE [194]. Collaborative Denoising Auto-Encoder uses auto-encoders to find the relation-

ship between users and items based on implicit feedback. The number of negative samples is

set to q = 100 which is in line with the other negative sampling methods.

• Multi-VAE [195]. This is a classic VAE-based latent factor models for recommendation. The

implicit feedback from users is treated as being generated from a multinomial likelihood for

recommendation.

• NGCF [64]. This is a state-of-the-art collaborative filtering approach based on graph neural

networks. It treats use-item interactions as a bipartite graph and propagates the user and item

†We also experimented with neural machine factorization [200] but the training process is time consuming and its
performance is not good here.
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embeddings on the graph to explore the high-order connectivity between users and items.

• CBPR [4]. This is a classic content-based Bayesian Personalized Ranking [4] method, which

is widely used for its robust and strong performance.

• CVAE [114]. CVAE is a content-based VAE model that uses a Bayesian generative model

to first learn the item content information and then user-item implicit feedback through an

inference network. It adds the item latent content variable and collaborative latent variable as

the joint representation of each item.

• CNGCF. This is an augmented version of NGCF that incorporates item content information

[64]. Specifically, we concatenate item content information with latent factors as the joint

representation, and then we propagate three layer’s embeddings in the user-item bipartite graph

for the final recommendation.

Parameter Settings. The dimension of latent factors and hidden dimensions for each method is

empirically set to be 40 (for the impact of such choices, see Section 7.3.3.2). Regularization terms

are determined by grid search in the range of {0.1, 0.01, 0.001, 0.0001, 0.00001}. β in VAE-based

methods are determined from the range {1.0, 0.9, ...,0.1, 0.01, 0.001, 0.0001, 0.00001}. The drop

out rate is also chosen by grid search in the range of {0.1, 0.3, 0.5, 0.7, 0.9} and the learning

rate is in the range of {0.0001, 0.001, 0.01, 0.1}. Model parameters are first randomly initialized

according to truncated normal distributions with mean 0 and standard deviation 0.001.

7.3.3 Top-K Recommendation

We first compare the Top-K recommendation performance of all methods, and then vary the

key hyperparameter – the number of latent factor dimensions – to further investigate its effect on

recommendation.

7.3.3.1 Overall Comparison

For fair comparison, we set the latent dimension K to be the same for all methods. Notice that

CBPR, CVAE and CNGCF all use the same item content information (images and descriptions) as

DICER. We report the N@k and HR@k (for k at 5, 10) for the three datasets in Table 7.3. Overall,
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Table 7.3: N@K and HR@K of DICER and baselines. ∆ is the difference between DICER and
the next-best alternative (marked underline).

Dataset Measure%
User-Item Interaction User-Item Interaction + Content

POP CDAE Multi-VAE NGCF CBPR CVAE CNGCF DICER ∆

Clothing

N@5 0.423 0.833 0.693 1.311 0.812 1.228 1.380 1.661 20.4%
N@10 0.616 1.111 1.031 1.735 1.109 1.682 1.809 2.177 20.3%
HR@5 0.731 1.462 1.253 1.950 1.288 2.089 2.089 2.646 26.7%

HR@10 1.358 2.228 2.159 3.203 2.089 3.412 3.377 4.039 18.4%

Toys

N@5 0.997 3.139 3.350 3.522 2.612 3.502 4.560 4.984 9.3%
N@10 1.454 4.273 4.490 4.835 3.728 4.991 6.074 7.017 15.5 %
HR@5 1.877 5.485 5.413 5.702 4.186 5.521 7.326 8.156 11.3%

HR@10 3.284 8.697 8.336 9.347 7.434 9.780 11.332 13.389 18.2%

Beauty

N@5 2.354 6.338 6.739 6.556 5.922 7.230 7.054 7.753 7.2%
N@10 3.449 8.567 9.005 9.017 7.755 9.464 9.693 10.477 8.1 %
HR@5 4.338 11.421 10.864 10.744 9.391 11.421 11.779 12.694 7.8%

HR@10 7.402 16.514 15.002 16.076 13.490 16.275 17.589 18.305 4.1%

we see that DICER consistently outperforms the next-best performing baseline for all datasets and

for all metrics. Concretely, we have the following key observations:

First, methods that incorporate item content information generally achieve better performance

comparing with corresponding methods that only rely on user-item interactions. For example, the

HR@K and N@k of the content-based latent factor model CNGCF is higher than NGCF for the

three datasets. This verifies the importance of incorporating additional item content information

for improving recommendation performance.

Second, among methods, DICER consistently achieves the best performance over all datasets,

as shown in Table 7.3 ∆ column. The improvement demonstrates that by carefully disentangling

content-collaborative features, DICER is able to enhance the learning of diverse features that influ-

ence user preference towards items. Particularly, comparing with CVAE which considers the same

content information as DICER, the large improvement of DICER further confirms that the disen-

tangling in DICER can effectively deal with the complicated relationship between item content

information and user interactions, which strengthens DICER to discover different features among

the two types of information for recommendation improvement.

Third, among datasets, DICER gives a relatively larger improvement for the sparsest dataset
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Figure 7.2: Recommendation performance for different latent dimensions in Toys dataset. Similar
results hold for the other two datasets.

(Clothing). This may be because DICER not only considers the content information that is helpful

for sparse data, but also utilizes disentanglement to discover features that cover a wider space rather

than duplicated or related features. This further shows the importance of disentangling content and

collaborative information. An interesting finding is that comparing the improvement from NGCF

to content-based CNGCF, the improvement of DICER is higher in VAE-based methods. Such

high improvement may be attributed to the learning of disentangled features rather than directly

concatenating content and collaborative features in CNGCF. This shows the benefit of capturing

the disentangled features for recommendation.

7.3.3.2 Influence of Latent Dimension

We also analyze the effect of the key hyperparameter – the number of latent factors – on DICER

and representative baselines. Results for the Toys dataset is shown in Figure 7.2. Similar results

hold for the other two datasets. We observe that DICER consistently outperforms the other methods

for different numbers of latent dimensions.

7.3.4 Ablation Study

Given the good performance of DICER versus baselines, what impact do the design choices

have on its performance? Specifically, does the disentanglement approach in DICER effectively

incorporate item content and collaborative information to enhance recommendation (encoder in

Equation (7.12) and decoder in Equation (7.13))? In this section, we explore several variants to
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Table 7.4: Ablation study on Toys dataset. Similar results hold for the other two datasets.

% N@5 N@10 HR@5 HR@10
Default 4.984 7.017 8.156 13.389

Original x 4.071 5.614 6.712 10.682
Nonlinear 4.659 6.206 7.615 11.620

LatentConcat 4.756 6.504 7.470 12.090
LatentAdd 4.828 6.6520 7.795 12.450

incorporate item content information compared with DICER and analyze their effects:

• Original x: zoi is encoded based on the original user-item interactions xi rather than the content

disentangled one. That is, zoi and zci are separately learned without considering their disentan-

glement;

• Nonlinear: In Equation (7.12), instead of using zci , here we add a tanh layer to project zci to

the same space as xi, then encode zoi . It may influence the disentanglement relation between

zoi and zci ;

• LatentConcat: We directly concatenate zoi and zci as the joint latent representation to reconstruct

xi. That is, we use ln(g
(u)
θ2

(concate(zoi , z
c
i)) in Equation (7.13) to formulate ln(pθ2(xu,i|zoi , zci));

• LatentAdd: zoi and zci are directly added as the joint latent representation to reconstruct xi. That

is, we use ln(g
(u)
θ2

(zoi + zci)) in Equation (7.13).

The results of the ablation study for the Toys dataset are shown in Table 7.4. The default row

shows the DICER results. We observe that DICER outperforms the other variations that consider

the same item content information, which further shows DICER can more effectively model the

relationship between item content and user-item interaction information for recommendation im-

provement.

Concretely, the performance of DICER is superior to Original x method which uses raw user-

item feedback. This demonstrates that disentangling evidence learned from item content to encode

zoi can bring a large improvement, compared to directly using the raw xi. This is reasonable

since the disentanglement can encourage the learned features in zoi and zci to cover more diverse
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Figure 7.3: Disentanglement results for N@10 on Toys dataset. We vary the disentanglement
parameter β and plot the relationship between the disentanglement and recommendation perfor-
mance. The higher the disentanglement score, the more disentanglement between corresponding
features.

independent features in item representations, and thus enhance the learning of user preference to-

wards these items. An interesting finding is that comparing the nonlinear transform (the Nonlinear

method), DICER achieves a better performance. This is probably because the nonlinear calculation

may have difficulties maintaining disentanglement among features and can be more prone to cause

overfitting.

Furthermore, DICER outperforms methods that directly concatenate or add zci to zoi to jointly

reconstruct the user-item feedback, such as the LatentConcat and LatentAdd. This indicates that

explicitly decoding item content separately can more precisely capture item content features to

further help model user-item interaction.

7.3.5 Disentanglement

Since the disentanglement representation learning plays a pivotal role in DICER, we further

explore its influence on the recommendation performance from both the content-collaborative

disentanglement and feature disentanglement perspective. Following [124], we measure disen-

tanglement based on statistical independence. We vary β and plot the relationship between the

disentanglement and recommendation performance, where β is the parameter of disentanglement

for corresponding latent factors.
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7.3.5.1 Content-Collaborative Disentanglement

The Content-Collaborative disentanglement is measured by

Averagek,j(1− Corri(zci,k, zoi,j)),

where zoi,k represents the kth dimension of zoi . Similar notation holds for zci,j . Corri(z
c
i,k, z

o
i,j) is

the correlation between each dimension in the corresponding zci and zoi across items. The results

are shown in Figure 7.3(a). Note here since DICER outperforms the other methods in N@10, the

lines for the other methods stop earlier than the line for DICER.

From Figure 7.3(a), we observe that (1) For the content-collaborative disentanglement, DICER

achieves a good disentanglement when N@10 is high. This indicates that DICER can effectively

capture the relatively statistically independent features between item content and user-item in-

teraction information; (2) The figure also demonstrates that good recommendation performance is

related to a relatively high disentanglement, which is consistent with [124]. This makes sense since

the disentangled features are more stable [116, 121] and can cover a variety of user preferences.

7.3.5.2 Feature Disentanglement

Similarly, the item and user feature disentanglement are measured based on:

Average1≤k1<k2≤K1(1− Corri(zoi,k1 , z
o
i,k2

))+Average1≤j1<j2≤K2(1− Corri(zci,j1 , z
c
i,j2

))+

Averagek,j(1− Corri(zci,k, zoi,j)),

Average1≤k1<k2≤K1(1− Corru(uou,k1 , u
o
u,k2

))+Average1≤j1<j2≤K2(1− Corru(ucu,j1 , u
c
u,j2

))+

Averagek,j(1− Corru(ucu,k, uou,j)),

respectively. The calculation of Corru(·, ·) is similar as Corri(·, ·) but across users instead of

items. Figure 7.3(b)(c) shows the disentanglement results.

We have the following key observations: (1) Similar to the content-collaborative disentangle-

ment finding, when N@10 is high, DICER achieves high feature disentanglement. This indicates
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DICER can also capture good statistically independent features at a granular level. (2) For CVAE,

though it has a good disentanglement for item and content-collaborative features, the disentangle-

ment for user features is much lower than the other two methods. This may be since DICER and

LatentAdd jointly model the disentanglement of user and item features, the user representation can

capture the disentangled features based on item features, while CVAE considers them separately.

(3) Another finding is that the item feature disentanglement is lower than content-collaborative dis-

entanglement. One possible reason is that content and collaborative representations are calculated

from different types of information.

7.3.6 Case Studies of Disentanglement

In this section, we illustrate how the disentangled representation approach facilitates recom-

mendation.

First, we visualize the content-collaborative disentanglement representations zci and zoi , as

shown in Figure 7.4(a)(b) with t-SNE [201]. We observe that (1) Comparing Figure 7.4(a) and

(b), zci can nicely separate different categories of items even without knowledge of the ground-

truth categories. That is, items are separated mainly based on item content oriented information.

For example, as shown in Figure 7.4(a), the accessories, shoes, tops and bottoms are in different

clusters. Different from zci , in Figure 7.4(b), zoi separates items by user-oriented information, e.g.,

items used by male (left bottom) and female (right top). Items that can be bought together (e.g.,

bottoms and shoes) are also close to each other. This indicates zci and zoi can capture item features

in very different aspects (item content and user aspects) by disentanglement. (2) Furthermore, in

each cluster of (a), items with similar content information are relatively close to each other. For

example, items in similar colors are close to each other, and items with dark colors are far from

the light color items, such as for shoes and tops. This demonstrates that zci can capture reasonable

content features. In sum, by using content-collaborative disentanglement, zci and zoi are comple-

mentary in how they discover item features based on different aspects to enhance the prediction of

user preference towards items.

Next, we illustrate the features that DICER learns in each dimension at the granular level. We
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Figure 7.4: The 2-D visualization of items in Clothing dataset by using (a) zci (b) zoi .

vary the target dimension and list the items that have similar values in the target dimension. Some

representative examples are shown in Figure 7.5. Each row shows items that have similar values

in a target dimension. For each row, we see DICER is able to capture very different features in

each dimension without item category information, and some of them may be interpretable. For

example, in Figure 7.5, the first target dimension likely captures the circle-based characteristic of

items. The second target dimension captures the shoe features. The clothing items in the third row

have similar styles. For the fourth row, all the items have colorful patterns. This highlights how

DICER can capture independent and interpretable features in each dimension.

7.4 Summary

In this chapter, we focus on disentangled representation learning from both content information

and user-item interactions to enhance recommendation. By disentangling the content-collaborative

features and each feature at a granular level, the proposed method DICER learns features that are

relatively statistically independent and diverse, leading to a more powerful recommender. Through

extensive experiments, DICER outperforms the next-best baseline by 13.5% and 14.4% on average

in NDCG and hit ratio. In our continuing work, we are interested in extending DICER to other
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Figure 7.5: Each row shows items that have similar values in one target dimension of item repre-
sentations.

scenarios, e.g., where a user’s social network is available.
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8. CROSS DECOUPLING: LEARNING ITEM EMBEDDINGS BASED ON LONG-TAIL

ITEM DISTRIBUTION

In the previous chapter, we focused on disentangling representations learned based on the re-

lations between content and collaborative signals. But even within content-based methods alone,

we find that content plays different roles for popular versus cold-start items. The skewed long-

tail distribution of items – in which some items accumulate lots of attention (e.g., via clicks or

views) while most items receive very little attention – can heavily undermine the quality of recom-

mendation. Hence in this chapter, we seek to address this skewed distribution problem to further

improve content-aware recommendation performance through a decoupling approach. Concretely,

we theoretically analyze and empirically study the skewed distribution problem. We then propose

a cross decoupling framework that decouples the learning process of memorization and generaliza-

tion from prior and conditional knowledge perspective. Extensive experimental results show how

the proposed model outperforms state-of-the-art methods.

8.1 Introduction

In recommendation, user feedback usually exhibits long-tail distributions, especially from the

item perspective: a small fraction of items are extremely popular and receive most of the user

feedback (what we refer to as head items), while most items have very little if any user feedback

(what we refer to as tail items). Recommenders that are trained based on such long-tail data usually

suffer from sub-optimal and un-robust performance, especially for tail items. Deploying those

recommenders can further lead to popularity bias and a “rich get richer” feedback loop, causing

inferior recommendation of tail items.

There are many attempts that aim to address this problem, with most focusing on improving the

performance for tail items. In recommendation, a commonly used strategy is to incorporate content

information with user or item ID information to enhance the representation learning of tail item.

Besides that, there are also methods using re-balancing, e.g., resampling [202], reweighting [142]),
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transfer learning [144] and meta learning [141] to improve the performance of tail items. Recently,

a decoupling method [18] has been proposed in the context of visual recognition, which uses a

two-stage training approach. It shows powerful performance in many application areas. However,

most of these methods ignore the memorization and generalization discrepancy between head and

tail items in the long-tail distribution settings, which may under-represent the head items and lead

to inferior performance of overall recommendation. Actually, as shown in Figure 8.1, we find

that these kinds of methods only gain improvement for tail items, while leading to worse overall

recommendation performance.

In this work, we propose to separately consider memorization and generalization to address the

long-tail distribution problem in recommendation. Concretely, we first present a theoretical and

experimental analysis of the inferior recommendation performance of decoupling methods that

address the long-tail distribution problem. Our key finding is that the popular two-stage training

fashion mainly rectifies the prior item distribution in the second stage, which easily suffers from the

forgetting issue as the learned knowledge in the first stage is replaced by the knowledge from the

second stage. Therefore, when we focus on learning tail items in the second stage, the performance

of head items will dramatically decrease.

Considering that, we propose a cross decoupling network CDN to segregate the learning of

memorization and generalization from both prior item distribution and conditional distribution

aspects. For the prior item distribution, a novel regularized cumulative learning is deployed to

simultaneously train a two branches network with different data distributions: the original highly

skewed data distribution (trained in the main branch) and a relatively balanced data distribution (the

regularized branch). The original long-tail data distribution is used to lean the universal patterns

across items, and the relatively balanced data distribution is used to focus on the training of tail

items. They are aggregated by a regularized adapter to both maintain the learned knowledge from

head items and gain generalization for tail items. From the conditional distribution perspective, we

separate item ID and content information through a multi-experts mechanism to explicitly learn the

unique trade-off between memorization and generalization for each item based on their frequency
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in the long-tail distribution. Therefore, the memorization and generalization differences between

head and tail items can be smoothly learned in a continuous way without a hard head/tail split

threshold.

The contributions of this work are three-fold:

• We theoretically and experimentally analyze existing methods that address the long-tail distri-

bution problem. Those methods mainly modify the prior knowledge of item distributions to

gain improvement for tail items, which can cause a forgetting issue that diminishes the recom-

mendation performance of head items.

• We propose a cross decoupling framework that decouples the learning process of memorization

and generalization from prior and conditional knowledge perspectives.

• Extensive experiment results show our proposed CDN significantly outperforms the other

method, bringing improvement for both head and tail items on hit ratio (HR@K) and NDCG@K.

CDN also achieves lower standard error of the mean.

8.2 Long-tail Distribution in Recommendation

Problem settings. We consider a common setup for recommendation problems: Given a set of

users U , a set of items I and their content information. There are m users and n items. Each user

u ∈ U and item i ∈ I can be represented by the feature vectors as xu and yi using their ID and

content information. d(u, i) represents the user u implicit feedback towards item i: d(u, i) = 1

when u gives positive feedback to i, such as click, watch or buy, otherwise it is 0. We denote∑
u∈U d(u, i) as the user feedback towards the item i. It follows a long-tail distribution across

items [203]. That is, a few items receive most of the user feedback (head items), while a most

items have little user feedback (tail items). In this paper, our goal is to consider the long-tail

item distribution to improve the recommendation performance for tail items, and at the same time,

relatively keep or improve the overall recommendation performance. Key notations are shown in

Table 8.1.

One important question is, how does the long-tail distribution influence the recommendation
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performance? To address the question, suppose the user preference u towards items i is estimated

by p̂(i|u, θ), which can be represented as:

p̂(i|u) =
es(u,k)−log p(i)

p̂(i)
−log p(u|i)

p̂(u|i)∑
j∈I e

s(u,j)−log p(j)
p̂(j)
−log p(u|j)

p̂(u|j)

(8.1)

where p(i|u; θ) is the true conditional probability of the user preference towards items. θ is the set

of model parameters.

Proof. By Bayes’ theorem, the user preference towards items can be represented by

p(i|u; θ) =
p(u|i)
p(u)

p(i), (8.2)

then, based on the observed data, the posterior probability is

p̂(i|u; θ) =
p̂(u|i)
p̂(u)

p̂(i), (8.3)

where p̂(i) is usually estimated based on the observed data distribution. That is, p̂(i) =
∑

u∈U d(u, i).

Therefore, the differences between the desired conditional probability and the estimated one

is:

log
p(i|u; θ)

p̂(i|u; θ)
= log

p(i)

p̂(i)
+ log

p(u|i)
p̂(u|i)

+ log
p̂(u)

p(u)
(8.4)

Suppose s(u, i) = log(p(i|u;θ)
p(i|u;θ)

), then s(u, i)− log p(i|u;θ)
p̂(i|u;θ)

= log p(i|u;θ)
p(j|u;θ)

− log p(i|u;θ)
p̂(i|u;θ)

= log p̂(i|u;θ)
p(j|u;θ)

.

Therefore, p̂(i|u; θ) = es(u,i)−log
p(i|u;θ)
p̂(i|u;θ)p(j|u; θ). And 1 =

∑
k∈I p̂(i|u; θ) =

∑
k∈I e

s(u,k)−log p(i|u;θ)
p̂(i|u;θ)

p(j|u; θ). So p(j|u; θ) = 1∑
k∈I e

s(u,k)−log p(i|u;θ)
p̂(i|u;θ)

. Based on that, we have p̂(i|u) = e
s(u,k)−log p(i|u;θ)

p̂(i|u;θ)∑
k∈I e

s(u,k)−log p(i|u;θ)
p̂(i|u;θ)

.

Incorporate with equation (8.4), we can get equation (8.1).

As Equation (8.1) indicates, p(i|u; θ) is related to the prior differences p(i)
p̂(i)

and conditional

differences p(u|i)
p̂(u|i) . Existing methods for the long-tail distribution problem mainly focus on approxi-

mating the item distribution p̂(i) to p(i) (e.g. resampling and reweighting), i.e. log p(i)
p̂(i)

= ε, s.t.ε→

0 by assuming the conditional probability p(u|i) = p̂(u|i) for any item, which is referred to as the
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distribution shift problem.

However, we argue that this assumption does not hold in recommendation, especially for tail

items since there are not enough data points to show the user preference when the tail item is given

in the training data. For example, many tail items are cold start items, so the p̂(u|i) estimated in

training data can not represent the expected p(u|i). In this situation, if we focus on decreasing the

discrepancy between p(u|i) and p̂(u|i) in tail items k ∈ T , the learning of p(u|i) for head item

k ∈ H will be of poor quality. Furthermore, the user preference towards head and tail could be

different, leading to the p(u|i) to be difficult to learn with a unified mechanism. For example, a

user may prefer the popular items mainly because of their popularity, while they prefer tail items

mainly due to their personal preference. Hence, a unified single model is not enough to uncover

this user heterogeneity preference towards head and tail items. This influence would weaken the

overall performance in recommendation, where the head items pose a large percentage in the highly

skewed long tail item distribution. Considering that, we contend that existing methods that focus on

the distribution shift may only play well for tail items leading to a decrease of overall performance

in recommendation.

8.3 Data Investigation

To justify our conjecture, in this section, we design an experiment to investigate a state-of-the-

art method that addresses the long-tail distribution problem – decoupling [18] which is a two-stage

learning mechanism that separately learns representation and ranking. To do so, similar as in [7],

we treat the recommendation task as a multi-class classification problem. So the user embedding

learning can be treated as the representation learning, and item embedding learning as the classifier

*.

Concretely, in the experiments, we leverage the representative state-of-the-art two-tower model

[7, 144] as the backbone model. To apply the two stage decoupling training fashion, in the first

stage, we train both the two tower model for representation learning. In the second stage, we fix the

parameters of the user tower that is learnt in the first stage, and retrain the item tower as a classifier

*There could be different definitions of representation learning and ranking. Here we consider this setting.
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training. For each stage, we implement both plain training (e.g., cross-entropy) and the rebalance

methods (resampling). Therefore, there are four groups of results based on the training manners

in the two-stage training fashion: (1) OR (Original Method): the two-tower model is trained based

on the original long tail distribution dataset with the conventional weighted log-likelihood loss;

(2) RS (resampling): we use a down-sampling strategy that down-samples the user feedback in

head items and keeps all the user feedback for tail items to gain a relatively balanced dataset [144].

The constructed relatively balanced dataset not only ensures tail items are fully trained, but also

alleviates the bias among tail items that brings by the new distribution. The benchmark dataset

MovienLens1M is used for evaluation. The commonly used hit ratio at top k (HR@K) and NDCG

at top K (NDCG@K) are used to measure the recommendation performance of tail slices items

and also the overall recommendation performance.

Results are shown in Figure 8.1. Overall, for the performance of tail slice items, when the

same representation method is used (OR or RS), RS method can always achieve higher HR@50

and NDCG@50, which is consistent with the findings in [135]. It is reasonable since the relatively

balanced dataset in RS focuses more on the training of tail items.

However, we find while the performance of tail items increases, the overall recommendation

performance decreases when re-balancing strategies are used. As shown in Figure 8.1 for overall

recommendation performance, when the same representation methods are implemented, the re-

balanced methods (RS) perform worse (lower HR@50 and NDCG@50). One possible reason is

that different from the computer vision area where the imbalanced factor is around 100, the dis-

tribution in recommendation is highly skewed (imbalanced factor usually > 10,000). Therefore,

sacrificing head item can significantly degrade the overall performance. Furthermore, besides the

highly skewed training dataset, the testing dataset is also imbalanced. That is, head items possess

the majority part in the testing dataset. A small drop of head item performance could heavily

diminish the overall recommendation performance. We refer the phenomenon as the Forgetting

Issue.

The experimental results confirm our assumption that purely distribution shift methods have
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difficulty improving both tail and overall recommendation. With those observations, in the next

section, we introduce our proposed cross decoupling that can bring improvements for both head

and tail items.

8.4 Cross Decoupling

With the observation in Section 8.3, we introduce our proposed cross decoupling learning that

decouples the learning process of the long-tail distribution from both prior probability (user side)

and conditional probability(item side), as shown in Figure 8.2:

• For the user side, considering the forgetting issue of user representation learning in the two-

stage training fashion, we simultaneously train both original highly skewed long-tail distri-

bution dataset and a relatively balanced distributed dataset. A novel regularizer adapter is

proposed to automatically balance the learning of head and tail items;

• For the item side, considering the properties of ID and content information, we design a

multi-expert mechanism to decoupled the learning of memorization and generalization.

With both user and item side learning, we final cross combine the user side and item side

information to comprehensively learn the user various preference for recommendation. In the

following, we discuss the cross decoupling design from user and item side respectively.

8.4.1 User Sample Decoupling with Regularizer Adapter

The large distribution gap between the two types of items makes it challenge to learn a reason-

able user representation. Traditional recommendation methods that learned the user representation

based on the original long-tail item distribution usually under-represented for tail items [125],

which easily harms the recommendation of tail items. Furthermore, in recommendation, there are

many tail items and their feedback is extremely sparse, which makes it even harder to learn a good

user representation learning for tail items. As Section 8.3 shows, if a two-stage learning fashion is

applied, it is easy to forget the learned knowledge from the other side information. How could we

learn the user representations based on both the head and tail items?
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Figure 8.1: Recommendation performance (HR@50 and NDCG@50) of decoupling approach for
representation learning and classifier learning in MovieLens1M dataset for tail item and overall
performance.

We propose a regularized bilateral branch network that simultaneously trains the model with

different data distributions, as shown in Figure 8.2 of user side: one training branch uses the

original highly skewed long-tail distribution as the training dataset, the other regularizer branch

uses a relatively balanced dataset as the training dataset. We denote the original highly skewed

long-tail dataset as Ωt, and the relatively balanced dataset as Ωr.

Concretely, in each branch of the regularized bilateral branch, we can get a training sample

(ut, it) ∈ Ωt from the training branch, and a training sample (ur, ir) ∈ Ωr from the regularizer

branch. Then the user representation vectors are calculated by:

xt = ht(f(ut))

xr = hr(f(ur))

(8.5)
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Figure 8.2: CDN framework.

here we first use a shared layer f(·) which can communicate the learned knowledge from the two

branches. It can also largely reduce the computational complexity. Then the specific layers are

designed ht(·), hr(·) in each branch to learn the unique knowledge of each branch.

8.4.2 Item Memorization and Generalization Decoupling with Experts

The user side decoupling ensures the learned user representations are well trained in the long-

tail distribution. However, the user preference towards head and tail items is highly heterogeneous.

For the retrieval task, since only limited top rated items are selected, it becomes especially impor-

tant to well train both head and tail items that can ensure head and tail items have equal chance

to be selected. Considering that, in this section, we design an item-side decoupling to balance the

memorization and generalization between head and tail items.

For head items, since it contains rich user feedback, the ID information plays an important role

to memorize the learning information. Different from that, for tail items, since the user feedback

is very sparse, the item content information play an important role. In this situation, the general-

ization is important for tail items. We use a content expert and an ID expert, as shown in Figure

8.2 of item side. Gating is used to balance the memorization and generalization.
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Concretely, for a training sample (u, i), the item embedding is represented as:

y = g(i)1fid(i) + g(i)2fcontent(i) (8.6)

where fid(·) is the ID expert which uses the item ID as the input, and the fcontent(·) is the Content

expert which uses the item content information as the input. g(·) is the gate function . g(i)1 +

g(i)2 = 1.

For the gating g(·), we use item frequency as the input, and build a forward layer:

g(i) = softmax(Wi)

where W is the trainable matrix.

8.4.3 Cross Learning

To fully learn the item content and id information in the long-tail distributions, we finally

propose a cross learning framework that crosses the decoupled information from user and item

side.

For a training sample (ut, it) ∈ Ωt from the training branch, and a training sample (ur, ir) ∈ Ωr

from the regularizer branch, we designed a regularizer adapter to combine the learned feature

vector from two branches:

s(it, ir) = αby
T
t xt + (1− αb)yTr xr (8.7)

where s(it, ir) is the predicted output. And the regularizer adapter αb is related to the learning

epoch b:

αb = 1− b

γ ∗B
(8.8)

Here B is the total batch size, and γ is the regularizer rate. That is, it shift the learning focus from

the original distribution to the rebalanced data distribution. It is designed to focus on learning the

universal pattern and then gradually focus on the tail items.

130



Table 8.1: Notation of CDN.

Notation Explanation
U , I user set, item set
ut, it user ut (item it) feature vector
xt, yt user/item representation in the training branch
xr, yr user/item representation in the regulizer branch
α learning adapter
γ adapter regulizer

We then use the softmax as the loss function to learn the probabilistic distribution of user u’s

preference towards different items for recommendation. That is:

p(i) =
es(it,ir)∑
j∈I e

s(jt,jr)
. (8.9)

Therefore, the loss function can be formulated as:

L = − 1

|Ωt|
∑

(u,i)∈Ωt

αndtlogp(i) + αndrlogp(i), (8.10)

where the dt and dr is the rewards function and Ωt is the training dataset. The rewards in the loss

function would learn high preference score for items that user engaged with in the training branch

and regularizer branch.

For the inference, to predict the user preference towards item, we only use the training branch,

since the regularizer branch is used to regularize the learned user and item embeddings. That is,

we calculate the preference score as:

p(u, i) = yTt xt. (8.11)

to obtain the logits by softmax.
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8.5 Experiment

In this section, we conduct extensive experiments to address the following key research ques-

tions:

RQ1: How well does the cross decoupling framework CDN perform compared to the state-of-

the-art methods, especially comparing with traditional decoupling methods?

RQ2: How does the cross decoupling work in user and item sides?

RQ3: How does the experts’ design influence the CDN performance? How does the model

balance between tail/head items by gating mechanisms?

RQ4: Are we learning better representations for tail items?

8.5.1 Datasets

We use two widely used public benchmark datasets which contain rich user and item content

information: MovieLens 1M † and BookCrossing ‡ for recommendation evaluation. For each

dataset, the <user, item> pairs with explicit ratings are considered as positive examples (1s), and

the rest of the pairs are negative examples (0s). Pairs with invalid / missing features are filtered.

For feature engineering, we follow [141, 144] for consistent comparison. Items in both datasets

follow the highly-skewed long-tail distribution, which shows the two datasets are well-suited for

our targeted long-tail problem. Statistical details for the two datasets are shown in Table 8.2.

The MovieLens1M is divided by leave-one-out evaluation [159]: for each user, the most recent

interacted item is for testing, the second most recent interacted item is for validation, and the rest

are used for training. Since the BookCrossing dataset does not have the timestamp information,

for each user, we randomly select one item for testing, one for validation, and use the rest of items

for training.

†https://grouplens.org/datasets/movielens/1m/
‡http://www2.informatik.uni-freiburg.de/~cziegler/BX/
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Table 8.2: Statistics and used content information in the datasets.

MovieLens1M BookCrossing
# User 6,040 50,454
# Items 3,706 222,154

# Feedback 1,000,209 1,031,175
Sparsity 95.5316% 99.9908%

User Features
IDs, Gender, Occupation,
ZipCode, Age IDs, Location, Age

Item Features
IDs, Title,
Genres, Year

IDs, Title, Author,
Year, Publisher

Table 8.3: Evaluation criteria based on different data slices [144]

HR@K/NDCG@K Overall Head Items Tail Items
Good Results – ↘ ↗
Better Results ↗ – ↗
Great Results ↗ ↗ ↗

8.5.2 Setup

Evaluation Criteria: We consider the widely used metrics [64, 144] – Hit Ratio at top K

(HR@K) and NDCG at top K (NDCG@K) – to evaluate the model performance on the long-tail

distribution problem. HR@K measures whether the test item is retrieved in the top K ranked

items. NDCG@K considers the position of recommended items, which gives higher scores to the

top ranked items that are correctly recommended.

With the two metrics, for the long-tail distribution problem, we report those metrics evaluated

on the tail, head slices and overall items separately. It shows the recommendation performance on

different parts in the long-tail distribution. Similar as [144], based on the Pareto Principle [204],

we split the first 20% most frequent items in MovieLens1M and 0.1% items in BookCrossing § for

head items, and the rest items are tail items.
§The split rate of 0.1% can better show the performance differences among methods, especially for tail items.
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We aim to build a single model that can improve the recommendation performance on tail

slices items, and at the same time, relatively keep or improve the overall performance. So the

evaluation criteria is shown in Table 8.3. We claim a model has a better/great performance, when

the performance for overall/head items is improved. Note since the item distributions are usually

the highly skewed, it is hard to improve the performance for both overall and tail slices items. The

high heterogeneity between head and tail items makes it is even harder to improve both head and

tail items in a single model. So the ‘better performance‘ and ‘best performance‘ in Table 8.3 is

hard to achieve.

Baselines. All the models use the same content information for fair comparison. We use the widely

applied state-of-the-art two-tower model as the backbone model.

• Two-tower Model [7]: This popular structure is flexible to consider different types of content

information. It shows high performance and scalability in many real-word applications. Many

models use it as the backbone model [144, 205].

Loss Function Refinement:

• ClassBalance [129]: This is a widely used state-of-the-art method for long-tail distribution

problem in image classification settings. It calculates an effective number of samples for each

imbalanced class and adopts it in a re-weighting term in loss function. We adopt it the method

to the recommendation task as [144].

• LogQ [130]: This is a re-weighting method that addresses the long tail distribution problem

in different areas. It is widely used in different applications. It constructs an item frequency-

related term in loss function to reweight head and tail items in the learning process.

Decoupling:

• NDP [18]: It refers naive decoupling method, which is adapted from a recent state-of-the-art

method for long-tail distribution problem in image recognition. Instead of jointly learning

image representation and classification, it separately considers the two learning process and

shows great success in image classification. We adopt the method to recommendation, which
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Table 8.4: The recommendation performance of CDN versus baselines on MovieLens1M. Num-
bers after ± indicate the standard error of the mean.

Measure%
Overall Head Tail

HR@50 NDCG@50 HR@50 NDCG@50 HR@50 NDCG@50
Two-tower 24.68±0.16 7.29±0.06 33.83±0.39 10.06±0.14 10.32±0.50 2.96±0.14

ClassBalance 20.21±0.17 5.91±0.06 30.20±0.20 8.96±0.09 5.19±0.16 1.34±0.03
LogQ 13.37±0.23 3.50±0.07 10.75±0.38 2.62±0.09 17.30±0.15 4.81±0.05
NDP 14.72±0.14 4.28±0.06 14.92±0.22 4.20±0.07 14.41±0.22 4.41±0.07
BBN 24.91±0.09 7.28±0.07 34.19±0.20 10.03±0.0 9 10.37±0.3 6 2.98±0.10
CDN 26.75±0.12 7.93±0.04 36.46±0.14 10.97±0.04 11.51±0.18 3.15±0.08

Improv% 8.39% 8.78% 7.77% 9.05% 11.53% 6.42%

treats items as classes.

• BBN [135]: This is another state-of-the-art method for long-tail distribution problem. BBN

utilizes the uniform sampler and reversed sampler to create a Bilateral-Branch Network that

can simultaneously consider the two learning process. Since it does not handle the embedding

learning for both user and item, we use the the user as the representation learning and item as

the classifier.

Hyper-parameter settings. The number of user and item embedding dimension for all methods

are set to be 64. Methods that utilize the two-tower architecture [7] have the same depth of net-

works and same hidden unites in each hidden layer for fair comparison. Concretely, the hidden

layer size in user and item towers are set to be 1/2 number of neurons of its next lower layer, that

is [256, 128, 64]. Relu is used as the activation function. For methods that utilize the experts,

we implement each expert as a single-layer network. The number of experts that encode content

and id information is set to be 1 for simplicity. The learning rate, dropout rate and regularization

parameters are determined by grid search in the range of {0.1, 0.01, 0.001, 0.0001}, {0.1, 0.3, 0.5,

0.7, 0.9} and {0.0, 0.1, 0.01, 0.001} respectively. For methods that utilize 2-stage training, the

number of training epochs are set to be 20. For the other methods, the number of epochs are 40 for

fair comparison.
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Table 8.5: The recommendation performance of CDN versus baselines on BookCrossing. Numbers
after ± indicate the standard error of the mean.

Measure%
Overall Head Tail

HR@50 NDCG@50 HR@50 NDCG@50 HR@50 NDCG@50
Two-tower 2.32±0.45 0.81±0.17 19.76±4.62 7.58±1.81 0.72±0.08 0.19±0.02

ClassBalance 1.47±0.32 0.47±0.10 8.94±2.46 3.36±0.88 0.79±0.13 0.21±0.04
LogQ 1.27±0.25 0.37±0.07 5.39±1.54 1.76±0.51 0.89±0.14 0.24±0.04
NDP 1.58±0.30 0.42±0.08 7.24±1.78 1.94±0.48 1.06±0.19 0.43±0.09
BBN 0.80±0.20 0.20±0.05 2.62±0.96 0.66±0.26 0.63±0.14 0.22±0.01
CDN 2.52±0.3 0.82±0.15 21.18±4.82 7.42±1.86 0.81±0.05 0.22±0.01

Improv% 8.94% 1.16% 7.21% -2.09% 13.31% 12.90%

8.5.3 Recommendation Performance (RQ1)

Table 8.4 and Table 8.5 show the recommendation performance of CDN and baselines on

the MovieLens1M and BookCrossing datasets. The reported numbers are the average from 5

experiments. Numbers after ± are the standard error of the mean. The last row shows the relative

improvement over the two-tower model for each metric. We can see CDN outperforms the other

methods – it brings significant improvements not only for tail slice items, but also for overall

recommendation performance. concretely:

First, among different strategies for the long-tail distribution problem, CDN achieves the best

performance. It shows the superior of cross decoupling in dealing with long-tail distribution com-

pared with reweighting and transfer learning. It is also worth to notice that most of those methods

only brings improvement for only tail items, but the performance of head items largely decreases.

CDN brings improvements for both head and tail items. It further demonstrates the importance to

consider both the prior and conditional knowledge differences.

Second, all the decoupling methods – NDP, BBN and CND outperform the backbone two tower

model on tail items. Since all the models are based on the two-tower architecture, it confirms the

decoupling method can better encode the user preference towards tail items. Furthermore, among

decoupling methods, CND further improves the recommendation performance of overall and head

items in most situations. It shows the importance of considering the cross decoupling between

136



user and item for long-tail distribution problem in recommendation. It is also worth to notice that,

compared with NDP, BBN gains better overall performance. It further shows the forgetting issue

in NDP could heavily influence the overall performance, especially for the highly skewed long tail

distributions in recommendation. And simultaneously training strategy can alleviate the forgetting

issue.

Third, compared with the standard error of the mean, CDN is not only more robust for the

recommendation prediction of tail items, and also for overall performance. As shown in Table

8.4 and 8.5, the standard error of the mean in CDN is smaller than the two tower model. One

possible reason is that the CDN is jointly trained based on both the original distributed dataset and

balanced dataset, which obtains the similar effect as the data augmentation and effectively alleviate

the overfitting for tail items. Another reason is that we use the adapter in cumulative learning as a

regularization, which can better balanced the learning process between head and tail items in the

highly skewed long-tail item distribution.

8.5.4 Cross-Decoupling (RQ2)

One of the key part in CDN is the cross-decoupling design. In this section, we conduct exper-

iment to explore how the cross-decoupling contribute to the recommendation. The ablation study

is designed as follows:

• UDN: This is the model that only implements the decoupling from the user side. That is, it

only uses Bilateral-Branch Network.

• IDN: This is the model that only decouples the item side. That is, it utilizes the content and ID

multiexperts, and a gate with the item frequency.

• BDN: Instead of using the regularizer adapter in the cumulative learning as the regularizer, it

considers the two branches as equally important. And the preference score is calculated by the

average outputs of the two branches: s(it, ir) = 0.5yTt xt + 0.5yTr xr.

Results are shown in Table 8.6. We can observe that CDN achieves the best performance for

both tail items and head items. It further shows the importance of considering cross decoupling.
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Table 8.6: Cross decoupling study on MovieLens1M. Numbers after ± indicate the standard error
of the mean.

Measure%
Overall Head Tail

HR@50 NDCG@50 HR@50 NDCG@50 HR@50 NDCG@50
Two-tower 24.68±0.16 7.29±0.06 33.83±0.39 10.06±0.14 10.32±0.50 2.96±0.14

UDN 25.55±0.08 7.53±0.03 34.98±0.11 10.35±0.06 10.77±0.13 3.10±0.03
IDN 25.85±0.15 7.58±0.05 34.82±0.21 10.26±0.08 11.79±0.22 3.37±0.08
CDN 26.75±0.12 7.93±0.04 36.46±0.14 10.97±0.04 11.51±0.18 3.15±0.08

Concretely,

Both UDN and IDN bring improvements on head and tail slice items. The results further

demonstrate decoupling can help learning the user preference towards different items in the long-

tail distribution, either from user side or item side. However, the improvements of UDN and IDN

are not significant. One possible reason is that those methods only decoupled one side (user or

item side) information. The learning of the other side information still could be influenced by the

long-tail distribution. It confirms our assumption that both prior and conditional knowledge are

needed to be considered to improve the recommendation performance.

While BDN outperforms the two tower model on the tail items, the performances of head and

tail items largely decrease. Different from that, CDN, which considers the balanced branch as

a regularizer, achieves good performance in both tail and head items. It verifies the importance

of considering the balanced branch as a regularizer rather than a component in the model for the

heavily skewed long-tail distribution dataset in recommendation. The regularizer can efficiently

alleviate the overfitting problem of items in the long tail slices.

8.5.5 Comparison of Expert Design (RQ3)

The experts in CDN are designed to separately learn the content and ID information to better

handle the high heterogeneity between head and tail items. There are also many other design

choices, such as using experts to learn the unbalanced/balanced dataaset in item tower (simiar as the

user tower), or directly design experts for head/tail items. In this section, we explore those expert

design choices. We first evaluate expert design choices in addressing the long-tail distribution
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problem in recommendation, and then analyze the differences of memorization and generalization

between head and tail items.

8.5.5.1 Recommendation performance

To separately consider the head and tail items, there are some design choices:

• Unbalanced/Balanced: First, similar as the user side, we could use two experts: one is to train

the original dataset, and the other is used to train the relatively balanced dataset. So the model

will be zc = ucic and zr = urir where ic is the item representation learned from balanced

data distribution and ic is the item representation learned from original data distribution. Then

softmax is used to calculate the probability that the user prefer the corresponding item, which

is pr and pc. The loss function is L = αE(pr, yr) + (1− α)E(pc, yc).

• Head/Tail: Another way to separately consider the head and tail items is to directly design an

expert to learn head items, and an expert to learn tail items. Then a gating network [206] is

used to connect the two experts;

• ID/Content: the experts in CDN is designed to consider the ID and content separately, to learn

the head and tail items. Here the assumption is that head and tail items will consider the ID

information differently due to the large gap between user feedback distribution.

Results are shown in Table 8.7. Based on the results, we can see that the method of ID/Content

expert achieves the best performance compared with the other methods.

For the Unbalanced/Balanced method, it is consist with the user branch. That is, both user

and item uses the balanced/unbalanced datasets to train. However, the method only gains a rela-

tive improvement on NDCG for head items. Compared with the ID/Content, the performance of

Unbalanced/Balanced method on tail items largely decreases, and the overall performance also de-

creases. One likely reason is that if both user and item learn the same unbalanced/balanced dataset

at the same time, the tail items are easily to get overfitted.

For the head/tail method, we can see there is an obvious drop out in the recommendation

performance of tail items. One likely reason is that the tail specific expert easily causes over-fitting
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Table 8.7: Expert design study on MovieLens1M. Numbers after ± indicate the standard error of
the mean.

Measure%
Overall Head Tail

HR@50 NDCG@50 HR@50 NDCG@50 HR@50 NDCG@50
Two-tower 24.68±0.16 7.29±0.06 33.83±0.39 10.06±0.14 10.32±0.50 2.96±0.14

Unbalanced/Balanced 22.07±0.12 6.71±0.05 33.77±0.21 10.43±0.07 3.72±0.07 0.88±0.03
Head/Tail 19.21±0.34 5.73±0.11 31.39±0.54 9.36±0.18 0.11±0.05 0.02±0.01

ID/Content 26.75±0.12 7.93±0.04 36.46±0.14 10.97±0.04 11.51±0.18 3.15±0.08

for tail items since the user feedback for tail items are very sparse. Furthermore, for the head and

overall performance, though head/tail method achieves similar performance as two-tower model

on head items, the overall performance still largely decreases. It is reasonable since there is a large

percentage of tail items in the highly skewed long-tail recommendation dataset. It further shows

the importance of using ID/Content expert to separately consider head and tail differences in the

long-tail distribution dataset.

8.5.5.2 Memorization vs Generalization

Memorization and generalization [146, 148] play a key role in deep neural networks. Properly

combining the benefits of memorization and generalization can help improve the performance.

One assumption for the CDN model is that the head and tail items pay different attention for the

content and ID information. Therefore, in this section, we further investigate the memorization vs

generalization for head and tail items. That is, we check the content and ID expert gate value for

head/tail items.

Results are shown in Figure 8.3. The blue color shows the gate value for head items, and the

orange color shows the gate value for tail items. First, compared the value between id expert and

content expert, we can see both head and tail items put more weights to the content experts. It

is reasonable since both datasets are very sparse and we utilize rich content information. Second,

compared the gate value between head and tail items, we can find head items put more weights to

ID experts while tail items put more weights to content experts. It verifies our assumption that head

items based more on memorization since they contain relatively rich user feedback information. It
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Figure 8.3: Gate value for ID and content experts in CDN.

Figure 8.4: Embedding visualization comparison.

further shows the resonability of design ID/content experts to separately consider the head and tail

items in the long-tail distribution settings.

8.5.6 Representation Visualization (RQ4)

Last, we visualize the learned embedding of CDN to explore its representation learning ability.

Results are shown in Figure 8.4 by using t-SNE [201]. Same color represents the same genera.
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As shown in Figure 8.4, compared the learned representation of tail slice items by two tower

model, our proposed model CDN could better cluster movies that in the same genre. The visualiza-

tion shows that CDN is able to well cluster the tail slices items based on their content information.

It further shows CDN is able to learn meaningful representations for tail items, which also align

with the findings in section 8.5.5.2 where tail slice items put more weights to content gate.

8.6 Summary

We explore the long-tail distribution problem in recommendation. Based on the theoretical

analysis and experiment study, we find the long-tail distribution problem could be addressed from

both prior and conditional knowledge perspectives. Considering that, we propose a novel cross

decoupling framework that decoupled the learning process of user and item from the two perspec-

tives. Experiment results show CDN outperforms the state-of-the-art methods. In the future work,

we are interested in considering the dynamic long-tail distribution problem.
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9. CONCLUSIONS AND FUTURE WORK

Content-aware recommendations enable us to efficiently leverage different types of informa-

tion for improved recommendation. They are exceptionally powerful in many applications, espe-

cially for cold-start problems where there are only a few user-item interactions, and for new users

and items recommendations. With the unprecedented explosion of various information, there are

increasing opportunities to explore new methodologies and models for content-aware recommen-

dation. In this chapter, we highlight our conclusions align with challenges, and give a discussion

of future research opportunities.

9.1 Conclusions

In this dissertation, we focus on leveraging content information to enhance learning of user

preference towards items and further give recommendation, including mining, aggregating and de-

coupled both user and item side content information. This dissertation mainly focus on the content

information of item and user relations and their application to recommendation. While those infor-

mation is available, there is a significant gap towards properly incorporating the user/item various

relations to collaborative signals for enhanced recommendation. Furthermore, when the time fac-

tors are considered in recommendation (sequential recommendation), it becomes even harder to

efficient handle those complicated relations from both user and item side. To bridge the gap, this

dissertation makes three unique contributions:

First, to tackle the sparsity challenge of item relations, we leverages the item visual and tex-

tual information to uncover both stylistic and functional evidence of item relations. We further

aggregate the user ratings through the Bayesian inference to build a quality-aware complementary

item recommendation called ENCORE. When the time factor is considered, to tackle the sparsity

in both user sequence and item relations, we propose a hierarchical translation-based recommen-

dation method called HierTrans that extends traditional item-level relations to the category-level,

to help capture dynamic sequence patterns that can generalize across users and across time. Addi-
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tionally, HierTrans is build on a hierarchical temporal graph that contains item different relations

at category-level and user sequences at the item-level. The graph is capable to capture higher order

item relations to alleviate the sparsity issue. The insights are to utilize rich side information and

mine the properties of content information (e.g., high order information) which can be utilized to

enhance the learning of user preference towards items.

Second, considering the high heterogeneous issue between user relations and user-item inter-

actions, we propose to consider the social resonance effect that can naturally connect social net-

work with user interactions towards items. Concretely, social resonance shows that users are more

influenced by opinions that have similar vibe. Based on that, we create a item-based user influence

network to connect users in user social network, and then learning the social influence towards

user with a graph-based mutual learning framework. The framework is able to comprehensively

uncover the social resonance from both preference-based and graph-based aspects. Furthermore,

when we consider the user social relations in sequential recommendation, we build a bidirectional

LSTM to capture the dynamic social influence, and utilize an attention mechanism to connect

the social influence with user purchase preference. Both methods enable us to more effectively

consider the impacts of user social network to user preference behavior and further improve the

recommendation performance.

Third, after mining user and item content information and aggregating them to enhance rec-

ommendation, we further analyze the duplication problem and high-skewed long-tail distribution

problem in content-aware recommendation, and further propose to disentangle/decouple those con-

tent information that can more effectively consider various content information for different items.

Concretely, considering the duplication issue, we propose a two-level disentanglement learning

that disentangled collaborative signals and content signals, and each feature in granularity level.

With those methods, we successfully address the high-skewed data issue and duplication issue.

The proposed methods brings large improvement for recommendation. Furthermore, our pro-

posed decoupling method separately considers the memorization and generalization for popular

and cold-start items. In this way, collaborative signals is able to contributes more to popular items
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and content signals is able to contributes more to cold-start items.

9.2 Future Research Opportunities

While this dissertation has shown the success of properly utilizing the content information to

improve the recommendation, there are still many challenges. For future work, we are interested

in the following directions:

• Disentanglement/Decoupling learning in dynamic settings. In this dissertation, we have

discussed the disentanglement/decoupling learning when different types of content informa-

tion are considered. The proposed models shows improvement in recommendation, and also

give us insights that disentanglement/decoupling can help improve the interpretation of learned

user and item representations. Besides that, we also find the disentanglement/decoupling learn-

ing could be highly related to time. For example, for fashion recommendation, with the visual

evolution, the disentangled content would change. Therefore, it becomes challenging to ef-

fectively extract disentangled features that are representative in each time period. Actually, in

practice, the streaming data is usually considered. Hence, it becomes important to explore the

disentanglement learning in sequential recommendation.

• Content knowledge transfer cross domains. This dissertation considers user and item con-

tent information, and discussed the mining, aggregation and decoupling aspects that can lever-

age those content to improve the recommendation. In practice, with the increase of various

platforms, there are many additional sources of information that can be shared in different plat-

forms. For example, for user side, users in Facebook, Twitter and Instagram can share the

same account. For item side, same books (e.g., Harry Potter) can be purchased in different

platforms, like Amazon and Ebay. Those connections make it convenient to utilize the shared

information to address the sparsity issue in recommendation from either user side or item side.

If we consider the sequential recommendation scenarios, this knowledge transfer across dif-

ferent domains becomes more challenging, since the transferred knowledge could dynamically

changed over time. We are interested to explore effective methods to extract and transfer the
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shared knowledge that can be adapted to different domains for enhanced recommendation.
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