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ABSTRACT

Chronic disorders are leading causes of disability and death, and their high pervasiveness calls

for effective treatments leading to a long-term cure. Studies show that stem cell-based thera-

pies can provide successful solutions to chronic diseases. Mesenchymal stromal cells (MSCs), a

multipotent group of stem cells, are extensively used for cell-based therapies owing to their im-

munomodulation, ex vivo proliferation, and clinically significant effects. MSC-based solutions

require manufacturing large volumes of viable cells that is highly dependent on reliable methods

to characterize cell mechanisms. Previous findings have revealed that cell morphology can serve

as a critical quality attribute to predict the therapeutic potency of MSCs. Current standards to es-

timate MSC effectiveness based on their morphological phenotype are subjective, destructive, or

time-consuming. Therefore, an objective method for morphological screening is needed to analyze

the viability of live MSC cultures non-invasively. Computer-aided image analysis is an excellent

tool to extract relevant cellular features rapidly and efficiently. This dissertation aims to facilitate

large-scale cell growth strategies by providing automated technologies for evaluating images of

cells grown in monolayer and three-dimensional environments.

We developed an analysis scheme based on conventional image processing techniques com-

bined with machine learning to examine monolayer cultured MSCs. This methodology proved the

applicability of image analysis as a robust tool for quantifiable culture monitoring. To address the

challenges of standard image analysis approaches, we explored deep learning to better identify

individual cells. It showed improved results for cell localization and also optimized overall MSC

assessment. Lastly, we extrapolated deep learning-based analysis to study three-dimensional cul-

tures used to produce MSCs in commercially viable quantities. This work shows great promise

to fulfill the unmet need for cytomorphological analysis and downstream representation of MSCs

adhered to spherical microcarriers. The algorithms were validated using visual inspection by a bi-

ologist with 15+ years of experience with MSCs. Thus, our research exhibits valuable potential to

quantitatively analyze MSC efficacy and functionality, enabling the advancement of cytotherapies.
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1. INTRODUCTION AND MOTIVATION

1.1 Chronic diseases and conditions

Chronic diseases are persistent conditions that last more than three months, as defined by the

U.S. National Center for Health Statistics [4]. They require ongoing medical attention and have

a huge impact on quality of life as well as hinder daily activities. Other traits of chronic diseases

include complex causalities, prolonged development periods without symptoms, and associated

functional impairments that trigger further health complications. These ailments become more

common with age and can neither be prevented by vaccines, cured by medication nor do they

spontaneously heal. Chronic diseases such as cancer, diabetes, stroke, lung disease, and arthritis are

some of the leading causes of disability and death, affecting nearly half (approximately 45%, or 133

million) of all Americans [5]. According to the National Center for Chronic Disease Prevention

and Health Promotion, six in ten adults in the U.S. have a chronic disease and four in ten adults

have two or more [6]. Seven out of every 10 deaths in the U.S. are because of chronic illnesses

[7]. Additionally, they are also a primary driver of the nation’s medical costs, accounting for 90%

of the 3.8 trillion dollars expenditure annually [8]. The high prevalence, economic burden, and

complicated needs of patients with chronic diseases make them one of the greatest problems faced

by the healthcare system, making it crucial to have efficacious therapies and treatments that can

provide a long-term cure.

1.2 Mesenchymal stromal cell-based therapies to address chronic diseases

Studies have proven that the approach of cell-based therapeutics has valuable potential to treat a

variety of widespread chronic diseases [9]. As an emerging tool for regenerative medicine and tis-

sue engineering, cell-based therapeutics is considered one of the most promising fields of modern

medicine. Over the past few years, there has been exponential growth in research and clinical trials

employing stem cells for therapies, leading to a significant impact on several disorders [10, 11, 12].

Stem cell-based therapies primarily exploit the unique property of stem cells to self-renew and dif-
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ferentiate into the specific cell types required to repair damaged tissues or organs. However, due

to the complexity of stem cell-based products, it is important to carefully select a stable, safe, and

easily available stem cell source that has the ability to differentiate into several lineages [13].

Mesenchymal stromal cells, one of the most prominent stem cells, has been extensively used in

more than 950 registered clinical trials listed with the FDA because of their potential therapeutic

effects [14]. They are characterized by fast in vitro proliferation, self-renew, and the ability to

differentiate into a variety of mesodermal lineages, making them an ideal source of replacement

cells [15]. MSCs are multipotent and can differentiate into many phenotypes, including those that

form bone, cartilage, muscle, fat, and other connective tissues [16, 17]. Apart from differentiating

into distinctive and specialized cells such as osteoblasts, adipocytes, and chondroblasts, they also

have the power to regulate the development of fibroblasts and endothelial cells [18]. Furthermore,

MSCs are very accessible, being easily expanded from several tissue types namely skin, ligament,

tendon, umbilical cord, and placenta among others. Thus, they are of great value for tissue en-

gineering and regeneration treatments. There is a growing body of literature demonstrating the

viability of MSC-based therapy in a variety of pre-clinical models, including acute lung injury

[19], skeletal regeneration [20], and septic shock [21].

Heterogeneity is a critical aspect of MSCs that mainly arises from the nature and source of

the donor tissue, harvesting and culture procedures, and the extent to which the cells have been

previously expanded [22]. It is worth noting that heterogeneity causes disparities in differentiation

capacity, proliferation rate, and protein expression profiles even between cell populations of similar

origin. The extraordinary heterogeneity of MSC makes drawing reliable inferences about their

therapeutic potency very challenging and frequently results in an unpredictable level of clinical

efficacy [23, 24]. This issue emphasizes the necessity to meaningfully characterize and control

the functionality of MSC products for widespread and successful clinical use. In addition, culture

monitoring would not only tackle heterogeneity but also prevent the decline in cell efficacy as well

as the expense incurred due to MSC batch failure.
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1.3 Current MSC evaluation strategies and their shortcomings

The need to evaluate MSC’s therapeutic potency has prompted the development and optimiza-

tion of several techniques that can precisely correlate the critical quality attributes (CQA) of MSCs

with their functionality [25]. Assays have been broadly adopted to predict immunomodulation,

differentiation competency, clonogenicity, surface immunotype, and secretion of stromal factors

for quality assessment of MSCs [26, 27, 28]. Proliferation, colony-forming unit, activation, and

immune cell inhibition assays are some of the most researched in vitro assays that have been ap-

plied to determine MSC potency effectively [29, 30, 31]. Aside from assays, flow cytometry and

metabolic labeling are also used to analyze gene expression profiling, surface markers, cell cycle,

specialized differentiation, and biological properties of MSCs [32, 33, 34]. Generally, the methods

mentioned above are performed on parallel cultures set up during or after the harvest of large-scale

expansion cultures. While these assays are definitive in some cases, they fail to provide real-time,

non-invasive data on expansion culture itself.

Regular visual examination under a microscope to morphologically profile cells is another

qualitative approach that is used for routine quality assurance of cultures. Earlier studies have

established that morphological traits can be highly predictive of MSC’s downstream efficacy, and

along with post hoc characterization assays, MSC cultures are typically subjected to morphological

profiling during expansion [35, 36]. Functionally relevant morphological screening has previously

shown that it can identify optimal priming conditions and accurately monitor immunosuppression

capacity as well as transcriptomic and emergent phenotypes of MSCs [37, 38, 39]. Although

widely used, the standard practice of morphological characterization via visual inspection lacks

reliability due to subjectivity in interpretation by different scientists. Moreover, it is also tedious

and time-consuming, making it incompatible with high-throughput analysis, quantification, or high

temporal resolution. Therefore, a non-invasive, rapid, and objective method is essential in order to

overcome these shortcomings for robust viability analysis of MSC cultures.
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1.4 Exploiting computer vision to quantitatively assess MSCs

The aforementioned challenges can be resolved by adopting computer-aided techniques to ana-

lyze cultures using their microscopy images. The topic of computer vision and artificial intelligence-

based cell analysis has received a lot of attention with increasing demands in bioinformatics

and significant contributions in the domains of medical diagnostics and biomedical engineering

[40, 41, 42]. It has been incorporated for understanding drug influences [43], image-guided ther-

apy [44], and detection or diagnosis of medical conditions including COVID-19 [45], brain tumors

[46], breast cancer [47] among others. In particular, morphological processing has become a stan-

dard theory for computerized cell image analysis and pattern recognition. This field encompasses

a wide application area such as cell clump segmentation [48], feature extraction [49], and abnor-

mal cell identification [50]. It has also been integrated with the investigation of histological tumor

sections [51], boundary detection of epithelial cell nuclei [52, 53], localization of anatomical struc-

tures [54], cell tracking [55], and cell classification [56]. These studies expansively demonstrate

and validate the potential of image-based analysis to analyze cells objectively and robustly. More-

over, it would be non-invasive and can be applied for automated evaluation of live cells to get

quantitative measures of culture quality. This idea could be similarly extended to obtain MSC

morphology as well as other culture parameters more efficiently as empirical values using com-

puter vision. Thus, a computer-based examination would enable quantitative and rapid assessment

of MSC culture quality and efficacy.

1.5 Proposed algorithms to analyze monolayer and three-dimensional MSC cultures

The main focus of existing analysis techniques has been on conventional thresholding tech-

niques to segment MSCs [57]. However, this research was more driven towards identifying all cell

regions rather than individual cells, making it unsuitable for culture quality monitoring through

morphological profiling of each cell. In addition to segmentation, there has been significant re-

search demonstrating the possibility of characterizing MSCs based on their shape [58]. Machine

learning has been implemented previously to classify MSCs from other cell lines [59, 60], to pre-
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dict immunosuppressive capacity using their functional subpopulations [39], and also to identify

them based on their differentiation potential [61]. The presented work aims to expand on these

approaches to segment individual MSCs from their monolayer culture images using morphology-

based analysis. Morphometric and textural features are computed for all segmented cells as they

serve as good indicators of the physiological state and functionality of MSCs. A machine learn-

ing classifier uses these extracted features to predict the morphological phenotype of cells. Based

on phenotype estimation for cells, the algorithm measures culture parameters and viability. Thus,

our morphological-based image analysis contributes to automated quantification of adherent MSC

cultures and also validates the applicability of image analysis as a tool for characterizing MSCs.

The above-mentioned morphological analysis algorithm employs low-level pixel processing

and mathematical modeling to construct a compound rule-based system that segments monolayer

cultured MSCs in phase-contrast micrographs. The application of this algorithm is highly reliant

on image quality and would only be suitable for images where cell boundaries, as well as their

bodies, are distinctly perceptible in the image. As cells proliferate and the level of culture conflu-

ency increases, they form clusters. Localizing a higher number of single cells within each cluster

with exact borders becomes a complex task for conventional techniques such as edge detection,

thresholding, and morphological operations. Furthermore, such standard image processing tends

to generalize inadequately on new culture images as they greatly rely on manually designed data

representation, parameter tuning, and feature engineering. Thus, it is crucial to develop an im-

age analysis pipeline that can provide correct segmentation to effectively measure morphological

attributes of cells and accurately estimate culture efficacy.

Deep learning has the power to overcome these challenges and extract information not easily

comprehended via visual investigation [62]. It can understand multi-modal information and im-

plicitly capture intricate cellular features, leading to a process of learning far more superior than

standard computational or machine learning models. To this end, we developed a dedicated deep

learning-based model called 2U-Net in combination with standard image processing procedures

for enhanced MSC segmentation. Similar to the morphological analysis algorithm, 2U-Net seg-
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mentation is followed by feature computation and machine learning to determine the viability of

every cell in the culture based on its phenotype. Our deep learning-based scheme significantly

optimizes the segmentation of individual and clustered MSCs, enabling effective and reproducible

estimation of culture’s primary efficacy endpoints. This research shows great promise to bridge the

gap between existing techniques and the need for a robust and streamlined process for examining

MSCs. Also, our algorithm does not need staining and can work without inducing any changes to

cell properties. Thus, it will be non-invasive and suitable for real-time monitoring for monolayer

cultures.

It is also important to note that the clinical success of cell-based therapies to provide new reme-

dies is highly reliant on the supply of cells in large and frequent doses. However, conventional

monolayer culture systems impede the production of commercially viable quantities of cells as

demand increases. This issue is mainly because the adherent surface area available for cell growth

in two-dimensional (2D) cultures is limited. Three-dimensional (3D) cell culturing not only ad-

dresses this limitation by providing higher adherence area for cells but is also highly suitable for

manufacturing clinical-grade cells that behave in a more physiologically relevant manner [63].

Similar to monolayer culture assessment, an analysis protocol is also required to ensure the qual-

ity of MSCs cultured in a 3D environment. We extend the conventional and deep learning-based

algorithms developed for detecting cells grown in 2D to segment MSCs cultured on microspheres

in 3D. Its pipeline utilizes combination of conventional and U-Net processing, and employs the

segmentation results to calculate culture confluency and cell count for 3D cultures. This image

processing scheme would improve reproducibility and characterization of 3D cultures, leading to

a clinically significant therapeutic infusion of MSCs.

It is anticipated that the proposed 2D and 3D algorithms would enable biologists and cell

manufacturers to draw conclusions about the functionality of recovered MSCs. These algorithms

would potentially replace visual investigation, leading to rapid, objective, and standardized mul-

tidimensional MSC examination. Lastly, they could also be incorporated to scale up stem cell

manufacturing, paving way for efficacious cell therapies to treat chronic diseases.
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2. TECHNICAL BACKGROUND

2.1 Cytotherapy: a brief overview

Cell-based therapeutics, also known as cytotherapy is a biological process of injecting, grafting,

or implanting viable cells into a patient to effectuate medicinal outcomes and cure illnesses. It aims

to repair the mechanisms underlying disease initiation and progression via trophic effect or cell

replacement [64]. Cytotherapy is considered one of the most promising disciplines in the fields of

modern science and medicine because of its particular objective of repairing diseased cells, tissues,

or organs and eventually retrieving normal function [65]. As a leading modality of regenerative

medicine, it offers boundless possibilities to revolutionize treatments of deadly chronic conditions

not adequately addressed by existing pharmaceuticals. Cell therapies have been broadly applied or

are in clinical trials for prominent disorders such as cancer [66], cardiovascular [67], neurological

[68], kidney [69], and liver [70].

With new technologies and innovative products, multiple cell types may be utilized as a part

of therapies or treatments, including stem, progenitor, or primary cells. Stem cells have valuable

potential for therapeutic uses in tissue engineering and regenerative medicine as they can build

virtually every tissue in the human body. In recent years, a vast amount of research has been car-

ried out on stem cell-based therapies as a potential new strategy for a wide range of treatments,

specifically for degenerative diseases [71]. Stem cells offer the perfect solution for cytotherapies

owing to their unique property of self-renewal in addition to their capacity to differentiate into

specialized adult cell types. Long-term replacement of damaged tissue is achieved through stem

cell differentiation into a specific cell type in the lab or after reaching the site of injury. These cells

then integrate into the injury site, facilitating the improved function of organs or tissues. Further-

more, stem cells that release soluble factors such as cytokines, chemokines, and growth factors

can promote self-healing of the organ by inducing cells to migrate towards the transplantation site.

Apart from generating healthy cells, stem cells have also enabled increased understanding of dis-
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ease occurrence and investigation of new drugs for safety and quality [72]. Thus, stem cell-based

therapy is a tangible reality that is advancing rapidly and significantly impacting human health as

well as the quality of life.

2.2 Mesenchymal stromal cells: current understanding, therapeutic potential, and clinical

challenges

Adult bone marrow is the most well-characterized source for adult stem cells and it contains a

heterogeneous population of cells such as hematopoietic cells, macrophages, erythrocytes, fibrob-

lasts, adipocytes, and endothelial cells [73]. Aside from these cell types, bone marrow also contains

a subset of non-hematopoietic stem cells known as marrow stromal stem cells, mesenchymal stem

cells, or mesenchymal stromal cells (MSCs) [74]. MSCs are primitive cells that originate from the

mesodermal germ layer and give rise to connective tissues, skeletal muscle cells, and cells of the

vascular system [16, 17]. They are spindle-shaped plastic-adherent cells isolated from bone mar-

row, adipose, and other tissue sources [75]. MSCs can expand in culture for multiple population

doublings using relatively simple culture conditions. MSCs possess multilineage potential with the

capability to readily differentiate into cartilage cells (chondrocytes), bone cells (osteoblasts), and

fat cells (adipocytes), both in vitro and in vivo [76].

MSCs, a heterogeneous group of stem cells has gained a lot of attention over the past few years

for clinical applications in regenerative medicine due to a broad repertoire of attractive biological

and clinical qualities. Their proliferative, immunomodulatory, and anti-inflammatory properties

make them an excellent source of allogeneic cells for tissue repair in trauma and chronic diseases

[77]. There is a substantial amount of early research exploring the therapeutic efficacy of MSCs in a

variety of pre-clinical studies, including graft-versus-host-disease (GVHD) [78], acute myocardial

infarction [79], autoimmune diseases [80], and liver diseases [81]. This vast number of published

works proves that MSCs are an appealing tool for various cellular therapies. However, it is crucial

to understand the biology, functionality, and role of MSCs in clinical trials to enhance therapeutic

efficacy and effectively treat a variety of pathological conditions.

A key characteristic of MSCs is their heterogeneity that makes drawing reliable conclusions
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about their therapeutic potential very complicated. Cellular heterogeneity arises due to different

MSC origins as well as harvesting and culture procedures [82]. It has been demonstrated that MSC

product quality greatly depends upon isolation and culture methods as well as traits and history of

the donor [23]. Several in vitro studies have aimed at studying possible modifications of the ex vivo

culture environment and MSCs themselves to increase their regenerative potential [83, 84]. The

biggest challenge is standardizing these many variable factors during MSC expansion to obtain a

viable number of therapeutically efficacious cells. Besides cell quantity, improved characterization

of MSCs requires a well-defined correlation between phenotype and stromal/stem cell functions.

For decades, it has been appreciated that MSC morphology is highly predictive of downstream

efficacy where efficacy is defined collectively as the potential for self-renewal, multipotentiality,

and engraftment [85, 86, 87]. As such, MSC cultures are typically subjected to morphological

profiling during expansion in addition to post hoc characterization assays [35, 36]. MSC pheno-

type has been categorized as RS (potentially functional and efficacious) or SR (potentially non-

functional and deficient) in accordance with their morphology [88, 89, 90]. MSCs that rapidly

self-replicate (RS-type) are relatively small, spindle-shaped, and fibroblastic, whereas cells that

slowly replicate (SR-type) are large, flattened, and rhomboidal, illustrated in Fig. 2.1. In addition

to slow replication, SR cells lose most of their ability to differentiate into multiple cell lineages

and promote tissue repair, suggesting functional decline. These phenotypes have been predictive of

proliferative and differentiation potential in vitro [88] and functional engraftment in vivo [89, 90].

Hence, relative contributions of RS and SR cell populations can be utilized to predict culture ef-

ficacy qualitatively and downstream performance of MSCs. Visual observation via a microscope

is currently the standard methodology to estimate MSC phenotype as RS or SR. Although broadly

employed, this technique lacks consistency and reliability due to subjectivity in interpretation by

different scientists. It is tedious and labor-intensive, lacking compatibility with high-throughput

analysis and robust quantification of MSC culture viability. Besides visual investigation, flow cy-

tometry (forward and low side scatter) has been shown to resolve discrepancies in data obtained for

similar preparation of MSCs by distinguishing cells into distinct categories, viz. RS and SR [91].
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They isolate RS cells only based on size and granularity, not considering their crucial morpholog-

ical features. Moreover, it is also an invasive and time-consuming process. Nevertheless, RS and

SR morphological phenotypes of MSC represent a foundation on which more specific criteria to

better identify MSC properties could be developed.

Figure 2.1: Example images showing distinct morphology of RS and SR MSCs.

2.3 Culture protocol, imaging, and dataset for MSCs grown on monolayer

The monolayer culturing protocol, imaging modality, and the acquired dataset described in this

section are used for the development and evaluation of 2D image-based MSC analysis algorithms

described in chapters 3-6.

2.3.1 Protocol for monolayer MSC cultures

Induced pluripotent stem cell-derived human MSCs were seeded at 100 cells/cm2 under stan-

dard conditions of expansion and prepared as previously described [92, 93]. Cells were expanded

in T175 flasks with 25 mL complete culture medium (CCM) containing 90% (v/v) α-minimum es-

sential media (α-MEM), 10% (v/v) fetal bovine serum (FBS), 4 mM L-glutamine, and 100 U/mL
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penicillin-streptomycin. For MSCs employed in this study, a density of approximately 1,000

cells/cm2 (low cell density) was expected at day 2 and approximately 6,500 cells/cm2 (medium

cell density) at day 4.

2.3.2 Imaging of monolayer MSC cultures

Cell imaging is a crucial aspect of both qualitative and quantitative culture assessment. Few

widely used methodologies for imaging monolayer cell cultures include time-lapse microscopy,

interference contrast microscopy, and absorption microscopy [94, 95, 96, 97, 98, 99]. The two

modalities that have gained importance to visualize cells with improved contrast are fluorescence

imaging and phase-contrast microscopy. Fluorescence microscopy provides good image contrast;

however, it suffers from certain limitations. For this method, cells need to be genetically engineered

to generate fluorescent proteins or fluorescently labeled to enhance cell boundary information,

which modifies cell physiological makeup and may cause an unknown change of cellular dynamics

[100]. It also suffers from photobleaching, the process due to which the dyes used for staining

undergo a photo-chemical alteration of their molecules such that they permanently can’t fluoresce

[101]. This issue limits the applicability of fluorescence microscopy for long-term cell monitoring.

Also, it is an invasive method, making it inappropriate for real-time monitoring of live cell cultures.

Phase-contrast microscopy does not suffer from these disadvantages and provides relatively

high image contrast without any biological modification to cells [102]. It is an optical imaging

method that converts phase shifts caused due to refractive index differences between cells and sub-

strate into intensity changes in the micrographs [103]. Phase shifts themselves are invisible but

become visible when shown as brightness variations. This microscopy is particularly significant

in biology as it can reveal many cellular structures that are invisible with a brightfield (BF) micro-

scope. Optical layout of a phase-contrast imaging system is illustrated in Fig. 2.2 [1]. It is one of

the few methods available to study living cells and their components without needing fluorescence

or any staining that causes cell death. Therefore, a phase-contrast microscope can non-invasively

image monolayer cultures with good contrast, making it a suitable choice for qualitative or quanti-

tative evaluation of MSC morphology in real-time.
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Figure 2.2: Basic schematic of a phase-contrast microscope adapted from [1].

A Motic AE31 phase-contrast microscope with a 10X objective and Moticam 1SP 1.0 MP

camera was used to acquire culture images for this research. Cells were imaged on the second

(low cell density) and fourth day (medium cell density) after the culture was prepared to capture

variation in phenotype as cells proliferate. All the images collected for this study had a size of

1280 × 1024 pixels and a resolution of 1.56 pixels/µm.

2.3.3 Monolayer MSC culture dataset

Cell culture and image capture were repeated three times to generate the dataset for training

and testing of the algorithms. A sample image from the acquired dataset is presented in Fig. 2.3.

Using Adobe Photoshop and Microsoft Paint software, cells were manually segmented and labeled

as RS or SR phenotype by an individual with more than 15 years of experience in culturing MSCs.

Images from two cultures served as ground truth for training, and images from the third culture

were used for independent testing as detailed in Table 2.1. The training dataset of 71 images

consisted of 472 cells with 307 cells labeled as RS and 165 cells as SR. The algorithm was validated

with 36 phase-contrast micrographs having 186 cells with 121 RS cells and 65 SR cells. Each cell

from the segmented ground truth was also characterized as RS or SR by 20 people trained to

visually identify MSC phenotype to further analyze the generalizability of the method.
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Table 2.1: Monolayer MSC culture dataset used for the development and validation of image
analysis algorithms.

Dataset Culture day No. of images No. of cells No. of RS cells No. of SR cells

Culture 1

(Train)

2 15 76 49 27

4 15 146 80 66

Culture 2

(Train)

2 17 96 73 23

4 24 154 105 49

Culture 3

(Test)

2 15 64 46 18

4 21 122 75 47

Figure 2.3: Example phase-contrast micrograph from the acquired monolayer MSC culture dataset.
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2.4 Culture protocol, imaging, and dataset for MSCs grown on microcarriers

The 3D microcarrier-based culturing protocol, imaging modality, and acquired dataset out-

lined in this section are used for the development and evaluation of MSC assessment algorithms

described in chapter 7.

2.4.1 Protocol for three-dimensional MSC cultures

MSCs were first cultured in monolayer conditions as described in section 2.3.1. 70% confluent

cell monolayers were exposed to 0.25% trypsin and 0.1% ethylenediaminetetraacetic acid (EDTA)

at 37°C for 5 minutes to passage the cells. CCM was used to deactivate trypsin, and centrifugation

was performed at 500g for 5 minutes to collect cells. These cells were seeded onto synthesized

gelatin methacryloyl (gelMA) microcarriers [104] in a 10 mL Rotating Wall Vessel (RWV) biore-

actor. Approximately 110,000 gelMA microcarriers (90-120 µm diameter) with a combined growth

area of 50 cm2 and 5 × 104 cells (1,000 MSCs/cm2) were incubated in 10 mL CCM in RWV. Cells

were allowed to attach to microcarriers for 1 hour during on/off cycles of 24 RPM for 1 minute

and 0 RPM for 20 minutes, respectively. The bioreactors were set at 24 RPM for the remainder of

the culture duration. Half of the bioreactor media was replaced with fresh CCM every 2-3 days.

After expanding cells until day 3 and day 7, they were treated with 1 µM CellTracker Green

(CTG) 5-chloromethylfluorescein diacetate (CMFDA) dye for 30 minutes, washed twice with 5 mL

phosphate-buffered saline (PBS), and fixed in 4% paraformaldehyde (PFA) under gentle agitation

for 1 hour. Following fixation, cell samples were treated with 20 µM DRAQ5 staining buffer at

37°C under agitation for 30 minutes, centrifuged at 50g for 30 seconds, and rinsed twice with 1.5

mL PBS. The sample was centrifuged again, PBS was removed, and 1 mL molten liquid agarose

was added. The suspension was mixed to make it homogenous, and then cells in agarose were

pipetted into the sample mount and allowed to cool and solidify for imaging.

2.4.2 Imaging of three-dimensional MSC cultures

In monolayer cultures, the intensity of transmitted illumination light is not affected because

the cells are attached to transparent glass or plastic substrate tens of microns thick. During phase-
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contrast imaging, cells generate contrast as they are aligned along a single plane that translates

into the microscope’s focal plane. However, for 3D cultures, this kind of BF imaging method

would produce blurred images of cells adhered to spherical microcarriers. These microcarriers

are thick (hundreds of microns in diameter) and made of materials that prevent light from in-

teracting with cells without significant distortion. Moreover, cell themselves being do not pro-

duce sufficient contrast to facilitate single-cell resolution. These problems can be addressed by

labeling the cell bodies and nuclei with appropriate fluorescent markers for high contrast visual-

ization. Though destructive, fluorescent staining is currently the most effective option for robust

morphological characterization and quality evaluation of 3D MSC cultures. Optical coherence to-

mography, multiphoton microscopy, confocal laser scanning microscopy, light-sheet fluorescence

microscopy (LSFM), and structured illumination microscopy are a few popular imaging systems

used to assess the structural and functional properties of 3D cell cultures [105, 106, 107].

Over recent years, LSFM has emerged as a promising imaging approach that overcomes the

limitations of conventional fluorescence, confocal, structured illumination, and multiphoton mi-

croscopy [108]. The collection objective is placed perpendicularly to the excitation path in LSFM,

unlike conventional fluorescence microscopes where both illumination and collection of the sig-

nal are performed on the same axis. Light-sheet illumination plane is created by either focusing

laser in single dimension with cylindrical lens or scanning along a single axis and then concen-

trated by an illuminating objective to the focal plane of the detection objective. Moreover, LSFM

microscopes can overcome the detrimental effects of sample absorption and scattering, providing

increased penetration depth, resolution, and image contrast [109, 110]. The novel optical config-

uration of LSFMs, with uncoupled perpendicular illumination and detection axis, combined with

fast camera-based detection, provides 3D representations of the samples with subcellular resolu-

tion at unprecedented speeds [111]. Additionally, it reduces phototoxicity and photobleaching by

orders of magnitude compared with conventional microscopes by only illuminating the plane get-

ting imaged, allowing efficient 3D imaging of live cell samples over hours and even days [112].

Hence, LSFM would serve as an ideal volumetric imaging approach to enable visualization, mor-
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phological characterization, and quality assessment of 3D MSC cultures at the single-cell level

[113, 114, 115, 116]. A simple schematic of LSFM is shown in Fig. 2.4 [2].

Figure 2.4: Basic optical configuration of a light-sheet fluorescence microscope adapted from [2].

In this study, volumetric images of MSCs attached to gelMA microcarriers were acquired using

Zeiss Z.1 LSFM. BF mode trans-illuminated the sample with a white LED and was used to identify

microcarriers in the sample mount and center them on the camera’s field of view. Cell-bound CTG

was excited at 488 nm, and nuclei-bound DRAQ5 was excited at 638 nm in fluorescence mode.

Spectral filters were used to detect the 505-545 nm and 660+ nm emission bands for CTG and

DRAQ5 channels, respectively. Dual objective illumination with pivot scanning and online fusion

was used to improve illumination of the entire microcarrier surface and reduce acquisition time.

The frame step size was optimized for a 20X, 1.0 NA water immersion objective lens, the light

sheet thickness was set to 2.4 µm, and the detector size was changed to 1024 × 1024 pixels to

reduce output file size. The illumination power and camera integration time were adjusted to

minimize both laser power and imaging time while using the full dynamic range of the camera
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detector. Z-stacks of the 3D sample were then acquired in both BF and fluorescence modes (CTG

channel for cell body and DRAQ5 channel for nuclei).

2.4.3 Three-dimensional MSC culture dataset

Image volumes acquired of cells fixed on days 3 and 7 of culture expansion served as training,

validation, and testing datasets for the presented algorithm [Table 2.2]. The algorithm was trained

with volumetric images from these two days to capture changes in cells as they proliferate on mi-

crocarriers. Each image volume consisted of either a single microcarrier or multiple microcarriers

clumped together. For both days, the number of cells ranged from 1 to 10 and 5 to 200 for sin-

gle and multiple microcarrier volumes, respectively. Multiple microcarrier volumes consisted of

clumps of 2 to 30 microcarriers. Figure 2.5 displays example volumetric image channels obtained

through LSFM for microcarrier cultured MSCs.

Table 2.2: Three-dimensional MSC culture dataset used for the development and validation of
image analysis algorithms.

Culture day
No. of microcarriers

per image volume

Training Validation

No. of image No. of No. of image No. of

volumes cells volumes cells

Day 3
Single 8 36 8 36

Multiple 4 34 4 49

Day 7
Single 7 34 6 28

Multiple 4 200 3 226

Imaris, a commercial microscopy image analysis software, was used to process the acquired

volumetric images and prepare the ground truths for the algorithm. Gamma correction, layer nor-

malization, and baseline subtraction were used to improve the quality of CTG and DRAQ5 Z-stacks
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Figure 2.5: Example light-sheet fluorescence volumetric image channels from the acquired three-
dimensional MSC culture dataset. a) Brightfield channel used to detect microcarrier locations in
the sample mount and center them on the camera’s field of view. b) CellTracker green channel
showing fluorescently labeled cell bodies. c) DRAQ5 channel expressing fluorescence for nuclei.

before their analysis. Gamma correction adjusted the pixel brightness of a specific range of voxels,

and layer normalization corrected the brightness and contrast of individual frames. Baseline sub-

traction removed the baseline intensity value from every voxel in the dataset to eliminate unwanted

scattering artifacts. Cell nuclei regions on the microcarrier surface were detected using DRAQ5

datasets and spot counting functions of Imaris in a supervised manner. Nuclei region identification

was followed by labeling the center of each detected object. The center points were then manually

inspected and removed, added, or translated as necessary. The location and count of these points

served as the reference for cell count and position in each volumetric image.

After generating nuclei center points, ground truth for segmentation of nuclei bodies was also

obtained in a semi-automated approach using the DRAQ5 datasets and surface creation functions of

Imaris. Object size filter and intensity threshold were applied to reduce unwanted signals from cell

debris, scattering artifacts, or out-of-focus light. An additional filter on the number of voxels in the

object was utilized to remove objects wrongly detected as nuclei. Finally, the segmented objects

were inspected manually and validated via the nuclei center points from the cell location/count

truth. The steps described for cell nuclei segmentation were similarly carried out for cell region

ground truth using CTG datasets and built-in surface creation functions of Imaris. The segmented
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cell regions were manually inspected and validated by identifying the corresponding cell nuclei

from the segmented nuclei data.

2.5 Quantitative assessment of monolayer and 3D MSC cultures using image-based analysis

The imaging systems described above facilitate quick in-process visualization of MSCs and

render images suitable for high-throughput image-based quantitative study of 2D and 3D cultures.

The subject of cell image analysis has received much attention with the increasing demands in

bioinformatics and biomedical applications [40, 41, 42]. Morphological cell analysis has become a

standard theory for computerized cell image processing and pattern recognition. This field encom-

passes a vast application area, such as cell clump segmentation, morphological feature extraction,

and abnormal cell identification [48, 49, 50]. Computer vision-based morphological evaluation of

cells has been integrated with the study of histological tumor sections [51], boundary detection

of cell nuclei [52, 53], characterization of cellular phenotypes [117], understanding drug influ-

ences [43], and many more. Thus, image analysis can be a powerful tool for the quantitative and

automated study of multidimensional MSC cultures.

2.5.1 MSC segmentation from their monolayer culture images using conventional process-

ing techniques

In digital image processing, cell segmentation is the first critical step to analyze and character-

ize cells from their microscopic images. Segmentation is the process of partitioning culture images

into a set of pixels that belong to cells and the substrate. The goal of segmentation is to simplify

cell images into something more meaningful and easier to examine. It aids with locating cells and

their boundaries in images. An overview of the proposed cell segmentation steps is displayed in

Fig 2.6. Automated cell segmentation includes two aspects cell localization and boundary detec-

tion [118]. Cell localization, a process of determining cell position in their images, is of great

importance to carry out a reliable morphology-based analysis. Sobel filter, an edge detection tech-

nique, highlights pixels that have a sudden change in their intensity and locates cell boundaries

in images. These detected edges on morphological dilation operation can provide candidate cell
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regions. Morphological opening and closing after dilation will remove substrate pixels wrongly

segmented as cells and enhance cell boundaries. Area-based thresholding can facilitate getting rid

of false detections due to imaging artifacts and debris. The threshold values for these operations

will be fixed during training based on their performance relative to the ground truth prepared via

manual inspection by a culture expert.

Candidate cell regions will be processed further to detect markers for identifying single cells.

Cell markers can be identified using local minima from cell intensity profile followed by mor-

phological processing (dilation and erosion) [119]. A cell region can be distinguished as a single

cell or a cluster of cells based on the number of markers it contains. Edge-based methods usually

fail to precisely segment each cell as a cell cluster does not have well-defined edges. However, a

region-based strategy can separate cells as it relies on the homogeneity of cell region pixels. Water-

shed segmentation [120], a popular region-growing technique, interprets an image as a topographic

landscape with ridges and valleys. Their elevation values are defined using the gradient magnitude

of respective pixels. Based on such a representation, the watershed algorithm decomposes an im-

age into catchment basins. For each local minimum, a catchment basin comprises all points whose

path of steepest descent terminates at this minimum. Water starts to rise from low gradient areas

(interior of objects and background), and watershed borders are built at the maxima of the gradient

magnitude, separating basins from each other. It decomposes an image completely and thus assigns

each pixel to a region or a watershed. However, if watershed segmentation is applied directly to

the gradient magnitude image, it generally results in over-segmentation due to intensity variations

within objects and background. However, this problem is solved when water is allowed to rise

only from places identified as markers. Cell markers segmented earlier will give the position of

each cell within a cluster and the number of cells within each region. Thus, the marker-controlled

watershed approach can segment clumped cells accurately, avoiding over or under segmentations

[121].
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Figure 2.6: Layout of conventional image processing-based segmentation steps for monolayer
cultured MSCs.

2.5.2 MSC segmentation from their monolayer and 3D culture images using deep learning

The image segmentation scheme described above performs sequential application of low-level

pixel processing (edge and line detector filters, region growing) and mathematical modeling (fitting

lines, circles, and ellipses) for automated MSC detection. It can validate the applicability of com-

puter vision as a tool for objectively monitoring cells. However, such an implementation is only

suitable for images distinctly recognizable cell boundaries and bodies. As the level of confluency

increases, cells proliferate and form clusters. Segmenting a high number of cells within clusters

with optimized boundaries is a complex task for conventional image processing algorithms. This

complexity arises because pixel-level methods such as edge detection fail to work as expected when

cell bodies overlap. Improper segmentation is undesirable as it leads to improper characterization

of cells. It is necessary to overcome the dependency on manually engineered features and param-

eters for robust MSC segmentation. It is only logical to let computers learn features that optimally

represent cells, which would help in quantifying their attributes. The concept of automated feature

learning at various levels of abstraction forms the basis of deep learning algorithms [62]. It has

dramatically improved the state-of-the-art visual object recognition, object detection, segmenta-

tion, and classification for biomedical applications [122, 123]. Deep learning-based segmentation

extracts details that are difficult to understand visually and can effectively capture intricate cellular

features [124, 125]. Therefore, deep learning can provide better precision in segmenting MSC
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from their monolayer culture images.

U-Net model [3] shown in Fig. 2.7 is a state-of-the-art deep learning solution that has gained

a lot of attention due to its effectiveness in training a convolutional neural network with a reduced

number of annotated images. It has higher computational efficiency and can separate touching

objects of the same class. Hence, it can be adopted for more efficient and optimized MSC seg-

mentation. The U-Net architecture consists of three sections, namely contraction, bottleneck, and

expansion. The contraction section is made of several blocks. Each block takes an input and applies

two 3 × 3 convolution layers, followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling.

The number of feature maps doubles after each block to be able to learn complex structures effec-

tively. The bottleneck layer is at the bottom and mediates between the contraction and expansion

layers. It uses two 3 × 3 convolutional layers followed by ReLU and a 2 × 2 up convolution layer.

The premise of this architecture lies in its expansion section. Similar to the contraction layer, it also

consists of multiple blocks. Each block passes the input to two 3 × 3 convolutional layers followed

by ReLU and a 2 × 2 upsampling layer. After each block, the number of feature maps used by the

convolutional layer becomes half to maintain symmetry. The input also gets appended by feature

maps of the corresponding contraction layer every time. This action ensures that features learned

while contracting the image are used to reconstruct it. The number of expansion blocks is as same

as the number of contraction blocks. After expansion, resultant mapping passes through another 1

× 1 convolutional layer to convert feature vectors into desired binary segmentation output.

Developing two separate U-Net models based on the above architecture for segmenting cell

regions and markers will enhance the sensitivity and precision of detecting single MSCs. Outputs

from both U-Nets can be integrated and processed using a marker-controlled watershed to delineate

clustered cells similar to conventional processing algorithms. Another main advantage of the 2D

U-Net model is that it can be translated easily to segment 3D volumes as the model architecture

remains the same [126]. All the layers used in the 2D network can be designed similarly for the

3D network. Moreover, 3D U-Net simplifies the segmentation of different fluorescent channels

used for labeling cell cytoplasm and nucleus owing to its ability to work with multiple channel
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Figure 2.7: U-Net model architecture adapted from [3]. Each blue and white box denotes a multi-
channel feature map and a copied feature map, respectively. The top of the box corresponds to
the number of channels, and box side edges correspond to layer size. Arrows represent different
operations listed in the figure.

inputs. It does not have high computational or memory requirements generally associated with

3D data processing as it needs fewer annotations and training samples to learn quickly. Thus, the

U-Net-based deep learning algorithm can successfully generalize and segment MSCs cultured on

monolayer and microcarriers. Lastly, reliable segmentation will aid estimation of total cell count

and confluency for multidimensional MSCs cultures.

2.5.3 Extraction of human-engineered features for monolayer and 3D cultured MSCs

Feature engineering is the process of applying domain knowledge to compute features (char-

acteristics, properties, attributes) from raw data using which exploration or prediction is carried

out [127]. These features greatly influence the prediction outcome. Thus, measuring appropriate
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features from segmented MSCs is essential to analyze them further. Human-engineered features

with the potential to describe cell size and shape include area, perimeter, solidity, circularity, axis

length, ellipticity, extent, and many others [128]. Some problem-specific features based on inten-

sity profile and texture can also capture cell form [129]. A single feature would not be sufficient to

retrieve information about cell characteristics from images, and a large number of features would

be needed for further multivariate statistical analysis. A subset of the features that best describe

MSC phenotypes with minimum redundancy would be used to separate RS and SR phenotypes.

Similar features will be extracted in 3D to understand how they can serve as empirical descriptors

of efficacy for MSCs grown on microcarriers.

2.5.4 Classification of monolayer cultured MSCs based on morphological phenotype

A classifier in machine learning is an algorithm that automatically orders or categorizes data

into one or more sets of classes. For monolayer cultures, supervised machine learning techniques

will suit the classification task best as cell labeling by culture experts is available. The classifiers

will utilize features extracted during training to understand how they relate to MSC phenotype

classes. Though there is a wide range of supervised machine learning methods, no single algorithm

works best on all problems. Moreover, predictive modeling is highly dependent on the size and the

structure of the dataset. As a result, it would be necessary to select a machine learning technique

that is appropriate for distinguishing between RS and SR cells.

Initially, basic linear classifiers, viz. linear discriminant analysis (LDA), logistic regression

(LR), and linear kernel support vector machine (LSVM), will be trained as binary classifiers to

identify MSC phenotype. These methods make a classification decision based on a linear com-

bination of feature vectors and reach accuracy levels comparable to nonlinear classifiers while

taking less time to train and use. In cases where linear classifiers fail to perform as expected, other

nonlinear classifiers such as K-nearest neighbor (KNN) and radial-basis kernel support vector ma-

chine (RSVM) would be modeled as they generalize better. Robust classification will provide the

proportion of efficacious cells for monolayer cultures, a key parameter to monitor culture quality.
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3. PRELIMINARY STUDY OF MORPHOLOGICAL CELL IMAGE ANALYSIS FOR

MONITORING MONOLAYER CULTURED MESENCHYMAL STROMAL CELLS*

3.1 Introduction

The research presented in this chapter aimed to validate the applicability of image analysis for

extracting relevant cellular features from phase-contrast images automatically and non-invasively

[130]. The algorithm had the potential to segment the MSCs, and classify them based on their

morphology to indicate their phenotype and the viability of the cell population [118].

3.2 Methods

Following the image acquisition of MSCs, the first step of the algorithm was pre-processing

to adjust contrast and compensate for intensity non-uniformities that could not be avoided during

image acquisition. Segmentation processes were used to locate and outline cells in images. This

step was followed by the extraction of several human-engineered features to characterize cell mor-

phology. The final step involved statistical analysis for classifying cells based on their phenotype

[Fig. 3.1]. A subset of the dataset detailed in section 2.3.3 comprising 15 images with 67 cells was

used in this preliminary study to train and evaluate the algorithm.

3.2.1 Image pre-processing and cell segmentation

The segmentation and classification steps of the algorithm are described in Fig. 3.2. Images

were analyzed using a comprehensive set of reference-standard algorithms provided by the Image

Processing Toolbox in MATLAB. Segmentation was simplified via pre-processing [Fig. 3.2(b)]

by converting the input RGB image to gray-scale and increasing contrast to better distinguish cell

regions from the culture substrate and marking them as foreground. Sharpening was performed

using unsharp masking to strengthen small image features such as cell boundaries, to improve

*Reprinted with permission from “Morphological cell image analysis for real-time monitoring of stem cell culture”
by S. M. Mota, R. E. Rogers, A. W. Haskell, E. P. McNeill, M. L. Giger, R. R. Kaunas, C. A. Gregory, K. C. Maitland,
Proc. SPIE 10883, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXVI,
108831I, 2019, Copyright 2019 by International Society for Optics and Photonics.
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Figure 3.1: Flow diagram for the image analysis algorithm.

segmentation.

Automated cell image segmentation consisted of cell localization and boundary detection [131].

A Sobel filter was used on the pre-processed images for edge detection to obtain region proposal

masks containing cells [Fig. 3.2(c-d)]. Seeds (candidate cell markers) were located within each

mask region by detecting local minima [Fig. 3.2(e)]. Masks with one seed were marked as in-

dividual cell regions, while those with multiple nuclei were marked as clusters due to different

segmentation strategies of the algorithm [119].

Sobel filter aided with the segmentation of individual cells by detecting edges at the points

where the intensity gradient of the image was maximum. These edges were dilated to fill complete

cell bodies, followed by morphological opening and closing to remove substrate pixels that were

misidentified as cell objects. Finally, thresholding using the size of detected objects was performed

to exclude objects in the image around the cell, such as debris. Thus, only the individual cell bodies
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Figure 3.2: Figure showing pipeline of the image analysis algorithm. a) Input phase-contrast mi-
croscope image. b) Input image pre-processing by contrast adjustment and edge sharpening to
make cell bodies more detectable. c) Cell edge detection using their gradient. d) Cell region pre-
diction within the image using the detected edges. e) Seed (candidates cell markers) identification
to distinguish each region proposal as either an individual cell or a cluster of cells. f) Clustered
cell delineation using the marker-based watershed technique. g) Individual cell segmentation with
the edge-based method. h) Classification of MSCs as either RS or SR phenotype using features
extracted from segmented cells for logistic regression method.

were segmented [Fig. 3.2(f)].

The algorithm used a marker-based watershed segmentation technique to segment cells within

clusters [132]. The watershed algorithm worked per intensity layer instead of per neighbor layer.

Candidate markers identified in the previous step were used as markers. These seeds gave the

position and number of cells within each region proposal for clustered cells. The intensity gradient

magnitude of the proposed cluster regions was computed and modified, so regional minima only

occurred at seed pixels. The watershed borders were then built at the maxima of the gradient

magnitude to segment cells within the cluster [Fig. 3.2(g)].

The results of cell detection and segmentation were evaluated using accuracy and the Sorensen-

Dice similarity coefficient [133], respectively. Accuracy, an object-based metric, was defined as

the fraction of cells correctly detected relative to manual segmentation. DICE coefficient, a pixel-
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based metric, measured the agreement between algorithm output (X) and manual interpretation

(Y ) via equation (3.1). Values of 0 and 1 signified no and complete overlap, respectively.

DICE =
2× | X ∩ Y |
| X | + | Y |

, (3.1)

3.2.2 Feature extraction

Features with the potential to describe cell morphology such as circularity, rectangularity, mi-

nor axis length, major axis length, aspect ratio, and intensity profile were computed for all seg-

mented objects [134]. Circularity and rectangularity features were computed using equation (3.2)

and equation (3.3) with the area, perimeter, width, and height values obtained for segmented cells.

Circularity =
4× π × Area

Perimeter2
, (3.2)

Rectangularity =
Area

Width×Height
, (3.3)

3.2.3 Classification of mesenchymal stromal cells based on their morphological phenotype

Cells segmented from two cultures were employed for training the classifier model, while cells

from the third culture were used to validate classifier performance. The training was carried out

only for cells that achieved a DICE score with ground truth of over 0.25 [135] to ensure that the

classification model was not trained using features from objects that were not cells. Due to this

cut-off, five incorrectly segmented user-defined cells were not utilized for training the classifier.

The extracted features were normalized and transformed for training a conventional LR clas-

sifier to distinguish RS and SR phenotypes. The algorithm classified the cell phenotype based on

the probability output given by the sigmoid function of the classifier model.

The performance of the LR model for classifying phenotype was validated using three metrics.

Classification accuracy was defined as the fraction of cells correctly classified based on their phe-

notype. AUC, the area under the receiver operating characteristic (ROC) curve [136], was used to

measure the model’s capability in distinguishing between RS and SR phenotypes. F-measure was
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the weighted average of precision (P ) and recall (R) as shown in equation (3.4). Precision was

the fraction of cells classified as RS that were RS, and recall was the fraction of cells correctly

classified as RS.

F −measure =
2× P ×R

P +R
, (3.4)

3.3 Results

Cell detection accuracy and average DICE scores for MSCs segmented with the presented

method are shown in Table. 3.1. This technique was able to correctly identify cells with over 90%

accuracy and precisely segment over 70% of the manually-defined cell area.

Table 3.1: Cell detection accuracy and average DICE score for cell segmentation.

RS phenotype SR phenotype

No. of cells 37 30

Detection accuracy % 91.89 93.33

Average DICE score 0.727 0.715

Potential segmentation errors [Table. 3.2] included missed segmentation (number of user-

defined cells not segmented), false segmentation (number of segmented regions that were not

user-defined cells), under segmentation (number of cells not segmented within a cluster), and over

segmentation (number of extra cells segmented within a cluster).
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Table 3.2: Segmentation error rates.

No. of cells
Correct Missed False Under Over

segmentation segmentation segmentation segmentation segmentation

67 62 (92.54%) 1 (1.49%) 1 (1.49%) 2 (2.99%) 0 (0%)

Table 3.3: Performance metrics of the algorithm for classification of MSCs based on their mor-
phological phenotype.

Training Testing

RS Phenotype SR Phenotype RS phenotype SR phenotype

No. of cells from culture 1 15 12 - -

No. of cells from culture 2 8 7 - -

No. of cells from culture 3 - - 11 9

AUC ± s.e. 0.98 ± 0.02 0.87 ± 0.08

Sensitivity 0.957 0.818

Specificity 0.947 0.889

F-measure 0.957 0.857

Classification accuracy % 95.24 85.00

Table. 3.3 shows the various performance metrics of the classifier, and ROC curves used for

AUC analysis are shown in Fig. 3.3. Only 62 out of 67 cells were used for classification due to the

previous segmentation errors. The classifier was able to identify phenotypes for over 90% of cells

correctly with an AUC of 0.98 during training. Accuracy and AUC values were reduced for the
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testing set by less than 10% and 0.1, respectively. This drop could be attributed to the low sample

number in the testing cohort but may also have been due to the number of samples in the training

cohort.

Figure 3.3: Performance of the logistic regression model for classifying morphological phenotype
of MSCs was validated using AUC ± s.e. calculated as 0.98 ± 0.02 and 0.87 ± 0.08 for training
and testing data sets, respectively, from the displayed ROC curves.

3.4 Discussion

The performance of the algorithm is dependent upon the quality of images used for training.

It is crucial to consider challenges arising from physical and biological factors. To address imper-

fections in image quality and make the algorithm generalized and robust, it will need to be trained

with a larger dataset consisting of images from several MSC cultures. Furthermore, images used

for this analysis were acquired two days after expansion. Further research is required utilizing

images taken at moderate (approximately 50%) and high (approximately 80%) confluence from

the same cultures to extend the algorithm through the lifespan of monolayer cultures.

The main focus of the technique was to assess the viability of MSCs employing morphological

phenotype for classification. Correct cell body segmentation was sufficient for accurate feature
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extraction and classification; therefore, cell boundary optimization was not required for segmenta-

tion. The algorithm extracted morphological features that have been determined empirically to be

viable indicators of the physiological state of MSCs from over 20 years of research. These features

helped in classifying the phenotype of each cell and predicting their downstream characteristics.

Based on the phenotype of the cells obtained from the image analysis, MSC manufacturers would

be able to predict the efficacy and functionality of the recovered cells. The developed approach did

not involve invasive processing, facilitating the implementation of live monolayer culture moni-

toring. With continuous monitoring and automation, modifications to the culture conditions could

be employed in real-time to enhance reproducibility. Furthermore, automated image acquisition

and analysis would replace the tedious exercise of manual visual inspection, making the process

objective, facilitating standardization and quantification, and improving the definition of quality

release criteria.

In conclusion, we present a computational method for the quantification of critical measures

of MSC morphology. The system is automated, non-invasive, and quantitative, proving the capa-

bility of image analysis to replace the current standard of manual visual inspection and subjective

evaluation for monolayer cultured MSCs.
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4. AUTOMATED MESENCHYMAL STEM CELL SEGMENTATION AND MACHINE

LEARNING-BASED PHENOTYPE CLASSIFICATION USING MORPHOMETRIC AND

TEXTURAL ANALYSIS*

4.1 Introduction

Building on our preliminary work reported in chapter 3, the research reported here presents

an integrated approach to segment and classify MSCs in phase micrographs, potentially providing

automated analysis of monolayer culture viability. This was achieved by the development and

evaluation of:

• an algorithm to localize and segment individual MSCs and MSCs in clusters from images of

low and moderate cell density, and

• a machine learning model using morphological and textural features extracted from seg-

mented cells to distinguish between RS and SR phenotypes of MSCs.

Here, segmentation of MSCs was handled as a three-step approach, where it first localized

regions in the image that contain cells, then detected algorithm-defined markers, and finally inte-

grated the regions with markers to segment individual cells inside clusters. The individual cells

obtained with the algorithm could be analyzed further to draw conclusions about the culture popu-

lation. In addition to segmenting MSCs, features that were potential indicators of the physiological

state of the MSCs were also computed. These features were used by a machine learning model to

classify the phenotype of each cell as RS or SR. Based on the phenotype of the cells from culture

images, the algorithm would be able to provide the proportion of maximally efficacious cells in

the culture. Thus, the developed image analysis protocol is novel in its contribution to automated

and rapid image-based processing to objectively examine the efficacy of adherent MSCs cultures.

*Reprinted with permission from “Automated mesenchymal stem cell segmentation and machine learning-based
phenotype classification using morphometric and textural analysis” by S. M. Mota, R. E. Rogers, A. W. Haskell, E. P.
McNeill, R. R. Kaunas, C. A. Gregory, M. L. Giger, and K. C. Maitland, Journal of Medical Imaging, vol. 8, no. 1,
pp. 1–20, 2021, Copyright 2021 by International Society for Optics and Photonics.
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Another innovative aspect of this work is the implementation of a comprehensive top-to-bottom

computer vision pipeline to identify MSCs and predict their relationship to RS or SR morpholog-

ical phenotypes. Moreover, its potential to replace or augment visual inspection would make cell

culture evaluation rapid, quantitative, and less tedious, rendering it beneficial for scale-up of cell

manufacturing. Beyond validation of the applicability of this image analysis algorithm for cell

quality control, an advantage of this work is its promise for streamlining culture processes for cell

therapy development and manufacturing.

4.2 Methods

4.2.1 Overview

The image analysis approach was developed to classify mesenchymal stem cell (MSC) phe-

notype using phase-contrast micrographs of monolayer culture. The dataset used in this study is

described in section 2.3.3. Figure 4.1 describes the overall flow of the method; each step is detailed

in the subsequent sections. Following pre-processing, the algorithm estimated cell density. Mor-

phological operations and thresholding detected regions of the image that contain cells. Candidate

markers were localized within these regions to identify if the cell region was a single cell or cell

cluster. A cell cluster was further segmented to identify individual cells. After the segmentation

of each cell, the algorithm extracted several human-engineered morphometric as well as textural

features. Cell segmentation and feature extraction algorithms were built using the comprehensive

set of reference-standard algorithms provided by the Image Processing Toolbox in MATLAB 9.5

(R2018b). Machine learning classifiers were trained using these features to distinguish between

the RS and SR phenotype. Classification models were developed in Jupyter Notebook 6.0.1 using

Python 3.5.6 libraries.

4.2.2 Image pre-processing and area fraction estimation

The input RGB phase-contrast micrograph was converted to grayscale (Igray), shown in Fig. 4.2(a),

and pre-processed to reduce the effect of undesired imperfections introduced during imaging. Con-

trast of Igray was adjusted to increase the intensity variation between the cells and the substrate,
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Figure 4.1: Pipeline of algorithm to classify mesenchymal stem cells in phase-contrast micro-
graphs. Example images illustrate (a) low and (b) moderate density. Cell regions of interest (RoI)
in image (b) include (c) individual cells and (d) clusters of cells, differentiated by the number of
candidate markers (blue) inside RoIs (white).
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making cell regions more detectable for segmentation. Cell edges were sharpened using unsharp

masking and then filtered using anisotropic median-diffusion to remove unwanted artifacts while

improving the signal-to-background ratio without distorting edges [Fig. 4.2(b)] [52]. The pre-

processed image (Ipre-processed) was further processed by Sobel filter to identify cell boundaries in

the images [Fig. 4.2(c)]. Sobel operator highlighted regions with maximum intensity change, de-

tecting edges above a sensitivity threshold of 1. Once object outlines were obtained, dilation and

closing were performed to connect the detected edges. This was followed by flood-fill operation

to remove holes from the filled regions.

Figure 4.2: Example image of MSCs shows the steps involved in detecting initial cell regions.
a) The input phase-contrast micrograph was converted to grayscale and b) pre-processed using
contrast adjustment, sharpening, and anisotropic filtering. c) Edges were detected using Sobel
operator. d) Edges were connected and filled using dilation, closing, and flood-fill operation to
obtain initial cell regions (Iinitial-region).

Using the same structuring element sizes for morphological operations to process images with a

high number of cells and images with a low number of cells led to poor segmentation performance.

Apart from the number of cells and clusters, the variances in their size and shape also become

significant as the culture grew over time. Using area fraction as a deciding factor for cell density

addressed this problem as different parameters were used for low and moderate density levels to

identify cell regions as well as the markers inside them. Also, every image was evaluated based

on their density estimate rather than through a potentially erroneous assumption that duration in

culture was a robust predictor of density. The cell density-based criterion automatically triggered

optimizations in the algorithm to ensure comparable performance at a range of cell density levels.
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Area fraction (AF) of binary image (Iinitial-region) was used to obtain an estimate of the input

micrograph’s cell density. It was calculated by the algorithm as the percentage of white pixels in

the image as given by

AF =

∑M
x=1

∑N
y=1 Iinitial−region(x, y)

M ×N
, (4.1)

where I initial-region(x, y) of size M × N pixels had a value of 1 for pixels belonging to the detected

initial cell regions and a value of 0 for the background pixels. Based on the training dataset, an area

fraction of 0.1 was selected as a threshold for the algorithm to decide if an image was less dense (<

0.1) or moderately (≥ 0.1) dense. In case an image had regions of both low and moderate density,

the algorithm would estimate it to be less or moderately dense depending on the predominant

region present. An image with a larger region of moderate density is more likely to have an

increased AF and be handled as moderately dense. The less dense cells present would easily

be detected as the thresholds for such images were set to facilitate complex cell segmentation. It

should be noted that the thresholds used for moderately dense images would not be ideal for images

with only less dense cells as it might lead to a greater number of false detections. On the other

hand, regions of moderate density in images classified as less dense would likely be a small cluster

of cells. The low density images have optimal thresholds for detecting markers in such clusters to

separate individual cells.

4.2.3 Candidate cell region detection

Cell region detection was conducted as a semantic segmentation [137] step to identify pixels

belonging to cells as defined in the truth, and hence, regions detected may contain more than one

cell. Figure 4.3 demonstrates the process of candidate cell region detection. For less dense im-

ages, Iinitial-region was used directly to define regions with potential cell objects. Pre-processing was

designed to detect objects with high sensitivity [Fig. 4.3(a)]; therefore, each object was evaluated

to remove image artifacts and identify candidate cell regions using thresholding [Fig. 4.3(b)] and

morphological operations [Fig. 4.3(c)]. For size thresholding, the detected object was removed
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if the area was less than a threshold value determined by the minimum, maximum, mean, or the

standard deviation of the area of all foreground objects in the image. This adaptive approach en-

sured that the threshold values were not overly biased towards the training set as it took relative

object sizes in each image into account to understand if it was likely to be a cell or not. Similarly,

the intensity-based thresholds were calculated using the maximum and minimum intensity values

inside that object obtained from the pixel positions in Ipre-processed. Objects labeled as cells in the

training set contained bright pixels in the cytoplasm and/or dark pixels inside the nucleus after con-

trast adjustment. Lack of both indicated that the object was not a cell as it had a relatively uniform

intensity range similar to substrate. For shape thresholding, circularity and ellipticity features of

the object were calculated. From the training data, circularity (mean ± s.d.) of MSCs and phase

imaging artifacts were found to be 0.43 ± 0.18 and 0.82 ± 0.05, respectively, where 1 represented

a perfect circle. Ellipticity was measured as

Ellipticity =
M1−M2

M1
, (4.2)

where M1 and M2 were the major and minor axis lengths, respectively, of an ellipse having the

same normalized second central moment (variance) as the object. Ellipticity (mean ± s.d.) of

MSCs and very thin artifacts such as fibers or strands have been found to be 0.46 ± 0.15 and 0.79

± 0.04, respectively, where 1 represented a line segment and 0 represented a circle. Since MSCs

are not as circular or elliptical as the artifacts, objects with high circularity and ellipticity were

removed from the detected cell areas. Morphological operations such as opening and erosion were

applied after thresholding to refine boundaries. Finally, objects with pixels connected to the image

border were removed to avoid analysis of truncated cells. As shown in Fig. 4.3(d), these steps

yielded the final image (Icell-region) with detected candidate cell regions corresponding to RoI.

For moderately dense images, the edge detection step was performed with a reduced sensitivity

threshold of 0.5 to cover all cell edges. Dilation and closing were performed with different struc-

turing element sizes to get new potential cell regions. The same thresholding methods as less dense

images were carried out on these objects with different threshold values to keep them relevant for
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Figure 4.3: Illustration of the steps involved in identifying candidate cell regions. a) Iinitial-region

obtained after edge detection and morphological operations were used as the input. b) Thresholding
using size, intensity, and shape criteria removed detected objects that were not cells. c) Opening
and erosion optimized the shape of cell areas. d) Clearing the image border removed incomplete
cells resulting in the final candidate cell regions. (Borders of cell regions are highlighted in blue.)

images with more objects. Thresholding was also repeated more times compared to low cell den-

sity processing as a lower edge detection threshold can cause more false detections. Thresholding

was followed by morphological opening, closing, and border clearing to obtain the Icell-region for

images having moderate cell density.

4.2.4 Candidate marker detection

In phase-contrast micrographs of cells, intensity was brightest at the cell boundaries where the

phase shift was maximum due to the optical path difference (refractive index and thickness) be-

tween cells and substrate, and was darker within the cell due to relative uniformity within the cell

[103]. The darkest regions inside cells were taken as candidate cell markers to identify individual

cells and to segment cells in clusters since each cell contains one prominent regional minimum.

The image Ipre-processed was further processed using Gaussian and median filtering to remove unnec-

essary noise and false local minima that don’t belong to the marker. Then, contrast-limited adaptive

histogram equalization (CLAHE) improved the contrast of the regional minimum. Finally, mor-

phological reconstruction was performed using the histogram equalized image along with Icell-region

as the mask to obtain Imarker-processed, shown in Fig. 4.4(a).

Markers were segmented using two different threshold values (A and B) for H-minima trans-

form [138, 139, 119]. Used independently, the higher threshold value of A resulted in under-

detection of markers, and the lower threshold value of B resulted in false positives; therefore, the
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two were combined. First, a very high value was used as threshold A for H-minima transform to

localize potential markers inside the RoIs from Icell-region. Morphological opening and binary area

opening were done to remove objects that weren’t the regional minimum [Fig. 4.4(b)]. Then, min-

ima were obtained with a lower threshold, value B. These minima outputs were dilated and closed

to get the candidate markers [Fig. 4.4(c)]. In the case of zero markers from threshold A in any RoI,

markers detected using B were added to that region. Markers from both the thresholds were also

merged for potential cluster RoIs by using perimeter as a criterion [Fig. 4.4(d)].

Figure 4.4: Pipeline for segmentation of markers inside the RoIs (shown in yellow) from Icell-region.
a) Ipre-processed was processed to get an image (Imarker-processed) suitable for detecting markers. b)
Markers were obtained from Imarker-processed using H-minima transform with higher threshold A. c)
Markers were obtained from Imarker-processed using H-minima transform with lower threshold B. d)
Markers from both the thresholds were merged for RoIs satisfying the perimeter threshold criterion
and also for RoIs with zero markers from threshold A.

Over-detection error was managed for cell regions with more than one marker using distance

thresholding along with area thresholding and morphological operations. The Euclidean distance

between the centroid of the markers within a cell region was computed, and if the distance was

too small, the regional maximum was over-segmented. Thus, one of the two close markers with
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the smaller area was removed. Finally, dilation and erosion were performed to get rid of over-

segmentations.

4.2.5 Cell segmentation and validation

RoIs and markers were combined as shown in Fig. 4.5(a) for the final instance segmentation

[137] step to detect and delineate each cell in the image. A region with no marker was not consid-

ered a cell, only one marker was labeled as a single cell [Fig. 4.5(b)], and a region with more than

one marker was treated as a cluster of cells [Fig. 4.5(c)]. The marker count within each cluster

indicated the number of cells in the cluster. Each cluster region was segmented into individual

cells [Fig. 4.5(d)] using marker-controlled watershed, which overcame the limitations of standard

watershed technique, such as over and under-segmentation, by using markers [132, 140].

The algorithm’s performance for cell detection and segmentation was validated using the expert-

defined truth. For cell detection, the true positives (TP) were given by the number of individual

cells and cells inside clusters that were correctly detected by the algorithm. The false negatives

were of two types, namely missed detections (FN1), where individual cells were not detected, and

under-detections (FN2), where the number of detected cells within a cluster was less than the actual

number. Similarly, the two types of false positives were false detections (FP1) and over-detections

(FP2). FP1 were debris or image artifacts that were erroneously detected as individual cell objects,

and FP2 were the number of extra objects detected within a cluster by the algorithm. Sensitivity

(S) and precision (P) were computed using

S =
TP

TP + FN1 + FN2
, (4.3)

P =
TP

TP + FP1 + FP2
, (4.4)

to estimate how well the algorithm was able to detect MSCs. For segmentation, Sorensen-Dice

similarity coefficient (DICE) [133] was used as the metric via equation 3.1 to analyze the agree-

ment between algorithm output and manual outlining for cell boundaries.
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Figure 4.5: Representation of the cell segmentation steps. a) Icell-region was integrated with the re-
sults from marker detection (Markers shown in blue). b) RoIs with single markers were identified
as individual cells, and c) RoIs with more than one marker were identified as clusters of cells. d)
Marker-controlled watershed was carried out to segment individual cells within clusters (Water-
shed ridge lines shown in red). e) Results from the steps (b) and (d) were combined to get the
segmentation output.
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4.2.6 Feature extraction

False positive objects (FP1 and FP2) and all cells belonging to under-detected (FN2) clusters

were excluded from the dataset to avoid training or validating classification models using incor-

rectly segmented objects. The final dataset used for feature extraction and classification is detailed

in Table 4.1.

Table 4.1: Mesenchymal stem cell culture dataset used for feature extraction and classification.

Dataset Culture day No. of cells No. of RS cells No. of SR cells

Training

(Culture 1 + Culture 2)

2 167 117 50

4 296 182 114

Independent testing

(Culture 3)

2 49 37 12

4 91 54 37

Human engineered descriptors of the correctly detected cells were automatically extracted for

the task of classifying each cell into RS or SR phenotype. A total of 30 features, consisting of

a combination of size, shape, as well as first-order and second-order statistical texture measures,

were computed [141, 142, 134]. The names of the features are listed in Table 4.2. The morphome-

tric features were extracted to distinguish spindle-shaped RS cells from flattened SR cells, while

texture-based features were extracted to use spatial distribution of intensity for differentiating be-

tween SR cells that are flattened and RS cells that have a more prominent phase-contrast halo

around their cell body [88, 92]. Each first-order feature was calculated for segmented cell regions

in Igray, Ipre-processed, and Ireconstructed giving 3 measures for each first-order feature. The second-

order features were measured for the gray-level co-occurrence matrix (GLCM) of Igray, Ipre-processed,

and Ireconstructed. Also, each GLCM feature was computed in 24 different orientations yielding 72
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measures for each second-order feature. Only one measure out of the 3 and 72 first and second-

order feature measures, respectively, was selected by finding the measure with the highest AUC

[136, 143] for distinguishing between RS and SR cells.

Table 4.2: Human-engineered features extracted for the segmented MSCs.

Feature type Feature names

Size Area, perimeter, minor axis, major axis, width, height

Shape Elongation, compactness, circularity, ellipticity, solidity, extent

First-order features
Standard deviation, variance, intensity profile, skewness,

mean intensity, balance, kurtosis, median, mode

Second-order features
Correlation, inertia, cluster prominence, energy, entropy,

cluster shade, maximum probability, dissimilarity, homogeneity

The 30 features were sorted in descending order of their AUC value before computing the

correlation matrix to ensure that features with higher AUCs were retained. Features with corre-

lation greater than 0.8 were removed to reduce redundancy and optimize the computation for the

classifier.

4.2.7 Cell classification and validation

The selected features were used to train linear and non-linear classifiers to find the most suit-

able model for our application. Features were transformed to have zero mean and unit variance

before training, and the validation/test data were scaled using the training parameters. As seen in

Table 2.1, the dataset was imbalanced with RS cells being more prevalent than the SR cells. To

avoid poor classification of SR cells due to its low prevalence, synthetic minority oversampling

technique (SMOTE) [144] was used during training.
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LSVM, RSVM, LDA, KNN, and LR models were trained to classify MSCs as RS or SR phe-

notype. The models were trained using features from both day 2 and day 4 together, as well as

day 2 and day 4 individually. As the feature correlation and relevance for data from day 2, day 4,

and combination of day 2 and 4 was different, features were selected for each of them individu-

ally. It was observed that the classifier could learn better from features of cells whose images were

acquired on the same day rather than the combination of features of cells from two different days.

AUC values were obtained using ROCKIT software [145], and all the models were compared us-

ing the average AUC value from 5-fold cross-validation [146]. Further, ensemble classifiers based

on soft-voting method were also trained with the top two classifiers for day 2 and day 4 separately

[147]. Finally, the performance of the selected models for the independent test dataset was evalu-

ated using AUC, sensitivity, and specificity. Sensitivity as well as specificity were determined by

selecting a threshold that minimized (1 − sensitivity)2 + (1 − specificity)2 [147].

4.3 Results

4.3.1 Cell detection and segmentation

The algorithm’s ability to accurately locate MSCs was evaluated using sensitivity and precision.

Table 4.3 shows the breakdown of correctly detected cells and undetected cells for RS and SR

cells in the training and independent testing sets. False negatives were further defined as missed

detections (FN1) or under-detections (FN2) as described in Section 4.2.5. The algorithm correctly

detected cells with sensitivity greater than 0.95 for both RS and SR cell phenotypes in the training

set. A sensitivity over 0.8 in the independent testing set indicated the robustness of the algorithm.
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Table 4.3: Cell detection sensitivity of the algorithm for training and independent testing.

Dataset
Cell

phenotype

No. of

cells

Correct Missed Under
Sensitivity

(S)
detections detections detections

(TP) (FN1) (FN2)

Training

All 472 466 3 3 0.987

RS 307 302 2 3 0.984

SR 165 164 1 0 0.994

Independent

testing

All 186 157 13 16 0.844

RS 121 102 8 11 0.843

SR 65 55 5 5 0.846

Precision was the fraction of objects detected by the algorithm that were identified as cells in the

ground truth labeling of the dataset. Table 4.4 shows the number of incorrectly identified objects

that were either false detections (FP1) or over-detections (FP2). The algorithm’s precision for

cultures used in training was above 0.95. A precision greater than 0.85 in the independent testing

set demonstrated the generalizability of the algorithm to detect cells with a low false positive rate.

Table 4.4: Cell detection precision of the algorithm for training and independent testing.

Dataset
Correct detections False detections Over detections Precision

(TP) (FP1) (FP2) (P)

Training 466 5 8 0.973

Independent testing 157 13 13 0.858
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The DICE metric was used to evaluate the overlap between the algorithm and the ground truth

segmentation of MSCs. DICE scores (mean ± s.d.) for the training and testing dataset are summa-

rized in Table 4.5 for all cells outlined in the truth as well as only for the cells that were correctly

detected. The algorithm segmented over 85% and 80% of the manually defined cell areas for

training and testing, respectively, regardless of cell phenotype.

Table 4.5: Cell segmentation DICE score of the algorithm for training and independent testing.

Dataset Cell phenotype

DICE score (mean ± s.d.)

All cells Correctly detected cells

(TP + FN1 + FN2) (TP)

Training

All 0.875 ± 0.092 0.881 ± 0.067

RS 0.878 ± 0.089 0.884 ± 0.061

SR 0.870 ± 0.097 0.875 ± 0.077

Independent

testing

All 0.803 ± 0.218 0.869 ± 0.082

RS 0.814 ± 0.203 0.871 ± 0.080

SR 0.783 ± 0.245 0.866 ± 0.085

The performance of the algorithm for cell detection and segmentation were analyzed per each

cell in Tables 4.3-4.5. Sensitivity, precision, and DICE metrics of the algorithm were further

examined per image from all cultures and days. The mean ± s.d. of these metrics for the training

and testing images are given in Table 4.6, and it was confirmed that the algorithm could detect and

segment cells consistently for each image.
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Table 4.6: Cell detection and segmentation performance of the algorithm per image from training
and testing datasets. Mean and standard deviations were calculated for all cells over all images.

Dataset
No. of

images

Cell detection Cell detection Cell segmentation

sensitivity precision DICE score

(mean ± s.d.) (mean ± s.d.) (mean ± s.d.)

Training 71 0.991 ± 0.036 0.967 ± 0.107 0.896 ± 0.050

Independent testing 36 0.837 ± 0.207 0.861 ± 0.217 0.849 ± 0.106

Figure 4.6 shows the ground truth along with algorithm’s segmentation results for two images

of both low and moderate density from the test dataset. The difference in performance of the

algorithm to localize cells in low and moderately dense images was also reviewed as it was trained

with different parameters for these two levels of cell densities. Welch’s t-test at 95% confidence

level failed to show statistical difference in the values of sensitivity (p = 0.375), precision (p =

0.191), and DICE score (p = 0.289) for low and moderately dense cell images.

4.3.2 Cell phenotype classification

As mentioned previously, only correctly detected individual cells and cells in clusters with

correct cell count were used to train and test the machine learning models for the task of classi-

fying each cell phenotype as RS or SR. LSVM, RSVM, LDA, KNN, and LR were trained and

compared using the AUC metric from 5-fold cross-validation. These five classifiers trained using

object features from both day 2 and day 4 cultures were validated by testing their performance

in cross-validation for a combination of cells from “day 2 + day 4”, as well as day 2 and day 4

independently. It was observed that “day 2 + day 4” models did not perform as well for day 2 as

they did for day 4 [Table 4.7]. This may be due to models’ bias towards a higher prevalence of day

4 MSC features. Training the classifiers with features from day 2 and day 4 individually improved

their performance for both days [Table 4.7]. The outputs from the top 2 classifiers (RSVM and
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Figure 4.6: Sample images of MSCs from the independent test dataset comparing the ground truth
cell outlines (top row) with the segmentation results of the algorithm (bottom row). Columns a
and b are examples of low density images whose AF values were estimated as 0.04 and 0.08,
respectively by the algorithm. Similarly, examples of moderate density images with AF values of
0.15 and 0.21 are shown in column c and d, respectively. The ground truth images also illustrate
that the truncated cells on image borders were not considered for analysis.

LR for day 2; LDA and KNN for day 4) based on cross-validation AUC were combined for en-

semble classification. Figure 4.7 shows the classifier agreement plot between the models used for

ensemble classification. The x-axis in Fig. 4.7(b) was not continuous due to the discrete probabil-

ity distribution of the KNN classifier. The disagreement between the top 2 classifiers for each day

may be because they learn differently from the same features. “RSVM + LR” and “LDA + KNN”

models being a combination of linear and non-linear approaches were able to harness the potential

of both the models to make more accurate predictions. This likely explains why fusion classifiers

performed better than the individual classifiers during 5-fold cross-validation, and hence, they were

selected for the image analysis pipeline.

49



Table 4.7: 5-fold cross-validation to compare performance of models for distinguishing between
RS and SR cells. AUC values are in bold for Day 2 and Day 4 classifiers that performed best
during cross-validation.

5-fold cross-validation AUC ± s.e. (Culture 1 + Culture 2)

Training fold Day 2 + Day 4 Day 2 Day 4

Testing fold Day 2 + Day 4 Day 2 Day 4 Day 2 Day 4

LSVM 0.73 ± 0.01 0.67 ± 0.03 0.75 ± 0.02 0.72 ± 0.04 0.81 ± 0.03

RSVM 0.75 ± 0.01 0.68 ± 0.01 0.78 ± 0.03 0.734 ± 0.06 0.80 ± 0.02

LDA 0.73 ± 0.02 0.68 ± 0.04 0.75 ± 0.03 0.70 ± 0.04 0.83 ± 0.02

KNN 0.73 ± 0.01 0.68 ± 0.04 0.74 ± 0.02 0.72 ± 0.06 0.83 ± 0.02

LR 0.75 ± 0.01 0.70 ± 0.03 0.77 ± 0.03 0.73 ± 0.04 0.82 ± 0.02

RSVM + LR - - - 0.76 ± 0.04 0.84 ± 0.04

LDA + KNN - - - 0.75 ± 0.06 0.86 ± 0.03

The selected ensemble classifiers for day 2 and day 4 were further evaluated using the indepen-

dent test dataset. The algorithm was able to correctly identify cell phenotypes with an AUC of 0.82

for day 2 and 0.79 for day 4. The classification models for both days were statistically proven to

perform better than random chance using the 95% confidence interval for AUCs given in Table 4.8.

These inferences weren’t corrected for multiple comparisons as only a single statistical test was

performed for each day. The fitted ROC curves obtained for the day 2 and day 4 ensemble classi-

fiers are presented in Fig. 4.8. The algorithm achieved a sensitivity and specificity of over 0.75 for

both days, further demonstrating its effectiveness in classifying MSCs based on their phenotype.
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Figure 4.7: Diagonal classifier agreement plots between a) logistic regression classifier (x-axis)
and radial kernel support vector machine (y-axis) for day 2 culture and b) K-nearest neighbor (x-
axis) and linear discriminant analysis (y-axis) for day 4 culture. Each point represents a cell whose
phenotype was predicted as RS (green) or SR (red) by each classifier.

Table 4.8: Performance of the algorithm for classifying MSCs as RS or SR for independent testing.

Culture day Model
AUC ± s.e.

Sensitivity Specificity
(95% CI)

2 RSVM + LR
0.816 ± 0.060 0.789 0.887

(0.769, 0.886)

4 LDA + KNN
0.787 ± 0.04 0.796 0.757

(0.716, 0.851)

4.3.3 Generalizability of phenotype classification

The cells in the training and test dataset were also labeled by a group of 20 individuals with

varied level of expertise in working with MSCs. The group comprised of nine people with one
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Figure 4.8: Fitted binormal ROC curves illustrating the performances of day 2 and day 4 ensemble
classifiers for the task of distinguishing between RS and SR cells during independent testing. The
dashed blue line represents the “RSVM + LR” day 2 classifier and the solid orange line represents
the “LDA + KNN” day 4 classifier.

to three years of experience, six people with four to nine years of experience, and five people

with ten or more years of experience. This analysis was performed to study the generalizability

of the developed algorithm as phenotype assessment of MSCs is highly subjective. Each cell was

classified as either RS (0) or SR (1) by all twenty individuals, and its average phenotype score

(APS) was computed. Based on the range of average scores, the cells were split into categories

such as highly RS, moderately RS, uncertain, moderately SR, and highly SR [Table 4.9]. The

confidence of the group in identifying a cell as either RS or SR was represented by these five

categories; where the highly RS/SR categories meant highest confidence in labeling that cell and

uncertain category meant that the phenotype of that cell was almost indeterminate.

The output of the ensemble classifiers for day 2 and day 4 from training and testing set was

studied to understand which category of the cells were most wrongly predicted by the algorithm. It
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was noticed that the algorithm had the highest classification sensitivity (> 0.9) for highly RS and

highly SR categories and the least sensitivity (as low as 0.4) for the uncertain category [Table 4.9].

This enabled us to understand that while our image analysis pipeline has the potential to predict

the cell phenotype with a sensitivity very close to human interpretation, it did exhibit a similar

weakness to trained humans in that it had lower sensitivity in categorizing marginal morphological

characteristics. If these limitations are addressed in future iterations of the algorithm, this approach

would have the potential to out-perform human observers with decades of experience.

Table 4.9: Classification sensitivity of the algorithm for the 5 cell phenotype categories.

Dataset
Culture

day

No. of cells correctly classified / No. of cells as per truth

(Sensitivity)

Highly Moderately
Uncertain

Moderately Highly

RS RS SR SR

APS 0.15 < APS 0.40 ≤ APS 0.60 < APS APS

≤ 0.15 < 0.40 ≤ 0.60 < 0.85 ≥ 0.85

Training

2
10 / 10 9 / 11 5 / 12 11 / 13 3 / 3

(1.000) (0.818) (0.417) (0.846) (1.000)

4
40 / 40 36 / 40 29 / 38 29 / 33 16 / 16

(1.000) (0.900) (0.763) (0.879) (1.000)

Independent

testing

2
15 / 16 17 / 21 7 / 19 20 / 23 12 / 12

(0.937) (0.809) (0.368) (0.869) (1.000)

4
72 / 74 66 / 77 26 / 46 57 / 65 31 / 34

(0.973) (0.857) (0.565) (0.877) (0.912)
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4.4 Discussion

The image analysis method reported here is capable of segmenting and classifying MSCs based

on their morphological phenotype. Segmentation results provide cell count per image, cell density

(cells/cm2), and percent confluency that indicates cell proliferation over the time course of the

culture. Classification of segmented cells yields a count of undesirable SR cells (quiescent) and

the ratio of these cells to viable RS cells (high potency) that serves as a vital indicator of culture

quality. The promising sensitivity, precision, and DICE score for MSC localization in phase-

contrast micrographs suggest that automated image-based analysis can be seamlessly integrated

into the current cell culture workflow for their quantitative evaluation.

That being said, it is crucial to note that an overall evaluation of the developed image analysis

approach has not been included in this study. It was only feasible to assess each stage of the

algorithm separately using the available dataset and an additional independent dataset would be

needed for the overall validation of the entire system. The cell detection and segmentation stages

are greatly influenced by the intensity distribution, contrast, and clarity of the input phase-contrast

micrographs. The classification stage in turn is dependent on the segmentation output. Upon

resolution of these challenges, classifiers could be trained for more robust prediction by expanding

the dataset as well as accounting for cells whose phenotype is uncertain. These challenges faced

by different stages of the pipeline are discussed in detail subsequently.

The ability of the algorithm to detect and segment cells is greatly dependent upon the qual-

ity of the acquired images. In phase-contrast micrographs, high contrast is crucial to distinguish

cells from the substrate. The majority of detection errors during training and testing were pri-

marily due to poor image contrast and blur in some image regions. Fluorescence microscopy of

labeled cells would provide higher contrast images and easier segmentation; however, phase con-

trast microscopy is the standard technique for the noninvasive evaluation of live cells. The low

rate of false-positive and false-negative detections has minimal impact on the overall quality as-

sessment as long as a sufficient number of images are acquired to capture a population of correctly

segmented cells.
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The classification results were studied to understand factors that affect the performance of pro-

posed models. In this study, classifiers were trained using the truth defined by a biologist with

15+ years of experience working with MSCs. The majority of MSCs incorrectly classified were

identified as cells undergoing differentiation from RS to SR phenotype. Additionally, phenotype

labels were obtained for the entire dataset from 20 trained individuals with varying levels of exper-

tise in culturing MSCs to assess the subjectivity of human classification and the generalizability of

the algorithm. This labeling enabled an analysis of the impact of ambiguity in the morphology of

differentiating cells on visual inspection and classification. The trained individuals had a minimal

agreement about cell phenotype during differentiation, demonstrating the uncertainty in classify-

ing cells in this transition both for human interpretation and the algorithm. The existing binary

classifier could be trained as a multiclass problem with the task of distinguishing between RS, SR,

and these indeterminate cells. Identifying cells with indeterminate phenotype would decrease the

number of false classifications and increase certainty in the prediction of RS and SR phenotypes.

However, more data would be necessary to train the machine learning model to predict the indeter-

minate class effectively. An alternative would be to calibrate the binary classifier that differentiates

RS from SR cells for correlating its probability output with confidence in a cell’s phenotype. The

future endeavor would be fine-tuning the current approach by adopting the above-mentioned ma-

chine learning methods to improve classification robustness.

Classification performance was only validated for cells that were correctly detected and not

evaluated for false-positive objects. Since this technique would be implemented in real-time as a

pipeline where every segmented object would be classified, it is necessary to assess the effect of

classifying incorrectly detected objects. Though not in the scope of the research discussed in this

chapter, it may also be interesting to analyze if the algorithm tends to classify false positive objects

as RS or SR cells. Images from three different cell cultures have been used for the dataset here.

This algorithm can be refined and tested using a broader set of images from MSC cultures generated

in other laboratories and obtained with different phase-contrast microscopes. The algorithm was

trained to predict cell phenotype from day 2 and day 4 using two different classifiers. This was
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done because a “day 2 + day 4” model was biased against cells from day 2 due to limited data as

compared to day 4 when more cells were present. Additional data from more cultures may enable

sufficient features for day 2 cells to train a common classifier with greater prediction capacity,

removing the need for two separate classifiers. Apart from this, a larger dataset will not only

increase data variability for algorithm training but also enable characterization of the capability

to predict the quality of cultures during practical application. The algorithm’s performance can

also be compared to standard culture evaluation assays, many of which are time-consuming and

labor-intensive, to evaluate quantitative phenotypic analysis as a measure of replication potential

for MSC cultures. These considerations do not include the considerable amount of time, effort,

and expense associated with training expert observers.

The focus of the research presented in this chapter was to prove the applicability of image-based

analysis for non-invasive and objective determination of MSC phenotype in low and moderately

dense cultures. The algorithm is not expected to perform well for highly dense cell images where

there is a lot of cell overlap making even visual investigation complicated. Quantitative evaluation

of the earlier stages of culture is more critical for monitoring the health of the culture. MSC

cultures are typically harvested or passaged before high confluency. This methodology has the

potential for being extended to:

• Forecast the percentage of non-functional MSCs in a culture for a future time based on the

ratio computed for the present and past time points.

• Quantitatively represent the influence of change in culture protocol over the population of

putatively efficacious and non-functional MSCs in culture.

• Monitor the ratio of non-functional to putatively efficacious MSCs as a function of conflu-

ency and cell density in addition to time.

• Estimate efficacy of other stem cell cultures for their prospective use in cytotherapies using

image-based morphological analysis.
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In summary, we have shown that the presented morphological image analysis can segment and

classify MSCs to quantify the efficacy of monolayer cultures. As this computational pipeline is

completely non-invasive, it enables continuous monitoring of culture conditions to enhance repro-

ducibility. It is anticipated that this algorithm will facilitate biologists and cell manufacturers to

draw conclusions about the functionality of recovered MSCs. The proposed solution with auto-

mated imaging leads to rapid, quantifiable, and standardized MSC quality control processes. It

could be incorporated into high-volume stem cell manufacturing to pave way for efficient cell

therapies to treat chronic diseases.
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5. U-NET-BASED IMAGE SEGMENTATION OF MESENCHYMAL STROMAL CELLS*

5.1 Introduction

U-Net has been adopted for a variety of biomedical problems including, brain tumor detec-

tion, breast mass segmentation, and diabetic retinopathy [148, 149, 150]. Owing to its high

computational efficiency and ability to learn from limited training data, we implemented a U-

Net architecture-based pipeline to segment MSCs cultured in monolayer conditions. The research

goal outlined in this chapter was to study and analyze how a standard U-Net can be adapted and

optimized for more accurate and efficient segmentation of MSCs. The novelty of the work pre-

sented here is the application of deep learning for segmenting MSCs to facilitate their potency

assessment. Thus, our presented algorithm bridges the gap between the current technology and the

need for robust segmentation of MSCs.

5.2 Methods

The image dataset of monolayer MSC culture detailed in section 2.3.3 was applied to train and

evaluate the presented U-Net deep learning model. The dataset consists of 71 images with 472

MSCs for training plus validation and 36 images with 186 MSCs for independent testing. Figure

5.1 shows a flow diagram of the U-Net-based image analysis method presented in this chapter. The

input images of MSC monolayer cultures were acquired using a phase-contrast microscope. The

ground truth was prepared manually for training and performance validation of the deep learning

model via visual inspection by a culture expert with 15+ years of experience. The input images

were pre-processed and then augmented to generate sufficient data for training the U-Net architec-

ture. The trained U-Net model was used to obtain the cell prediction maps of the culture images.

Cell prediction maps were post-processed to get the final MSC segmentation output.

*Reprinted with permission from “U-Net based image segmentation of mesenchymal stem cells” by S. M. Mota,
R. E. Rogers, A. W. Haskell, E. P. McNeill, R. R. Kaunas, C. A. Gregory, M. L. Giger, and K. C. Maitland, Proc. SPIE
11647, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX, 116470V, 2021, Copyright
2021 by International Society for Optics and Photonics.
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Figure 5.1: Pipeline of the proposed U-Net based mesenchymal stem cell segmentation method.

5.2.1 Pre-processing and augmentation

All the images in the training and testing dataset were pre-processed and standardized using

pixel-wise centering and normalization. Pixel-wise centering scales all the image pixels to have

a mean of zero. Normalization divides each pixel value by the standard deviation of all the pixel

values of the image. Pre-processing leads to suppression of unwanted distortions and enhance-

ment of relevant cell features so that the U-Net model can learn better from this improved data.

Pre-processed images from cultures 1 and 2 were augmented to generate more data for training and

validation. Data augmentation was essential to teach the network desired properties such as invari-

ance and robustness when only a few training samples were available. Each image was augmented

to generate 65 more images through basic image transformation operations such as rotation, width

shifting, height shifting, zooming, shearing, flipping, and also by performing random elastic de-

formation.
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5.2.2 U-Net model training

The U-Net architecture implemented for this study is described in section 2.5.2. A pixel-wise

softmax was applied to the resultant image followed by a weighted binary cross-entropy loss func-

tion. The idea was that, even in segmentation, every pixel has to lie in one of the classes. Hence,

this method converted the segmentation problem into a binary classification problem, performing

very well compared to the traditional loss functions. The architecture used a novel weighted loss

scheme for each pixel such that there was a higher weight at the border of segmented objects. This

weight map was estimated using morphological operations, and it helped the network learn tiny

separation regions between overlapping cells to delineate individual cells in the binary segmenta-

tion prediction.

The prepared training dataset was split randomly into training and validation to avoid over-

fitting the model. Adam optimizer was used to find proper network weights with a learning rate of

1 × 10-4. The neural network was trained from scratch with initial weights drawn from a Gaussian

distribution. It was run for 100 epochs, each iteration processing a mini-batch of five randomly

picked training samples. The network was also assigned a callback function that reduced the

learning rate when validation loss did not decrease for five consecutive epochs, saved the weights

of the best performing model, and finally stopped the training when there was no improvement in

the validation loss for ten consecutive epochs.

5.2.3 Post-processing and performance evaluation

It was observed from the training and the validation dataset results that there were many objects

falsely predicted by U-Net as cells which greatly affected the cell detection performance. To

overcome this, the segmentation map from the U-Net model was further post-processed with basic

morphological operations. The objects below a particular area threshold were removed to get rid of

speckles and small background artifacts. Objects at the border that were less than the size threshold

were also removed to avoid truncated cells. These thresholds were optimized and fixed utilizing

the training and validation images. Finally, morphological dilation and flood-fill operation were
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carried out to optimize the detected cell boundaries and fill any holes present in the segmented

objects.

The performance of the presented U-Net segmentation with post-processing was compared

with morphological image analysis from chapter 4 as well as standard U-Net. Additionally, mor-

phological analysis was also compared with standard U-Net to understand how it measures against

state-of-the-art deep learning-based biomedical image segmentation technique. True positives (TP)

were defined as the number of objects correctly detected as cells, false negatives (FN) by the num-

ber of cells not detected by the U-Net model, and false positives (FP) by the number of objects

wrongly identified as cells. Sensitivity (S) and precision (P) metrics were used to assess cell detec-

tion, and DICE [133] was used to evaluate cell segmentation via equation 3.1. Values of sensitivity

and precision were computed not only for all cells but also per image.

Morphological and textural features that serve as the descriptors of MSC phenotype were ex-

tracted for cells correctly segmented by morphological image analysis and the presented U-Net

approach. AUC [136, 143] value was estimated from 10-fold cross-validation for each feature

for the task of distinguishing between efficacious and non-efficacious cells. Finally, morphologi-

cal and post-processed U-Net segmentations were compared using AUC values of their top three

features for a comprehensive analysis.

5.3 Results

Detection and segmentation performances of morphological image analysis, standard U-Net,

and the proposed method for training dataset are shown in Table 5.1. Performance was evaluated

using sensitivity, precision, and DICE metrics. Sensitivity and precision values reported here were

overall values for all cells as well per image. Agreement between segmentation output and ground

truth was assessed for each image via the DICE score. Morphological image analysis performed

better than standard U-Net in all of the evaluation metrics for this task. The low precision of the

U-Net was determined to be due to the detection of several image artifacts as cells. Morpholog-

ical analysis was able to overcome such false positive detections through various morphological

thresholding steps. Although the U-Net model used weighted maps to learn the small separation
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borders, it could not separate cells in clusters as effectively as the marker-controlled watershed

technique used in the presented pipeline. An important observation from the training results was

that post-processing effectively improved the precision of standard U-Net by almost 25%. It was

also noticed that post-processing decreased the sensitivity by less than 0.3% compared to standard

U-Net, which was negligible compared to the increase in precision.

Table 5.1: MSC detection and segmentation performance of morphological, standard U-Net, and
presented U-Net algorithms for the training dataset.

Metrics
Morphological Standard U-Net Presented U-Net

analysis analysis analysis

Sensitivity (S) 0.987 0.765 0.763

Precision (P) 0.973 0.653 0.818

Sensitivity per image (mean ± s.d.) 0.991 ± 0.036 0.817 ± 0.173 0.815 ± 0.173

Precision per image (mean ± s.d.) 0.967 ± 0.107 0.692 ± 0.213 0.860 ± 0.171

DICE score per image (mean ± s.d.) 0.896 ± 0.050 0.841 ± 0.056 0.852 ± 0.055

The cell detection and segmentation metrics of all the three approaches are described in Ta-

ble 5.2 for the independent test dataset. It was confirmed from precision and DICE values that

post-processing successfully optimized segmentation results from standard U-Net. Morpholog-

ical analysis still performed best for segmenting and detecting MSCs. Additional work would

be needed to modify and optimize U-Net’s architecture for it to be able to localize MSCs more

accurately.
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Table 5.2: MSC detection and segmentation performance of morphological, standard U-Net, and
presented U-Net algorithms for the independent test dataset.

Metrics
Morphological Standard U-Net Presented U-Net

analysis analysis analysis

Sensitivity (S) 0.844 0.747 0.742

Precision (P) 0.858 0.556 0.789

Sensitivity per image (mean ± s.d.) 0.837 ± 0.207 0.772 ± 0.216 0.758 ± 0.217

Precision per image (mean ± s.d.) 0.861 ± 0.217 0.536 ± 0.210 0.806 ± 0.232

DICE score per image (mean ± s.d.) 0.849 ± 0.106 0.804 ± 0.050 0.823 ± 0.051

P-values from the paired two-sample t-test for independent testing are listed in Table 5.3 to

evaluate the statistical significance of the work described in this chapter. Morphological analysis

significantly outperformed standard U-Net in all of the evaluation metrics for detecting and seg-

menting MSCs. It was seen that U-Net with post-processing significantly performed better than

standard U-Net for precision and DICE metrics. Moreover, the statistical test failed to show any

difference in cell detection sensitivity of these two methods, making the decrease in sensitivity

value after post-processing [Table 5.2] insignificant. The t-tests also failed to show a statistical

difference between DICE scores of the developed algorithm and morphological image analysis.

Though morphological image analysis performed significantly better than the post-processed U-

Net in precision and sensitivity, p-values indicated only a small significance margin. It can be

concluded from these statistical inferences that standard U-Net architecture with further modifica-

tion, optimization, and post-processing has valuable potential to advance MSC segmentation and

make it more robust than the existing techniques.
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Table 5.3: P-values from two-sample t-tests for statistical comparison between morphological,
standard U-Net, and presented U-Net algorithms.

Comparison of detection and Sensitivity Precision DICE Score

segmentation performance per image per image per image

Morphological vs. standard U-Net 2.5E-02 5.3E-10 8.0E-03

Morphological vs. presented U-Net 1.4E-02 3.1E-02 7.5E-02

Presented U-Net vs. standard U-Net 1.6E-01 6.3E-08 1.0E-07

Morphometric and textural features were extracted for the TP objects from both morpholog-

ical and presented U-Net analysis outputs. AUC values were measured for all features to ana-

lyze how well the segmentation results can help predict MSC culture potency. Three features for

both approaches that best-classified MSCs as efficacious or non-efficacious during 10-fold cross-

validation are listed in Table 5.4 for low and moderate cell densities separately. The AUCs for the

top three features were very close to each other for analyzing culture images acquired at low cell

density. However, all the three features computed from the post-processed U-Net for medium cell

density images appeared to be better descriptors of MSC viability than features from the morpho-

logical analysis. This study indicated that as confluency rises, U-Net would segment cells with

higher robustness and make culture viability estimation more effective.

64



Table 5.4: 10-fold cross-validation AUC of top-performing features extracted from cells correctly
segmented using morphological image analysis and presented U-Net for predicting phenotype of
MSCs as viable or non-viable.

Culture density
Morphological analysis Presented U-Net analysis

Feature name AUC ± s.e. Feature name AUC ± s.e.

Low

Minor axis 0.773 ± 0.042 Ellipticity 0.762 ± 0.029

Standard deviation 0.743 ± 0.040 Minor axis 0.754 ± 0.024

Entropy 0.704 ± 0.029 Dissimilarity 0.698 ± 0.035

Medium

Inertia 0.728 ± 0.029 Minor axis 0.752 ± 0.029

Standard deviation 0.705 ± 0.023 Standard deviation 0.735 ± 0.045

Cluster prominence 0.697 ± 0.032 Inertia 0.713 ± 0.029

5.4 Discussion

The potential of a U-Net-based deep learning algorithm to be implemented for automated and

non-invasive analysis of MSCs was substantiated by the independent test results. Our proposed

method detected cell regions with sensitivity and precision greater than 75% and 80%, respectively.

This study shows great promise for enhancing MSC segmentation by modifying the U-Net model

to increase sensitivity and precision. The presented computational method would aid the rapid and

effective quantification of useful MSC features. These features will be given to a machine learning

model to classify the phenotype of each cell and predict its downstream characteristics. Based on

the cell phenotype obtained, it is anticipated that cell biologists will be able to predict the viability

and functionality of the recovered cells. Furthermore, the study of U-Net along with morphological

post-processing for cell segmentation has led to the realization that integrating deep learning with

standard techniques can improve performance to a great extent.

Over the last few years, a lot of variations have been developed to advance the performance of

standard U-Net for medical image diagnosis, including nested U-Net, hybrid pyramid U-Net, cas-
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cade U-Nets, among others [151, 152, 153]. The next step will be to adapt and transform the U-Net

architecture and post-processing for significantly greater sensitivity and precision than morpholog-

ical image analysis. To conclude, the U-Net-based approach does not involve invasive processing,

facilitating the implementation of continuous monitoring. It has the ability to replace the tedious

exercise of manual visual inspection, making the process objective, facilitating standardization,

and advancing the definition of quality release criteria. Thus, it would make MSC segmentation

consistent for various culture protocols to enable high-throughput stem cell analysis.
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6. 2U-NET: DOUBLE U-NET SEGMENTATION TO OPTIMIZE MACHINE

LEARNING-DRIVEN MORPHOLOGICAL PROFILING OF MESENCHYMAL

STROMAL CELLS

6.1 Introduction

Our earlier work discussed in chapter 4 employed low-level pixel processing and mathemat-

ical modeling to construct a compound rule-based system that segments MSCs in phase-contrast

micrographs. This algorithm is only suitable for images with distinct cell boundaries and bod-

ies. As cells become confluent, segmentation becomes challenging for conventional techniques as

they rely on manual data representation, parameter tuning, and feature engineering. Segmentation

errors can affect the subsequent calculation of morphological attributes causing inaccurate estima-

tions of culture efficacy. Thus, it is crucial to develop an image analysis pipeline unhindered by

these limitations and capable of elucidating information not easily assessed even by visual investi-

gation. Deep learning can meet these needs as computers directly learn features that represent cells

optimally. Lately, deep learning-enabled segmentation of individual cells has been performed pop-

ularly using U-Net [3] that treats segmentation as a pixel-level classification problem, and Mask

R-CNN [154] that works on object detection along with mask prediction for each bounding box.

The proposed segmentation pipeline uses U-Net as it has demonstrated great success for semantic

segmentation, especially where it was infeasible to obtain thousands of annotated data [149, 150].

Application of the original U-Net [3] with a weighted loss function failed to perform instance

segmentation of MSCs robustly in comparison to our prior morphological analysis (Chapter 4).

This is because identifying individual MSCs is more challenging as culture confluency increases.

Our preliminary evaluation outlined in chapter 5 revealed that standard U-Net implementation

for MSC segmentation is improved considerably through post-processing. Thus, a U-Net with

further modification, optimization, and post-processing could potentially advance MSC analysis.

Various adaptations of the original U-Net have furthered its performance for microscopy image
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segmentation, including RIC-Unet [155], Dense-UNet [156], and Han-Net [157]. Specifically, al-

gorithms reported by Lux et al. [158, 159] to segment densely clustered HeLa cells are relevant

to our focus on delineating overlapping MSCs. These algorithms used two weighted U-Nets for

detecting cellular areas and markers separately, followed by watershed transform to interpret lo-

calized areas of confluency. The presented pipeline used a similar approach where MSC regions

and algorithm-defined markers were provided by two separate U-Nets. However, in contrast to

strategy by Lux et al. [159], the following changes were incorporated in 2U-Net to increase ac-

curacy of MSC segmentation: 1) cell region and marker U-Nets were trained using DICE loss

rather than weighted cross-entropy or weighted mean square error, 2) H-minima transform output

served as ground truth for cell marker detection U-Net instead of erosion-based annotation, 3) pre-

processing and post-processing procedures were customized for MSC phase-contrast micrographs

and cell region/marker predictions, respectively.

Beyond segmentation, the ultimate aim of this study was to profile MSCs based on their mor-

phological phenotype to evaluate culture efficacy. To this end, we have developed binary machine

learning models that can robustly classify segmented cells as RS or SR in a non-destructive and

rapid manner. To summarize, the novelty and main contributions of research introduced in this

chapter are 1) development of a dedicated deep learning-based model (2U-Net) in combination

with standard image processing procedures for enhanced MSC segmentation, 2) extension of Dou-

ble U-Net segmentation by integrating feature computation with machine learning to determine

the functionality of every cell in the culture based on its morphology, and 3) assessment of pro-

posed method’s capability to standardize cell quality control by substituting visual inspection and

rendering culture evaluation automated, reliable, and quantitative.

6.2 Methods

We have developed a 2U-Net scheme to optimize instance segmentation and phenotype pre-

diction of MSCs from monolayer culture images. The dataset used for training and validating the

proposed approach is tabulated in section 2.3.3. The flow of the presented scheme is illustrated in

Fig. 6.1. The algorithm was trained and evaluated on a machine with an NVIDIA Titan V GPU.
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It was written in Python 3.5.6 using Keras library for U-Nets, Scikit-learn library for machine

learning, and MATLAB 9.5 (R2018b) for image processing.

6.2.1 Pre-processing, annotation, and augmentation

As the first pre-processing step for U-Net 1, input RGB phase-contrast micrographs were con-

verted to gray-scale and resized from 1280×1024 to 640×512 pixels. Then each training image

was standardized and normalized. Note that the validation and test images were scaled using the

parameters computed during training. Annotations were prepared for U-Net 1 using the cell out-

line ground truth and all individual cells and cell clusters were annotated as cell regions. After

pre-processing and annotating, training samples were augmented using geometric transformation

operations such as rotation, horizontal shift, vertical shift, zoom, shear, and flip. A different strat-

egy was followed to pre-process input images and annotate training data for U-Net 2. After gray-

scale conversion and resizing, images were pre-processed using contrast adjustment in MATLAB.

Standardization and normalization were not carried out for U-Net 2 as enhancing the contrast led

to better segmentation of cell markers by U-Net 2. Binarization, erosion, and H-minima transform

methods to generate cell marker annotations [Fig. 6.1(b)] were evaluated through cross-validation.

Training U-Net 2 with H-minima annotation yielded the best cell marker detection sensitivity and

precision (Appendix A.2). H-minima transform [138] consisted of detecting regional minima in-

side each expert outlined cell. In cases of more than one regional minima inside a cell, only the one

with the maximum area was retained as a cell marker. The same augmentation strategy as U-Net 1

was followed for training U-Net 2.

6.2.2 Training procedure

U-Net 1 and U-Net 2 models developed for MSC segmentation followed the same convolu-

tional neural network architecture as the original U-Net [3]. U-Net 1 used 16 feature channels in

the first layer while U-Net 2 used 32 feature channels. The number of feature channels was doubled

for U-Net 2 because segmenting cell markers was more complicated than segmenting cell regions.

Dropout layers were added after each max pooling operation to avoid the overfitting problem. Also,
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Figure 6.1: Flowchart illustrating the presented 2U-Net algorithm for image-based analysis of
MSC cultures. a) U-Net 1 was trained with pre-processed, annotated, and augmented phase-
contrast micrographs of MSCs. It was then used to predict cell regions that were further post-
processed. Similarly, b) U-Net 2 was modeled to locate algorithm-defined cell markers in the
images. These predictions were followed by c) identification of individual cells (blue) and cell
clusters (brown); clusters were subsequently segmented using a marker-controlled watershed. Af-
ter segmentation, object features were extracted and utilized by a machine learning classifier to
categorize cells as either RS (green) or SR (red) phenotype. Quantitative metrics viz. culture con-
fluency, cell count, and efficacy ratio were obtained using segmentation and classification results.
d) Lastly, the algorithm’s potential to estimate culture quality was verified using standard visual
inspection as ground truth.
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U-Net 1 and U-Net 2 included batch normalization after convolutions to make the networks stable

and learn faster. Both U-Net models were cross-validated using DICE, weighted DICE, binary

cross-entropy, and weighted binary cross-entropy loss functions [160, 3, 161]. DICE loss yielded

the best cross-validation performance (Appendix A.1) and was used as the loss function for U-Net

1 and U-Net 2. Adam optimization method [162] with a learning rate of 1 × 10-4 was used by

both networks to find weights. Both the networks were trained from scratch with initial weights

obtained from a Gaussian distribution. During five-fold cross-validation, the networks were set to

run for 100 epochs along with a callback function. The callback function reduced the learning rate

when validation loss did not decrease for five consecutive epochs and ultimately stopped training

when there was no improvement in validation loss for ten consecutive epochs. After setting all

the hyperparameters as well as the loss function through cross-validation, the models were again

trained from scratch using the pre-processed and augmented images from Culture 1 and 2 without

setting aside any data for validation. The number of epochs in the final U-Net 1 and U-Net 2 train-

ing was set as the average of epochs that the models ran during cross-validation. These trained

networks were saved as the final models and used by the algorithm for predicting cell regions and

markers.

6.2.3 Post-processing and cell segmentation

U-Net 1 included post-processing steps of area thresholding, morphological dilation, flood-fill

operation, and border clearing. Area thresholding removed artifacts too small to be a cell region.

Dilation was performed to refine the shape and boundaries of the candidate cell regions, followed

by a flood-fill operation to remove any holes inside the detected cell regions. Finally, the image bor-

ders were cleared of any objects via area thresholding, because truncated cells on the border were

not considered by the algorithm for MSC culture analysis. The output of U-Net 2 was masked with

the post-processed result from U-Net 1 so that any markers outside candidate cell regions were not

considered. The markers were then processed using area thresholding, flood-fill, and morphologi-

cal opening and closing. Area thresholding removed background noise, and flood filling completed

the marker objects. The morphological opening was applied to detach markers with weak connec-
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tions to ensure there was no clustering, and the closing operation properly connected the marker

edges.

Post-processed images from U-Net 1 and U-Net 2 were combined, and the number of markers

inside each region was counted. Every detected cell region was distinguished using its marker

count as either a cell (1 marker) or a cluster (>1 marker). A region with zero markers was defined

as an individual cell depending on its ellipticity, circularity, and area. The cell clusters were delin-

eated into individual cells via marker-controlled watershed technique [140]. Performing watershed

along with cell markers inhibited under or over-segmentation and separated the cluster into exactly

as many cells as the markers. Cell regions labeled as individual cells together with watershed

output provided final segmentation prediction for MSC culture images.

6.2.4 Feature extraction and phenotype classification

Human-engineered feature computation and machine-learning-based estimation of MSC effi-

cacy were executed similar to section 4.2.6. After segmentation, morphometric (size and shape)

and textural features (first and second-order) were extracted to predict the phenotype of cells as

RS (efficacious cells) or SR (non-efficacious). The classifiers were only trained using features

from segmented objects in the training dataset that were defined as cells by the ground truth. FP

objects were omitted to prevent the classifiers from learning incorrect features. They were also

removed from the test set to evaluate the performance of classifiers independent of segmentation

results. The details of the number of cells used for feature extraction as well as classifier training

and testing are listed in Table 6.1. Note that features from all segmented objects (TP and FP) were

included during the assessment of the entire image analysis pipeline.
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Table 6.1: Dataset used for feature extraction and classification of MSC morphological phenotype.

Dataset Cell density No. of cells No. of RS cells No. of SR cells

Training

(Culture 1 + Culture 2)

Low 167 118 49

Medium 279 176 103

Independent testing

(Culture 3)

Low 62 44 18

Medium 110 70 40

Features were sorted in descending order of their AUC [143] value for the task of distinguish-

ing between RS and SR cells. Next, only features with a correlation less than 0.2 were selected to

minimize redundancy. Each selected feature was transformed using centering and scaling by cal-

culating the mean and variance. These statistics were stored during training and used for test data

transformation later. Data augmentation was conducted for training folds during cross-validation

using the synthetic minority oversampling technique [144] to deal with the lower prevalence of SR

cells. Linear kernel support vector machine (LSVM), radial-basis kernel support vector machine

(RSVM), linear discriminant analysis (LDA), K-nearest neighbor (KNN), and logistic regression

(LR) were modeled to predict MSC phenotype. These classifiers were trained independently for

features from low cell density, medium cell density, as well as low and medium combined. Features

were selected for each of them separately, and these models were tuned and compared using their

AUC from five-fold cross-validation. The best models were selected for the algorithm pipeline and

saved for final evaluation using the independent testing data.

6.2.5 Performance evaluation

The performance of the image analysis methodology was validated for each of the three stages

of cell detection, segmentation, and phenotype classification. Sensitivity (S) and precision (P)

values measured using equations 3.3 and 3.4 respectively, indicated 2U-Net’s ability to detect indi-

vidual and clustered MSCs. Furthermore, DICE [133] was used to gauge overlap between truth and
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segmentation prediction. Cell detection and segmentation metrics of the proposed technique were

compared with morphological, standard U-Net, and post-processed standard U-Net techniques dis-

cussed in previous chapters 4 and 5. Statistical significance of the algorithm for independent test

results was analyzed through paired two-sample t-tests [163]. P-values from t-tests were adjusted

for multiple comparisons using the Bonferroni–Holm correction [164].

Receiver operating characteristic curves, AUC values, and their statistical analysis were ob-

tained using pROC [165], an open-source package for the assessment of classification models.

All linear and non-linear models were compared during cross-validation and the models with the

best average AUC for distinguishing between RS and SR cells were chosen. The 95% confidence

interval of the AUC metric on the test set was estimated to check if the algorithm performed sig-

nificantly better than random chance. Inferences were also drawn from DeLong’s test [166] to

statistically verify if classifiers designed with features from 2U-Net segmentation predicted MSC

phenotype more effectively than models trained with features from the morphological analysis.

Sensitivity and specificity of the classifiers were found for test data by selecting a threshold that

yielded a minimum for (1 – sensitivity)2 + (1 – specificity)2 [147]. Additionally, the manual label-

ing done by 20 individuals with MSC culturing experience was used to investigate the correlation

between algorithm and human interpretation in evaluating culture efficacy.

Finally, the entire algorithm was applied to calculate culture attributes such as cell count, effi-

cacy ratio, and pixel-wise confluency for each culture [Fig. 6.1(c)]. These parameters are crucial

for monitoring cell health, proliferation rate, as well as culture viability. Segmented objects from

all culture images were totaled to get cell count. Efficacy ratio was defined as the fraction of the

number of cells predicted as RS to the total cell count (RS + SR). Pixel-wise confluency (PC) was

calculated as

PC =

∑N
x=1

∑P
i=1

∑Q
j=1 I(i, j)

N × P ×Q
(6.1)

wherein I(i, j) represented the binary segmentation output of size P × Q having a value of one

for cell pixels and zero for background pixels, and N was the number of culture images. Root
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mean square errors were computed for these culture properties by means of algorithm responses

vs. ground truth. As noted previously, this evaluation included FP and FN detections to account

for the effect of segmentation on the algorithm’s potential to determine culture quality, enabling

the overall verification of the developed pipeline.

6.3 Results

6.3.1 Detection and segmentation of MSCs using 2U-Net

Results for the cell detection stage were obtained for four techniques namely morphological,

standard U-Net, post-processed U-Net, and the presented Double U-Net, selected for comparison

during training. The object-based sensitivity measures listed in Table 6.2 for training and inde-

pendent testing provide an estimate of how well each algorithm could correctly identify objects

defined as cells in the ground truth. The morphological method had high training sensitivity com-

pared to others; however, it overfitted the training data and did not generalize as expected during

testing. No U-Net-based approach suffered from this issue due to augmentation as well as U-Net’s

ability to learn well from limited data. Furthermore, it was verified through independent testing

that the proposed Double U-Net achieved a sensitivity greater than 0.9, outperforming all other

U-Net approaches. 2U-Net’s lower count of FN2 could be attributed to having a separate convo-

lutional network to localize cell markers that enhanced the segmentation of individual cells inside

clusters. Additionally, applying DICE loss to identify MSC regions resulted in a reduction of FN1,

thus improving the overall sensitivity of the Double U-Net algorithm.

In addition to sensitivity, precision was measured for the aforementioned techniques to assess

their ability to avoid FP and detect objects that were actually cells. The object-based precision

metric for training and independent testing is shown in Table 6.2. Similar to sensitivity, mor-

phological analysis suffered from overfitting while U-Nets learned well from training data. The

2U-Net methodology had the best precision of more than 0.9, mainly due to the post-processing

of outputs from U-Net 1 and U-Net 2. Post-processing removed truncated border cells, phase

artifacts, and background noise that were detected as cells by standard U-Net. Post-processed U-
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Net only processed standard U-Net output and performed poorly because it relied on a weighted

loss function that caused over-detection of cells inside clusters (FP2). The method reported in this

chapter avoided this problem as it used DICE loss with two U-nets, each separately post-processed,

to identify regions and markers.

Table 6.2: Object-based cell detection sensitivity and precision of morphological, standard U-Net,
post-processed U-Net, and 2U-Net algorithms for training and independent testing.

Training (Culture 1 + Culture 2) Independent testing (Culture 3)

Total no. of cells = 472 Total no. of cells = 186

Prior mor- Stan- Post-

2U-Net

Prior mor- Stan- Post-

2U-Netphological dard processed phological dard processed

analysis U-Net U-Net analysis U-Net U-Net

TP 466 361 360 451 157 139 138 172

FN1 3 13 14 3 13 10 11 5

FN2 3 98 98 18 16 37 37 9

FP1 5 164 69 5 13 99 34 3

FP2 8 28 11 18 13 12 3 9

S 0.987 0.765 0.763 0.956 0.844 0.747 0.742 0.925

P 0.973 0.653 0.818 0.951 0.858 0.556 0.789 0.935

Apart from object-based analysis, segmentation results were also estimated per image using

sensitivity, precision, and DICE for the testing dataset. The image-based metrics obtained for each

method, shown in Table 6.3, demonstrated the Double U-Net’s superior segmentation of MSCs

from phase micrographs. A comparison of segmentation results with ground truth for four rep-

resentative images is shown in Figure 6.2. 2U-Net had the least number of FP and FN followed
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by the morphological method. Standard U-Net had the maximum number of false detections that

were reduced by further processing as seen in segmentation images of post-processed U-Net. Ad-

ditionally, p-values from one-tailed t-tests are outlined in Table 6.3 for independent testing data.

The 2U-Net approach was proven to be significantly superior to all other techniques at p-value <

0.01 across the sensitivity, precision, and DICE metrics for MSC detection and segmentation. This

inference was drawn using p-values adjusted for multiple comparisons.

Table 6.3: Image-based cell detection and segmentation performance of morphological, standard
U-Net, post-processed U-Net, and 2U-Net algorithms for training and independent testing. Mean
and standard deviations (s.d.) were calculated across all images. Statistical comparison of 2U-Net
with the other three methods illustrates its significant improvement across all metrics. P-values
were adjusted for multiple comparisons using Bonferroni–Holm correction.

Independent testing (Culture 3) with total no. of images = 36

Prior morphological
Standard U-Net Post-processed U-Net 2U-Net

analysis

mean ± s.d. p-value mean ± s.d. p-value mean ± s.d. p-value mean ± s.d.

S 0.84 ± 0.21 5E-03 0.77 ± 0.22 5E-05 0.76 ± 0.22 3E-05 0.94 ± 0.12

P 0.86 ± 0.22 8E-03 0.54 ± 0.21 8E-12 0.81 ± 0.23 2E-03 0.95 ± 0.09

DICE 0.85 ± 0.11 2E-04 0.80 ± 0.05 6E-14 0.82 ± 0.05 1E-11 0.92 ± 0.05

6.3.2 Classification of MSC phenotype using machine learning

All the linear and nonlinear machine learning models were compared using the cross-validation

AUC metric tabulated in Table 6.4. MSCs were classified more effectively when separate models

were created for each level of culture density rather than having a common machine learning

model. Logistic regression (LR) and linear discriminant analysis (LDA) classifiers had the highest

AUCs for low and medium density, respectively, and were selected as the final models for the image
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Figure 6.2: Example images (a – d) of MSCs from independent testing data comparing the ground
truth cell outlines (first row) with segmentation results of previous morphological (second row),
standard U-Net (third row), post-processed U-Net (fourth row), and reported 2U-Net (fifth row)
methods. Cells in ground truth images are outlined in black and they also show that the truncated
cells on borders are omitted for analysis. For all the algorithm outputs, true positives (correctly
detected cells) are outlined in blue, false negatives (cells that were not detected) are outlined and
shaded in blue, while false positives (objects incorrectly detected as cells) are outlined and shaded
in green.
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analysis algorithm described in this article. Independent testing was done on these classification

models used in the Double U-Net pipeline.

Table 6.4: Comparison of machine learning models to distinguish between RS and SR phenotype
of MSCs. AUC values of low and medium cell density classifiers that performed best during five-
fold cross-validation are presented in bold.

Cell density
AUC ± S.E. from five-fold cross-validation of training data

(Culture 1 + Culture 2)

Training Validation
LSVM RSVM LDA KNN LR

fold fold

Low +

Medium

Low +
0.84 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.77 ± 0.03 0.84 ± 0.01

Medium

Low 0.79 ± 0.06 0.81 ± 0.05 0.78 ± 0.04 0.68 ± 0.04 0.77 ± 0.05

Medium 0.85 ± 0.01 0.87 ± 0.01 0.85 ± 0.01 0.79 ± 0.03 0.85 ± 0.01

Low Low 0.81 ± 0.03 0.80 ± 0.03 0.84 ± 0.02 0.73 ± 0.05 0.86 ± 0.02

Medium Medium 0.87 ± 0.02 0.83 ± 0.01 0.92 ± 0.01 0.82 ± 0.02 0.87 ± 0.01

Classification performance metrics such as AUC, sensitivity, and specificity are detailed in Ta-

ble 6.5 along with results from morphological image analysis previously reported in chapter 4.

Classifiers were not modeled using features from standard or post-processed U-Net as their seg-

mentation was not as robust. DeLong’s test showed that 2U-Net classifiers predicted MSC phe-

notype significantly better than prior morphological analysis for low as well as medium density

cultures. P-values were not adjusted because only a single statistical test was performed for each

of the two cell density levels. Moreover, the 95% confidence intervals of these classifiers signified

that they predicted cell phenotype significantly better than random chance. The fitted ROC curves

for low and medium density are shown in Fig. 6.3. Lastly, Double U-Net achieved high sensitivity
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and specificity over 0.80 for both density levels, exhibiting its ability to estimate culture efficacy

based on MSC phenotype.

Table 6.5: Classification performance of morphological and 2U-Net algorithms for independent
testing.

Metrics

Culture 3 - Low cell density Culture 3 - Medium cell density

Prior morphological
2U-Net

Prior morphological
2U-Net

analysis analysis

AUC ± s.e. 0.816 ± 0.060 0.886 ± 0.042 0.787 ± 0.047 0.835 ± 0.037

(95% CI) (0.769, 0.886) (0.783, 0.948) (0.716, 0.851) (0.752, 0.898)

Sensitivity 0.789 0.841 0.796 0.843

Specificity 0.887 0.944 0.757 0.825

p-value 0.029 0.006

6.3.3 Generalization of MSC phenotype prediction and assessment of culture attributes

Phenotype classification conducted by a group of 20 people (readers) with varying levels of ex-

pertise in culturing MSCs was used to understand the generalizability of the 2U-Net approach and

compare it with prior morphological analysis. APS were used to distribute cells into five pheno-

type categories: Highly RS, Moderately RS, Uncertain, Moderately SR, and Highly SR, as defined

in Table 6.6. These five categories were representative of the group’s confidence in identifying

a cell as either RS = 0 or SR = 1 with “Highly RS/SR” standing for very high agreement of the

readers in marking a cell as RS or SR and “Uncertain” meaning that the readers had a high level of

disagreement with each other (high inter-observer variability). Classifier outputs of prior morpho-

logical and 2U-Net methods were analyzed to understand the phenotype category of cells that had

greater misclassification. For low and medium culture cell density, both algorithms achieved sen-
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Figure 6.3: Fitted binormal ROC curves illustrating the performance of machine learning models to
estimate cell phenotype as RS or SR during independent testing. a) Classifiers trained with features
from MSCs segmented by morphological (dashed orange) and 2U-Net (solid blue) algorithms at
low density. b) Classifiers trained with features from MSCs segmented by morphological (dashed
red) and 2U-Net (solid green) algorithms at medium density.

sitivity of more than 0.9 for high confidence categories, but 2U-Net had slightly better sensitivity

over the morphological method for moderate classes. Notably, Double U-Net enhanced sensitivity

compared to prior morphological analysis, especially for the uncertain class. The sensitivity for

this phenotype category was lower compared to the other four categories, but still improved over

the morphological approach [Table 6.6]. Although 2U-Net has limitations classifying cells with

marginal morphological traits, its increased sensitivity for uncertain cells shows great promise to

address these constraints in future versions and estimate MSC phenotype at least as well as human

inspection.
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Table 6.6: Classification sensitivity of morphological and 2U-Net algorithms for five cell phe-
notype categories determined by average phenotype scores (APS) obtained from 20 readers for
training and independent testing data. “Truth” here corresponds to labeling done by the single
expert with 15+ years of experience in working with MSCs.

Phenotype class
Cell

density

Sensitivity

(No. of correctly classified cells / No. of truth-defined cells)

Training Independent testing

(Culture 1 + Culture 2) (Culture 3)

Prior morpho-
2U-Net

Prior morpho-
2U-Net

logical analysis logical analysis

Highly RS Low 1.000 1.000 0.973 1.000

(APS ≤ 0.2) Medium 1.000 1.000 0.938 0.964

Moderately RS Low 0.900 0.962 0.857 0.917

(0.2 < APS ≤ 0.4) Medium 0.727 0.877 0.810 0.833

Uncertain Low 0.743 0.921 0.535 0.667

(0.4 < APS ≤ 0.6) Medium 0.500 0.837 0.313 0.654

Moderately SR Low 0.886 0.939 0.882 0.929

(0.6 < APS ≤ 0.8) Medium 0.786 0.873 0.840 0.905

Highly SR Low 1.000 1.000 0.912 1.000

(APS ≥ 1.0) Medium 1.000 1.000 1.000 1.000

Overall testing of the image analysis pipeline was done by comparing culture attributes com-

puted using 2U-Net’s segmentation and classification results to the ground truth. Examination of

the entire pipeline was carried out only for Double U-Net because it generalized MSC classifica-

tion better than morphological technique. As the algorithm’s estimates were very close to the truth,

root mean square error (RMSE) was employed to statistically deduce how much it deviated from
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the truth. The parameters were found for all three cultures in the dataset, and error values were

very low for training and independent testing, indicating a good prediction accuracy and fit of the

proposed methodology [Table 6.7].

Table 6.7: Comparison of culture attributes computed using 2U-Net algorithm and truth for training
and independent testing.

Culture

parameters

Cell

density

Training Independent testing

Culture 1 Culture 2
RMSE

Culture 3
RMSE

Truth 2U-Net Truth 2U-Net Truth 2U-Net

Cell count
Low 76 73 96 93

3.84
64 63

0.71
Medium 146 141 154 158 122 122

Pixel-wise Low 5.32 5.37 5.34 5.36
0.17

4.66 4.35
0.25

confluency Medium 10.64 10.90 7.60 7.38 6.76 6.58

Efficacy Low 64.47 61.64 76.04 79.57
2.38

71.88 71.43
2.34

ratio Medium 54.80 54.61 68.18 69.62 61.48 64.75

6.4 Discussion

In this chapter, we introduced customized 2U-Net architecture for deep learning-based seg-

mentation of MSCs grown in monolayer. This approach exploited the power of deep learning

with basic image processing techniques to enhance cell identification within clusters, facilitating

more accurate segmentation of complex images. Efficient segmentation led to reliable and robust

computation of downstream culture characteristics. The proposed analysis employed segmentation

results to compute features for a machine learning model that predicts culture efficacy based on

the morphological phenotype of cells. Optimized segmentation and classification could aid the ro-

bust computation of culture attributes such as cell count, pixel-wise confluency, and efficacy ratio.

Validation of the algorithm at different stages proved that it outperformed state-of-the-art methods
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for cell detection, segmentation, and classification. Thus, our methodology focused on not just

improving segmentation but also providing a comprehensive analysis pipeline for rapid, precise,

and objective culture examination at the single-cell level.

Despite very encouraging results, there are a few aspects of our algorithm that could be im-

proved. As the current training was done with limited data, there is a need to carry out transfer

learning using new MSC culture images that encompass variability due to different imaging sys-

tems and culturing conditions to help the algorithm generalize more efficiently. The efficacy ra-

tio, a vital indicator for culture quality, is highly dependent on the correct identification of cells.

The majority of cell detection errors arose due to images with poor contrast or blur. Although

image contrast can be low in phase-contrast microscopy, it remains the standard technique for non-

invasive and real-time monitoring of monolayer culture. Commercially-available sophisticated

phase-contrast microscopes can automate imaging of live cells without manual adjustment of cul-

ture plates or wells. Moreover, false detections would not have a considerable impact on efficacy

valuation if an ample number of images are analyzed to capture relevant cell populations. Similar

to segmentation, classification procedures would also benefit from new and varied MSC images

to gather more data and robustly learn features pertinent to cell phenotypes. Additionally, ground

truth could be obtained from more experts for extending the existing classification to yield a prob-

ability that corresponds with the confidence of an expert in a cell being RS or SR. Generating

a probability estimate for phenotype labels would address the concern of subjectivity in ground

truth due to manual interpretation. Lastly, it was not feasible to use viability assays as ground

truth for validating our research as they are population-based rather than single-cell level, costly,

and labor-intensive. It would be exciting to compare the algorithm’s capability for characterizing

MSCs consistently to some of the popular culture assays.

In addition to U-Nets and other deep learning models, there are several open-source resources

(CellProfiler [167], DeepImageJ [168]) that have demonstrated remarkable innovations in quanti-

tative single-cell biology. They are user-friendly and have a collection of image analysis workflows

specially designed for researchers/biologists without experience in computer vision or deep learn-

84



ing. Although they provide a generic platform trained using large datasets comprised of many types

of cells, they still have some limitations that impede their usage for morphology-based examina-

tion of MSCs or other specific cell types. These solutions either require parameter adjustments,

cannot be retrained with new data, or are biased towards fluorescently labeled microscopy data,

making them function poorly on unstained and live-cell data acquired through brightfield imaging.

2U-Net devised here has demonstrated the ability to overcome these issues, enabling improved

MSC segmentation in clusters and difficult images.

Our long-term goal to constantly enhance the algorithm by incorporating new data will aid

in testing and updating the analysis pipeline to make it generalized and applicable at a larger

scale. To this end, we have designed a Jupyter notebook interface for culture scientists without

any prior knowledge in coding or image analysis. This interface would help biologists quickly

and quantitatively evaluate MSC cultures and provide us their valuable insights on the practical

usage of our method. Their feedback will ensure that our models learn continually to systematize

the characterization of MSCs irrespective of their heterogeneity. Besides these advancements, the

presented approach would have valuable potential to 1) design standard operating procedures for

high-volume MSC manufacturing and efficacious clinical translation in treating various chronic

conditions, 2) study the effect of changes in culture protocols on cell populations in a standardized

manner, and 3) evaluate the viability of other stem cell lines for clinically important cell-based

therapies.

In conclusion, our 2U-Net segmentation significantly optimized the segmentation of individual

and clustered MSCs, enabling effective and reproducible estimation of primary efficacy endpoints.

Our research shows great promise to bridge the gap between existing techniques and the need

for an automated, rapid, easy, and streamlined process for monolayer culture monitoring. Double

U-Net can be easily implemented in the present-day workflows for high-throughput morpholog-

ical profiling of MSCs, paving the way for successful MSC-based therapies through quantifiable

therapeutic potency of cells.
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7. QUANTITATIVE ASSESSMENT OF THREE-DIMENSIONAL MESENCHYMAL

STROMAL CELL CULTURE ATTRIBUTES USING A COMBINATION OF DEEP

LEARNING AND CONVENTIONAL IMAGE ANALYSIS

7.1 Introduction

The application of MSCs for cytotherapeutic treatments in translational medicine is highly de-

pendent on their high volume manufacture [169]. Currently, monolayer culturing techniques are

used commonly in cell-based experiments mainly because they are well established with a lot of

comparative literature, less expensive, and easier to analyze. Unfortunately, traditional 2D cultures

provide limited surface area for cell adherence and fail to provide a physiologically relevant envi-

ronment for their growth [170]. These problems cause an increase in the cost and failure rate of

discoveries and clinical trials. Three-dimensional cell culture has valuable potential to overcome

these limitations. It is an artificially created in vitro environment wherein cells grow and interact

with their surroundings in all three dimensions. Thus, 3D culturing enhances the representation

of human cells and tissues outside the body and offers a realistic way to translate study findings

for in vivo applications [171]. Importantly, research has shown that stem cells cultured in 3D have

greater viability, leading to the rapid scalability of functional cells [172]. Due to these benefits,

the 3D cell culture industry is advancing and gaining prominence in stem cell research and cancer

treatment [173, 174]. Other areas where 3D modeling has been highly advantageous include drug

discovery, cytotoxicity, apoptosis, and survival [63]. Specific to MSCs, previous 3D culture exper-

iments using bioreactors have produced a sizeable quantity of cells needed for clinical use and also

established improvement in their differentiation potential [175, 176].

In addition to having a good quantity of MSCs, it is crucial to assess cell quality to ensure

their functionality for various therapeutic applications. The widespread application of 3D cultures

to drive translational biology necessitates a systemic approach to monitor and characterize them.

Visual inspection, the most common way of analyzing cell phenotypes, is not possible with conven-
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tional widefield and fluorescent microscopes generally available in cell culture labs. Such imaging

systems are either suited for 2D visualization or lack the resolution needed for 3D representation of

cells. Even with advanced 3D imaging, the manual investigation approach is not practical for the

high-throughput setting because it is challenging and significantly time-consuming to interpret cel-

lular details in 3D. This drawback calls for an automated method to morphologically characterize

and empirically estimate the outcome for MSCs cultured in the 3D environment. Computer-aided

image analysis has been employed successfully for several studies, such as high-content screen-

ing of 3D cultures, monitoring cell growth, phenotype quantification, and 3D nuclei segmentation

[177, 178, 179, 180]. However, the capability of image processing to robustly analyze 3D data is

highly dependent on the imaging modality used to acquire its input. LSFM allows parallel acquisi-

tion of millions of pixels, fast recording, and high-quality imaging for effective image processing.

Thus, it would serve as an ideal volumetric imaging approach to assist morphological profiling and

quantitative assessment of 3D MSC cultures at the single-cell level [112, 109, 113].

Our goal was to acquire images volumes of MSCs on microcarriers via LSFM and use them to

develop an image analysis algorithm capable of measuring critical quality attributes of 3D culture.

Segmentation of objects is an initial step required to carry out any automated image-based evalua-

tion. Otsu thresholding [181] and U-Net deep learning model [3, 126] have been utilized vastly due

to their simplicity, and there is a broad repertoire of literature demonstrating their efficiency for 3D

segmentation [182, 183]. Otsu thresholding is a classical approach, and its adaptations have been

used for several medical image segmentation tasks [184, 185, 186]. U-Net deep learning model

has gained a lot of attention for biomedical segmentation tasks [187]. Both 2D and 3D versions

of the U-Net have been applied for volumetric segmentation of brain tumors, lung nodules, ocular

structures, and many more [188, 189, 190, 191]. Thus, 3D Conventional, 2D U-Net, and 3D U-Net

segmentation techniques were examined in this research for volumetric segmentation of MSC cell

regions and nuclei. As MSCs grow in 3D, they are likely to cluster on microcarrier surfaces, so

segmenting both cell regions and nuclei was essential to delineate individual MSCs. Single-cell

level segmentations were further utilized to compute cytomorphological features and critical cul-
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ture parameters. These measures would be indicative of the efficacy and downstream functionality

of MSCs cultured in 3D [86, 192].

In summary, the novel contribution of this work is the implementation and comparison of con-

ventional and deep learning methodologies to localize each MSC in their volumetric images pre-

cisely. Segmentation results aid the estimation of critical parameters for monitoring the viability of

3D cultures. Furthermore, robust segmentation would provide insights into morphometric features

that best describe MSC phenotypes for microcarrier-based cultures. Another noteworthy advan-

tage is the potential of the presented work to bridge the gap for automated, rapid, high-throughput

evaluation of MSCs grown in a 3D environment. Lastly, image-based processing of MSCs would

serve as the front end for monitoring and streamlining 3D MSC culture protocols, aiding high

volume manufacturing of efficacious cells for various therapies.

7.2 Methods

7.2.1 Overview

We present an image analysis pipeline for the objective assessment of MSCs cultured on mi-

crocarriers in a 3D environment. The algorithm was developed using MATLAB 9.5 (R2018b)

for conventional image processing and Python 3.5.6 for deep learning networks. Dataset used for

training and validating the 3D image analysis algorithm is detailed in section 2.4.3. The flow is

demonstrated in Fig. 7.1. The input comprised two fluorescently labeled channels, namely Cell-

Tracker Green (CTG) labeling cell bodies, and DRAQ5 labeling nuclei. The CTG channel volume

was pre-processed to improve the intensity, followed by segmentation. The segmentation output

was post-processed to obtain the candidate cell regions. The performance of cell region segmen-

tation was validated using the ground truth prepared with the commercial image analysis software

Imaris 9.6.0 (Oxford Instruments). Similar to cell region segmentation, nuclei were identified

by pre-processing the DRAQ5 channel, segmentation, and then post-processing the segmentation

result. The algorithm’s ability to detect and segment nuclei was also evaluated using Imaris gen-

erated ground truth. The candidate cell regions and nuclei were integrated to identify cell clusters.
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Clumped cells were separated using marker-controlled watershed segmentation. Next, morphome-

tric feature extraction was carried out for individual cells and their nuclei. Lastly, cell count and

culture confluency were determined per image volume to obtain quantitative culture attributes.

7.2.2 Implementation of 2D U-Net and 3D U-Net deep learning models

2D U-Net model followed the same convolutional neural network topology as the original U-

Net [3]. The proposed 2D U-Net architecture consisted of 32 feature channels in the first layer, and

dropout layers were added after each max pooling operation to avoid overfitting. It included batch

normalization after convolutions to stabilize the network and make it learn faster. DICE loss [160]

was used as the loss function, and the Adam optimization method [162] with a 1 × 10-4 learning

rate was adopted to find correct weights. The network was trained from scratch with initial weights

obtained from a Gaussian distribution. It was set to run for 100 epochs and a batch size of 12 with

a metric of DICE score [133]. A callback function was used for network training to reduce the

learning rate when validation loss did not decrease for five consecutive epochs and ultimately stop

running the model when there was no improvement in validation loss for 10 epochs consecutively.

2D U-Net can be translated easily to 3D U-Net model by adding a dimension to the network

for segmenting complicated and highly variable 3D structures. The topology of the 3D U-Net

remains the same comprising encoder and decoder paths, and all its layers can be designed similar

to the 2D network [126]. The encoder of classical 3D U-Net was modified for this study to make

the network more robust. VGG16 network [193] pre-trained for the large ImageNet [194] dataset

was used as the encoder to optimize and improve the architecture. In addition to any previous pre-

processing, inputs to 3D U-Net were also pre-processed similarly to the original VGG16 scheme

to make them well suited for the encoder path. The network was initialized with weights from

pre-trained VGG16 and used the same optimization method as 2D U-Net. A sum of DICE loss and

focal loss [160] was used as the loss function for network training. The network was set to run for

250 epochs with a batch size of 8, and its performance was monitored using the DICE score [195]

metric. 2D U-Net callback function was also utilized for the 3D model to monitor the validation

loss, adjust the learning rate, and eventually stop network training.
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Figure 7.1: Schema describing the proposed image analysis framework.
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7.2.3 Segmentation of cell regions from CellTracker Green channel image volumes

The CTG channel was used as the input and pre-processed to enhance fluorescent signal ex-

pressing cell regions. It was observed that standard contrast adjustment (saturating bottom 1%

and top 1% of all voxel intensity values) was not well-suited because of inconsistent intensity lev-

els within and between image volumes. So, limit-controlled contrast adjustment was employed

to improve the signal-to-noise ratio (SNR) of image stacks. Limits were algorithm-defined, and

they ensured that contrast was adjusted only for voxels whose intensity values were within those

limits. These limits were very narrow and fixed such that they included only intensity values from

regions of interest. Thus, cell regions were made prominent, and the background signal was di-

minished. Contrast limits were assigned by the algorithm depending on the mean and maximum

values from the input volume’s maximum intensity projection (MIP) image. These limits were set

for the pre-processing algorithm during training based on what gave the best results.

For segmentation of cell regions using conventional image processing, the pre-processed vol-

ume was first binarized using Otsu’s method with a globally determined intensity threshold. Bi-

narization was followed by volume-based thresholding to remove small objects wrongly detected

due to debris and noise in the image stack. Deep learning-based volumetric segmentation of cell

regions was performed using 2D U-Net and 3D U-Net implementations described in section 7.2.2.

Individual slices from each pre-processed CTG Z-stack and their corresponding Imaris truth were

resized to 512 × 512 pixels and input into 2D U-Net. The 2D U-Net model processed one image

slice at a time, and their 2D slice-by-slice segmentations were stacked to form a 3D volumetric

segmentation. Inputs to the 3D U-Net were contrast-adjusted CTG volumes and 3D ground truth

for cell regions from Imaris. Since image volumes were large, they were split into small blocks

of 64 × 64 × 64 voxels before being given to 3D U-Net to address computational complexity and

memory need. The volumetric segmentation from 2D and 3D U-Nets were post-processed using

volume-based thresholding similar to conventional image processing. Cell region segmentation

was carried out using the same models and parameters irrespective of the culture day of the cells

or the number of the microcarriers in the image volume. DICE score was used to evaluate how
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well the cell regions were segmented relative to ground truth. Cell region segmentation results

from conventional and deep learning-based methods were compared statistically using paired two-

sample t-test for the validation data DICE score. The approach that performed significantly better

was selected for the analysis pipeline.

7.2.4 Segmentation of cell nuclei from DRAQ5 channel image volumes

Since DRAQ5 staining of nuclei yielded non-specific binding in the rest of the cell bodies,

standard contrast adjustment was inadequate. Therefore, pre-processing for nuclei segmentation

was also done utilizing limit-controlled adjustment similar to CTG volume pre-processing. The

pre-processed DRAQ5 volumetric image was binarized using Otsu’s method for segmentation by

conventional image processing. The intensity threshold for binarization was not estimated globally

but defined by the algorithm depending upon the mean and maximum values found from the MIP

image during pre-processing. Similar to contrast limits, these threshold values were also fixed

during training. The binarized output was post-processed using volume-based thresholding and

morphological operations. Volume-based thresholding facilitated the removal of small objects

detected due to background noise, and morphological closing operation filled any holes in the

segmented objects and refined their boundaries. Detected nuclei with large volumes were further

processed using morphological erosion to avoid under-segmentation.

For nuclei segmentation with 2D U-Net, each image slice from pre-processed DRAQ5 Z-stack

and their Imaris ground truth were resized to 512 × 512 pixels and inputted to the 2D model.

2D U-Net predictions for all image slices were stacked to create the volumetric segmentation.

Pre-processed DRAQ5 volumes and their respective nuclei region ground truth from Imaris were

divided into blocks of 64 × 64 × 64 voxels and given as inputs to the 3D U-Net model. Note

that 2D and 3D U-Nets were modeled separately for the tasks of detecting cell regions and nuclei.

They were implemented as outlined in section 7.2.2. Nuclei prediction from 2D and 3D U-Nets

were also post-processed through volume-based thresholding. The algorithm assigned the volume

threshold for post-processing of all segmentation methods based upon the number of slices in the

DRAQ5 volumetric image. This step accounted for variation in nuclei size when imaging mag-
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nification and pixel array dimensions were modified to capture multiple microcarriers in a single

image volume, making the Z-stack large. DICE score was used as the segmentation metric, and

sensitivity and precision were used as the object detection metrics to evaluate all segmentation ap-

proaches. DICE score measured overlap between segmented results and ground truth, sensitivity

metric measured how accurately all the nuclei were detected, and precision metric measured how

accurately the algorithm did not detect objects that were not nuclei. Unlike cell region segmen-

tation, object detection metrics were crucial for assessing nucleus segmentation to check if the

algorithm localized nuclei without under or over-segmentation to perform single-cell analysis ro-

bustly. The image processing approach that segmented nuclei significantly better based on paired

two-sample t-testing of validation data metrics was chosen for the analysis pipeline.

7.2.5 Computation of human-engineered features and culture attributes at the single-cell

level

The cell region and nuclei segmentation results were combined to achieve individual cell seg-

mentation. Detecting individual cells was required to perform any further analysis at the single-cell

level. Segmented nuclei objects served as cell markers, and they were counted inside each detected

cell region. A cell region with 1 cell marker was defined as an individual cell, and a region with >

1 cell marker was identified as a cell cluster. If a region had no cell marker, meaning no segmented

nucleus, it was removed and not considered a cell. Cells were separated inside each cluster using

3D marker-controlled watershed method [196]. Human-engineered features were computed for

each 3D segmented cell and its nucleus. Volume, surface area, sphericity, elongation, ellipticity,

solidity, and extent were extracted for all cells and nuclei [197, 198, 199]. Besides these fea-

tures, cell surface area-volume ratio, nucleus surface area-volume ratio, nucleus-cell volume ratio,

and nucleus-cell surface area ratio were also measured. These morphometric features express and

quantify variations in size and shape of cells and nuclei and can act as vital diagnostic factors for

cell proliferation and functional potency [200, 201]. Moreover, these features would serve as a

front-end to a cell classification algorithm, making phenotype-based efficacy determination of 3D

cultured cells rapid and reproducible.
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Next, cell count and confluency were estimated as they can be used as quantitative parame-

ters for non-destructive monitoring and quality control of microcarrier-based MSC cultures [202,

203, 204]. Segmented nuclei objects were totaled to get cell count per image volume. Cell count

obtained using nuclei center points from Imaris was used as the reference (observed values). De-

viation of the predicted cell count from the Imaris truth was estimated via RMSE. Confluence in

monolayer cultures was defined as the percentage of area covered by adherent cells. Translating to

3D culture with an assumption that adherent cells on microcarriers have approximately half their

cell surface area adhered to the microcarrier, confluency in 3D culture was defined as the ratio of

half the surface area of cell regions to the total surface area of all microcarriers in the volume.

Firstly, the radius was determined manually for each microcarrier using its line intensity profile

from the MIP of the image volume. Next, it was used to get microcarrier surface area. The actual

confluency value for each image volume was obtained using 1) half the surface area of all cell

regions segmented by Imaris and 2) total surface area of all microcarriers in the volume. For pre-

dicted confluency values, algorithm segmented cell regions were used to get the cell surface area.

Additionally, microcarrier segmentation was needed for automated calculation of their surface

area to get algorithm predicted confluency. Therefore, single microcarriers were identified from

the BF image volume as spherical objects. The BF volume [Fig. 7.2(a)] was processed through

median filtering to reduce noise, and its intensity was enhanced with standard contrast adjustment

[Fig. 7.2(b)]. This step was followed by 3D edge detection using the Sobel filter [Fig. 7.2(c)].

Background artifacts were removed using volume-based thresholding [Fig. 7.2(d)], and then de-

tected edges were refined and connected using morphological erosion and closing [Fig. 7.2(e)]. A

bounding box was created for the segmented object to get the radius and center of the microcarrier

to generate the sphere [Fig. 7.2(f)] whose surface area was used in confluency measurement.

For BF image volumes with multiple microcarriers, individual microcarriers could not be de-

tected due to clumping clumping of microcarriers and significant out of focus signal. However,

microcarriers for such volumetric images were able to be identified using the DRAQ5 channel

[Fig. 7.3(a)]. DRAQ5 channel was preferred over the CTG channel because it had a higher ratio
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Figure 7.2: Illustration of steps involved in segmenting single microcarriers. a) Brightfield (BF)
channel volume used as input. b) Reduction of noise and intensity enhancement for BF volume
through median filtering and standard contrast adjustment. c) Microcarrier edge detection using
Sobel filter. d) Removal of background noise and false positive objects through volume-based
thresholding. e) Connection and refinement of detected microcarrier edges via morphological
erosion followed by closing. f) Generation of microcarrier sphere using bounding box (shown in
yellow) dimensions from the previous step.

of microcarrier area to fluorescent regions of interest than the latter. The image stack was first

processed using limit-controlled contrast adjustment to increase the intensity of the backscattered

signal from the microcarriers [Fig. 7.3(b)]. It was binarized using Otsu’s method with an intensity

threshold decided by the algorithm based on the mean value of volume’s MIP [Fig. 7.3(c)]. After

binarization, morphological opening was performed to fill and connect the areas of microcarriers

[Fig. 7.3(d)]. Next, volume-based thresholding was carried out to eliminate falsely detected objects

[Fig. 7.3(e)]. Lastly, the segmented volume was processed using morphological opening to refine

boundaries [Fig. 7.3(f)]. The total surface area of this segmentation output was used to calculate
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confluency for image volumes containing multiple microcarriers. In addition to RMSE, adjusted

R2 from linear regression was utilized to analyze how close the algorithm confluency predictions

were to their observed values. Overall confluency of a 3D culture sample can be obtained by taking

the average of confluency values from all its acquired image volumes.

Figure 7.3: Representation of segmentation steps for multiple microcarriers. a) DRAQ5 channel
volumetric image used as input. b) Improvement of intensity for microcarrier voxels applying
limit-controlled contrast adjustment. c) Binarization using Otsu’s method with algorithm-defined
intensity threshold. d) Connection and filling of binarized voxels via morphological closing. e)
Removal of background noise and false positive objects through volume-based thresholding. f)
Fine-tuning segmented border of multiple microcarriers utilizing morphological opening.
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7.3 Results

7.3.1 Cell region and nucleus segmentation from image volumes of microcarrier-based 3D

MSC cultures

Segmentation performance for cell regions and nuclei was assessed for three image processing

approaches, namely 3D conventional, 2D U-Net, and 3D U-Net. Identification of cell regions, a

semantic segmentation task was evaluated using DICE score only to check the algorithm’s overlap

with ground truth from Imaris. Nuclei segmentation was treated as instance segmentation since

every individual nucleus needed to be localized separately for single-cell level analysis. So, nuclei

segmentation was validated using object detection metrics of sensitivity and precision along with

the DICE score. Table 7.1 reports the above metrics for cell region and nuclei segmentation by all

three methods during training and validation. It was confirmed using validation data that the 3D

U-Net method segmented cell regions with the best DICE score having an overlap of more than 0.9

with the truth. 3D conventional (Otsu thresholding) and 2D U-Net (3D construction from stack-

ing 2D predictions) approaches had comparatively low DICE scores for training and validation,

showing that they were not robust enough to segment cell regions from MSC culture image vol-

umes. Their low DICE score was most likely because they over-detected voxels around cell region

boundaries. It was found that 3D conventional still performed better than the 2D U-Net approach.

The significance of these inferences from comparing the three methods was statistically verified

using one-tailed p-values from paired t-test reported in Table 7.2. Thus, the trained 3D U-Net was

selected for the cell region segmentation part in the proposed image analysis pipeline. Figure 7.4

displays sample CTG image volumes with their ground truth and cell region segmentation by three

methods compared in this study.
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Table 7.1: Performance comparison of 3D conventional, 2D U-Net, and 3D U-Net methods for cell
region and nucleus segmentation from image volumes of microcarrier cultured MSCs. The image
analysis approach that performed best during training and validation is presented in bold for each
metric.

Metrics Segmentation method Training (N = 23) Validation (N = 21)

Cell region segmentation

DICE score (mean ± s.d.)

3D conventional 0.789 ± 0.175 0.730 ± 0.210

2D U-Net 0.831 ± 0.097 0.810 ± 0.079

3D U-Net 0.943 ± 0.023 0.927 ± 0.029

Nucleus segmentation

DICE score (mean ± s.d.)

3D conventional 0.950 ± 0.018 0.933 ± 0.022

2D U-Net 0.608 ± 0.059 0.645 ± 0.081

3D U-Net 0.760 ± 0.154 0.677 ± 0.184

Nucleus detection

sensitivity (mean ± s.d.)

3D conventional 0.975 ± 0.054 0.988 ± 0.030

2D U-Net 0.791 ± 0.219 0.830 ± 0.288

3D U-Net 0.772 ± 0.255 0.546 ± 0.408

Nucleus detection

precision (mean ± s.d.)

3D conventional 0.996 ± 0.011 0.982 ± 0.073

2D U-Net 0.681 ± 0.271 0.746 ± 0.296

3D U-Net 0.951 ± 0.122 0.976 ± 0.109

3D conventional image processing achieved the best sensitivity, precision, and DICE score in

detecting and segmenting nuclei for training and validation data. It had high validation sensitivity

and precision values of 0.98 and a 0.93 DICE score [Table 7.1]. Both the U-Net models (2D and

3D) had considerably lower sensitivity and DICE scores. The 2D U-Net method had lower pre-

cision too, but 3D U-Net precision was closer to 3D conventional processing. DRAQ5 channels

had some background signal from cell regions around nuclei even after pre-processing. Although

the intensity of this background noise was less than nuclei, it got predicted by 2D U-Net as nuclei,

causing over-segmentations of voxels around nuclei. In the case of 3D U-Net, it was unable to
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Figure 7.4: Sample image volumes of 3D cultured MSCs stained with CTG (first column) from
validation data comparing the ground truth cell regions (second column) with the segmentation
results of 3D conventional (third column), 2D U-Net (fourth column), and 3d U-Net (fifth column)
methods. Each row is an example of a volumetric image from days 3 and 7 of culture expansion
consisting of single and multiple microcarriers. DICE score (D) is shown in yellow for each
segmentation result image on the top left corner.
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generalize well due to highly variable intensity levels within and between DRAQ5 image volumes.

This problem led to under-segmentation that contributed to poor sensitivity. 3D conventional pro-

cessing did not suffer from these issues because of 1) adaptive pre-processing of DRAQ5 volume

with limit-controlled contrast adjustment and 2) binarization of only nuclei voxels, ignoring back-

ground signal using algorithm-defined threshold values. Statistical significance of nuclei detection

and segmentation results was also examined using paired two-sample t-tests [Table 7.2]. The 3D

conventional method achieved a significantly higher DICE score and sensitivity than 2D and 3D

U-Nets. The statistical test failed to show any difference between the DICE score of both U-Nets

and 2D U-Net had significantly better sensitivity than 3D U-Net. For precision, 3D conventional

and 3D U-Net methods outperformed 2D U-Net, and the t-test failed to show any statistical dif-

ference between the two 3D methods. Thus, 3D conventional processing could overall segment

and detect nuclei most robustly and was chosen for the nuclei segmentation part of the image anal-

ysis pipeline. Note that all one-tailed p-values were adjusted for multiple comparisons using the

Bonferroni-Holm technique before using them to investigate which cell region and nuclei segmen-

tation method was significantly better than others. Example DRAQ5 image volumes with their

ground truth and nuclei segmentation by three methods analyzed here are illustrated in Fig. 7.5.

To summarize, 3D U-Net and 3D conventional methods demonstrated the best performance for

segmenting cells regions and nuclei, respectively, enabling the identification of individual MSCs

and their quantitative study at the single-cell level.
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Table 7.2: Statistical comparisons between performance metrics of 3D conventional, 2D U-Net,
and 3D U-Net methods for cell region and nucleus segmentation using Imaris ground truth (N
= 21). P-values were adjusted for multiple comparisons using Bonferroni-Holm correction, and
statistically significant results are indicated in bold. “>” in the table stands for “outperformed.”

Metrics
3D conventional vs. 3D conventional vs. 2D U-Net vs.

2D U-Net 3D U-Net 3D U-Net

Cell region segmentation

DICE score

3D conventional > 3D U-Net > 3D U-Net >

2D U-Net 3D conventional 2D U-Net

p = 2.609E-02 p = 1.833E-04 p = 4.781E-06

Nucleus segmentation

DICE score

3D conventional > 3D conventional > Failed to show

2D U-Net 3D U-Net significance

p = 6.561E-12 p = 4.506E-06 p = 2.552E-01

Nucleus detection

sensitivity

3D conventional > 3D conventional > 2D U-Net >

2D U-Net 3D U-Net 3D U-Net

p = 1.746E-02 p = 7.246E-05 p = 5.623E-03

Nucleus detection

precision

3D conventional > Failed to show 3D U-Net >

2D U-Net significance 2D U-Net

p = 3.078E-03 p = 4.161E-01 p = 1.450E-03

7.3.2 Cell count and confluency estimation for microcarrier-based 3D MSC cultures

The ability of the presented image analysis pipeline to predict confluency and cell count pa-

rameters for 3D MSC cultures was also assessed against measurements obtained from Imaris in

a semi-automated manner. Figure 7.6 exhibits scatter plots of observed confluency values from

Imaris versus confluency values predicted by the algorithm. A linear regression line with its 95%

confidence interval was used to visualize how close algorithm predictions were to the truth. All

the points in the scatter plot for training data (Number of image volumes, N = 23) were very close
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Figure 7.5: Sample image volumes of 3D cultured MSCs stained with DRAQ5 (first column) from
validation data comparing the ground truth nuclei (second column) with the segmentation results of
3D conventional (third column), 2D U-Net (fourth column), and 3d U-Net (fifth column) methods.
Each row is an example of a volumetric image from days 3 and 7 of culture expansion consisting of
single and multiple microcarriers. DICE score (D) is shown on the top left corner, and sensitivity
(S) and precision (P) are shown on the bottom left corner for each segmentation result image in
yellow.
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to the regression line, indicating a high R2 value (> 0.9) and goodness of fit for the algorithm. Ad-

ditionally, RMSE was less than 2.5%, exhibiting a negligible difference between truth and values

predicted by the developed analysis scheme. These inferences were confirmed through the scatter

plot for observed and predicted values from validation data (Number of image volumes, N = 21).

The algorithm scored an R2 value greater than 0.9 and an RMSE of 2.7% during validation, sub-

stantiating its potential to estimate culture confluency very close to the truth consistently. Similar

to confluency, cell counts determined by the algorithm were compared with Imaris. The algorithm

reported an RMSE of 1.504 and 4.180 for cell counts during training and validation, respectively.

It was observed that image volumes with multiple clumped microcarriers having more cells (> 30)

mainly contributed to these errors. Thus, cell count errors for such image volumes were incon-

sequential compared to the actual number of cells, verifying the algorithm’s capacity to measure

cell count with higher accuracy. The algorithm’s effectiveness in determining culture parameters

further proved that the proposed analysis pipeline could not only properly segment 3D cultured

MSCs but also assess them quantitatively to characterize culture functionality.

7.4 Discussion

We developed a 3D image analysis pipeline that could localize individual MSCs with sensi-

tivity and precision of over 0.9 via cell regions and nuclei segmentation from CTG and DRAQ5

fluorescence channels, respectively. This algorithm was established after comparing and validat-

ing the performance of three standard image processing methods including, 3D conventional, 2D

U-Net, and 3D U-Net. From validation results and their statistical testing, it was inferred that a

combination of conventional and deep learning methods was best suited for the proposed anal-

ysis. The presented experiments and final analysis scheme is impactful and innovative because

such research has not been carried out previously for quantitative evaluation of multidimensional

MSC cultures. Robust segmentation enabled the estimation of morphometric features that could

serve as relevant descriptors for the cellular phenotype. In addition to feature extraction, it aided in

predicting quantitative process parameters for 3D MSC culture, namely cell count and confluency.

Cellular features along with these parameters would facilitate characterizing the efficacy of MSCs
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Figure 7.6: Scatter plots of observed (Imaris) versus predicted (algorithm) culture confluency val-
ues for training (N = 23) and validation (N=21) dataset. The solid black lines indicate computed
linear regression lines, and the region shaded in gray color is a 95% confidence interval (CI) for
the slope of the regression lines. Root mean square error (RMSE) and adjusted R2 values are dis-
played on the top left corner of the plots. a) Plot showing a high linear correlation and close fit
of the algorithm with the ground truth for training data. b) Validation data plot confirming high
correlation and good fit of the presented algorithm in estimating confluency.

cultured in 3D on microcarriers.

Though this approach is quite promising, there are still some areas for improvement. Cur-

rently, algorithm training and validation were done using volumetric image samples from the same

culture. It is essential to acquire image stacks from a different 3D culture sample to generate inde-

pendent testing data for assessing the generalizability of the overall developed method. For culture

parameters, confluency measurement assumed that half the surface area of a cell would be adhering

to the microcarrier. In real-time experiments, this assumption might not always hold, especially

when there are a lot of cells and their clusters, leading to erroneous confluency prediction. Cell

attachment to multiple microcarriers was also not considered for image stacks with clumped mi-

crocarriers. These shortcomings need to be addressed in a future version of the algorithm to ensure

consistent and accurate confluency estimation irrespective of the number of cells or microcarriers
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in image volumes. Lastly, the algorithm relies on stained channels for segmenting cell regions

and nuclei. This requirement would limit its application for real-time and non-invasive monitoring

quality of 3D MSC cultures. Extending the presented technique to detect cell regions and nuclei

from label-free image data would make it more impactful and suitable for adoption in current 3D

culture workflows.

To summarize, we built an analysis pipeline that could segment MSCs grown on microcarriers

and calculate critical 3D culture attributes with high temporal resolution. This study shows the ca-

pability to serve as a front-end for 3D MSC culture assessment, bridging the gap between existing

techniques and the necessity for an objective, automated, and high-throughput approach. Progress

in this research would streamline quality control processes for MSCs in a 3D environment, scaling

up the manufacture of efficacious cells required to treat chronic diseases.
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8. CONCLUSION AND FUTURE SCOPE

We developed a morphological analysis approach for monolayer cultures using conventional

image processing techniques that segmented MSCs and classified them based on their morpholog-

ical phenotype very close to human observation. It provided evidence supporting the applicability

of image analysis as a tool to objectively monitor monolayer adherent MSCs. Moreover, its ability

to morphologically profile MSCs would greatly aid the prediction of downstream functionality of

cultures. It would replace or augment visual inspection to objectively assess MSCs in an automated

and non-invasive manner. Thus, the promising performance of this approach for analyzing MSCs

from their phase-contrast micrographs suggested that image-based analysis could be seamlessly in-

tegrated into the current monolayer culture workflows. The next important step for building upon

this research would be fine-tuning the algorithm using new 2D MSC culture images that encom-

pass variability due to different phase-contrast imaging systems and various culturing conditions.

It would also be worthwhile to calibrate the machine learning model used in the current scheme

to correlate its probability output with confidence in the phenotype of an MSC being RS or SR.

Lastly, comparing the morphological image analysis with some commonly utilized culture evalua-

tion assays would be interesting to estimate the effectiveness and generalizability of our research.

To further optimize the segmentation of MSCs, the power of deep learning was employed to

replace human-engineered parameters used for the morphological analysis approach with features

learned directly by the computer. Our customized deep learning pipeline significantly optimized

analysis of monolayer cultures, outperforming state-of-the-art methods for image-based MSC de-

tection and classification. Furthermore, enhanced MSC identification led to a meaningful improve-

ment in the morphological profiling of cells. This comprehensive analysis pipeline resulted in

accurate and reproducible computation of quantitative critical quality parameters and efficacy out-

come for monolayer MSC cultures. Thus, the presented research on deep learning-based analysis

has valuable potential to meet the need for streamlined and objective monolayer culture monitor-

ing in real-time. For this dedicated deep learning algorithm, it is worthwhile to note there is scope
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for further betterment in the morphological screening of MSCs cultured in monolayer conditions.

This upgrade can be achieved by applying deep learning for also feature extraction and classifi-

cation. The next step towards standardizing this image analysis solution would be to incorporate

feedback from biologists to ensure the algorithm learns continually and systematizes MSC mon-

itoring irrespective of their heterogeneity. It would also greatly benefit other cell-based therapies

and treatments to expand this analysis for assessing the clinical relevance of more stem cell lines.

As the culturing paradigm for stem cell expansion is shifting from monolayer to 3D systems, we

built an algorithm to extend our methodology for multidimensional analysis. It was concluded that

a combination of conventional and deep learning-based methods was most suitable for segmenting

MSC regions and their nuclei from volumetric images. It efficiently examined MSCs adhering

to microcarriers in the 3D bioreactor environment at the single-cell level. Additionally, the 3D

image analysis strategy robustly estimated empirical culture parameters for microcarrier-based

MSC cultures similar to monolayer cultures. Therefore, this study would serve as a front-end

algorithm for reproducible morphological phenotyping of MSC cultured in 3D. It would facilitate

the manufacturing of MSCs at a large scale for clinically successful therapeutics. This 3D analysis

would become more impactful by translating the current algorithm for real-time and non-invasive

examination of 3D MSCs by segmenting them in label-free image volumes. Besides finding each

MSC from image volumes, it is essential to characterize functionality and monitor viability as they

grow on microcarriers in a 3D culture. Progress in this research would make it possible to study

the effect of changes in the 3D culturing protocol on cell potency and design standard operating

procedures required for reliable and high-volume manufacturing of efficacious cells.

This research on image-based analysis for evaluating 2D and 3D MSC cultures has facilitated

the development of a system that can quantitatively describe cell density, distribution, and mor-

phology. Estimation of these measures would enable the establishment of quality release criteria

for cultures. Thus, further expansion and incorporation of this technology would significantly aid

the manufacturing and monitoring of multidimensional cultures to ensure their successful applica-

tion for cytotherapies.
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APPENDIX A

2U-NET TRAINING PROCEDURE

A.1 Determination of loss function for U-Net 1

It was important to determine the most suitable loss function as it is a critical attribute for

neural network optimization during training as well as for validating the model’s performance. U-

Net 1 loss function to segment cell regions was identified using the metrics sensitivity, precision,

and DICE from five-fold cross-validation (Table A.1). Sensitivity and precision values served as

indicators of the U-Net 1’s ability to correctly detect MSC regions, while DICE gave a measure

of how well the segmented cell regions and their borders overlapped with the ground truth. It was

concluded that the DICE loss function gave better results, and hence, it was chosen for the overall

training of the network. Though other loss functions had comparable sensitivity and DICE, they

had lower precision values mainly due to regions being over-segmented.

Table A.1: Comparison of loss functions for training U-Net 1 model to segment cell regions. The
metrics for the loss function that performed best during five-fold cross-validation are presented in
bold.

Loss function

U-Net 1 five-fold cross validation metrics for

segmenting cell regions

Sensitivity (S) Precision (P) DICE Score

(mean ± s.d.) (mean ± s.d.) (mean ± s.d.)

DICE 0.988 ± 0.012 0.847 ± 0.059 0.899 ± 0.014

Weighted DICE 0.974 ± 0.015 0.801 ± 0.064 0.875 ± 0.013

Binary cross-entropy 0.968 ± 0.018 0.764 ± 0.048 0.859 ± 0.015

Weighted binary cross-entropy 0.959 ± 0.021 0.742 ± 0.044 0.820 ± 0.017
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A.2 Determination of annotation method and loss function for U-Net 2

For U-Net 2, along with loss functions, marker annotation methods were also evaluated via

five-fold cross-validation (Table A.2). Annotation methods (binarization, erosion, and H-minima

transform) for training U-Net 2 were human-defined and generated by the algorithm, making it

necessary to pick the appropriate method for localizing cell markers. In the binarization method,

the gray-scale input image was inverted followed by thresholding with a high value. Then, only

the object with the maximum area was retained inside each ground truth-defined cell. The erosion

method involved morphologically eroding each cell in truth so that it shrank and became a cell

marker. It led to the separation of the touching/overlapping cells. Also, it was ensured using

the ground truth that each cell had only one object with the maximum area as the marker by

removing all other eroded objects. Annotations using H-minima transform method were obtained

as described in section 6.2.1.

Sensitivity and precision metrics were used as they were more relevant to assess cell marker

localization rather than the overlap between algorithm-defined annotation and U-Net 2 segmenta-

tion (DICE score). A combination of H-minima transform and DICE loss was selected for training

U-Net 2, owing to higher sensitivity and precision than other methods and loss functions. This

also agreed with previous work on morphological image analysis of MSCs detailed in chapter 4,

wherein H-minima transform was used as an initial step in detecting cell markers.
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Table A.2: Comparison of marker annotation methods and loss functions for training U-Net 2
model to locate cell markers. The metrics for the combination of marker annotation method and
loss function that performed best during five-fold cross-validation are presented in bold.

Marker annotation

method
Loss function

U-Net 2 five-fold cross validation

metrics for locating cell markers

Sensitivity (S) Precision (P)

(mean ± s.d.) (mean ± s.d.)

Binarization

DICE 0.857 ± 0.033 0.703 ± 0.051

Weighted DICE 0.866 ± 0.029 0.721 ± 0.055

Binary cross-entropy 0.819 ± 0.041 0.619 ± 0.049

Weighted binary cross-entropy 0.823 ± 0.035 0.758 ± 0.046

Erosion

DICE 0.877 ± 0.026 0.885 ± 0.041

Weighted DICE 0.817 ± 0.040 0.860 ± 0.045

Binary cross-entropy 0.819 ± 0.038 0.843 ± 0.047

Weighted binary cross-entropy 0.867 ± 0.029 0.734 ± 0.057

H-minima transform

DICE 0.933 ± 0.021 0.900 ± 0.042

Weighted DICE 0.876 ± 0.024 0.844 ± 0.045

Binary cross-entropy 0.857 ± 0.034 0.763 ± 0.049

Weighted binary cross-entropy 0.914 ± 0.022 0.716 ± 0.053
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