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ABSTRACT 

The main objective of this dissertation is to advance the models and methods utilized to 

model a community as a system of systems (SoS) accounting for their interdependencies. 

In line with this objective, this dissertation contributes to the disaster resilience literature 

by, first, developing a set of probabilistic models for the business recovery and 

residential building stock restoration, and second, proposing a modeling approach based 

on agent-based modeling (ABM) to develop a SoS model of a community. The model 

developed using the proposed approach can ultimately be used to assess the resilience of 

a community and make decisions to enhance its resilience. The next few paragraphs 

summarize the main steps in this dissertation to achieve the proposed objective. 

First, a modeling approach based on Bayesian linear regression is proposed to 

develop predictive models for different attributes of business recovery, including cease 

operation days, revenue recovery, customer retention, and employee retention. This 

stepwise modeling approach includes three main steps namely data collection, 

development of model forms, and model selection. This modeling approach is applied on 

the data collected from Lumberton, NC, after the 2016 Hurricane Matthew and 

predictive models were developed for the business recovery in this community. The 

developed models can be further used in risk analysis studies on businesses in 

communities with similar characteristics as the Lumberton community. One of the 

notable findings of this study was the significance of housing recovery on customer 

retention of the businesses. 
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Second, an existing analytical framework to generate distributions for the 

recovery time of different building archetypes subject to tornado hazard was validated 

and calibrated in this dissertation. Because of the lack of empirical restoration time data, 

researchers developed an analytical framework based on the performance-based 

engineering (PBE) approach to develop time distributions for the restoration of different 

building archetypes damaged in tornado events. In this dissertation, an empirical dataset 

was developed using the observations from a longitudinal field study in the city of 

Joplin, MO, after the 2011 Joplin tornado. Time distributions developed using this 

dataset were compared to the outcomes from the analytical framework, and a number of 

modifications were proposed to calibrate the analytical framework to better represent the 

real-world conditions in the aftermath of tornado events.  

Third, a modeling approach based on ABM is presented to develop a quantitative 

model of a community accounting for its interdependent systems. Agents in this context 

are discretized entities making their decisions based on a set of micro-behaviors, while 

their internal interactions form different systems in the community model and external 

interactions between different systems shape the complex behavior of the community. 

The application of this study is presented in the virtual community of Centerville by 

defining different agent types for its various entities, including the Electric Power 

Network (EPN), Water Supply Network (WSN), education system, businesses, 

healthcare system, households, and people. A broad review of the literature was 

conducted to define agents and their interactions, while verification and validation were 

performed to assure the credibility of the outcomes. The developed agent-based model 
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was first utilized to assess the resilience of the education system, which was one of the 

least-studied components in the quantitative disaster literature. Ultimately, resilience 

measures were proposed for the community as well as its systems. The proposed 

community resilience measure, which needs input from decision makers of a community 

in order to be calculated, is employed to assess the resilience of Centerville in its current 

condition, while the effect of different mitigation strategies on the resilience of the 

community was evaluated using the calculated resilience measures after implementing 

such decisions into the quantitative community model. 
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1. INTRODUCTION  

1.1. Problem Statement 

The frequency of natural disasters and their resulting impacts have been increasing 

during recent years. According to National Oceanic and Atmospheric Administration 

(NOAA, 2020), frequency of weather related disasters in the recent decade had a 

significant increase compared to the previous decades. This caused communities to 

suffer from not only the direct consequences of the disasters, but also long duration of 

recovery. Studies in the disaster literature indicated that longer period of recovery 

intensifies the severity of the post-disaster socio-economic impacts (Kates, Colten, 

Laska, & Leatherman, 2006; Smith & Sutter, 2013b). Due to these massive 

consequences, governments and decision makers started to make plans and take 

mitigation actions to enhance the resilience of the communities. Koliou et al. (2018) 

presented a comprehensive review of the definition of resilience and its evolution in the 

literature through time from its initial introduction by Holling (1973). According to this 

review, one of the most notable definitions of resilience was provided by the Presidential 

Policy Directives (PPD) in PPD-21: “the ability to prepare for and adapt to changing 

conditions and to withstand and recover rapidly from disruptions” (PPD 21, 2013).  

A large number of studies in the literature have focused on the direct and indirect 

losses of disasters in the impacted communities and methods to mitigate those losses. A 

large portion of these studies utilized risk analysis tools to quantify such consequences 

considering the uncertainties inherent in these problems. One prominent risk analysis 

approach for these purposes was the one proposed by the Pacific Earthquake 
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Engineering Research (PEER) Center (Cornell & Krawinkler, 2000; Moehle & 

Deierlein, 2004), known as Performance Based Earthquake Engineering (PBEE). 

Various other studies utilized risk analysis approaches which were based on the 

structural reliability methods, such as First Order Reliability Method (FORM), Second 

Order Reliability Method (SORM), and Monte Carlo sampling. Mahsuli and Haukaas 

(2013a) presented three levels of refinement in conducting risk analysis using structural 

reliability methods, namely, region, building, and component. One of the advantages of a 

number of risk analysis methods based on the structural reliability, such as FORM, over 

PBEE methods is their potential in quantitative decision making. However, there are 

some drawbacks as well, such as the need to have continuously differentiable models.  

Various studies employed different methods to account for the losses due to long 

period of recovery in addition to the direct physical losses. Aghababaei and Mahsuli 

(2018) conducted a seismic risk analysis for a building located in a high seismic area. In 

this study, in addition to the physical losses, long-term socio-economic consequences 

due to inoperability of the building were accounted for using downtime estimates 

computed using the existing probabilistic downtime models. Various studies in the 

disaster literature with a wide range of different focuses used the concept of downtime to 

implicitly account for the socio-economic losses due to loss of function of infrastructures 

during the recovery phase (Han, Li, & Van De Lindt, 2017; Kammouh, Cimellaro, & 

Mahin, 2018; Yazdi-Samadi & Mahsuli, 2018). Another approach in the literature to 

account for the recovery phase of a community and associating losses was using 

simulation methodologies, such as Markov Chain process (Nariman L Dehghani, 
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Fereshtehnejad, & Shafieezadeh, 2020; Lin & Wang, 2017a; Sutley & Hamideh, 2020) 

and agent-based modeling (Esmalian, Wang, & Mostafavi, 2021; Nasrazadani & 

Mahsuli, 2020; Sun, Stojadinovic, & Sansavini, 2019). Nasrazadani and Mahsuli (2020) 

employed agent-based modeling to simulate the response of a community subject to 

seismic events and its recovery afterwards. They also utilized risk analysis methods to 

accumulate the socio-economic costs due to various consequences in the face of a 

disaster and during its recovery. 

Among studies on the disaster resilience, a large portion of them focused on a 

single component of a community, such as transportation networks (e.g. Adams et al. 

(2012)), Electrical Power Networks (EPN) (e.g. Ouyang and Dueñas-Osorio (2012)), or 

hospitals and healthcare facilities (e.g. Cimellaro et al. (2010a)), due to their significance 

in the case of a disaster occurrence. In these studies, the response and recovery of the 

component were modeled and studied to find its resistance against disaster loads, its 

vulnerabilities, the extent of disruption in the cases of disaster occurrence, and its 

recovery pace afterwards. Additionally, one main outcome of such studies was decision 

actions to improve the current state of the component to make it more resilient against 

future events. Although these studies are of great importance due to the critical role of 

such components in the aftermath, it is essential to account for the interdependencies of 

all main components of a community in studies of community resilience. One common 

approach in the literature for this purpose is modeling the recovery process as a Markov 

Chain of events from the disaster occurrence to the recovery of the infrastructure. Lin 

and Wang (2017a) proposed a continuous time Markov Chain for the recovery of 
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building portfolio accounting for its dependence on the utility access. This method is 

typically useful to model a few interconnected components interacting with one another 

during the recovery.  

Despite the growing resilience literature, additional research is needed in order to 

develop appropriate quantitative frameworks capable of comprehensively simulating the 

response of a community in the aftermath accounting for its interdependencies. Such 

framework is essential to quantify the current resilience level of a community and enable 

decision-making to enhance its resilience. According to the review provided above, a 

comprehensive framework of a community to be used in quantitative disaster resilience 

studies should have the following features: (i) it should span from the event occurrence 

to the community recovery (or the control time in the aftermath), (ii) all major systems 

contributing to the restoration of the community should be included, and (iii) interactions 

between the systems should be sufficiently accounted for. In addition to a 

comprehensive framework, appropriate models are required to simulate the response of 

the components and their interactions in the community.  

Having a comprehensive model of a community facilitates studying the resilience 

of the community as a whole as well as focusing on the resilience of each system within 

the community. A number of systems within communities are also less studied compared 

to other well-studied components (e.g., electric power network). One of the least studied 

components is the education system. Education system has interdependencies with 

various other players in a community, especially in the case of a disaster occurrence. 

After a disaster occurs, performance of the education system depends on schools, 
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lifelines (e.g., power and water), transportation, school district, households, and 

construction companies, among others. There exist a number of studies in the literature 

investigating the effect of major natural disasters on schools and students (RAND, 2006; 

The Boston Consulting Group, 2012). However, there is virtually no study in the 

quantitative disaster resilience literature to quantify the resilience of the education 

systems. 

1.2. Theoretical Framework  

A community can be described as a complex system of interconnected systems (e.g., 

households, businesses, lifelines, schools, etc.). Each system is composed of one or more 

interconnected components working together to achieve the performance goals of the 

system. The interactions between these systems, although may be simple, result in a 

complex behavior at the community level, and this is escalated when a disruption occurs 

in the community due to major natural disasters. In order to assess the resilience of a 

community and systems within it as well as enable decision making, a quantitative 

framework accounting for these components and their interactions is proposed in this 

study. 

Figure 1 presents the theoretical framework of a community with its main 

components and simple schematic interactions between them. As Figure 1 shows, a 

number of models are required to characterize the behavior of each system within the 

community. These models simulate the direct impact of the disruptions on the system 

and its restoration afterwards. Additionally, for illustration purposes, this figure presents 

simple descriptions for interactions between each two interacting systems. Quantitative 
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models are required to implement these interactions and micro-behaviors into the model 

of the community. The proposed framework starts with a model characterizing the 

disaster and its extent throughout the community. Appropriate consequence models 

determine the extent of impact on each system within the community, and the defined 

interactions between different systems determine the cascading consequences on other 

interacting systems. Afterwards, each decentralized system initiates its recovery by 

allocating its resources based on their specific prioritization rules. Additionally, a 

number of systems may communicate with one another when making restoration 

decisions. The functionality state of each system through the simulation time has 

cascading effects on the rest of systems within the community, which are defined using 

the interaction rules between each two interacting systems as schematically presented in 

Figure 1. The proposed quantitative framework to model the community enables 

assessing the current resilience level of the community and each of its systems against its 

threatening hazards, identifying vulnerabilities in the community, and making 

quantitative decisions to enhance the resilience of the community. 
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Figure 1: Main components and systems of the community, required models for 

each of them, and their potential interactions. 

1.3. Research Methodology 

This study is divided into two main parts: (i) developing models to be used in 

community resilience studies, and (ii) developing an approach to model a community 

with its interdependent components. Two sets of models were developed as the first part 

of this study for businesses and residential buildings, and one quantitative framework 

was proposed to model the community. In the next three subsections, each is discussed 

with more details.  

Schools

Damage Model

Repair Model

Functionality Model

Households

Damage Model

Repair Model

Housing Model

Functionality Model

Damage Model

Repair Model

Functionality Model

Businesses

Healthcare

Damage Model

Repair Model

Functionality Model

Transportation

Damage Model

Restoration Model

Utilities

Damage Model

Restoration Model

Government

Disaster Management Model

Post-disaster Management Model

Children’s education

Customer and employee

Goods, income, jobs 

(owner and worker)

E
v

a
c
u

a
tio

n
, s

h
e
lte

rin
g

, 

re
p

a
ir s

p
e
e
d

R
e
p

a
ir

 s
p

e
e
d

Access during event and 

aftermath

S
c
h

o
o

l o
p

e
ra

tio
n

Household functionality



 

8 

 

1.3.1. Probabilistic modeling approach based on Bayesian linear regression to 

develop business recovery models 

In this study, four recovery attributes were defined to comprehensively characterize the 

recovery of businesses in the aftermath, namely, cease operation days, revenue recovery, 

customer retention, and employee retention. A probabilistic modeling approach based on 

Bayesian linear regression was proposed to develop business recovery models for each 

of these four attributes. Bayesian linear regression is an appealing approach to develop 

predictive models accounting for the uncertainties inherent in the problem. Two key 

components in developing a predictive model using Bayesian linear regression are 

having a thorough knowledge of the problem and having relevant data. The former 

identifies the factors affecting the model outputs, and hence, determines the model 

variables and the model form. In this study, a thorough review of the literature on 

business recovery after natural disasters helped identifying the variables (and their 

combinations) influencing the recovery of the businesses in the aftermath of natural 

disasters. The latter component (i.e., relevant data) is necessary to calibrate the resulting 

models based on the real-world observations. This modeling approach provides the 

opportunity to utilize the observations collected after major disasters from a large 

number of reconnaissance studies to develop appropriate predictive models. Another 

desirable feature of Bayesian linear regression is its ability to characterize the 

uncertainties in prediction through random variables input to the model. This ability is 

bolded specifically in the application of this study due to the highly uncertain nature of 

recovery of businesses in the cumbersome after disasters.  
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A comprehensive review of the business recovery literature was conducted in this 

study, and seven sets of information were identified as critical to be collected to develop 

predictive business recovery models: (i) direct and indirect impacts (e.g., damage to the 

building and content, and utility disruption), (ii) recovery status measures, (iii) business 

characteristics (e.g., ownership structure, sector, business age, etc.), (iv) pre-disaster 

state of the business (e.g., total annual sales), (v) geographical characteristics of the 

business (e.g., its location relative to hazard sources, customer and supplier range of the 

business, etc.), (vi) loss containment measures (e.g., financial resources and the business 

has), and (vii) neighborhood characteristics and condition (e.g., damage incurred by 

nearby households, their socio-economic characteristics, etc.). This broad literature 

review paved the way to understand the problem, and hence, to develop candidate 

Bayesian linear regression model forms. A longitudinal dataset collected in the 

community of Lumberton, NC, after the 2016 Hurricane Matthew was employed to 

develop predictive models for each of the four business recovery attributes. This 

modeling approach also provided insights about factors affecting the recovery of the 

businesses using the empirical data used. 

1.3.2. Repair-based functionality fragility models for residential building stock 

Functionality fragility models are suitable probabilistic tools to predict the time needed 

to return a damaged building back to its pre-disaster functionality. An analytical 

framework was proposed by Koliou and van de Lindt (2020) to develop repair fragility 

models for a wide range of archetypes. This simulation-based approach starts from 

hazard models, structural analysis models, and damage models, and then characterizes 
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repair of each building at the component level, and finally aggregates all repair 

procedures into the building level. By conducting a Monte Carlo sampling, a desirable 

number of samples are obtained for the time it takes for the building to evolve from a 

lower functionality level to a higher/better level. Using these values, repair-based 

functionality fragility models are developed similar to the approach used in the damage 

fragility literature. Koliou and van de Lindt (2020) also utilized this framework to 

develop repair fragility models for the community of Joplin, MO, subject to tornado 

hazards.  

The current study utilized an empirical longitudinal dataset of residential 

buildings collected after the 2011 Joplin tornado to calibrate the analytical framework 

developed by Koliou and van de Lindt (2020). For this purpose, first, empirical repair 

fragilities were developed for each residential building archetype using the collected 

dataset. Afterwards, these models were compared to the analytical fragilities developed 

for Joplin based on the method proposed by Koliou and van de Lindt (2020). A number 

of discrepancies were identified between the two sets of fragility models leading to 

modifications of the analytical framework to better represent the real-world observations 

collected after the 2011 Joplin tornado. These modifications included changes in the 

approach used by Koliou and van de Lindt (2020) to calculate the time to reach each 

level of functionality, and adopting more representative distributions for impeding 

factors delaying the repair procedure. Finally, using the collected data and the modified 

framework, repair-based functionality fragility models were developed for various 
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building archetypes, especially for residential buildings that can be further adopted for 

evaluating the recovery process of a typical US community subjected to tornado loads.  

1.3.3. Agent-based modeling approach to develop quantitative model of 

communities 

A simulation approach is adopted in this study to model the community with its 

interdependent components, which enables building the computational framework for 

quantifying the response of a community to disruptions. This will allow quantifying the 

direct effect of disruptions on the community, identifying the vulnerable components, 

assessing the response of each component of the community to the disruption, 

quantifying the resilience of the community, and finally evaluating the effectiveness of 

the mitigation strategies on the resilience of the community. A number of steps are 

needed to be taken in order to develop the simulation approach for the purpose of this 

study: (i) develop the conceptual framework of the community, (ii) select a community 

and collect sufficient information to effectively model its components and 

interdependencies, (iii) collect appropriate models from the disaster resilience literature 

to model components and their interactions, or develop appropriate ones if no suitable 

model exists in the literature, (iv) create the community model based on the conceptual 

framework and the collected information and models and validate its performance, and 

(v) conduct simulation experiments and explore findings/insights out of the results and 

validate them with the literature. Using the calibrated and validated community model, it 

is possible to answer the research questions, such as the resilience level of the 

community, its vulnerabilities, and the effect of mitigation actions on its resilience. 
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This study adopted agent-based modeling (ABM) to effectively and 

comprehensively simulate the response of the components of a community and their 

interplay in the restoration phase in the aftermath. In ABM, a system is modeled as a set 

of decentralized entities (called agents) functioning all together while specific 

relationships among them form and govern the complex system (Nasrazadani & 

Mahsuli, 2020; Rasoulkhani & Mostafavi, 2018). Agents are defined by specific rules 

and micro-behaviors which determine their objectives and priorities based on the 

environment characteristics through time. According to Ouyang (2014), agent-based 

approach is suitable for modeling the complex behavior of interconnected infrastructures 

since it works with bottom-up methods and aggregates the simple micro-level 

interactions of agents into complex macro-level responses of the system/community. 

ABM is able to account for the response of each agent to the environment changes 

through time, behavioral decision making within each agent, and reactions of the agent 

to the decisions made by other agents, which all make this approach desirable to model a 

community with its complexities. The computational framework in this study is 

implemented in an object-oriented modeling platform called AnyLogic. 

Although application of ABM in the disaster resilience literature is a new topic, 

this simulation approach has been widely used in other research areas to study complex 

behaviors of infrastructure systems and the effect of different policies on the outcomes. In 

1998, Sandia National Laboratory (SNL) (Basu, Pryor, & Quint, 1998) developed its first 

agent-based model of interdependent infrastructures of US economy called Aspen in order 

to simulate the response of the community to a number of financial policies. This model 
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contained various types of agents including households, banks, federal reserve, four types 

of firms, realtor, capital goods producer, and a financial market place agent. They modeled 

complex behavior of each agent and their interactions with one another by assuming 

multiple interaction rules. After using Monte Carlo sampling to account for the 

uncertainties in the problem, this study compared different policies using the results. SNL 

developed Aspen-EE agent-based model (Barton, Eidson, Schoenwald, Stamber, & 

Reinert, 2000) which was an extension of Aspen but more comprehensive and included 

power market as well. This model had various agents, including hazard agent (which 

simulated the power outage occurrences), household, industry, weather, and government 

agents among others. For each agent, multiple detailed simple rules were determined 

which defined agent’s behavior and interactions. In another study, Rasoulkhani et al. 

(2020) utilized ABM to assess the resilience of the water supply infrastructures in coastal 

areas subject to the sea-level rise threats.  

A few studies utilized ABM for the purpose of studying disaster resilience and 

recovery of communities. Eid and El-adaway (2017) presented a decision-making 

framework to model the affected communities using ABM. Their framework accounted 

for the needs of the impacted residents, their wealth recovery, social vulnerabilities, 

governmental aids, and various insurance plans available. Nejat and Damnjanovic (2012) 

employed ABM to model the dynamic interaction between homeowners and their 

neighbors and its effect on the homeowner’s reconstruction decision in the recovery 

process. Nasrazadani & Mahsuli (2020) combined risk analysis methods and ABM to 

study disaster resilience of a community subject to seismic hazards. These few studies 



 

14 

 

paved the way to conduct quantitative disaster resilience assessment using ABM. 

However, much more efforts are needed to take the full advantage of the ABM potentials 

to comprehensively model a community and utilize it in decision making. 

1.4. Research Overview and Contributions 

Three research thrusts are defined in this study, each focusing on specific topics which 

are in line with the objectives of this study. This dissertation includes five chapters. The 

current chapter (Chapter 1) provided an introduction to the problem, the theoretical 

framework proposed in this study, and the research methodology adopted. The last 

chapter (Chapter 5) discusses the conclusions and future work. Thrusts A, B, and C of 

this study are presented in Chapters 2, 3, and 4. In the following, a brief overview of 

each chapter, and their contribution to the objectives of this study, and in overall, to the 

quantitative disaster literature is discussed. 

1.4.1. Overview of Chapter 2 

Chapter 2 presents Thrust A of this study, which describes the methodology proposed in 

this study to probabilistically model the recovery of businesses after natural disasters. A 

comprehensive review of the business recovery literature is presented in this chapter 

along with the modeling approach and its application on a longitudinal dataset collected 

in Lumberton, NC, after the 2016 Hurricane Matthew. The main contributions of this 

chapter are: 

• A stepwise modeling approach is proposed which can be utilized to develop 

predictive business recovery models. This stepwise approach discusses the data 
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categories that are essential to be collected for this purpose, the model 

development methodology, and the method to select the appropriate model.  

• An application of this approach is presented using the business recovery data 

collected from the community of Lumberton, NC, after the 2016 Hurricane 

Matthew. Although the developed models in this application may not be 

generalized to communities with significantly different characteristics, it is 

possible to update the models using Bayes theorem when new data merges.  

• The developed business recovery models in this study can be used along with other 

probabilistic models for risk analysis studies. The outcomes of such studies would 

be evaluation of current condition of the businesses in the community and decision 

making to enhance their condition. 

• This study indicated the significant interaction between the recovery of households 

and businesses. One of the significant predictors of the business customer retention 

was found to be the average damage incurred by housing units in the nearby areas 

around the business. The customer retention rate had opposite relationship with 

this predictor, meaning that the more impacted the residential neighborhood 

around the business, the less the business is able to retain its customers. 

1.4.2. Overview of Chapter 3 

Chapter 3 presents Thrust B of this study, which describes the method proposed in this 

study to modify an existing analytical approach to develop repair-based functionality 

fragilities. A number of functionality fragilities were developed using the modified 
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approach for various residential building archetypes. The main contributions of this 

chapter are: 

• Before this study, there was no empirical recovery time distributions for buildings 

damaged due to tornado events. Researchers overcame this lack of empirical data 

by developing restoration time distributions for 19 building archetypes using an 

analytical framework which was based on the Performance Based Engineering 

(PBE) approach. However, this analytical framework was not validated using 

empirical data. In Chapter 3 of this dissertation, empirical restoration time 

distributions are developed using data collected through a longitudinal study after 

the 2011 Joplin tornado, while comparisons are made with the outcomes from the 

analytical framework, and finally, an updated version of the analytical framework 

is proposed by calibrating it to the empirical data. 

• The updated analytical framework included the impeding factors which typically 

exist in the aftermath of major disasters in addition to the repair time of the 

buildings. Using the updated framework, it is possible to develop restoration time 

distributions for building archetypes in any community by knowing their specific 

characteristics. 

• The empirical distributions developed in this chapter are applicable in quantitative 

studies as variables representing the restoration time of a building damaged in a 

tornado. These distributions are utilized in the quantitative model developed for 

the community of Centerville in Chapter 4 of this dissertation. 
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1.4.3. Overview of Chapter 4 

Chapter 4 presents Thrust C, which itself is divided into two consecutive subchapters, 

named Thrust C-A and Thrust C-B. In Thrust C-A, the ABM approach to model a 

community with its interdependent components is presented. To better demonstrate the 

approach, it is presented along with its application to the virtual community of 

Centerville subject to tornado hazard. The proposed ABM approach in this subchapter is 

first utilized to study education system, which was one of the least studied components 

of the communities in quantitative disaster literature. In the next subchapter of Chapter 

4, Thrust C-B is presented which is an extension to the community model developed in 

Thrust C-A to include additional community players after natural disasters. Resilience 

measures are proposed to quantify resilience of the community and its systems. The 

community resilience measure is computed for Centerville using its quantitative 

community model to assess its resilience. In addition, this model is used to evaluate 

various decision actions and their effect on the resilience of the community. The main 

contributions of this chapter are: 

• This study contributed to the disaster resilience literature by developing a 

comprehensive modeling approach to model a community and its interdependent 

systems, which enables studying the short- and long-term resilience of the 

community subject to its threatening hazards. To this end, this study developed a 

simulation approach based on agent-based modeling (ABM), which is capable of 

modeling a system of systems (SoS) model with all their interdependencies. 
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• To model the systems within a community (e.g., lifelines, households, businesses, 

schools, etc.), a thorough understanding of their behavior in cases of disruption is 

required, which is attained in this study by a detailed review of the existing 

literature and past disasters. This understanding is used to develop decision rules, 

prioritization rules, and micro-behaviors which define an agent (e.g., one 

household, a component of electric power network, utility company, etc.) and 

interplay between agents in the restoration process. ABM is capable of 

implementing these micro-behaviors and rules effectively to simulate the 

responses of and interactions between different agents in the community.  

• Resilience measures were proposed for the community and its individual systems. 

In addition, this study demonstrated the application of these measures to evaluate 

the resilience of the community and to compare different mitigation strategies. The 

outcomes can be utilized for decision making under uncertainties. 

• The application of this study is presented for the community of Centerville subject 

to tornado hazard. Agent types are developed for Schools, households, Electric 

Power Network (EPN), Water Supply Network (WSN), construction companies, 

businesses, hospitals, and people. In addition, interactions between these agents 

are defined and implemented based on the broad review of the literature and past 

events. Various types of analysis are conducted on the developed community 

model, including Monte Carlo sampling analysis. The community model is 

capable of accounting for the uncertainties in its response and restoration to a 

tornado event.  
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2. THRUST A: QUANTIFYING POST-DISASTER BUSINESS RECOVERY 

THROUGH BAYESIAN METHODS * 

Business recovery after a disaster plays an important role in the socioeconomic recovery 

of a community. This chapter focuses on the development of a probabilistic modeling 

approach for quantifying and predicting business recovery through Bayesian linear 

regression. The proposed modeling approach consists of three steps including data 

collection, development of model forms, and model selection through rigorous 

evaluation and elimination steps. Four attributes, namely business cease operation days, 

revenue recovery, customer retention, and employee retention, which describe the post-

disaster recovery state of a business, are considered. One of the main contributions of 

this study is incorporating the interplay between household and businesses in a 

community in developing predictive business recovery models. Towards that direction, 

different methods to account for the effect of household recovery into the customer 

retention rate of a business are investigated and proposed. As an application, the 

proposed modeling approach is applied on the results of a longitudinal field study at the 

community of Lumberton, NC, which was heavily impacted by the 2016 Hurricane 

Matthew, focusing on business recovery. The predictive models proposed in this study 

may be further applicable in risk-based resilience assessment of communities following 

disastrous events.  

 

*This is an Author’s Original Manuscript of an article published by Taylor & Francis Group in Structure 

and Infrastructure Engineering available online at https://doi.org/10.1080/15732479.2020.1777569 

(Mohammad Aghababaei, Koliou, Watson, & Xiao, 2020) 

https://urldefense.com/v3/__https:/doi.org/10.1080/15732479.2020.1777569__;!!KwNVnqRv!QmvkgDnL04yvtFEiR0TtkaHxiwBH1DG2564Kz4ad6VKl18KwK9niFlTlNcLlL3OF_AMuqjnb$
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2.1. Introduction  

The frequency of weather-related disasters and their resulting losses have been 

increasing significantly in recent years (Aghababaei, Koliou, & German Paal, 2018; 

NOAA, 2017) and communities suffer not only from the direct physical consequences of 

disasters, but also the long duration of recovery. It has been observed that the longer the 

restoration period lasts, the more severe the post-disaster consequences, such as socio-

economic impacts, are for the community (Kates, Colten, Laska, & Leatherman, 2006; 

Smith & Sutter, 2013).  

Business recovery after a disaster, which is the focus of this chapter, plays a 

significant role in the larger socioeconomic recovery of a community. Post-disaster 

recovery is not only the recovery of the physical infrastructure, but also the rebuilding of 

livelihoods, which requires all groups and members of the community—including 

businesses and households—to make decisions for the path of their recovery (Marshall 

& Schrank, 2014). Previous studies have shown that recovery of businesses and 

households throughout a community are correlated (Xiao & van Zandt, 2012) where 

household recovery affects the business recovery through the retention of customers and 

employees (Xiao, Wu, Finn & Chandrasekhar, 2018; Y. Zhang, Lindell, & Prater, 2004, 

2009;). Furthermore, because households depend on businesses for employment, goods, 

and services, businesses need to be recovered for households to achieve their own 

recovery and sense of normalcy (Liu, Black, Lawrence, & Garrison, 2012). Therefore, 

recovery of the businesses after a disaster contributes significantly to a community’s 
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recovery trajectory, and consequently understanding and predicting their recovery can 

help communities become more resilient to future disaster events.  

A vast majority of empirical studies focusing on business recovery have utilized 

statistical modeling techniques, such as ordinary least squares (OLS) regression for the 

purpose of identifying various significant factors on business recovery and their 

relationships, but without focusing on the development of predictive models (e.g., Orhan 

(2016), Wasileski, Rodríguez, & Diaz (2011), Webb, Tierney, & Dahlhamer (2002),  

Xiao & Nilawar (2013), Xiao & Peacock (2014), and Y. Zhang et al. (2009)). The 

outcome of such studies is finding the most significant factors in the post-disaster 

recovery of businesses. These findings were considered in the current study to identify 

the most critical factors in business recovery and collect data accordingly, as discussed 

in detail in the next sections (Step 1: Data collection). The core objective of this study is 

to develop predictive probabilistic business recovery models that are applicable in risk-

based resilience assessment studies, while this approach also reveals the significant 

factors in business recovery during the modeling procedure as discussed in this Chapter. 

Developed predictive business recovery models should be able to incorporate 

uncertainties inherent in such predictions. Towards that direction, a Bayesian linear 

regression methodology is proposed to quantify business recovery herein accounting for 

uncertainties related to the problem posed. One of the advantages of the developed 

models is being continuously differentiable which is the requirement of being employed 

in a number of risk analysis methods. Two examples of such methods are first order 

reliability method (FORM) and second order reliability method (SORM) which are two 
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computationally efficient risk analysis methods capable of handling uncertainties in 

complex problems (Der Kiureghian, 2005). 

Recovery after a disaster cannot be simply characterized by a dichotomy of 

recovered or not recovered (Karatani & Hayashi, 2007) due to the multiscale nature of 

recovery. The current study considers and makes use of different quantitative 

dimensions of business recovery after a disaster to achieve a comprehensive snapshot of 

the status of businesses following natural disasters. The measures considered in this 

study are: (i) cease operation days, i.e., the duration after the disaster that the business 

was out of operation, (ii) revenue recovery, i.e., the change in the business revenue 

compared to its pre-disaster status, (iii) customer retention, i.e., the percent of customers 

compared to pre-disaster conditions, and (iv) employee retention, i.e., the change in the 

number of employees compared to pre-disaster. 

The proposed modeling methodology is applied to the community of Lumberton, 

NC which was severely impacted by the 2016 Hurricane Matthew. A survey dataset of 

business recovery, collected during a field study performed by the NIST-funded Centre 

of Excellence on Risk-Based Community Resilience Planning about a year following 

Hurricane Matthew, is utilized for the purpose of model development herein (van de 

Lindt et al., 2018). Using this dataset, Bayesian linear regression was conducted to 

predict each of the aforementioned metrics of business recovery.  

One of the innovations of this study is incorporating the interplay between 

household and business recovery trajectories. In a realistic model, the recovery state of 

the housing units throughout the community affects business recovery (Y. Zhang et al., 
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2009), while household recovery, especially in terms of the reestablishment of livelihood 

and daily routines, might also be affected by business recovery (Xiao & van Zandt, 

2012). To account for such interdependencies in the recovery trajectory quantification, 

this study focuses on addressing the effect of household recovery on businesses.  

2.2. Background  

Business recovery is complex due to the various spatial and transactive factors that affect 

business performance after a disastrous event. It is not simply a function of physical 

damage to the business itself, but also encompasses interruptions of various suppliers, 

households, and governmental inputs that may affect a business’s ability to operate since 

these critical inputs may also originate from within the impact area (Xiao & Nilawar, 

2013; Y. Zhang et al., 2009). Business recovery can be measured by various indicators.  

For example, Webb, Tierney, and Dahlhamer (2002) in their study of business recovery, 

considered four factors representing recovery, including present state of the business 

compared to just before the event, change in number of employees, change in number of 

customers, and change in profits.  

Characteristics of the business itself that affect recovery include business age, 

sector, and ownership status of business premises (owned or rented). Older, established 

businesses are thought to be more stable as well as more likely to engage in preparedness 

actions which help them before and after an event (Dahlhamer & Tierney, 1996; Webb 

et al., 2002). In contrast, some studies suggest that businesses in a better financial 

condition prior to the disaster take longer to recoup their losses since they may have had 
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more to lose (G. R. Webb et al., 2002). The sector of the business is also important 

because it can capture information on the characteristics of the business’s contents and 

inventory as well as how the demand for the business’s goods or services might change 

after a disaster. Businesses’ contents are not uniform across sectors and can be more or 

less perishable, heavy, and/or mobile (Gissing & Blong, 2004), which makes them to be 

affected differently subject to hazards. Moreover, different business offerings may 

become more or less desirable after a disaster (Alesch, Holly, Mittler, & Nagy, 2001). 

Orhan (2016) studied the most significant factors in the long-term recovery of the 

businesses after the 1999 earthquake in Adapazari, Turkey, and concluded that 

businesses in finance, insurance, real-state, and construction sectors tend to recovery 

faster, while the lowest recovery rate was observed for the trade sector. Lastly, whether a 

business owns or rents the building out of which it operates may have consequences for 

recovery. If the business owns the property then they are in full control of the property; 

however, businesses that rent do not have control of mitigation of the property before the 

disaster and the timeline of repairs after the disaster which might postpone the business 

recovery (Alesch et al., 2001). Businesses renting their premises are more vulnerable 

because they are more likely to face debt issues after a disaster since they will be 

required to pay rent even if they cannot recover their full revenue stream (W. Zhang, 

Lin, Wang, Nicholson, & Xue, 2018). 

The management of the business is important to be considered as it relates to 

decision-making, adaptability, and flexibility in response to hazard events. Khan and 

Sayem (2013) found that institutional education reduces recovery time; more experience 
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may also indicate a higher likelihood of having experienced a disaster previously, which 

was also negatively correlated with recovery time (Asgary, Anjum, & Azimi, 2012). In 

addition, navigating insurance coverage and the claim process can be difficult after 

disaster (Brown, Seville, & Vargo, 2017), therefore having more experience may be 

helpful.  

Insurance as its own factor helps replace damaged assets and allows a business 

more flexibility in its recovery (Alesch et al., 2001). A business’ physical capital is 

vulnerable to the hazard, and higher amount of non-liquid assets will make a business 

more exposed to damage (Y. Zhang et al., 2009). This is not limited to the structure out 

of which the business operates, but also the contents and machinery within the building. 

However, even if the business itself is not impacted, external inputs crucial to the 

operation of the business, especially utilities (e.g., electricity and telecommunications), 

might have been damaged or disrupted. Literature has suggested that the loss of these 

utilities, and the resulting temporary closure of the business, may be just as—if not 

more—disruptive to business functionality as the physical damage (Tierney & Nigg, 

1995). Other input-related disruptions include accessibility and transportation issues, 

which limit the flow of products, labor and customers. 

In order to develop predictive recovery models that consider all aforementioned 

factors and are capable of incorporating the high uncertainty inherent in their nature, a 

Bayesian linear regression modeling approach is proposed in this study. Bayesian linear 

regression (which is based on the Bayesian inference) has been well represented in the 

literature (e.g., Box & Tiao, 1992) and is selected for this study among the prediction 
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methods available in the literature for a number of reasons. First, this modeling approach 

is based on the mechanics of the problem (here the business characteristics and the 

condition during the aftermath) as well as the available data (Aghababaei, 2017; 

Aghababaei & Mahsuli, 2019). Particularly for this study, the literature on the most 

significant factors affecting the business recovery determines the model form and its 

variables. Additionally, various datasets available from multiple reconnaissance and/or 

longitudinal studies (existing or future ones) can be employed to calibrate the developed 

recovery models. Bayesian linear regression is a powerful tool for prediction purposes to 

characterize the uncertainties by means of variables input to the model. The probability 

distribution of these variables is updated as new data merges through Bayesian updating. 

A detailed description on how those advantages of using Bayesian linear regression are 

accomplished in the predictive business recovery models is provided later in this chapter. 

Gardoni, Der Kiureghian, and Mosalam (2002) initiated the use of Bayesian linear 

regression in the structural engineering field with application on earthquake hazard, as 

they utilized it to predict the capacity of reinforced concrete columns using experimental 

data. The Bayesian approach was later utilized by other researchers on a variety of 

applications including the development of fragility functions or for prediction purposes, 

such as the seismic demand in different structural members, the material properties, and 

the disaster direct and indirect impacts (Bazli, Ashra, Jafari, Zhao, & Gholipour, 2019; 

Khaneghahi, Alembagheri, & Soltani, 2019; Li, Spencer Jr, & Elnashai, 2012; Mishra, 

Vanli, Alduse, & Jung, 2017; Najafabadi, Khaneghahi, Amiri, Estekanchi, & 

Ozbakkaloglu, 2019; Tamhidi et al., 2021). More recently, Aghababaei and Mahsuli 
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(2019) proposed a stepwise approach to apply Bayesian linear regression to the real-

world data in order to predict the damage incurred by building components, based on the 

component demand (e.g., inter-story drift ratio) and component characteristics.  

There is a strong interaction between the recovery of households and businesses 

in a community after a disaster. Thus, business recovery has a crucial role in community 

recovery, and hence, the community resilience. Koliou et al. (2018) recently performed a 

broad literature review on the research related to community resilience focusing on 

identifying the challenges and needs to be addressed for risk-informed decision-making 

of communities. One aspect of the work by Koliou et al. (2018) focused on presenting 

the evolution of the meaning of the term “resilience” since its first introduction in 1973 

(Holling, 1973), and stated that the prevalent parts among all definitions presented since 

then are: (i) reducing consequences, (ii) accelerating the recovery process, and (iii) 

reducing vulnerability against disasters. Risk-informed decision-making is a reliable tool 

for enhancing community resilience with focus on these three aspects. In the past 

decades, a large number of studies (Aghababaei & Mahsuli, 2018; Cornell & 

Krawinkler, 2000; Ganji, Alembagheri, & Khaneghahi, 2019; Koliou, van de Lindt, & 

Filiatrault, 2016; Mahsuli & Haukaas, 2013; Moehle & Deierlein, 2004) have focused on 

risk-based simulations accounting for uncertainties with the ultimate objective being to 

comprehend the state of the infrastructure systems following a disastrous hazard as well 

as reducing the disaster consequences through proposed solutions. Furthermore, various 

studies utilized risk-based decision-making for enhancing resilience following a disaster. 

For instance, Lounis and McAllister (2016) proposed a risk-informed framework for 
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infrastructure performance which considers sustainability and resilience, with an 

example application on highway bridges resilient design by means of the conventional 

damage states and their associated loss and downtime estimates. In that same direction, 

the current study introduces a modeling methodology based on Bayesian linear 

regression models which are applicable in risk-based resilience analysis. As shown in 

Figure 2, a generic framework for risk-based resilience analysis requires occurrence 

models to generate random events based on the hazards threatening the community, 

hazard intensity models to generate random intensities for the occurred hazard, response 

models to estimate the structural performance of all infrastructure systems within a 

community during the hazard occurrence, direct impact models to predict the physical 

damage incurred by the infrastructure systems, indirect impact models to predict other 

adverse impacts on the community in addition to the physical impacts (such as 

unemployment, economy failure, business interruption, household displacement etc.), 

and recovery models to simulate the recovery trajectory of the community and its 

systems (social, economic) during the aftermath. The predictive recovery models 

proposed in the current study may be applicable in such a generic framework to model 

the recovery of businesses. By employing a risk analysis method along with the 

sequence of models presented in Figure 2, it is possible to predict the consequences as 

well as recovery measures, and give recommendations towards making a community 

more robust to future events, while decreasing the consequences and recovery time 

which all constitute the tripartite view of resilience. 
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Figure 2: Representation of a generic framework for risk-based resilience analysis. 

2.3. Modeling Approach  

In this section, the steps to model a recovery measure/attribute are explained in detail 

including steps on data collection, development of candidate model forms as well as the 

model selection process. A schematic representation of the proposed approach to model 

recovery measures is provided in Figure 3. In the first step, an appropriate dataset to 

calibrate the model is collected, while a set of initial candidate model forms containing 

the most important predictors of the measure of interest—named initial candidate model 

form basket—are developed in the second step. In part one and two of the third step, 

each initial candidate model form transforms to a new model form, herein called the 

“upgraded” candidate model form, after accounting for model diagnostics and 

elimination of inconclusive terms. Finally, the most desirable model from the upgraded 

candidate model form basket is selected and high correlation between model parameters 

is eliminated in part three of step three. Each step is discussed in detail in the following 

sections of this chapter.  
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Figure 3: Schematic overview of the proposed methodology to develop predictive 

business recovery models. 

2.3.1. Step 1: Data collection 

Real-world data are commonly used for modeling and calibration purposes in order to 

generate realistic predictive business recovery models. Therefore, survey information 

from field studies following natural disasters focusing on the most important factors 

affecting business recovery are valuable resources. Such information can be collected by 

directly interviewing business managers and business owners as well as conducting 

paper-based, email-based, and/or phone-based surveys.  

Based on these studies (e.g., Corey & Deitch (2011), Dahlhamer & Tierney 

(1998), Marshall & Schrank (2014), Runyan (2006), Wasileski, Rodríguez, & Diaz 

(2011), Webb et al. (2002), Xiao & van Zandt (2012), and Zhang Y. et al. (2004)), seven 

sets of information are identified as critical to be collected for modeling business 
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the business incurred, including building damage, machinery damage, content damage, 

and utility disruption, (ii) Recovery status measures including cease operation days, 

customer retention, employee retention, and revenue recovery, (iii) Business 

characteristics including ownership structure (e.g., single owner, partnership, and 

franchise), sector (e.g., manufacturing, construction, and retail), business age, renter or 

owner status, as well as manager age, education, and race, (iv) Business pre-disaster 

state including pre-disaster profitability level of the business, total annual sales range of 

the business, and pre-disaster number of employees, (v) Geographical characteristics of 

the business referring to whether or not the business is located in an inundation area, 

close to an active fault, coastline etc., whether or not the business is location-dependent, 

as well as the customer and supplier range of the business, (vi) Loss containment 

measures accounting for different types of insurance policies the business have (all 

available financial resources and aids the business has, and preparedness pre-disaster), 

and (vii) Neighborhood characteristics and condition aftermath referring to the damage 

incurred by households nearby accounting for the amount of vacant households in near 

proximity, the amount of households nearby that are rental, as well as other socio-

economic household characteristics such as income, race, etc.  

2.3.2. Step 2: Development of model forms 

After developing the necessary datasets, appropriate candidate model forms are 

developed to predict the recovery measures using Bayesian linear regression. The 

general form of the Bayesian linear regression per Box & Tiao (1992) is as follows: 
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( )y =  +Θ h x          (1) 

where y is model dependent variable (i.e. regressand), Θ={θ1, θ2, …, θn} is the vector of 

model parameters, h(x)={h1(x), h2(x), …, hn(x)} where  hi, 1≤i≤n, is ith explanatory 

function (i.e. regressor), n is the number of explanatory functions, x is the vector of 

independent variables (also called explanatory variables), and ε is the model error 

assumed as a normal random variable with mean zero and standard deviation σ. 

The key point in developing appropriate business recovery models is the rational 

selection of explanatory functions. Each explanatory function, hi(x), consists of one or 

more explanatory variables which are considered important in predicting the recovery 

measure of interest. Furthermore, explanatory variables should be combined in a way 

that results in a meaningful/realistic explanatory function. For example, combining 

explanatory variables representing the building damage, δb, and manager’s age, nm,age, in 

an explanatory function is not a rational combination for a proper predictor of the 

business recovery. On the other hand, combining certain explanatory variables might 

result in a more meaningful explanatory function and better prediction. For example, a 

model containing one explanatory function summing all utility disruptions (e.g., 

electricity, gas, etc.) may result in a meaningful model and provide accurate and realistic 

predictions. This is mainly attributed to the fact that restoration of all utilities is needed 

for a business to return to normal operations, and summation of all utility disruptions in 

a single explanatory is an effective way to take this fact into account. 

Different transformations, such as logarithmic and exponential, may be applied 

to the explanatory functions (hi(x)) in the right-hand side of Equation (1). These 
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transformations control the range and trend of the explanatory function to be conclusive 

and associated with a higher degree of certainty. For instance, in the cases that the value 

of an explanatory function changes significantly through the dataset, it is more 

challenging to capture the effect of the explanatory function in the modeling, whereas 

using logarithmic or similar functions narrows down the range and helps to better 

identify the impact of the value of the explanatory function in the predictive models. 

Additionally, in order to control the range of the output, it is necessary to introduce the 

link functions (F(.)) in the predictive models as shown in the following equation.  

( ) ( )F y = +Θ h x          (2) 

A wide variety of link functions (F(.)) may be used in predictive models 

depending on the requirements and needs of the respective models. For example, in 

order to restrict the output between 0 and 1, various functions including probit function 

(Ф─1(y)), log-log function (−ln(−ln(y))), complementary log-log function 

(−ln(−ln(1−y))), and logit function (ln(y/(1−y))) may be considered. In the cases that the 

output should be positive and there is no associated upper limit, the log function (ln(y)) 

and square root function (y1/2) may be incorporated in the model form. Different 

combinations of link functions (on the left-hand side of Equation (2)) as well as different 

transformation functions (on the right-hand side of Equation (2)) will lead to a set of 

candidate model forms, called the “initial candidate model form basket” in Figure 3, 

amongst which the best one will be selected.  
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2.3.3. Step 3: Model selection 

In this section, the process of selecting the most appropriate predictive model among the 

set of developed candidate model forms is discussed. The procedure starts with 

performing two iterative parts including model diagnostics (part 1) and elimination of 

inconclusive terms (part 2), as presented in a dashed box in Figure 3. After conducting 

Bayesian linear regression, each candidate from the basket of the initial model forms 

goes through this iterative process in order to be evaluated through part 1 and to 

eliminate the inconclusive terms through part 2, which finally results in the upgraded 

candidate model form. As shown in Figure 3, if the candidate is not qualified based on 

the outcome of part 1 of this methodology, the candidate is removed from the basket, 

while if it is qualified, it goes through part 2 until no inconclusive terms are left in the 

model form, and therefore, the upgraded model form is added to the upgraded candidate 

model form basket. Part 2 starts with the elimination of the first most inconclusive term 

from the model form, and afterwards, the new model goes through diagnostics again to 

determine whether or not this elimination is accepted. As presented in Figure 3, if the 

new model is qualified, it goes to part 2 again if there are more inconclusive terms to be 

eliminated. If the new model is not qualified, it either goes back to part 2 to eliminate the 

next inconclusive term or is removed from the basket. The reasons for a model not to be 

qualified include unsuitable diagnostics, large number of inconclusive terms, or 

inconsistency in the model interpretation with the literature and expert judgement. 

Ultimately, after conducting the aforementioned two steps for all the candidate model 

forms, the “best”—or more representative model amongst the upgraded candidate model 
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forms basket—is selected based on the diagnostics of each model, the posterior statistics 

of the model parameters as well as the desirability of the remaining regressors and the 

findings out of them (according to the sign and value of their model parameters). The 

final selected model then progresses to part 3, which involves the elimination of high 

correlation between model parameters.  

There are a number of measures widely used (Aghababaei & Mahsuli, 2019; Box 

& Tiao, 1992; Gardoni et al., 2002) to qualify a candidate model form in Bayesian linear 

regression as the first part (diagnostics) of the model selection process (step three of 

Figure 3). To evaluate the candidate model form, various diagnostic tool/quantities are 

considered including the model scatter prediction, coefficient of determination (R2) and 

standard deviation of model error (σ), quantile-quantile (Q-Q) plots, as well as plots of 

residuals versus regressors and regressand values. The most imperative examination of 

the mean candidate model form is the observation versus model prediction scatter. A 

good fit appears when the scatter is aligned along the 45° line. To prevent the over-fit, it 

is recommended to divide the data into training and testing sets, e.g., with a ratio of 85 to 

15. If the developed model predicts accurately the testing data (i.e., the scatter of testing 

data and their corresponding prediction are aligned along 45° line) no over-fit is 

observed in the predictive model. The coefficient of determination and standard 

deviation of model error are used to quantitatively evaluate the accuracy of the model 

where higher values of R2 and lower values of σ represent a more representative and 

accurate model. The quantile-quantile (Q-Q) plot demonstrates whether or not there is 

non-normality of residuals by plotting the residuals (referring to the difference between 
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observed and predicted values, versus the normal theoretical quantiles). If the Q-Q plot 

aligns along the 45° line, the assumption of the normal distribution in the modeling 

process is validated. The heteroscedasticity and autocorrelation of residuals are 

examined through the plots of residuals versus regressors and regressand values. 

Heteroscedasticity appears if the points are unequally distributed along the x-axes (i.e., 

regressors or regressand values) while autocorrelation appears if there is a visible pattern 

in the plot.  

When eliminating inconclusive terms (part 2), the measure used to find 

inconclusive terms is the posterior Coefficient of Variation (CoV) of the model 

parameters. The explanatory function associated with the largest CoV is the least 

informative among all explanatory functions in the model form (Gardoni et al., 2002) 

and therefore, it should be eliminated. After eliminating the explanatory function from 

the model form, the Bayesian linear regression is conducted again to calculate the 

posterior statistics of the model, including model parameters as well as model error. 

Sudden jump in the CoV of the standard deviation of the model error indicates that the 

eliminated term was not inconclusive and is essential in the model prediction, and thus, 

it should not be eliminated. Elimination of the inconclusive terms continues until no 

model parameter associated with a large CoV is included in the model. 

Finally, after selecting the most desirable model among the set of upgraded 

candidate model form basket, high correlation between model parameters (ρθiθj) should 

be eliminated by evaluating the largest absolute value between model parameters θi and 

θj (maxi≠j|ρθiθj|). A high correlation (e.g., |ρθiθj|>0.7) indicates close relation between θi 
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and θj, and thus, those parameters should be combined (Gardoni et al., 2002). By so 

doing, not only is the high correlation eliminated, but also the model uncertainty is 

decreased by avoiding repeating uncertainties in two separate model parameters. If the 

correlation is low (e.g., |ρθiθj|<0.5), it indicates that there is no close relation between θi 

and θj. For high correlations, per Gardoni et al. (2002), θi (θi ≥ θj) can be replaced by θi 

as described in Equation (3). 

( )i j j ji
i

i

j


    


= + −      (3) 

where µi and σi are the mean and standard deviation of θi. Elimination of high correlation 

between model parameters is performed one by one until no correlation above 0.5 is 

observed (i.e., |ρθiθj|<0.5 for all i≠j).  It should be noted that if the quality of the model 

through diagnostics of the new model after elimination of high correlation between each 

two model parameters (e.g., θi and θj) drops significantly or if the posterior statistics 

show a sudden increase in the model error or the CoV of model parameters, the 

elimination is declined. In addition, in some cases, since the observation values for the 

explanatory function associated with one of the model parameters, for instance hi(x), is 

large, after elimination of high correlations using Equation (3), one large value at the 

left-hand side of the Equation (2), ( ) ( ) ( )/
i ji i i j iF y h     − −    x , and one large 

value at the right-hand side of the Equation (2), ( ) ( ) ( )( )/
i jj j i j ih h     +  x x , 

appear. By conducting the Bayesian linear regression between the left-hand side of the 

Equation (2) and the explanatory functions in the right-hand side, the effect of other 
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terms of the model form becomes negligible compared to the large values of the new 

explanatory function, ( ) ( ) ( )( )/
i jj i j ih h   +  x x , which is not correct and desirable. 

Hence, in these cases, elimination of high correlation should be avoided. 

2.4. Business recovery measures/attributes  

Four attributes and their corresponding measures are proposed and explained in this 

section to comprehensively capture the recovery of the businesses after a disaster. Figure 

4 presents these four recovery attributes and their interactions as well as their 

prospective explanatory variables to develop predictive models. The description of each 

explanatory variable is provided in Table 1. Each model is shown by a rectangle, arrows 

entering vertically to the model are the prospective explanatory variables, and arrows 

entering horizontally in the left-side of the models are inputs from upstream models.  

 
Figure 4: Schematic representation of the interaction between the recovery 

attributes considered in this study and their prospective inputs. 
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Table 1: Description of the explanatory variables in Figure 4. 

Description of variable Symbol 

Revenue change (from 1 to 5 as increases) R 

Customer percentage loss (%) lcus 

Number of employees the business had at the time of the survey nemp,now 

Cease operation (days) d 

Profitability before the disaster (from 1 to 5 as decreases) Pp 

Damage to the building (from 1 to 5 as increases from none to complete) δb 

Damage to the content (from 1 to 5 as increases from none to complete) δc 

Damage to the machinery (from 1 to 5 as increases from none to complete) δm 

Electricity loss (days) le 

Water loss (days) lw 

Gas loss (days) lg 

Sewer loss (days) ls 

Internet loss (days) lIT 

Accessibility problems (1 if yes, 0 otherwise) Iacc 

Employee transportation problem (1 if yes, 0 otherwise) Iemp,trans 

Employee personal damage (1 if yes, 0 otherwise) Iemp,pd 

Employee children/school problem (1 if yes, 0 otherwise) Iemp,sch 

Employee physical health problem (1 if yes, 0 otherwise) Iemp,phys 

Employee mental problems (1 if yes, 0 otherwise) Iemp,m 

Physical location dependency (1 if yes, 0 otherwise) Iloc 

Single owner or not (1 if yes, 0 otherwise) Iown,single 

Partnership or not (1 if yes, 0 otherwise) Iown,partner 

Corporation or franchise or not (1 if yes, 0 otherwise) Ifranch 

Cooperative or not (1 if yes, 0 otherwise) Icoop 

Is the line of business construction? (1 if yes, 0 otherwise) Ibus,c 

Is the line of business manufacturing? (1 if yes, 0 otherwise) Ibus,m 

Is the line of business retail? (1 if yes, 0 otherwise) Ibus,r 

Is the line of business other than these three? (1 if yes, 0 otherwise) Ibus,o 

Owned or rent (1 if owned, 0 otherwise) IOwn 

Had building insurance? (1 if yes, 0 otherwise) Iins,b 

Had content flood insurance? (1 if yes, 0 otherwise) Iins,c 

Had interruption flood insurance? (1 if yes, 0 otherwise) Iins,i 

Business age nage 

Years worked as business manager nexp 

Numbers of years of education of the manager nedu 

White racial makeup (1 if white, and 0 otherwise) Irace,white 

Black racial makeup (1 if white, and 0 otherwise) Irace,black 

Inside or outside the inundation area (1 if inside, 0 otherwise) Iinund 

Number of employees the business had pre-disaster nemp,pre 

The catalog at which the total sale places; 1 (<$500k), 2 (>$500k,<$1 million), 3 (>$1 million,<$2.5 

million), 4 (>$2.5 million,<$5 million), 5 (>$5 million,<$10 million), 6 (>$10 million,<$20 million), 7 
(>$20 million,<$50 million) , 8 (>$50 million,<$100 million) 

Ts,catg 

2.4.1. Cease operation days 

This measure refers to how many days are needed for the business to restore its 

operation, which is the most essential measure showing the initial operational recovery. 

As presented in Figure 4 using the color red, its prediction is the prospective input to 

downstream recovery models (i.e., customer retention, employee retention, and revenue 

recovery).  
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2.4.2. Revenue recovery 

Revenue recovery is the most influential descriptor of the business status following a 

disruptive event. If the business is back to operation but its revenue has not yet returned 

back to the pre-disaster level or higher, it is not considered to have reached a certain 

recovery stage. A measure showing the change in the business revenue (i.e., how much 

revenue it lost or gained compared to pre-disaster status) can represent business financial 

recovery. As presented using the color blue in Figure 4, it is expected that two upstream 

models (cease operation days and customer retention) affect this recovery measure and, 

their prediction models are inputs into the revenue recovery model.  

2.4.3. Customer retention 

Customer retention can be an indicator of the business as well as an indicator of the 

status of community recovery after the disaster. If the business gains its pre-disaster 

customers, it does not only show that the business is recovering, but also shows that the 

whole community is recovering and be an indication of household recovery as well 

(Xiao & van Zandt, 2012). Since customer retention is closely related to household 

recovery, this relation should be taken into account in any effort to predict the customer 

retention. Four different approaches to determine the housing units affecting the 

recovery of a business unit in a community are proposed in this study. The damage 

sustained by these housing units, their vacancy status, and any other socio-economic 

characteristics, such as income, can affect the recovery of the business and its customer 

retention trajectory. Each of the aforementioned characteristics of the affecting housing 
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units may be incorporated in the customer retention predictive model via explanatory 

variables representing them. Each proposed approach is presented in detail in the 

following sections.  

2.4.3.1. r-method 

This method assumes that the customer retention of each business is affected by the 

condition of the adjacent housing units within a distance of r-kilometers (or miles) from 

that business. Figure 5 illustrates the proposed concept of this method showing the 

effective areas around each business as a circle of radius r. In order to take into account 

the interactions between the business and household recovery, the condition and 

characteristics of the housing units (such as the extent of damage they incurred and their 

income level) in the effective area of each business unit (shown in Figure 4) should be 

included in the business customer retention predictive model. 

 
Figure 5: Conceptual representation of the proposed r-method to account for the 

interplay of household and business recovery.  
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2.4.3.2. k-method  

Similarly to the mindset behind the r-method, in the proposed k-method it is assumed 

that the trajectory of the business recovery is affected by the k-nearest housing units. 

This approach may be more applicable to communities with non-uniformly distributed 

buildings around business locations. As shown in Figure 5, the r-method accounts for a 

greater number of affected household units in dense areas (see the business denoted by 

green) compared to the businesses in sparse populated areas or under-sampled areas (see 

the business denoted by blue). On the other hand, the k-method is not dependent on the 

density of the neighborhood housing units, as shown in Figure 6.  

 
Figure 6: Illustrative example of the proposed k-method for k=9 housing units 

nearby certain businesses to account for the interplay of household and business 

recovery. 
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further away from the business units, its damage, vacancy status, and recovery will 

influence the recovery of business units less than a residential building located in a 

closer proximity to the business unit. 

2.4.3.4. Downtown district effect method 

This proposed method assumes that the businesses located in the downtown area of the 

community cover wider areas of the city (i.e., have customers from larger areas around 

the business) (King, 1985; Murphy, 2017; Runyan & Huddleston, 2006). Therefore, if 

the r-method is used a larger distance (rd) should be considered for businesses located 

within the downtown business district compared to the distance (rnd) for businesses that 

are not within the downtown area (i.e., rd > rnd as shown by an example in Figure 7). 

Similarly, when the k-method is utilized, a larger number of nearest household units 

should be assumed for businesses within the downtown (kd) compared to businesses (knd) 

located further away from the downtown district (i.e., kd > knd as shown by an example in 

Figure 8). As illustrated by a grey shadow in Figure 7 and black arrows in Figure 8, the 

businesses in downtown areas, shown by purple circles, may have customers from a 

wider area and therefore, their recovery trajectory may be influenced by a larger number 

of housing units located in that area compared to other businesses in the same 

community. 
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Figure 7: The proposed r-method modified to account for the effect of the 

downtown business district. 

 
Figure 8: The proposed k-method modified to account for the effect of the 

downtown business district, with knd=9 and kd=21 nearest housing units. 
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retention requires the predicted values of all upstream models (as input), including 

revenue recovery, cease operation days, and customer retention in addition to other 

explanatory variables.  

2.5. Application  

The proposed modeling approach for quantifying business recovery is applied on a set of 

data collected through a longitudinal field study in the community of Lumberton, NC. 

Lumberton was heavily impacted due to historic flooding of the Lumber river caused by 

heavy raining during 2016 Hurricane Matthew, which crested at approximately 6.7 

meters (22 feet) (North Carolina Emergency Management, 2017; U.S. Geological 

Survey [USGS], 2018). Aggravating this effect was the fact that Lumberton is amongst 

the most economically disadvantaged counties in the state prior to the hurricane (Centers 

for Disease Control and Prevention, 2018) with a 10% unemployment rate and a 35% 

poverty rate according to 2012-2016 American Community Survey 5-Year Estimates, 

making the application of business recovery models to this case particularly pertinent. 

Data for the models were collected through in-person surveys to the business owner or 

manager over a 10-day period in January 2018 (13 months after the disaster). Questions 

were related to larger themes such as damage and utility interruption, recovery status, 

business characteristics, owner or manager demographics as well as financial assistance. 

The sample was drawn from ReferenceUSA, a business database, using ArcGIS to 

identify and select all businesses in the predicted inundation area as well as a set of 

randomly selected businesses from the FEMA 100-year floodplain in the northern part of 

the city (unflooded area as a comparison to the inundation area). It should be noted that 
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medical professionals were under-sampled due to their limited walk-in availability and 

specialized operational strategy. Such businesses were included in the sample selected 

from the predicted inundation area but excluded them from the floodplain sample. Of the 

380 businesses selected for inclusion in the study, 164 responses were completed, 

yielding to a response rate of 43%. This database contains a wide variety of information 

including most of the potential explanatory variables as presented in Figure 4. For each 

of the attributes towards the business recovery introduced in the previous section, a 

model was developed to predict the associated recovery measure using the modeling 

methodology introduced in this study.  

As illustrated in Figure 3, the first step towards model development is data 

collection. In this study, the database developed for the Lumberton community is 

utilized, which contains the seven sets of general information discussed in the Modeling 

Approach section. In Step 2 of the modeling approach, the initial candidate model form 

basket is generated using various initial candidate model forms using the instruction in 

the previous sections (Step 2: Development of model forms), accounting for different 

combinations of explanatory functions as well as various transformation and link 

functions. After conducting Bayesian linear regression using a computer program called 

Rt (Mahsuli & Haukaas, 2012), each of the candidates went through Step 3 to generate 

the upgraded candidate model form basket. Ultimately, the best upgraded candidate was 

selected from the basket in accordance with the quality of the models determined by 

diagnostics, posterior statistics, and consistency with the engineering judgements and the 

available literature. As an illustration of the model diagnostics, the associated plots are 
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presented and discussed for the cease operation days recovery attribute. Afterwards, the 

high correlation between its model parameters was eliminated. To illustrate the three-

stage process of Step 3 presented in Figure 3, this procedure is discussed for the final 

selected model, from its initial form to upgraded form, and ultimately after elimination 

of high correlations between its model parameters. 

2.5.1. Cease operation days 

As discussed previously, this recovery measure indicates the time required for the 

business to recover its operational status. The initial form of the selected candidate 

model to predict the cease operation days of a business is presented in Equation (4), 

accounting for various explanatory variables that can affect business recovery. 

( ) ( )

( )

1 2 3 4

5 , , , , 6 7 , 8 , 9 ,

10 , 11 12 , 13 , 14 , 1

ln ln ln 1
3 365

b c m e w g s i acc

emp pd emp sch emp phys emp m age bus c bus m bus r

bus o Own ins b ins c ins i

d
l l l l l I

I I I I n I I I

I I I I I

      

    

     

  
− − = +  + + +  + + + + + +   

  

+  + + + +  +  +  + 

+  +  +  +  +  + 5 exp 16 edun n  +  +

(4) 

The description of each explanatory variable (x) can be found in Table 1. A link 

function was used (as shown in Equation (4)) on the left-hand side of the proposed 

model form to restrict the values of predicted cease operation days (d) between zero days 

and three years (3×365 days) assuming that if a business has not recovered after three 

years (3×365 days), it can be concluded that it will not return back to operation. The log-

log function (−ln(−ln(y))) that was considered here as the link function (F(y)) predicts y 

in Equation (2) between 0 and 1, and since y=d/(3×365), the predicted value for d will be 

between 0 and 3×365. Equation (4) includes almost all the potential explanatory 
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variables presented in Figure 4 to predict cease operation days. Different explanatory 

variables are combined to form more representative explanatory functions (e.g., 

sustained physical damage and utility disruptions).  

This initial candidate model then goes through the first two parts of model 

selection (step 3), namely diagnostics and elimination of inconclusive terms. After 13 

iterations between these two parts, illustrated by the dashed box in Figure 3, only three 

explanatory functions are retained and are informative enough not to be eliminated from 

the model. The upgraded model form then becomes:  

( ) ( )1 2 3ln ln ln 1
3 365

b c m e w g s i

d
l l l l l      

  
− − = +  + + +  + + + + + +  

  
 (5) 

For the upgraded model presented in Equation (5), CoVs of all remaining model 

parameters (θi) are below 30% as summarized in Table 2, with a coefficient of 

determination (R2) equal to 0.53.  

Table 2: Posterior statistics summary for cease operation days model of Equation 

(5). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 θ3 

θ1 −2.0536 0.030 1   

θ2 0.0523 0.010 −0.08 1  

θ3 0.0716 0.273 −0.83 −0.42 1 
σ 0.2346 0.057    

As shown in Figure 3, the upgraded model goes through the elimination of high 

correlations procedure (part 3). Based on the posterior statistics presented in Table 2, it 

is observed that the correlation between the model parameters θ1 and θ3 is high (equal to 

−0.83), which can be eliminated using Equation (3). The elimination of high correlation 

results in a new upgraded model form as presented in Equation (6).  
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( )( ) ( )

( )

1 2ln ln 1 0.263ln 1
3 365

0.47 ln 1

e w g s i b c m

e w g s i

d
l l l l l

l l l l l

    



  
− − = − + + + + + +  + +  

  

− + + + + + +

(6) 

This new model has a higher R2 (equal to 0.89), and also a lower mean of σ (equal to 

0.2339), with posterior statistics presented in Table 3. Per Table 3, the model 

parameters, θ1 and θ2, in the new model have low correlation (−0.15), and thus, the 

procedure is stopped and the final model is Equation (6).  

Table 3: Posterior statistics summary for cease operation days model of Equation 

(6). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 

θ1 −2.0536 0.030 1  

θ2 0.0529 0.049 −0.15 1 

σ 0.2339 0.057   

Figure 9 shows diagnostics plots for the final model. Figure 9a presents the 

prediction versus observation scatter that is well aligned along the 45° line, which 

indicates an appropriate prediction. The Q-Q plot in Figure 9b validates the normality 

assumption in this model since points are aligned along the 45° line. In order to avoid an 

over-fit, the developed model using the training dataset (85% of the initial dataset) is 

used to predict the testing dataset and the combined results are shown in Figure 9c. The 

testing data, illustrated by triangles, are along the 45° line through the training scatter 

which indicates no over-fit. Figure 9d, e, and f present the residuals versus the first 

regressor, the second regressor, and regressand, respectively. Points in all of these three 

plots are distributed almost equally along the x-axes, which indicates homoscedasticity. 

Furthermore, there is no visible pattern in the scatter and therefore, there is no 

autocorrelation of residuals. 
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        (a)         (b)        (c) 

    
       (d)        (e)        (f) 

Figure 9: Diagnostics of the final model for the cease operation days recovery 

attribute, in Equation (6); (a) model prediction vs. model observation plot, (b) Q-Q 

plot, (c) model prediction vs. model observation plot for training and testing sets, 

(d) residuals vs. the first regressor, (e) residuals vs. the second regressor, (f) 

residuals vs. regressand. 

One of the advantages of the proposed approach to develop Bayesian linear 

regression models is that it determines the most significant factors in the model 

prediction. By comparing the initial and upgraded model forms in Equations (4) and (6), 

it can be concluded that the 13 eliminated explanatory functions were not significant 

enough to be included in the model form for the prediction/quantification of the cease 

operation days recovery measure. Three terms remained in the upgraded model form, 

i.e., intercept, summation of damage to the building, content, and machinery, as well as 

the summation of different utility disruptions, which indicates that the business cease 
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operation days is governed mainly by the physical damage to the business and 

infrastructure systems of the community. Based on the final upgraded model of Equation 

(5) for predicting cease operation days (d), the contributing explanatory functions and 

their effects considering the effect of other regression terms are as follows: 

(1) Summation of damage to the building, contents, and machinery: increase in the 

damage incurred by the business results in higher predictions for cease 

operation days and longer duration of recovery. 

(2) The summation of different utility disruptions: increase in the length of utility 

disruptions results in higher predictions for cease operation days and longer 

duration of recovery, which is in line with findings of other studies in the 

literature (e.g., Tierney (1997)).  

2.5.2. Revenue recovery 

A predictive model was also developed for the revenue recovery attribute. Likert scaling 

was used to describe the revenue recovery of the business during the field study at 

Lumberton, NC, in a way that this recovery attribute describes the revenue change by 

one of the following levels: “decreased greatly, decreased, stayed the same, increased, 

or increased greatly”. In order to quantitatively model this recovery measure an integer 

number from one to five was assigned to each level such that predictions close to five 

indicate significant revenue increase while predictions close to one indicate significant 

revenue decrease. The selected model to predict the revenue recovery (13 months after 

the disaster) has the initial form as provided in Equation (7).  
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(7) 

Explanatory variables of Equation (7) and their associated description are summarized in 

Table 1. In order to restrict the predictions of R between one and five, a link function Φ-

1(.) was utilized in the left-hand side of the equation to restrict the predicted value inside 

the parentheses ( )( )1 / 4R −  between zero and one (value of y in Equation (2)), and as a 

result, restrict the predicted R between one and five. In the right-hand side of the 

equation, different combinations of explanatory functions with different transformations 

were considered in order to achieve the most realistic model form.  

The initial candidate model form of Equation (7) was further evaluated through 

the diagnostics and elimination of inconclusive terms processes, and after 21 iterations 

and  21 uninformative terms elimination, the upgraded model form of Equation (8) was 

derived accounting for the explanatory variables representing the profitability of the 

business before the disaster (Pp), damage to the business contents (δc), customer 

retention (Rcus), number of employees pre-disaster ( nemp), and the total annual sale 

category (TS,catg) of the business (per Table 1).   

( )1

1 2 3 4 5 ,

1001
ln

4 100

cus
p c emp S catg

RR
P n T      − −−   

 =  +  +  +  +  +   
   

 (8) 
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The posterior statistics of the upgraded model of Equation (8) are summarized in Table 

4. The largest observed CoV of the model parameters is 33% for parameter θ4, which is 

desirable. The coefficient of determination for this model (R2) is around 0.36, which 

although relatively low, it may be acceptable for a complex predictive model as the one 

considered here.  

Table 4: Posterior statistics summary for revenue recovery model of Equation (8). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 θ3 θ4 θ5 

θ1 0.3378 0.266 1     

θ2 −0.2413 0.218 −0.40 1    

θ3 −2.4824 0.152 −0.25 −0.21 1   
θ4 0.3425 0.333 −0.10 −0.26 0.04 1  

θ5 −0.2697 0.297 −0.27 0.13 −0.06 −0.80 1 

σ 1.1000 0.060      

 

As shown in Table 4, two model parameters θ4 and θ5 are highly correlated with 

ρ45 = −0.80. This high correlation can be addressed by expressing one of these 

parameters as a function of the other using Equation (3). The resulting model again has 

high correlation between two of its new model parameters (θ1 and θ2) with ρ12 = −0.65, 

and hence, the elimination process is repeated. The resulting model form is as follows: 

( ) ( )( )

( )

1

1 2 3 ,

1001
0.982 1.139ln

4 100

0.035ln 0.101

cus
c p S catg emp

emp p

RR
P T n

n P

   



− −−   
 =  − +  +  −   

   

+ + +

(9) 

Per the posterior statistics of the model form of Equation (9) shown in Table 5, 

no correlation with an absolute value of more than 0.5 appears in the resulting model, 

and therefore, no further elimination of high correlations is required. Based on the results 

of Table 5, it is observed that the mean of the error is slightly lower in the model form of 

Equation (9) than in its prior model form of Equation (8), while the overall uncertainty 
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of the problem is decreased, and the coefficient of determination (R2) remained almost 

the same (0.36). Thus, the model in Equation (9) is the final selected form. 

Table 5: Posterior statistics summary for revenue recovery model of Equation (9). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 θ3 

θ1 −0.2413 0.209 1   

θ2 −2.4823 0.122 −0.28 1  

θ3 −0.2697 0.281 0.14 −0.31 1 
σ 1.0925 0.059    

 

Based on the final upgraded model of Equation (8) for predicting revenue 

recovery (R), the contributing explanatory variables and their effects considering the 

effect of other regression terms are as follows: 

(1) Profitability of the business before the disaster: the more profitable the 

business is before the disaster, the slower the revenue recovery trajectory 

appears after the disaster. This suggests that it is harder for a highly 

profitable business to reach that level of high profitability quickly, similar 

to the findings by Webb et al. (2002) stating that larger businesses have 

more to lose and it is harder for them to reach their pre-disaster state.  

(2) Content damage: the greater the extent of content damage in the business, 

the slower the revenue recovery is.  

(3) Customer retention rate: higher customer retention results in faster revenue 

recovery. Customer loss was identified as one of the main factors adversely 

affecting the businesses after the disasters occur in prior studies (e.g., 

Corey & Deitch (2011) and Tierney (1997)). 

(4) Annual sales category: if the business is classified in a higher category of 
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annual sales, the revenue recovery is slower, which is in agreement with 

the findings by Webb et al. (2002) for large businesses. 

(5) Number of employees before the disaster: if the business had a larger 

number of employees before the disaster, its post-disaster recovery is 

faster. 

2.5.3. Customer retention 

The measure for this recovery attribute is defined as the ratio of the number of customers 

the business has compared to its pre-disaster number in a percentage form. In order to 

develop this model, two databases from the longitudinal field study conducted in the 

Lumberton community were used, accounting not only for business surveys but for 

household surveys as well. A two-stage non-proportional random cluster sampling was 

conducted in the household survey in order to obtain a valid sample representing the 

community, including the areas impacted directly by the flooding and areas not impacted 

directly by flooding loads adopting a 3 to 1 ratio for high and low probability flooding 

areas, respectively.  A box named “household effect” in Figure 4 represents the outcomes 

of the household unit surveys which are used as input in the customer retention 

predictive model. Different methods to include the effect of the recovery of households 

in the customer retention of the businesses, which were introduced in the previous 

sections, are examined here to develop a representative model. Based on a sensitivity 

study conducted (which is not presented herein due to space limitations), it was found 

that the modified r-method (with rd=2.5 and rnd=0.7 kilometres) accounting for the effect 

of the downtown business district is more representative for the community of 
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Lumberton, NC. The finally selected candidate model to predict the customer retention 

has the initial form of Equation (10). 

( )
( )
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The description of each explanatory variable is provided in Table 1. After five iterations 

of the diagnostics and elimination processes, five uninformative explanatory functions 

(d, Iloc, nage, Pp, Ts,catg, nexp) were eliminated from the initial candidate model form and 

the upgraded candidate form of Equation (11) was formed. 
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I I I

 
    

   

−
+ 

 =  +  +  +  
 

+  +  +  +

  (11) 

The posterior statistics associated with the upgraded model in Equation (11) are 

presented in Table 6. The largest CoV is around 34% which is within acceptable ranges, 

while the coefficient of determination (R2) is 0.23. Future business and household field 

studies would be beneficial for updating the proposed Bayesian regression models using 

the merged datasets. Furthermore, the non-proportional random cluster sampling (in the 

Lumberton field study) might be a reason for the imperfect prediction since in some low 

probability flooding areas there are not enough housing data points surveyed around the 

business units.  
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Table 6: Posterior statistics summary for customer retention model of Equation 

(11). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 θ3 θ4 θ5 θ6 θ7 

θ1 −0.2433 0.214 1       

θ2 −0.0351 0.345 −0.07 1      

θ3 2.3524 0.137 −0.79 −0.14 1     
θ4 2.4419 0.164 −0.69 −0.05 0.56 1    

θ5 2.5199 0.143 −0.68 −0.05 0.55 0.48 1   

θ6 2.6445 0.173 −0.11 −0.05 0.10 0.08 0.08 1  
θ7 2.3506 0.109 −0.93 −0.01 0.74 0.65 0.64 0.11 1 

σ 0.9066 0.061        

 

Based on the posterior statistics shown in Table 6, there are high correlations 

between various model parameters which should be further addressed through the 

elimination of high correlations process per Equation (3). The largest correlation 

observed is between parameters θ1 and θ7, with ρ17=−0.93, and hence, the procedure 

starts with the elimination of high correlation between these two parameters. After using 

Equation (3) to eliminate the high correlation, the Bayesian regression was reconducted 

with the new model resulting in the model of Equation (12). 
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( )( ) ( )
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−
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 =  +  +  +  
 

+  +  − + +

   (12) 

Per the posterior statistics of Equation (12) in Table 7, the mean of the error is slightly 

lower in Equation (12) compared to Equation (11), while it has a higher R2 (0.43). 

According to Table 7, a correlation coefficient higher than 0.7 (ρ26=0.77) exists between 

θ2 and θ6, indicating that the elimination of high correlations between model parameters 

should be continued. However, by eliminating this correlation, a model form results 

(although its R2 is higher) the CoV of model parameters of which are significantly 



 

58 

 

increased, except for its last term. As discussed previously, if after elimination of high 

correlation between two model parameters, there is a significant jump in the CoV of the 

new model parameters, this elimination should be rejected. Therefore, the model of 

Equation (12) is selected herein as the final model form. 

Table 7: Posterior statistics summary for customer retention model of 

Equation (12). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 θ3 θ4 θ5 θ6 

θ1 −0.0350 0.337 1      

θ2 2.3563 0.132 −0.21 1     

θ3 2.4465 0.158 −0.10 0.53 1    
θ4 2.5240 0.138 −0.10 0.52 0.45 1   

θ5 2.6452 0.172 −0.06 0.09 0.08 0.08 1  

θ6 2.3506 0.109 −0.01 0.77 0.67 0.66 0.11 1 
σ 0.9033 0.061       

According to Equation (12) for predicting customer retention, the contributing 

explanatory variables and their effects are as follows: 

(1) Average damage in household units within r kilometers (or miles) around the 

identified business unit accounting for a larger r if the business is located in 

the downtown district to account for servicing areas outside that district as 

well: If the average damage in household units nearby increases, the customers 

of the business recover slower (lower retention rate) according to the sign of 

the associated model parameter in Table 6. Local population has been proven 

to be a critical source of customers for the businesses, and hence, severe 

damage to the houses causing the population displacement is an important 

factor in the customer loss (Corey & Deitch, 2011; Tierney, 1997). 

(2) Building and machinery damage: If the damage of the building in which the 

business operates and damage to the machinery is more severe, the customer 
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retention rates are lower.  

(3) Various explanatory functions representing the sector of the business: the 

order of the business sectors with the highest rate of customer retention is 

manufacturing, construction, supermarkets, vehicle-related businesses, and 

other types of businesses, which aligns well with findings of previous studies 

focusing on business recovery attributes (Durkin, 1984; Kroll, Landis, Shen, 

& Stryker, 1991; Webb, Tierney, & Dahlhamer, 2000).  

2.5.4. Employee retention 

This model predicts the retention rates of the business’s employees compared to before 

the disaster, as a ratio of change in the number of employees (lumped full- and part-

time) divided by the total number of employees before the disaster. Figure 4 presents a 

number of potential input variables to predict employee retention, which also includes 

the outputs of upstream models (i.e., cease operation days, revenue recovery, and 

customer retention). Various candidate models were examined using the Lumberton 

database which amongst all the following initial candidate model form was selected as 

presented in Equation (13): 
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(13) 

where nemp,now is the number of employees of the business after the disaster (around 13 

months after the disaster). This initial model goes through model selection and after 
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eliminating the 11 most uninformative terms, the upgraded candidate model is described 

by Equation (14), where the explanatory variables representing cease operation days (d), 

different business sectors (Ibus,c, Ibus,m, Ibus,r, and Ibus,o), revenue recovery percentage (R), 

and number of employees before the disaster (nemp,pre) are included.  
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− −
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 (14) 

The posterior statistics of this model are summarized in Table 8, where the 

largest CoV is approximately 48% while the coefficient of determination (R2) is around 

0.48 which are also within acceptable ranges.  

Table 8: Posterior statistics summary for employee retention model of Equation 

(14). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 θ3 θ4 θ5 θ6 θ7 

θ1 −0.0170 0.400 1       

θ2 −0.9251 0.182 −0.26 1      

θ3 −1.0567 0.127 −0.32 0.34 1     
θ4 −0.7331 0.113 −0.45 0.47 0.57 1    

θ5 −0.7045 0.115 −0.59 0.51 0.61 0.83 1   

θ6 0.0451 0.482 0.27 −0.48 −0.45 −0.71 −0.74 1  
θ7 0.1813 0.100 0.08 −0.18 −0.42 −0.37 −0.40 −0.12 1 

σ 0.2453 0.060        

According to the results of Table 8, the largest correlation is observed between 

parameters θ4 and θ5 (ρ45=0.83). After repeating the high correlation elimination process 

two times, the final upgraded model form of Equation (15) is derived as:  
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The final model has five model parameters with posterior statistics summarized 

in Table 9. Since there is no correlation coefficient above 0.7 in this table, there is no 

need to continue the elimination process. The resulting model has larger coefficient of 

determination (R2=0.58), which is more suitable, as well as lower mean of standard 

deviation of the model error (σ). 

Table 9: Posterior statistics summary for employee retention model of Equation 

(15). 

Parameter Mean CoV 
Correlation Coefficient 

θ1 θ2 θ3 θ4 θ5 

θ1 −0.0170 0.357 1     

θ2 −0.9247 0.176 −0.25 1    

θ3 −1.0572 0.122 −0.24 0.31 1   
θ4 −0.7331 0.112 −0.51 0.49 0.59 1  

θ5 0.1817 0.073 −0.22 −0.32 −0.49 −0.50 1 

σ 0.2436 0.060      

 

Based on the final upgraded model of Equation (15) for predicting employee 

retention, the contributing explanatory variables and their effects (considering the effects 

of the other regression terms) are as follows: 

(1) Cease operation days: if the business gets back to operation faster, it has higher 

ability to retain its number of employees.  

(2) Various explanatory functions describing the business sector: the sector orders 

with the highest rate of employee retention is sectors other than construction, 

manufacturing, and retail, retail, construction, and manufacturing.  

2.6. Concluding Remarks 

This chapter proposed a modeling approach for quantifying the recovery trajectory of 

businesses after a disaster using different recovery attributes. A probabilistic modeling 

approach is proposed based on Bayesian linear regression modeling to develop 
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predictive recovery models for businesses after disastrous events. Since such predictions 

are associated with a high degree of uncertainty, it is necessary to quantify this 

uncertainty in the prediction. The Bayesian approach is a suitable modeling 

methodology for modeling business recovery given the associated high degree of 

uncertainty since it inherently accounts for the aleatory and epistemic uncertainties. The 

proposed modeling methodology utilizes real-world observations to calibrate the model 

parameters using data collected from businesses following a disastrous event. The 

modeling methodology consists of three steps, including data collection, development of 

model forms, and model selection. The most desirable model among the basket of 

candidates is selected as the predictive model of the recovery measure of interest. This 

model is selected based on its appropriate diagnostics, posterior statistics, and 

compatibility with the available literature and expert judgment.  

Four business recovery attributes along with their measures are presented in this 

study, including: cease operation days, revenue recovery, customer retention, and 

employee retention. The potential inputs to each of these four recovery measures include 

direct and indirect impacts that account for the extent of physical damage the business 

incurred (e.g., building, machinery, and content damage and utility disruptions), business 

characteristics (e.g., ownership, sector, business age, etc.), business geographical 

characteristics as well as neighborhood characteristics and aftermath condition. One of 

the advantages of the proposed approach is taking into account the interplay between 

household and business recovery after a disaster, which is incorporated into the model 

through different proposed methods.  



 

63 

 

As an application of the proposed modeling approach, this study considers the 

community of Lumberton, NC, that was severely affected after Hurricane Matthew, 

2016. Through a longitudinal field study conducted in this community after Hurricane 

Matthew by the NIST-funded Centre of Excellence on Risk-Based Community 

Resilience Planning, a large dataset containing the most significant factors affecting 

business recovery was generated using in-person surveys. A predictive Bayesian linear 

regression model for each of the four business recovery attributes is developed in this 

chapter using the proposed approach. It was observed that the extent of utility 

disruptions as well as damage to the building, its contents, and machinery are the most 

significant predictors of cease operation days of a business aftermath. Furthermore, the 

most significant factors in predicting revenue recovery of a business after a disaster are 

the profitability of the business before the disaster, the extent of its content damage, the 

business customer retention rate, the business annual sales category, and the number of 

employees of the business pre-disaster. Moreover, the final model for customer retention 

revealed that the damage to the business’s building and machinery, the average of extent 

of damage to the households within r-kilometres from the business (considering a larger 

value for r if the business is in downtown district) as well as the business sector are the 

most significant predictors. Lastly, it was concluded that the business cease operation 

days and the business sector are the most effective factors in predicting employee 

retention rate after a disaster.  

The developed Bayesian models using the approach presented in this study are 

applicable in risk-based resilience analysis frameworks to enhance community 
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resilience. As these models quantify recovery trajectories in the aftermath of a disaster, 

they are capable of being utilized in any decision-making effort using risk-based 

resilience assessment methods. In addition, since these models are continuously 

differentiable, they are suitable to be used in resilience assessments using structural 

reliability methods, like first order (FORM) and second order (SORM) reliability 

methods. Another advantage of this approach is identifying the most efficient predictors 

of recovery measures of interest through the Bayesian regression. Additionally, the 

Bayesian method can update the posterior statistics of the model as new data merges 

from future survey studies. Hence, if it is needed, it is possible to decrease the 

uncertainties of the developed models using this approach by collecting more real-world 

observations through survey field studies after disasters, for instance by directly 

interviewing business managers and business owners as well as conducting paper-based, 

email-based, and/or phone-based surveys.  

Although the proposed business recovery models are capable of inherently 

capturing the uncertainties associated with predictive models, there are limitations 

associated with their applicability. The application of the developed models is limited to 

the communities the data of which was utilized to calibrate the models (in this case 

Lumberton, NC). However, since it is not feasible to collect data from all communities 

impacted by a variety of hazard intensities throughout a year given the time and resource 

allocation needed for such longitudinal study efforts, the developed models can be used 

for communities with similar socio-economic characteristics subjected to similar hazard 

types and intensities to predict business recovery trajectories and make risk-informed 
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decisions to enhance their resilience in terms of pre-disaster preparedness as well as 

post-disaster resource allocations. This may also be applicable to a large number of 

communities that are prone to hazards (such as flooding as considered in this study) but 

have not recently been impacted by a natural disaster, in order to make risk-informed 

decisions to enhance their resilience. The developed business recovery models can also 

be further generalized using datasets from other communities subject to various levels of 

flooding in order to be applicable to a wider range of communities for the utmost goal of 

resilience-based risk analysis. 
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3. THRUST B: VALIDATION OF TIME-DEPENDENT REPAIR RECOVERY OF 

THE BUILDING STOCK FOLLOWING THE 2011 JOPLIN TORNADO  

Damage fragilities are among the most commonly used models in the literature to predict 

damage to the physical infrastructures and their components. The concept of fragility is 

used in the literature to model functionality recovery of the affected infrastructures as 

well. This chapter seeks to calibrate an existing analytical framework to develop 

building repair fragility models using a restoration dataset collected through a 

longitudinal field study in the city of Joplin, MO, after the catastrophic 2011 Enhanced 

Fujita 5 tornado. First, an existing recovery data set from Joplin is documented and the 

main findings pertaining to the observed recovery trajectory of the buildings are 

highlighted. In the next step, various empirical functionality fragilities conditioned on 

the initial functionality level (and associated damage) of the building are generated and 

compared to the analytical repair time/functionality fragilities. Results revealed 

moderate to significant differences between empirical and analytical functionality 

fragilities depending on the extent of the initial damage and the initial associated 

functionality state of the buildings. This was anticipated and one of the goals of this 

study was to quantify this discrepancy that is caused by not including the delay time 

resulting from cumbersome circumstances during the aftermath. A number of methods 

 

 This chapter is published in the “Journal of Natural Hazards Review” as an individual paper (Aghababaei, 

M., Koliou, M., Pilkington, S., Mahmoud, H., van de Lindt, J.W., Curtis, A., Smith, S., Ajayakumar, J. and 

Watson, M., 2020. Validation of Time-Dependent Repair Recovery of the Building Stock Following the 

2011 Joplin Tornado. Natural Hazards Review, 21(4), p.04020038.) With permission from ASCE. 
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available in the literature are first explored in this study to address these differences by 

introducing the various sources of initial delays into the repair time, and further be 

modified to realistically represent the associated delay factors. The modification 

employed included: (i) changing the formulations used to aggregate different types of 

delays to calculate the initial delay of the buildings, and (ii) using more representative 

distributions for various types of delays based on available real-world datasets. The main 

delays included are inspection delay, time to obtain adequate financial resources, delays 

in finding and hiring contractors, and construction permitting delays. The proposed 

methodology was integrated with the analytical framework to generate updated repair 

time/functionality fragilities. The updated analytical fragilities result into a more realistic 

prediction of the recovery trajectory of the building stock when compared with the 

empirical ones.  

3.1. Introduction  

Tornadoes are one of the most devastating natural disasters that occur frequently each 

year in the United States (U.S.) and around the world. The largest number of tornadoes 

worldwide occur in the U.S. with an average of 1,300 tornadoes each year (NOAA, 

2019). Some of the most severe tornadoes exhibit wind speeds exceeding 321.9km/h 

(200mph) and leaving a damaged path of 1.6km (one mile) wide and 80.5 km (50 miles) 

long.  

The impact of a tornado may result in both direct and indirect losses to the local 

economy. Direct losses are mainly associated with the destruction of assets caused by 
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the initial impact of the tornado hazard including loss of human lives (casualties), 

damage to lifelines (e.g., roads, power and phone lines), crops, businesses (e.g., 

factories), homes, and natural resources. Indirect losses to the local economy, which can 

be harder to estimate, occur from the destruction of physical assets for households and 

businesses, loss in production and sales, lost income and labor time, as well as increased 

commute time and utility disruption (Rose, Benavides, Chang, Szczesniak, & Lim, 

1997). Long periods of recovery after disasters intensify such indirect consequences for 

the communities.  

Over the last decade, studies have focused on evaluating and/or predicting 

recovery and restoration progress/trajectory of the building stock in communities 

impacted by tornadoes. A number of studies reported in the literature have focused on 

the 2011 Joplin, Missouri EF-5 tornado (Attary, van de Lindt, Mahmoud, & Smith, 

2019; Attary et al., 2018; Kuligowski, Lombardo, Phan, Levitan, & Jorgensen, 2014; 

Masoomi & van de Lindt, 2018b; Prevatt et al., 2012; Ramachandran, Long, Shoberg, 

Corns, & Carlo, 2015). Ramachandran et al. (2015) proposed a probabilistic framework 

to compute the restoration time of urban communities following tornado events and 

applied this framework to the city of Joplin, while Attary et al. (2018) and Attary et al. 

(2019) performed community-level building damage assessment and combined building-

electrical network damage assessment for the city of Joplin. Restoration and 

functionality probabilistic frameworks incorporating aspects of performance-based 

engineering have also been developed and used to quantify various levels of restoration 

and functionality both at the building level (Koliou & van de Lindt, 2020) and 
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community level (Farokhnia, van de Lindt, & Koliou, 2020; Masoomi & van de Lindt, 

2018b). Furthermore, studies have focused on quantifying the post-disaster recovery of 

communities subjected to tornado events using field studies and data collected through a 

period of time after the hazard occurrence (e.g. Kikitsu and Sarkar (2014) and Pilkington 

et al. (2019)). However, the available literature on computational recovery and 

restoration models has not been validated with the real-world data related to long-term 

recovery patterns and trajectory of communities. It is of great importance to validate 

recovery and restoration models which may be later used to predict recovery trajectories 

associated with various forms of pre-disaster preparedness and post-disaster decision 

making actions. Unlike studies focusing on the structural response of the built 

infrastructure, where experimental studies can easily be used to validate and evaluate the 

efficiency of numerical models, for studies concerned with the recovery of communities 

impacted by natural hazards, data collected from “living laboratories” (i.e., impacted 

communities) are needed to validate recovery models. Such data may take a long period 

of time to be collected due to the nature of the community recovery process, but there is 

a need to identify a systematic approach of using them for the numerical model 

validation process.  

Towards that direction, the current study focuses on validating and calibrating a 

probabilistic methodology for quantifying restoration time of built infrastructure 

subjected to tornado loads through functionality/repair time fragility models developed 

by Koliou and van de Lindt (2019) and using long-term recovery data collected for the 

city of Joplin, Missouri, following the 2011 tornado. The May 22, 2011 Joplin tornado in 
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Missouri, has been classified as the deadliest and costliest single tornado in the U.S. 

which resulted in approximately $3 billion in economic losses (Kuligowski et al., 2014). 

This tornado event was a catastrophic EF-5 multiple-vortex tornado that reached a 

maximum width of 1.6 km (1 mile) along its path, as shown in Figure 1. A total of 7,964 

buildings were damaged including 7,411 residential and 553 non-residential buildings 

(Kuligowski et al., 2014). Approximately 43% of the residential buildings were 

classified as destroyed with extensive or complete damage states resulting in significant 

economic losses and contributing to 59% of the total building related fatalities. Non-

residential buildings, including major regional hospitals, public schools, churches, fire 

stations as well as commercial buildings, were also severely damaged (Kuligowski et al., 

2014).  

 
Figure 10: Path of 2011 Joplin tornado 

A summary of the analytical framework to generate repair time fragility models 

is first presented in this study for a set of archetypes designed to represent the building 

stock of the city of Joplin. Then, the dataset of spatial videos documenting the recovery 

of Joplin in a five-year period after the catastrophic tornado collected through a 
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longitudinal field study is described along with the main findings associated with the 

linkage between the video recordings and recovery/functionality states. Empirical 

functionality fragility curves are also developed using the collected dataset to be 

compared with the analytical fragilities. Given that the analytical fragilities developed by 

Koliou and van de Lindt (2019) did not include the effect of any impeding factors (i.e., 

any factor which impedes the initiation of the building repair, such as construction 

permitting delays) on the recovery process, an approach is proposed in this study to 

further account for such factors and combine them with the analytical models for a more 

realistic representation/prediction of the recovery path of the building stock subjected to 

tornado loads.  

The resulting functionality fragility models in this study may be applicable in 

other studies focusing on evaluating the recovery time of communities subject to 

different tornado scenarios. A large number of studies in the literature have utilized 

impact models (e.g., damage fragility functions Bayesian damage ratio models) in risk 

analysis frameworks, including performance-based engineering (PBE) and structural 

reliability-based studies, to perform risk-based analysis for decision making. The goal of 

these studies was to decrease the extent of impacts and enhance the reliability of the 

systems subject to natural hazards (M. Aghababaei & Mahsuli, 2019; Mohammad 

Aghababaei & Mahsuli, 2018; Attary, Unnikrishnan, van de Lindt, Cox, & Barbosa, 

2017; Cornell & Krawinkler, 2000; Han et al., 2017). The functionality fragility models 

developed in this study provide additional information beyond direct impacts to include 

functional recovery of buildings, which is a pre-requisite for risk-based community 
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recovery studies. The outcomes of such studies may be strategies to mitigate the direct 

consequences as well as strategies to speed up the restoration process.  

3.2. Probabilistic models for building restoration and recovery time predictions  

Metrics meaningful to stakeholders and building owners (dollars, death, and downtime 

(Cornell & Krawinkler, 2000)) already accounted for in the existing studies are not 

sufficient or useful to fully evaluate the recovery trajectory of the built infrastructure and 

propose risk-informed decisions in terms of retrofit strategies or emergency response. 

Although downtime is a reflection of the repair time of the building, it does not fully 

capture the recovery trajectory of the building considering its different sequential 

functionality levels; rather, it only represents the time it takes for a damaged building to 

be completely repaired. To address this, a post-disaster building repair time methodology 

that incorporates the basic principles of PBE, and combines them with repair and 

functionality analyses to allow quantification of building functionality through a series 

of probabilistic simulations was introduced (Koliou and van de Lindt (2019)). The 

outcome of the methodology is repair time fragility curves, which define the probability 

of achieving a specified level of building functionality after a certain time period 

following the event occurrence and given the initial damage state of the buildings. 

Although the methodology is generic and could be applied to any hazard, it was applied 

to a minimum size community building portfolio based on the city of Joplin that was 

developed by Memari et al. (2018) subject to tornado hazard. This building portfolio is 

comprised of 19 building types of different occupancies and construction practices 
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representative of the city of Joplin, as tabulated in Table 1. Tornado fragility curves were 

developed by Memari et al. (2018), Masoomi and van de Lindt (2016), Masoomi et al. 

(2018), and Koliou et al. (2017), and were considered for the 19 building types of the 

proposed portfolio. 

This methodology, which consists of four discrete steps, namely, (i) 

performance-based engineering analyses (e.g., hazard characterization, structural 

analysis, and damage analysis), (ii) repair characterization, (iii) functionality analysis for 

each building component, and (iv) functionality analysis/evaluation of the building 

system, was used to assess the risk and vulnerability of the Joplin community subjected 

to tornado loads. Four damage states (minor, moderate, extensive and extreme) were 

considered as described in Table 11 for building type T4 (residential) and were 

associated with performance levels (i.e., safe and operational, safe and usable during 

repairs, safe and not usable, and unsafe/partial or complete collapse) as well as business 

status (i.e., fully open, partially open, and fully closed) per NIST (2015) in order to 

associate structural damage to certain post-disaster functionality levels and recovery 

trajectory. 
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Table 10: Summary of community building portfolio (after Memari et al. 2018) 

Building 

Type 
Building Description 

Area 

(m2) 

Occupancy 

Class 

T1 Wood residential bldg. - small rectangular plan - gable roof - 1 story 125.51 

Residential 

T2 Wood residential bldg. - small square plan - gable roof - 2 stories 169.74 

T3 Wood residential bldg. - medium rectangular plan - gable roof - 1 story 216.25 

T4 Wood residential bldg. - medium rectangular plan - hip roof - 2 stories 146.51 

T5 Wood residential bldg. - large rectangular plan - gable roof - 2 stories 291.81 

T6 Business and retail building (strip mall) 2,787 Commercial 

T7 Light industrial building 465 
Industrial 

T8 Heavy industrial building 3,716 

T9 Elementary/middle school (unreinforced masonry) 9,290 
Education 

T10 High school (reinforced masonry) 23,226 

T11 Fire/Police station 110 Government 

T12 Hospital 10,220 Commercial 

T13 Community center/Church 1,394 
Religion/ 

Non-profit 

T14 Government building 8,175 Government 

T15 Large big-box 14,865 Commercial 

T16 Small big-box 929 Commercial 

T17 Mobile home 68 Residential 

T18 Shopping center 3,716 Commercial 

T19 Office building 446 Commercial 

Table 11: Summary of damage combination, performance level, business status and 

functionality level for T4 (residential) (after Koliou and van de Lindt 2019) 

Functionality 

Level (FL) 
Performance Level 

Business 

Status 

Damage 

combination 

Description of damage combination  

Roof 

Cover 

Failure 

Window/Door 

Failures 

Roof 

Sheathing 

Failure 

Roof 

Truss 

Failure 

FL0 Safe & operational 
Fully 

open 
-- -- -- -- -- 

FL1 Safe & operational 
Partially 

open 
DM1 

> 2% and 

≤ 15% 
1 No No 

FL2 
Safe & usable 

during repair   

Partially 

open 
DM2 

> 15% 

and ≤ 

50% 

2 or 3 1-3 No 

FL3 Safe & not usable 
Fully 

closed 
DM3 > 50% > 3 

>3 and ≤ 

35% 
No 

FL4 
Unsafe – partial or 

complete collapse 

Fully 

closed 
DM4 

Typically 

> 50% 
Typically > 3 > 35% Yes 

Repair time fragility curves for reaching various levels of functionality based on 

the initial functionality (and associated damage state) as well as through the 
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reconstruction/repair process advancing from one functionality level to the next were 

computed based on the study by Koliou and van de Lindt (2019). All of the parameters 

for generating the cumulative distribution functions following a lognormal distribution 

were considered for the purpose of the current study. A sample of a repair time fragility 

curve reaching a full functionality of FL0 for the residential archetypes T1-T5, 

conditioned on initial functionality levels (FL1, FL2, FL3, or FL4) is shown in Figure 

11. It should be noted that the results of this study did not include the effect of impeding 

factors on the recovery time but focused solely on the repair/reconstruction based on the 

initial damage and associated functionality level.  

 

Figure 11: Functionality fragility curves for reaching FL0 for residential 

archetypes (T1-T5) conditioned on different levels of functionality (FLs) 

3.3. Joplin tornado building damage and recovery assessment – Documented data  

For the purpose of the current study, a dataset collected from a longitudinal field study 

conducted in the city of Joplin, MO, after the Joplin Tornado was utilized (Pilkington et 

al., 2019). The aim of this longitudinal field study was to capture the recovery evolution 
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throughout the city from 2011 to 2017. For this purpose, spatial videos were recorded to 

capture an appropriate view of the approximate environment along with geospatial 

information. This was accomplished with a Global Positioning System (GPS) receiver 

and a video camera working simultaneously. By syncing the videos and GPS data in an 

appropriate software, a certain GPS coordinate was assigned to each video frame. This 

method was applied in a number of studies to capture damage as well as restoration after 

disasters (Curtis et al., 2015; Curtis & Fagan, 2013; Curtis & Mills, 2012; Mills, Curtis, 

Kennedy, Kennedy, & Edwards, 2010).  

The first run of observations was conducted on June 14, 2011, to have an 

appropriate overview of the damage in the community (Curtis & Fagan, 2013) shortly 

after the tornado occurrence. In this run as well as the following observations between 

2011 and 2012, a set-up of separate video cameras (three Panasonic PV-GS500) and a 

GPS receiver (Red Hen Systems GPS receiver) were utilized to capture the data. The 

resulting videos were processed through an extension of ArcGIS called Red Hen’s 

MediaMapper that shows the video frames and locations as points in Geographical 

Information System (GIS) at the same time. After the upgrade in this technology, the 

previous set-up was replaced with Contour +2 video cameras (Curtis et al., 2015), which 

were smaller, easier to operate, and had an internal GPS receiver. The videos were 

recorded by driving through the pre-determined routes in the city, and the resulting 

videos were displayed in bespoke software, and locations were extracted (Ajayakumar, 

Curtis, Smith, & Curtis, 2019).  
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According to Attary et al. (2018), the total number of buildings located within the 

Joplin tornado path was 7,912, out of which 3,058 buildings were included in this 

longitudinal study to record their recovery trajectory over a five year period. In order to 

describe the recovery of the community through time, each building at each run was 

labeled with a recovery state score proposed by Pilkington et al. (2019) using the 

descriptions in Table 12 (see first four columns) based on the physical observations from 

the videos. Two scores were used to describe the recovery state of the buildings: Score 1 

that indicates the overall recovery state by six states: (i) uninhabited, (ii) cleared, (iii) 

rebuilding, (iv) rebuilt and occupied, (v) no rebuild/new structure, and (vi) new 

archetype built; and Score 2 that indicates the sub-category of the recovery states that 

require further classification (namely, uninhabited and rebuilding states).  
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Table 12: Recovery states per Pilkington et al. (2019) and corresponding 

functionality levels per Koliou and van de Lindt (2019) 

Recovery 

State 

(Score1) 

Description 

Sub-

Category 

(Score 2) 

Elaboration 

Functionality Level 

(Koliou and van de 

Lindt (2019)) 

1 Uninhabited 

2 Livable: unoccupied FL1 

5 Blighted FL3 

10 Non-livable: extreme FL4 

2 Cleared  
Lot empty due to destroyed home 

or clear for reconstruction 
FL4 

3 Rebuilding 1 

Frame skeleton is up. This would 

only appear for homes needing a 

complete rebuild. 

FL3 

  2 Walls are enclosed FL3 

  3 

Non-structural components have 

been added. Likely that DS 2&3 

would not require more than this 

level of construction. 

FL2 

  4 Cosmetic finishes being applied FL1 

4 
Rebuilt and 

Occupied 
 “Good as new” FL0 

5 
No rebuild/new 

structure 
 Abandoned lot FL4 

6 
New archetype 

built 
 

New structure of different zoning 

designation 
FL0 

At this stage, in order to employ the resulting dataset into validating and 

calibrating the functionality fragility functions proposed by Koliou and van de Lindt 

(2019), it was necessary to correlate the recovery states presented in Table 12 with 

functionality levels of Table 11. To do so, a column was added to the table proposed by 

Pilkington et al. (2019), as shown by the last column in Table 12, correlating the relative 

functionality levels (FL) per Koliou and van de Lindt (2019) by comparing the 

descriptions in Table 12 and Table 11.  

Error! Reference source not found. demonstrates the Functionality Level (FL) 

of the inspected buildings throughout Joplin during a five-year period as recorded for six 
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time intervals: (a) one year, (b) one and a half years, (c) two years, (d) three years, (e) 

four years, and (f) five years after the tornado occurrence. Five shades of red are used to 

represent the five functionality levels - FLs (FL0 to FL4), such that more intense red 

indicates a worse condition, i.e., lower level of functionality close to FL4, and lighter red 

indicates a better condition, i.e., close to FL0. Gray color indicates buildings which were 

not inspected in that specific inspection time. As Error! Reference source not found.a 

shows, a large portion of the buildings are classified as FL4 which is the lowest level of 

functionality, i.e., they are fully closed. Error! Reference source not found. clearly 

shows the gradual decrease in the number of buildings classified as FL4 through time 

and increase of buildings moving to a higher functionality level. A sudden significant 

decrease in the percentage of buildings labeled as FL4 in the third run of inspection (24 

months) compared with the year before it can be observed in Error! Reference source 

not found.c. However, the gradual increase in the functionality of the buildings in the 

city slowed down in the next inspections (see Error! Reference source not found.d, e, 

and f for three, four and five years, respectively, after the 2011 tornado), and in the last 

inspection (60 months) there remained a considerable portion of damaged and not 

recovered buildings. This could mainly be attributed to the fact that those buildings were 

abandoned, and no recovery effort was initiated by the time they were inspected and 

hence, no recovery progress was observed within the five-year period. 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 12: Spatial distribution of the functionality level of the inspected buildings 

after (a) one year, (b) one and a half years, (c) two years, (d) three years, (e) four 

years, and (f) five years from the Joplin tornado. 
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(d) 

 

(e) 

 

(f) 

 
Figure 12 Continued. 

Figure 13a presents the distribution of the initial damage state throughout the city 

of Joplin, and as it shows a considerable portion of the buildings (>41%) were classified 

as DS4 right after the tornado. Figure 13b shows the distribution of recovery time of the 

inspected buildings through time (from year 1 to year 5+). It is observed that only 151 
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buildings out of 3,058 were fully functional (FL0) right after the tornado, while the 

largest amount of recovered buildings was identified during the first year, such that 854 

other buildings went back to full operation within a year after the tornado. A large 

portion of the inspected buildings (>64%) returned to full operation within the first two 

years after the tornado. However, the recovery pace slowed down after two years, and a 

total of 433 buildings (>14%) did not recover at all within the first five years after the 

tornado. Figure 13c demonstrates the percentage of the recovered buildings at each year 

after they are classified based on their initial damage state. As this figure shows, a 

considerable portion of the buildings classified as DS1, DS2, and DS3 were fully 

recovered during the first year, and the recovery pace decreased in the following years, 

while a small percentage (4%, 6%, and 7% for DS1, DS2 and DS3, respectively) of them 

were not fully recovered within the five years aftermath. On the contrary, the recovery of 

the buildings initially classified as DS4 spreads widely between the years with 

approximately 53% of them to be recovered within the first two years. More specifically, 

based on the results of Figure 13c, the largest percentage of the buildings classified as 

DS4 were recovered between 18 and 24 months following the disaster, while 

approximately 19% of those buildings were not recovered at all within the first five 

years.  
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Figure 13: Distribution of: (a) buildings’ initial damage state, (b) buildings’ 

recovery time, and (c) percentage of recovered buildings at each year per their 

initial damage state. 

3.4. Comparison of predicted and documented time-dependent repair recovery 

trajectory  

In this section, the empirical results for the time-dependent repair recovery trajectory 

resulting from the longitudinal field study in the city of Joplin are compared to the 

analytical results from the work conducted by Koliou and van de Lindt (2019). A 

discussion is provided to explain discrepancies between the empirical and analytical 

results, and how to adjust analytical outcomes to more realistically capture the recovery 
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trajectory analytically accounting for the impeding factors. The analytical functionality 

fragility curves were generated for different archetypes using their analytical predictions 

with an example shown earlier in this chapter (Figure 11). These fragility curves 

quantify the probability of reaching specified functionality levels at a certain amount of 

time conditioned on the initial functionality level (and associated damage). In order to 

compare the results of the analytical study with the empirical results presented in the 

current study for a five-year period, empirical functionality fragilities were developed in 

the same manner. Fragility functions were developed for seven of the archetypes 

presented in Table 10, namely, residential wood buildings (T1-T5), business and retail 

buildings (T6), and office building (T19), which correspond to the archetypes included 

in the video datasets. The resulting fragility functions are tabulated in Table 13 along 

with their corresponding fragilities from the analytical study provided in parentheses. 

Fragility functions are defined by lognormal distributions with mean λ and standard 

deviation ξ, as presented in Table 13. Each fragility function in this table is defined for a 

building reaching a specified functionality level (second row of Table 13) conditioned 

on its initial functionality level (second column of Table 13). For example, the 

functionality fragility of residential wood buildings (T1-T5) with initial functionality 

level of FL4 that reaches functionality level of FL0 is described as a Lognormal (6.60, 

0.532) using the empirical dataset in the current study, and is described as a Lognormal 

(5.19, 0.522) per the analytical study. A number of cells in Table 13 do not contain 

numbers, where dash (“―”) indicates that this functionality fragility cannot be defined 

(e.g., there is no fragility with initial functionality of FL2 and reaching functionality of 
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FL3 since it means getting worse), and “N/A” indicates that there were not enough data 

points in the empirical dataset to develop an appropriate fragility (such data were not 

captured over the five-year longitudinal field study).  

Table 13: Fragility function distributions for archetypes T1-T5 (residential wood 

building), T6 (business and retail building (strip mall)), and T19 (office building) 

for reaching different functionality levels (FL3 to FL0) conditional on their initial 

functionality level (FL4 to FL1) 

 
Reached 

functionality level 
FL3 FL2 FL1 FL0 

Archetype 

ID 

Initial 

Functionality 
λ* ξ* λ* ξ* λ* ξ* λ* ξ* 

T1-T5 

FL4 
6.13 

(2.71) 

0.33 

(0.52) 

6.49 

(3.42) 

0.60 

(0.52) 

6.39 

(4.78) 

0.48 

(0.52) 

6.60 

(5.19) 

0.53 

(0.52) 

FL3 ― ― 
5.56 

(3.10) 

0.46 

(0.55) 

5.74 

(3.79) 

0.55 

(0.55) 

5.90 

(4.62) 

0.60 

(0.55) 

FL2 ― ― ― ― 
5.87 

(2.89) 

0.35 

(0.55) 

6.06 

(3.52)  

0.32 

(0.55) 

FL1 ― ― ― ― ― ― 
5.90 

(3.09) 

0.50 

(0.51) 

T6 

FL4 N/A N/A N/A N/A N/A N/A 
6.64 

(5.05) 

0.50 

(0.60) 

FL3 ― ― N/A N/A N/A N/A 
5.82 

(4.51) 

0.46 

(0.55) 

FL2 ― ― ― ― N/A N/A N/A N/A 

FL1 ― ― ― ― ― ― N/A N/A 

T19 

FL4 N/A N/A N/A N/A N/A N/A 
6.45 

(5.32) 

0.51 

(0.55) 

FL3 ― ― N/A N/A N/A N/A N/A N/A 

FL2 ― ― ― ― N/A N/A N/A N/A 

FL1 ― ― ― ― ― ― 
6.40 

(1.45) 

0.50 

(0.55) 

*Units: ln(days) [eλ = days] 
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There are moderate to significant differences between the empirical and 

analytical results for all fragility functions presented in Table 13. Further examination 

reveals that all empirical fragilities have larger mean values compared to the analytical 

fragilities, which indicates that it takes longer time for the buildings to recover from a 

functionality level to a higher level in “living communities”. Reasons causing such 

differences are discussed in detail in the next section followed by methods to calibrate 

the analytical results.  

Figure 14a-d present fragility functions of residential buildings (T1-T5) for 

reaching higher functionality levels conditioned on four initial functionality levels 

namely FL4, FL3, FL2, and FL1, respectively. Three types of curves are shown to 

compare analytical and empirical results: (i) empirical cumulative distribution function 

(CDF) of the time that took for the buildings in Joplin to recover from the initial 

functionality levels to higher functionality levels, (ii) empirical functionality fragilities 

developed using the dataset developed herein, and (iii) analytical fragility curves 

developed by Koliou and van de Lindt (2019).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 14: Functionality fragility curves to reach various levels of functionality 

from starting functionality level of (a) FL4, (b) FL3, (c) FL2, and (d) FL1. 
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Figure 14a demonstrates the abovementioned curves for the cases that the 

residential building archetypes start with functionality level FL4 associated with 

tornado-induced damages. Note that the number of data points available to develop each 

one of the empirical fragilities for reaching FL0, FL1, FL2, and FL3 are 1,846, 424, 32, 

and 258, respectively. Although it is expected that fragility curves for reaching higher 

functionality levels would appear below lower functionality levels (since they are 

reached faster, e.g., reaching FL3 is expected to be faster and easier than reaching FL0 

assuming that the starting functionality level is FL4), in Figure 14a it is shown that the 

empirical fragility for reaching FL2 (green) is lower than the one for reaching FL1 (red). 

This may be attributed to the fact that a low number of data points (32 building samples) 

were available to develop the FL2 fragility which increases its uncertainty. It should be 

noted that the relatively small number of time intervals may also cause an undesirable fit 

for the fragility functions regardless of the number of the data points, and hence, it could 

also be a reason for such unexpected behavior. The analytical fragilities are presented in 

this figure for comparison purposes with the same colors used for empirical curves but 

with dashed lines. It is observed that the analytical curves are shifted to the left side of 

the figure which means that there is a considerable “gap”/difference between the 

analytical curves with their corresponding empirical ones, as also identified in Table 13 

and discussed earlier in this chapter. Figure 15 depicts the differences between the mean 

value of the empirical and analytical fragilities in the unit of days (μempirical-μanalytical 

[days]). This figure indicates that for the fragility functions presented in Figure 14a, the 
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largest gap between the empirical and analytical fragilities is observed in FL2 (with 628 

days) fragilities, followed by FL0 (with 556 days) fragilities.  

Figure 14b demonstrates the functionality fragility curves for the residential 

buildings with an FL3 initial functionality level after the tornado happens. The number 

of data points used here to develop the empirical fragility curves for reaching FL0, FL1, 

and FL2 are 509, 70, and 7, respectively. Again, there are moderate differences between 

the empirical and analytical fragilities as Figure 14b demonstrates, while these 

differences are considerably less than what was observed in Figure 14a for the cases 

with starting functionality of FL4. This is confirmed by Figure 15 showing that all 

fragilities have differences less than a year with the largest (267 days) for FL1 fragility.  

Figure 14c presents the functionality fragility curves for the residential buildings 

with the initial functionality level of FL2. The number of data points used here to 

develop the empirical fragility curves for reaching FL0 and FL1 are 256 and 18, 

respectively. As this figure indicates, there are considerable differences between the 

analytical and empirical curves, while as shown in Figure 15, this gap is around one year 

with the largest difference for FL2 fragility (395 days).  

Finally, the fragility curve for residential building archetypes associated with an 

initial functionality of FL1 that reach the full functionality level of FL0 is shown in 

Figure 14d. The number of data points used to develop the empirical fragility was 570. 

As Figure 15 also indicates, the difference between the mean value of the empirical and 

analytical fragilities was around a year (343 days). Note that the number of available 

data points for developing the empirical CDF and fragility curves are provided because a 
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small sample number can adversely affect the integrity of the CDF curves as well as 

their fitted fragilities and therefore the associated findings for this study. 
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  FL3 FL2 FL1 FL0 

FL4 444 628 477 556 

FL3  238 267 264 

FL2   336 395 

FL1    343 

Figure 15: Difference between mean values of the empirical and analytical 

functionality fragilities in the unit of days. 

3.4.1. Discussion and proposed updates 

In this section, the reasons causing the differences between the analytical and empirical 

results presented in the previous section are discussed along with the proposed 

modifications to calibrate the analytical framework in order to converge its results closer 

to the real-world empirical data collected after the Joplin Tornado.  

The analytical fragilities were developed considering the perfect restoration and 

reconstruction conditions with sufficient financial, material, and labor-work resources 

without any form of delays (associated impeding factors). However, this may not be a 

realistic case following major disasters. Various post-disaster data reconnaissance 

studies have reported major delays before initiating the repair and restoration of the 

damaged infrastructure systems (Mohammad Aghababaei et al., 2018; Chang, 

Wilkinson, Potangaroa, & Seville, 2010), while the construction/project management 
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literature also emphasizes that there are delays even during the construction phase 

(Fugar & Agyakwah-Baah, 2010; Kazaz, Ulubeyli, & Tuncbilekli, 2012; Odeh & 

Battaineh, 2002). The extent of the delays for repair/reconstruction may not be uniform 

throughout the community and a wide range of factors affect such delays, such as the 

building occupancy (e.g., residential, different types of businesses, and governmental 

facilities), building characteristics (e.g., age, distance from the hazard source, and 

construction type), available financial resources (e.g., financial aid and family 

resources), loss mitigation actions pre-disaster (e.g., purchasing insurance policies), the 

overall status of the community after the disaster (e.g., level of income, education, and 

socio-demographic characteristics), etc.  

Lin and Wang (2017) proposed a building portfolio recovery model to predict the 

recovery trajectory of buildings after major disasters where the waiting time of a 

building reaching a higher functionality state was computed accounting for the initial 

delays, the repair time to reach that functionality state, and the utility disruption. Lin and 

Wang (2017) proposed the following equation to calculate the delay time to initiate the 

repair: 

𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇insp + 𝑀𝑎𝑥{𝑇fina, 𝑇conm, 𝑇engm} + 𝑇perm     (16) 

where, Tinsp=time needed to inspect the building, Tfina=time to collect sufficient 

financial resources for conducting the repair (based on the building’s access to various 

financial resources, including the Small Business Administration (SBA) loans, insurance 

payouts, private loans, and also if the building has no coverage), Tconm=time to employ 
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engineers/architects/contractors and for the bidding process, Tengm=time to 

design/redesign and planning, and Tperm=time to get permit. The method utilized by Lin 

and Wang (2017) to estimate and compute the delays was captured from the REDiTM 

framework (Almufti & Willford, 2013a), which is a framework to estimate the impeding 

factors after earthquake events. In addition, the probability distributions for each of the 

aforementioned delays in Equation (16) were adopted from the REDiTM framework 

(Almufti & Willford, 2013b). 

In this chapter, in order to fill the gaps between the analytical and empirical 

fragilities presented in the previous section and calibrate the analytical fragilities, a 

number of alternative methods to include the delays in generating analytical fragilities 

are examined and the results are compared. For so doing, these delays are added to the 

computed building-level repair times generated using the analytical approach proposed 

by Koliou and van de Lindt (2019) in a probabilistic manner, and the updated 

functionality fragilities are generated afterwards. The extent of the delay caused by a 

number of these impeding factor (e.g., delays due to permitting, inspection, and 

engineering/redesigning) is dependent on the damage level of the building, and hence, 

different delay distributions are considered depending on the building damage state. 

Using the method proposed by Lin and Wang (2017) and the delay distributions 

employed from REDiTM framework (Almufti & Willford, 2013b), per Equation (16) to 

include the delays in the analytical fragilities, resulted in large discrepancies with the 

empirical fragilities. As an example, the resulting analytical fragilities for residential 

buildings conditioned on the initial functionality level of FL4 are demonstrated in Figure 
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16 along with the empirical fragilities developed in the current study. The analytical 

fragilities in this figure clearly indicate overestimation of the recovery time compared to 

the empirical ones.  

 
Figure 16: Functionality fragility of residential buildings to reach various 

functionality levels with initial functionality level of FL4 (this figure includes the 

empirical fragilities developed in this study and the updated analytical fragilities 

using Equation (16))  

In order to modify the results for the purpose of this study, two approaches are 

considered: (i) modifying Equation (16) to be closer to the reality, and specially to be 

more appropriate for the weather-related events (both approaches by Lin and Wang 

(2017) and the REDiTM framework (Almufti & Willford, 2013b) were developed for 

earthquakes), and (ii) using real-world data to have more representing probability 

distributions for different types of delay. As a result, the following equation was 

proposed to include the delays into the analytical functionality fragilities:  

𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇insp + 𝑀𝑎𝑥{𝑇fina, 𝑇conm} + 𝑇perm     (17) 

where, Tengm is eliminated in Equation (17) due to reasoning that, for low-rise wood 

residential buildings in the U.S. (which represents the majority of the dataset in the 
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current study), there is no need to employ an engineer, and usually the whole process is 

conducted by the contractor, and hence, there is no need to consider it as a separate 

delay. It should be noted that this assumption may differ for communities outside the 

U.S. and regions in the U.S. with high seismic hazard (such as California), and there 

might be requirements to hire an engineer in order to redesign and repair the building. In 

addition, according to the previous weather-related disasters, there are much smaller 

portion of buildings experiencing major structural damage compared to earthquake 

events, and as a result, there is less need to redesign the building. The second 

modification/adjustment adopted in the current study is related with the use of data 

collected in prior disasters. More specifically, a dataset collected in Galveston, TX, after 

Hurricane Ike related to delays associated with SBA loans and permitting time was 

considered. Although this study focused on a wind related event, the SBA loan and 

permitting distribution data should be somewhat representative of conditions in a typical 

community impacted by a natural hazard. The distributions of the time to receive an 

SBA loan disbursement and the time to the first construction permit are updated as 

presented in Table 14 and Table 15, respectively, using the real-world administrative 

data collected after Hurricane Ike in Galveston, TX, conditioned on the initial damage 

state (Dustin, 2010; Watson, 2019). 

Table 14: Number of days to SBA loan disbursement. 

Damage State mean  median standard deviation min  max 

DS1 128.0 125 58.8 45  299 

DS2 123.1 109 62.9 44  303 

DS3 140.3 115 93.8 37  752 

DS4 177.4 136 138.8 33  1,053 
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Table 15: Number of days to first permit (any). 

Damage State mean  median standard deviation min max 

DS1 123.9 67 122.2 10 502 

DS2 136.1 93.5 120.2 10 503 

DS3 111.0 67 105.3 10 503 

DS4 111.4 67 101.5 10 502 

All of the analytical fragilities presented in Table 13 and Figure 14 were updated 

using the modification method proposed here, and the updated results are summarized in 

Table 16 and Figure 17. Table 16 is generated similarly to Table 13 but with the updated 

statistics of the analytical fragilities provided in parentheses instead of the ones from 

Koliou and van de Lindt (2019). The statistics of the updated analytical fragilities in this 

table are much closer to the statistics of the empirical ones with a few exceptions. To 

better illustrate, the comparison between the updated/revised analytical fragilities 

accounting for impeding factors and the empirical ones for residential buildings is 

graphically shown in Figure 17. As shown in this figure, the updated analytical fragilities 

are now closer to the real-world empirical fragilities compared to the ones presented in 

Figure 14. The updated analytical fragilities in this figure are more accurate 

approximations of the empirical ones, and hence, the analytical method proposed by 

Koliou and van de Lindt (2019) to develop repair time fragilities are better 

representations of the real-world aftermath conditions when combined with the 

modification method proposed in this study.  

Figure 17a shows the functionality fragilities for the residential buildings with 

the initial functionality level of FL4. It is observed that the analytical fragilities reaching 

functionality levels of FL0 and FL1 are good approximations of the empirical ones. 
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However, this is not the case for the fragilities of reaching FL2 and FL3. As mentioned 

previously in this chapter, the empirical fragility for reaching FL2 may not be accurate 

due to lack of sufficient data (small sample size) which may explain its discrepancy with 

the analytical fragility in Figure 17. Figure 17b presents the functionality fragilities for 

the cases with the initial functionality level of FL3 where it is shown that analytical 

fragilities overestimate the empirical fragilities by 67% on average. Figure 17c 

demonstrates the functionality fragilities for the cases with the initial functionality level 

of FL2, where the pattern of overestimating analytically the recovery is observed again 

but in a much smaller range, 22% on average. Finally, as Figure 17d represents, the 

analytical fragility well captures the results of the empirical fragility for residential 

buildings with an initial functionality level of FL1 (associated with slight damage). 

Although the updated/revised analytical fragility curves slightly overestimate the 

recovery time of the building stock in Joplin in most cases, they can be further employed 

in other studies related to tornado-induced damage for realistically predicting time-

dependent repair recovery process and inform models associated with pre-disaster 

preparedness or post-disaster resource allocation.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 17: Functionality fragility curves to reach various levels of functionality 

from starting functionality level of (a) FL4, (b) FL3, (c) FL2, and (d) FL1 (these 

plots include the empirical fragility functions and the updated analytical fragilities 

using the method presented in this study). 
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Table 16: Distributions of the functionality fragilities (empirical and updated 

analytical) for archetypes T1-T5 (residential wood building), T6 (business and 

retail building (strip mall)), and T19 (office building) for reaching different 

functionality levels (FL3 to FL0) conditional on their initial functionality level (FL4 

to FL1). 

 
Reached 

functionality level 
FL3 FL2 FL1 FL0 

Archetype 

ID 

Initial 

Functionality 
λ* ξ* λ* ξ* λ* ξ* λ* ξ* 

T1-T5 

FL4 
6.13 

(6.18) 

0.33 

(0.58) 

6.49 

(6.21) 

0.60 

(0.56) 

6.39 

(6.41) 

0.48 

(0.50) 

6.60 

(6.52) 

0.53 

(0.48) 

FL3 ― ― 
5.56 

(6.18) 

0.46 

(0.58) 

5.74 

(6.24) 

0.55 

(0.56) 

5.90 

(6.35) 

0.60 

(0.51) 

FL2 ― ― ― ― 
5.87 

(6.11) 

0.35 

(0.46) 

6.06 

(6.20)  

0.32 

(0.50) 

FL1 ― ― ― ― ― ― 
5.90 

(5.90) 

0.50 

(0.54) 

T6 

FL4 N/A N/A N/A N/A N/A N/A 
6.64 

(6.50) 

0.50 

(0.49) 

FL3 ― ― N/A N/A N/A N/A 
5.82 

(6.37) 

0.46 

(0.52) 

FL2 ― ― ― ― N/A N/A N/A N/A 

FL1 ― ― ― ― ― ― N/A N/A 

T19 

FL4 N/A N/A N/A N/A N/A N/A 
6.45 

(6.56) 

0.51 

(0.51) 

FL3 ― ― N/A N/A N/A N/A N/A N/A 

FL2 ― ― ― ― N/A N/A N/A N/A 

FL1 ― ― ― ― ― ― 
6.40 

(5.81) 

0.50 

(0.63) 

*Units: ln (days) [eλ = days] 
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3.5. Summary and Conclusions  

This chapter assesses and then calibrates the analytical repair time fragilities available in 

the literature for buildings subject to tornado events with empirical fragilities developed 

in this study using the restoration data of a five-year field study in the city of Joplin after 

the catastrophic 2011 Joplin tornado. In this longitudinal field study, a method utilizing 

spatial videos was employed to efficiently collect the visual recovery observations along 

with geospatial information. The collected dataset was later post-processed to assign an 

appropriate functionality level to each building at each of the six time intervals of this 

study (1, 1.5, 2, 3, 4, and 5 years after the tornado). Findings concerning the recovery 

trajectory of the community extracted from this longitudinal study showed that from 

3,058 inspected buildings in Joplin, only 151 buildings were fully functional 

immediately after the tornado, while 64% of the buildings completely recovered within 

the first two years from the event. It was also observed that the recovery pace is related 

to the initial damage of the building, such that the buildings experienced the highest 

damage state (DS4) had a considerably slower recovery rate compared to the other 

buildings, and 19% of them did not recover within the first five years after the tornado.  

Empirical functionality fragilities were also generated in this study using the 

post-processed dataset of the Joplin Tornado longitudinal study. The resulting empirical 

fragilities were compared with the analytical repair time fragilities developed by an 

existing study, which showed considerable differences. The main cause of the 

differences between the analytical and empirical fragilities highlighted herein were that 

the analytical fragilities did not account for the effect of impeding factors (such as delays 
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associated with inspection of the damaged buildings, acquisition of construction permit 

and adequate financial resources, as well as identification of available contractor crews) 

in the recovery process. To address that, a method was proposed herein to modify the 

analytical results by including various types of delays that happen after major disasters, 

including the delays due to the post-disaster inspections, delays to prepare the necessary 

financial resources, delays due to high demand on the construction industry (such as 

hiring contractors and repair crew), and time to get the reconstruction permit. Since all 

of these delays do not occur in sequences or in parallel, a method to aggregate them in 

an appropriate way to be consistent with the real-world conditions is proposed in this 

study. Based on the results presented, it was shown that the updated analytical 

functionality fragilities using the proposed modification method resulted in more 

realistic recovery predictions and captured more accurately the empirical fragilities 

developed from the longitudinal study.  

The functionality fragility models developed in this study may be further 

applicable in risk-based resilience assessment of communities subject to the tornado 

hazards, but it is recognized that there may be some limitations not accounted for such as 

local governance factors.  Adjustments based on such factors may be needed for a broad 

geographical generalization, but the calibration provided in this study brings the 

predictive fragilities for building restoration one major step closer to being used for 

modeling of other communities.  Similarly, to the PBE framework that accumulates the 

hazard loads, building responses, as well as direct and indirect impacts to conduct a risk 

analysis, it is feasible to utilize the generated functionality fragilities in this study to 
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conduct a risk analysis with the target of functionality instead of damage. The outcomes 

of such an analysis may be strategies to decrease the impacts and help communities 

recover faster. 
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4. THRUST C: AN AGENT-BASED MODELING APPROACH FOR COMMUNITY 

RESILIENCE ASSESSMENT ACCOUNTING FOR SYSTEM 

INTERDEPENDENCIES 

In this chapter, an agent-based modeling approach to develop a quantitative model of a 

community is proposed. This framework accounts for the system of interconnected 

systems within a community, i.e., components/infrastructures within a community and 

their interactions. This chapter represents two consecutive steps performed during this 

study separated in two subchapters, called Thrust C-A and Thrust C-B herein. In the first 

step, Thrust C-A, a broad literature review was conducted, the conceptual framework 

was developed, and it was implemented for the virtual community of Centerville to 

study the resilience of education system in this community. To accomplish the objectives 

of this step, the proposed ABM framework characterized the players making a role in the 

operation and performance of the education system, namely, schools, households, 

electric power network, water supply network, school district, construction companies, 

and utility companies. Using the implemented community model, resilience of the 

education system in Centerville subject to tornado threats was evaluated. The second 

step of this chapter, Thrust C-B, is actually an extension to the community model 

developed in the first step to account for more infrastructures/players within the 

community. The objective is to assess and quantify the resilience of the community as a 

whole to the tornado threats, identify the most vulnerable components, and develop a 

decision-making platform to establish mitigation plans to enhance the community 

resilience. Hence, the ABM framework is proposed in the first subchapter, while the 
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second subchapter extends the comprehensiveness of the community model of the first 

step for the purpose of community resilience assessment and decision-making. These 

two steps are presented in two separate subchapters below, called Thrust C-A and C-B. 

4.1. Thrust C-A: ABM approach and its application on the education system†    

This subchapter introduces an agent-based modeling (ABM) approach to model a 

community as a system of interdependent systems for studying education systems 

resilience, one of the least-studied components of communities in the quantitative 

disaster literature. In this ABM approach, autonomous entities, called agents, simulate 

the components of a system, while internal interactions among them shape the system 

and external interactions among systems shape the community. To study the education 

system resilience subject to tornado hazard, a library of agents is proposed including 

school, household, electric power network, water supply network, and construction 

companies agents. The proposed ABM approach is applied on the virtual Centerville 

community. A Monte Carlo sampling analysis for various tornado intensities is 

conducted to account for and quantify the inherent uncertainties. Moreover, an education 

system resilience measure based on the education quality and quantity is proposed and 

computed for the virtual community of Centerville. The probabilities of the education 

system falling in different resilience levels are also computed for different tornado 

intensities. Taking advantage of the comprehensive quantitative model proposed, 

 

† This chapter is submitted to the “Journal of Engineering Structures” as an individual paper (Aghababaei, 

M. and Koliou, 2021. An Agent-Based Modeling Approach for Community Resilience Assessment 

Accounting for System Interdependencies: Application on Education System. Engineering Structures 

(under review) 
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decisions for enhancing the education system resilience can be evaluated, which is 

demonstrated by assessing the effect of providing backup utilities for schools on the 

education system resilience. 

4.1.1. Introduction  

This subchapter presents the modeling approach based on ABM proposed in the current 

study to develop a community and its components, including schools, households, 

electric power network, and water supply network, along with decision makers in the 

community, with interdependencies between their performance and recovery. The 

proposed modeling approach is utilized in this subchapter to study the resilience of the 

education system within the community under its threatening hazards. Education system 

in this study refers to schools, students, school employees, and the quality of education 

within the community. When it comes to the quantitative community resilience studies, 

schools are among the least studied components of a community. Hassan et al. (2020) 

proposed a framework to study the resilience of a school system after massive 

earthquake disasters. This framework accounted for the quantity and quality of education 

service provided in the aftermath to describe the functionality and resilience of the 

school system. However, most of the education system literature focused on the effect of 

past natural disasters on the operation of schools, their recovery, and financial and 

mental health issues students and school employees face in the aftermath (Abramson & 

Garfield, 2006; Nastasi, Overstreet, & Summerville, 2011). Although such studies are of 

great importance to protect students and their families by knowing the vulnerabilities 

and health-related issues that may occur in the aftermath, still there is a need to 
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quantitatively model schools and their interactions with students when a major disaster 

occurs within the context of community resilience. By modeling the response of schools 

in the face of major disasters along with other systems of the community (e.g., power 

and water networks, households, government, etc.) in a comprehensive framework, it is 

feasible to evaluate the resilience of the education system in the community in its current 

condition. In addition, the quantitative community model enables decision making by 

implementing various strategies and selecting the most effective ones among all. The 

proposed ABM approach in this chapter is capable of modeling all systems within a 

community, including schools, and their interactions in the desired level of details, 

starting from the moment that the community is initially impacted by the disaster until 

when the community is recovering in the aftermath. It should be noted that the proposed 

ABM approach is generic, meaning that it can incorporate other sectors of a community 

not discussed in this section, and can be used to study other systems within a community 

than education system or multiple systems in the community at the same time. Since the 

focus of this subchapter is on the education system, a broad literature review about it is 

provided in the next section. 

A large number of studies in the literature focused on the direct consequences of 

disaster loads on the physical infrastructures and how to mitigate those consequences 

(Mohammad Aghababaei & Mahsuli, 2019; Ayyub, Foster, McGill, & Jones, 2009; 

Brennan & Koliou, 2020; Kakareko, Jung, & Vanli, 2020; Y. Li & Ellingwood, 2006; 

Mahsuli & Haukaas, 2012; O. M. Nofal & van de Lindt, 2020). These studies 

conventionally utilized risk analysis methods to quantify the current state of the 
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infrastructures as well as make mitigation actions to enhance their condition. Two 

prominent risk analysis approaches for this purpose are the ones based on the concept of 

Performance Based Earthquake Engineering (PBEE) (Cornell & Krawinkler, 2000; 

Moehle & Deierlein, 2004) and the ones based on the structural reliability methods (e.g., 

Monte Carlo sampling, First-Order Reliability Method (FORM)) (Mohammad 

Aghababaei & Mahsuli, 2018; Mahsuli & Haukaas, 2013b). These studies conducted in 

various levels of refinement (i.e., regional, building, and component levels) and for 

various hazards (e.g., seismic, hurricane, flooding, etc.). 

Disaster resilience studies typically account for the recovery of the system in the 

aftermath in addition to the direct losses when a disaster happens. Bruneau et al. 

(Bruneau et al., 2003) proposed a generic framework to quantify the resilience of the 

communities subject to seismic hazards, with emphasis on impact reduction, rapid 

recovery, and decreasing the communities vulnerability to future disturbances through 

social learning and adaption. In a recent study, Nasrazadani and Mahsuli (2020) 

proposed a probabilistic framework accounting for both direct losses and losses during 

the recovery stage of a community impacted by an earthquake, and accumulated all 

losses in terms of monetary loss using risk analysis methods.  

Among studies on the disaster resilience, some studies focused on one 

component/system of the community because of their critical role in the aftermath, such 

as transportation networks (Adams et al., 2012), Electrical Power Networks (EPN) 

(Ouyang & Dueñas-Osorio, 2012), and hospitals and healthcare facilities (Gian Paolo 

Cimellaro et al., 2010b). Outcomes of such studies were finding vulnerabilities and 
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making decisions to make the system more robust, or developing algorithms to recover 

the system faster when it is disrupted. On the other hand, when conducting a resilience 

study in the community-level, it is essential to take into account the interdependencies 

between different systems interacting with one another. For example, households need 

access to drinking water through water supply network after a disaster, while water 

network itself typically requires access to electric power to function. Such dependencies 

create a complex system of systems forming the community where the performance of 

each system not only depends on its own operability but also on the performance of 

other interconnected systems. One common method in the literature to include such 

dependencies is considering the recovery as a Markov Chain of events to ultimately 

restore the performance of buildings. Lin & Wang (2017b), for instance, proposed a 

stochastic process for the recovery of building portfolio as a continuous time Markov 

Chain accounting for their interdependencies with utility accessibility. Simplicity of such 

methods facilitates their application, but they are not capable of modeling complex 

interconnected system of systems.  

The proposed ABM approach in this study can quantitatively model a community 

and all of its interdependent components comprehensively. This study presents the 

application of the proposed modeling approach in the virtual community of Centerville 

(Ellingwood et al., 2016), illustrated in Figure 18, to model schools, households (and 

students in the household), along with other infrastructures and decision makers 

involved in the recovery of schools and students’ education in the community. More 

details about Centerville are presented in the Simulation section of this subchapter. In 
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the remainder of this subchapter, to better demonstrate the proposed ABM approach, it is 

presented together with its application on Centerville. 

 
Figure 18: Centerville virtual community. 

4.1.2. Education system 

This section presents a literature review on the education system in communities 

impacted by major natural disasters. A wide range of attributes related to the education 

systems in communities hit by major natural disasters are studied in the literature. These 

include the physical damage schools incurred, displacement of students, issues school 

employees faced in the aftermath, and students’ mental health issues related to the 

disaster.  

Various articles and reports after major disasters outlined significant student 

displacements. According to a report by The Boston Consulting Group (2012) after 

Hurricane Katrina in New Orleans, Louisiana (LA), 64,000 students in public schools 

were displaced, while 4,000 public school teachers were laid off which itself caused 
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extra financial consequences for them and their families. A notable report (RAND, 

2006) by the RAND Corporation studied the student displacement in Louisiana when 

Hurricanes Katrina and Rita happened in 2005. Based on this report, around 200,000 

public school students were displaced. When Hurricane Katrina made landfall, an 

immediate drop occurred in the number of students kept enrolling in their original 

schools and this drop intensified as Hurricane Rita arrived. 

A large number of studies reported disruptions in education of students due to 

school closure or student’s family relocation which caused students miss days to weeks 

of school. According to the Boston Consulting Group report (The Boston Consulting 

Group, 2012), 85% of the 128 school buildings in New Orleans experienced some 

damage, while 35% of them experienced severe damage. Based on this report, by 

January 2006, only nine parochial schools and 17 public schools initiated their operation 

in New Orleans. According to the report by the National Public Radio (NPR) (NPR, 

2017), following Hurricanes Harvey and Irma, students missed from one day to several 

weeks of school. For instance, in Corpus Christi, Texas (TX), students missed several 

weeks of school due to hurricane, and in Aransas Pass, TX, 1,800 students missed 34 

days of school, while it was 10 days in Houston. In Puerto Rico after Hurricane Maria, 

approximately 345,000 students missed several weeks of school and a considerable 

portion of them left their parents to live with their relatives outside Puerto Rico and 

attend schools there, especially in Florida and New York. According to a report by the 

Children at Risk organization (Children At Risk, n.d.), around 1.4 million students of 

public schools in the affected areas after Hurricane Harvey started their school at least 
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one week later, while in the Greater Houston area around 216,000 students did not start 

school until September 11th. 

A large portion of students enrolled in schools other than their original school 

either because their families were displaced to another place or the original school was 

closed. According to Webb (2018), of students who were living from Corpus Christi, 

TX, to the Louisiana border, around 46,500 did not have any other choice but enrolling 

in different schools after the event. This report revealed that the number of enrollments 

decreased moderately to significantly in the affected campuses, while less impacted 

campuses enrolled more students than before the disaster. According to the report by 

RAND (RAND, 2006), a large percentage of students in LA after the hurricanes of 2005 

did not enroll in their original schools at all during this school year, and a large 

percentage of them did not enroll in any LA public school. The latter included students 

who enrolled outside LA or in private schools, and the ones who did not enroll in any 

school during that school year. Around 38% of displaced students returned back to their 

original school after not enrolling in any other school for a while. Around 7% relocated 

temporary and returned back to their original school, while around 24% did not return to 

their original school for the remainder of 2005-2006 school year. Finally, 31% of 

displaced students did not enroll in any LA public school, either enrolled outside LA, or 

in private schools, or did not enroll in any school. 

In some cases, when damage was not severe, schools decided to make some 

adjustments and modifications to start school in their original campus as soon as 

possible. According to Webb (2018), after hurricane Harvey, a number of schools started 
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their operation by the available not-severely-damaged spaces of their schools. For 

example, they used blue tarps to divide undamaged spaces to better use them as learning 

spaces, or divided them using wood plywood. In addition, school teachers were forced to 

travel long hours to get to their jobs or they stayed in hotels using FEMA funding. In a 

damaged school in Texas after hurricane Harvey, called Orangefield high school, the 

school was opened on September 25 by providing temporary walls in the undamaged 

spaces in the corners of the gym and in the lobby. Teachers used methods like co-

teaching whenever possible to combine classrooms with similar subjects by removing 

the tarps to avoid the extra distractions caused by conducting multiple separate 

classrooms in the same area. When damage was severe, some schools decided to operate 

their school in a temporary location. According to a report (Fay, 2018) after Hurricane 

Harvey, most of the school districts were repairing the damaged schools, while the 

Houston Independent School District decided to rebuild four damaged schools and in 

meanwhile students (2,800 students) attended temporary schools until January 2020. 

According to Webb (2018), two schools in Little Cypress-Mauriceville Consolidated 

Independent School District (CISD), TX, started their 2018-2019 school year in portable 

classrooms. These temporary campuses were built in February after the disaster. 

Studies after natural disasters indicate that students suffered mental health issues 

and long-term consequences due to disruption in their education. According to a survey 

of 665 randomly selected residents, 44% of children suffered from new mental health 

issues, depression, and anxiety (Abramson & Garfield, 2006). These issues were 

intensified due to a major decrease in the access to the mental health services during the 
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aftermath caused by abrupt decrease in the number of psychiatrists and phycologists in 

the impacted area. In the Houston area, after Hurricane Harvey, about 22,000 students 

were homeless which made their life and education facing more severe issues compared 

to others. Statistics of displaced students also revealed that a larger percentage of 

displaced students belonged to socially vulnerable groups, such as racial/ethnic 

minorities groups. In Louisiana in 2005, around 65% of displaced students were among 

racial/ethnic minorities groups, compared to 59% in the affected parishes and 52% 

statewide. Blacks were the majority, with 58% in the displaced students, 53% in the 

affected parishes, and 48% statewide (RAND, 2006). 

A summary of findings and insights from this review section utilized in this study 

are as follows: 

i. Schools are typically vulnerable in natural disasters and major disruptions 

occur in the education system of a community when it is hit by a disaster. 

ii. Students in the impacted areas miss days to weeks of school because of a 

number of reasons. Typically, all students miss at least one day to a few 

days in massive disasters because of evacuation orders and going into 

emergency shelters. However, two other reasons cause longer periods of 

being out of school. First, families being displaced due to damage to their 

housing, and as a consequence, students may not have access to their 

original school due to their displacement. The second reason is the original 

school closure to be repaired or to make adjustments in order to initiate the 

operation.  
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iii. A large portion of students change school multiple times in the aftermath, 

and a considerable percentage of them do not return back to their original 

school.  

iv. Social vulnerability increases the likelihood of student displacement.  

v. Schools in the impacted areas select different recovery trajectories 

depending on the damage they incurred and other factors in their 

community. Schools with minor and moderate damage start the repair and 

they go back to operation in a few days or weeks. Severely damaged 

schools may decide to make some adjustments, such as reorganizing 

classrooms in safe spaces of their campus, to not delay reopening long to 

repair the whole campus. In some cases, these schools decide to start school 

in temporary places or in portable classrooms.  

This section discussed the importance of studying resilience of education systems 

in areas with high hazard threats to avoid and mitigate short- and long-term adverse 

effects on students’ lives. In addition, this section provided a good insight about the 

recovery trends of schools and student displacement which are used later in this 

subchapter to develop appropriate agents in the proposed ABM approach.  

4.1.3. Agent-based modeling approach 

In ABM, a system is modeled as a set of decentralized entities (called agents) functioning 

all together, while specific relationships among them form and govern the response of the 

system (Nasrazadani & Mahsuli, 2020; Rasoulkhani & Mostafavi, 2018). In the current 

study, a modeling approach based on ABM is proposed to model a community as a system 
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of interdependent systems, as illustrated in Figure 19. In this approach, each system is 

modeled as a population of agents with similar attributes. A number of systems included 

in the community model considered herein to study the resilience of the education systems 

are shown in Figure 19. In the system level, agents of the same type, such as EPN agents, 

may have internal interactions to achieve the performance goals of the system. This can 

be a complex interaction between all agents (e.g., WSN or EPN agents), or there may be 

interactions between clusters of agents (e.g., elementary schools interact with one another 

but not with other schools), or there may be minor direct interactions (e.g., household 

agents). In addition to the population of agents, two single agents which are responsible 

of decision-making actions to recover specific systems in the community are included in 

the proposed model.  

 
Figure 19: Schematic overview of modeling a community using ABM. 
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through the EPN, while schools are dependent on both the EPN and WSN to operate. In 

ABM, these interactions are implemented using micro-behaviors defined between 

interacting systems, such that performance of a system has a certain level of dependency 

on performance of the other system. After defining these external dependencies, the 

system of systems forming the community is developed.  

When a tornado hits the community, all wind-vulnerable components, including 

the EPN elements (e.g., power substations, towers, poles, etc.), housing units, and 

schools, are prone to damage. In addition, although the WSN is typically not directly 

damaged by tornado, its performance is dependent on access to the electricity through 

the EPN. In the aftermath, all components simultaneously start recovering to return back 

to the normal condition, and although they act independently, their recovery has a 

dynamic cascading effect on the rest of the interacting components (e.g., recovery of 

specific nodes in EPN enables recovery of WSN). In addition to the physical 

infrastructures, there exist some decision-making entities, such as power company and 

school district management, which make decisions related to the recovery prioritizations 

and resource allocations. In the schematic overview presented in Figure 19, the EPN 

company is in charge of allocating its labor and monetary resources to recover the EPN 

based on a number of specific criteria (e.g., prioritizing critical facilities and populated 

neighborhoods). School district in this community has the role of inspecting damaged 

schools, planning for their repair and recovery, distributing students from severely 

damaged schools to other operable schools, and in the overall decision making to restore 

all schools in the community. 
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It should be noted that the ABM approach in this study is not limited to the systems 

presented in Figure 19, and the extent of details and number of components included in 

the model depends on the purpose of the study. 

4.1.4. Agents 

In this section, agents and their attributes to model the community shown in Figure 19 are 

provided. For each agent, a number of models are required which are either adopted from 

the literature or developed in this study. First, a brief review of the models used in the 

literature is discussed for each agent type, and then, the adopted or proposed models in 

this study are presented. Figure 20 demonstrates the Unified Modeling Language (UML) 

class diagram of the community-level quantitative model in this study. This figure 

summarizes the attributes of each agent type and their operators defining their behavior. 

In addition, the functionality of a number of systems depends on the functionality or 

decision of another system or agent, which is depicted using arrows entering the dependent 

agent type. Various operators in Figure 20 are highlighted with different colors indicating 

that they receive inputs from other agent types in the community (identified with the same 

color), which simply shows their interactions. The computational community framework 

in this study is implemented in an object-oriented modeling platform called AnyLogic 8. 

AnyLogic is a java-based simulation platform with various libraries for agent-based 

modeling, discrete event simulation, and system dynamics analysis (“AnyLogic 

Software,” 2021).  
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Figure 20: Unified Modeling Language (UML) class diagram of the model, showing 

the attributes and functions of agents in the community model as well as their 

interactions. 

4.1.4.1. Hazard agent 

The hazard agent simulates the disaster, its magnitude and extent throughout the city, 

and informs other affected agents of the intensity of the disaster in the agent’s location. 

A large number of hazard models exist in the literature, especially in the disaster risk 

analysis literature, for earthquake (Mahsuli & Haukaas, 2013a; Tamhidi et al., 2021; 

Tamhidi, Kuehn, Ghahari, Taciroglu, & Bozorgnia, 2020), flooding (O. Nofal, van de 

Lindt, & Do, 2020), and tornado (Standohar-Alfano & Van De Lindt, 2015), among 

others.  

In the current study, the Centerville community is subjected to tornado events. 

This study adopted and implemented the probabilistic tornado hazard model proposed by 

Standohar-Alfano and Van De Lindt (2015) to simulate tornado disasters. This method 

uses the Enhanced Fujita (EF) scale to rate the intensity of tornado based on the degree 
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of damage observed after the tornado. This scale ranges from EF0, minor or no damage, 

to EF5 that represents total destruction, and indicates the highest intensity of a tornado, 

while there is variation in its intensity along both its width and length. For each EF scale, 

the associated 3-second gust wind speed is presented in the second column of Table 17. 

Standohar-Alfano and Van De Lindt (2015) proposed an idealized tornado path 

represented by rectangles such that the highest intensity occurs at the center and it 

decreases gradually moving outward. Figure 21 illustrates an example EF5 tornado path 

in Centerville simulated using the method proposed by Standohar-Alfano and Van De 

Lindt (2015). Using the empirical dataset of tornados occurred between 1973 and 2014, 

Masoomi and van de Lindt (2018) generated marginal Weibull probability distributions 

for tornado width and length as tabulated in Table 17. In this table, λ and k are 

respectively scale and shape parameters for Weibull distributions, and ρ is the 

correlation coefficient for the marginal distribution. In addition, Standohar-Alfano and 

Van De Lindt (2015) used observations from a number of detailed surveys after major 

tornado outbreaks to estimate the percentage of width for each tornado intensity along 

tornado path width, and similarly, the percentage of length for each intensity along 

tornado path length. These deterministic values are presented in Table 18 for each 

tornado intensity.  
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Figure 21: A sample of simulated EF5 tornado in Centerville.  

Table 17: 3-s  gust wind speed of each EF scale and marginal Weibull distribution 

parameters for tornado length and width (Masoomi & van de Lindt, 2018b). 
  Length Width  

EF scale 3 s gust (m/s (mph)) λ k λ k ρ 

EF0 29-38 (65-85) 0.718 0.675 0.025 1.043 0.225 

EF1 39-49 (86-110) 2.671 0.727 0.058 0.943 0.250 

EF2 50-60 (111-135) 6.514 0.796 0.117 0.912 0.253 

EF3 61-74 (136-165) 15.865 1.031 0.261 1.004 0.180 

EF4 75-89 (166-200) 26.997 1.117 0.437 1.150 0.307 

EF5 90+ (200+) 38.074 1.291 0.572 1.423 0.367 
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Table 18: percentage of width and length of each sub-EF category along tornado 

path width and length, respectively (Standohar-Alfano & Van De Lindt, 2015).  

EF category Width percentage (%) Length percentage (%) 

EF5 tornado path   

EF5 27.3 14.9 

EF4 19.9 18.5 

EF3 13.6 24.2 

EF2 13.8 18.9 

EF1 12.7 10.3 

EF0 12.7 13.2 

Total 100 100 

EF4 tornado path   

EF4 27.3 21.2 

EF3 18.7 21.0 

EF2 19.0 27.8 

EF1 17.5 15.8 

EF0 17.5 14.2 

Total 100 100 

EF3 tornado path   

EF3 33.8 32.1 

EF2 20.2 31.8 

EF1 26.2 24.4 

EF0 19.8 11.7 

Total 100 100 

EF2 tornado path   

EF2 47.5 36.7 

EF1 31.4 35.2 

EF0 21.1 28.1 

Total 100 100 

EF1 tornado path   

EF1 62.5 42.6 

EF0 37.5 57.4 

Total 100 100 

In summary, to generate a tornado path using this model, the hazard agent first 

determines the EF scale of the tornado. Using the Weibull distributions of this EF scale 

in Table 17, the hazard agent generates random width and length, and afterward, using 

percentages extracted from Table 18 for this EF scale, calculates width and length of 

each sub-EF intensity (e.g., sub-EF intensities for an EF2 tornado are EF2, EF1, and 

EF0). 
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4.1.4.2. Electrical power network agents 

There are a large number of studies in the literature focusing on the performance, 

recovery, and resilience of power systems in severe disasters (Brennan & Koliou, 2020; 

Unnikrishnan & van de Lindt, 2016; Winkler, Duenas-Osorio, Stein, & Subramanian, 

2010). Ouyang and Dueñas-Osorio (2012) proposed a probabilistic approach to assess 

the resilience of EPN, with an application for the Harris County, Texas, USA. The 

simulation approach presented in this work initiates with the hazard model, followed by 

component fragility model, power system response model, and restoration model. Five 

main components of EPN included in this study were transmission substations, 

transmission lines, distribution nodes, distribution lines, and local distribution circuits, 

which deliver electricity from distribution node to customers at each node. 

In the current study, an approach similar to the one proposed by Ouyang and 

Dueñas-Osorio (2012) was adopted to model the response of the EPN to the tornado 

loads and its restoration in the aftermath. Figure 22 presents the EPN in Centerville. 

Although not shown in this figure, it is assumed that there are distribution poles in the 

distribution and sub-distribution lines every 38 meters (124.7 ft), and similarly, there are 

transmission towers in the transmission lines every 450 meters (1476.4 ft). This 

assumption is close to the real-world practices and was captured from study by 

Unnikrishnan and van de Lindt (2016) on Centerville EPN.  
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Figure 22: Electrical power network in Centerville. 

In the ABM approach proposed in this study, each component contributing to the 

response and recovery of the EPN in a tornado event is assumed as an agent. In this 

chapter, all nodes, including transmission, distribution, and sub-distribution substations, 

electric poles, and transmission towers, are considered as agents. A single agent called 

EPN company is also defined which is responsible for managing the network in normal 

circumstances and repairing it when it is disrupted. Figure 23 illustrates the attributes 

and behavior of each agent in the population of EPN agents and its interactions with the 

EPN company agent in cases of disruption. All agents are in the Normal state prior to a 

tornado event in the case of Centerville. According to Figure 23, after the tornado 

occurrence, all agents (i.e., all EPN components) exit the Normal state. In the next step, 

each agent from the population of EPN agents (EPN agent i, i=1,…, n; n=total number 

of agents in the population) inquires the tornado hazard agent about the wind speed at its 

specific location. Using the acquired wind speed (vEN,i) and damage fragilities for each 

component type, a damage state (DS) is estimated for the agent. In this study, damage 

fragility functions for electric poles developed by HAZUS were explored from IN-
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CORE Web Tool, and fragilities for the rest of EPN components were adopted from 

Masoomi and van de Lindt (2018), as presented in Table 19. Per Figure 23, after the 

damage state of the agent is estimated, it is checked if it needs repair or not. If not, its 

connectivity to the power source is checked repeatedly during the simulation until all 

other EPN agents in its path towards source are repaired. The symbol “ ” in this figure 

indicates a process that repeats periodically, and in this case, it means that the 

connectivity check function repeats periodically until the agent is connected to the 

source and goes back to the Normal state. If the agent needs repair, it goes to the repair 

queue of the EPN company, and after it is repaired, it similarly goes to the periodic 

connectivity check until it is connected to the source and goes back to the Normal state.   
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Figure 23: EPN agents attributes and their interactions with tornado hazard agent 

and EPN company. 

Table 19: Damage fragilities for EPN components (medians are in m/s with their 

equivalent mph values in parentheses). 
 DS1 DS2 DS3 DS4 

Component Median 
Log-

std 
Median 

Log-

std 
Median 

Log-

std 
Median 

Log-

std 

Transmission, distribution, and sub-

distribution substation 

33.4 

(74.8) 
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0.2 

48.6 

(108.8) 
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As Figure 23 indicates, the EPN company plays the role of decision making to 

repair the EPN components and provide electric power service to the consumers. Per 

Figure 23, the EPN company agent exits the Normal state after a tornado takes place. 

After receiving requests from all EPN agents asking for repair, the EPN company agent 

puts their requests in a queue of repair based on some prioritization rules. In the current 

study, as presented in Figure 23, priority rules in order are: (i) repairing transmission 

substations and towers because they are essential to transmit electric power to the city, 

(ii) recovering power service to the hospitals, (iii) providing power to the distribution 

and sub-distribution substations which provide electricity to the most populated areas, 

and finally (iv) repairing the remainder of the nodes in the network. Based on these 

rules, a repair queue of damaged EPN agents is prepared, and after each EPN agent is 

repaired, the EPN company agent communicates with that agent regarding its repair 

completion. After all of the EPN agents are connected to the electric power sources, the 

EPN company agent goes back to the Normal state.  

4.1.4.3. Water supply network agents 

A large number of studies on water supply network (WSN) performance and resilience 

exist in the literature. Choi, Yoo, & Kang (2018) proposed a simulation approach to 

develop restoration curves for water networks after earthquakes. This approach has six 

main steps starting from simulation of the network damage, hydraulic analysis to 

measure the extent of damage on the network, calculate the necessary repair resources, 

set some priority rules for recovery, generate a list of prioritizations and compute the 

serviceability of the network over time, and finally generate the restoration curve using 



 

126 

 

the resulting recovery data. Rasoulkhani & Mostafavi (2018) used multi-agent 

simulation, which is a category of ABM, to model the response of a water distribution 

network to internal and external stressors within an extended horizon to detect regime 

shifts to assess the long-term resilience of the network. 

The WSN typically is not damaged in tornado events, but still there is a 

possibility of disruption in providing service due to power outage. There exist three 

water pumping stations in the WSN of Centerville which are dependent on power 

accessibility. Figure 24 demonstrates the interdependencies between three infrastructures 

in Centerville, namely, EPN, WSN, and schools. As indicated by black arrows, water 

pumps in the WSN depend on electric power service on specific nodes in the EPN.  
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Figure 24: Interdependency of WSN on EPN as well as schools on both EPN and 

WSN. 

Figure 25 presents details of the WSN in Centerville. In the ABM approach of 

this study, all nodes in this figure are represented by a population of WSN agents. 

Because this WSN is an interconnected system, it is assumed that water supply in each 

demand node is dependent on a number of suppliers in the network and not only on one 

supplier. These suppliers are two tanks and three pumping stations as presented in Figure 

25. In order to avoid computationally-expensive hydraulic analysis, it is assumed that 

each of these five suppliers provide a certain percentage of the full supply of each 
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demand node. These percentages for each demand node were assigned based on its 

proximity to the supplier nodes. It should be noted that the ABM approach in this study 

is not limited to the models used in this study, and in the case of WSN, any other 

hydraulic model can be substituted with the model used in here. In the proposed ABM 

approach, as shown in Figure 24, there are interactions between certain agents in the 

EPN and WSN. In this framework, accessibility of the pumping station agents to power 

through their supplier agents in the EPN is checked periodically, such that whenever the 

supplier agent in the EPN returns back to the Normal state, the interconnected pumping 

agent also goes back to the Normal state. By so doing, the supply network is recalculated 

to update the provided supply in each demand node agent. This continues until all 

pumping station agents return back to their normal state, and accordingly, the whole 

WSN returns back to its normal service.  

 

Figure 25: Water supply system in Centerville. 
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4.1.4.4. School agents 

A broad review of literature on the effect of natural disasters on the education system in 

a community, including schools, students, and quality of education, was presented in the 

second section of this subchapter. A few studies in the literature studied schools in the 

quantitative disaster resilience context. Masoomi and van de Lindt (2018) developed a 

model of a community including WSN, EPN, residential buildings, schools, and 

businesses with their dependencies to investigate the restoration of the community 

subject to tornado events.  

In the proposed ABM approach, all schools presented in Figure 18 were modeled 

as a population of school agents, while one agent was defined, named school district, 

which is responsible for managing schools in the community in the aftermath. This 

included making decisions about severely damaged schools to either send their students 

to other nearby operable schools, called host schools, or prepare a temporary location for 

them to start their operation. The school agents have interactions with other agents in the 

community. As Figure 24 illustrates, each school is dependent on having access to power 

and water through specific nodes in these networks. These dependencies are shown by 

red and blue arrows respectively for the dependency of schools on the EPN and WSN. In 

addition, damaged schools depend on the construction companies (which will be defined 

as an agent later in this subchapter) to repair them to their undamaged state.  

Figure 26 illustrates the attributes of each school agent within the population of 

school agents in the proposed ABM framework and their interactions with other agents 

in the community model. A school agent is in the Normal state before the tornado event, 
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and when a tornado occurs it communicates with the tornado agent to calculate the wind 

speed in its location. Afterwards, the damage model estimates the damage state (DS) of 

the school agent using the resulting wind speed in its location. In the case of Centerville, 

damage fragility models from Memari et al. (2018) were employed which are tabulated 

in Table 20. As Figure 26 shows, the school agent goes through different recovery 

trajectories depending on the estimated damage: 

i. If the school incurs no damage (DS0), it communicates with the school 

district agent, and it goes to the list of agents which are capable of hosting 

students from affected schools. In addition to the physical performance, the 

school agent depends on the access to power and water to operate. Hence, 

this agent exchanges information with its corresponding EPN and WSN 

agents (each school agent depends on specific predetermined EPN and 

WSN agents as indicated in Figure 24) periodically to check if its access to 

them is back to normal. After the utility is back, the school agent 

communicates with the school district agent to see if it has to host students 

from other affected schools, and if yes it goes to the Extra Enrollment state. 

The school agent continues the communication with the school district 

agent periodically until it hosts no additional students, and in that case, it 

goes back to the Normal state.   

ii. If the school incurs minor damage (DS1), it needs some minor repair and 

preparations prior to going back to full operation. In addition, since no 

considerable damage is incurred by this agent, it goes to the list of agents 
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which are capable of hosting students from affected schools. After its minor 

repair and preparation is completed in a few days, it goes to the same 

procedure as agents with DS0 go (i.e., checking for utility connection and 

checking if they have to host additional students, see Figure 26).  

iii. If the school incurs moderate damage (DS2), its recovery trajectory is 

similar to the agents with damage state DS1. The only difference is that 

repair and preparation for this agent takes a longer time. 

iv. If the school incurs considerable damage (DS3), but some parts of the 

campus are not severely damaged, the school agent adopts some 

modifications in order to start school in dense condition as soon as possible. 

This is in line with the review of the recovery of schools in the US after 

weather disasters as discussed earlier in this subchapter. It takes days to a 

few weeks to complete and implement the adopted modifications through 

remodeling and dividing spaces and conduct repair actions. Afterwards, the 

school goes to the Initiation in Dense Condition state as Figure 26 

indicates. This school agent communicates with the construction 

companies agent and goes to the repair queue of the construction 

companies agent. This agent communicates with the construction 

companies agent periodically until it receives the message of repair 

completion of the campus. Afterwards, access to the utility is checked, and 

if it has access, the school agent goes directly to the Normal state.  
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v. If the school experiences extensive damage (DS4), its campus needs to be 

reconstructed, and hence, it communicates with the construction 

companies agent to go to the repair queue. Additionally, this school agent 

communicates with the school district agent to see if there is any host 

school available within the district. If there exist host schools within the 

community, all students of this school enroll in the host schools, and this 

agent goes to a state named In Host Schools. If there exist no host, school 

looks for a temporary place or portable schools to initiate the school 

operation as soon as possible. In both cases, the school agent communicates 

with the construction companies agent periodically until it receives the 

repair completion message. Afterwards, the agent checks for the utility 

access, and if it has access, it directly goes to the Normal state. Students 

who did not relocate to other cities and are currently enrolled in host 

schools return back to their original school after it goes back to the Normal 

state. 
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Figure 26: School agent attributes and its interactions with other agents in the 

community.  

Table 20: Damage fragilities for schools in Centerville (medians are in m/s with 

their equivalent mph values in parentheses). 
  DS1 DS2 DS3 DS4 
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Archetype in Memari et al.(Memari 
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Log-

std 
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0.12 
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4.1.4.5. Construction companies agent 

The construction companies agent represents the resources available in the community in 

terms of the number of construction companies, their crew, material, equipment, etc. 

After massive natural disasters, communities typically face shortage in construction 

resources due to the high demand caused by severe damage to the infrastructure. In the 

proposed ABM framework, such limitations and shortages are modeled in the 

construction companies agent by defining a repair queue and a resource pool with 

limited capacity. As illustrated in Figure 26, the construction companies agent receives 

repair requests from agents damaged due to tornado loads and put them in a repair 

queue. Whenever an agent (e.g., damaged school agent) in the repair queue reaches to 

the point where its repair starts, depending on the extent of damage and characteristics of 

the damaged agent, a certain amount of construction resources is allocated from the 

resource pool to the repair of that damaged agent. These allocated resources are 

occupied for the period of repair (repair time), and they are released whenever repair 

completes. The released resources return back to the resource pool to be employed for 

the next damaged agent in the repair queue.  

4.1.4.6. Household agents 

Households play a significant role in recovering an impacted community. They have 

interactions with almost all sectors in a community, including businesses, schools, 

lifelines, critical facilities, and government facilities/systems. One important aspect of 

household recovery is housing recovery. Households recover when they reach permanent 

housing and they start their routine life as before the disaster. Peacock et al. (2007) 



 

135 

 

gathered a broad review of the literature on the sheltering and housing recovery after 

disasters. This review paper pulled together the research that utilized Quarantelli’s 

sheltering and housing typology. Quarantelli (1982) suggested four forms of sheltering 

and housing following a disaster: emergency sheltering, temporary sheltering, temporary 

housing, and permanent housing. Sutley and Hamideh (2020) added a fifth stage, 

representing households having unstable housing and oscillating between different 

stages. In this study, a Markov Chain model was proposed to simulate the post-disaster 

housing recovery of households accounting for uncertainties in this process. In this 

Markov Chain model, the transition of households between different housing stages was 

computed using a transition probability matrix (TPM). Sutley and Hamideh (2020) 

proposed a number of transition probability models which were functions of social 

vulnerability of the household. These models were used to compute the TPM to be used 

in the Markov Chain model. 

Figure 27 presents the housing attribute of each agent from the population of 

household agents in the proposed ABM framework. The Markov Chain model proposed 

by Sutley and Hamideh (2020) was adopted for the household agent to probabilistically 

simulate the movement of households between different housing stages in the aftermath 

of a disaster. As Figure 27 shows, a household agent is in Normal state just before the 

disaster takes place (t=0). After a disaster occurs (tornado event in the case of 

Centerville), it exits the Normal state, while it communicates with the tornado agent to 

calculate the wind speed in its location, and consequently, this agent estimates its 

damage based on the resulting wind speed. The initial housing stage of the agent is 
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determined by mapping the damage it incurred and the condition in the aftermath. After 

the initial stage is determined, the household agent enters the Markov Chain process 

adopted from Sutley and Hamideh (2020), with the TPM calculated based on the agent’s 

social vulnerability. Social vulnerability in this study is quantified with a number 

between 0 and 1, such that vulnerability closer to 0 indicates low social vulnerability and 

vulnerability close to 1 indicates high social vulnerability. Details on the elements of the 

TPM calculations are included in the study by Sutley and Hamideh (2020). The 

household agent initiates its housing with its initial housing stage, and after the Markov 

Chain process is formed using the calculated TPM, its stage is updated every month until 

it reaches Stage 4 or fails to Stage 5. As Figure 27 presents, the household agent can 

move from its current stage to other stages at each time step (one month), or it can stay 

in the same stage. This is randomly generated using the Markov chain model, and the 

ABM framework asks each household agent to update its housing stage based on its 

TPM. The oscillation between stages stops whenever the agent enters a permanent 

housing (Stage 4) or failure (Stage 5). Sutley and Hamideh (2020) proposed explicit 

definition for housing failure. Based on their definition, a household fails if it takes more 

than seven years (i.e., 84 time steps) for the household to reach Stage 4. Another rule for 

failure is that the household experiences more than four regressive steps in one year (12 

time steps), seven regressive steps in two years (24 time steps), or 10 regressive steps 

during the simulation. In the ABM framework in this study, a household agent enters 

Stage 5 whenever any of these failure rules are met.  
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Figure 27: Housing stage and housing status of the household agent. 
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In order to account for the student displacement in the ABM framework, 

knowing the location of each household agent during the simulation time is essential. 

The Markov Chain model used in this study simulates the housing stages, but these 

stages should be correlated with housing statuses expressing the location and type of the 

housing more clearly. For this purpose, in the current study, the resulting housing stage 

at each time step is mapped into a housing status selected among 10 different statuses 

presented in Figure 27. As Figure 27 demonstrates, at each time step, as a random 

housing stage is generated, the household agent adopts a housing status based on a 

number of factors, including the current housing stage, income level, home ownership, 

access to family and friends and their location, damage state of the original housing, 

availability and affordability of rental units in the aftermath, duration spent with 

friends/family by the time of simulation, t, and any other household characteristics 

influencing the housing status of the household in the aftermath. By doing so, the 

location of the household agent and whether it is inside or outside the city is determined. 

After this step, if there are students in a household agent, it is known where they are 

located in the aftermath. This information is used to calculate the enrollment count of 

each school in the aftermath.  

In order to account for the student displacement in the current study, knowing the 

location of each household agent during the simulation time is essential. The Markov 

Chain model used in this study simulates the housing stages, but these stages should be 

correlated with housing statuses expressing the location and type of the housing more 

clearly. For this purpose, in the current study, the resulting housing stage at each time 
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step is mapped into a housing status selected among 10 different statuses presented in 

Figure 27, where at each time step, as a random housing stage is generated, the 

household agent adopts a housing status based on a number of factors, including the 

current housing stage, income level, home ownership, access to family and friends and 

their location, damage state of the original housing, availability and affordability of 

rental units in the aftermath, duration spent with friends/family by the time of 

simulation, t, and any other household characteristics influencing the housing status of 

the household in the aftermath. By so doing, the location of the household agent and its 

students (if any) is determined. 

After the location of the students and status of the school agents in the 

community are known, the schooling status of students within each household can be 

determined. The school status of students within each household is updated periodically 

using the process demonstrated in Figure 28, where for each student within Household 

Agent i, first, based on the agent’s housing status, it is determined whether the household 

is located inside or outside the city. If outside, students are not living in this community 

for that timeframe, and hence, they will enroll in schools outside the city. If the 

household agent is located inside the city, for each student within the household, this 

agent communicates with the original school agent (i.e., school before the disaster), to 

check if it is operational. If yes, based on the operation level of the school agent, 

student’s schooling status falls within one of the five categories demonstrated by green 

boxes in Figure 28. On the other hand, if the original school agent is not operational due 

to complete damage (see schools experiencing DS4 in Figure 26), the original school 
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agent looks for a host school through the school district agent (discussed in Section 

4.1.4.4). If no suitable host is found inside the community, the original school looks for a 

temporary place to initiate the school, and hence, the student goes back to the original 

school, but in a temporary location as shown by an orange box in Figure 28. If host 

school agents are available, the student goes to the selected host school, and the 

student’s schooling status depends on the host school’s operation status, as presented by 

blue boxes in Figure 28.   

 
Figure 28: School status of students of a household based on the household’s 

location, and operation status of the original school and other schools within the 

community. 
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4.1.5.1. Centerville testbed 

The virtual community of Centerville, presented in Figure 18, was introduced by 

Ellingwood et al. (2016) to facilitate fundamental resilience algorithms and tools to be 

initiated, tested, coded, and modified. The Centerville testbed is a city of 50,000, located 

in the Midwestern parts of the US. The median household income in this city is close to 

the US average. As Figure 18 presents, there exist seven residential zones in this 

community, and each zone is described by Ellingwood et al. (2016) by their income 

level (i.e., low-income (LI), middle-income (MI), or high-income (HI)) and population 

density (i.e., low-density (LD) or high-density (HD)). In the current study, since 

information was needed in the household level, such general descriptions about each 

zone were broken down into household level information while maintaining the overall 

characteristics consistent with Ellingwood et al. (2016). Table 21 summarizes the 

resulting characteristics at each zone, including the average income level and population 

density, population, number of households, as well as distributions of income level, 

homeownership, and location of families/friends available in case of a disastrous event. 

For more information about the overall characteristics of each zone, readers can refer to 

Ellingwood et al. (2016). 
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Table 21: Seven residential zones in Centerville testbed and summary of their 

characteristics. 
Zone Z1 Z2 Z3 Z4 Z5 Z6 Z7 

Income/Density HI/LD MI/LD MI/LD MI/HD LI/LD LI/HD Mobile home park 

Population 10,875 5,758 2,032 12,109 4,714 11,166 3,434 

Number of households 4,246 2,267 800 4,767 1,856 4,396 1,352 

Income level (%) 

HI 95 20 5 0 0 0 0 

MI 2.5 60 55 50 20 5 0 

LI 2.5 20 40 50 80 95 100 

Homeownership (%) 

Owner 70 70 10 30 30 30 0 

Renter 30 30 90 70 70 70 0 

Mobile/RV 0 0 0 0 0 0 100 

Friends/family location (%) 

IC 30 25 15 30 30 20 20 

NC 40 30 40 40 40 30 20 

FC 30 45 45 30 30 50 60 

Another important piece of information needed in the household level for the 

purpose of this study was the number and level of students within each household, which 

was not provided by Ellingwood et al. (2016). In the current study, the total number of 

students in the testbed was calculated to be consistent with the US statistics on the 

percentage of students in each education level (e.g., elementary school, middle school, 

high school, or college/university) provided by U.S. Department of Education, National 

Center for Education Statistics (“Digest of Education Statistics,” 2020). Table 22 

summarizes the resulting number of students within each residential zone and their 

distribution between different levels of school. As presented in Figure 18, there are 

seven schools in total in Centerville, including four elementary schools, two middle 

schools, and one high school. In the current study, depending on the location of each 

household, its students were assigned to the nearest available schools. 
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Table 22: Details of number and level of students in household located in residential 

zones. 

Zone 
Total number of 

students 

Elementary school 

students 

Middle school 

students 

High school 

students 

College/university 

students 

Z1 2000 658  327  438  577  

Z2 1093 360  179  239  315  

Z3 400 132  65  88  115  

Z4 2700 889  441  591  779  

Z5 1050 346  172  230  302  

Z6 2630 866  430  575  759  

Z7 900 296  147  197  260  

Now, all necessary information to be used in the proposed ABM framework are 

available in the household level. It means that for each household their location, 

archetype of their house, their homeownership, income level, number of household 

members, number of students in each school level, students’ schools, and social 

vulnerabilities are known. At this stage, the ABM framework is implemented for the 

Centerville testbed and the number of each agent type is tabulated in Table 23.  

Table 23: Number of agents defined in Centerville. 
Agent type Number of agents 

Hazard  1 

EPN  1,452 

Utility company 1 

WSN 32 

School 7 

School district 1 

Construction companies 1 

Household 19,648 

4.1.5.2. Verification and validation 

Verification and validation tasks were performed in the current study in a systemic process 

to ensure the credibility and quality of the simulation outcomes. To conduct verification, 

various tests were performed on each agent type by changing their attributes and their 

exposure to the hazard and tracing their behavior to ensure they behave consistent with 

the grounded theories and logic which were used to develop them (Sargent, 2010). In 
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addition to the agent-by-agent assessment, an external verification was performed by 

assessing various outputs of the community model by changing the hazard characteristics 

and identify any unusual pattern. Examples of such outputs are visual representations for 

housing recovery and school enrollments, similarly to the example results presented in 

Figure 30 and Figure 31 in the next section of this subchapter. 

Various validation techniques (e.g., predictive validation, operational graphics, 

extreme condition tests, and internal validity (Sargent, 2010)) were also performed to 

ensure the credibility of the outcomes of the model. The ranges of variables input to the 

model were examined to be consistent with the available empirical data, information 

available about the Centerville community and the existing literature. Furthermore, it 

was ensured that the models employed from the literature to simulate the behavior of the 

agents were validated previously, such as the housing recovery model (Sutley & 

Hamideh, 2020) and damage fragility models (Mohammad Aghababaei, Koliou, 

Pilkington, et al., 2020; Masoomi & van de Lindt, 2018b; Memari et al., 2018; Vickery, 

Lin, Skerlj, Jr, & Huang, 2006). In order to assess the credibility of the model in the 

community level, predictive validation technique (Sargent, 2010; Xiang, Dame, & 

Cabaniss, 2005) was selected and outputs of the model under different tornados were 

compared to the actual observations from previous tornado events in the US. For this 

purpose, various outputs of the model, such as maximum drop in school enrollments and 

population dislocation rates, were compared to the similar events. Examples of such 

order-of-magnitude comparisons made with the 2011 Joplin tornado are presented in the 

next section, where the tornado and the affected population in the scenario presented 
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were similar to the 2011 Joplin tornado. Additionally, the model was tested under 

extreme conditions to check if the results are plausible for unlikely events. Multiple 

graphs were dynamically plotted during the simulation in order to trace the dynamic 

behavior of the model, identify errors, and evaluate the accuracy. 

4.1.5.3. Single scenario sample 

In order to better demonstrate the results of the proposed ABM approach on Centerville 

and the recovery dynamics in the city after a strong tornado occurs, first, a single 

realization of this model is presented in this section. In this realization, a strong EF5 

tornado, demonstrated in Figure 21, with the maximum 3-sec gust speed of 105 m/s (235 

mph), width of 1.5 miles and length of 21 miles happened with center located close to 

the center of Centerville. As Figure 21 shows, this tornado damages a large portion of 

the EPN components, including the transition towers, and as a consequence, all parts of 

the city experienced electric power outage right after the tornado. Figure 29 presents the 

number of households without access to electric power and full water service in the 

aftermath of the EF5 tornado in this realization. As this figure indicates, all households 

(19,648) lost their electric power access for one whole week, while all households 

experienced lower-than-normal water pressure for 25 days. According to Figure 29, 

more than 70% of the households did not have power access for 37 days, while recovery 

sped up afterwards and in day 45 all households had power access. Additionally, after 27 

days from the tornado occurrence, water pressure in all supply nodes in WSN returned 

back to normal. As seen, the WSN recovered faster than the EPN and this is due to the 
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fact that WSN goes back to normal when only its electric power supply nodes (see 

Figure 23) recover, and not necessarily all EPN.  

 
Figure 29: Number of households without access to electric power and full water 

service during the post-tornado period. 

In order to thoroughly capture the recovery of the community in the aftermath, 

the simulation time was set to eight years (2,922 days), and the ABM framework 

captured the recovery of all sectors within the community up to this time after the 

tornado occurrence. A total of 7,437 households were located within the tornado path 

illustrated in Figure 21, and they experienced a wide range of damage states depending 

on the tornado intensity in their location and the housing archetype.  

Figure 30a presents the percentage of households in each housing stage during 

the simulation time (2,922 days). According to this figure, of 7,437 households in the 

tornado path, only 31% were in Stage 4 (permanent housing) right after the tornado took 

place, while 67%, 1%, and 1% were in Stages 1, 2, and 3, respectively. One month after 

the disaster, 44% were in Stage 4, while 25% were still in Stage 1 (e.g., public shelters 

(if available), hotel/motel with financial assistance from various agencies, homeless 

shelter, family/friends, etc.), 9% were in Stage 3 (temporary housing), and 21% were in 
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Stage 2 (temporary shelters). Afterwards, the recovery continued smoothly, and some 

households were experiencing unstable housing by transitioning between different stages 

frequently, and as a consequence, as Figure 30a indicates, some households experienced 

housing failure (Stage 5) starting from eight months (240 days) after the disaster. The 

number of households in Stages 4 and 5 increased continuously, while four years after 

the tornado, only 1% of the households were in other three stages. At this instance of 

time, of all 7,437 households in the tornado path, approximately, 83.96% were in Stage 

4, 0.01% in Stage 3, 0.47% in stage 2, 0.62% in Stage 1, and 14.94% in Stage 5. After 

this point, very small variations in these numbers happened, and at the end of the 

simulation (eight years), 84.19% were in Stage 4 and 15.81% were in Stage 5.  

According to the reports from the 2011 EF5 Joplin tornado (Stewart, n.d.), 

around 7,500 buildings (mainly residential units) in the tornado path experienced 

damage, out of which 4,000 were completely damaged, and 9,200 people were 

displaced. As discussed above, in Centerville which has similar population density and 

building archetypes, 7,437 households were in the path, out of which 5,000 households 

(approximately 12,000 people) were initially displaced, which is close to the 

observations after the 2011 Joplin tornado.  
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(a) 

 

(b

) 

 
Figure 30: (a) Housing stage and (b) housing status of households located in the 

tornado path during the simulation time after the tornado occurrence (2,922 days). 

Figure 30b presents the housing status of households determined based on 

assumptions made in the current study to map housing stage to housing status as 

discussed in the Household agents section and demonstrated in Figure 27. This 

information was used later to determine the location of students in the aftermath. Based 
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on Figure 30b, a large portion of the displaced households stayed with their friends and 

family during the first six months, while they moved to different types of public 

sheltering provided afterwards, and after one year, less than 1% were living with their 

friends and family. In the current study, it is assumed that 625 vacant rental units existed 

before the disaster (which is in line with average vacancy in the US), and as Figure 30b 

shows, these rental units absorbed a portion of needs for rental units during the first year 

due to damage to other rental units after the tornado. However, due to the extent of 

damage, these pre-vacant rental units were not sufficient and some households did not 

have any other choice but to leave the community and living in nearby cities. This 

situation was though alleviated as the damaged rental units were repaired and went back 

to the housing market. At the end of eight years, 8.9% of the 7,437 households relocated 

to the nearby cities, 29.2% lived in their own housings, 37.7% lived in the 

undamaged/repaired rental units, 8.4% lived in rental units vacant before the tornado, 

and 15.8% were experiencing housing failure which is defined as living in homeless 

shelters. 

Figure 31a to Figure 31g present the number of enrollments of students in each 

of the seven schools in Centerville during time in the aftermath of the EF5 tornado up to 

two years (730 days). In addition, Figure 31h presents the number of students at each 

level of school (i.e., elementary, middle, and high school) who enrolled in schools 

outside the city because of the temporary or permanent displacement of their households.  

Figure 31a and Figure 31b present Elementary Schools E1 and E2, respectively. 

As these figures indicate, the drop in enrollment of these schools was not significant 
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with a maximum drop of 4.3% and 2.5% respectively, while their enrollments increased 

continuously through time, but did not reach the pre-disaster enrollment during the first 

two years. As Figure 21 illustrates, Elementary School E3 was located at EF4 zone of 

the tornado, and hence, was significantly damaged which caused school closure to 

reconstruct its campus. As a consequence, as Figure 31c shows, its enrollment dropped 

to zero and all of its students enrolled in host schools and especially in School E4 which 

was the nearest one. Figure 31d shows that enrollment in this school increased by around 

180% at the beginning, while it dropped through time by displacement of students to 

outside the city. This increase declined to 160% one year after the disaster. Finally, after 

678 days, School E3 was completely repaired and all students went back to their original 

school, and as a result, the number of enrollments in School E4 dropped immediately. 

Middle Schools M1 and M2 had a similar recovery trajectory to Elementary Schools E3 

and E4. School M2 was located at the EF4 zone of the tornado, shown in Figure 21, and 

experienced extensive damage. As a consequence, all of its students were enrolled in the 

only other available middle school M1, and it started its reconstruction right away. Per 

Figure 31e, at the beginning, School M1 experienced an increase of 84% in its 

enrollment, which was declined smoothly in the first five months as a result of student 

displacements outside the city, while it was reversed as some other households started 

moving back to the city. Finally, after the construction of School M2 was completed 

about 602 days after the tornado, students were enrolled back to their original school as 

Figure 31e and Figure 31f also indicate. As Figure 31f shows, although students were 

back from the host School M1, a drop of 8.6% remained in the enrollment of M2 due to 
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household permanent displacements. Figure 31g presents enrollments in the only high 

school in Centerville through post-disaster time. High School H1 was located in the 

tornado path and experienced DS3, and students started their school in dense condition 

until repair was completed and school went back to its normal state. As Figure 31g 

shows, a maximum drop of 14.4% occurred in the number of enrollments in this school, 

which was later recovered to 3.5% drop after one year from the tornado occurrence. 

Ultimately, Figure 31h demonstrates the number of students at each school level enrolled 

in schools outside the city. As this figure shows, these numbers increased during the first 

six months, while they decreased afterwards as some households started to return back to 

the community. This figure though shows a residual number which represents students 

whose families permanently displaced to other communities, and hence, they kept 

enrolling in schools not in Centerville. According to the report on the condition of 

schools after the 2011 Joplin tornado (Sulzberger, 2011), a drop of approximately 10% 

occurred in the number of enrollments in Joplin schools compared to the previous school 

year. According to Figure 31h, a maximum drop of around 14% occurred in the total 

student enrollments in Centerville schools, which is an acceptable drop approximate 

compared to the Joplin school system (4% more than Joplin) considering that housing 

disruption was more severe in Centerville. This drop also decreased gradually through 

time by returning of a portion of households. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 31: Number of student enrollments in the aftermath of tornado in schools 

(a) E1, (b) E2, (c) E3, (d) E4, (e) M1, (f) M2, and (g) H1, and (h) number of students 

enrolled in schools outside the city. 

Figure 32 presents the school status of students who were living in Centerville 

prior to the EF5 tornado, determined using categories defined in Figure 28. In Figure 32, 
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“O” indicates student who enrolled in their original school, while “H” indicates students 

who enrolled in schools in the community other than their pre-disaster school (host 

schools). In the parentheses, the operation status of the school at which the student was 

enrolled is described based on categories in Figure 28. Per Figure 32, all students missed 

at least 22 days of school with the largest percentage (68.9%) due to electric power 

outage and the rest due to school repair and preparations. This includes schools which 

did not incur any damage, but the lack of utility postponed their reopening. Students are 

in Normal schooling only if they are enrolled in their original school and school is fully 

operational (i.e., O (Normal)). Due to closure of two schools in the city after tornado (E3 

and M2), a major disruption happened in the education of schools which continued for 

680 days. A large portion of students were enrolled in host schools, while a considerable 

percentage of students did not have their normal schooling since their school was hosting 

extra students from damaged schools. When School M2 was repaired on day 602, a jump 

is observed in the number of students in normal school status, while another jump 

occurred in day 678 when School E3 was completely repaired. According to this figure, 

3.6% of students were still enrolling in schools outside Centerville even after two years 

from the disaster.  
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Figure 32: School status of students in Centerville through time up to two years 

after tornado. 

4.1.5.4. Monte Carlo Sampling 

One essential component to be accounted for in quantitative community resilience 

studies is the uncertainties in the response of the community to a disaster and its 

recovery trajectory. The proposed ABM framework is fully capable of capturing such 

uncertainties through randomness included in the model. In order to quantify the 

uncertainties in the consequences and recovery of the community, this study utilized 

Monte Carlo sampling. Each sample represents a scenario starting from the disaster 

occurrence and ending at a certain time in the aftermath (i.e., simulation duration). In the 

Centerville application of this study, for each sample, first, a tornado realization with 

random location, wind speed, width, and length is generated. Then, for each 

infrastructure agent (e.g., EPN agents, WSN agents, school agents, and household 
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agents), depending on the wind speed at the agent’s location, random damage state based 

on its specific fragility model is generated. Based on their characteristics and initial state, 

agents follow different recovery trajectories. Uncertainties in these recovery trajectories 

are accounted for using a wide range of random variables input to each part of the 

model, such as random variables for repair time and impeding factors during the 

restoration. These uncertainties in each agent can significantly change the restoration of 

the community when aggregated together, and hence, this study utilized Monte Carlo 

sampling to account for the uncertainties.  

For the application of this study, Monte Carlo sampling is conducted for tornados 

with intensities ranging from EF1 to EF5 with center randomly located within the 

boundaries of Centerville, and with random width, length, EF zone sizes, wind speed at 

each zone, and angle to the north pole. In addition, the simulation time is set to two years 

(730 days), and the reason for this selection is that the focus of this study is on the 

education system of Centerville and two years is considered a long enough period for such 

a purpose. It should be noted that the proposed ABM framework is capable of simulating 

long-term recovery of the community in the aftermath as well.  

Figure 33 presents various example results of the Monte Carlo sampling analysis 

(100,000 samples) for EF5 tornado scenarios in Centerville. It should be noted that the 

randomly generated EF5 tornados located within the Centerville boundaries, but there is 

a chance that a portion of them did not hit the infrastructures in the city (e.g., tornado 

occurred near the boundaries and its path did not cross the city physical infrastructures). 

Figure 33a presents the mean values for number of households without access to electric 
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power, number of households experiencing less than normal water pressure, and water 

service percentage (i.e., water service compared to before the event averaged throughout 

the demand nodes) against time after the EF5 tornado occurrence, averaged over 100,000 

sample scenarios resulted from Monte Carlo. One advantage of Monte Carlo sampling 

analysis is accounting for the uncertainties in the outcomes of the model. The mean values 

presented in Figure 33a are associated with a moderate to high level of uncertainty. To 

demonstrate this, the coefficient of variation (CoV), minimum, and maximum of the 

resulting curves in this figure at two time instances of one and three weeks after the 

tornado are tabulated in Table 24 along with the mean values from Figure 33a. Per Table 

24, the population of households without power and full water service was highly 

uncertain at times one and three weeks after the event, all having CoV of over 100%. In 

addition, minimum and maximum values at these two times were 0 and 19,684 (all 

households). This means that in 100,000 realizations of the Monte Carlo analysis, there 

were cases that no household experienced power or water outage at these times, and there 

were cases that all households had no access to power and water services at these times. 

The latter means that in at least one realization, all city did not have power and water for 

at least three weeks. Table 24 also indicates that the water service percentage values at 

these two times were moderately uncertain with CoVs below 50%. As another 

representation of the effect of the EF5 tornados on EPN and WSN, Figure 33b presents 

the exceedance probability curves for full recovery time of these two infrastructures in 

Centerville. For each point on these curves, the corresponding value on the vertical axis 

indicates the probability that recovery period exceeds the corresponding value on the 
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horizontal axis. For example, as indicated in Figure 33b, there are respectively 0.45 and 

0.24 chance that recovery of EPN and WSN exceed one month, if Centerville is struck by 

an EF5 tornado.  

  
(a) (b) 

  
(c) (d) 

Figure 33: Example results of EF5 tornado scenarios: (a) mean of number of 

households experiencing water and power outage and water service percentage 

over time, (b) EPN and WSN recovery time exceedance probability curve, (c) mean 

of number of households at each housing stage over time, and (d) exceedance 

probability curve of education system restoration period.  
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Table 24: examples of uncertainties associated with mean values presented in 

Figure 33a and Figure 33c. 
Variable Mean CoV (%) Minimum Maximum 

Population without power 1 week after tornado 4,953 110.7 0 19,684 

Population without power 3 weeks after tornado 3,184 144.5 0 19,684 

Population without full water service 1 week after tornado 8,400 110.7 0 19,684 

Population without full water service 3 weeks after tornado 5,443 156.1 0 19,684 

Water service percentage (%) 1 week after tornado 75.3 40.7 0 100 

Water service percentage (%) 3 weeks after tornado 84.0 31.5 0 100 

Number of households in S1 3 months after tornado 260 183.7 0 3,869 

Number of households in S1 18 months after tornado 107 189.9 0 1,631 

Number of households in S2 3 months after tornado 267 163.5 0 3,991 

Number of households in S2 18 months after tornado 92 173.2 0 1,437 

Number of households in S3 3 months after tornado 172 144.7 0 2,208 

Number of households in S3 18 months after tornado 23 166.4 0 339 

Number of households in S4 3 months after tornado 18,984 4.7 11,509 19,684 

Number of households in S4 18 months after tornado 19,350 6.6 14,552 19,684 

Number of households in S5 18 months after tornado 113 162.1 0 1,725 

Figure 33c presents the mean values resulted from 100,000 realizations for 

number of homeless households (i.e., households in S1, S2, or S5) against time after 

tornado up to two years, as well as number of households in temporary housing (S2), and 

number of households experienced housing failure (S5). In addition, on the secondary 

vertical axis, mean number of households with permanent housing is presented through 

time. In accordance with Figure 33c, right after an EF5 tornado happens within 

Centerville boundaries, on average 1,100 households (5.5% of all households in 

Centerville) lost their housing and temporarily become homeless. A rapid recovery 

initiated at the beginning of the restoration in the aftermath, while it decelerated 

afterwards. Per this figure, 267 households (1.35% of all households) on average 

remained homeless two years after the tornado, a large portion of which experienced 

housing failure. Similarly to Figure 33a, the mean values in Figure 33c are associated 

with significant uncertainties. Table 24 summarizes the statistics of the number of 

households experiencing each housing stage three and 18 months after the tornado, 

resulted from 100,000 realization in Monte Carlo analysis. According to this table, the 



 

159 

 

mean values presented in Figure 33c are associated with significant uncertainties with 

CoVs above 100% with the exception of number of households in S4. The reason for 

this exception is that a large portion of households were not located within the tornado 

path, and hence, remained in S4 in the aftermath, which increases the mean value and 

decreases CoV accordingly.  

Attention now is turned into the education system in Centerville and its resilience 

against EF5 tornado scenarios. Figure 33d presents the exceedance probability curve for 

the recovery time of the education system in Centerville. Recovery of the education 

system here was defined as the time when all schools are recovered back to their normal 

state. Two examples are pointed out in this figure at time instances of one week and one 

year after the tornado occurrence. As indicated, there is 0.7 probability that recovery of 

the education system takes more than one week following an EF5 tornado occurring 

within boundaries of Centerville, while there is 0.2 probability that full recovery is not 

achieved within the first year in the aftermath. In addition, there is 0.1 probability that 

recovery of all schools takes more than two years after an EF5 tornado. Such long 

recovery durations are attributed to long reconstruction time when one or more schools 

are extensively damaged. This not only affects the students of the damaged school, but 

also the whole education system to absorb the lack of that school during the 

reconstruction phase. In the next step, a resilience measure to quantify education system 

resilience is proposed. Furthermore, more findings and insights will be provided based 

on the results of different tornado intensities resulted from Monte Carlo sampling 

analysis. 
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The Exceedance Probability (EP) curves of the recovery period for the education 

system in Centerville are presented in Figure 34 for tornado intensities ranging from EF1 

to EF5. The disaggregated EP curves for system of schools in the same level, including 

elementary, middle, and high school systems (including four, two, and one schools, 

respectively) are also presented. For each point on curves in Figure 34, the 

corresponding value on the vertical axis indicates the probability that recovery period 

exceeds the corresponding value on the horizontal axis. Since probabilities of 

exceedance vary significantly for the EP curves of different tornado intensities, the 

ordinate in Figure 34 is shown in logarithmic scale. As an example of the results that can 

be obtained from Figure 34, exceedance probabilities for recovery periods of 30 days 

and 365 days are tabulated in Table 25 where red highlights are used to demonstrate the 

results, such that higher probabilities are shown with darker red color. As indicated by 

the results of Table 25 and Figure 34, the exceedance probabilities are much higher for 

stronger tornados, while exceedance probabilities are lower for the only high school in 

the city compared to the elementary and middle school systems. Moreover, exceedance 

probabilities are lower for the system of middle schools (two schools) in Centerville 

compared to the system of elementary schools (four schools). This may be attributed to 

the fact that as the number of schools in a system (e.g., elementary school system) 

increases, the likelihood of at least one of them to be damaged in a tornado event 

increases causing potential disruptions in all other schools of the same system in addition 

to the damaged school itself. It should be noted that although the likelihood of disruption 

for systems with more schools is higher due to their exposure to the tornado hazard, they 
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have more resources to absorb the adverse effects of the tornado compared to simpler 

systems. In the case of the only high school in Centerville, although there is a lower 

probability of damage to the school in a tornado event, the consequences on the quality 

of education received by students is significantly affected in the cases of damage to this 

high school. 

 
Figure 34: EP curves for the recovery period of the education system in Centerville 

and its disaggregation into three levels of elementary, middle, and high school for 

different tornado intensities. 
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Table 25: probability of exceedance of recovery period of the education system in 

Centerville from 30 days and 365 days for different tornado intensities. 
Recovery 

period 

Tornado 

intensity 

Education 

system 

Elementary 

school system 

Middle school 

system 

High school 

system 

30 days 

EF1 0.00222 0.00162 0.00082 0.00063 

EF2 0.03631 0.02681 0.01812 0.00950 

EF3 0.17062 0.13611 0.10579 0.05354 

EF4 0.34066 0.29198 0.24035 0.12488 

EF5 0.50130 0.44097 0.38721 0.20602 

365 days 

EF1 0.00016 0.00013 0.00002 0.00001 

EF2 0.00462 0.00367 0.00076 0.00022 

EF3 0.04282 0.02882 0.01234 0.00341 

EF4 0.12285 0.08223 0.03902 0.01511 

EF5 0.20407 0.13372 0.07148 0.03191 

4.1.5.5. Education system resilience measure 

In this section, a measure indicating the resilience of the education system is defined. 

Studies in the literature defined and utilized various measures to describe the resilience of 

a system. Figure 35 schematically demonstrates the functionality function, Q(t), of a 

system over time after a disruption takes place, where 100% functionality indicates full 

functionality and 0% means total loss of functionality.  

 
Figure 35: Schematic overview of resilience of a system. 
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A common method to quantify the resilience of a system is using the following 

equation (Bruneau et al., 2003; Gian Paolo Cimellaro et al., 2010b): 

𝑅 =
1

𝑇𝐿𝐶
∫ 𝑄(𝑡)

𝑇𝐿𝐶

0
d𝑡   (18) 

where R is the resilience measure of the system, TLC is the control time, and Q(t) is the 

functionality function of the system which is a dimensionless (percentage) function of 

time, t. The graphical representation of the resilience measure calculated using this 

equation is the normalized area underneath the functionality function in Figure 35 from 

time zero to TLC. Various studies in the literature utilized Eq. (18) to quantify the 

resilience of a system, such as hospitals (Gian Paolo Cimellaro, Reinhorn, & Bruneau, 

2010a), electric power network (Ouyang & Dueñas-Osorio, 2014), and water network 

(G. P. Cimellaro, Tinebra, Renschler, & Fragiadakis, 2016). The key elements in Eq. 

(18) are appropriate functionality function and the control time, TCL. This equation is 

adopted in the current study to quantify and measure the resilience of the education 

system.  

The functionality/performance of the education system in this study is described 

using Figure 32 which presents the schooling status of students over time in the 

aftermath. More specifically, the quantity and quality of the education that students 

receive in the aftermath is presented by indicating the percentage of students out of 

school, the percentage of students in each of the categories describing the quality of 

schooling, and the duration of students being in each of these categories. In addition, the 

functionality function in this figure is dimensionless which is suitable to be used in Eq. 

(18). One method to calculate the area underneath Figure 32 is to calculate only the area 
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under “O(Normal)” category since it is the same as the schooling before the disaster (i.e., 

students are in their original school, and school is in normal operation). However, this 

method does not capture the full functionality of the system, underestimates the 

resilience of the education system, and ignores its coping capacity to absorb the adverse 

effects of the tornado damages on the system. Therefore, the areas underneath schooling 

categories other than “O(Normal)” are added to the area resulted from O(Normal) but 

with coefficients between 0 and 1 resulting to computing the resilience of the education 

system as follows: 

𝑅 = (𝐴𝑂,𝑁 + 𝛼𝑂,𝐻 ∙ 𝐴𝑂,𝐻 + 𝛼𝑂,𝑊𝑈 ∙ 𝐴𝑂,𝑊𝑈 + 𝛼𝑂,𝑅𝑃 ∙ 𝐴𝑂,𝑅𝑃 + 𝛼𝑂,𝐷𝐶 ∙ 𝐴𝑂,𝐷𝐶 + 𝛼𝑂,𝑇𝐿 ∙

𝐴𝑂,𝑇𝐿 + 𝛼𝐻,𝑂 ∙ 𝐴𝐻,𝑂 + 𝛼𝐻,𝑊𝑈 ∙ 𝐴𝐻,𝑊𝑈 + 𝛼𝐻,𝑅𝑃 ∙ 𝐴𝐻,𝑅𝑃 + 𝛼Outside ∙ 𝐴Outside)/𝑇𝐿𝐶 (19) 

where AO,N is the area underneath O(Normal) schooling category, and similarly AO,H, A-

O,WU, AO,RP, AO,DC, AO,TL, AH,O, AH,WU, AH,RP, and AOutside are respectively the areas 

underneath O(Hosting), O(Waiting for utility), O(Minor/moderate repair and 

preparation), O(Dense condition), O(Temporary location), H(Open), H(Waiting for 

utility), H(Minor/moderate repair and preparation), and enrolled outside the city 

categories in Figure 32. The α-variables in this equation are the coefficients with values 

between 0 and 1 indicating the quality of the schooling compared to the O(Normal) 

schooling status, such that the closer the quality of the schooling to the pre-disaster 

status (i.e., O(Normal)), the higher the coefficient.  

The values for the α-variables should be selected by decision makers based on 

their judgement about the quality of schooling students are receiving in each schooling 

status compared to the normal status prior to the disaster, which also depends on the 

policies, sociodemographic, economic, and other characteristics of a community. For the 
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application of this study, αO,WU, αO,RP, αH,WU, and αH,RP are set to zero since they 

represent cases that students were missing school, and are assumed the worst schooling 

statuses, while, values for αO,H, αO,DC, αO,TL, αH,O, and αOutside are set to 0.9, 0.5, 0.6, 0.7 

and 0.3, respectively. After applying Eq. (19) on the results of the single EF5 scenario 

presented in this section, Figure 32 is transformed into Figure 36 presenting the 

functionality function of the education system in Centerville. The resilience measure can 

then be calculated using Eq. (18) by computing the area underneath this figure (i.e., sum 

of colored areas in this figure) divided by the control time. The resilience measure using 

this method for the particular tornado scenario when considering control time to be 730 

days, 365 days, or 180 days, is 0.802, 0.704, and 0.554, respectively. The calculated 

resilience measure varies by changing the control time in Eq. (18), and it should be 

selected by the decision makers based on their desirable timeframe in the aftermath 

(Ouyang & Dueñas-Osorio, 2012).  
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Figure 36: transformation of Figure 32 using Eq. (19) for the purpose of resilience 

quantification. 

In the current study, for each tornado intensity (e.g., EF5), the resilience measure 

of the education system was computed by averaging the resilience measures of 100,000 

random scenarios generated in the Monte Carlo analysis. In order to show the effect of 

control time, TCL, in Eq. (18), the mean education system resilience measure is presented 

in Figure 37 for control times ranging from 1 day to 730 days indicating the significance 

of choosing control time on the resulting resilience measures. 
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Figure 37: education system resilience measure versus control time for different 

tornado intensities. 

Figure 37 presents the mean values of the resilience measure calculated in this 

study, while using the Monte Carlo sampling results, it is feasible to gain insights related 

to the randomness in the nature of this problem. In this study, four quantitative resilience 

levels describing the resilience of the education system were defined, namely, highly 

resilient, moderately resilient, slightly resilient, and non-resilient. To address the 

uncertainties, the probability mass function of the resilience measure of the education 

system resulted from Monte Carlo sampling assuming the control time to be 180 days 

was discretized in accordance with the defined resilience levels, and results are presented 

in Figure 38a. According to Figure 37, the average resilience measure of the education 

system against EF5 tornado scenarios is 0.88 when control time is 180 days, while 

Figure 38a indicates that out of 100,000 random EF5 tornados in Centerville, in 21% of 

the cases the education system was highly resilient, in 34% of the cases it was 

moderately resilient, in 37% of the cases it was slightly resilient, and in 8% of the cases 

it was non-resilient. 
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(a) (b) 

Figure 38: Probability mass function of resilience level of education system in 

Centerville given the tornado intensity (a) in its original condition, and (b) when 

backup utilities are provided. 

Using the community model developed in this study and the quantified education 

system resilience measure, it is possible to make decisions for enhancing the resilience 

of the system by implementing various strategies on the community model and 

examining their outcomes/efficiency. The results of the analyses on Centerville revealed 

the significant effect of utility disruptions on the operability of schools, and as a result, 

on the education system. Hence, one potential strategy to enhance the resilience of the 

education system in Centerville is providing backup utilities for schools. This decision 

was implemented in the Centerville community model and Figure 38b illustrates the 

effectiveness of this decision on the calculated resilience measure. By comparing Figure 

38a and Figure 38b, significant increase in the resilience of the education system in 

Centerville is observed when backup utilities are provided for schools prior to the 

disaster. The backup utilities can be electric power generators and water supplies. The 

reason for such significant increase in the resilience of the education system is that 

tornado events unlike hurricanes have a small area of impact, and hence, there is a 
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considerable chance that schools are not directly damaged by the tornado loads. 

However, because the EPN is typically spread throughout the city, there is a high chance 

of being disrupted by tornados causing parts or all of the city, including schools, to lose 

electric power access and this was one of the main factors affecting the resilience of the 

education system of Centerville. By having alternative utility resources, a higher level of 

redundancy is built in the education system, and the adverse effects of the EPN 

disruption on schools are absorbed. Other methods may also be considered to increase 

the redundancy of the EPN to restrict the area with power outage when one or a number 

of nodes are failed. This can be implemented in the community model in this study to 

see its effects on the education system resilience, and then compare the costs and 

benefits with the previous decision and select the best among all. In addition, other 

strategies, such as changing the restoration protocol by the school district, may be 

implemented and compared with one another. 

4.1.6. Concluding Remarks 

This study puts forward a modeling approach based on agent-based modeling (ABM) to 

model a community as a system of interdependent systems. In this study, components in 

each system are defined as autonomous entities (agents), while internal interactions among 

them shape the system and external interactions among different systems shape the 

community. The response and recovery of each agent is defined using a chain of 

probabilistic models, such as damage fragility model, repair model, and functionality 

recovery model, while internal and external interactions are defined by micro-behaviors 

implemented between interacting agents. Such interactions cause cascading consequences 
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when the community is impacted by a disaster, and account for interdependencies in the 

restoration of different agents during the recovery phase.  

The developed community model is utilized to study the education system 

resilience of the communities, which is one of the least studied components of the 

communities in the quantitative disaster literature. A review of a number of past 

disasters and their effects on schools and students is used to identify the consequences as 

well as the restoration strategies adopted by schools and decision makers with the goal to 

recover the education system. A library of agents that encompass 

components/infrastructures and decision makers of a community involved in the 

response and recovery of the education system, including schools, households, EPN, 

WSN, school district, EPN company, and construction companies are implemented in 

the proposed agent-based model of the community subject to tornado hazard. For each 

agent type in the library, its response, recovery, and interactions with other agents are 

accounted for and presented in this subchapter. 

The proposed ABM approach is applied to the virtual community of Centerville 

for evaluating the resilience of the education system through a series of probabilistic 

simulations. Uncertainty in the response of the model is accounted for using parameters 

input to the model, such as parameters describing tornado characteristics, damage 

fragilities, and repair time distributions. To demonstrate the results, first, a single strong 

EF5 tornado scenario is simulated and the results for various infrastructures in the 

community as well as education system are illustrated. Second, to account for and 

quantify the inherent uncertainties in the problem, a Monte Carlo sampling analysis is 
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performed for tornado intensities ranging from EF1 to EF5. A measure to quantify the 

education system resilience is also proposed in this study accounting for the quantity and 

quality of schooling students receive during the aftermath, while this measure is 

computed for the education system in Centerville subject to tornados with different 

intensities. Using the Monte Carlo analysis results, the probability of education system 

falling within different resilience levels, ranging from non-resilient to highly resilient, is 

computed for each tornado intensity. One advantage of quantitative study of the 

resilience of a community is enabling decision making by implementing various 

strategies on the community model and compare the quantified outcomes while selecting 

the best among all at the end. This subchapter demonstrated this capability by 

recalculating the education system resilience measure when backup utilities are provided 

to the schools as a pre-disaster mitigation action. The results showed a significant 

increase in the resilience measure of the education system of Centerville, and this is 

attributed to the vulnerability of the EPN to the tornado loads and the dependence of 

schools on the utilities to operate. 

 

 

  



 

172 

 

4.2. Thrust C-B: Community resilience assessment and decision-making platform 

based on the ABM framework 

4.2.1. Introduction 

This subchapter is an extension to the previous subchapter to account for additional 

sectors within the community. This study aims to assess the resilience of the community 

through proposing a resilience measure and developing a decision-making platform to 

compare various mitigation strategies. Using this platform and the calculated resilience 

measure, it is possible to apply different mitigation strategies on the agent-based model 

of the community, quantitatively compare the results on the community and its sectors, 

and ultimately, select the most effective among all. The focus of the previous subchapter 

was on the education system accounting for the community components influencing its 

performance and resilience, while this subchapter extends those components to have a 

more comprehensive overview of the community.  

Various resilience measures were adopted in the literature to represent the 

resilience of a community or an individual system in a community. Several measures of 

resilience exist in the literature that are suitable for the scope of each work. Panteli and 

Mancarella (2015) proposed two measures, loss of load expectation (LOLE) and loss of 

load frequency (LOLF) indicating the average number of hours that some customers are 

disconnected due to events on the transmission network and the number of occurrences 

of such disconnections per week, respectively, to evaluate the resilience in different 

scenarios. Adams et al. (2012) described the resilience of transportation networks using 

two measurements, called reduction and recovery, showing the rate of decrease in the 
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system performance after the disaster and the rate of recovery in the performance after 

the system starts to recover, respectively. In this study, performance was quantified 

using the speed and counts of trucks in a highway section before and after the disaster. 

Ouyang and Dueñas-Osorio (2012) expressed the performance of power grids using the 

total amount of flow delivered, while they utilized this performance metric to calculate 

the resilience measure of the grid. Cimellaro et al. (2010) utilized the percentage of 

healthy population compared to pre-disaster status as a measure of performance to 

quantify the hospitals resilience in the community level. Zhang et al. (2009) measured 

the resilience of businesses in terms of capital vulnerability, labor vulnerability, supplier 

vulnerability, and customer vulnerability. In the studies of household resilience against 

disasters, a large portion of studies used welfare flow of the household as a recovery 

metrics and an indicator of the resilience of households. Various indicators for the 

welfare of households are identified in the literature. Kurosaki (2010) utilized the 

consumption changes as an indicator, while Rodriguez-Oreggia et al. (2013) and Carter 

et al. (2007) studied poverty rate of households as indicators of welfare change after 

major disasters. Arouri et al. (2015) employed different welfare indicators, including per 

capita income, per capita expenditure, household poverty status, and income share of 

different sources. Navrud et al. (2012) proposed a novel approach to estimate the welfare 

loss of the households based on their willingness-to-contribute labor to the flood 

prevention programs.  

The aforementioned measures describe the resilience of a component/system of 

the community (e.g., lifelines, businesses, or households) against disturbances. However, 
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there is a need to aggregate all of these components/systems and the measures describing 

their resilience to comprehend the resilience of the whole community as a system of 

systems to disasters. To address this, various studies in the literature combined the 

nondimensionalized consequences of different systems within the community using a 

weighted approach to define a community resilience measure (Gian Paolo Cimellaro et 

al., 2010a; Didier, Broccardo, Esposito, & Stojadinovic, 2018; Vugrin, Warren, Ehlen, & 

Camphouse, 2010). These weights were typically selected through expert judgment and 

qualitative methods, which may have the disadvantage of being subjective. To address 

this, Nasrazadani and Mahsuli (2020) integrated risk methods and agent-based 

simulation to introduce a new resilience measure based on the monetary loss 

accumulated through different systems in the community impacted by seismic loads. 

They utilized several loss models in the literature to quantify the monetary loss of each 

sector, accounting for physical, economic, and social consequences. This method results 

in a unified resilience measure without the subjective relationships used in other studies. 

However, monetizing all consequences in the aftermath, especially social losses, is a 

challenging task and requires specific research for each community. 

In the next sections of this subchapter, first, the newly added agents, including 

business agents, person agents, unemployed labor pool agents, and hospital agents, are 

introduced. Thereafter, using the developed community model for Centerville, various 

outcomes of the newly added agents when the community is subject to a strong EF5 

tornado are discussed. In the next step, resilience measures are proposed to quantify 

resilience of the community and its systems, while the application of these measures to 
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assess the community resilience and conduct decision making are discussed with an 

application on Centerville. 

4.2.2. Agents 

In the previous subchapter, a modeling approach based on agent-based modeling (ABM) 

was proposed to develop a system of systems (SoS) model of a community accounting 

for various systems, including electric power network (EPN), water supply network 

(WSN), schools, households, and construction companies. This subchapter utilizes this 

approach and develops a comprehensive model of a community by adding more systems 

into it, including businesses and the healthcare system. For this purpose, various agent 

types and their interactions are defined in this subchapter. These agents which are 

described in this section are business agents, person agents, unemployed labor pool 

(ULP) agents, and hospital agent.  

4.2.2.1. Business agents 

Each business unit in this study is modeled as a separate agent, the behavior of which is 

defined using statecharts presented in Figure 39. As this figure indicates, the 

functionality of a business depends on its physical functionality as well as employee 

availability. The blue box in Figure 39 demonstrates the physical recovery of a business 

if it is damaged. According to this figure, physical recovery of a business is a function of 

various impeding factors typically observed in the aftermath of major disasters as well as 

a number of mitigation factors that accelerate the physical recovery. Impeding factors in 
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this study are calculated based on Chapter 3, where the REDi (Almufti & Willford, 

2013b) framework for calculating impeding factors was modified to better represent 

reconstruction delays due to weather-related hazards. Impeding factors in this study 

account for delays due to safety inspections (Tinsp), securing finances to initiate the repair 

process (Tfina), finding and hiring a contractor (Tconm), and getting a construction permit 

(Tperm). Delays due to securing finances depend significantly on the attributes of a 

business, including its insurance coverage, size, capital, and access to other resources 

which may help business to secure its necessary finances as soon as possible. In this 

study, to reflect this, different delay distributions are adopted from REDi (Almufti & 

Willford, 2013b) depending on the insurance coverage of the business. According to 

Cremen et al. (2020), there are also some mitigation factors that may shorten the 

restoration time, such as management effect and ability of the business to relocate. This 

concept is adopted in the current study, and a business, if feasible, relocates temporarily 

or permanently when relocation is a better option in short- or long-term. In Figure 39, 

when relocation is an option (i.e., MFR,i = 1) for a business agent, it relocates to a new 

place and starts its full or partial functionality in treloc,i days after the decision to relocate 

is made. If relocation is not an option, still an effective management can reduce the 

delays in repair. In this study, using the concept by Cremen et al. (2020), it is assumed 

that the management mitigation factor can accelerate securing the finances, finding and 

hiring a contractor, and getting a construction permit. The formula used in Chapter 3 to 

calculate delays of reconstruction (TI,i) after weather disasters is modified in the current 

study to account for the mitigation factors (e.g., management mitigation (MFm,i)): 
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𝑇𝐼,𝑖 = 𝑇insp,𝑖 + (1 − 𝑀𝐹𝑚,𝑖) · ( max{𝑇fina,𝑖, 𝑇conm,𝑖} + 𝑇perm,𝑖)   (20) 

Similarly, other mitigation factors, such as hastening recovery and backup utilities, can 

also be included to calculate the delay in repair due to impeding factors, similarly to the 

mitigation factors considered in Cremen et al. (2020). On the contrary to the mitigation 

factors, there are some factors that may worsen the situation and even cause permanent 

closure of the business. For example, in previous disasters, it was observed that small 

businesses with owners who were near retirement are likely to close permanently if they 

were significantly damaged (Smith & Sutter, 2013a). In the ABM approach in this study, 

such rules can be reflected into the decisions made by the business agents by defining a 

set of micro-behaviors for them. After starting the repair, the repair time to achieve a 

certain physical functionality level depending on the initial damage state of the building 

is estimated using repair time distributions generated by Koliou and van de Lindt (2020) 

for various building archetypes. The time distributions provided by Koliou and van de 

Lindt (2020) are used to estimate the time that takes for a building after its repair 

initiation to reach partial (FL1) or full functionality (FL0) depending on the initial 

damage it incurred. As shown in Figure 39, business can reach partial physical 

functionality, and thereafter it reaches full physical functionality by the repair 

completion. 
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Figure 39: Business agents and unemployed labor pool agent. 

As shown in the green box in Figure 39, whenever the business reaches partial or 

full physical functionality, the business agent checks for access to the necessary utilities 

(e.g., water and power). Each business depends on specific nodes in the EPN and WSN 

to provide its necessary electricity and water. The next requirement to resume the 

business in the aftermath is retaining the necessary employees. In this study, the level of 
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skills of an employee in each business category is defined as low, medium, or high, and 

each business agent requires a certain number of low-skilled (nLS,req,i), medium-skilled 

(nMS,req,i), and high-skilled (nHS,req,i) employees to be able to operate. These numbers 

depend on the characteristics of the business as well as the level of its physical 

functionality.  

The red box in Figure 39 demonstrates the statechart simulating the process of 

updating employees of the business agent, their working status, as well as decisions to 

lay off absent employees or hire new ones. According to this figure, during the time that 

the business is awaiting physical functionality recovery, employees may be on or off the 

payroll depending on the resources to which the business has access. If the business has 

business interruption insurance, depending on the policy details, the insurance may pay 

for the salary of the employees up to a certain time in the aftermath, which typically 

ranges from two weeks to one year. Additionally, businesses may keep their employees 

on the payroll using resources other than interruption insurance, such as the business 

capital and loans. Large businesses typically have more resources to keep their 

employees on the payroll, which is evident from previous disasters (Smith & Sutter, 

2013b). In addition, franchise businesses may transfer their employees to other branches 

temporarily to keep them on the payroll. After a business agent gains its physical 

functionality, it periodically updates the list of employees and their status. Employees 

may also leave a business before it gets back to physical functionality because of various 

reasons, such as not being on the payroll. The status of the employees shows whether 

they are available to work, which depends on their location in the aftermath (i.e., inside 
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or outside the city), their injury level, and their household status (i.e., whether or not 

they need to take care of a family member due to injury or home schooling). In the past 

tornado disasters, it was observed that businesses assist employees to address their issues 

in the aftermath, including providing them with temporary housing, essential needs, and 

financial support to repair their housing, while the businesses typically let their 

employees be absent for a certain amount of time in the aftermath, twait,bus,i. After this 

time, businesses may start replacing the absent employees with new ones. These are 

accounted for in developing the employee status statechart in Figure 39. Each time the 

statechart updates the employees and their status, it is evaluated if the business has 

enough employees to operate depending on the level of its physical functionality. If the 

business does not have enough employees and the time did not pass twait,bus,i or the 

business did not reach full physical functionality, the business agent posts job openings 

to hire only required employees and lays off some absent employees accordingly. If the 

business does not have enough employees and the time passed twait,bus,i and the business 

is back to full physical functionality, the business agent lays off all absent employees 

and posts new job openings accordingly. If the business has enough employees to initiate 

its operation, but the time passed twait,bus,i and the business is back to full physical 

functionality, the business lays of all absent employees and posts job openings to go 

back to full functionality. This process of updating employees and their status, laying off 

absent employees, and hiring new ones continues during the simulation periodically, and 

the information about the employees is communicated with the business functionality 

statechart (green box in Figure 39) to update the functionality status and the level of 
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functionality, fb. To hire new employees, the business agent communicates with the 

unemployed labor pool agent through posting job openings, and the business agent can 

retain new employees depending on the availability of unemployed people with the 

desired skill level and business category. This process is further discussed later about the 

unemployed labor pool agent.  

4.2.2.2. Person agents 

Each person in the population of the community (called people herein) is modeled as a 

separate person agent, which defines the behavior of the person and contains various 

attributes of the agent. Two main attributes of the person agents which are periodically 

updated during the simulation are the health condition (injury level of the agent and its 

treatment process) and their occupation. The latter applies to the agents who are 

considered as labor force. In the following, first, the method used in this study to 

estimate the injury level of each person agent due to tornado events is discussed, and 

second, details of the person agent are presented. 

4.2.2.2.1. Injury level estimation 

Various methods exist in the literature to predict the casualties due to natural hazards. 

For tornados, different models exist that predict the number of injuries and fatalities at 

the regional level as a function of a number of predictors, such as tornado intensity, 

tornado length, and population within the tornado path (Masoomi & van de Lindt, 

2018a). However, these models do not distinguish between different levels of injury and 

they work at the regional level, which is not suitable in the current study. A model is 

required in this study to predict the injury level of each person agent depending on the 
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building archetype where the agent was during the event as well as the damage state of 

that building. To address this, a casualty model is proposed here that predicts injury level 

(IL) of a person agent based on the building archetype where the agent was during the 

event and the damage state of the building. Injury levels are adopted from Hazus 4.2 and 

their descriptions are provided in Table 26. 

Table 26: Injury levels and their definition, adopted from Hazus 4.2. 
Injury Severity 

Level 
Injury Description 

Severity 1 (IL1) 

Injuries requiring basic medical aid that could be administered by paraprofessionals. These 

Types of injuries would require bandages or observation. Some examples are a sprain, severe 

cut requiring stiches, a minor burn (first-degree or second-degree on a small part of the body), 

or a bump on the head without loss of consciousness. Injuries of lesser severity that could be 

self-treated are not accounted for in here. 

Severity 2 (IL2) 

Injuries requiring a greater degree of medical care and use of medical technology such as x-rays 

or surgery, but not expected to progress to a life-threatening status. Some examples are third-

degree burns on the head that causes loss of consciousness, or fractured bone.  

Severity 3 (IL3) 

Injuries that pose an immediate life-threatening condition if not treated adequately and 

expeditiously. Some examples are uncontrolled bleeding, punctured organ, other internal 

injuries, spinal column injuries, or crush syndrome. 

Severity 4 (IL4) Instantaneously killed or mortally injured. 

A fault tree analysis is used in this study to predict the injury level of a person in 

a building which incurred a certain damage state during the event. This fault tree is 

schematically demonstrated in Figure 40 for a person agent inside an Archetype Ti. 

Damage state (DS) of the building is determined using damage fragility functions 

available in the literature for the 19 archetypes defined by Memari et al. (2018). In this 

figure, Pj,k indicates the probability that a person incurs Injury Level j (ILj) when he/she 

is in a building damaged to DSk due to tornado loads. For example, P2,1 indicates the 

probability that a person agent incurs IL2 when the agent is in a building damaged to 

DS1. The mathematical formulation of the probabilities in Figure 40 is as follows: 

𝑃𝑗,𝑘 = 𝑃(IL = IL𝑗|DS = DS𝑘)       (21) 
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𝑃1,𝑘 + 𝑃2,𝑘 + 𝑃3,𝑘 + 𝑃4,𝑘 ≤ 1        (22) 

The probability that a person in a building with DSk incurs no injury is: 

𝑃0,𝑘 = 𝑃(No injury|DS = DS𝑘) = 1 − 𝑃1,𝑘 − 𝑃2,𝑘 − 𝑃3,𝑘 − 𝑃4,𝑘   (23) 

An expert solicitation was conducted to estimate the Pj,k probabilities for all 19 

archetypes. An online questionnaire was distributed between experts with a deep 

knowledge of damage and casualty estimations after massive tornado events. For each 

Archetype Ti, the experts were provided with the construction details of the archetype as 

well as its damage state descriptions. Using these information and injury level 

descriptions in Table 26, the experts were able to provide their estimations for 

Pj,k probabilities. The estimations of the Pj,k probabilities provided by the experts for 

Archetypes T1, T2, T3, T4, and T5, which represent all residential archetypes per Memari 

et al. (2018), are tabulated in Table 27. Using the resulting fault tree, it is possible to 

randomly estimate the IL of a person agent when DS of the building where the agent was 

during the event is known.  
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Figure 40: fault tree used to estimate injury level of person agents. 

Table 27: Probability estimations provided by the experts to define the fault tree of 

Archetypes T1, T2, T3, T4, and T5. 
Probability T1 and T3 T2, T4, and T5 

P0,1 0.99489 0.99239 

P1,1 5E-3 7.5E-3 

P2,1 1E-4 1E-4 

P3,1 1E-5 1E-5 

P4,1 0 0 

P0,2 0.974895 0.97489 

P1,2 2E-2 2E-2 

P2,2 5E-3 5E-3 

P3,2 1E-4 1E-4 

P4,2 5E-6 1E-5 

P0,3 0.93895 0.9389 

P1,3 5E-2 5E-2 

P2,3 1E-2 1E-2 

P3,3 1E-3 1E-3 

P4,3 5E-5 1E-4 

P0,4 0.795 0.7575 

P1,4 0.1 0.12 

P2,4 7.5E-2 0.085 

P3,4 2.5E-2 3E-2 

P4,4 5E-3 7.5E-3 
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4.2.2.2.2. Person agent details 

If the person agent is considered as labor force (employed or unemployed), this agent 

contains information about its ability to work, whether or not the agent is unemployed, 

and the business where the person works at each time during the simulation (if 

employed). The statechart presented in Figure 41 simulates the health and occupation 

status of the person agents who are in the labor force. The IL of the agent is determined 

probabilistically using the method presented in the previous section (Section 4.2.2.2.1). 

If the agent incurs injury level 4 (IL4), the agent is assumed dead and this information is 

conveyed to the business where the agent worked before the disaster (if the agent was 

employed). If the person agent incurs an injury level except IL4 (i.e., IL1, IL2, or IL3), 

the agent needs treatment, and hence, goes to the healthcare system agent. Depending on 

the severity of the injury and access to the healthcare service, the agent recovers after 

some time and becomes able to work. As shown in Figure 41, the ability of a person 

agent to work depends on various contributors, including the health condition of the 

agent, the location of the agent, the health condition of the household members and 

whether or not they need assistance, and if there are any children in the household 

needing homeschooling. If the agent is able to work and was unemployed before the 

disaster, it looks for a job by sending an application to the unemployed labor pool (ULP) 

agent. As shown in Figure 39, each application sent to the ULP agent contains 

information about the business category which applies to the applicant, as well as the 

skill level and rating of the applicant. Whenever the applicant is selected by a business 

which is looking to hire new employees, a message is sent to the person agent 
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(applicant) that it is employed. On the other hand, as illustrated in Figure 41, if the 

person agent was employed before the disaster, the agent periodically updates its job 

status by communicating with its corresponding business agent (i.e., the business where 

the person agent was working prior to the disaster). The person agent may be laid off by 

the business agent after a while when the agent is absent (see Section 4.2.2.1), or may 

chose to leave a business if the business is closed and the person is not being paid for 

more than a tolerable period, twait,emp,i. In either of these cases, the agent is unemployed 

and sends an application to the unemployed labor pool agent, if the agent is able to work.  

 
Figure 41: Person agents in the labor force. 

If a person agent is not in the labor force (e.g., children, stay-at-home parents, 

above 65 people not working, etc.), a statechart simpler than the one presented in Figure 

41 is used, where the injury and recovery of a person is simulated. If the person agent 
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incurs injury, it goes to the healthcare system agent to be treated, and returns back to 

normal after the treatment is completed.  

4.2.2.3. Unemployed labor pool agent 

A single agent, named unemployed labor pool (ULP) agent, is defined in this study and 

illustrated in Figure 39, which models the dynamics between businesses looking for 

employees and the unemployed person agents looking for jobs. According to the U.S. 

Bureau of Labor Statistics (2021), unemployed population can be grouped based on the 

business category they are looking for opportunities. In the current study, job applicants 

are classified into different groups based on their business category, while job postings 

by the businesses are also classified into different groups depending on their category. 

The business categories adopted in this study for Centerville are: (i) retail, (ii) 

manufacturing, (iii) services, (iv) construction, (v) healthcare, (vi) education, (vii) 

professional services, (viii) utility, and (ix) government. The services category is also 

divided into four subcategories of information, financial activity, leisure, and other 

services. According to Figure 39, applicants are able to change their pre-disaster 

business category depending on their skills and business category. For example, in the 

current study, it is assumed that low-skilled persons can move between businesses in 

certain categories, such as retail, services, healthcare, and professional services.  

In accordance with Figure 39, each applicant (person agent) is placed in a group 

of unemployed persons based on its business category and skill level (i.e., low-, 

medium-, or high-skilled). Each applicant has a rating between 0 and 1 which indicates 
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the desirability of that person to be employed based on the person’s years of experience, 

education, etc. Each job posting by the business agents is also placed in a certain group 

based on the business’s category. Each job posting contains information about the 

number of low-skilled (nLS), medium-skilled (nMS), and high-skilled (nHS) employees the 

business is looking to hire, while the business rating, which is a number between 0 and 

1, indicates how desirable the business is for a person to be hired at. The business rating 

can indicate the job compensations, the business values, the working environment, 

hardship of work, etc. The higher the business rating, the more desirable the business is 

for people agents looking for jobs. The dynamics between groups of applicants and job 

postings is such that businesses look to find their employees in each skill level in order 

to hire candidates with the highest rating (i.e., the most desirable ones). On the other 

hand, applicants prioritize businesses with higher ratings when applying for jobs. 

Whenever a person agent finds a job, the agent is removed from the ULP agent, while a 

message (“Employed”) is sent to the person agent (see Figure 41). According to Figure 

39, whenever a business agent posts a job opening to the ULP agent, it is checked if 

there are any suitable applicants in the pool, and if all or a portion of the needed 

employees are hired through this process, this information is conveyed to the business 

agent and the list of employees is updated. If more employees are needed, the business 

agent posts a new job opening to the ULP agent, and this process is repeated until all 

necessary employees are hired.  
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4.2.2.4. Hospital agent 

Healthcare system in a community is responsible for providing injured people with 

outpatient and inpatient services in hospitals and healthcare providers inside the city or 

transferring them to hospitals outside the city when demand exceeds the capacity inside 

the city. In addition to the mission of the healthcare system in the urgent phase after the 

disaster, it addresses healthcare needs of the people in the long-run after the disaster as 

well. The healthcare system includes large hospitals and other healthcare providers (e.g., 

clinics and urgent care services) inside the city. In this section, a type of agent called 

hospital agent is defined which simulates the functionality of a hospital in the aftermath. 

In the current study, other healthcare providers, such as clinics, are defined as businesses 

(see Section 4.2.2.1), the restoration of which depends on the decision of the owners, 

physical functionality of the healthcare provider, and employee availability in the 

aftermath. It should be noted that due to limitations inside a community to treat all 

injuries after a massive event, the urgent response of the healthcare system significantly 

depends on outside resources, such as rescue teams, ambulances, and supplies, while 

transferring patients to other nearby city hospitals may also be needed. However, in the 

long-run, typically people prefer to address most of their medical needs inside their 

community. 

As demonstrated in Figure 42, the capacity of a hospital in the aftermath is 

governed by the physical functionality of the building itself, as well as the percentages of 

physicians, nurses, and other staff available. The physical functionality of the hospital is 

determined by estimating damage to different buildings of the hospital and access of the 
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building to essential utilities (e.g., electric power and water). To estimate the percentage 

of hospital personnel available, their ability to work is collected from the corresponding 

person agents. Per Figure 42, by aggregating the information about the operability of the 

buildings, as well as the number of physicians, nurses, and other staff who are able to 

work, it is possible to estimate the percentage of emergency and inpatient beds available. 

During the recovery phase, the number of available beds may increase gradually by the 

return of the personnel back to work and repair of the buildings or temporary buildings 

options. In addition, in the aftermath, personnel, supply, and building may be managed 

between the emergency and inpatient departments in order to maximize the utilization of 

the hospital. This is especially important because of the surge demand on the emergency 

room right after the disaster, while the need for inpatient beds increases gradually by 

transferring some patients to the inpatient departments. 

 
Figure 42: Number of available beds in a hospital after a disaster. 

In the current study, a discrete event simulation (DES) is adopted to model the 
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department, and finally discharging them after the treatment. There are limitations in the 

healthcare system when severe events happen, including limitations in the number of 

ambulances, while waiting time may increase in the emergency and inpatient 

departments due to large number of patients in the queue for receiving service. DES 

effectively simulates this process accounting for delays and limitations in the aftermath 

and has been used in the literature to model the rescue and treatment process after 

natural disasters (Favier, Poulos, Vásquez, Aguirre, & De La Llera, 2019).  

In the Centerville testbed, only one hospital exists, while there are a number of 

healthcare facilities which provide medical services. Person agents incurring injury level 

IL1 do not need hospitalization and it is assumed that they may go to smaller clinics and 

healthcare facilities to receive treatment, while person agents incurring injury levels IL2 

and IL3 will need to visit a hospital due to their injury severity. Figure 43 demonstrates 

the patient handling process in Centerville after a tornado event takes place. The process 

of rescuing is dependent on the number of active ambulances which may decrease due to 

direct damage to them during the tornado, or may increase by receiving help from 

nearby hospitals. Since the only hospital in Centerville has a limited capacity, depending 

on the severity of the tornado, it may be necessary to transfer patients to nearby hospitals 

in other communities, or in some cases, in other states. For example, according to the 

report by the Center for Preparedness and Response (2017), the Missouri Department of 

Health and Senior Services (DHSS) evacuated 713 individuals injured during the 2011 

Joplin tornado to 42 hospitals in four neighboring states.  
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In the current study, it is assumed that if a patient with IL3 is admitted to the 

hospital, there will be no waiting time because of the urgent care needed, and hence, the 

patient is admitted to the emergency room. However, patients with IL2 may need to stay 

in a waiting queue to receive medical treatment in the emergency department. After 

treatment in the emergency department, depending on the severity of their injury, it may 

be necessary to transfer the patient to the inpatient department, or if not, the patient is 

discharged to complete the treatment at home. Patients in the inpatient department will 

stay depending on their treatment time, and then will be discharged from the hospital. 

Because the inpatient department has a limited capacity, some patients may be 

transferred to other hospitals to continue their treatment. Additionally, after the demand 

on the emergency room department is declined after a few days from the tornado, some 

resources may be transferred from the emergency room to increase the inpatient 

capacity. As shown in Figure 41, person agents, when injured, are in close contact with 

the healthcare system agent to receive treatment, and whenever discharged from the 

hospital, they may spend some more time in their home to complete their treatment and 

be ready to continue their routine life. For example, for agents in the labor force, per 

Figure 41, after the agent is discharged from the hospital and completed the appropriate 

treatment at home, the agent is classified as “healthy” and may be able to continue 

routine life. 
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Figure 43: Patient handling process in Centerville healthcare system agent. 
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functional businesses.  

Various internal and external validation techniques similarly to Thrust C-A were 

utilized to ensure the credibility of the outputs considering the newly added 

systems/agents. The range of variables input to each agent type was examined to make 

sure they are within an acceptable range in accordance with the information available 

about Centerville, empirical data from past events, and the literature. Furthermore, it was 

checked if the models utilized in the agent (e.g., damage fragility and restoration 

models) from the literature were validated previously. A predictive validation (Sargent, 

2010; Xiang et al., 2005) was conducted in the current study by comparing various 

outputs of the model under different hazard scenarios with the actual observations from 

past similar events in the US. Multiple outputs from the model were utilized for this 

purpose, such as unemployment rate at certain times in the aftermath, number of injured 

people treated inside or outside the community, number of closed businesses, and cease 

operation days of businesses. In Thrust C-A, to better demonstrate the comparisons 

performed for the V&V task, various outputs of the model under an EF5 tornado 

scenario were compared to the observations after the 2011 Joplin tornado because of the 

similarities between the events and their impact. In the current subchapter, this is 

continued by comparing outputs of the model considering the newly added components 

to the observations from Joplin. 

4.2.4. Application 

A model of the community of Centerville was developed in Thrust C-A using the ABM 

approach, and various outcomes of the developed community model were presented for 
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different systems, such as EPN, WSN, households, and education system. This section 

presents various example outcomes of the systems added to the community model, 

including businesses and healthcare, while discussing the effects of the disaster on the 

labor force. 

Thrust C-A presented the model outcomes for an EF5 tornado scenario shown in 

Figure 44, which is a strong tornado with the maximum 3-sec gust wind speed of 105 

m/s (235 mph), width of 2.4 km (1.5 miles) and length of 33.8 km (21 miles) with its 

center located approximately at the center of Centerville. In this section, results are 

presented for the businesses, labor force changes, and the single hospital in Centerville 

subject to that scenario. 

 
Figure 44: A sample of simulated EF5 tornado in Centerville. 
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Businesses were significantly impacted in this EF5 tornado because 576 of the 1,093 
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recovers its building functionality, gets access to the necessary utilities, and have 

required employees present at work. Figure 45a presents the histogram of cease 

operation days for businesses in Centerville after the disaster, while Figure 45b presents 

the histogram of the time took for businesses to recover their building functionality. 

After the business recovers its building functionality, it may wait for a period of time for 

access to the utilities to return to physical functionality. Figure 45c shows the histogram 

of this waiting period for businesses with functional buildings. After the utilities were 

restored, the business has physical functionality, but it may still not be able to reopen for 

a period of time because of the absence of employees. The histogram of this waiting 

time for having the required employees is presented in Figure 45d. 
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(a) (b) 

  
(c) (d) 

Figure 45: Functional recovery of the businesses after the EF5 tornado: (a) 

histogram of cease operation days, (b) histogram of time to recover building 

functionality, (c) delay in physical functionality due to utility disruption, and (d) 

delay in business functionality due to employees’ absence. 

As Figure 45b shows, the time to recover building functionality of 529 

businesses was zero, meaning that their buildings were not damaged. However, as Figure 

45a indicates, only a few businesses were able to operate right after the tornado and the 

reason was the dependency of most of the businesses on access to the utilities, and 



 

198 

 

hence, they could not get back to operation until after utilities were restored, as shown in 

Figure 45c. There were delays in reopening of some of the businesses even after they 

were physically functional, and this was due to their employees absence or shortage in 

the required employees. Figure 45d shows the histogram of the delay in the reopening of 

a business after it is physically functional, where around 800 of the businesses did not 

have any issues in retaining their required employees, while there were a few businesses 

that delayed their reopening even after physical functionality recovery for an additional 

four months because of lack of required employees. Overall, these figures indicate that 

the short-time utility disruption can delay the reopening significantly, while building 

damage can have both short- and long-run effects on the reopening. 

4.2.4.2. Labor forces 

Major disruptions happened to the labor forces in Centerville because more than half of 

the community’s businesses were within the tornado path and most incurred some levels 

of damage. As indicated in Figure 39, a closed business may keep the employees on the 

payroll for the duration of closure or a portion of it depending on its attributes, including 

its business interruption insurance, size of the business, etc. However, not all of the 

businesses have the resources to keep their employees on the payroll during the closure, 

similarly to the observations in Joplin after the 2011 Joplin tornado, where 

approximately 60% of the employees of  the 553 destroyed or damaged businesses were 

kept on the payroll during the closure time (The Joplin Globe, 2021). In addition, when a 

closed business plans to reopen, the absent employees may be laid off, and hence, they 
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are removed from the payroll of the business. Figure 46a presents the status of 

employees of 576 businesses in Centerville located in the tornado path until two years 

after the event occurrence. As this figure indicates, some businesses kept their 

employees on the payroll for a certain period of time, while they could not continue it 

after a while because of the long closure time, or laid them off because of their absence. 

Figure 46a shows also that around 59% of the employees of the businesses in the tornado 

path were kept on the payroll for the whole recovery time, which is similar to the 

observations after 2011 Joplin tornado. It is also observed that employees started moving 

to other businesses after they were off the payroll, while a portion of them were 

unemployed for a period of time with the maximum of 15% around seven months after 

the tornado. Additionally, a percentage of employees of these businesses lost their job 

because they moved to other communities/cities, while most of them found jobs in other 

businesses inside the city when they returned back to the city. 

  
(a) (b) 

Figure 46: employees of businesses located (a) inside and (b) outside the tornado 

path in Centerville. 
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Although about half of the city’s businesses were outside the tornado path, some 

of them still suffered from the consequences, such as injured or dead business owner, 

absent employees, and lack of utilities. These caused short-term and in a number of 

cases long-term closure of the businesses, and it is evident in Figure 46b, where the 

status of employees of the businesses located outside the tornado path is presented. 

According to this figure, around 89% of the employees were kept on payroll for the total 

duration meaning that they either were being paid during the closure time or the business 

was fully functional and employees were working. The main reason for 11% decrease in 

the number of employees on the payroll was the absence of the employees due to their 

displacement to other cities, which caused them to be laid off. In a few cases, employees 

were removed from the payroll because of the business closure due to various reasons, 

such as death of the owner of a small business, long utility disruption, and significant 

employee disruption. As shown in Figure 46b, unemployment between the employees of 

the businesses outside the tornado path reached a maximum of 2.7% which is much less 

compared to the unemployment rate of employees of the businesses within the path 

(15%). The comparison of Figure 46a and b indicates that although all of the labor force 

were somehow affected by this disaster, the consequences were much more severe for 

the ones who were employed in the businesses located in the tornado path.  

Figure 47 presents the unemployment rate in Centerville in the first year after the 

tornado, where it is shown that the unemployment rate did not increase in the first month 

because employees were on the payroll, but when a portion of the affected businesses 

decided to stop keeping them on the payroll, a sudden jump occurred with the 
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unemployment rate increasing to more than 6% (with maximum of 8.3%) for a period of 

six months, while it decreased rapidly afterwards reaching 3.06% one year after the 

disaster (1.4% increase compared to the pre-disaster state).  

 
Figure 47: Unemployment rate in Centerville after the EF5 tornado. 

Employees may be absent after a disaster due to various reasons, including 

injuries to the employee, need to take care of an injured family member, need to take 

care of children at home because of school closure, and relocation to other cities. Figure 

48 presents the number of absentees at work and the reasons of their absence over time. 

In the first month following the disaster, the main reasons of absence at work were 

childcare and injury of the employee or need to take care of an injured family member. 

However, in the later months, the main reason of absentees at work was relocation 

outside the city, which was caused because of damage to the building stock and 

unavailability of alternative housing inside the city.  

3.06

0

1

2

3

4

5

6

7

8

9

10

0 60 120 180 240 300 360

U
n
em

p
lo

y
m

en
t 

(%
)

Time (day)



 

202 

 

 
Figure 48: Absent employees and reasons for their absence. 

4.2.5. Community resilience quantification 

The purpose of this section is to present a community resilience measure which accounts 

for the resilience of all the systems within a community. For this purpose, first, for each 

system, a resilience measure is proposed to quantify its resilience, and then a community 

resilience measure is calculated by combining the resulting resilience measures for the 

systems. 

4.2.5.1. EPN resilience measure 

The resilience measure of the EPN subject to a tornado scenario is calculated using the 

approach proposed by Ouyang and Dueñas-Osorio (2012). A well-known method to 

quantify resilience of a system is using the following equation (Bruneau et al., 2003):  
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𝑅 =
1

𝑇𝐿𝐶
∫ 𝑄(𝑡)

𝑇𝐿𝐶

0
d𝑡   (24) 

where R is the resilience measure of the system, TCL is the control time, and Q(t) is the 

functionality function of the system which is a dimensionless function of time, t. The 

performance metric utilized in the current study to define the functionality function is the 

number of consumers being served through time, which is normalized by the total 

number of customers to calculate the functionality function Q(t). Resilience measure of 

the EPN, REPN, to tornado hazard is computed in this study assuming the control time to 

be 45 days. This control time is suitable for evaluating the resilience of the EPN because 

electric power is essential to all activities in the city and a resilient EPN should restore 

fast after a disruption. Calculating the EPN resilience measure with a large control time 

may not be able to effectively represent disruptions in the EPN in short term after the 

tornado. Additionally, a very short control time may fail to capture major disruptions in 

the EPN after the control time. 

4.2.5.2. WSN resilience measure 

The resilience measure for the WSN is calculated similarly to the method used for the 

EPN. The performance metric selected in this study to compute a resilience measure for 

WSN is the average water pressure consumers have access to compared to the normal 

water pressure. Using Eq. (24), the resilience measure of the WSN, RWSN, can be 

computed, and the control time in the case of Centerville is assumed to be 45 days. The 

reasoning for selecting this control time is similar to the EPN resilience measure. 
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4.2.5.3. Education system resilience measure 

A resilience measure for education system accounting for the quality and quantity of 

education in the aftermath was proposed in Thrust C-A of this dissertation and is 

adopted in here to compute the resilience measure of education system subject to tornado 

events. The control time is selected to be 90 days in computing education system 

resilience measure. 

4.2.5.4. Healthcare system resilience measure 

There is only one hospital in Centerville, while there are multiple small healthcare 

providers throughout the city. As mentioned previously, only patients with injury levels 

IL2 and IL3 need to be treated at a hospital, and patients with injury level IL1 can be 

treated in smaller healthcare providers. When number of injuries is high, the only 

hospital in Centerville cannot provide service to all injuries, and hence, injured people 

are transferred to other hospitals in the nearby cities, which in turn increases the waiting 

time to receive treatment. Other studies (Gian Paolo Cimellaro et al., 2010b; Hassan & 

Mahmoud, 2020) in the literature utilized waiting time as a measure of quality of 

healthcare service people receive in the aftermath, which is adopted in the current study 

to evaluate the quality of service received by each injured person in the aftermath. For 

Injured Person i, the quality of health service received, Qi, is calculated using Eq. (25) 

which is adopted from (Gian Paolo Cimellaro et al., 2010b; Hassan & Mahmoud, 2020). 

𝑄𝑖 = max (0,
𝑊𝑇𝑚𝑎𝑥−𝑊𝑇𝑖

𝑊𝑇𝑚𝑎𝑥−𝑊𝑇0
) ≤ 1       (25) 



 

205 

 

Where WTmax is the maximum allowable waiting time, WT0 is the waiting time in the 

normal pre-disaster condition, and WTi is the waiting time for Injured Person i to receive 

treatment. This equation gives a number between 0 and 1, where quality equal to 0 

means that the waiting time was more than the allowable time, and quality equal to 1 

means that the waiting time was less than or equal to the normal pre-disaster waiting 

time. The performance of the healthcare system of the community and the nearby region 

in providing urgent healthcare service to the people in short time, Rurgent, can be 

calculated as the average Qi values computed for all injured persons per Eq. (26). 

𝑅urgent =
∑ 𝑄𝑖

𝑖=𝑛𝑖𝑛𝑗
𝑖=1

𝑛𝑖𝑛𝑗
         (26) 

Where ninj is the total number of injuries due to tornado event. Although Rurgent can be a 

proper indicator of the performance of the healthcare system in providing urgent care, 

the long-term performance of the system depends on the accessibility of healthcare 

service in the city, which depends on the performance of the hospital and other 

healthcare providers inside the city. In the current study, the long-term performance of 

the healthcare system is assessed by the number of hospital beds available and the 

number of smaller healthcare providers which are providing service. This performance 

can be adversely affected in the aftermath by reduced number of beds in the hospital or 

closure of the small healthcare providers due to damage to their buildings, absence of 

employees, lack of utilities, etc. The functionality function of the hospital, Qh(t), is 

calculated as the weighted geometric mean of the number of emergency beds (ner(t)) and 
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inpatient beds (nin(t)) available normalized by the number of beds before the disaster, 

using Eq. (27).  

𝑄ℎ(𝑡) = (
𝑛𝑒𝑟(𝑡)

𝑛𝑒𝑟,𝑏
)

𝑤𝑒𝑟

∙ (
𝑛𝑖𝑛(𝑡)

𝑛𝑖𝑛,𝑏
)

1−𝑤𝑒𝑟

≤ 1        , 𝑤𝑒𝑟 ≤ 1    (27) 

Where ner,b and nin,b are the number of emergency and inpatient beds prior to the disaster 

and wer is the weighting factor of the emergency bed availability compared to the 

inpatient bed availability, such that wer=0.5 indicates that the same weight is assigned to 

both inpatient and emergency beds, while wer>0.5 indicates a higher weight for, and 

hence, a higher relative importance of the emergency bed availability compared to the 

inpatient bed availability. In this study, the same weight is assigned to both emergency 

and inpatient departments (wer=0.5).  

The functionality of other smaller healthcare providers in the city can be 

described based on their operation level and whether or not they are open. In the current 

study, the macro-level functionality of non-hospital healthcare providers, Qnh(t), is 

calculated as the weighted average of the functionality rate of the individual units 

weighted based on their size.  

𝑄𝑛ℎ(𝑡) =
∑ 𝑤𝑖𝑄ℎ𝑏,𝑖(𝑡)

𝑛𝑛ℎ
𝑖=1

∑ 𝑤𝑖
𝑛𝑛ℎ
𝑖=1

        (28) 

Where nnh is the number of healthcare providers in the community, Qhb,i(t) is the 

functionality of the healthcare provider i, and wi is the weighting factor for healthcare 

provider i, which is an indicator of its size. In the current study, the total number of 

employees before the disaster are used as the indicators of the size of the healthcare 

provider.  
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A comprehensive resilience measure for the healthcare system should encompass 

the long-term resilience of the hospitals and other types of healthcare providers, and 

additionally, account for the capability of the system to cope with the surge in demand 

for medical assistance in the face of a tornado event. Rurgent in Eq. (26) indicates the 

resilience of the healthcare system in terms of providing urgent care to injuries, while the 

overall long-term resilience of the hospitals (Rh) and other healthcare facilities (Rnh) can 

be calculated using Eqs. (29) and (30), respectively, where TLC,h and TLC,nh are the 

selected control times for hospitals and other types of healthcare providers, respectively. 

The overall resilience of the healthcare system in the community, Rhealthcare, is calculated 

as a weighted geometric mean of these resilience metrics using Eq. (31), where the 

corresponding weights, wu, wh, and wnh, can be selected based on their importance in a 

community. In the current study, these weights are set to be 1, meaning that all have the 

same contribution to the calculated resilience metric, while TLC,h and TLC,nh are both set 

to 6 months.  

𝑅ℎ =
1

𝑇𝐿𝐶,ℎ
∫ 𝑄ℎ(𝑡)

𝑇𝐿𝐶,ℎ

0
d𝑡        (29) 

𝑅𝑛ℎ =
1

𝑇𝐿𝐶,𝑛ℎ
∫ 𝑄𝑛ℎ(𝑡)

𝑇𝐿𝐶,𝑛ℎ

0
d𝑡       (30) 

𝑅healthcare = (𝑅urgent
𝑤𝑢 ∙ 𝑅ℎ

𝑤ℎ ∙ 𝑅𝑛ℎ
𝑤𝑛ℎ)

1

𝑤𝑢+𝑤ℎ+𝑤𝑛ℎ    (31) 

4.2.5.5. Resilience measure for businesses 

Resilience of each Business Agent i, Rb,i, subject to the tornado event is calculated using 

Eq. (24) by defining the functionality function to be equal to fb,i(t) per Figure 39 and 

assuming control time to be one year. It is expected that control time of one year enables 
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capturing both short- and long-term disruptions in business operations. This study 

calculates a single resilience measure for the businesses in the community, Rbusinesses, 

using Eq. (32), as follows: 

𝑅businesses =
∑ 𝑤𝑖𝑅𝑏,𝑖

𝑛𝑏
𝑖=1

∑ 𝑤𝑖
𝑛𝑏
𝑖=1

        (32) 

Where nb is the number of businesses in the community and wi is an indicator of the size 

of the business, which in this study is assumed to be equal to the number of employees 

of a business. 

4.2.5.6. Community resilience measure 

In this study, a resilience measure for the community, Rcommunity, is calculated by 

aggregating the resilience measure of different systems in the community using Eq. (33) 

as their weighted geometric average: 

𝑅community = (∏ 𝑅𝑖
𝑤𝑖𝑁𝑠

𝑖=1 )
1

∑ 𝑤𝑖
𝑁𝑠
𝑖=1

⁄
       (33) 

Where Ns is the number of systems accounted for in calculating the community 

resilience measure, Ri is the resilience measure calculated for system i of the community 

(e.g., REPN), and wi is the weight factor for system i. The decision maker in the 

community can adjust weight factors depending on the significance of the resilience of 

each system on the resilience of the community.  

At this stage, using the resilience measures introduced in this section for various 

systems as well as the community resilience measure calculated using Eq. (33), the 

resilience of Centerville community subject to the EF5 tornado presented in Figure 44 is 

assessed. To account for the uncertainties in the response of the community to this event, 
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a Monte Carlo sampling analysis is conducted. Figure 49 presents the histogram of the 

computed resilience measures for the community and its systems separately. In addition, 

the mean value of the computed resilience measure is shown in each histogram. As 

Figure 49a shows, the resulting community resilience measure ranges from 0.74 to 0.82 

with mean value of 0.77. This can be used as a measure for decision making by 

comparing the resulting resilience measure after applying different mitigation strategies. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 49: Histogram of computed resilience measures for: (a) the community and 

its systems, including (b) education system, (c) healthcare system, (d) EPN, (e) 

WSN, and (f) businesses.  

4.2.6. Decision making 
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ABM and the proposed community resilience measure for quantitative decision making. 

Previous studies utilized various resilience measures to investigate the effect of different 

decisions, such as building retrofit decisions (W. Wang et al., 2021), pre- and post-

disaster policies (N.L. Dehghani, Darestani, & Shafieezadeh, 2020; Esmalian et al., 

2021; Khanmohammadi, Farahmand, & Kashani, 2018; W. L. Wang & van de Lindt, 

2021), on the resilience of the community and its systems. Using the community model, 

it is possible to implement various mitigation strategies and compute the community 

resilience measure accordingly. According to the calculated resilience measures and the 

cost associated with each considered strategy, the effectiveness of that strategy can be 

evaluated, and ultimately, one or a combination of the strategies may be selected. 

Although not discussed in this study, it is possible to evaluate the effect of any decision 

on the community resilience, and not necessarily mitigation strategies. For instance, the 

decision makers may want to see the effect of an urban development plan on the 

resilience of the community. It is possible to implement such changes into the model and 

investigate the outcomes. 

Since tornado events have a small area of impact compared to most of other 

natural hazards, such as earthquakes and hurricanes, it is necessary to evaluate the 

resilience of a community under multiple tornado scenarios impacting different locations 

of the community. To illustrate the application of the resilience measures presented in 

this chapter, a set of tornado scenarios with different directions and centers are 

considered to affect the Centerville community. The scenarios considered in this analysis 

include only EF5 tornado scenarios, but it is possible to conduct this analysis by 
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including any set of tornado events. The outcomes of this analysis will be investigating 

the effect of different mitigation strategies on the severe EF5 tornados that may happen 

in the future. In addition, a Monte Carlo sampling analysis is conducted to account for 

the uncertainties in the exposure and response of the community to such an event. Table 

28 presents the characteristics of the 10 different EF5 tornado scenarios considered. This 

table provides information about the intensity of each tornado scenario, its maximum 3-

sec gust wind speed, path dimensions, center coordinates, and angle to the north pole. 

The procedure discussed in Section 4.2.5 is utilized here to calculate the resilience 

measure of each system within the community and the community as a whole subject to 

each tornado scenario. To account for the uncertainties, a Monte Carlo sampling analysis 

is performed with 100 random realizations under each of the 10 tornado scenarios by 

randomly generating different variables input to different agents of the model. This gives 

1,000 calculated resilience measures for the community and its systems, while an 

average resilience measure for the community under its current condition is resulted by 

averaging these calculated values. By implementing a mitigation strategy into the 

community model, this analysis can be repeated to calculate the resulting average 

community resilience measure. These average measures can be used to evaluate the 

effectiveness of each strategy and compare them. In the following, first, resilience 

measures of the community and its systems without any mitigation actions are computed 

and presented. Thereafter, a number of mitigation actions are implemented and their 

results on the computed resilience measures are presented and discussed. 
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Table 28: tornado scenarios considered for decision making in the case of 

Centerville. 

Intensity 
Maximum 3-sec gust wind speed 

(mph) 

Length 

(mile) 

Width 

(mile) 

Center 

coordinates 

Angle to 

north  

Event 

ID 

EF5 235 30 1 

(215, 134) 
72° 1 

36° 2 

(429, 268) 
72° 3 

36° 4 

(644, 402.5) 
72° 5 

36° 6 

(859, 536.7) 
72° 7 

36° 8 

(1073, 670.8) 
72° 9 

36° 10 

4.2.6.1. No mitigation actions 

Figure 50 presents the histogram of the calculated community resilience measure for 

Centerville under all tornado scenarios of Table 28, resulted from the Monte Carlo 

sampling analysis. As shown in this figure, the resilience measure of the community 

under all of the tornado scenarios ranges from 0.43 to 0.94 with a mean value of 0.76. In 

the next section, different strategies are implemented and are compared to the mean 

community resilience measure of 0.76. 

 

Figure 50: Histogram of average community resilience measure under tornado 

scenarios in Table 28. 

4.2.6.2. Effect of mitigation actions 

A set of mitigation strategies are implemented in the Centerville community model to 

investigate their effectiveness on the resilience measures calculated for the community 
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and its systems. A summary of each considered mitigation strategy and their expected 

effect is discussed below: 

i. Backup utilities for schools: School disruption after natural disasters affects not 

only the education system, but also other systems in the community, such as 

households, businesses and the healthcare system. As discussed in Section 4.2.2.2, 

the ability of a person agent to work can be affected if that agent needs to take care 

of children needing homeschooling, which in turn causes absence of the employee 

at work. In addition, as discussed in Sections 4.2.2.1 and 4.2.2.4, the functionality 

of the businesses and hospitals is directly affected by the absence of the employees. 

As a result, enhancing the resilience of the education system can help 

increase/enhance the community resilience measure. As evaluated in Section 

4.1.5.5, providing backup utilities for schools can significantly increase the 

resilience of education system subject to tornado hazard. 

ii. Mandating all businesses in Centerville to purchase insurance: One of the most 

significant impeding factors delaying the recovery of the damaged businesses in 

the aftermath is the time to secure finances needed for the repair and reconstruction 

costs. This strategy seeks to investigate the effect of mandating insurance purchase 

for all businesses. The effect of purchasing insurance by the businesses in 

Centerville is evaluated by changing the attributes of the business agents such that 

all of them have insurance policies covering the repair costs. 

iii. All buildings have a tornado safe room: Injuries after a natural disaster may put 

an unprecedented pressure on the healthcare system, while disruptions can 
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propagate to other systems of the community as well. Employees of the businesses, 

schools, and hospitals might not be able to get back to work immediately because 

of their own or their family member’s injury. As a result, any method, such as safe 

rooms, which can decrease the number of injuries may help to improve the 

resilience of the community. 

iv. Increased resources for the EPN repair: Access to electricity is essential in the 

operation of almost all systems within a community, including, the WSN, schools, 

healthcare system, businesses, etc. Since the EPN is widespread throughout the 

city, it is highly likely that it gets damaged in any tornado event. Hence, having an 

emergency plan to restore electricity would be a viable option to increase the 

resilience of the community by providing electricity as soon as possible. One 

method is having mutual emergency plans with nearby cities to share the resources 

in cases of a tornado. In this study, this strategy is reflected by increasing the repair 

resources and shortening the repair actions. 

v. Minor retrofit of housing units: For the application of this study, it is assumed 

that damage fragilities are shifted equivalent to 30 mph, which means that the wind 

speed thresholds to cause each damage state are increased by 30 mph. This is done 

to assess the effect of more resistant housing units on the resilience of the 

community to EF5 tornados. Such retrofits can be more resistant roof covers and 

window shutters.  

vi. Moderate retrofit of school buildings: This action is similar to Strategy v, but 

here it is assumed that this shift is 50 mph. This higher assumption is because there 



 

215 

 

are a few schools in the community and it is possible to have special design or 

retrofit for their buildings to improve their response. 

vii. Minor retrofit of businesses: In this action, similarly to Strategy v, damage 

fragilities of the business buildings are shifted equivalent to 30 mph.  

viii. Increase in the construction resources: One of the leading reasons for delay in 

the reconstruction process after massive natural disasters is the lack of sufficient 

construction resources and difficulty to find a contractor. In this strategy, it is 

assumed that there is no delay due to finding a construction contractor after the 

tornado event to assess its effectiveness on the resilience of the community. In the 

real world, this can be done by getting help from construction companies and 

contractors in other regions. This especially is practical because tornado events are 

local and other nearby communities are not damaged, and hence, there is no surge 

in construction demands in those communities. 

ix. Preventing late insurance payouts: One of the leading reasons for delay in 

reconstruction is delays due to securing finances. Although some businesses may 

have insurance to cover their costs, there is a chance that the process of getting a 

payout from the insurers lasts long. This strategy seeks to evaluate the effect of 

preventing late insurance payouts on the resilience of the community. This strategy 

is implemented in the Centerville model by decreasing the uncertainty of the 

insurance payout time, which in turn, decreases the chance of late payouts. 

For each mitigation strategy, the resilience measures of the community and its 

systems are computed by conducting a Monte Carlo sampling analysis on the modified 
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community model (i.e., original community model but with the strategy implemented in 

it). The average resilience measures computed using Monte Carlo sampling analysis 

considering the tornado scenarios of Table 28 are tabulated in Table 29. This table also 

includes the computed average resilience measures for the original Centerville model 

without any mitigation strategies implemented in order to easier assess the effectiveness 

of each strategy on the resilience of the community. Each column in Table 29 is colored 

separately with green such that the density of the green color indicates the level of the 

effectiveness of the associated strategy on that resilience measure.  

Table 29: resilience measures calculated for the Centerville community and its 

systems in its current condition and when mitigation strategies are implemented. 
Strategy Rcommunity REPN RWSN Rbusinesses Rhealthcare Reducation 

No strategy 0.762 0.779 0.755 0.839 0.731 0.746 

Strategy i: Backup utility for schools 0.797 0.779 0.755 0.844 0.737 0.922 

Strategy ii: Insurance purchase requirement for businesses 0.765 0.779 0.755 0.841 0.732 0.748 

Strategy iii: Saferooms in all buildings 0.796 0.779 0.755 0.843 0.908 0.746 

Strategy iv: Increased resources for EPN repairs 0.841 0.895 0.881 0.863 0.746 0.839 

Strategy v: Minor retrofit of housings 0.768 0.779 0.755 0.85 0.746 0.746 

Strategy vi: Moderate retrofit of schools 0.772 0.779 0.755 0.841 0.732 0.783 

Strategy vii: Minor retrofit of businesses 0.765 0.779 0.755 0.846 0.735 0.746 

Strategy viii: Increase in construction resources 0.762 0.779 0.755 0.839 0.731 0.746 

Strategy ix: Preventing late insurance payout 0.762 0.779 0.755 0.839 0.731 0.746 

Combination of Strategy i and iv 0.858 0.895 0.881 0.866 0.748 0.923 

Combination of Strategy ii, viii, and ix 0.765 0.779 0.755 0.851 0.733 0.746 

By comparing the community resilience measures in Table 29 resulted after 

implementing each strategy with the community resilience measure computed for 

Centerville without any strategy, the effectiveness of each strategy can be assessed. 

According to the results presented in this table, the community resilience measure was 

improved by implementing some of the strategies, but a number of them were more 

effective compared to others. For instance, Strategy iv, which indicates the increase in 

repair resources for the EPN, can significantly increase the resilience of the community 

and different systems within it. This indicates that enhancing the resilience of the EPN 
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helps increasing resilience of all systems, including the WSN, businesses, education, and 

healthcare. Some other strategies have less widespread impact on the resilience of 

different systems, but still can improve the resilience of the community. For example, 

Strategy i, which is providing backup utilities for schools, significantly improves the 

resilience of the education system, while its effect on the resilience of other systems is 

not very significant. This strategy improves the resilience of the business and healthcare 

systems as well, which is devoted to the fact that closed schools cause parents to take 

care of children doing homeschooling, which in turn, causes their absence at work. 

When the education system become more resilient, such disruptions become less 

frequent, and hence, less disruptions happen in the labor force in the community. 

Strategy iii, which is securing saferooms in every building, increases the resilience of the 

healthcare system significantly, while it slightly increases the resilience of the 

businesses. Strategy v, which is minor retrofit of the housing units, slightly enhances the 

resilience of the community, businesses, and healthcare system. This is due to decrease 

in the number of casualties and number of households needing to relocate, which in turn 

decreases the disruption in the labor force and hence businesses and healthcare 

providers. Strategy vi, which is slight retrofit of school buildings, enhances the resilience 

of the community, education system, businesses, and healthcare system. By comparing 

this strategy with Strategy i, which was also related to schools with providing backup 

utilities, it is clear that Strategy i has a more significant impact on the resilience of the 

community and its systems. The main reason is the vulnerability of the EPN in tornado 

events and its effect on school operations, while this can be addressed by providing 
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backup utilities. Strategy vii, which is minor retrofit of businesses, slightly increases the 

resilience of the businesses, while its effect on the community is negligible. This is 

because minor retrofit only prevents damage subject to low-intensity tornados and it 

cannot help a building to stand against an EF5 tornado. Strategies vii and ix are related 

to increasing construction resources and preventing late insurance payouts, respectfully. 

Both of these strategies could not increase the resilience measure calculated for the 

community. The reason is that even though construction resources are increased, still 

construction is delayed to secure the finances. Similarly, when insurance payouts are 

faster, still construction can be delayed due to the lack of enough construction resources. 

By combining Strategies ii, vii, and ix, the resilience measure calculated for the 

businesses increases slightly. The reason for this insignificant effect can be attributed to 

the fact that businesses are significantly damaged in EF5 tornados, and even though 

these strategies accelerate securing finances and finding contractors to repair, still it 

takes a long time for severely damaged businesses to be reconstructed/repaired. This 

long closure affects the businesses, business owners, and labor forces, and hence, still 

the resilience measure of the businesses is not improved significantly. Based on these 

observations, one can conclude that a strategy which can significantly strengthen 

business buildings subject to tornado loads can help improving their resilience the most. 

The other strategy may be pre-disaster preparations by business owners/managers to 

relocate immediately when their building is severely damaged. 

According to Table 29, increasing resilience of the EPN (Strategy i) and 

providing backup utilities for schools (Strategy iv) have considerable effect on the 
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resilience of all systems in the community and increase the community resilience 

measure significantly. Per Table 29, combining these two strategies increases the 

community resilience measure from 0.762 to 0.858, which is a considerable 

improvement. Similarly, it is possible to combine various mitigation strategies to achieve 

the desirable resilience measure for the community. 

4.2.7. Concluding Remarks 

This subchapter extended the community model developed in Thrust C-A by adding 

more systems into the model. Business agents are created to represent individual 

businesses in the community, while their functionality is defined based on their physical 

functionality as well as access to the required employees. The physical functionality is 

also dependent on the building functionality as well as access to the required utilities. 

Person agents are created in this study to simulate the health condition and occupation of 

people in the community in the cases of disaster occurrence. A fault tree analysis is 

designed in this chapter to predict the injury level of each person agent depending on the 

impact of the tornado on the building housing the agent in the onset of disaster. 

Additionally, the occupation status of person agents who are in the labor force is updated 

during the simulation depending on their ability to work as well as the functionality 

status and attributes of the business agents where they were working before the disaster. 

Hospital agents are defined to model the response of the hospitals in short-term when 

there is a surge in demand due to injuries as well as in the long-term to provide regular 

service to the patients inside the city. Functionality of the hospital is defined based on its 

available inpatient and outpatient beds, which depends on its physical functionality and 
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availability of the personnel. Discrete Event Simulation (DES) is adopted in this study to 

model the rescue and treatment process in the aftermath. 

Different outputs of the community model related to the newly added systems 

were discussed in this subchapter. The disruption incurred by the businesses and the 

labor force in the community of Centerville due to a strong EF5 tornado scenario were 

discussed. Based on the outcomes, 576 of the 1,093 businesses in Centerville were 

within the tornado path. According to the histograms of the functionality recovery time 

of the businesses, it took from one day to more than two years for the businesses to 

reopen, while around 4% of the businesses in Centerville were permanently closed. 

Furthermore, it was observed that utility disruption in the short-run and building repair 

in the long-run governed the reopening of the businesses in Centerville. Moreover, 

around 800 of the businesses did not have any issues in retaining their required 

employees, while for other businesses it took up to four months after they gained their 

physical functionality to retain their required employees and reopen. The model outcome 

indicated severe disruptions in the labor forces in the community with the most effect on 

the employees of the businesses which were within the tornado path. Around 59% of the 

employees of the businesses in the tornado path were kept on the payroll for the whole 

closure time. Employees who were not on the payroll started moving to other businesses 

in the city, while some of them were unemployed for a period of time with a maximum 

of 15% around seven months after the tornado occurrence. On the other hand, 

disruptions were less severe for the employees of the businesses which were located 

outside the tornado path. Around 89% of these employees were kept on the payroll for 
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the whole duration meaning that they either were being paid during the closure time or 

the business was fully functional and employees were working. The main reason for the 

11% decrease in the number of employees of the businesses outside the tornado path 

who were on the payroll was their absence at work because of displacement to outside 

the city. The results showed a maximum of 2.7% unemployment between employees of 

the businesses outside the tornado path, which is much less compared to the 

unemployment of the employees of the businesses inside the tornado path. The overall 

results of Centerville indicated an unemployment rate of 3.06% one year after the 

tornado which was 1.4% more than the unemployment rate just before the tornado 

occurred. 

In the next step of this subchapter, resilience measures were proposed to quantify 

the resilience of the community and its systems. These measures can be used to assess 

the resilience of the community, while they can be used to evaluate the effectiveness of 

different mitigation strategies on the resilience of the community. A Monte Carlo 

sampling analysis was performed to calculate the resilience measure of the Centerville 

community subject to the EF5 tornado scenario accounting for the uncertainties in the 

response of the community. The histogram of the results indicated that the calculated 

community resilience measure ranges from 0.74 to 0.82 with the mean value of 0.77.  

In the last step, the Centerville community model and the proposed resilience measures 

were utilized to assess and compare the effectiveness of various mitigation strategies on 

the resilience of the community. For this purpose, each strategy was implemented in the 

community model and the resilience measures of the community and its systems were 
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calculated under a set of predefined EF5 tornados by conducting a Monte Carlo 

sampling analysis. The mitigation strategies included strategies to enhance the resilience 

of the EPN, schools, healthcare system, and businesses. According to the outcomes, 

having emergency plans and sufficient resources to rapidly recover the EPN can 

significantly increase the resilience of the community and all systems within it under 

tornado threats. Furthermore, having backup utilities for schools can considerably 

increase the resilience of the education system as well as businesses and healthcare 

system. Moreover, having saferooms in all buildings can potentially increase the 

resilience of the healthcare system and businesses. As discussed in this chapter, a 

combination of different mitigation strategies can be employed to increase the 

community resilience measure to the desired level. This was illustrated by combining 

Strategies i and iv, which represent increasing the EPN repair resources and providing 

backup utility for schools respectively, and the results indicated increase in the 

community resilience measure from 0.762 to 0.858. Strategy i is related to having 

emergency management plans and mutual restoration plans with nearby communities to 

restore the EPN rapidly and Strategy ii is providing backup utilities for seven schools in 

the community. Both of these strategies, although not very costly, can significantly 

increase the resilience of the community. Other strategies discussed in this chapter can 

also be combined with these two strategies, but there are challenges in implementing 

them in the real world because of different reasons, such as their high associated cost. 

This study concludes that lifelines play a significant role in both short- and long-

term performance of a community and all of its systems, and vulnerability of these 
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infrastructure to disaster loads can adversely affect all parts of the community. Different 

actions can be taken in order to address these vulnerabilities, such as pre-disaster 

mitigation actions by strengthening the lifelines and having emergency plans to restore 

them quickly in cases of disruption, as well as decreasing the dependence of critical 

systems to lifelines by providing backup utilities for hospitals, schools, etc. As another 

conclusion in this study, there are various obstacles in the restoration of the building 

infrastructure in a community, some of the most important of which are delays due to 

difficulties in securing the finances, construction resource limitations, and time to take a 

reconstruction/repair permit. This study showed that although having access to insurance 

and fast insurance payout can help securing the finances to repair faster, other impeding 

factors can still be obstacles in the recovery of the buildings. This study also revealed 

that a community should make efforts to address all of these impeding factors at the 

same time in order to have an effective and rapid restoration. Furthermore, addressing all 

impeding factors can help initiating the recovery of the building infrastructure faster, but 

still powerful disasters, such as high-intensity tornados, can cause the community to 

suffer long period of recovery because of the extensive damage to the infrastructure in 

the city, and hence, long repair period. This indicates the importance of decreasing the 

vulnerability of the buildings prior to an event occurring by retrofit actions or design 

improvements.  



 

224 

 

5. SUMMARY AND FUTURE WORK 

Chapter 1 of this dissertation presented a summary of original contributions of this study 

to the disaster resilience literature. The current chapter presents a summary of this 

dissertation, the modeling approach, and observations from a broader perspective. In 

addition, multiple directions for the future research of this study are presented. 

5.1. Summary of the research approach 

This dissertation targets the area of quantitative disaster resilience by developing models 

and frameworks required to model a community in the desired level of details and 

utilizing the developed model for resilience assessment and decision making. 

Developing a quantitative community model requires various types of models to 

simulate the response and behavior of each system, while an approach is required to 

model a community as a system of interdependent systems. This dissertation contributed 

to the former by developing models for predicting the business recovery and restoration 

of residential buildings after they are damaged. Additionally, this study contributed to 

the latter by utilizing the ABM approach to model different systems of the community 

accounting for their interactions and interdependencies. For illustration purposes, the 

modeling approach in this study is presented along with its application for the virtual 

community of Centerville subjected to tornado hazard. Different agent types are defined 

to model systems and decision maker entities within the community, including schools, 

electric power network, water supply network, businesses, households, healthcare 

facilities, and construction companies. A comprehensive review of the literature was 

conducted to define agents which can simulate the response of the components in the 
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community from the onset of the hazard occurrence to the restoration and full recovery 

of the community. Additionally, a broad review of the literature as well as past natural 

disasters was utilized to define internal interactions between agents forming a system 

and external interactions between different systems forming the community. By so 

doing, a quantitative model of the community is developed as a system of interdependent 

systems, capable of simulating the response and recovery of the community from the 

event occurrence to the desired time in the aftermath. A verification task was performed 

to ensure that the model behaves as expected per grounded rules, while a validation task 

was further conducted to ensure the credibility of the outcomes. This dissertation also 

proposed resilience measures to quantify the resilience of the community and its 

respective systems. These measures can be used to not only assess the resilience of the 

community in its current condition, but also to conduct decision making by 

implementing various mitigation strategies and comparing them using the computed 

resilience measures. The application of these measures for resilience assessment and 

decision making is presented for the case of Centerville. The modeling approach in this 

dissertation offers various advantages some of which are listed below: 

i. It is possible to study less-studied components of the communities in the 

quantitative disaster literature, such as the education system. Although the 

response of the education system in past disasters was broadly studied, most of the 

studies were qualitative and the purpose was to identify the effect of different 

factors on the recovery of schools. However, similarly to other systems of the 

community, such as the EPN, quantitative studies are required to assess the 
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resilience of the education system in a community, and ultimately, make 

quantitative decisions to enhance its resilience. This advantage of the ABM 

approach in this dissertation is showcased by studying resilience of education 

system in Centerville. 

ii. The ABM approach can take advantage of the disperse studies in the literature to 

model a community. There are a large number of studies in the disaster literature 

focusing on different systems of the communities under different perils. The 

modeling approach in this study provides the opportunity to utilize these studies to 

model a community as a system of systems accounting for their interdependencies. 

In the application of this, multiple models and findings were adopted from the 

literature to define agents and their interactions to develop a community model for 

Centerville. These included damage fragility models, restoration models, as well 

as findings from past literature which were used to define micro-behaviors 

describing the behavior of an agent and its interactions with other agents. 

iii. There are no certain requirements about the models which are utilized in this 

modeling approach. This makes the community model development more feasible 

considering that models in the literature are developed using various modeling 

techniques and have their specific characteristics.  

iv. The response and restoration of communities after major disasters is uncertain, and 

it is possible to include such uncertainties into the community model through 

randomness in the behavior of the agents and their interactions. The simplest type 

of randomness included in the case of Centerville was through random variables 
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input to different agents of the community. However, other types of randomness, 

such as random realizations from a Random Forest model, can also quantify the 

uncertainties in the response of the community. 

v. The application of this dissertation presented a detailed model of a community by 

modeling its systems and their detailed components. However, the ABM approach 

is fully capable of modeling a community with less refinement/resolution. This is 

especially important when modeling a large region or in the cases that enough 

information is not available to model the community in detail. There are a large 

number of models in the literature focusing on a region or a large infrastructure 

(e.g., EPN of a city) without going into details of their buildings or components. 

Examples of such models are models predicting damage to a neighborhood without 

looking into its individual buildings, or models simulating the response of the EPN 

to an event using a Markov Chain model without going into details of the 

network’s components or the available resources. It is possible to utilize and 

integrate these existing models using the ABM approach to develop a quantitative 

model of a community with less resolution. 

vi. The decision-making platform developed in this study is not community-specific. 

Quantifying resilience of a community using the method proposed in this study 

needs input from decision makers of a community. These inputs include their 

judgement about control times used to compute resilience measure of each system, 

quality of each schooling category compared to the normal condition, and weight 

factors used to combine resilience measures of different systems into the 
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community resilience measure. This is particularly important because in 

communities with different socioeconomic characteristics and priorities, their 

decision makers may assign different weights to each system of the community or 

may weight quality of education differently. 

5.2. Future work 

A number of potential research topics are identified as future research directions of this 

study. As also discussed in this dissertation, one essential component in developing a 

quantitative model of a community is having appropriate models to define agents and 

their behavior. This study developed a number of models for business recovery and 

residential building recovery, while most of the models were adopted from the literature. 

Still, efforts are needed to extend the library of existing probabilistic models for various 

systems of the community, while some improvements are needed to the existing models. 

In particular, this study identified the following areas that require further research: 

i. Casualty models for tornado events are limited to the regional level, and no model 

existed in the literature estimating casualties at the building level. To address this, 

the current study proposed a method similar to the method used by HAZUS for 

earthquake hazard, while performed an expert solicitation to estimate the 

probability of different injury levels for a person in a building damaged due to 

tornado. Future research is needed to calibrate this model to the data from real-

world tornado events. 

ii. The housing recovery model utilized in this study predicts the housing stages of a 

household through time based on their social vulnerability. However, in order to 
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study the population dislocation and its effects on the community, it is necessary 

to have information about the housing status and location of the households. In the 

ABM approach, this enables providing such information into other agents of the 

community model, such as businesses, to include their effect on other sectors of 

the community. In the current study, assumptions are made based on the 

characteristics of the household to map housing stages into housing statuses. 

However, future research is needed to generalize this model to be applicable into 

other communities. 

iii. The application of the ABM approach was presented for the community of 

Centerville by modeling this community with high resolution (i.e., households, 

businesses, and other components were modeled as individual agents). Future 

research is needed to implement this modeling approach on a larger community 

but with decreased level of details. In such a model, the modeler might define 

agents by grouping community entities. For example, one agent might be defined 

for each residential neighborhood, or less agents might be defined to model the 

EPN only using its distribution substations. There would be challenges and also 

benefits by decreasing the details particularly for large metropolitan areas. 

iv. This study proposed different resilience measures for the community and its 

systems. These measures, in order to be computed, need input from decision 

makers in a community. Future research is needed to get such inputs from decision 

makers of a real community and identify challenges in doing so. The possible 

outcome of this research would be a generalized approach to get input from 
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decision makers, which not only facilitates its utilization, but also generalizes it to 

be used for other communities. 

v. The community model developed using the ABM approach has the capability of 

being used in optimization studies to make quantitative decisions targeting to 

maximize the resilience measure of the community. The constraints of such 

optimization studies would be the amount of resources available, particularly 

monetary resources, as well as environmental or political restrictions. Future 

research is needed to study the challenges of such optimization studies and 

application to real communities for various scales and socioeconomic 

characteristics. 
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