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ABSTRACT

Machine learning techniques are widely used to build models for applications in health-

care. These models typically predict likelihood of a particular patient outcome in a given

setting. For clinical utility, these models are often used to derive parsimonious models that

predict outcome risks of certain populations. Training these models on a specific patient

population, their demonstrated utility is confined to patients with characteristics similar

to the original derivation cohort. However, these simpler machine learning techniques may

lack the discriminatory power to recognize subpopulations within a population that behave

or respond differently to identical interventions. Conversely, while more complex machine

learning techniques and complex data streams may possess the sophistication necessary to

recognize and appropriately predict outcomes of these subpopulations, the training sizes

necessary to achieve good results are prohibitively large. Correctly understanding and iden-

tifying the differences and similarities that separate and unify various subpopulations is

key to building a model that is sufficiently extensible to explain population variance while

minimizing unnecessary complexity.

This dissertation applies and advances machine learning for healthcare through three ap-

proaches. First, it utilizes advanced machine learning techniques for clinical modeling. This

is done while predicting harmful outcomes such as mortality in vulnerable patient popula-

tions. Second, it describes advanced machine learning techniques to handle heterogeneity in

retrospective analyses. It develops a novel application of a deep mixture of experts to de-

scribe this heterogeneity, learning phenotypes in a risk-driven method. Finally, it describes

needs and opportunities in harnessing remote sensors for health monitoring and details two

specific approaches to extracting useful health data from longitudinal sensors.
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1. INTRODUCTION

Data regarding healthcare is rich and complex. Between electronic health record (EHR)

data and sensor streams from wearable smart devices, an incredible amount of data is gen-

erated relating to health. This data takes up many different forms. MIMIC-III, the most

widely used freely available EHR dataset incorporates many different types of data including

demographics, microbiological results, diagnoses, clinical events, procedures, and free text

narrative. [2]. Supplements to MIMIC-III include continuous waveform data [3] and imaging

data [4]. Building machine learning models from EHR data requires a great deal of data

preparation and standardization. This is complicated by the variety of possible data types

and the high levels of sparsity in EHR datasets [5, 6]. Various machine learning techniques

including both deep and classical techniques have been applied to EHR datasets [7, 8, 6].

Health data can also extend to data generated outside of the hospital. Sensing tech-

nologies have rapidly advanced in the past decades. With the advent of technologies such

as smartphones and smartwatches, many people carry devices which provide rich streams of

noisy data. In the hospital, monitoring patients is part of routine clinical practice. Providers

are able to monitor cardiac status and basic vitals from anywhere in the hospital at any time.

Slight deterioration in health can be observed and interventions put into place before pa-

tients suffer worsening harm. However, length of stay in these acute care settings is often

quite short [9, 10], representing only a small portion of a patient’s life despite the prolonged

impact that the decision making in these settings have. Given the rise of sensors commonly

included in consumer electronics, there exist many opportunities to expand monitoring in

the outpatient setting.

Longitudinal monitoring of physiologic parameters and symptoms outside of the hospital

can enable better detection and response systems before a person becomes acutely ill and

requires hospitalization. After hospitalization, monitoring these signals could help to prevent

early readmission to the hospital. However, many commercial devices today are targeted
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to healthy people. With the prevalence and ubiquitous nature of remote and wearable

sensors, opportunities exist to broaden the applications of sensing and for adapting analytic

techniques to enhance diagnosis, monitoring, and treatment of risk factors for primary and

secondary prevention of cardiovascular disease. In particular, the ability to capture these

measurements is only the first step. Indeed, end-to-end smart health systems are needed

that couple the hardware development with advanced analytic techniques to provide both

patient and clinical provider necessary confidence in data and risk prediction based upon the

measured risk factors.

Integrating EHR data and remote monitoring data through smart devices is a largely

underutilized paradigm. This integration has largely been explored in the context of specific

disease studies. For instance, [11] utilized smartphones connected to an EHR system to

provide pulmonologists with remote measures of inhaler utilization. However, there is a

great opportunity for further integration of remote data, particularly in conjunction with

machine learning techniques [8].

The many disparate forms of data pose a daunting task for machine learning: how can

algorithms and models be built that best take advantage of that data to improve well-being?

This dissertation seeks to transform data into more useful forms, find similarities between

patients in heterogeneous populations, and make estimates of treatment effects of various

interventions, using top level medical knowledge for causal inference. Through all of this,

the goal is to better equip physicians with models explaining patient health and providing

support for clinical decision making.

This work describes three main goals in improving data utilization. First, it describes

using advanced clinical modeling for machine learning predictions. This is shown through

characterizing outcomes among patients infected with SARS-CoV-2 (Ch. 2); discovering,

characterizing, and visualizing phenotypes among patients presenting to an emergency de-

partment (Ch. 3), using natural language processing to extract high level concepts describing

patient health (Ch. 4), and finally by characterizing advanced machine learning models to
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predict mortality following acute myocardial infarction (Ch. 5).

Next, this work allows for the advancement of clinical decision making through application

and advancement of machine learning techniques. This is shown through a series of chapters

utilizing cardiac registry data. Utilization changes in mechanical circulatory support devices

over time are described (Ch. 6), and then a propensity matching analysis is performed to

find the association of two mechanical circulatory support devices with major bleeding and

mortality (Ch. 7). A dynamic model to estimate changing risk of major bleeding is described

(Ch. 8) and a novel deep mixture of experts for outcome-driven phenotyping characterizes

patients undergoing acute myocardial infarction complicated by cardiogenic shock (Ch. 9).

This mixture of experts approach is then developed further by inspecting the latent space

to describe phenotypes and to allow for soft assignments between them (Ch. 10).

Finally, this work describes the expansion of these techniques into free living environ-

ments. Ways in which cardiac sensors are and can be applied outside of clinical settings are

detailed (Ch 11). Neural architecture search is applied for implementing a multitask model

to derive blood pressure from a wrist-worn bioimpedance device (Ch. 12). Finally, the deep

mixture of experts model is applied to remote sensors to aid in human activity recognition

(Ch. 13).

Through these three goals, this dissertation advances machine learning for medical ap-

plications, utilizing these techniques to aid in clinical decision making, and finally describes

ways in which these techniques can be applied outside of clinical settings. There is a techni-

cal gap in bridging rich data sources to useful clinical information. While collecting data is

relatively cheap, using it intelligently is difficult. This work allows for improved refinement

of that data to useful clinical metrics.

3



2. CHARACTERISTICS AND OUTCOMES AFTER SARS-COV-2 INFECTION∗

Machine learning techniques offer a range of tools for discovering and analyzing patterns

in data. This chapter was written in the early months of the pandemic, and the numbers

below reflect that. The goal of this work was to provide an understanding of the course of

infection, and to determine pertinent factors relating to admission and to mortality. The

techniques used here are able to show that age and sex are factors with strong statistical

significance for predicting both admission and mortality, while other comorbidities had a

weaker association. Over a year into the pandemic, these findings are less urgent than they

were at its start. However, the work here shows that advanced machine learning is a valuable

tool in providing useful and interpretable clinical understanding.

2.1 Introduction

Severe acute respiratory syndrome virus (SARS-CoV-2) has infected over 110 million

people with nearly 2.5 million deaths worldwide [12]. Despite the global impact, key gaps

in knowledge persist. A comprehensive assessment of patients evaluated for SARS-CoV-2,

from testing to outcome, is needed to guide public health recommendations and scientific

investigations into the mechanisms of disease pathogenesis.

Prior studies have identified many risk factors for SARS-CoV-2 infections and complica-

tions [13, 14, 15, 16]. Older age and male sex have been consistently associated with worse

outcomes, as have many chronic cardiovascular and respiratory diseases [14, 15, 16, 17].

Despite some consistent themes, reports from different geographic locations have reported

variation in both risks and mortality rates [18, 19, 20, 21, 22]. No study yet exists that

describes the characteristics and outcomes of a single cohort from testing to outcome and
∗This chapter is reprinted with permission from "Clinical characteristics and outcomes for 7,995 patients

with SARS-CoV-2 infection" by McPadden, J., Warner, F., Young, H.P., Hurley, N.C., Pulk, R.A., Singh,
A., Durant, T.J., Gong, G., Desai, N., Haimovich, A., Taylor, R.A., Gunel, M., Cruz, C.S.D., Farhadian,
S.F., Siner, J., Villanueva, M., Churchwell, K., Hsiao, Al, Torre, C.J., Velazquez, E.J., Herbst, R.S., Iwasaki,
A., Ko., A.I., Mortazavi, B.J., Krumholz, H.M., and Schulz, W.L., 2021. PLOS ONE. Copyright 2021 by
McPadden, J. et al., CC BY 4.0.
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with detailed information on treatments in a racially and ethnically diverse population.

Drawing from a highly curated real-world data set, we describe a diverse cohort from

a catchment area that represents the diversity of the nation located in an early epicenter

of the US outbreak. We extend the current literature with a detailed assessment of the

characteristics of patients tested, and the clinical courses and outcomes of those testing

positive, and among those admitted with SARS-CoV-2. We sought to identify risk factors

for admission among those with SARS-CoV-2 and in-hospital mortality among discharged

patients. We also characterize the patterns of treatment to provide the context to guide

interpretation of these results.

2.2 Methods

2.2.1 Study setting and data collection

This was an observational, retrospective study of patients who were tested for SARS-

CoV-2 within the Yale New Haven Health (YNHH) system, located within one of the US

epicenters of Covid-19. The healthcare system is comprised of a mix of pediatric, suburban

community, urban community, and urban academic inpatient facilities at five sites with a

total of 2,681 licensed beds and 124,668 inpatient discharges in 2018 [23]. The system also

includes associated outpatient facilities that had 2.4 million outpatient encounters in 2018.

YNHH uses a single electronic health record (EHR) across the health system. Patient demo-

graphics, past medical histories, medications, and clinical outcomes were extracted from our

local Observational Medical Outcomes Partnership (OMOP) [24] data repository and ana-

lyzed within our computational health platform [25, 26]. Data were extracted with custom

PySpark (version 2.4.5) scripts that were reviewed by an independent analyst. The study

was approved by the Yale University Institutional Review Board (protocol #2000027747).

2.2.2 Study cohort

The study cohort consists of all adult patients (≥18 years old) at YNHH who had an

order for SARS-CoV-2 RT-PCR testing and a test result documented within the medical
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Table 2.1: Race and ethnicity as noted in the EHR and mapped to the OMOP CDM.

EHR-Recorded Race or Ethnicity OMOP Mapping Abbreviation

American Indian or Alaska Native American Indian or Alaska Native American Indian or Alaska Native
Asian Asian Asian
Black or African American Black or African American Black
Native Hawaiian Native Hawaiian or Other Pacific Islander Native Hawaiian or Other Pacific Islander
Other Pacific Islander Native Hawaiian or Other Pacific Islander Native Hawaiian or Other Pacific Islander
Other/Not Listed Other Other
Patient Refused Unknown/Not Stated Unknown/Not Stated
Unknown Unknown/Not Stated Unknown/Not Stated
White or Caucasian White White
Hispanic or Latino Hispanic or Latino Hispanic
Not Hispanic or Latino Not Hispanic or Latino Not Hispanic

record between March 1, 2020 and April 30, 2020 (Figure 2.1). SARS-CoV-2 testing in our

health system was limited to symptomatic patients for whom the provider had a concern

for respiratory tract infection in the month of March. Testing increased to include a wider

breadth of symptoms deemed clinically concerning during the month of April. By the end

of April, all patients admitted to the health system were tested for Covid-19. Outpatient

testing required a physician order and was primarily sent to external reference laboratories.

The decision to test was ultimately left to the ordering provider. Testing was first made

available to order within the health system on March 13th, 2020.

Patients admitted more than 24 hours prior to testing were excluded from the admissions

group to reduce the likelihood of including hospital acquired infections. Data and outcomes

were limited to those collected between March 1, 2020 and April 30, 2020. An extract of our

local OMOP data repository from September 13, 2020 was used to allow for final discharge

disposition and vendor-provided transformations of the clinical data warehouse to complete.

For patients with multiple admissions in the study period, only data from the first admission

was used. Race and ethnicity were extracted from the demographics section of the EHR

and mapped to the OMOP common data model (Table 2.1). For demographic fields that

had selected values or responses, individual counts were further anonymized to remove any

counts ≤3.
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Figure 2.1: Patient counts and exclusions based on computed phenotyping criteria.

2.2.3 Outcome ascertainment

We extracted primary outcomes of admission and discharge disposition along with sec-

ondary outcomes of supplemental oxygen use and mechanical respiratory support. The

maximum respiratory requirement during admission was used. Covid-19 related admissions

were identified by extracting data from each patient’s first inpatient admission that had a

visit start time within a window 14 days following or 24 hours before a positive SARS-CoV-2
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test was ordered for a patient. For patients with a transfer to another facility (n = 44), the

outcome from the first visit was used. Visit-related data and in-hospital mortality were di-

rectly extracted from our OMOP data repository. Supplemental oxygen requirements were

computed based on presence of clinical documentation in flowsheets or vitals measurements

and were mapped to one of four categorical variables: low-flow oxygen, high-flow oxygen,

noninvasive mechanical ventilation, and/or invasive mechanical ventilation. Outcomes were

limited to patients who were discharged and were therefore not extracted for patients who

were still admitted at the end of the study period. Digitally extracted outcomes were val-

idated for 30 patients via medical record review by a clinician. All ages were calculated

relative to the time of SARS-CoV-2 test order.

2.2.4 Treatment pathways

To document clinical treatment pathways, we extracted medication administration records

of all admitted patients for their initial visit. Medications related to Covid-19 treatment

based on institutional guidelines were grouped by calendar day of first administration. All

forms of corticosteroids were mapped to a single drug class rather than their individual active

ingredients. The order of medication initiation defined the separate treatment regimens and

final treatment pathway. Treatment pathway visualizations were created with the JavaScript

library Data Driven Documents (D3, version 4) [27].

2.2.5 Statistical analyses

The tables of demographic data and outcome data were built using the R (version 3.5.1)

package tableone. Logistic regressions were performed using the core R function glm. Model

1 was among those testing positive to identify risk factors associated with admission. Can-

didate variables included the features described in Figure 2.2. Before computing the final

model, the variables for "Other" race and ethnicity of "Not Hispanic" were removed in

order to ensure that all variables in the model had variance inflation factor less than 3.

Model 2 was among those with a final discharge disposition at the end of the study period
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(right-censored for patients who were still admitted) to identify risk factors associated with

in-hospital mortality. We began with the variables used in the admission model and removed

the race variables for “American Indian or Alaska Native” and “Native Hawaiian or Other

Pacific Islander” and the age variable “Age 35–44”. This was done to ensure the variation

inflation factors would all be less than 10. A value of p<0.05 was used as the threshold for

significance without adjustment for multiple comparisons.

Elixhauser comorbidity [28] analysis was performed using the R comorbidity package

(version 0.5.3) [29]. Briefly, ICD-10 codes from each patient’s medical history taken from the

OMOP database were used to generate presence or absence of the 31 Elixhauser comorbidity

categories, as well as weighted scores using the AHRQ and van Walraven algorithms [30, 31].

Age-adjusted in-hospital mortality was calculated with direct standardization [32] based

on the discharge population. In this method, age-specific rates are weighted according to the

prevalence of age groups within an a priori standard population. This converts the observed

age-specific rates of some process into a rate which would be observed had that same process

acted upon the standard population. The 2000 US population was used as the standard

population for age adjustment [32]. We used weights for five-year age groupings from ages

15 to 84 and a final group of 85 and over.

2.3 Results

The number of patients positive for SARS-CoV-2 increased rapidly beginning in March

2020 (Figure 2.3). A total of 28605 patients were tested for SARS-CoV-2 with 7995 patients

(27.9%) who had at least one positive result during the observation period. Of those with

positive tests, 2154 (26.9%) had an associated hospital admission. Of admitted patients,

2152 (99.9%) had a final discharge disposition and 2 (0.1%) remained hospitalized at the

time of data extraction. For SARS-CoV-2 infected patients who were not admitted, the

median number of days elapsed between testing and the study end date was 23.4 days (IQR

14.6–30.6).
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Figure 2.2: Demographics and Elixhauser comorbidities of all patients tested, tested positive,
and admitted for SARS-CoV-2.
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Figure 2.3: Cumulative patients tested (blue) and positive (red) for SARS-CoV-2.

2.3.1 Characteristics of individuals tested for SARS-CoV-2

Of the patients tested for SARS-CoV-2, a majority (n = 17191; 60.1%) were female

(Figure 2.2). The most common comorbidities were uncomplicated hypertension (n = 11950;

41.8%), chronic pulmonary disease (n = 9043; 31.6%), and depression (n = 7697; 26.9%). The

median age of tested adults was 50.8 years (IQR 36.1–63.5). In those tested for SARS-CoV-2,

4.8% did not have a reported race within the demographics section of the EHR. The majority

of tested patients were reported as White (n = 16825; 58.8%), followed by Black (n = 5093;

17.8%) and Other race (n = 4464; 15.6%). Those who self-identified as Hispanic ethnicity

represented 19.1% (n = 5468) of the tested population. Testing frequency by race and

ethnicity showed slight overrepresentation of minority groups based on the census numbers

for Connecticut, which has a demographic breakdown of 66.9% White, 12.2% Black, 5.0%

Asian, 0.6% American Indian or Alaskan Native, 0.1% Native Hawaiian or Pacific Islander,

and 16.9% Hispanic [33].

Age was similarly distributed between the SARS-CoV-2 tested and positive populations.

Of those who tested positive, the median age was 52.3 years (IQR 38.3–64.8). Patients
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with a positive test were more frequently female (n = 4435, 55.5%) with uncomplicated

hypertension (n = 3334, 41.7%), obesity (n = 2195, 27.5%), and chronic pulmonary disease

(n = 2005, 25.1%) as the most common comorbidities. Patients with a positive test were most

frequently reported as White (n = 3616, 45.2%), followed by Other race (n = 1874, 23.4%)

and Black (n = 1856, 23.2%). Those who were reported as Hispanic ethnicity accounted for

28.1% (n = 2245) of SARS-CoV-2 positive patients.

2.3.2 Features associated with admission in patients with Covid-19

The median age of SARS-CoV-2 positive patients admitted to the hospital was 66.2 years

(IQR 53.7–79.9) and a majority were male (n = 1123, 52.1%) as shown in Figure 2.2. The

most common Elixhauser comorbidities for admitted patients included uncomplicated hy-

pertension (n = 1387, 64.4%), fluid & electrolyte disorders (n = 905, 42.0%), and diabetes

without complications (n = 810, 37.6%). Minority groups were overrepresented in the ad-

mitted population compared to census numbers, particularly for those with a recorded race

of Black (n = 546, 25.3%) or Other race (n = 497, 23.1%). Those recorded as Hispanic

ethnicity accounted for 26.0% (n = 560) of admitted patients.

In multivariable analyses, older age was significantly associated with risk of admission

(Figure 2.4, Table 2.2). Age ≥85 years had the highest risk of admission (OR 22.03, 95%CI

= 16.10–30.30). Male sex was also associated with increased risk of admission (OR 1.68,

95%CI = 1.48–1.90). The comorbidities associated with increased risk of admission included

fluid & electrolyte disorders (OR 1.99, 95%CI = 1.67–2.37), psychoses (OR 1.98, 95%CI =

1.47–2.69), metastatic cancer (OR 1.55, 95%CI = 1.11–2.15), pulmonary circulation disor-

ders (OR 1.53, 95%CI = 1.14–2.06), peptic ulcer disease (OR 1.47, 95%CI = 1.04–2.07),

drug abuse (OR 1.46, 95%CI = 1.11–1.92), renal failure (OR 1.38, 95%CI = 1.08–1.75),

other neurological disorders (OR 1.31, 95%CI = 1.07–1.61), and obesity (OR 1.18, 95%CI

= 1.02–1.37). Of note, complicated hypertension (OR 1.14, 95%CI = 0.88–1.48), uncompli-

cated hypertension (OR 0.97, 95%CI = 0.83–1.13), and chronic pulmonary disease (OR 0.94,

95%CI = 0.81–1.09) were not found to significantly increase the odds of admission. Recorded
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races with increased odds of admission included Asian (OR 1.58, 95%CI = 1.02–2.41) and

Black (OR 1.43, 95%CI = 1.14–1.78). Hispanic ethnicity was also associated with increased

risk of admission (OR 1.81, 95%CI = 1.50–2.18).

2.3.3 Outcomes in discharged patients with Covid-19

Of the patients admitted for COVID-19 the majority (n = 2152, 99.9%) had a known

disposition and therefore had complete outcomes available at the time of data extraction

(Figure 2.5). The median length of stay for discharged patients was 8.1 days (IQR 4.3–14.8).

Mortality occurred in the emergency department for 8 of these patients who were excluded

from respiratory analysis as they did not have complete respiratory outcomes reported.

The majority of patients with respiratory outcomes did not require invasive ventilation

(n = 1823, 84.7%). For these patients, male (49.8%) and female (50.2%) sex were similar

in frequency with most frequently self-reported races of White (n = 908, 49.8%), Black

(n = 444, 24.4%), and Other race (n = 398, 21.8%). The most prevalent comorbidities

included uncomplicated hypertension (n = 1182, 64.8%), fluid & electrolyte disorders (n =

770, 42.2%), and cardiac arrhythmia (n = 694, 38.1%). Invasive ventilatory support was

required for 15.3% (n = 329) of patients with respiratory outcomes. The majority of those

who required invasive ventilatory support were male (n = 215, 65.3%) with self-reported

race of White (n = 113, 34.3%), Black (n = 100, 30.4%), and Other race (n = 99, 30.1%).

The most prevalent comorbidities included uncomplicated hypertension (n = 204, 62.0%),

diabetes without complication (n = 145, 44.1%), and fluid & electrolyte disorders (n = 134,

40.7%).

In-hospital mortality was 14.2% (n = 305) of patients with a discharge disposition and

these patients had a median length of stay of 7.9 days (IQR 3.5–15.1). The majority of

patients who experienced in-hospital mortality were male (n = 175, 57.4%) and mortality

increased with age (Figure 2.6, panel A); the median age of those who experienced in-hospital

mortality was 80.7 (IQR 70.5–88.6) years. Those with older age, particularly those ≥85 years

old, predominantly self-reported a race of White (Figure 2.6, panel B). The comorbidities
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Table 2.2: Multivariable analysis with odds ratios for admission in patients with a positive
SARS-CoV-2 test compared to patients who were not admitted.

Odds Ratio CI 2.50% CI 97.50% p

(Intercept) 0.052 0.040 0.067 <0.01
Sex
Male 1.68 1.48 1.90 <0.01
Race or Ethnicity
American Indian 0.44 0.02 2.68 0.47
Asian 1.58 1.02 2.41 0.04
Black 1.43 1.14 1.78 <0.01
Hawaiian/Pacific Islander 1.45 0.53 3.52 0.44
Hispanic 1.81 1.50 2.18 <0.01
White 0.85 0.70 1.03 0.09
Age
35-44 1.43 1.13 1.81 <0.01
45-54 1.76 1.41 2.21 <0.01
55-64 3.24 2.60 4.04 <0.01
65-74 6.95 5.45 8.91 <0.01
75-84 15.91 11.92 21.33 <0.01
>85 22.03 16.10 30.30 <0.01
Elixhauser Comorbidities
AIDS/HIV 1.26 0.71 2.20 0.43
Alcohol abuse 1.24 0.95 1.62 0.12
Blood loss anemia 0.98 0.70 1.35 0.88
Cardiac arrhythmias 1.13 0.96 1.33 0.13
Chronic pulmonary disease 0.94 0.81 1.09 0.43
Coagulopathy 1.11 0.87 1.43 0.39
Congestive heart failure 1.06 0.83 1.36 0.63
Deficiency anemia 0.82 0.67 1.00 0.05
Depression 0.85 0.72 1.01 0.06
Diabetes, complicated 1.18 0.94 1.47 0.15
Diabetes, uncomplicated 1.16 0.95 1.40 0.15
Drug abuse 1.46 1.11 1.92 0.01
Fluid and electrolyte disorders 1.99 1.67 2.37 <0.01
Hypertension, complicated 1.14 0.88 1.48 0.31
Hypertension, uncomplicated 0.97 0.83 1.13 0.68
Hypothyroidism 0.89 0.75 1.06 0.21
Liver disease 1.01 0.83 1.23 0.91
Lymphoma 1.07 0.58 1.92 0.83
Metastatic cancer 1.55 1.11 2.15 0.01
Obesity 1.18 1.02 1.37 0.02
Other neurological disorders 1.31 1.07 1.61 0.01
Paralysis 1.00 0.70 1.44 1.00
Peptic ulcer disease, excluding bleeding 1.47 1.04 2.07 0.03
Peripheral vascular disorders 0.84 0.68 1.04 0.12
Psychoses 1.98 1.47 2.69 <0.01
Pulmonary circulation disorders 1.53 1.14 2.06 0.01
Renal failure 1.38 1.08 1.75 0.01
Rheumatoid arthritis/collagen vascular diseases 0.89 0.69 1.15 0.38
Solid tumor without metastasis 0.87 0.69 1.09 0.22
Valvular disease 1.01 0.83 1.23 0.93
Weight loss 0.98 0.78 1.23 0.88
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Figure 2.4: Multivariable analysis with odds ratios for admission in patients with a positive
SARS-CoV-2 test.
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Figure 2.5: Discharge and respiratory outcomes (highest requirement during admission)
for all patients with known disposition categorized by sex, race, ethnicity and Elixhauser
comorbidities.
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most common among those who expired were uncomplicated hypertension (n = 253, 83.0%),

fluid & electrolyte disorders (n = 183, 60.0%), and cardiac arrhythmia (n = 162, 53.1%).

Those who were admitted and/or experienced in-hospital mortality compared to those who

tested positive for SARS-CoV-2 in all racial and ethnic groups had an increased comorbidity

burden as determined by weighted Elixhauser comorbidity scores (Figure 2.6, panel C and

D), with the exception of those with Unknown ethnicity which represented a small number

of patients. For those who expired, the most common recorded races were White (n = 185,

60.7%), Black (n = 69, 22.6%), and Other race (n = 43, 14.1%). Those who reported Hispanic

ethnicity accounted for 16.1% (n = 49) of in-hospital mortality. In-hospital, age-adjusted

mortality rates were 4.1%, 3.8%, 5.3%, 4.0%, and 4.3% for those who reported a race of

White, Black, Asian, Hawaiian or Pacific Islander, and Other race, respectively (Figure 2.7).

Those who reported Hispanic ethnicity had an age-adjusted in-hospital mortality rate of

4.4%.

As seen with admission, regression analysis demonstrated that increased age had the

highest risk for in-hospital mortality (Figure 2.8, Table 2.3), with the largest risk seen for

those ≥85 years old (OR 23.3, 95%CI = 10.1–64.1). Male sex was also associated with

increased odds of in-hospital mortality (OR 1.76, 95%CI = 1.33–2.35). Of the comorbidities

present within the medical history and problem list of the EHR, only a history of blood loss

anemia (OR 1.72, 95%CI = 1.07–2.74) and other neurological disorders (OR 1.47, 95%CI =

1.06–2.05) were significant. Race was not statistically associated with a risk of in-hospital

mortality in this cohort.

2.3.4 Treatment pathways for admitted patients with Covid-19

Of patients with known outcomes, 1895 (88.1%) received medications for Covid-19 treat-

ment while admitted. We assessed treatment pathways for 13 Covid-19 related medications.

Patients were treated with 188 different possible medication regimen permutations with 50

unique combinations (Figure 2.9). The most common first line regimens included hydroxy-

chloroquine (88.3% of patients), tocilizumab (23.8%) and azithromycin (22.7%). The most
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Table 2.3: Multivariable analysis with odds ratios for mortality in discharged patients.

Odds Ratio CI 2.50% CI 97.50% p

(Intercept) 0.008 0.003 0.021 <0.001
Sex
Male 1.76 1.33 2.35 <0.01
Race or Ethnicity
Asian 1.76 0.54 5.18 0.32
Black/African-American 1.22 0.64 2.36 0.55
Hispanic 1.34 0.75 2.37 0.32
White 1.18 0.65 2.14 0.59
Age
45-54 1.78 0.63 5.42 0.28
55-64 4.20 1.83 11.38 <0.01
65-74 7.10 3.13 19.16 <0.01
75-84 15.66 6.91 42.34 <0.01
>85 23.34 10.06 64.09 <0.01
Elixhauser Comorbidities
AIDS/HIV 1.00 0.27 2.84 0.99
Alcohol abuse 0.91 0.52 1.53 0.73
Blood loss anemia 1.72 1.07 2.74 0.02
Cardiac arrhythmias 1.03 0.74 1.43 0.85
Chronic pulmonary disease 1.01 0.74 1.39 0.93
Coagulopathy 1.31 0.89 1.92 0.16
Congestive heart failure 1.06 0.71 1.56 0.79
Deficiency anemia 0.83 0.58 1.20 0.33
Depression 0.78 0.56 1.08 0.14
Diabetes, complicated 1.10 0.72 1.68 0.66
Diabetes, uncomplicated 0.99 0.66 1.47 0.96
Drug abuse 0.89 0.49 1.55 0.68
Fluid and electrolyte disorders 1.22 0.86 1.72 0.27
Hypertension, complicated 0.88 0.56 1.36 0.56
Hypertension, uncomplicated 1.10 0.73 1.67 0.65
Hypothyroidism 1.12 0.81 1.54 0.51
Liver disease 1.32 0.88 1.94 0.17
Lymphoma 1.21 0.39 3.32 0.72
Metastatic cancer 1.15 0.67 1.93 0.61
Obesity 1.22 0.89 1.69 0.22
Other neurological disorders 1.47 1.06 2.05 0.02
Paralysis 0.83 0.47 1.42 0.51
Peptic ulcer disease, excluding bleeding 0.82 0.46 1.40 0.47
Peripheral vascular disorders 0.94 0.67 1.33 0.74
Psychoses 1.11 0.71 1.70 0.65
Pulmonary circulation disorders 1.45 0.96 2.19 0.07
Renal failure 1.31 0.89 1.93 0.16
Rheumatoid arthritis/collagen vascular diseases 1.01 0.64 1.55 0.96
Solid tumor without metastasis 0.84 0.57 1.21 0.35
Valvular disease 0.75 0.53 1.06 0.11
Weight loss 1.04 0.73 1.48 0.83
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Figure 2.6: A) Frequency of in-hospital mortality by age, B) distribution of age by self-
reported race in patients positive for SARS-CoV-2, and weighted Elixhauser comorbidity
scores by patient status grouped by C) recorded race and D) recorded ethnicity.

frequent second-line regimens, aside from the most frequent first line agents, included the

addition of steroids (21.3%), atazanavir (6.5%), and lopinavir/ritonavir (3.4%). The most

common treatment permutations were hydroxychloroquine alone (25.2%), hydroxychloro-

quine in combination with tocilizumab (18.8%), or hydroxychloroquine in combination with

azithromycin (8.1%). A total of just six Covid-19 related medications were given to more

than 1% of admitted patients in our cohort: hydroxychloroquine sulfate (94.7%), tocilizumab

(51.0%), azithromycin (28.8%), steroids (24.3%), atazanavir (15.5%), and lopinavir/ritonavir

(7.8%). All race and ethnicity groups were prescribed hydroxychloroquine most frequently,

with patients who self-reported as Asian having the lowest rate (92.7%). Tocilizumab was
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Figure 2.7: In-hospital, age-adjusted mortality in discharged patients with SARS-CoV-2.

the second most frequently prescribed medication in all groups. The use of azithromycin

had the most notable variation among groups: it was the second most common medica-

tion in those identifying as Other race, with a frequency of 46.7% of patients, but was fifth

most common among those who identified as Black, with only 16.7% of patients receiving

azithromycin.

2.4 Discussion

In one of the largest real-world analyses of risk factors associated with Covid-19 infec-

tion and disease severity, we identified age as the primary risk factor associated with both

admission and in-hospital mortality in those infected with SARS-CoV-2. Black race and

Hispanic ethnicity were associated with increased risk of admission in our cohort and had

increased disease and mortality burden, but age-adjusted in-hospital mortality was similar

among all reported races and ethnicities. Comorbidities had much less impact on risk for

either admission or in-hospital mortality in our study.

Our work extends the literature in several important ways. Firstly, we followed a single

large cohort to identify risks associated with infection and severe disease from the time of
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Figure 2.8: Multivariable analysis with odds ratios for mortality in discharged patients.

21



Figure 2.9: Sunburst diagram of medication pathways with individual regimens grouped by
order of initiation.

testing through discharge. Secondly, we provide further evidence that age and male sex are

significantly associated risk factors for both admission and in-hospital mortality. Thirdly,

we found that comorbidities, while common in those with SARS-CoV-2, were not strongly

associated with either admission or in-hospital mortality based on multivariable analysis.

Fourthly, we found race and ethnicity to be associated with infection and admission in this

cohort, but with in-hospital mortality that was similar among these groups in our discharged

population. Finally, we identified consistent use of medications within our admitted pop-

ulation, but with many possible treatment pathways for any individual patient and with

frequent use of investigational therapies for Covid-19. Further investigation is needed to

characterize potential benefits or risks associated with the various treatment pathways that

have been available over the course of the pandemic.
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Our data confirm findings in other studies that show age as a primary risk factor for ad-

mission and in-hospital mortality in adult patients and that male sex is also highly associated

with these outcomes [16, 18, 34, 20, 35, 36]. While the mechanisms that may lead to more se-

vere disease in men have not been definitively elucidated, several potential mechanisms have

been proposed to explain the demonstrated differences, including increased comorbidities

and changes in the immune response in those who are male and older, along with possible

genetic/biologic differences that may increase disease severity in men [37]. Similarly, immune

senescence, with dysregulated inflammation and decreased adaptive immune response, has

been hypothesized as a possible reason for worse disease in older populations [38].

Many studies have shown that Covid-19 has disproportionately affected minority popula-

tions across the US [39, 40, 41, 42]. Within our cohort, Black and Hispanic populations were

overrepresented in those who were tested, positive, and admitted for SARS-CoV-2 compared

to census data for Connecticut. Studies based on regional mortality data, which have in-

cluded out-of-hospital mortality, have shown that severe disease may also be more prevalent

in minority populations [21, 40]. In our study, Black race was overrepresented in those with

more severe outcomes compared to state census numbers. However, in the discharged pop-

ulation, we found that age-adjusted, in-hospital mortality was similar among all racial and

ethnic groups, with rates ranging from 3.8% to 5.3%. This finding is consistent with other

studies of in-hospital mortality related to Covid-19 [14, 34], but also demonstrates that mi-

nority populations experience a higher overall burden of disease. While a small percentage of

this cohort did not have race or ethnicity data provided, it remains limited by the potential

for errors during patient registration and the possibility of provider-reported responses.

Our data reflect the prominence of comorbidities in those with SARS-CoV-2 infection.

While comorbidities were common, some of the most commonly reported risks for severe

disease [13, 43, 44] were not identified as risks in this study and multivariable analysis did

not find a history of hypertension or diabetes to be significantly associated with admission.

An increased comorbidity burden was noted in those with in-hospital mortality compared to
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those who were discharged alive. However, multivariable analysis only identified a history

of blood loss anemia to be significantly associated with in-hospital mortality. Other comor-

bidities, such as obesity, were associated with admission but not in-hospital mortality. It is

unclear if these patients required admission due to more severe disease or were admitted due

to perceived risk based on early reports of Covid-19 risk factors. Similarly, a history of drug

abuse and psychoses were associated with admission, but likely represented more frequent

testing in these populations with limited ability to discharge patients to shared facilities

following a positive SARS-CoV-2 test. These findings highlight the fact that age and sex

appear to be the predominant drivers of severe disease. Additional studies will be needed to

further characterize the risk of underlying disease on the severity of Covid-19.

The risks and outcomes reported here should be assessed in the context of the treatment

protocols used during this period of the epidemic. Treatment standards based on early

recommendations led to a majority of patients receiving disease related therapy, often with

investigational treatments. Of patients who received a Covid-19 targeted therapy, 94.7%

received hydroxychloroquine, 51.0% received tocilizumab, and 28.8% received azithromycin.

The use of Covid-19 directed treatments was consistent among races and ethnicities in our

cohort. But despite an early push to use promising medications from in vitro studies, such

as hydroxychloroquine and azithromycin, evidence now demonstrates that neither is likely

beneficial for admitted patients. As such, the treatment context of future studies should be

similarly assessed to determine whether changes in treatment pathways impact the reported

risks and outcomes in those with Covid-19.

Our analysis leveraged real-world data derived from the EHR to assess all patients tested

for SARS-CoV-2 within our health system. We implemented computed phenotypes to iden-

tify cases and clinically relevant outcomes, with a subset manually reviewed for accuracy.

Our findings add to a growing base of evidence related to Covid-19 risk factors and out-

comes. However, as an observational study based on real-world data, this study also has

several limitations. First, while standardized testing protocols were in place, testing was of-
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ten limited to symptomatic individuals or those with known exposure risks, thus potentially

biasing our cohort to those who were symptomatic and sought care. The study was also

limited to a single health system, but one that consists of a mixture of academic, urban,

and suburban care facilities with a diverse patient population. In addition, while our health

system implemented standardized treatment protocols, patients received therapies that were

investigational for Covid-19 at the time of the study and use of these medications may not be

similar at all institutions, especially as Covid-19 treatment protocols rapidly evolve as new

evidence is obtained. Another limitation is that features associated with risk of admission

may not correlate to risk of disease severity, as the decision to admit can be impacted based

on discharge options or perceived clinical risks by healthcare providers. Finally, due to the

timeline of the current outbreak, this study was limited to the initial admission and only

assessed in-hospital mortality. Therefore, additional studies are needed to assess the impact

of disease on patients not admitted to the hospital and the long-term effects of SARS-CoV-2

infection.

There is an ongoing need to rapidly generate and communicate evidence, while also being

cautious that only high-quality data are used to inform policy and develop clinical recom-

mendations. While waiting for larger, more comprehensive case control and population-scale

studies to define COVID-19 specific risks, prevalence, treatment, and outcomes, providers

and public health officials need the best available evidence for clinical use. The data pre-

sented here provide findings from a large cohort that was followed from testing through

discharge, identified increased age and male sex as the strongest risk factors for admission

and in-hospital mortality, and found that in-hospital mortality was similar in racial and

ethnic groups within our health system. Ongoing studies that further elucidate the risk of

comorbidities, particularly given rapidly evolving treatment guidelines, remain needed as the

Covid-19 pandemic continues to grow.

25



2.5 Conclusion

The early COVID-19 experience at YNHH demonstrated that increasing age and male sex

are the risks most strongly associated with admission and in-hospital mortality in those with

SARS-CoV-2 infection. Minority racial and ethnic groups had increased risk of admission and

higher disease burden, including mortality. But, for discharged patients, in-hospital mortality

rates were similar in all racial and ethnic groups. While comorbidities were frequently

observed in patients with SARS-CoV-2, few were associated with admission or in-hospital

mortality in our cohort. Despite the limitations, this dataset from a multi-hospital health

system with a diverse patient population presents valuable information related to risk factors

for SARS-CoV-2 infection and short-term outcomes.
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3. VISUALIZATION OF EMERGENCY DEPARTMENT CLINICAL DATA FOR

INTERPRETABLE PATIENT PHENOTYPING∗

While analysis of data can allow for specific and direct relationships to outcomes to be

found, it can also allow for finding more nebulous relationships. Whereas the work outlined

in Chapter 2 dealt with supervised learning, the work presented in this chapter examines

unsupervised learning. Here, we use a combination of techniques in order to assess and

characterize heterogeneity in patients presenting to an emergency department. We do this

as an aid for rapid clinical understanding. The approach allows for newly presenting patients

to rapidly be mapped to an existing phenotype of patients, and allows for visual inspection

of a 2D representation of those phenotypes.

3.1 Introduction

Electronic health records (EHRs) include heterogeneous data that represent past and

ongoing patient care episodes. The EHR is accessed as both a real-time information transfer

environment as well as a medium for retrospective analysis. In the emergency department

(ED) setting, patients are, in the vast majority of cases, first seen by medical professionals

for registration and triage. This process links a digital record to the individual waiting to

be seen and enables the rapid assessment of patient complexity as well as the visit urgency.

ED triage is made more challenging by increases in patient volume [45] and relative

subjectivity in the triage process [46]. The emergency severity index (ESI) is a five-level

triage system developed to improve robustness in nurse-driven triage assessments and has

been shown to correlate with admission rate and mortality [47]. However, this approach is

not designed to leverage the breadth of data available in the EHR. More recently, various

machine learning approaches to augmenting triage have been described [48][49][50] and there
∗This chapter is reprinted with permission from "Visualization of Emergency Department Clinical Data

for Interpretable Patient Phenotyping" by Hurley, N. C., Haimovich, A. D., Taylor, R. A., & Mortazavi, B.
J., 2019. arXiv preprint arXiv:1907.11039. Copyright 2019 by Nathan C. Hurley.
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is mounting evidence to suggest that incorporating heterogenous data into initial patient

assessments enables a more refined and accurate prediction of critical patient outcomes.

While risk and event prediction is now a mature field within medical informatics [51],

there is growing interest in leveraging massive EHR databases to uncover phenotypes of

complex disease processes. These efforts have multiple aims which include the automated

discovery of patient populations for retrospective analyses and the identification of specific

subgroups that may benefit from particular interventions or therapies [52]. Prior work has

shown potential utility in varied fields including hematology [53] and cardiology [52].

In the ED setting, however, there is a pressing need for tools that enable prospective and

interpretable phenotyping. Visualization offers one appealing approach to interpretability

and techniques like t-distributed stochastic neighbor embedding (t-SNE) [54] have been

used in varied settings with great success [55]. However, a given visualization produced by

t-SNE is unable to be expanded to future data points, as t-SNE produces a non-parametric

visualization [54]. In contrast, uniform manifold approximation and projection (UMAP) is

a parametric visualization technique that preserves more global structure than does t-SNE

while also allowing future data points to be fit to an existing model without recreating the

entire model [56].

Here, we describe the first application of EHR phenotype visualization to the ED triage

process. Using a database containing 560,486 anonymized patient visits with 972 sparsely-

populated features, we have previously shown the ability to robustly predict patient disposi-

tion (hospital admission or discharge) using a very small subset (n = 15) of these features[48].

In that work, we found that an XGBoost model trained on triage score, medication counts,

demographics, and hospital usage statistics could predict hospital admission with an AUC of

0.91. That work found that although models trained on triage data or history data performed

similarly, models trained on both triage and history data showed a marked improvement in

predicting admission. However, that work focused on the binary outcome of admission or

discharge. In the present work, we expand on this prior work by implementing and validat-
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ing a technique to visualize subpopulations within this dataset. We show that new patients

can be mapped into this visualization, and we show that patient similarities and differences

to local subpopulations can give information about likely clinical outcomes in order to aid

clinical assessment. We anticipate that this work could be utilized in a clinical setting in

order to aid in understanding relationships between patients and to aid in clinical decision

making.

The contributions of this work are:

• A method of using UMAP for non-linear dimensionality reduction, Gaussian mixture

models (GMMs) for clustering data, and a combination for data visualization.

• A metric utilizing the adjusted Rand index (ARI) between different folds of data clus-

tering to determine appropriate model hyperparameters and cluster stability in random

subsets of the data.

• An application in real-world clinical data of patients presenting with five common

clinical chief complaints. The emergent properties of these clusters are described, and

clinically-relevant attributes are discussed to show clinical decision support potential.

The rest of this paper is organized as follows. In section 3.2, we discuss related work in patient

phenotyping and dimensionality reduction. We also discuss the utilization of ARI as a metric

for measuring partition similarity. In section 3.3, we discuss the data used and the process

of building our model to find and validate clusters within the clinical dataset. In section 3.4

we show the model embeddings and results on both the synthetic and clinical dataset. We

discuss the clinical characteristics of the clusters discovered within the clinical dataset. In

section 3.5, we discuss the significance of the results and some of the clinical pictures that

can be drawn from the results. We then discuss directions for future applications of this

work.
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3.2 Related Work

Previous patient phenotyping work has focused on identifying phenotypes among patients

with a given disease state, such as heart disease [57], sepsis [58], or amyotrophic lateral

sclerosis [59]. In these works, authors have used various clustering techniques, such as

hierarchical agglomeration after reducing dimensionality with principal component analysis

(PCA) [57] or by using K-means clustering on patient clinical severity scores [58]. Clusters

have also been discovered through training a semi-supervised denoising autoencoder, and

then using PCA or t-SNE to represent the hidden nodes of the autoencoder and identifying

the clusters manually [59]. In contrast, our approach is not specifically tailored to a given

disease state, but rather is applied to any patient presenting for emergency care with a

particular chief complaint.

Other work has looked at enumerating a wide range of specific phenotypes, and then

identifying those phenotypes within a patient population [60]. However, these approaches

are supervised techniques; physicians with top-level domain knowledge drive the phenotype

discovery. In these approaches, the phenotype is identified clinically, and new patients are

matched to the phenotype clusters using custom rules and logic. In contrast, our approach is

not trained with a particular clinical condition or outcome in mind, but instead searches for

phenotype clusters within a given patient set. This allows for application of our technique

to new and unseen phenotypes without the need for expert evaluation.

Dimensionality reduction techniques are often used in visualizing multidimensional data.

Earlier approaches have used PCA and GMMs to visualize populations of samples in a 2D

space in order to aid in clinical diagnosis [61]. PCA has also been used in conjunction

with other clustering methods such as agglomerative clustering or K-means clustering [62].

However, in sparse datasets PCA often reaches a limit where it is unable to express data

without losing a significant amount of information about the dataset variability.

Other sparse clinical datasets have been visualized with t-SNE [55]. t-SNE is a powerful

tool that embeds data into lower dimensions while maintaining structure present at higher
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dimensions [54]. However, t-SNE is non-parametric; while it is effective at embedding a given

dataset, it is difficult to embed new, previously unseen members of that dataset. UMAP is

a newer dimensionality reduction technique that is able to scale beyond t-SNE while also

expressing relations that t-SNE is unable to express [56]. UMAP is a parametric approach,

and as such is able to embed new data without necessitating a retraining of the model.

Although several studies have utilized UMAP for phenotyping cell populations [63][64], we

did not find any studies that utilize UMAP for patient phenotyping with EHR data.

The adjusted Rand index (ARI) is a widely-used metric of similarity between two parti-

tions of a given set of objects [65]. The ARI for two partitions of a set ranges from a value

of 1, when the two partitions are equivalent, to near 0 when the two partitions are chosen

at random. The closer the ARI of two partitions is to 1, then the more similarly partitioned

the set is. ARI is robust to partitions of different sizes, and has been used for evaluating the

results of various clustering techniques [66].

3.3 Methods

In this section, we describe our visualization technique. The objective is to visualize

an embedding of EHR data which preserves global structure so that physicians can rapidly

infer relationships between new patients and well-defined subpopulations of patients. We

first filter our data by chief complaint upon presentation to the ED. Next, we split our

data into a training set and a validation set. The training set is split into five partitions

which are embedded in two dimensions using UMAP. GMMs are trained on each partition,

and then the model trained on each partition is applied to the validation set. The number

of clusters in the final model is determined by maximizing the ARI among labels for the

validation set. A diagram of this process in shown in Figure 3.1. We perform this process

both on synthetic data to demonstrate the method’s viability, and on a clinical dataset

to demonstrate the clinical applicability. All code used here is available online at https:

//github.com/nch08a/EDVizPhenotyping.
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Figure 3.1: A diagram of the method presented here. The data is randomly split into
training data (80%) and testing data (20%). The training data is split into five folds. Each
combination of four folds is used to train a separate UMAP -> GMM model, which is then
applied to the testing data. The mean pairwise ARI is calculated between each test data
cluster prediction, and the set of hyperparameters giving the best agreement is selected for
clinical analysis.

3.3.1 Datasets

3.3.1.1 Synthetic Data

A synthetic dataset was generated using the make_classification package in scikit-learn

[67]. The dataset was generated with 100,000 samples of 100 features, 50 of which were

informative. The dataset was generated to have 10 classes, and for the class separation to

be 0.75. These parameters were chosen to generate a dataset with noise and a large amount

of high-dimensional structure. Having 50 informative features prevents the data from being

easily explained by any simple projection to a 2D space. Utilizing non-informative features

adds noise to the model in a way similar to correlated patient data. A class separation

of 0.75 results in overlapping distributions, so that samples do not clearly align with one

cluster or another. With this overlap, there may be some samples which are not able to be

correctly classified even with full model information. This noise allows the dataset to reflect
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Table 3.1: Selected Patient Characteristics

Abdominal Pain Chest Pain Shortness of Breath Back Pain Falls
Count 54,315 35,778 24,652 20,633 19,012
Disposition- Admit (%) 19,482 35.9% 16,065 44.9% 15,791 64.1% 3,061 14.8% 5,642 29.7%
Gender— Male (%) 19,169 35.3% 16,587 46.4% 10,231 41.5% 9,010 43.7% 7,823 41.2%
Insurance Status— Medicare (%) 20,833 38.4% 11,778 32.9% 6,530 26.5% 8,690 42.1% 4,677 24.6%
Insurance Status— Medicaid (%) 8,957 16.5% 8,376 23.4% 9,426 38.2% 3,234 15.7% 6,890 36.2%
Language— English (%) 48,560 89.4% 32,479 90.8% 22,861 92.7% 18,537 89.8% 17,811 93.7%
Arrival via Ambulance (%) 12,532 23.1% 13,603 38.0% 11,470 46.5% 4,168 20.2% 10,688 56.2%
Mean Age in Years (range) 45.7 18-105 53.4 18-105 61.2 18-107 47.3 18-103 61.1 18-107
Mean Triage Heart Rate (range) 85.8 35-187 84.6 30-240 88.8 30-199 84.3 44-205 83.6 30-180
Mean Triage Systolic BP(range) 132.5 59-248 135.7 59-274 134.7 60-312 134.0 63-246 135.0 59-261
Mean Triage Diastolic BP (range) 80.6 27-194 81.8 28-172 80.2 30-214 81.3 32-157 80.2 28-156
Mean Triage Respiratory Rate (range) 17.6 8-61 17.7 8-69 18.6 10-66 17.6 8-64 17.5 18-57
Mean Triage O2 Saturation (range) 97.4 67-99 97.3 60-99 96.6 60-99 97.4 71-99 97.1 73-99
Mean Triage Temperature in °F (range) 98.1 94.5-104.7 98.0 94.1-104 98.1 90.1-106 98.0 94.3-104.4 98.0 93.3-103.4
Mean Prior Admissions (range) 1.2 0-49 1.4 0-48 1.7 0-40 0.6 0-46 0.9 0-42

difficulties in clinical datasets.

3.3.1.2 Clinical Data

The clinical dataset used in this study was previously detailed and is publicly avail-

able [48]. This dataset includes 560,486 patient visits at three EDs, collected from March

2014-July 2017. This dataset was preprocessed to include all adult patients who were either

discharged or admitted. Data collected about the patients includes disposition, triage evalua-

tion, chief complaint, hospital usage, past medical history, outpatient medications, historical

labs and vitals, and imaging/ekg counts. The dataset used in this paper is available online

as described in [48].

Early analysis did not show cluster stability when the method was applied to the entire

dataset, and so the data was broken down into subsets by patient chief complaint. The five

largest chief complaint subsets were analyzed here, but this technique could be applied to any

chief complaint subset. The five subsets analyzed here were the only subsets consisting of at

least 3% of the total dataset. Statistics relating to the patient chief complaint subpopulations

are shown in Table 3.1.

These patients represent a wide variety of adult patients who presented at an ED. ED care

is difficult as the patient population seen is highly variable: there are acute, emergent cases,

as well as patients who come to the ED for more routine care that could be more appropriate

in other health care settings. Therefore, the patients shown in Table 3.1 represent a wide
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spectrum from healthy to critically ill. One proxy for severity is the means by which a patient

arrives at the ED; a patient arriving via ambulance is more likely to be sick than a patient

who walked or drove themselves. Number of prior admissions can be a proxy for long term

health of a patient. Patients with chronic illness are more likely to have been hospitalized

a larger number of times, while patients without chronic illness are less likely to have been

hospitalized a larger number of times.

3.3.2 Data Preprocessing

Each chief complaint dataset was split into 80% training and 20% testing. The training

set was further split into 5 training folds by 5-fold cross validation. However, the testing folds

produced by this cross validation were not used for testing, as the classification metric used

(ARI) requires the same test fold for every model trained. All splits were random with no

prior weighting of the datasets. Admission data for the given ED visit and emergency severity

index (ESI) were omitted so as to censor the model from the eventual clinical outcome and

from direct triage assessment. Within each fold, the categorical data was one-hot encoded.

The numerical training data was normalized to have unit range and zero mean. Missing data

was mean imputed. The test data was normalized by the same scaling factor that produced

the training normalization, and missing data was imputed to the mean of the training data.

3.3.3 Dimensionality Reduction and Clustering

Both datasets were embedded into two dimensions for ease of visualization. Two methods

were examined for dimensionality reduction: PCA and UMAP. These methods were chosen

for their ability to provide a parametric dimensionality reduction technique. This way, the

transformations can be trained and subsequently applied to previously unseen data, allowing

for clinical phenotyping of new patients.

UMAP was trained with 2, 15, or 150 neighbors included in the local manifold approxima-

tion. These parameters were chosen to represent a spectrum of distance at which structure is

considered- a smaller number of neighbors in the approximation emphasizes local structure,
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while a larger number of neighbors emphasizes global structure. The minimum embedding

distance between points was set to 0, 0.1, or 0.25. These parameters were chosen to allow

for samples to “clump" to varying amounts. Smaller distance between points allows more

similar points to be stacked together at the expense of losing their relationship to more dis-

tant points. All distances were calculated using the Euclidean metric. After training each

UMAP model on a given training fold, that model was applied to the unseen test fold.

Full covariance GMMs were trained on the training data using an expectation-maximization

algorithm. The GMMs were trained with number of clusters n ranging from 2 to 20. These

models were then used to predict labels of the testing dataset. The testing data was clustered

once for each training fold.

3.3.4 Clustering Analysis

The different clusterings of testing data were analyzed for stability using the ARI. The

mean pairwise ARI was computed between each test set labeling produced with a given value

of n. For some values of n, the model failed to find n non-null clusters. The final cluster

number was selected by choosing the value of n that maximized mean pairwise ARI while

still finding at least a mean of n − 0.5 clusters. A high ARI indicates that the clustering

process is stable among a given dataset, as certain entries are consistently assigned to the

same cluster. A low ARI indicates that the clustering process is dominated by noise, and

that there is a large amount of variability between different folds.

3.3.5 Clinical Cluster Analysis

Clusters may be compared to each other or to a dataset as a whole. In this analysis,

comparisons were performed by calculating the difference of the mean of all normalized

variables in a cluster with the mean of all normalized variables in the entire chief complaint

test set. Training data was not used in analysis. Variables with differences furthest from

zero represent the features in the cluster that are most distinct from the rest of the dataset.
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(a) (b) (c)

Figure 3.2: PCA Embeddings of synthetic data. Here the embedding and GMMs have been
trained on one of the five training splits, and then applied to the test set. This test set
application is shown here. In 3.2a, the embedded data is shown without labels. In 3.2b, all
data has been labeled with the ground truth cluster identities. In 3.2c, the GMM-predicted
clusters are shown.

(a) (b) (c)

Figure 3.3: UMAP Embeddings of synthetic data. Here the embedding and GMMs have
been trained on one of the five training splits, and then applied to the test set. This test set
application is shown here. In 3.3a, the embedded data is shown without labels. In 3.3b, all
data has been labeled with the ground truth cluster identities. In 3.3c, the GMM-predicted
clusters are shown.
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Figure 3.4: Mean pairwise ARIs of clusterings on synthetic data. The solid line denotes the
true number of clusters. ARIs are shown both pairwise between different training folds and
with respect to the ground truth cluster labeling.

3.4 Results

3.4.1 Synthetic Data

Embeddings of the synthetic data are shown in Figures 3.2 and 3.3. Figure 3.2 shows

PCA embeddings. The embeddings used to generate this image were trained on a randomly

chosen training split, and applied to the test set. Figure 3.2a shows the embedding without

any cluster labels. Figure 3.2b shows the points labeled with their ground truth cluster

identity, and Figure 3.2c shows the most stable prediction from GMMs. As can be seen by

comparing these figures, the GMM here does not show any strong relationship with the true

cluster identities. ARIs of GMMs trained on this data can be seen in Figure 3.4. Although

small cluster number shows high pairwise ARI, no choice of cluster number ever provides

a high ARI with respect to the ground truth cluster labels. These data suggest that PCA
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struggles to reveal true clusters.

We then trained UMAP embeddings using random training splits on synthetic data (Fig-

ure 3.3) and applied the mapping to held-out test data (Figure 3.3b). We then used GMMs

to discover the most stable cluster predictions (Figure 3.3c). In contrast to the PCA data

in Figure 2, we observed significantly improved capture of phenotypes within the synthetic

dataset. While the embedding does not perfectly separate the clusters, a clear trend towards

separation can be seen. ARIs of the GMMs trained here can be seen in Figure 3.4. The peak

ARI is reached when grouping with 10 clusters, which is the true number of clusters present.

3.4.2 Clinical Data

Within our emergency department electronic health record database, the most common

chief complaints were abdominal pain (present in 54,315 patient visits, 9.7% of total), chest

pain (35,778, 6.4%), shortness of breath (24,652, 4.4%), back pain (20,633, 3.7%) and fall

(19,012, 3.4%). All other chief complaints were present in less than 3% of patient visits. Of

note, patient visits could have multiple chief complaints, with the average patient visit having

1.13 chief complaints. We sought to implement our embedding and clustering pipeline to

visits within each of these categories. We then compared clusters to one another to determine

the features driving the phenotype.

3.4.2.1 Shortness of Breath

We first explored hyperparameters for the Shortness of Breath population (Figure 3.5).

In this plot, the highest ARI (15 neighbors, 0 min distance, 3 clusters) is invalidated as a best

possible option, as the mean fold produced 1.2 clusters, which is below the cutoff of no more

than 0.5 below the number of clusters used for training the model. The next highest ARI

(150 neighbors, 0.1 min distance, 2 clusters) was chosen for further analysis. This analysis

was replicated across chief complaints and summarized in Table 3.2.

The best clustering of shortness of breath was found with two clusters that contain 72.1%

(95% CI 67.5-76.7) and 27.9% (95% CI 23.3-32.5) of patients. The larger cluster was slightly
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Figure 3.5: Representative plot of hyperparameters. Here, four sets of hyperparameters and
the resulting mean pairwise ARI are shown. All ARIs are plotted. The markers indicate
hyperparameters where the mean number of clusters produced was no more than 0.5 less
than the number of clusters with which the GMM was trained. For instance, the blue peak at
3 clusters was built with a model where although 3 clusters were indicated, the mean number
of clusters used was 1.2, indicating that four folds categorized all test data as belonging to a
single cluster, while one fold categorized all test data as belonging to two clusters. Therefore,
the ARI is elevated through a trivial clustering of only one cluster present.

more likely to be admitted (66.5%, 95% CI 66.3-66.6) while the smaller cluster was less likely

to be admitted (57.3%, 95% CI 55.3-59.2). A representative embedding of these clusters are

shown in Figure 3.6.

The larger cluster here was much more likely to have been previously visited this hospital

system. These patients were more likely to have arrived via ambulance, suggesting higher

acuity. These patients were slightly more likely to have urinalysis results positive for blood

and leukocytes, and were more likely to have risk factors such as chronic obstructive pul-

monary disease or congestive heart failure. On average, these patients had been admitted in
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(a) (b)

Figure 3.6: UMAP embeddings of patients with Shortness of Breath. Figure 3.6a shows the
training data, while Figure 3.6b shows the application of the model to the test data.

Table 3.2: Best mean pairwise ARIs and associated hyperparameters per chief complaint.

Best ARI # of Neighbors Minimum Distance # of Clusters
Abdominal Pain 0.353 150 0.0 2
Chest Pain 0.589 15 0.0 6
Shortness of Breath 0.493 150 0.1 2
Back Pain 0.385 150 0.25 4
Falls 0.741 150 0.0 2

this system 2.4 times each previously, with a median of 1 previous admission.

The smaller cluster here was much more likely to have been a first time patient to this ED

system. These patients were more likely to have commercial insurance, and to be employed

full time. These patients were also more likely to present with additional chief complaints,

such as cough or palpitations.

3.4.2.2 Abdominal Pain

The best clustering of abdominal pain was found with two clusters that contain 89.2%

(95% CI 83.7-94.6) and 10.8% (95% CI 5.4-16.3) of patients (Figure 3.7). The larger cluster

was generally more likely to be admitted (37.6%, 95% CI 36.7-38.5), while the smaller cluster
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Table 3.3: Selected Patient Characteristics of Abdominal Pain Clusters

Cluster 0 Cluster 1
Count 1093 10.1% 9770 89.9%
Disposition- Admit (%) 226 20.7% 3667 37.5%
Gender— Male (%) 355 32.5% 3488 35.7%
Insurance Status— Medicare (%) 539 49.3% 3656 37.4%
Insurance Status— Medicaid (%) 61 5.6% 1753 17.9%
Language— English (%) 719 65.8% 8981 91.9%
Arrival via Ambulance (%) 103 9.4% 2454 25.1%
Mean Age in Years (range) 37.8 18-89 46.8 18-103
Mean Triage Heart Rate (range) 83.7 43-148 86.0 40-185
Mean Triage Systolic BP(range) 129.3 82-232 132.5 66-243
Mean Triage Diastolic BP (range) 79.6 40-128 80.6 28-163
Mean Triage Respiratory Rate (range) 17.5 13-28 17.6 10-40
Mean Triage O2 Saturation (range) 97.7 91-99 97.5 74-99
Mean Triage Temperature in °F (range) 98.1 96-104.4 98.1 94.6-103.5
Mean Prior Admissions (range) <0.01 0-3 1.3 0-47

was generally less likely to be admitted (24.2%, 95% CI 19.3-29.0). Selected patient charac-

teristics of these clusters are shown and compared in Table 3.3. The peak mean pairwise ARI

found was 0.35, with 2 clusters, 150 neighbors, and no minimum distance between points.

In the smaller cluster, patients tended to have either been previously evaluated in this

emergency department system and discharged, or had never been previously evaluated in

this system. These patients had lower blood pressure and less hypertension than the other

cluster. These patients were less likely to have very low O2 saturation, and were less likely to

be English speakers. Relatively few of these patients arrived at the hospital via ambulance,

indicating lower acuity. These patients were less likely to be admitted to the hospital.

The larger cluster tended to have an older population, and more had esophageal disease or

hyperlipidemia. Nearly a quarter of these patients arrived at the hospital via an ambulance,

indicating higher acuity. Most of these patients had been admitted from this ED system

before, and over a third were admitted in this visit.
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(a) (b)

Figure 3.7: UMAP embeddings of patients with Abdominal Pain. Figure 3.7a shows the
training data, while Figure 3.7b shows the application of the model to the test data.

3.4.2.3 Chest Pain

The best clustering of chest pain was found with six clusters that contain 54.5% (95% CI

46.4-62.6), 24.3% (95% CI 16.8-31.7), 12.5% (95% CI 7.8-17.2), 5.8% (95% CI 3.8-7.8), and

0.5% (95% CI 0.0-1.0) of patients. Most clusters had similar rates of admission, with overlap-

ping 95% confidence intervals. The peak mean pairwise ARI found was 0.59, with 6 clusters,

15 neighbors, and no minimum distance between points. A representative visualization of

these clusters is shown in Figure 3.8.

In the largest cluster (47.0% of the population), the patients were slightly more likely

to have been previously admitted. This population was more likely to have hypertension or

mood disorders, or to have arrived via ambulance, indicating higher clinical acuity. These

patients were slightly more likely to have positive urine protein and leukocytes. These

patients had previously been admitted to this hospital an average of 2.8 times each, with all

patients in the top quartile having been admitted 3 or more times each. 51.4% of patients in

this cluster were admitted, as opposed to 44.8% overall for patients with this chief complaint.

The second largest cluster (34.8% of the population) was notable for feature patients

42



(a) (b)

Figure 3.8: UMAP embeddings of patients with Chest Pain. Figure 3.8a shows the training
data, while Figure 3.8b shows the application of the model to the test data.

who were more likely to have never been seen within this hospital system, and very few

had ever been admitted. These patients were more likely white or Caucasian, and were less

likely to be on Medicaid (28%) or Medicare (14%). These patients had less hypertension

and diagnosed mood disorders than the rest of the population. 38.9% of these patients were

admitted, as opposed to 44.8% overall. Patients in this cluster were an average of 6 years

younger than the patients in the larger cluster.

The third largest cluster here (8.4% of the population) was clustered largely on arrival

mechanism, and were more likely to have arrived via car or as a walk-in, and were significantly

less likely to have arrived via ambulance, indicating a generally lower acuity. These patients

were less likely to have risk factors including male gender, hyperlipedemia, or diagnosed

CAD. These patients were relatively unlikely to be admitted, with only a 33.17% admission

rate.

One cluster contained 5.0% of the population, and this cluster was more likely to include

diabetic patients who had previously been seen in this system. Patients in this cluster were

slightly more likely to have alcohol-related disorders or other substance-related disorders.

These patients also had slightly higher rates of mood or anxiety disorders, and were more
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(a) (b)

Figure 3.9: UMAP embeddings of patients with Back Pain. Figure 3.9a shows the training
data, while Figure 3.9b shows the application of the model to the test data.

likely to have been previously discharged. Patients in this cluster were admitted at a rate of

49.0%.

The remaining two clusters each contained less than 3% of the total population. Their

primary differences relative to the rest of the population were racial demographics.

3.4.2.4 Back Pain

The best clustering of back pain was found with four clusters that contain 63.3% (95%

CI 60.1-66.6), 22.5% (95% CI 20.0-24.9), 12.6% (95% CI 10.9-14.3), and 1.6% (95% CI 1.3-

1.9) of patients. Clusters had similar rates of admission, with overlapping 95% confidence

intervals. The peak mean pairwise ARI found was 0.39, with 4 clusters, 150 neighbors, and

0.25 minimum distance between points. A representative visualization of these clusters are

shown in Figure 3.9.

The largest cluster, consisting of 60.5% of the testing data, primarily features patients

that were not previously seen in this ED system. These patients were more likely to be

employed full time, and predominantly did not arrive at the hospital via ambulance. These

patients were slightly more likely to have male gender, and were less likely to have asthma.
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12.5% of these patients were admitted, as opposed to 15.0% of patients with this chief

complaint.

The second largest cluster, consisting of 26.3% of the testing data, features patients that

were more often previously seen in this ED system. These patients were more often insured

via Medicaid, and were more likely to have risk factors such as hypertension. These patients

were more likely to have urinalysis positive for leukocytes, blood, or protein. These patients

were more likely to have female gender. 16.7% of these patients were admitted, as opposed

to 15.0% of the patients overall with this chief complaint.

The next cluster consists of 11.5% of the testing data. Patients in this cluster were

much more likely to have been previously admitted, and were more likely to have arrived via

ambulance. These patients were generally more hypertensive than the rest of this population,

and were more likely to have been diagnosed with mood or anxiety disorders. These patients

were insured with Medicare more often than the remainder of the patients in this population.

The smallest cluster consists of 1.7% of the testing data. These patients were predomi-

nantly clustered by their racial demographics, and were generally more likely to have arrived

at the ED as a walk-in patient. These patients were slightly more likely to have female

gender and to co-present with a chief complaint of having suffered a fall. Only 4.2% of these

patients were admitted, as opposed to 15.0% overall.

3.4.2.5 Falls

The best clustering of falls was found with two clusters that contain 52.7% (95% CI

50.6-54.8) and 47.3% (95% CI 45.2- 49.4) of patients. Clusters had very similar rates of

admission. The peak mean pairwise ARI found was 0.74, with 2 clusters, 150 neighbors, and

no minimum distance between points. Three of five representative visualizations of these

clusters are shown in Figure 3.10.

The larger cluster consists of 52.0% of the testing data. In this cluster, patients were

more likely to have been previously seen in this ED system. These patients were more likely

to have arrived via ambulance, and were more likely to have positive urinalysis findings for
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protein, leukocytes, or blood. These patients were more likely to be on Medicare. These

patients were slightly more likely to have lower blood oxygen saturation. 31.6% of these

patients were admitted, as opposed to 28.7% overall.

The smaller cluster consists of 48.0% of the testing data. In this cluster, patients were

more likely to have never been seen in this ED system. These patients were more likely to be

employed full or part time, and to have commercial insurance. These patients were admitted

at a rate of 25.5%.

3.5 Discussion

In this work, we sought to further efforts towards the summary visualization of high-

dimensionality EHR data. We focused on a previously published emergency department

dataset with the goal of revealing data-driven phenotypes at time of hospital presentation.

We first benchmarked our approach using a synthetic dataset and subsequently moved our

analysis towards investigating the five most common emergency department chief complaints.

The synthetic dataset here was generated to have similar size and variability to the clini-

cal dataset. As was anticipated, two-dimensional PCA was unable to capture the variability

contained within the multiple informative dimensions. We observed very little useable struc-

ture within the PCA embedding of the synthetic data (Figure 3.2b). While the ARI is higher

than would be expected by chance for 2 clusters, it is unremarkable at the true value of 10

clusters. Furthermore, while the pairwise ARI for the PCA model maintains a value around

0.2, the ARI to the ground truth cluster labels remains at nearly 0. This suggests that even

though some patterns are found within the PCA embedding of the data, these patterns do

not correlate with the underlying structure of the data.

In contrast, UMAP clearly identifies elements of the high-dimensional structure of this

same dataset. Even without clustering the UMAP-embedded data, a strong relationship

can be seen between most points of a given cluster (Figure 3.3b). Though visually trivial,

mapping the mean pairwise ARI of GMMs trained with different numbers of clusters in Figure

3.4 shows that the peak ARI correlates with this correct number of clusters. Furthermore,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Three different folds of UMAP embeddings of patients who suffered Falls.
Figures 3.10a, 3.10c, and 3.10e show the training data, while Figures 3.10b, 3.10d, and 3.10f
show the application of the model to the test data. In each of these, it can be seen that the
embedding follows a similar overall pattern even among different folds. Two additional folds
are not shown, but exhibit the same global shape and cluster characteristics.
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the pairwise ARI and ARI to ground truth are both high values. This suggests that when

using UMAP, the pairwise ARI is useful as a proxy for the ground truth ARI. When adapting

this model to datasets without known ground truth, the pairwise ARI should function to

ensure that valid cluster patterns are being observed. These data motivate our efforts to

investigate a real-world clinical dataset.

3.5.1 Clinical Interpretation

Here, we consider more broadly the clinical implications of the discovered phenotype

clusters. In the shortness of breath clusters described above, the characteristics of the two

clusters paint two very different clinical images. In the larger cluster, the characteristics

present a description of patients who are generally sick: patients who are high utilizers of

healthcare with medical comorbitities such as congestive heart failure or chronic obstructive

pulmonary disease. On the other hand, the smaller cluster represents first-time utilizers of

the health care system who are generally healthier. They are more likely to present with other

chief complaints, such as cough. This suggests that this cluster represents more acute causes

of shortness of breath, while the other cluster represents more chronic causes of shortness of

breath.

The two clusters discovered among patients with abdominal pain generally separate the

population into a younger, healthier group and an older, sicker group. The younger group

was less likely to arrive via ambulance, and was much less likely to have previously been

admitted to this hospital. The older group was much more likely to have underlying health

issues. Abdominal pain clusters are dominated by demographics and arrival mechanism.

While the abdominal pain clusters appeared more trivial in nature (old/sick, young/healthy),

our workflow suggested optimized chest pain clustering would be produced with 15 neighbors

used in the UMAP approximation rather than 150 neighbors. This results in the discovered

clusters having a greater reliance on local structure rather than more distant global structure.

The clusters here vary more in size, which allows for more precise phenotypes to be observed.

For instance, one of the clusters here featured patients with low risk factors for heart disease
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who transported themselves to the ED. This group was less likely to need admission to the

hospital.

The clusters discovered in patients presenting with back pain fit several different pa-

tient populations. The largest cluster presents the image of patients how experience first

time lower back pain, but who have good socioeconomic factors as a positive prognostic

indicator. These patients were relatively less likely to be admitted to the hospital. The

second largest cluster presents a clinical picture of patients who have medical comorbidities

and non-musculoskeletal reasons for their back pain. For instance, these patients often had

leukocyturia, potentially indicating pyelonephritis (kidney infection) as the cause of their

pain, or hematuria, potentially indicating nephrolithiasis (kidney stone) as the cause of their

pain. These patients were slightly more likely to be admitted to the hospital than were other

patients with this chief complaint.

It is interesting to note the dissimilarity in the general shape of the training data and

testing data in the patients with back pain (Figure 3.9). Although the training data exhib-

ited four clusters of relatively similar density, the test data shows unbalanced clusters with

much more variable density. This is an aspect of this model where the visual nature of the

embeddings can be leveraged. While in the training data, the model easily differentiates be-

tween the blue and orange clusters (Figure 3.9a), the test data shows that there are a number

of patients that are very similar to each of these clusters, and that these new patients are

embedded with a density unlike the training densities.

The clusters discovered in patients presenting after a fall were the clusters with the

highest mean pairwise ARI of any clusters within the dataset. As shown in Figure 3.10,

the resulting embeddings are very similar on subsequent training folds. These patients were

split nearly in half, but split in almost the exact same way each time. In these two clusters,

the cluster with the higher admission rate is also the cluster with increased comorbidities.

These patients would likely be at increased risk of fall due to their increased age and medical

comorbidities. Similarly, falls suffered could have the potential to cause greater harm to the

49



patient.

In sum, across the five chief complaints studied, we observed a range of phenotypes

and underlying demographic and physiologic drivers. In cases of more trivial two-group

separations, as observed with abdominal pain, shortness of breath, and falls, our approach

reveals elements of patient comorbidities and presentation acuity. Of note, the ARIs for

these complaints differ significantly, with falls (0.741) being the most stably captured and

abdominal pain (0.353), the least stable. We hypothesize that this metric may be capturing

the underlying heterogeneity inherent to the complaint. For example, falls may be mechanical

in nature (e.g., slipping) or result from a cardiovascular cause (e.g., syncope, arrythmia) or

change in mental status (e.g., transient ischemic attack). The etiologies of abdominal pain

are myriad, and more difficult to bin [68] - a minimal differential diagnosis of pain etiology

includes a half-dozen organ systems. For this reason, abdominal pain is typically clinically

assessed by abdominal quadrant. For complaints of chest and back pain, we were able to

optimize for larger number of clusters. Further research is required to reveal interesting

elements evolving from the pairwise comparisons of these phenotypes.

3.5.2 Limitations and Future Work

In most clinical data clusters, the visualization of the training data and the testing data

appear very different. For instance, in Figure 3.9a, there are well-demarcated clusters with

similar appearing sizes and densities. However, in Figure 3.9b, the clusters are of different

sizes and appear grossly dissimilar to the clusters in Figure 3.9a. The cluster on the left

has nearly disappeared, while the bulk of the top and bottom clusters have become much

closer to each other than in the training data. Future work will continue to explore model

robustness across variations including the use of alternative distance metrics.

Additionally, other potential clusterings of patients are likely present within these datasets.

For instance, in Figure 3.5, it appears that another clustering might be present with 3 clus-

ters or with 7 clusters. Future work should evaluate these different potential clusterings

to see if additional clinical characteristics can be achieved from these clusters, and should
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evaluate if greater number of clusters with slightly lower stability can be clinically useful.

We attempted to apply this analytic pipeline to the full clinical dataset, without separat-

ing into populations by chief complaint. We observed that it was unable to consistently find

any given clusters and hypothesize that this is likely due to the large number of potential

clusters to which any given patient could belong. Patients with the same core pathology

could present with different chief complaints. For example, a myocardial infarction (heart

attack) could present as either chest pain, or as syncope. A more generally applicable model

should incorporate a method to include multiple possible chief complaints so that similar

pathologies are not treated as separate entities.

An interesting extension to this work would be to utilize the clusters here to assess

patients for risk of adverse events. The clustering of patients presenting after falls exhibited

characteristics that suggest that patients were grouped by their risk of falls. The patients at

lower overall risk were more likely to be discharged, while the patients at higher overall risk

were more likely to be admitted. This suggests that this technique could be applied to isolate

risk factors for adverse outcomes. This information could then help identify similar patients

based on cluster membership, and allow health care providers to rapidly and effectively apply

interventions to improve patient health and outcomes.

3.6 Conclusion

This paper presents a technique for the two-dimensional visualization of complex emer-

gency department patient data. We show that UMAP and GMMs enable robust cluster

identification using a synthetic dataset and then apply these tools to a real-world clinical

dataset. We explore the patient phenotypes emerging from varied patient chief complaints,

revealing pertinent clinical characteristics of these populations. Among patients with ab-

dominal pain, chest pain, shortness of breath, back pain, and falls, the populations are

reliably divided into 2-6 clusters. These clusters group patients based on characteristics

such as demographics and triage variables, allowing for clear clinical pictures of the type of

patients involved to be seen. We anticipate future medical scenarios where deployment of
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this visualization pipeline will enable both rapid, real-time patient triage and retrospective

cohort discovery from electronic health records.
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4. DYNAMICALLY EXTRACTING PROBLEM LISTS FROM CLINICAL NOTES∗

In this chapter, we once again aim to utilize machine learning to rapidly extract useful

clinical information. Here, however, we turn to focusing on the intensive care setting. Rather

than a tool to rapidly visualize and characterize a new patient with a given chief complaint,

here we instead extract the most pertinent features and problems for a patient based on free

text notes. This allows for a rapid distillation of the key parts of a longer narrative, aiding

clinicians in rapidly understanding the patient’s state.

4.1 Introduction

Problem lists are an important component of the electronic health record (EHR) that

are intended to present a clear and comprehensive overview of a patient’s medical prob-

lems. These lists document illnesses, injuries, and other details that may be relevant for

providing patient care and are intended to allow clinicians to quickly gain an understanding

of the pertinent details necessary to make informed medical decisions and provide patients

with personalized care [69, 70]. Despite their potential utility, there are shortcomings with

problem lists in practice. One such shortcoming is that problem lists have been shown to

suffer from a great deal of clutter [71]. Irrelevant or resolved conditions accumulate over

time, leading to a problem list that is overwhelming and difficult for a clinician to quickly

understand. This directly impairs the ability of a problem list to serve its original purpose

of providing a clear and concise overview of a patient’s medical condition.

A challenge that comes with attempting to reduce clutter is that many conditions on the

list may be relevant in certain situations, but contribute to clutter in others. For example,

if a patient ends up in the intensive care unit (ICU), a care unit for patients with serious

medical conditions, then the attending physician likely does not care about the patient’s
∗This chapter is reprinted with permission from "Dynamically Extracting Outcome-Specific Problem Lists

from Clinical Notes with Guided Multi-Headed Attention" by Lovelace, J., Hurley, N. C., Haimovich, A. D.,
& Mortazavi, B. J., 2020. Machine Learning for Healthcare Conference (pp. 245-270). PMLR. Copyright
2020 by J. Lovelace, N.C. Hurley, A.D. Haimovich & B.J. Mortazavi.
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history of joint pain. That information, however, would be important for a primary care

physician to follow up on during future visits. In this case, the inclusion of chronic joint pain

clutters the list for the attending physician in the ICU, but removing it from the list could

decrease the quality of care that the patient receives from his/her primary care physician.

In this work, we address this problem by developing a novel end-to-end framework to

extract problems from the textual narrative and then utilize the extracted problems to predict

the likelihood of an outcome of interest. Although our framework is generalizeable to any

clinical outcome of interest, we focus on ICU readmission and patient mortality in this work

to demonstrate its utility. We extract dynamic problem lists by utilizing problem extraction

as an intermediate learning objective to develop an interpretable patient representation that

is then used to predict the likelihood of the target outcome. By identifying the extracted

problems important for the final prediction, we can produce a problem list tailored to a

specific outcome of interest.

We demonstrate that this framework is both more interpretable and more performant

than the current state-of-the-art work using clinical notes for the prediction of clinical out-

comes [72, 73, 74]. Utilizing the intermediate problem list for the final outcome prediction

allows clinicians to gain a clearer understanding of the model’s reasoning than prior work

that only highlighted important sections of the narrative. This is because our framework

directly identifies clinically meaningful problems while the prior work requires a great deal

of inference and guesswork on the part of the clinician to interpret what clinical signal is

being represented by the highlighted text.

For example, prior work predicting the onset of heart disease found that the word “daugh-

ter" was predictive of that outcome. The authors stated that the word usually arose in the

context of the patient being brought in by their daughter which likely signaled poor health

and advanced age [74]. While this makes sense after reviewing a large number of notes, this

connection is not immediately obvious and a clinician would not have the time to conduct

the necessary investigation to identify such a connection. By instead directly extracting pre-
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defined clinical conditions and procedures and using those for the final prediction, we reduce

the need for such inference on the part of the physician.

The primary contributions of this work are:

• A novel end-to-end framework for the extraction of clinical problems and the prediction

of clinical outcomes that is both more interpretable and performant than models used

in prior work.

• An expert evaluation that demonstrates that our problem extraction model exhibits

robustness to labeling errors contained in a real world clinical dataset.

• Dynamic problem lists that report the quantitative importance of each extracted prob-

lem to an outcome of interest, providing clinicians with a concise overview of a patient’s

medical state and a clear understanding of the factors responsible for the model’s pre-

diction.

• A qualitative expert user study that demonstrates that our dynamic problem lists

offer statistically significant improvements over a strong baseline as a clinical decision

support tool.

Generalizable Insights about Machine Learning in the Context of Healthcare

A significant body of past work develops predictive models that can not be used in clini-

cally useful settings due to their reliance on billing codes assigned after a patient leaves the

hospital [75, 76, 77, 78, 79, 80]. While there may be value in the technical innovations made

by such work, research that acknowledges and addresses the constraints of the domain is

essential to develop methods that can actually be implemented in practice. We demonstrate

that recent methods for automated ICD code assignment are sufficiently performant to ex-

tract billing information in real-time for downstream modeling tasks. Although we focus on

extracting problem lists for clinical decision support in this work, this finding has broader

ramifications for the field. It both enables the real-time implementation of previously im-

practicable work and paves the way for future work to develop clinically feasible models that

utilize dynamically extracted diagnosis and procedure information from clinical text.
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4.2 Related Work

There has been a large body of prior work utilizing natural language processing (NLP)

techniques to extract information from clinical narratives. Blecker et al. [81] demonstrated

that unstructured clinical notes could be used to effectively identify patients with heart

failure in real time. Their methods that involved data from clinical notes outperformed

those using only structured data, demonstrating the importance of effectively utilizing the

rich source of information contained within the clinical narrative.

Prior work has found success predicting ICD code assignment using clinical notes within

MIMIC-III and has found that deep learning techniques outperform traditional methods [82,

83, 84, 85]. Mullenbach et al. [83] augmented a convolutional model with a per-label attention

mechanism and found that it led to both improved performance and greater interpretability

as measured by a qualitative, expert evaluation. Sadoughi et al. [84] later improved upon

their model by utilizing multiple convolutions of different widths and then max-pooling across

the channels before the attention mechanism.

There has also been work done demonstrating that machine learning models can effec-

tively leverage the unstructured clinical narrative for the prediction of clinical outcomes

[77, 74, 72]. Jain et al. [72] augmented long short-term memory networks (LSTMs) with an

attention mechanism and applied it to predict clinical outcomes such as mortality and ICU

readmission. However, when defining readmission, they treated both ICU readmissions and

deaths as positive examples. The clinical work by Krumholz et al. [86] has demonstrated

that these are orthogonal outcomes, and thus modeling them jointly as a single outcome does

not make sense from a clinical perspective. By treating them as separate outcomes in this

work, we are able to independently explore the risk factors for these two distinct outcomes.

Jain et al. [72] also raised some questions about the interpretability of attention in their

work with clinical notes, repeating the experiments introduced by Jain and Wallace [87]

to evaluate the explanatory capabilities of attention. However, Wiegreffe and Pinter [88]

explored some of the problems with their underlying assumptions and experimental setup
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and demonstrated that their experiment failed to fully explore their premise, and thus failed

to support their claim.

Figure 4.1: Outcomes explored in this work

4.3 Data and cohort

This work is conducted using the free text notes stored in the publicly available MIMIC-

III database [2]. The database contains de-identified clinical data for over forty thousand

patients who stayed in the critical care units of the Beth Israel Deaconess Medical Center.

This information was collected as part of routine clinical care and, as such, is representative

of the information that would be available to clinicians in real-time. This makes the dataset

well-suited for developing clinical models.

To develop our cohort, we first filter out minors because children have different root

causes for adverse medical outcomes than the general populace. We also remove patients

who died while in the ICU and filter out ICU stays that are missing information regarding

the time of admission or discharge. We then extract all ICU stays where the patient had

at least three notes on record before the time of ICU discharge to develop a cohort with

a meaningful textual history. This leaves us with 33, 311 unique patients and 45, 260 ICU

stays.
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For ICU readmission we extract labels for two types of readmissions, bounceback and

30 day readmisssion. Bounceback readmissions occur when a patient is discharged from the

ICU and then readmitted to the ICU before being discharged from the hospital. For 30 day

readmissions, we simply look at any readmission to the ICU within the 30 days following ICU

discharge. For mortality, we also look at two different outcomes, in-hospital mortality and

30-day mortality. Because we use all data available at the time of ICU discharge, in-hospital

mortality is constrained to mortality that occurs after ICU discharge but prior to hospital

discharge. All the outcomes that we explored in this work are laid out in Figure 4.1. This

provides us with a cohort with 3, 413 (7.5%) bounceback readmissions, 5, 674 (12.5%) 30-

day readmissions, 3, 761 (8.3%) deaths within 30 days, and 1, 898 (4.2%) in-hospital deaths.

For our experiments, we then split our cohort into training, validation, and testing splits

following an 80/10/10 split and use 5-fold cross validation. We divide our cohort based on

the patient rather than the ICU stay to avoid data leakage when one patient has multiple

ICU stays.

We extract all clinical notes associated with a patient’s hospital stay up until the time

of their discharge from the ICU. The text is then preprocessed by lowercasing the text,

normalizing punctuation, and replacing numerical characters and de-identified information

with generic tokens. All of the notes for each patient are then concatenated and treated as

a continuous sequence of text which is used as the input to all of our models. We truncate

or pad all clinical narratives to 8000 tokens. This captures the entire clinical narrative for

over 75% of patients and we found that extending the maximum sequence length beyond

that point did not lead to any further improvements in performance.

4.4 Methods

In this work, we develop an end-to-end framework to jointly extract problems from the

clinical narrative and then use those problems to predict a target outcome of interest. An

overview of our framework can be seen in Figure 4.2. We embed the clinical notes using

learned word embeddings and then apply a convolutional attention model with a guided
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multi-headed attention mechanism to extract problems from the narrative. We then uti-

lize the intermediate problem predictions to predict the target outcome. This differs from

standard deep learning models because the features used for our final prediction are clearly

mapped to clinically meaningful problems rather than opaque learned features. We also de-

scribe the training procedure that we develop to ensure that our problem extraction model

maintains a high level of performance, something that is essential for the intermediate fea-

tures to maintain their clinical significance.

Figure 4.2: Overview of our proposed framework

4.4.1 Embedding techniques

We utilize all notes in the MIMIC-III database associated with subjects who are not

in our testing set to train embeddings using the Word2Vec method [89]. This allows for

training on a greater selection of notes than if training had been limited to the training set.

This training is done using the continuous bag-of-words implementation and it generates

embeddings for all words that appear in at least 5 notes in our corpus. We replace out-of-

vocabulary words with a randomly initialized UNK token to represent unknown words. Both
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100 and 300 dimensional word embeddings were explored and early testing showed that 100

dimensional word embeddings led to better performance.

4.4.2 Target Problems

We experiment with multiple different representations for the intermediate problems in

this work. The first representation we explore are the ICD9 codes assigned to all hospital

stays in our dataset. These codes are used for billing purposes and represent diagnostic and

procedure information for each patient. Although prior work has found that these codes

are predictive of adverse outcomes [77, 78, 80], these codes are assigned after a patient

has been discharged from the hospital and, as such, directly using these codes as features

in a predictive model limits the clinical utility of such a model. By instead learning to

dynamically assign these codes within our framework, we can use these codes to predict the

outcomes we explore using only the information available at the time of prediction.

However, the large ICD9 label space will likely hinder our frameworks’s ability to effec-

tively extract and utilize the codes. To address this, we leverage the heirarchical nature of

the ICD9 taxonomy. Full ICD9 codes are represented by character strings up to 6 characters

in length where each subsequent character represents a finer grained distinction. We experi-

ment with rolled up ICD9 codes which consist of only the first three characters of each ICD9

code to address the problem of the large label space. The rolled up codes still represent

clinically meaningful procedures and conditions while substantially reducing the number of

labels.

We also explore using phecodes which were developed to conduct phenome-wide asso-

ciation studies (PheWAS) in EHRs [90]. Prior work demonstrated that phecodes better

represent clinically meaningful phenotypes than ICD9 codes [91]. Because of this, phecodes

may lead to a more clinically meaningful and predictive intermediate representations than

ICD9 diagnosis codes. A mapping from ICD9 codes to phecodes already exists and can be

used to extract phecodes from our dataset. Similar to ICD9 codes, we explore both full and

rolled up phecodes. For every problem representation in this work, we only use codes that
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occur at least 50 times in our training set to reduce label sparsity. After this filtering, there

are an average of 1047.4 full ICD diagnosis codes, 331.8 full ICD procedure codes, 695.6 full

phecodes codes, 419.6 rolled ICD diagnosis codes, 203.4 rolled ICD procedure codes, and

356.0 rolled phecodes across our 5 folds.

4.4.3 Problem extraction model

Figure 4.3: Illustration of our problem extraction model with a single attention mechanism
shown.

The convolutional attention architecture used in this work is similar to that developed

by Mullenbach et al. [83] and Sadoughi et al. [84] for automatic ICD code assignment.

The model can be described as follows. We represent the clinical narrative as a sequence

of de-dimensional dense word embeddings. Those word embeddings are then concatenated

to create the matrix X = [x1;x2; ...;xN ] where N is the length of the clinical narrative

and xn ∈ Rde is the word embedding for the nth word in the narrative. We then apply a

convolutional neural network (CNN) to the matrix X.

In this work, we use three convolutional filters of width 1, 2, and 3 with output dimen-
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sionality df . These filters convolve over the textual input with a stride of 1, applying the

learned filters to every 1-gram, 2-gram. and 3-gram in the input. In this work, we augment

the CNN with a multi-headed attention mechanism where each head is associated with a

problem [92]. Unlike the work of Mullenbach et al. [83] and Sadoughi et al. [84], we apply

our attention mechanisms over multiple convolutional filters of different lengths. This al-

lows our model to consider variable spans of text while still maintaining the straightforward

interpretability of the model introduced by Mullenbach et al. [83].

To apply the attention mechanisms, we learn a query vector, q` ∈ Rdf , for each problem

` that will be used to calculate the importance of the feature maps across all filters for that

problem. We calculate the importance using the dot product of each feature map with the

query vector. We let H ∈ Rdf×(3N) be the concatenated output of our CNN and can then

calculate the attention distribution over all of the feature maps simultaneously using the

matrix vector product of our final feature map and the query vector as α` = softmax(H
Tq`√
df

)

where df is used as a scaling factor and α` ∈ R3N contains the score for every position across

all the filters. The softmax operation is used so that the score distribution is normalized. We

calculate the final representation used for classification for problem ` by taking a weighted

average of all of the outputs based on their calculated weights given by v` =
∑3N

i=1 α`,ihi

where hi is the ith feature vector in H and v` is the final representation used for predicting

the presence of problem `.

Given the representation v`, we calculate the final prediction as ŷ` = σ(wT
`v`+b`) where

w` is a vector of learned weights, b` is the bias term, and σ is the sigmoid function. We train

our problem extraction model by minimizing the binary cross-entropy loss function given by

Lp = −
∑L

`=1 y`log(ŷ`) + (1− y`)log(1− ŷ`) where y` is the ground truth label and ŷ` is our

model’s prediction for problem `.

4.4.4 Outcome classification

In our proposed framework, the feature vector used for the outcome prediction is s =

[s0; s1; ...; sL−1; sL] where s ∈ RL and s` is the scalar score for problem ` defined by s` =
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wT
` v` + b` . We calculate our final prediction using this vector similarly to our intermediate

problem prediction as ŷ0 = σ(wT
os + bo). Using the score for each outcome as the features

for the final prediction allows for the straightforward interpretation of each feature. This

differs from the standard deep learning models used in prior works where the final feature

vector used for the prediction is composed of learned features that are not interpretable.

We utilize this improvement to explain our model’s decision making process and to develop

dynamic problem lists.

To optimize the classification objective for our target outcome, we also minimize the

binary cross-entropy loss function Lo = −(yolog(ŷo) + (1 − yo)log(1 − ŷo)) where yo is the

ground truth label for our target outcome and ŷo is our model’s prediction for that outcome.

4.4.5 Training procedure

For our intermediate features to be interpretable, it is important for our problem extrac-

tion model to maintain a high level of performance. This motivates the development of our

training procedure. We define a threshold for the performance of our problem extraction

model and train only that component of our framework if the validation performance falls

below that threshold. This ensures that we are only training the final classification layer

using intermediate representations that effectively represent their corresponding problem.

This also prevents our target classification objective from degrading the performance of our

problem extraction model as that would harm the interpretability and clinical utility of our

framework.

Thus our final loss function L can be defined as L =


Lo + Lp if valp ≥ thresholdp

Lp if valp < thresholdp

where valp is the validation performance and thresholdp is a pre-defined performance thresh-

old. We measure the performance of our problem extraction model by calculating the micro-

averaged Area Under the Receiver Operating Curve (AU-ROC) on the validation set and use

a threshold of 0.90 for the models trained in this work. We found this training procedure to

be necessary to maintain good problem extraction performance for problem configurations
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that involved full codes while the configurations with rolled codes were able to maintain

performance during joint training. We optimize our final loss function using the Adam opti-

mizer [93]. Our code is made publicly available2 and we relegate full implementation details

to the appendix.

4.5 Experiments and results

4.5.1 Baselines

To evaluate the efficacy of our proposed framework at predicting our target outcomes,

we develop three strong baselines based on recent work for clinical outcome prediction using

clinical text [73, 74, 72]. The first baseline is the convolutional model developed by Kim [94]

for text classification. This model consists of three convolutions of width 1, 2, and 3 which are

applied over the clinical narrative and then max-pooled. The three pooled representations

are then concatenated and used for the final prediction.

The second baseline is similar to the model used for problem extraction in our proposed

framework and is a straightforward extension of the model proposed by Mullenbach et al.

[83]. Unlike our problem extraction model, this baseline utilizes a single attention head and

directly predicts the outcome of interest. This baseline allows us to not only compare the

predictive performance of our model, but to also explore the improved interpretability that

our framework provides. For our third baseline, we use a bidirectional LSTM augmented

with an additive attention mechanism which was used by [72] in their work predicting clinical

outcomes from notes.

4.5.2 Outcome Results

For each outcome in this work, we explore using both full and rolled ICD codes and

phecodes as our intermediate problems. To gain insight into the effectiveness of each subset

of codes, we also explore using only the rolled ICD diagnosis codes, rolled ICD procedure

codes, and rolled phecodes. For every model, we report the mean and standard deviation
2https://github.com/justinlovelace/Dynamic-Problem-Lists
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across the five testing folds for the area under the Receiver Operating Curve (AU-ROC) and

the area under the Precision-Recall Curve (AUC-PR) to evaluate the effectiveness of our

models. The results for all of the outcomes explored in this work can be found in Table 4.1.

As expected, we find that trying to use the entire set of ICD codes for our intermediate

problem representation is relatively ineffective, being outperformed by at least one of our

baselines across all outcomes. We also observe that this problem extends to trying to utilize

the full set of phecodes. However, we find that our model is very effective when using rolled

ICD codes or phecodes. When using rolled codes, we find that our proposed framework

outperforms all baselines with multiple different problem configurations across all outcomes

and performance metrics.

Somewhat surprisingly, we find that using the individual subsets of codes does not lead

to any loss in performance and appears to marginally improve performance. It is possible

that the additional information provided by combining diagnostic and procedure codes is

offset by difficulties that come from increasing the label space. We find that our framework

leads to not only improved clinical utility (which we demonstrate later in this work), but

also improved predictive performance.

4.5.3 Problem Extraction Results

For our model to be interpretable, it is important for the problem extraction model to

be effective. To explore the performance of our problem extraction model and the effect

that the additional learning objective has on that performance, we conduct an additional

experiment where we train our problem extraction model independently and compare it with

the performance of our intermediate problem extraction model in our framework across all

outcomes. We report results for this experiment in Table 4.2.

We observe that our problem extraction method is performant across all of the target

outcomes in this work. However, we find that our problem extraction model is consistently

more effective when using rolled codes as opposed to full sets of codes. This is understandable

as the larger label space and finer grained distinctions between the codes leads to a more
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Table 4.1: Outcome Prediction Results

Model Problem Set In-Hospital Mortality 30-Day Mortality

AU-ROC AU-PR AU-ROC AU-PR

CNN-Max - 0.852± 0.015 0.323± 0.048 0.842± 0.008 0.430± 0.009
Conv-Attn - 0.865± 0.015 0.330± 0.038 0.852± 0.007 0.415± 0.012
LSTM-Attn - 0.853± 0.015 0.308± 0.046 0.855± 0.008 0.431± 0.007

DynPL F-ICDDiag & F-ICDProc 0.823± 0.023 0.218± 0.036 0.821± 0.012 0.352± 0.031
DynPL F-Phe & R-ICDProc 0.837± 0.047 0.252± 0.090 0.836± 0.013 0.393± 0.028
DynPL R-ICDDiag & R-ICDProc 0.866± 0.011 0.322± 0.046 0.857± 0.005 0.438± 0.012
DynPL R-Phe & R-ICDProc 0.865± 0.016 0.330± 0.040 0.855± 0.006 0.435± 0.007
DynPL R-ICDDiag 0.869± 0.010 0.332± 0.037 0.852± 0.008 0.424± 0.021
DynPL R-ICDProc 0.863± 0.011 0.329± 0.030 0.855± 0.005 0.443± 0.011
DynPL R-Phe 0.867± 0.014 0.327± 0.040 0.858± 0.007 0.440± 0.021

Model Problem Set Bounceback Readmission 30-Day Readmission

AU-ROC AU-PR AU-ROC AU-PR

CNN-Max - 0.661± 0.018 0.148± 0.016 0.650± 0.011 0.212± 0.018
Conv-Attn - 0.707± 0.009 0.173± 0.018 0.684± 0.004 0.235± 0.017
LSTM-Attn - 0.695± 0.010 0.154± 0.009 0.681± 0.008 0.231± 0.021

DynPL F-ICDDiag & F-ICDProc 0.667± 0.015 0.138± 0.018 0.659± 0.011 0.213± 0.016
DynPL F-Phe & R-ICDProc 0.692± 0.014 0.154± 0.013 0.669± 0.006 0.219± 0.008
DynPL R-ICDDiag & R-ICDProc 0.703± 0.013 0.168± 0.021 0.683± 0.003 0.234± 0.016
DynPL R-Phe & R-ICDProc 0.705± 0.017 0.168± 0.019 0.687± 0.005 0.234± 0.011
DynPL R-ICDDiag 0.710± 0.014 0.170± 0.011 0.688± 0.004 0.238± 0.012
DynPL R-ICDProc 0.708± 0.012 0.178± 0.019 0.690± 0.006 0.239± 0.017
DynPL R-Phe 0.710± 0.013 0.173± 0.019 0.689± 0.003 0.238± 0.011

F=Full Codes, R=Rolled Codes. Bolded values indicate equivalent or superior performance
compared to all baselines and the best performance is underlined.

Table 4.2: Problem Extraction Results

Target Outcome F-ICDDiag & F-ICDProc F-Phe & R-ICDProc R-ICDDiag & R-ICDProc R-Phe & R-ICDProc

Micro
AU-
ROC

Macro
AU-
ROC

Micro
AU-
ROC

Macro
AU-
ROC

Micro
AU-
ROC

Macro
AU-
ROC

Micro
AU-
ROC

Macro
AU-
ROC

Problem
Extraction

0.946±
0.001

0.887±
0.002

0.945±
0.001

0.877±
0.002

0.952±
0.000

0.888±
0.002

0.952±
0.001

0.879±
0.003

Bounceback
Readmis-

sion

0.853±
0.005

0.753±
0.005

0.889±
0.003

0.760±
0.007

0.905±
0.002

0.754±
0.009

0.908±
0.002

0.744±
0.010

30-Day
Readmis-

sion

0.865±
0.022

0.756±
0.013

0.891±
0.009

0.764±
0.006

0.905±
0.001

0.748±
0.008

0.908±
0.002

0.739±
0.010

In-Hospital
Mortality

0.862±
0.022

0.738±
0.014

0.887±
0.012

0.753±
0.021

0.906±
0.004

0.754±
0.007

0.906±
0.003

0.740±
0.009

30-Day
Mortality

0.847±
0.026

0.733±
0.021

0.893±
0.011

0.757±
0.006

0.902±
0.002

0.749±
0.006

0.902±
0.002

0.733±
0.007
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challenging classification problem. This reduced problem extraction performance when using

the full set of codes is likely a contributing factor to the poorer target outcome performance

observed when using full sets of codes.

We do observe that the addition of the target outcome objective does degrade perfor-

mance when compared to a model trained exclusively on problem extraction. This degrada-

tion demonstrates the importance of our training procedure to ensure that the intermediate

problem extraction remains effective.

4.5.4 Effect of End-to-End Training

We conduct an ablation experiment to evaluate the effect of end-to-end training on our

framework’s performance by first training our framework only on problem extraction, freezing

the problem extraction component, and then fine-tuning the final classification layer to

predict the outcome of interest. We report results for this experiment in Table 4.3 and

observe a consistent decrease in performance when training the two components separately.

This decrease is particularly notable for both mortality outcomes. This is likely because the

feature space defined by the problems fail to represent all pertinent information from the

notes and training the network end-to-end allows for some adaptation to the final outcome.

For example, the frozen problem extraction model would not be incentivized to recognize

the severity of problems while such information would be useful when predicting the target

outcomes.

4.5.5 Comparison Against Oracle

We conduct an additional experiment to explore the effectiveness of our problem extrac-

tion model. In this experiment we train a logistic regression oracle to predict the outcomes

directly from the ground truth labels derived from ICD codes. It is important to note that

because ICD codes are associated with entire hospital stays in our dataset, this experiment

involves using future information compared to the clinically useful application setting of our

other models. Not only are ICD codes themselves unavailable at the time of ICU discharge,
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Table 4.3: Effect of End-to-End Training

Model Problem Set In-Hospital Mortality 30-Day Mortality

AU-ROC AU-PR AU-ROC AU-PR

DynPL R-ICDDiag & R-ICDProc 0.866± 0.011 0.322± 0.046 0.857± 0.005 0.438± 0.012
Frozen DynPL R-ICDDiag & R-ICDProc 0.852± 0.008 0.254± 0.032 0.847± 0.006 0.365± 0.024

DynPL R-Phe & R-ICDProc 0.865± 0.016 0.330± 0.040 0.855± 0.006 0.435± 0.007
Frozen DynPL R-Phe & R-ICDProc 0.837± 0.017 0.215± 0.035 0.834± 0.011 0.322± 0.032

Model Problem Set Bounceback Readmission 30-Day Readmission

AU-ROC AU-PR AU-ROC AU-PR

DynPL R-ICDDiag & R-ICDProc 0.703± 0.013 0.168± 0.021 0.683± 0.003 0.234± 0.016
Frozen DynPL R-ICDDiag & R-ICDProc 0.698± 0.011 0.161± 0.012 0.677± 0.004 0.224± 0.010

DynPL R-Phe & R-ICDProc 0.705± 0.017 0.168± 0.019 0.687± 0.005 0.234± 0.011
Frozen DynPL R-Phe & R-ICDProc 0.700± 0.008 0.163± 0.008 0.680± 0.008 0.229± 0.017

but the codes could represent medical problems or procedures that arise or occur later in a

patient’s hospital stay after the patient is discharged from the ICU.

Nevertheless, this experiment can provide some insight into the effectiveness of our prob-

lem extraction model and whether it is currently a performance bottleneck. We report results

for this logistic regression oracle across two of our problem configurations in Table 4.4. We

find that using the ground truth labels leads to notably improved performance compared

to our framework for the readmission outcomes, but actually leads to worse performance

for most of the mortality outcomes. While the improvement for readmission outcomes can

likely be attributed in part to the use of future information, the improvement likely also

results from the improved accuracy of the problem labels, suggesting that the efficacy of

our problem extraction model is a limiting factor in our framework’s performance. However,

our framework is not reliant on any particular architecture for problem extraction and this

experiment demonstrates that as advances continue to be made on the task of automated

ICD coding, our framework will become increasingly viable. The worse performance for

mortality outcomes again suggests that the problem space doesn’t perfectly represent all of

the relevant information contained within the notes and highlights the importance of our
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Table 4.4: Comparison Against Oracle

Model Problem Set In-Hospital Mortality 30-Day Mortality

AU-ROC AU-PR AU-ROC AU-PR

DynPL R-ICDDiag & R-ICDProc 0.866± 0.011 0.322± 0.046 0.857± 0.005 0.438± 0.012
LR Oracle R-ICDDiag & R-ICDProc 0.875± 0.015 0.331± 0.062 0.839± 0.003 0.404± 0.012
DynPL R-Phe & R-ICDProc 0.865± 0.016 0.330± 0.040 0.855± 0.006 0.435± 0.007

LR Oracle R-Phe & R-ICDProc 0.850± 0.015 0.268± 0.049 0.818± 0.010 0.320± 0.039

Model Problem Set Bounceback Readmission 30-Day Readmission

AU-ROC AU-PR AU-ROC AU-PR

DynPL R-ICDDiag & R-ICDProc 0.703± 0.013 0.168± 0.021 0.683± 0.003 0.234± 0.016
LR Oracle R-ICDDiag & R-ICDProc 0.807± 0.013 0.294± 0.039 0.732± 0.007 0.314± 0.016
DynPL R-Phe & R-ICDProc 0.705± 0.017 0.168± 0.019 0.687± 0.005 0.234± 0.011

LR Oracle R-Phe & R-ICDProc 0.808± 0.013 0.286± 0.034 0.733± 0.007 0.312± 0.013

end-to-end training regime which allows for some adaptation to the outcome of interest.

4.5.6 Label Integrity

Although our framework’s problem extraction performance provides a straightforward

way to validate the effectiveness of our problem extraction model, it is not a perfect method

due to the nature of our ground truth labels. A number of past works have demonstrated

that ICD codes are an imperfect representation of ground truth phenotypes in actual clinical

practice [95, 96, 97, 98, 99, 100, 101, 102, 103]. A common trend observed in work exploring

the accuracy of ICD codes is that they have strong specificity but poorer sensitivity. In

other words, a patient assigned a given code very likely has the corresponding condition, but

there are likely more patients with that condition than only the patients who were assigned

that ICD code. Given that our dataset contains information gathered during routine clinical

care, the ICD codes we use as ground truth labels in this work likely suffer from the same

problem.

Because of this complication, perfect problem extraction performance, as evaluated by

using ICD codes as ground truth labels, is actually suboptimal. In such a case, the model

would have learned to perfectly replicate the biases and mistakes in the ICD coding process
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instead of correctly identifying all of the clinical problems. We hypothesize that if our

problem extraction model is effective, then there are likely some ’incorrect’ predictions that

count against our model in the evaluation above that are actually correct. To evaluate this

hypothesis, we conduct an expert evaluation over a limited set of predictions.

Because ICD codes tend to have problems with sensitivity, most of the errors with our

ICD labels should be false negatives. To evaluate whether our problem extraction model is

correctly recognizing some of the problems missed by the ICD codes, we extract the 50 most

confident false positives for one of the models trained in this work and manually evaluate

whether the patient actually has the corresponding problem. It is important to note that

when conducting the evaluation, we are not necessarily following ICD coding standards.

We are instead identifying whether the patient has the corresponding problem to explore

challenges with using ICD codes to represent phenotype labels as is being done in this work

and has been done in prior work [104]. We report the results for this experiment in Table

4.5.

Table 4.5: Expert Evaluation of 50 False Positives

Count Percentage

Correct Prediction 37 74%
Correct Label 13 26%

We observe that our hypothesis was correct and that a large majority (74%) of the false

positives that we extracted from our model were actually correct predictions penalized due

to label inaccuracies. This demonstrates that our model is already reasonably robust to

these label inaccuracies and is successfully extracting problems despite noisy labels. We also

observe that the actual false positives are often well grounded in the text. For example,

radiologists prioritize sensitivity over specificity when reporting observations, and we found

multiple false positives resulting from radiological findings that required clinical correlation.
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Although there is a large body of work in ICD code classification in MIMIC [83, 84, 82, 85], we

are the first to conduct such an analysis demonstrating the ability of our model to overcome

label inconsistencies.

4.6 Interpretability

While we demonstrated that our framework is performant, its primary strength is the

simplicity of interpretation that it provides. Tonekaboni et al. [105] surveyed clinicians to

identify aspects of explainable modeling that improve clinician’s trust in machine learning

models. Clinicians identified being able to understand feature importance as a critical aspect

of explainability so that they can easily compare the model’s decision with their clinical

judgement. Clinicians expected to see both global feature importance and patient-specific

importance so we explore both of those in this work.

4.6.1 Global Trends

A large body of prior work has explored the interpretability of attention, but that explo-

ration is typically limited to individual predictions [83, 106, 107]. While that is useful, it is

also important to gain an understanding of population level trends.

By designing our frameworks such that the value for the final prediction is a linear

combination of the extracted problem scores, we can simply extract the weights from the

final layer of our model to gain an understanding of which problems are important. We

calculated the mean and standard deviation for each problem over the five folds and present

the strongest risk factors across all outcomes in Table 4.6. We observe that there are a

number of common risk factors between outcomes. We find that the top four risk factors for

both readmission tasks were fluid disorders; puncture of vessel; renal failure; and congestive

heart failure, not hypertensive. We find that urinary tract infections and pneumonia were

both strong factors for mortality as well as the shared readmission risk factors of puncture

of vessel and fluid disorders.

We also explored whether there were factors associated with healthy outcomes but found
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that even the most negative weights had a small magnitude that was insignificant given their

variance. Thus our model appears to recognize a limited number of positive risk factors while

the majority of the intermediate problems have little effect on the outcome. This makes it

well-suited for producing clutter-free problem lists for clinicians which we explore in the next

section.

Table 4.6: Risk Factors for Target Outcomes

30-Day Mortality In-Hospital Mortality

Problem Weight Problem Weight

Disorders of fluid, electrolyte, and
acid-base balance

0.151± 0.057 Disorders of fluid, electrolyte, and
acid-base balance

0.189± 0.027

Puncture of vessel 0.091± 0.035 Urinary tract infection 0.081± 0.018
Pneumonia 0.078± 0.026 Puncture of vessel 0.079± 0.060

Urinary tract infection 0.072± 0.040 Renal failure 0.073± 0.020
Congestive heart failure;

nonhypertensive
0.067± 0.016 Pneumonia 0.071± 0.018

30-Day Readmission Bounceback Readmission

Problem Weight Problem Weight

Disorders of fluid, electrolyte, and
acid-base balance

0.110± 0.019 Disorders of fluid, electrolyte, and
acid-base balance

0.081± 0.025

Renal failure 0.081± 0.022 Puncture of vessel 0.076± 0.028
Puncture of vessel 0.072± 0.019 Congestive heart failure;

nonhypertensive
0.059± 0.014

Congestive heart failure;
nonhypertensive

0.069± 0.021 Renal failure 0.037± 0.014

Other anemias 0.069± 0.061 Hypertension 0.037± 0.034

4.6.2 Individual Predictions

We construct dynamic problem lists by extracting the 14 strongest problem predictions.

We chose to extract 14 problems because the patients in the training fold had an average of

13.8 codes assigned to their hospital stay so 14 problems should provide an adequate summary

of the patient’s state. We report these problems sorted by their extraction probability and

also report the importance of each problem for the final outcome so that clinicians can easily

identify what factors are driving the prediction. For the problem importance, we scale the

72



Table 4.7: Dynamic Problem Lists

High-Risk Bounceback Readmission Patient
Problem Extraction

Probabil-
ity

Problem
Weight

Top Two Spans of Attended Text

Other operations of abdominal region
(includes paracentesis)

0.950 0.16 [to attempt paracentesis again today]
[suitable for paracentesis was marked]

Chronic liver disease and cirrhosis 0.939 0.28 [to attempt paracentesis again today]
[suitable for paracentesis was marked]

Injection or infusion of therapeutic or
prophylactic substance

0.838 0.31 [started on tpn plan was]
[remains on tpn at present]

Puncture of vessel 0.797 1.00 [, beir hugger applied d/t low temp.;]
[reddend alovesta cream applied id : tmax]

Disorders of fluid, electrolyte, and
acid-base balance

0.732 0.92 [will be performed lft’s elevated being
followed]

[pt is jaundiced , excoriated perianal area]
Septicemia 0.556 0.15 [support , sepsis work-up p-will]

[levofloxacin and flagyl po skin]
Ascites (non malignant) 0.539 0.12 [to attempt paracentesis again today]

[suitable for paracentesis was marked]
Transfusion of blood and blood

components
0.484 0.06 [pt had egd this pm]

[rec’d # units ffp with]
Prophylactic vaccination and inoculation

against certain viral diseases
0.460 0.06 [support , sepsis work-up p-will]

[history of hepatorenal failure and]
Chronic ulcer of skin 0.450 0.32 [, beir hugger applied d/t low temp.;]

[reddend alovesta cream applied id : tmax]
Renal failure 0.404 0.39 [s/p now with renal failure reason for]

[s/p now with renal failure reason for]
Peritonitis and retroperitoneal infections 0.360 0.04 [to attempt paracentesis again today]

[suitable for paracentesis was marked]
Other anemias 0.359 0.06 [rec’d n units ffp with]

[rec’d n unit ffp with]
Viral hepatitis 0.349 0.13 [status , lactulose prn as]

[remains on lactulose prn to]
Low-Risk Bounceback Readmission Patient (Truncated)

Diagnostic procedures on small intestine 0.547 −0.07 [presently another endoscopy is scheduled]
[had an endoscopy which revealed]

Other anemias 0.284 0.06 [nnd unit prbc infusing presently]
[n unit prbc with initial]

Diseases of esophagus 0.252 −0.05 [presently another endoscopy is scheduled]
[had an endoscopy which revealed]

Effects radiation NOS 0.223 0.06 [nnd unit prbc infusing presently]
[n unit prbc with initial]
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Table 4.8: Baseline Attention Interpretation

Highly Attended Text
High-Risk Bounceback Readmission Patient Low-Risk Bounceback Readmission Patient

[radiology to attempt paracentesis again today] [small amts ice chips awaiting nnd endoscopy]
[iv bid old tap site from] [understanding of discharge instructions and

new]
[planning to do tap this evening] [daughters care discharge instructions reviewed

with]
[further oozing needs c-diff spec pmicu nursing] [fbleeding noted discharge instructions , pt]

[was d/cd a paracentesis was attempted] [ice chips per team neuro : a&oxn]
[of ice chips tpn infusing as] [taking medication discharge planning complete

with]
[overnight mushroom cath draining loose

brown-green stool]
[scheduled for this am- ? nam pt]

[was started on tpn plan was] [of chron’s disease and lower]
[pt remains on tpn at present] [, denies sob rr nn-nn]

[status , lactulose prn as] [, dry , intact without reddness or]
[remains on lactulose prn to] [up the clots pt transferred]

[re-oriented rec’ing lactulose po has] [chron’s disease and lower gib , now]
[pt given lactulose x n] [in the <loc> area plan : repeat]
[on po lactulose perl ,] [given iv erythromycin and iv]

problem weights to the range [−1, 1] by dividing by the problem weight with the greatest

magnitude to allow for easier interpretation, and we also provide the spans of text attended to

by the model to make each problem prediction. To provide a comparison using our baseline

convolutional attention model, we extract the 14 spans of text with the greatest attention

weights associated with them.

We provide an example of a dynamic problem list for a patient predicted to be at high risk

of bounceback readmission in Table 4.7. From looking at the dynamic problem list, we can

quickly identify the most important problems driving the risk prediction (puncture of vessel,

fluid disorder, renal failure, skin ulcer, intravenous feeding, and liver disease) while under-

standing that the other problems are insignificant. Reporting the quantitative importance

of each problem saves the clinician from having to manually filter through the long list of

problems. Furthermore, the extraction probability provides a measure of uncertainty which,

along with the attended text, allows clinicians to intelligently verify the model’s performance.

For example, renal failure is an important risk factor but has a relatively low extraction prob-
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ability of 0.404. Upon inspecting the highlighted text, the clinician can clearly observe that

the extraction was accurate and the patient is suffering from that condition. It is also worth

noting that in this example the problem extraction model was able to successfully recognize

that the patient had bed ulcers and a platelet transfusion, both of which are not represented

by the ICD labels in the dataset.

By comparison, we provide the baseline visualization from the convolutional attention

model for the same patient in Table 4.8. Here, we can only observe much broader trends and

there is a large degree of redundancy (e.g. paracentesis and tap refer to the same procedure).

We can observe that the patient has severe liver problems from the need for paracentesis

and the use of the medication, lactulose. We can also observe that the patient required

intravaneous feeding from the references to total parenteral nutrition (TPN). However, there

is a significant amount of redundancy and it is not clear how to meaningfully aggregate

these observations to actually gain an understanding of what clinical outcomes the model

is extracting and how important they are for the final outcome. Furthermore, the overview

of the patient is much less comprehensive than that provided by the dynamic problem list,

with all of the information extracted by the baseline being concisely aggregated into three

codes (Chronic liver disease and cirrhosis, Other operations of abdominal region, and Injec-

tion or infusion of therapeutic or prophylactic substance) in the dynamic problem list that

quantitatively reports the importance of those conditions.

We compare a dynamic problem list to our baseline for a low-risk bounceback patient

in the same tables and find that the benefits are even more pronounced. When examining

the baseline visualization we observe that the model is primarily focusing on references to

discharge instructions which don’t actually convey any clinically meaningful information.

Similarly, the other phrases attended to do not seem to convey any important medical infor-

mation. On the other hand, the dynamic problem list for the low-risk patient still effectively

extracts clinical conditions (that the patient had an esophageal disease, was anemic, etc.)

and then concludes that the extracted conditions do not warrant concern. This clearly
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demonstrates to a clinician that the model is still effectively extracting the patient’s clinical

condition, but that it judges that condition to be safe. This transparency is important for

the clinician to be able to trust that the model is effective.

4.7 Qualitative Expert User Study

While we have argued for the improved utility of our framework compared against recent

work within the domain, it is important to verify that claim by conducting a user study with

medical experts. For example, it may be possible that while our framework is sound in theory,

the problem extraction stage is sufficiently noisy to render the extracted problem lists useless

in practice. To examine the utility of our framework, we recruited four medical experts and

conducted a user study where our experts evaluated the utility of our dynamic problem

list and the baseline interpretation method. Three of our experts are currently practicing

physicians while one is an MD-PhD student with one year of medical school remaining. Two

of the medical experts are co-authors who were involved in some parts of the development

of this work while the other two had no involvement with our work beyond taking part in

the user study.

We conducted our user study by randomly sampling 25 ICU stays from the test set of

one of our 30 day readmission models. Because of the imbalanced nature of our dataset,

we sample 10 stays from the top 5% of predicted risks and sample the other 15 stays from

the remaining ICU stays. This ensures that we evaluate our framework for both high risk

patients and patients that are representative of the general patient population. We then

provided each of our expert reviewers with the clinical notes associated with each patient

and instructed them to briefly review them to gain an understanding of the patient’s medical

condition. We then presented them with our dynamic problem list and the baseline atten-

tion extraction along with the predicted readmission risk and the reviewers evaluated both

methods independently using the Likert Scale seen in Figure 4.9.

We report the results for this study in Table 4.10 and compute the statistical significance

for two comparisons. We examine the relationship between the two interpretation meth-
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ods using a two-tailed paired t-test and also explore whether the dynamic problem list is

meaningfully better than a neutral rating using a two-tailed one sample t-test. The first

comparison allows us to examine whether our method is an improvement over the baseline

while the second allows us to evaluate whether the medical expert’s judged our method

favorably. We observe that every expert found our framework to be more effective than

the baseline method and the difference was statistically significant for all but one expert.

Additionally, every expert found the problem list to be meaningfully better than a neutral

rating by a statistically significant margin. By contrast, two of our experts rated the baseline

worse than neutral and none of the experts rated it to be better than neutral by a statisti-

cally significant margin. When averaging the scores for each patient across all experts, we

find that our method received a rating of 3.66 on average compared to 2.85 for the baseline

method, a meaningful improvement over both the baseline (p < 0.001) and a neutral rating

(p < 0.001). These improvements are still significant even when limiting the evaluation to

the two external experts to account for potential biases from the experts who were familiar

with this work. While a much more stringent evaluation would need to be conducted (such as

a randomized controlled trial) before implementing our method in practice, this preliminary

qualitative evaluation is promising and more rigorous evaluations are left to future work.

Table 4.9: Likert Scale

The list effectively identifies and presents relevant medical factors for evaluating
readmission risk for this patient.

Strongly
Disagree

Disagree Neutral Agree Strongly Agree

1 2 3 4 5
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Table 4.10: User Study

Medical Expert
1 2 3 4 Average Average of External Experts

Convolutional Attention 3.13 2.52 2.52 3.32 2.85 2.92
Dynamic Problem List 4.08 3.48 3.52 3.56 3.66 3.52
DynPL > Conv-Attn p < 0.005 p < 0.005 p < 0.01 p = 0.110 p < 0.001 p < 0.005
DynPL > Neutral p < 0.001 p < 0.05 p < 0.05 p < 0.01 p < 0.001 p < 0.01

4.8 Limitations and Future Work

We did not make the problem extraction architecture a large focus of this work and instead

used a model representative of the recent state-of-the-art. In the future, we intend to improve

upon the problem extraction module in our framework. In particular, we intend to explore

whether we can utilize pre-trained language models to improve our problem extraction and

downstream performance given their recent success across a wide variety of tasks both outside

of and within the clinical domain [108, 109]. In this work, we augmented our problem

extraction module with a linear layer for its simplicity of interpretation and found that it led

to strong performance. However, incorporating our problem extraction module into a more

sophisticated model could potentially lead to meaningful improvements in performance and

we intend to pursue this in future work. We would also like to extend this framework to

other outcomes of clinical interest such as sepsis or the onset of intubation to evaluate its

ability to generalize beyond the outcomes examined in this work.
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5. USE OF MACHINE LEARNING MODELS TO PREDICT DEATH AFTER ACUTE

MYOCARDIAL INFARCTION∗

Turning back to outcome prediction, this chapter compares several machine learning

methods in predicting mortality following acute myocardial infarction. Here, we compare

several the performance of several models with both expanded and parsimonious variable sets.

We compare to a previously published model and report on differences in model calibrations.

While accurate predictions are important, so too is it important to understand the confidence

of a model’s prediction.

5.1 Introduction

An assessment of risk of death after an acute myocardial infarction (AMI) is useful for

guiding clinical decisions for patients and for assessing hospital performance [110, 111, 112].

New analytic approaches may enhance risk prediction with existing data beyond traditional

statistical approaches. Existing risk prediction models developed in the prediction of AMI

outcomes have been limited by lack of inclusion of nonlinear effects and complex inter-

actions among variables in national samples or have only evaluated these effects in small

patient groups [113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124]. With advances

in computation and analytics, however, it may be possible to create models in large and

diverse patient groups, which may improve on traditional models with existing information.

Specifically, the application of machine learning techniques has the potential to improve on

accuracy in the prediction of in-hospital mortality after AMI [125, 126, 127].

Accordingly, using data collected in the Chest Pain–MI Registry (CP-MI Registry; for-

merly known as the ACTION Registry) of the National Cardiovascular Data Registry (NCDR),
∗Reprinted with permission from "Use of Machine Learning Models to Predict Death After Acute My-

ocardial Infarction" by Khera, Rohan; Haimovich, Julian; Hurley, Nathan C; McNamara, Robert; Spertus,
John A; Desai, Nihar; Rumsfeld, John S; Masoudi, Frederick A; Huang, Chenxi; Normand, Sharon-Lise;
Mortazavi, Bobak J; and Krumholz, Harlan M, 2021. JAMA Cardiology, 6, 633-641, Copyright© 2021
American Medical Association.
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a national clinical quality program from the American College of Cardiology, we assessed

whether machine learning techniques, compared with logistic regression, could improve pre-

diction of in-hospital AMI mortality. The CP-MI Registry includes information on more

than 1 million AMI hospitalizations at 1,163 hospitals across the US. We used the most con-

temporary published model for mortality after AMI, which used logistic regression [116, 117],

to compare the performance characteristics of our models derived using machine learning.

5.2 Methods

This cohort study used the American College of Cardiology CP-MI Registry to identify

all AMI hospitalizations between January 1, 2011, and December 31, 2016. Data analysis

was performed from February 1, 2018, to October 22, 2020. The Yale University Institutional

Review Board reviewed the study and waived the requirement for informed consent given

the deidentified data. The study followed the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) reporting guideline [128].

5.2.1 The CP-MI Registry

The CP-MI Registry collects data from participating hospitals on patients admitted with

AMI, including both ST-elevation myocardial infarction (STEMI) and non-STEMI. Data are

collected through retrospective medical record review and submitted using a standardized

data collection tool. Collected data include patient demographics, presentation information,

pre-hospital vital signs, selected laboratory data from the hospital course, procedures, timing

of procedures, and select in-hospital outcomes. The NCDR data quality program enhances

data completeness and accuracy through audits and feedback [129].

5.2.2 Patient Population

Between January 1, 2011, and December 31, 2016, a total of 993,905 patients with AMI

from 1,128 hospitals were included. Similar to the approach used in prior studies [1, 130],

patients transferred to another facility for management (n =47,308) or missing information

on history of percutaneous coronary intervention, a key risk factor included in the current
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standard for predicting mortality outcomes (n =191,195), were excluded (Table 5.1). Those

patients excluded had age and sex distribution similar to those of patients included in the

analysis but slightly higher rates of STEMI and unadjusted mortality (Table 5.1). After the

exclusion of these patients, 755,402 patients remained for modeling. We also constructed a

secondary cohort in which patients were not excluded for missing variables and covariates

with missingness greater than 5% were excluded as predictors in the model (n =946,597).

5.2.3 Patient Variables and Data Definitions

Patient variables available to a practitioner at the time of presentation were selected

for modeling. These variables include patient demographics, medical history, comorbidities,

home medications, electrocardiogram findings, and initial medical presentation and labora-

tory values. The outcome of this study was death from any cause during hospitalization.

The current standard model for AMI mortality built within the NCDR uses 9 variables

to predict mortality and was derived from 29 candidate variables using logistic regression

by McNamara et al [1]. We included 2 sets of variables to build our machine learning

models. First, we included the 29 variables used to derive the current NCDR standard [1].

Second, we used an expanded variable set with all other variables that would be available

to a practitioner at the time of hospital presentation with an AMI (Table 5.2). A priori, we

included variables that were available in at least 90% of patients, resulting in 8 candidate

continuous variables and 48 categorical variables with a missing variable rate of less than

1%. For these variables, we imputed missing values to the mode for categorical variables and

median for continuous variables. In sensitivity analyses, we pursued multiple imputation

using the multivariate imputation by chained equations method, which derives predicted

values of the missing values using a regression-based approach. These analyses were tested

in a 5-fold validation exercise to evaluate the robustness of our strategy. Finally, we evaluated

models that included patients who had been excluded from the primary analyses because of

missing covariates (threshold ≥5%), thereby excluding key variables that are a part of the

current standard.
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Table 5.1: Differences in characteristics of patients excluded vs included in analyses

Characteristic Excluded Patients
(n = 191,195)

Included Patients
(n = 755,402)

N(%) Missing N(%) Missing
Demographic Characteristics
Age, mean (SD), y 64 (14) 0 65 (14) 0
Weight, mean (SD), kg 87 (22) 566 87 (22) 1421
Female Sex 66,349 (35) 0 260,200 (34) 0
Race

White 161,417 (84) 0 640,995 (85) 0
Black 21,612 (11) 0 87,089 (12) 0

Medical History
History of diabetes 64,869 (34) 392 257,072 (34) 144
History of hypertension 141,071 (74) 257 562,423 (75) 74
History of dyslipidemia 189 (78) 190953 461,269 (61) 127
Current or recent smoker 64,963 (34) 246 253,829 (34) 145
Current dialysis 29 (27) 191089 68,086 (14) 283305
History of MI 5,176 (3) 603 19,055 (3) 244
History of HF 60 (39) 191040 188,297 (25) 175
Prior PCI 57 (40) 191053 94,897 (13) 704
Prior CABG - 191195 193,179 (26) 0
History of atrial fibrillation 54 (36) 191046 100,897 (13) 393
Prior cerebrovascular disease 38 (25) 191040 62,312 (8) 519
Prior peripheral arterial disease 20,293 (11) 372 91,723 (12) 148

Presentation
Presentation after cardiac arrest 8,499 (5) 2047 29,458 (4) 2581
In cardiogenic shock 8,180 (4) 384 28,783 (4) 584
In HF 22,569 (12) 306 95,240 (13) 529
Heart rate, mean (SD), beats/min 84 (24) 1089 84 (24) 2216
SBP at presentation, mean (SD), mm Hg 146 (36) 1166 147 (35) 2678

Presentation ECG findings
STEMI 85,634 (45) 0 292,784 (39) 0
New or presumed new

ST depressions 16,772 (9) 0 83,555 (11) 0
T-wave inversions 11,078 (6) 0 56,791 (8) 0

Transient ST-segment elevation lasting <20 min 1,920 (1) 0 8,279 (1) 0
Initial laboratory values
Troponin ratio, mean (SD) 7.8 (8.3) 4088 7.3 (8.1) 12071
Creatinine, mean (SD), mg/dL 1.3 (1.2) 1098 1.3 (1.2) 4404
Creatinine clearance, mean (SD), mL/min 85 (43) 1634 85 (43) 5756
Hemoglobin, mean (SD), g/dL 14 (2) 1141 14 (2) 4426

Outcome
In-hospital mortality 9432 (4.9) 0 33,468 (4.4) 0
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Table 5.2: List of patient variables used in modeling. ∗denotes model variables used in
McNamara et al. study [1]

Model Variables

Demographics Age∗ Presentation ECG ST-elevation myocardial infarction∗
Weight, kg∗ New or presumed new ST-segment depression∗
BMI kg/m2 New or presumed new T-wave inversion∗
Sex∗ Transient ST-segment elevation < 20 minutes∗
Race ST elevation
Hispanic origin Left bundle branch block

Medical History History of diabetes mellitus∗ Isolated posterior MI
Diabetes control Home Medications Aspirin
History of hypertension∗ Clopidogrel
History of dyslipidemia∗ ACE inhibitor
Current/recent smoker∗ Angiotensin receptor blocker
Current dialysis∗ Beta blocker
Chronic lung disease∗ Statin
History of MI∗ Non-statin lipid-lowering agent
History of heart failure∗ Prasugrel
Prior PCI∗ Warfarin
Prior CABG∗ Aldosterone blocking agent
History of atrial fibrillation∗ Initial Laboratory Tests Initial CKMB collected
Prior cerebrovascular disease∗ Initial Troponin collected
Prior peripheral artery disease∗ Initial Creatinine collected
Prior stroke Initial Hemoglobin collected
Prior transient ischemic attack Lipid panel collected

Presentation After Cardiac Arrest∗ Initial BNP collected
In Cardiogenic shock∗ Initial pro-BNP collected
In heart failure∗ Troponin Ratio∗
Heart rate, bpm∗ Creatinine mg/dL∗
SBP, mmHg∗ Creatinine Clearance∗

Hemoglobin, g/dL∗
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5.2.4 Modeling Strategies

We divided the data into an initial 75% subset (April 1, 2011, through September 30,

2015) for model development and the more recent 25% subset (October 1, 2015, through

December 31, 2016) for model testing. The model development period was further divided

into 2 equal halves (April 1, 2011, to September 30, 2013, and October 1, 2013, to September

30, 2015) to develop level 1 and level 2 models, respectively (Figure 5.1).

Figure 5.1: The level 1 classifiers consist of 3 independent models each trained on the
same initial training sample (sample A), including logistic regression with least absolute
shrinkage and selection operator (LASSO), extreme gradient descent boosting (XGBoost),
and a neural network. The next training sample (sample B) is then input into the level 1
classifiers, resulting in 3 risk estimates for each observation in sample B, 1 from each level 1
model. These 3 risk estimates are then used to train the level 2 XGBoost classifier (sample
C). A final sample (sample D) is input into the level 1 classifiers to obtain risk estimates for
input into the level 2 classifier. Performance of the level 1 and level 2 classifiers is assessed
using this final training set D.

We compared 3 modeling strategies with logistic regression: (1) gradient descent boosting,

(2) a neural network, and (3) a meta-classifier approach that combined logistic regression with

least absolute shrinkage and selection operator (LASSO) regularization, a gradient descent

boosting, and a neural network. Gradient descent boosting models make predictions using a

series of decision trees, representing an interpretable model. Unlike logistic regression, this

model can include higher-order interactions and account for complex nonlinear relationships

between model variables and outcomes. The method of gradient descent boosting chosen
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was extreme gradient boosting, or XGBoost [131]. XGBoost incorporates a measure of how

much model accuracy is improved by the addition of a given variable, with a higher gain

value implying greater importance in generating a prediction. Neural networks are a type of

machine learning technique that, like the human brain, connects layers of nodes (neurons)

to model an output. Finally, the meta-classification approach uses an XGBoost model to

combine the outputs of 3 supervised learning models, including LASSO, XGBoost, and a

neural network (Figure 5.1) [67]. Therefore, the meta-classifier was a level 2 model that was

based on the results of prediction models applied directly to patients (level 1 models).

The computational approach is shown in Figure 5.1. The first half of the derivation

cohort was used to train 4 methods; logistic regression, LASSO, XGBoost, and a neural

network. The second half of the derivation cohort was then used as a training set for the

level 2 meta-classifier. We validated the various approaches with the remaining 25% of the

sample.

5.2.5 Statistical Analysis

Model discrimination was measured using the area under the receiver operating charac-

teristic curve (AUROC or C statistic) and its 95% CIs.25 In addition, the positive predictive

value (or precision) and the sensitivity (recall) across all possible risk thresholds for pre-

dicting mortality were plotted using the precision-recall curve. The precision-recall curve,

unlike the AUROC, is not affected by the number of true-negative results. In data sets with

small event rates and therefore a large expected true-negative rate, such as the one studied

here, the precision-recall curve is well suited for comparing different models. For both the

C statistic and area under the precision-recall curve, values closer to 1 correspond to more

accurate models.

Because the objective of the models is to address prediction at an individual level, we

calculated the mean squared prediction error for each model, which represents the mean

probability of an inaccurate prediction for a patient. A lower value suggests more accurate

prediction. We also calculated the F score, sensitivity, specificity, positive predictive value,
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and negative predictive value. In addition, we calculated a Brier score for each model as

a measure of model accuracy. The score represents the reliability of the model minus the

resolution plus an error term and represents the mean squared error between the observed

and predicted risk [132, 133]. Further details are included in the eMethods and Figure 5.2.

Figure 5.2: Each point represents the predicted versus observed risk at a given decile of risk.
Reliability is the sum of the mean-squared error between the deciles of predicted risk and
observed risk, and resolution is the mean-squared error between deciles of predicted risk and
the event rate of the entire cohort.

Model calibration was measured using (1) the calibration slope, which was calculated as

the regression slope of the observed mortality rates across the deciles of predicted mortality

rates; (2) the reliability component of the Brier score; and (3) shift tables, in which we

classified patients in the validation cohort into prespecified categories of low (<1%), moderate

(1%-5%), or high risk (>5%) of death based on logistic regression and one of the machine

learning models, creating a 9-way matrix of patients that included risk profiles assigned by

the 2 models (low-low, low-moderate, and so on). We then calculated the actual rate of

events in these groups, focusing on discordant categories, and compared them against the

observed rates of mortality. We conducted sensitivity analyses with risk thresholds set at
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less than 1.5%, 1.5% to 3%, and greater than 3%.

All analyses were conducted using open-source Python, version 3.8.0 (Python Software

Foundation) and R software, version 3.6 (R Foundation for Statistical Computing). The

level of significance was set at a 2-sided P<.05.

5.3 Results

5.3.1 Characteristics of Study Population

A total of 755,402 patients (mean [SD] age, 65[13] years; 495, 202[65.5%] male) were iden-

tified during the study period. Among the 755,402 patients in the primary study cohort,

the overall in-hospital mortality rate was 4.4%. The derivation cohort consisted of 281,997

patients used to derive the level 1 classifiers, 282,921 to train the meta-classifier model (level

2 model), and the remaining 190,484 patients for the test cohort. Table 5.3 includes char-

acteristics for the derivation and validation cohorts. A total of 562,423 patients (74%) had

hypertension, 257,072 (34%) had diabetes, 188,297 (25%) had experienced a prior myocardial

infarction, and 94,897 (13%) had a diagnosis of heart failure. In addition, 292,784 (39%)

presented with a STEMI, 95,240 (13%) with heart failure, 28,783 (4%) with cardiogenic

shock, and 29,458 (4%) after cardiac arrest (Table 5.3).

5.3.2 Model Discrimination

The current NCDR model with 9 variables had good discrimination (AUROC, 0.867)

using β coefficients in the original model applied to the data. In models that used the 29-

variable set that was used to derive the NCDR standard, machine learning models achieved

modest improvements in discrimination over logistic regression using the same data inputs

(Table 5.4). The AUROC for all 3 models was numerically higher than logistic regression in

both the limited variable set and the expanded variable set, with corresponding improvements

in the area under the precision-recall curve (Table 5.4; Figure 5.3). The XGBoost and meta-

classifier models achieved a discrimination of 0.898 (95% CI, 0.894-0.902) and 0.899 (95%

CI, 0.895-0.903), respectively, applied to the expanded set of variables compared with 0.888
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Table 5.3: Baseline characteristics of the derivation and validation cohorts

Characteristic Derivation Cohort
(n = 564,918)

Validation Cohort
(n = 190,484)

Demographic Characteristics
Age, mean (SD), y 65 (14) 65 (13)
Weight, mean (SD), kg 87 (22) 88 (22)
Male Sex 369,455 (65) 125,747 (66)
Race

White 479,428 (85) 161,567 (85)
Black 65,726 (12) 21,363 (11)

Medical History
History of diabetes 190,280 (34) 66,792 (35)
History of hypertension 419,803 (74) 142,620 (75)
History of dyslipidemia 344,758 (61) 116,511 (61)
Current or recent smoker 191,638 (34) 62,191 (33)
History of chronic lung disease 67,370 (14) 716 (11)
Current dialysis 14,153 (3) 4,902 (3)
History of MI 140,878 (25) 47,419 (25)
History of HF 70,925 (13) 23,972 (13)
Prior PCI 142,900 (25) 50,279 (26)
Prior CABG 76,462 (14) 24,435 (13)
History of atrial fibrillation 44,164 (8) 18,148 (10)
Prior cerebrovascular disease 68,891 (12) 22,832 (12)
Prior peripheral arterial disease 52,660 (9) 15,167 (8)

Presentation
Presentation after cardiac arrest 22,368 (4) 7,090 (4)
In cardiogenic shock 22,095 (4) 6,688 (4)
In HF 72,621 (13) 22,619 (12)
Heart rate, mean (SD), beats/min 84 (24) 84 (24)
SBP at presentation, mean (SD), mm Hg 146 (35) 148 (36)

Presentation ECG findings
STEMI 117,078 (39) 73,136 (38)
New or presumed new

ST depressions 219,648 (39) 19,261 (10)
T-wave inversions 64,294 (11) 12,918 (7)

Transient ST-segment elevation lasting <20 min 43,873 (8) 1,667 (1)
Initial laboratory values
Troponin ratio, mean (IQR) 2.5 (0.50-16.3) 3.5 (0.78-20.0)
Creatinine, mean (SD), mg/dL 1.3 (1.2) 1.3 (1.2)
Creatinine clearance, mean (SD), mL/min 85 (43) 85 (42)
Hemoglobin, mean (SD), g/dL 14 (2) 14 (2)
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Table 5.4: Performance characteristics of models for predicting in-hospital mortality in acute
myocardial infarction

Characteristic Logistic regression LASSO Neural network XGBoost Meta-classifier

Variables included in the model of McNamara et al [1]

Model
performance
metrics
AUROC, (95% CI) 0.878 (0.875, 0.881) 0.874 (0.870, 0.879) 0.874 (0.870, 0.878) 0.886 (0.882, 0.890) 0.886 (0.882, 0.890)
Precision-recall AUC 0.372 0.367 0.371 0.395 0.398
F score 0.415 0.408 0.411 0.432 0.432
Sensitivity 0.42 (0.41, 0.43) 0.43 (0.42, 0.45) 0.41 (0.40, 0.42) 0.44 (0.43, 0.45) 0.43 (0.42, 0.44)
Specificity 0.97 (0.97, 0.97) 0.97 (0.97, 0.97) 0.97 (0.97, 0.97) 0.97 (0.97, 0.97) 0.98 (0.97, 0.98)
PPV 0.41 (0.40, 0.42) 0.38 (0.37, 0.39) 0.41 (0.40, 0.42) 0.42 (0.41, 0.43) 0.44 (0.43, 0.45)
NPV 0.97 (0.97, 0.97) 0.97 (0.97, 0.98) 0.97 (0.97, 0.97) 0.98 (0.97, 0.98) 0.97 (0.97, 0.98)

Brier Score
Reliability, mean (SD), ×10−6 28.4 (9.2) 96.3 (16.5) 224.0 (26.1) 9.5 (3.8) 2.3 (2.1)
Resolution, mean (SD), ×10−3 5.6 (0.1) 5.5 (0.1) 5.4 (0.1) 5.8 (0.1) 5.9 (0.1)
Uncertainty 0.04 0.04 0.04 0.04 0.04
Overall ×10−2 3.52 3.54 3.56 3.49 3.48

Expanded variables included from the CP-MI registry

Model
performance
metrics
AUROC, (95% CI) 0.888 (0.884, 0.892) 0.886 (0.882, 0.890) 0.885 (0.881, 0.889) 0.898 (0.894, 0.902) 0.899 (0.895, 0.903)
Precision-recall AUC 0.421 0.415 0.406 0.451 0.453
F-score 0.436 0.436 0.428 0.458 0.459
Sensitivity 0.47 (0.45, 0.48) 0.42 (0.41, 0.43) 0.43 (0.42, 0.44) 0.45 (0.44, 0.47) 0.43 (0.42, 0.44)
Specificity 0.97 (0.97, 0.97) 0.98 (0.98, 0.98) 0.97 (0.97, 0.98) 0.98 (0.98, 0.98) 0.98 (0.98, 0.98)
PPV 0.41 (0.40, 0.42) 0.45 (0.44, 0.46) 0.43 (0.42, 0.44) 0.46 (0.45, 0.47) 0.49 (0.48, 0.50)
NPV 0.98 (0.98, 0.98) 0.97 (0.97, 0.98) 0.97 (0.97, 0.98) 0.98 (0.98, 0.98) 0.97 (0.97, 0.98)

Brier Score
Reliability, mean (SD), ×10−6 229.4 (25.6) 40.6 (10.3) 55.7 (11.2) 6.5 (3.5) 4.3 (2.6)
Resolution, mean (SD), ×10−3 6.0 (0.1) 5.9 (0.1) 5.8 (0.1) 6.4 (0.2) 6.5 (0.2)
Uncertainty 0.04 0.04 0.04 0.04 0.04
Overall ×10−2 3.5 3.49 3.5 3.43 3.42

(95% CI, 0.884-0.892) with the logistic regression model. The XGBoost and meta-classifier

models had more accurate predictions at an individual level than logistic regression models,

with a lower mean squared prediction error across both sets of variables, but this effect was

not observed with the neural network (Figure 5.4).

5.3.3 Model Calibration

Of the 3 machine learning models, the XGBoost and the meta-classifier models but not

neural network had improvements in calibration slopes compared with logistic regression,

when they were applied to a limited or an expanded set of variables (Figures 5.5, 5.6, 5.7).

The components and overall Brier score for the different models are included in Table 5.4.
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(a) (b)

(c) (d)

Figure 5.3: Receiver Operator Characteristic and Precision Recall Curves for each model
and each variable set.
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Figure 5.4: Mean Squared Prediction Error of Machine Learning Models Compared With
Logistic Regression. The mean squared prediction error for all machine learning models was
lower than logistic regression applied to the same set of variables, including the variables
used by the current standard [1] and all variables available in the Chest pain-MI registry.

Models with lower values of reliability indicate higher agreement between predicted and

observed risk and therefore have better performance. Even with the limited set of model

variables, the mean (SD) reliability measure of the meta-classifier (2.3 [2.1] · 10−6) and

XGBoost models (9.5 [3.8] · 10−6) but not the neural network (224.0 [26.1] · 10−6) were

smaller (and therefore more accurate) compared with the logistic regression model (28.4

[9.2] · 10−6). The machine learning models also had significantly greater resolution (higher

range of accurate prediction across the spectrum of risk) than the model based on logistic

regression. The highest mean (SD) resolution was found in the meta-classifier (5.9 [0.1]·10−3)

and XGBoost (5.8 [0.1]·10−3) models followed by the logistic regression model (5.6 [0.1]·10−3)

and the neural network (5.4 [0.1] · 10−3).

All 3 machine models more accurately classified patients in clinically relevant categories of

risk. In shift tables, predicted risk across each of the machine learning models (<1%, 1%-5%,
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Figure 5.5: Extreme gradient boosting model (XGBoost) (A), neural network (B), and meta-
classifier model (C), using the 29-variable input used in the development of the model by
McNamara et al. [1]. The shaded areas denote standard error of the calibration.
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Figure 5.6: Calibration of Models Developed Using Limited Number of Variables Included in
the Current Standard [1]. Calibration curves for logistic regression (LR, A), Neural Network
(B), XGBoost (C) and Meta-Classifier (D) models for validation cohort predictions. Slope of
1 represents perfect model calibration with values greater than 1 suggesting overestimation
of risk and less than 1 suggesting underestimation of risk.
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Figure 5.7: Calibration of Models Developed Using Expanded Number of Variables Included
in the Chest Pain-MI Registry. Calibration curves for logistic regression (LR, A), Neural
Network (B), XGBoost (C) and Meta-Classifier (D) models for validation cohort predic-
tions. Slope of 1 represents perfect model calibration with values greater than 1 suggesting
overestimation of risk and less than 1 suggesting underestimation of risk.
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and >5%) were individually compared against the predicted risk categories across logistic

regression models. In these analyses, individuals with a predicted risk that was discordant

between 1 of the machine learning methods and logistic regression was evaluated against the

actual rate of observed events in the group. Each of the 3 machine learning models more

accurately identified the actual rate of mortality for a group of patients when discordance

was found. For example, among patients predicted to be at low risk based on the meta-

classifier or XGBoost models and low, moderate, or high risk based on logistic regression, a

negligible difference was found in the mortality rate among those also predicted to be at low

risk by logistic regression (mortality rate, 0.3%) or moderate or high risk (mortality rate,

0.5%), despite predicted mortality risk of greater than 1% by logistic regression. In contrast,

patients who were at low risk based on logistic regression had an observed mortality rate of

2.2% if at moderate or high risk based on the meta-classifier model. A similar pattern was

observed for all, compared with logistic regression models applied to the same data.

Notably, 30,836 of 121,839 individuals (25%) deemed to be at moderate or high risk

by logistic regression were more appropriately classified as being at low risk by the meta-

classifier, consistent with their actual observed rates of mortality after AMI, even with models

using the same model inputs. Moreover, 2,951 of 68,645 individuals (4%) who were deemed

to be at low risk by logistic regression were reclassified as moderate to high risk (Table 5.5).

There was a similar reclassification of risk in the XGBoost model, which reclassified 32,393

medium-high risk individuals (27%) based on logistic regression to low risk, which is more

consistent with the observed rates. Furthermore, 3,452 patients (5%) classified as low risk

by logistic regression were reclassified as medium-high risk by XGBoost (Table 5.5). The

reclassification of low-risk individuals to moderate-high risk was also not consistent with

observed events with machine learning models. The models based on expanded variables

more accurately categorized patient risk than the limited set of variables, with machine

learning models offering additional calibration of risk for the same set of variables. The

observations on reclassification were consistent in sensitivity analyses using different risk
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Table 5.5: Performance of the XGBoost and meta-classifier models compared with logistic
regression

Expanded LR, No. of patients (% observed mortality)

Model <1% 1%-5% >5% All

XGBoost vs LR
Expanded XGBoost
<1% 65,193 (0.27) 31,971 (0.65) 422 (1.18) 97,586 (0.40)
1%-5% 3,384 (0.95) 44,486 (2.21) 13,155 (3.91) 61,025 (2.51)
>5% 68 (2.94) 2,899 (6.21) 28,906 (20.79) 31,873 (19.42)
All 68,645 (0.30) 79,356 (1.73) 42,483 (15.37) 190,484 (4.26)

Meta-classifier vs LR
Expanded Meta-classifier
<1% 65,694 (0.27) 30,661 (0.65) 175 (0.00) 96,530 (0.39)
1%-5% 2,930 (1.06) 45,726 (2.17) 9,033 (3.55) 57,689 (2.33)
>5% 21 (0.00) 2,969 (6.03) 33,275 (18.66) 36,265 (17.61)
All 68,645 (0.30) 79,356 (1.73) 42,483 (15.37) 190,484 (4.26)

Table 5.6: Area under the receiver operator characteristic curve for the 5-fold multiple
imputation.

Model Models Constructed using Limited variables Models Constructed using Expanded variables

Logistic Regression 0.877 0.888
Neural Network 0.874 0.886
XGBoost 0.885 0.897
Meta-classifier 0.885 0.898

thresholds (<1.5%, 1.5%-3%, and >3%), wherein patients reclassified by XGBoost and meta-

classifier but not neural networks had observed event rates consistent with the classified

groups (Table 5.6).

The improvements in calibration were consistent across imputation strategies for missing

variables, including the mode imputation and 5-fold multiple imputation strategies (Table

5.7). Furthermore, in an additional sensitivity analysis that included most patients by using

a smaller number of features, XGBoost achieved an AUROC of 0.899 (95% CI, 0.895-0.904)

and meta-classifier achieved an AUROC of 0.901 (95% CI, 0.896-0.905), largely similar to
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Table 5.7: Model calibration slopes in patient subgroups.

Group Logistic regression Neural network XGBoost Metaclassifier

Overall 0.93 [0.91, 0.95] 0.83 [0.82, 0.85] 0.98 [0.96, 1.00] 0.99 [0.98, 1.00]
Age in years
18-44 0.90 [0.87, 0.93] 0.81 [0.77, 0.84] 0.98 [0.95, 1.00] 0.97 [0.94, 1.00]
45-64 0.93 [0.92, 0.94] 0.83 [0.82, 0.85] 0.97 [0.96, 0.98] 0.98 [0.96, 1.00]
≥65 0.94 [0.91, 0.97] 0.83 [0.81, 0.86] 0.99 [0.96, 1.03] 1.00 [0.99, 1.01]

Sex
Male 0.94 [0.92, 0.95] 0.84 [0.82, 0.85] 0.98 [0.97, 1.00] 0.99 [0.98, 1.01]
Female 0.92 [0.89, 0.95] 0.82 [0.80, 0.85] 0.97 [0.94, 1.00] 0.97 [0.96, 0.99]

Race/ethnicity
White 0.93 [0.92, 0.95] 0.83 [0.82, 0.84] 0.98 [0.96, 1.00] 0.99 [0.97, 1.00]
Black 0.95 [0.89, 1.00] 0.86 [0.83, 0.90] 1.00 [0.94, 1.06] 1.01 [0.97, 1.04]

logistic regression (AUROC, 0.890; 95% CI, 0.886-0.895).

5.3.4 Subgroup Analyses

In assessments of subgroups of age, sex, and race, logistic regression models were less well

calibrated in patients who were younger and White compared with older (calibration slope,

0.90; 95% CI, 0.87-0.93 in those 18-44 years of age vs 0.94; 95% CI, 0.91-0.97 in ≥65 years

of age) and Black patients (calibration slope, 0.93; 95% CI, 0.92-0.95 in White patients vs

0.95; 95% CI, 0.89-1.00 in Black patients). In contrast, the meta-classifier model was well

calibrated across patient groups. Of the other models, XGBoost, but not the neural network,

was better calibrated in patient subgroups relative to logistic regression.

5.4 Discussion

In this cohort study, in a large national registry of patients with AMI, machine learning

models did not substantively improve discrimination of in-hospital mortality compared with

models based on logistic regression. However, 2 of these models were associated with im-

provement in the resolution of risk over logistic regression and with improved classification

of patients across risk strata, particularly among those at greatest risk for adverse outcomes.

One of these models, XGBoost, is interpretable and represents the collection of individual-
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ized decision trees that address complex relationships among variables. The second model,

meta-classifier, which aggregated information from multiple machine learning models, also

had better model calibration than logistic regression. Despite almost no improvements in

discrimination, these models led to reclassification of 1 in every 4 patients deemed moderate

or high risk for death with logistic regression as low risk, which was more consistent with

their observed event rates. However, machine learning models were not uniformly superior to

logistic regression, and a neural network model had worse performance characteristics than

a logistic regression model based on the same inputs.

The study builds on prior studies [113, 114, 115, 116, 117, 118, 119, 120, 121, 123] that

used machine learning in predicting AMI outcomes. Most of these studies found improved

prediction with applications of classification algorithms of varying complexity. However,

they were limited by smaller patient groups, with limited generalizability in the absence

of standard data collection. In a large national registry with standardized data collection

across more than 1000 hospitals, improvements in risk prediction for in-hospital mortality

with machine learning models were small and likely do not meet the threshold to be relevant

for clinical practice.

However, there are notable aspects of the new models. Without the cost of collecting

additional data or a reliance on literature review or expert opinion for variable selection,

the models achieved similar model performance characteristics as logistic regression, which

is relevant for predictive modeling in clinical areas where disease mechanisms are not well

defined. Moreover, 2 of the 3 models were much better calibrated across patient groups

based on age, sex, race, and mortality risk and were therefore better suited for risk pre-

diction despite only modest improvement in overall accuracy. Notably, this improvement

in predictive range occurred in critical areas by accurately reclassifying individuals at high

risk to categories more accurately reflecting their risk. A focus on traditional measures of

accuracy underperform in capturing the scale of these improvements because the events are

rare and model discrimination is driven by patients not experiencing the mortality event
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[134, 135]. In this respect, the Brier score offers a more comprehensive assessment of model

performance, combining model discrimination and calibration. The Brier score represents

the mean squared difference between the predictions and the observed outcome. A perfect

model has a Brier score of 0, and when 2 models are compared, a smaller Brier score indicates

better model performance. Both XGBoost and meta-classifier models had scores that were

lower than the logistic models by several multiples of the SDs of the score. Given the only

marginal improvements in model discrimination, the lower Brier scores reflect the improved

calibration noted in the calibration slope and shift tables.

Of note, 1 of the models that performs well is interpretable because it represents a col-

lection of decision trees, thereby ensuring transparency in its application that specifically

addresses the concerns with black-box machine learning models. Furthermore, although

their development is computationally intensive, their eventual deployment at an individual

patient level does not require substantial computational resources. Therefore, the clinical

adoption of these models likely depends on whether their gains in prediction accuracy are

worth their computationally intensive development and lack of interpretability. Some ma-

chine learning models may, therefore, have greater clinical utility in higher-dimensional data

where they can uncover complex relationships among variables [136, 137, 138] and of vari-

ables with outcomes but only provide limited gains in relatively low-dimension registry data.

Furthermore, not all machine learning performed well. The neural network model developed

using all available variables in the registry was inferior to the logistic regression based on

similar inputs, indicating that not all machine learning models are uniformly superior to

traditional methods of risk prediction.

5.4.1 Limitations

This study has limitations. First, although the CP-MI registry captures granular clini-

cal data on patients with AMI, relevant information, such as duration of comorbidities and

control of chronic diseases (besides diabetes), was not captured in the registry and is, there-

fore, not included in the assessment. Furthermore, certain prognostic characteristics of the
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patients’ general health are not included [139, 140]. Second, although models are based on

sound mathematical principles, the study does not identify whether the excess risk identified

with the models is modifiable. Third, shift tables judge classification across risk thresholds

but may overemphasize small effects around thresholds. However, other calibration metrics

also suggest more precise risk estimation by XGBoost and the meta-classifier among patients

classified as being at high risk by logistic regression. Fourth, the study was not externally

validated. Therefore, although the observations may be generalizable to the data in the

NCDR CP-MI Registry, they may not apply to patients not included or hospitals not partic-

ipating in the registry. However, because the data are collected as a part of routine clinical

care at a diverse set of hospitals, other hospitals that collect similar data could likely apply

these modeling strategies.

5.5 Conclusions

In a large national registry, machine learning models were not associated with substantive

improvement in the discrimination of in-hospital mortality after AMI, limiting their clinical

utility. However, compared with logistic regression, the models offered improved resolution

of risk for high-risk individuals.
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6. USE OF MECHANICAL CIRCULATORY SUPPORT DEVICES AMONG

PATIENTS WITH ACUTE MYOCARDIAL INFARCTION COMPLICATED BY

CARDIOGENIC SHOCK∗

With this chapter, we shift our focus from solely predicting outcomes, to instead inves-

tigating reasons for those outcomes. This chapter and the next look at a particular type of

intervention for patients with acute myocardial infarction complicated by cardiogenic shock.

In this disease state, the damaged heart is unable to adequately supply blood to the body’s

vital organs. To treat this condition, one approach is to use a device to aid the heart in

driving blood. However, evidence supporting the use of these devices is limited. These next

chapters aim to use machine learning to elucidate their effectiveness. In this chapter, we

first examine trends in the utilization of these devices.

6.1 Introduction

Intra-aortic balloon pumps (IABPs) have been the mainstay of mechanical circulatory

support (MCS) for patients with cardiogenic shock in the setting of acute myocardial infarc-

tion (AMI) [141]. However, randomized clinical trial (RCT) data [142, 143] and subsequent

meta-analyses [144, 145] have reported no clinical benefit from routine IABP use in patients

with AMI complicated by cardiogenic shock. Impella devices (intravascular microaxial left

ventricular assist devices [LVADs]), which offer greater improvement in hemodynamic pa-

rameters compared with IABPs [146], received US marketing clearance in 2008 for providing

partial circulatory support for up to 6 hours using an extracorporeal bypass control unit

and providing circulatory support during procedures not requiring cardiopulmonary bypass

[147]. Studies through 2012 showed a substantial uptake of these devices, from 4.6 per mil-
∗This chapter is reprinted with permission from "Use of Mechanical Circulatory Support Devices Among

Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock" by Dhruva, S.S., Ross, J.S.,
Mortazavi, B.J., Hurley, N.C., Krumholz, H.M., Curtis, J.P., Berkowitz, A.P., Masoudi, F.A., Messenger,
J.C., Parzynski, C.S. and Ngufor, C.G., Girotra, S., Amin, A.P., Shah, N.D., Desai, N.R., 2021. JAMA
Network Open. Copyright 2021 by Dhruva, S.S. et al. under the CC-BY license.

101



lion hospital discharges in 2007 to 138 per million discharges in 2012 [148, 149], despite the

absence of demonstrated benefits for hard clinical end points in RCTs [146, 150]. National

Cardiovascular Data Registry (NCDR) records through September 2013 showed that use of

MCS devices other than IABP was clustered around a relatively small number of hospitals

but did not increase [149].

Despite the substantial risk of death associated with cardiogenic shock [151] and the

relatively high cost of some MCS devices [148, 152], the temporal and contemporary trends

in MCS device use have not been examined in terms of detailed demographic and clinical

characteristics abstracted from medical records, such as coronary anatomy. Furthermore,

previous studies have focused on IABPs and other MCS devices, providing no granularity

about other MCS therapies such as extracorporeal membrane oxygenation (ECMO). Under-

standing changes in use as well as the patients likely to receive MCS devices and the hospitals

that are likely to use these devices is particularly important given the recent safety concerns

about intravascular microaxial LVADs [152, 153]. In this retrospective cross-sectional study,

we collected data from 2 national US registries (of the American College of Cardiology

NCDR) to examine trends in the use of MCS devices, providing greater granularity of the

clinical characteristics and device type than previous studies, among a large cohort of pa-

tients who underwent percutaneous coronary intervention (PCI) for AMI complicated by

cardiogenic shock. We also examined hospital-level use variation and factors associated with

use.

6.2 Methods

The Human Investigation Committee of the Yale University School of Medicine approved

the use of a limited data set from the NCDR for research purposes without requiring informed

consent because all of the data were deidentified and maintained centrally by the NCDR.

This cross-sectional study followed the Strengthening the Reporting of Observational Studies

in Epidemiology (STROBE) reporting guideline [128].
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6.2.1 Data Sources and Study Population

We linked the NCDR CathPCI and Chest Pain-MI registries, both of which have been

described previously [154, 155]. In brief, the CathPCI Registry is a voluntary registry of

diagnostic cardiac catheterizations and PCIs performed in the US. More than 1500 hospitals

across the US participate in this program and are required to submit data on all PCI pro-

cedures. The Chest Pain-MI Registry includes patients with AMI. The CathPCI Registry,

version 4.4, identifies whether a patient received an IABP or any other MCS device and the

timing of MCS. Version 2.4.2 of the Chest Pain-MI Registry data collection form, released

in the third quarter of 2015, includes the type of MCS device.

We identified all patients who underwent PCI for AMI complicated by cardiogenic shock

between October 1, 2015, and December 31, 2017, and had available data in both registries.

We included individuals in the Chest Pain-MI Registry who had cardiogenic shock at first

medical contact or as an in-hospital event or individuals in the CathPCI Registry who had

cardiogenic shock within 24 hours prior to the PCI, at the start of the PCI, or as an intra-

or postprocedure event. Cardiogenic shock was defined in both registries as systolic blood

pressure less than 90 mm Hg and/or cardiac index lower than 2.2 L/min/m2 for at least 30

minutes that was secondary to ventricular dysfunction and/or a requirement for parenteral

inotropic or vasopressor therapy or MCS devices to support blood pressure and cardiac index

[156]. For patients who underwent multiple PCIs during the hospitalization, we included data

from only the initial PCI.

6.2.2 Hemodynamic Support and Covariates

We categorized patients according to the hemodynamic support that they received. The

CathPCI Registry details if a patient received an IABP or a different MCS device. The Chest

Pain-MI Registry details if a patient received an IABP, intravascular microaxial LVAD,

TandemHeart (CardiacAssist Inc), ECMO, LVAD, or other device. The Chest Pain-MI

Registry allows documentation of only 1 MCS device per patient. Therefore, by linking the
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2 registries, we could identify the MCS devices used (Chest Pain-MI Registry) in combination

with IABPs (CathPCI Registry). Patients who did not receive any MCS device composed

the medical therapy only group.

Patient-level covariates were patient demographic characteristics, medical history, and

clinical presentation. Hospital-level covariates were number of beds, location, type (govern-

ment, private, or university), presence of teaching program, and mean annual PCI volume.

For continuous values with missing values, the mean was imputed. For binary (yes or no)

variables, all missing variables were coded as no; for categorical variables, all missing vari-

ables were coded as no or other (if a no category did not exist).

6.2.3 Statistical Analysis

We characterized overall MCS device use, including for specific sociodemographic and

clinical subgroups (age, sex, race, insurance status, ST-segment elevation MI [STEMI] or

non-STEMI, cardiac arrest or no arrest, and transfer status). We examined trends in the use

of hemodynamic support by calendar quarter using the Cochrane-Armitage test to determine

the significance of changes over time.

We performed multivariable logistic regression to identify independent variables associ-

ated with MCS device use compared with medical therapy among all patients with AMI

complicated by cardiogenic shock, accounting for clustering by facility (ie, accounting for

the possible associations among patients who received care at a given hospital such that the

observations were not independent). The model included demographic variables (age, sex,

race, and insurance status), comorbidities (previous PCI, previous coronary artery bypass

graft [CABG], and peripheral artery disease), clinical presentation variables (cardiac arrest

at first medical contact or during hospitalization, STEMI, anterior infarction, left main or

proximal left anterior descending coronary artery [LAD] disease, and left ventricular ejection

fraction), and hospital variables (number of beds, location, type, teaching program, and

mean annual PCI volume). Using the same model, we performed an additional multivariable

logistic regression to examine the odds of a patient receiving an intravascular microaxial
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LVAD compared with an IABP, restricting the analyses to patients with AMI complicated

by cardiogenic shock who received either an IABP or intravascular microaxial LVAD only.

We examined hospital-level variation in MCS device use among hospitals that cared for

at least 10 patients with AMI complicated by cardiogenic shock during the study period.

We calculated a median odds ratio (OR) by building a generalized linear mixed model with

random hospital intercepts. The median OR (always ≥1) was derived from the estimate

of the variance of the random intercept of the model [157]. Conceptually, the median OR

represents the relative odds for 2 identical patients receiving an MCS device at 1 randomly

selected hospital vs another randomly selected hospital. A median OR of 1.0 indicates no

hospital-level variation, whereas a median OR of 2 indicates that the odds of receiving an

MCS device are 2-fold higher in 1 randomly selected hospital vs another hospital. Using

the same methods, we calculated a hospital-specific median OR for a patient with AMI

complicated by cardiogenic shock to receive an intravascular microaxial LVAD.

We compared hospital characteristics (number of beds, location, type, teaching program,

and mean annual PCI volume) by quartiles of MCS device use. We also compared the char-

acteristics of hospitals that used at least 1 intravascular microaxial LVAD vs hospitals that

did not. Among hospitals that used at least 1 intravascular microaxial LVAD, we compared

the characteristics by tertiles. We used χ2 test for categorical variables and Kruskal-Wallis

test for non-normally distributed continuous variables.

All statistical analyses were 2-sided, with an α = .05 for statistical significance. All

analyses were conducted in R, version 3.6.0 (R Foundation for Statistical Computing), with

packages clubSandwich 0.4.2 [158]; ggplot2, version 3.2.1 [159]; DescTools 0.99.34[160]; and

lubridate 1.7.4 [161]. Data were analyzed from October 2018 to August 2020.
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6.3 Results

6.3.1 MCS Device Use and Change Over Time

Among 28,304 patients with AMI complicated by cardiogenic shock who received PCI

at 928 hospitals during the study period, the mean (SD) age was 65.4 (12.6) years and 18

968 were men (67.0%). Overall, 12,077 patients (42.7%) received an MCS device and 16,227

(57.3%) received medical therapy only during the hospitalization. Of the 12,077 patients

who received an MCS device, 1768 (14.6%) received an intravascular microaxial LVAD only,

8471 (70.1%) received an IABP only, 5 (0%) received TandemHeart, 182 (1.5%) received

ECMO, 23 (0.2%) received an LVAD, 276 (2.3%) received both an IABP and intravascular

microaxial LVAD, 4 (0%) received an IABP and TandemHeart, 138 (1.1%) received an IABP

and ECMO, 17 (0.1%) received an IABP and LVAD, and 1193 (9.9%) received another MCS

device or a combination of MCS devices (Figure 6.1).

Figure 6.1: Flow Diagram of Patients Undergoing Percutaneous Coronary Intervention for
Acute Myocardial Infarction Complicated by Cardiogenic Shock
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During the study period, the proportion of patients who used any MCS device remained

similar from October through December 2015 to October through December 2017 (from

41.9% to 43.1%; P = .07) (Figure 6.2). A significant increase in the use of intravascular

microaxial LVADs (either alone or in combination with IABPs) was found (from 4.1% to

9.8%; P < .001) during this period along with a corresponding decrease in the percentage

of patients who received IABPs either alone or in combination with other MCS devices

(from 34.8% to 30.0%; P < .001). When limited to patients receiving any MCS, the use of

intravascular microaxial LVADs increased from 9.9% to 20.6%, whereas IABP use decreased

from 83.1% to 73.2% (Figure 6.2).

Figure 6.2: Quarterly Use of Mechanical Circulatory Support (MCS) Devices for Patients
Who Underwent Percutaneous Coronary Intervention (PCI) for Acute Myocardial Infarction
(AMI) Complicated by Cardiogenic Shock From October 2015 to December 2017 at Hospitals
Participating in the National Cardiovascular Data Registry CathPCI and Chest Pain-MI
Registries
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6.3.2 Hospital-Level Variation in MCS Device Use

Of the 928 hospitals included in the study, 521 (56.1%) did not use any intravascular

microaxial LVADs for patients with AMI complicated by cardiogenic shock. Among hospitals

with at least 10 cases of AMI with cardiogenic shock during the study period, a significant

variation in MCS device use was observed (Figure 6.3). The median (interquartile range

[IQR]) proportion of patients who received an MCS device at the hospital level was 42%

(30%-54%; range 4%-94%). The median (IQR) proportion of patients who received any

intravascular microaxial LVAD was 1% (0%-10%; range, 0%-83%).

Figure 6.3: Quarterly Use of Mechanical Circulatory Support (MCS) Devices for Patients
Who Underwent Percutaneous Coronary Intervention (PCI) for Acute Myocardial Infarction
(AMI) Complicated by Cardiogenic Shock From October 2015 to December 2017 at Hospitals
Participating in the National Cardiovascular Data Registry CathPCI and Chest Pain-MI
Registries

The hospital-specific median OR for use of any MCS device over the study period was

1.79 (95% CI, 1.71-1.86). This OR indicates that the odds of receiving an MCS device were

1.79-fold higher in 1 randomly selected hospital vs another. The hospital-specific median OR
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Table 6.1: Hospital characteristics after stratification by quartiles of use of any mechanical
circulatory support (MCS) device

Any use of MCS device
Quartile 1 Quartile 2 Quartile 3 Quartile 4

Characteristic (n = 230) (n = 233) (n = 229) (n = 236) P value

Patients with AMI complicated by
cardiogenic shock who underwent
PCI and received an MCS device at
each hospital, %

<29 29 to <42 ≥42 to <55 ≥55 NA

Beds, No. (%) 0.005
<200 77 (33.5) 65 (27.9) 47 (20.5) 60 (25.4)
200-399 100 (43.5) 96 (41.2) 91 (39.7) 93 (39.4)
400-599 39 (17.0) 37 (15.9) 51 (22.3) 47 (19.9)
≥600 14 (6.1) 35 (15.0) 40 (17.5) 36 (15.3)

Location 0.96
Rural 45 (19.6) 40 (17.2) 36 (15.7) 44 (18.6)
Suburban 79 (34.3) 80 (34.3) 79 (34.5) 81 (34.3)
Urban 106 (46.1) 113 (48.5) 114 (49.8) 111 (47.0)

Type <.001
Government 7 (3.0) 4 (1.7) 3 (1.3) 1 (0.4)
Private 215 (93.5) 216 (92.7) 195 (85.2) 205 (86.9)
University 8 (3.5) 13 (5.6) 31 (13.5) 30 (12.7)

Teaching Program 68 (29.6) 92 (39.5) 104 (45.5) 106 (44.9) 0.001
Annual PCI volume, mean (SD) 482.9 (521.4) 546.0 (458.5) 681.0 (644.6) 584.3 (553.4) <.001

for use of any intravascular microaxial LVAD only over the study period was 3.33 (95% CI,

3.03-3.63). This OR indicates that the odds of receiving an intravascular microaxial LVAD

were 3.33-fold higher in 1 randomly selected hospital vs another.

6.3.3 MCS Device Use by Hospital Characteristics

Among all hospitals that cared for patients with AMI complicated by cardiogenic shock,

larger hospitals (≥600 beds) were more likely to be in higher quartiles of MCS device use

and smaller ones ( ≤200 beds) were more likely to be in the lowest quartile of MCS device

use (Table 6.1). University hospitals and those with teaching programs were more likely to

be in higher quartiles of MCS device use. Hospitals with higher mean annual PCI volumes

were more likely to use MCS devices. No significant difference in MCS device use was found

across hospitals that were rural, suburban, or urban.

Hospitals that placed at least 1 intravascular microaxial LVAD for patients who under-
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Table 6.2: Hospital characteristics after stratification by use of intravascular microaxial left
ventricular assist device (LVAD)

Any (at least 1) use of intravascular microaxial LVAD
No use of intravascular
microaxial LVAD Tertile 1 Tertile 2 Tertile 3 P value P value

Characteristic (n = 521) (n = 125) (n = 135) (n = 147) (among tertiles) (no vs any use)

Patients with AMI complicated by
cardiogenic shock who underwent PCI
and received an intravascular
microaxial LVAD at each hospital, %

NA <7 7 to <15 ≥15 NA NA

Beds, No. (%) 0.5 <.001
<200 179 (34.4) 16 (12.8) 23 (17.0) 31 (21.1)
200-399 205 (39.3) 54 (43.2) 59 (43.7) 62 (42.2)
400-599 89 (17.1) 30 (24.0) 24 (17.8) 31 (21.1)
≥600 48 (9.2) 25 (20.0) 29 (21.5) 23 (15.6)

Location 0.83 0.003
Rural 105 (20.2) 18 (14.4) 21 (15.6) 21 (14.3)
Suburban 192 (36.9) 38 (30.4) 38 (28.1) 51 (34.7)
Urban 224 (43.0) 69 (55.2) 76 (56.3) 75 (51.0)

Type 0.76 0.17
Government 9 (1.7) 1 (0.8) 3 (2.2) 2 (1.4)
Private 474 (91.0) 108 (86.4) 120 (88.9) 129 (87.8)
University 38 (7.3) 16 (12.8) 12 (8.9) 16 (10.9)

Teaching Program 184 (35.3) 57 (45.6) 69 (51.1) 60 (40.8) 0.22 0.001
Annual PCI volume, mean (SD) 442.1 (498.1) 821.3 (562.7) 753.4 (666.7) 662.8 (471.2) 0.03 <.001

went PCI for AMI complicated by cardiogenic shock were more likely to be large (≥200

beds), be in an urban setting, have a teaching program, and have a higher annual PCI

volume (Table 6.2). Across tertiles of hospitals that used intravascular microaxial LVADs,

no significant difference was observed in the number of beds, location, type, or presence of

teaching program. Hospitals with lower annual PCI volume were more likely to be in the

highest tertile of intravascular microaxial LVAD use.

6.3.4 MCS Device Use by Patient Demographic and Clinical Characteristics

In comparing the unadjusted use of intravascular microaxial LVADs only with use of

IABPs only within a denominator of all therapies for AMI complicated by cardiogenic shock,

men were more likely than women to receive intravascular microaxial LVADs (6.6% vs 5.4%;

P < .01) and IABPs (30.9% vs 27.9%; P < .01) (eFigure 2 in the Supplement). Patients

younger than 65 years were more likely to receive intravascular microaxial LVADs than

those aged 75 years or older (6.5% vs 5.4%; P = .002) (eFigure 3 in the Supplement). Black

patients were significantly more likely to receive intravascular microaxial LVADs compared
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with patients who were not Black individuals (7.5% vs 6.5%; P = .005) (eFigure 4 in the

Supplement). Additional analyses that characterize the use of MCS devices by insurance,

type of myocardial infarction, cardiac arrest status, and transfer status are provided in

eFigures 5 to 8 in the Supplement.

Figure 6.4: Sex Distribution by Therapy of Patients Undergoing Percutaneous Coronary In-
tervention for Acute Myocardial Infarction Complicated by Cardiogenic Shock from October
1, 2015 – December 31, 2017

6.3.5 Characteristics Associated With MCS Device Use and With Intravascular

Microaxial LVAD vs IABP Use

In multivariable regression analysis, female sex (OR, 0.88; 95% CI, 0.83-0.93), the pres-

ence of peripheral artery disease (OR, 0.78; 95% CI, 0.71-0.86), and previous CABG (OR,

0.74; 95% CI, 0.67-0.81) were associated with lower odds of receiving any MCS device (Ta-

ble 6.3). Private insurance (vs no insurance), cardiac arrest at first medical contact or

111



Figure 6.5: Age Distribution by Therapy for Patients Undergoing Percutaneous Coronary In-
tervention for Acute Myocardial Infarction Complicated by Cardiogenic Shock from October
1, 2015 – December 31, 2017

during hospitalization, STEMI, anterior infarction, and severe left main and/or proximal

LAD stenosis were associated with greater MCS device use. Patients treated at private or

university hospitals were more likely to receive any MCS device.

In multivariable regression analysis, patients who presented with STEMI (OR, 0.69; 95%

CI, 0.60-0.80) and with previous CABG (OR, 0.79; 95% CI, 0.64-0.99) had significantly

lower odds of use of intravascular microaxial LVADs only vs use of IABPs only (Table 6.3).

Cardiac arrest at first medical contact or during hospitalization (OR, 1.82; 95% CI, 1.58-

2.09) and severe left main and/or proximal LAD stenosis (OR, 1.36; 95% CI, 1.20-1.54) were

associated with higher odds of intravascular microaxial LVAD use compared with IABP use.
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Table 6.3: Patient and hospital characteristics associated with use of any mechanical circula-
tory support (MCS) device vs medical therapy only and with use of intravascular microaxial
left ventricular assist device (LVAD) only vs intra-aortic balloon pump only

OR (95% CI)

Variable Use of any MCS device vs
medical therapy only

Use of intravascular microaxial LVAD vs
intra-aortic balloon pump

Patient characteristics
Age 1.00 (1.00-1.00) 1.00 (0.99-1.00)
Female sex 0.88 (0.83-0.93) 0.93 (0.82-1.05)
BMI 1.01 (1.00-1.01) 1.02 (1.01-1.03)
Race
Other 1 [Reference] 1 [Reference]
White 0.88 (0.77-1.00) 1.04 (0.75-1.46)
Black 0.86 (0.74-1.00) 1.29 (0.86-1.94)

Insurance
None 1 [Reference] 1 [Reference]
Medicaid 1.06 (0.92-1.22) 0.87 (0.64-1.16)
Medicare 1.11 (0.99-1.24) 0.93 (0.73-1.18)
Private 1.13 (1.03-1.23) 1.00 (0.81-1.24)
Medicaid and Medicare 0.97 (0.84-1.13) 0.91 (0.65-1.28)
Private and Public 1.06 (0.94-1.18) 0.94 (0.74-1.20)
Other 1.07 (0.93-1.24) 1.05 (0.79-1.39)

Medical History
PAD 0.78 (0.71-0.86) 1.26 (1.05-1.52)
Cardiac arrest 1.70 (1.58-1.83) 1.82 (1.58-2.09)
STEMI 1.19 (1.11-1.28) 0.69 (0.60-0.80)
Anterior Infarct 1.19 (1.12-1.27) 0.94 (0.82-1.07)
Left main or proximal LAD disease 2.21 (2.08-2.35) 1.36 (1.20-1.54)
Previous PCI 1.00 (0.94-1.07) 1.04 (0.92-1.18)
Previous CABG 0.74 (0.67-0.81) 0.79 (0.64-0.99)
LVEF (per 1% increase) 0.96 (0.96-0.97) 0.97 (0.97-0.98)

Hospital characteristics
Beds, No.
<200 1 [Reference] 1 [Reference]
200-399 1.09 (0.94-1.27) 10.40 (0.65-1.65)
400-599 1.13 (0.94-1.35) 0.98 (0.61-1.57)
≥600 1.22 (0.99-1.50) 0.81 (0.48-1.39)

Location
Rural 1 [Reference] 1 [Reference]
Suburban 0.91 (0.77-1.08) 0.86 (0.55-1.37)
Urban 0.89 (0.75-1.05) 1.08 (0.70-1.66)

Type
Government 1 [Reference] 1 [Reference]
Private 1.33 (0.80-2.21) 0.91 (0.44-1.85)
University 1.84 (1.08-3.12) 0.82 (0.36-1.90)

Teaching Program 1.02 (0.91-1.15) 1.05 (0.79-1.39)
Annual PCI volume (per increase
of 1 annual PCI) 1.00 (1.00-1.00) 1.00 (1.00-1.00)
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Figure 6.6: Race Distribution by Therapy for Patients Undergoing Percutaneous Coronary
Intervention for Acute Myocardial Infarction Complicated by Cardiogenic Shock from Octo-
ber 1, 2015 – December 31, 2017

6.4 Discussion

This large, national cross-sectional study of patients who underwent PCI for AMI com-

plicated by cardiogenic shock showed that, although overall use of MCS devices remained

constant between 2015 and 2017, use of intravascular microaxial LVADs increased substan-

tially, whereas use of IABPs decreased. Significant hospital-level variation in MCS device use

was observed, with some hospitals not using any MCS devices and some hospitals using only

intravascular microaxial LVADs or only IABPs. Other MCS devices remained infrequently

used but may be used in combination with or as part of sequential therapy.

Previous studies through 2013 demonstrated a decrease in IABP use [149], which may

be attributed to RCTs not demonstrating the clinical benefits of this device [142, 143].
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Figure 6.7: Insurance Distribution by Therapy for Patients Undergoing Percutaneous Coro-
nary Intervention for Acute Myocardial Infarction Complicated by Cardiogenic Shock from
October 1, 2015 – December 31, 2017

This study extends these past findings to more recent years. Regardless, we found that

IABP remains the most commonly used MCS device in patients with AMI complicated by

cardiogenic shock; more than 70% of patients who received an MCS device received an IABP.

The ongoing use of this device despite its lack of association with improved clinical outcomes

may be explained by familiarity with IABPs and because clinical practice guidelines in the

US have not recommended against routine IABP use [141]. This finding is in contrast to the

European Society of Cardiology clinical practice guidelines published in August 2017 (near

the end of the study period), which gave routine IABP use a class III recommendation for

patients with cardiogenic shock and STEMI [162].

The increasing use of intravascular microaxial LVADs may be associated with the greater

hemodynamic support they provide compared with IABPs to patients with cardiogenic shock

[146], who have a high mortality risk. Patients expected to have greater hemodynamic
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Figure 6.8: Type of Myocardial Infarction by Therapy for Patients Undergoing Percutaneous
Coronary Intervention for Acute Myocardial Infarction Complicated by Cardiogenic Shock
from October 1, 2015 – December 31, 2017

compromise, including those with cardiac arrest and left main or proximal LAD disease,

were more likely to receive intravascular microaxial LVADs. Some groups have recommended

intravascular microaxial LVADs for patients with severe cardiogenic shock [163].

However, the significant hospital-level variation in MCS device use and intravascular

microaxial LVAD use suggests that no standard of care exists. This lack of consensus is

consistent with multiple other studies, including a study of patients with AMI complicated

by cardiogenic shock that reported that patient characteristics were not associated with

MCS device use [164] and with another study of patients with cardiogenic shock in cardiac

intensive care units in which hospital-level variation in MCS device use could not be explained

by differences in illness severity [165].

One reason for the substantial variation in hospital use of MCS devices may be the
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Figure 6.9: Cardiac Arrest Status by Therapy for Patients Undergoing Percutaneous Coro-
nary Intervention for Acute Myocardial Infarction Complicated by Cardiogenic Shock from
October 1, 2015 – December 31, 2017

paucity of clinical study data demonstrating the clinical benefit of intravascular microaxial

LVAD use among patients with AMI complicated by cardiogenic shock [166]. Existing RCTs

do not show the benefits of IABP use in AMI with cardiogenic shock [146, 150], although

recent large observational studies have found that intravascular microaxial LVAD use was as-

sociated with higher mortality compared with IABP use [152, 153]. Intravascular microaxial

LVADs were also significantly more expensive than IABPs, suggesting significant differences

in total cost [148, 152, 167]. Another reason for the variation in hospital-level device use

could be that patient and device selection for AMI with cardiogenic shock remains uncertain

because of the clinical heterogeneity of cardiogenic shock [151]. A recently released classi-

fication scheme [168] could help establish the specific cardiogenic shock stages under which

different MCS devices should be deployed. A third reason for the hospital-level use varia-
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Figure 6.10: Therapies for Transfer Patients Undergoing Percutaneous Coronary Intervention
for Acute Myocardial Infarction Complicated by Cardiogenic Shock from October 1, 2015 –
December 31, 2017

tion may be that hospitals that have invested in the infrastructure to deploy intravascular

microaxial LVADs for the care of patients are more likely to use these devices. Differences

in reimbursement for intravascular microaxial LVADs vs IABPs [148] as well as other factors

may also be associated with the observed use trends. Additional RCT evidence, which would

help guide the selection, use, and timing of MCS devices in patients with AMI complicated

by cardiogenic shock, could play a role in reducing hospital-level variation and improving

patient outcomes as well as targeting these devices to patients who are most likely to find

them beneficial [166, 169].

Among patients with STEMI, we found increased odds of MCS device use but lower

use of intravascular microaxial LVADs. Because patients with STEMI in general have more

acute, unstable presentations and are more likely to have a cardiac arrest, it is not surprising
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that these patients often received MCS devices. However, in the model adjusted for clinical

presentation and coronary anatomy, the lower odds of intrasvascular microaxial LVAD vs

IABP use broadly highlighted the substantial variation in use trends that seemed to be asso-

ciated not only with clinical presentation or physiological features but also with discretionary

decision-making by physicians and institutions.

A novel finding of this study was that women with AMI complicated by cardiogenic shock

were less likely than men to receive any MCS therapy. This finding extends the reports of

differences in treatment provided to women with AMI, such as primary PCI [170] and other

device-based therapy for cardiovascular disease [171]. These differences may be associated

with the smaller vascular anatomy, which cannot accommodate the large bore access needed

for MCS devices, and a greater predisposition to bleeding complications in women compared

with men [172]. Further research is needed to ascertain the reasons for these sex-based

differences.

6.4.1 Limitations

This study has several limitations. First, the presence of cardiogenic shock was based on

site documentation. Second, different types of intravascular microaxial LVADs, specifically

the Impella 2.5, CP, 5.0, and RP devices (ABIOMED), could not be distinguished. Third,

because the Chest Pain-MI Registry allows only a single MCS device to be coded, some

patients may have received combinations of devices that were not captured. Fourth, we

did not have information on all variables relevant to cardiogenic shock (eg, lactate levels or

number of vasopressors used), which may be associated with use of specific MCS devices.

6.5 Conclusions

Among patients who underwent PCI for AMI complicated by cardiogenic shock from

October 2015 to December 2017, use of intravascular microaxial LVADs increased, with a

corresponding decrease in use of IABPs despite limited clinical trial evidence of improved

outcomes associated with device use. Significant hospital-level variation in use of MCS
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devices was also found.
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7. ASSOCIATION OF USE OF AN INTRAVASCULAR MICROAXIAL LEFT

VENTRICULAR ASSIST DEVICE VS INTRA-AORTIC BALLOON PUMP WITH

IN-HOSPITAL MORTALITY AND MAJOR BLEEDING AMONG PATIENTS WITH

ACUTE MYOCARDIAL INFARCTION COMPLICATED BY CARDIOGENIC

SHOCK∗

Having established that the use of intravascular microaxial LVADs increased significantly

despite a lack of clinical trial evidence to support their benefits, we now look at the association

between their usage and major adverse outcomes compared with the usage of intra-aortic

balloon pumps. To accomplish this, we used propensity matching to group similar patients

who received opposite interventions. We compared the outcomes among those groups, and

found that usage of intravascular microaxial LVAD was associated with a significantly higher

risk of in-hospital death (45.0%) when compared with IABP (34.1%).

7.1 Introduction

Based on data collected from 1995 to 2013, cardiogenic shock occurs in an estimated 4%

to 12% [173, 174, 175] of patients with acute myocardial infarction (AMI) and is associated

with substantial morbidity and mortality. Percutaneous coronary intervention (PCI) is the

cornerstone of management with a consideration of hemodynamic support with mechanical

circulatory support (MCS) devices—most commonly intra-aortic balloon pumps (IABPs)

and Impella devices (intravascular microaxial left ventricular assist devices [LVADs]).

Although intravascular microaxial LVADs improve hemodynamic parameters more than

IABPs, it is not known whether this translates into improved outcomes among patients.

The first intravascular microaxial LVAD received US Food and Drug Administration (FDA)
∗Reprinted with permission from "Association of Use of an Intravascular Microaxial Left Ventricular

Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients
With Acute Myocardial Infarction Complicated by Cardiogenic Shock" by Dhruva, Sanket S; Ross, Joseph S;
Mortazavi, Bobak J; Hurley, Nathan C; Krumholz, Harlan M; Curtis, Jeptha P; Berkowitz, Alyssa; Masoudi,
Frederick A; Messenger, John C; Parzynski, Craig S; Ngufor, Che; Girotra, Saket; Amin, Amit P; Shah, Nilay
D; and Desai, Nihar R, 2021. JAMA , 323, 734-745, Copyright© 2020 by American Medical Association.
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clearance (in 2008 through the 510[k] regulatory pathway) for temporary support for up to

6 hours during cardiac procedures based on substantial equivalence to previously approved

circulatory support devices but without a pivotal trial to demonstrate clinical efficacy com-

pared with a control group [147]. Intravascular microaxial LVADs were later reclassified as

higher-risk class III medical devices in 2014, which now require premarket approval. In April

2016, FDA-approved indications for intravascular microaxial LVADs were expanded through

premarket approval to include treatment of cardiogenic shock following AMI. This was based,

in part, on a randomized clinical trial (RCT) that showed improved hemodynamics as com-

pared with IABP [146], as well as data from a manufacturer-initiated registry demonstrating

improved outcomes relative to historical data [176]. Two RCTs that compared intravascular

microaxial LVAD and IABP have demonstrated no statistically significant difference in 30-

day mortality in AMI complicated by cardiogenic shock [146, 150]. A matched-pair analysis

of 474 patients treated with intravascular microaxial LVAD in clinical practice compared

with treatment using IABP (from patients in the IABP-SHOCK II trial) similarly showed

no statistically significant mortality difference [177]. Despite limited data demonstrating

improvements in clinical outcomes relative to IABP, use of intravascular microaxial LVAD

has steadily increased over time [148, 149].

Accordingly, this study sought to use the clinical data collected in 2 national registries to

examine clinical outcomes associated with intravascular microaxial LVAD and IABP among

patients with AMI complicated by cardiogenic shock undergoing PCI.

7.2 Methods

7.2.1 Data Source

For this study, we linked CathPCI and Chest Pain-MI, 2 registries under the Ameri-

can College of Cardiology’s National Cardiovascular Data Registry (described previously)

[154, 155]. The CathPCI Registry is a national voluntary registry of diagnostic cardiac

catheterizations and PCIs. More than 1500 hospitals across the United States participate
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and are required to submit data on all PCI procedures. The Chest Pain-MI Registry includes

patients with AMI and is used in more than 1000 US hospitals. Both registries capture stan-

dardized data elements, including patient demographics, medical history, laboratory data,

procedural details, and in-hospital outcomes including mortality and major bleeding. Ver-

sion 4.4 of the CathPCI Registry includes details of angiographic findings and can identify

whether a patient received an IABP or any other MCS device. Version 2.4.2 of the Chest

Pain-MI data collection form (released in the third quarter of 2015) includes the type of

MCS device. All data submissions must meet prespecified quality standards. The registries

include automatic system validation, education and training of staff, reporting of complete-

ness, and random on-site auditing [129]. The human investigation committee of the Yale

University School of Medicine approved the use of a limited data set from the registry for

research without requiring informed consent.

7.2.2 Study Population

All patients who underwent PCI for AMI complicated by cardiogenic shock between

October 1, 2015, and December 31, 2017, were identified. Patients with cardiogenic shock

were identified as those in the Chest Pain-MI Registry who had cardiogenic shock at first

medical contact, as an in-hospital event, or those defined in the CathPCI Registry who had

cardiogenic shock within 24 hours prior to and up to PCI, at the start of PCI, or as an

intra- or postprocedure event. Cardiogenic shock is defined in both registries as 1, 2, or all

3 of the following: systolic blood pressure lower than 90 mm Hg, a cardiac index of less

than 2.2 L/minute/m2 for at least 30 minutes that is secondary to ventricular dysfunction,

or requirement for parenteral inotropic or vasopressor or MCS devices to support blood

pressure and cardiac index [156]. For patients who underwent multiple PCIs during the

hospitalization, only data from the initial PCI were included.
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7.2.3 Registry Linkage

A probabilistic linkage [178] of patients across the 2 registries was performed to include

detailed procedural data from the CathPCI Registry and the specific MCS device type from

the Chest Pain-MI Registry. Multiple iterations of matching were then performed, with

each subsequent match omitting variables that had been previously included. The matching

variables were patient sex, date of admission, time of arrival to facility, age at hospital

arrival, a unique hospital identifier, discharge date, and whether PCI was performed as

documented in the Chest Pain-MI Registry. This match algorithm identified patients with

entries in both registries at the same hospital. To identify patients with AMI complicated

by cardiogenic shock who were transferred to another hospital for PCI or who had minor

missing data elements that may have affected the match, up to 4 variables were allowed to

be mismatched, but these variables always included sex and at least 1 date variable to ensure

temporal factors limited matches for similar patients at different hospital encounters. The

resulting linked CathPCI-Chest Pain-MI registry cohort formed our analytic cohort.

7.2.4 Hemodynamic Support

Patients were categorized based on hemodynamic support: IABP only, intravascular mi-

croaxial LVAD only, and other (such as use of a percutaneous extracorporeal ventricular

assist system, extracorporeal membrane oxygenation, LVAD, or patients receiving multi-

ple devices during the hospitalization). Patients coded as not receiving any MCS device

constituted the medical therapy group.

7.2.5 Outcomes

The primary outcomes were all-cause in-hospital death and in-hospital major bleeding.

Death was captured in the Chest Pain-MI Registry. Major bleeding was defined using the

Chest Pain-MI Registry as a decline in hemoglobin level of at least 3 g/dL; transfusion of

whole blood or packed red blood cells; procedural intervention/surgery at bleeding site to

treat the bleeding; or documented or suspected retroperitoneal bleed, gastrointestinal bleed,
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genitourinary bleed, or a bleed in a location not specified elsewhere [179].

7.2.6 Covariates

Covariates were obtained from the CathPCI and Chest Pain-MI registries and included

patient demographics, medical history, clinical presentation, laboratory values, administered

medications, procedural characteristics, and coronary anatomic data. For continuous values

with missing values, the mean was imputed. For binary (yes/no) variables, all missing

variables were coded as no, and for categorical variables, all missing variables were coded as

no or other (if there was not a no category).

Race and ethnicity were included in this study because our goal was to use all available

patient information when risk-standardizing through propensity matching. This determi-

nation was made by the patient or family member and then entered into the CathPCI

Registry. This determination was based on fixed categories, although multiple response

options were possible. For race, the categories were white, black/African American, Ameri-

can Indian/Alaskan Native, Asian, and Native Hawaiian/Pacific Islander. For ethnicity, the

categories were Hispanic/Latino or not.

7.2.7 Statistical Analysis

First, overall use of hemodynamic support among all patients was characterized. Char-

acteristics of patients receiving intravascular microaxial LVAD vs those receiving IABP were

compared using χ2 tests for categorical variables and 1-way analysis of variance or Kruskal-

Wallis tests for continuous variables.

Clinical outcomes of mortality and major bleeding among patients undergoing PCI for

AMI complicated by cardiogenic shock were characterized using propensity-matched analy-

ses to compare patients who received either intravascular microaxial LVAD or IABP only.

Seventy-five variables were preselected for matching using previously described methods

[180]. Among patients who received either an intravascular microaxial LVAD or IABP, a

probabilistic model was developed that calculated the log-odds probability of receiving an
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Table 7.1: C-statistic for discrimination between intravascular microaxial left ventricular
assist device and intra-aortic balloon pump among all hospitals

Intravascular
Microaxial LVAD vs
IABP

IABP vs Medical
Therapy Only

C-statistic 0.790 0.745

Table 7.2: C-statistic for discrimination between intravascular microaxial left ventricular
assist device and intra-aortic balloon pump among all hospitals with at least 1 intra-aortic
balloon pump and 1 intravascular microaxial left ventricular assist device

Intravascular
Microaxial LVAD vs
IABP

IABP vs Medical
Therapy Only

C-statistic 0.778 0.759

intravascular microaxial LVAD. To develop the log-odds probability and to handle higher-

dimensional, nonlinear relationships between covariates, a gradient descent–boosted decision

tree algorithm was used to develop the propensity model (called extreme gradient boosting)

[131]. The hyperparameters of learning rate were set to 0.1, as is common in slow-learning

algorithms, and the number of trees and maximum depth of each tree was selected optimally

in a 5-fold cross-validation analysis (depth range, 1-10; number of trees range, 50-1000 in

increments of 10). The final model used a depth of 3 for each decision tree and 100 decision

trees, which optimally maximized the C statistic for discriminating between intravascular

microaxial LVAD and IABP (Tables 7.1 and 7.2).

For each patient who received an intravascular microaxial LVAD, we found all IABP pa-

tients with a similar propensity for intravascular microaxial LVAD usage (within 0.6 standard

deviations, a value that eliminates approximately 90% of the bias in observed confounders)

[181] and randomly selected 1 IABP patient for paired matching. This pair was then re-

moved from the cohort, and the process was repeated until all patients were either matched
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or could not be matched due to probability differences.

The standardized mean difference of each covariate was calculated in the propensity-

matched cohort. Next, outcomes in the cohort were examined and the absolute risk differ-

ence (ARD) and associated 95% CIs were calculated. To verify results, a second independent

statistician blinded to the results of the initial analysis confirmed results from the gradient de-

scent–boosted decision tree algorithm using standard logistic regression to propensity match

patients using 75 variables.

For sensitivity, analyses were repeated stratified by timing of MCS device placement

(either before or after initiation of PCI, when these data were available) in patients from

hospitals that had placed at least 1 intravascular microaxial LVAD and IABP, therefore

demonstrating capability to use both devices, and in patients who were not transferred to a

facility.

As a secondary analysis, a comparison of patients receiving IABP vs medical therapy

only was made (using the methods previously described) to determine whether outcomes

using propensity matching were similar to those observed from the IABP-SHOCK II trial

[142].

As an additional step to address potential unmeasured confounding, an instrumental vari-

able analysis was conducted using hospital-level propensity to use intravascular microaxial

LVAD during our study period as the instrumental variable. A 2-stage ordinary least-squares

regression analysis was conducted. In the first stage, the predicted probability of receiving

intravascular microaxial LVAD at the facility-level was calculated after adjustment for covari-

ates included in our propensity-score matching. The F statistic was calculated to determine

the strength of the instrumental variable (a value >10 suggested proceeding to the second

stage). In the second stage, the predicted probability of receiving intravascular microaxial

LVAD (determined during the first stage) was used as the primary predictor, again adjusting

for the same covariates, to examine differences in in-hospital clinical outcomes. The instru-

mental variable analysis was conducted in 2 populations: in the entire cohort of patients
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with AMI complicated by cardiogenic shock and in the patients who received intravascular

microaxial LVAD only or IABP only. Analyses were conducted in R, with packages XGBoost

for gradient descent boosting [131] and pROC for C statistic calculations [182]. The primary

analyses examining outcomes of intravascular microaxial LVAD vs IABP were repeated using

SAS version 9.4. All statistical analyses were 2-sided (α=.05 for statistical significance).

7.3 Results

7.3.1 Study Cohort

Of the 269,303 patients with AMI receiving PCI between October 1, 2015, and December

31, 2017, and matched across the Chest Pain-MI and CathPCI registries, 28,304 (10.5%) were

classified as having cardiogenic shock. The mean (SD) age was 65.0 (12.6) years (Table 7.3).

Approximately two-thirds of patients were men and 86% were white. Approximately 25%

had been transferred from another acute care hospital, 81% presented with acute ST-segment

elevation myocardial infarction, 38.9% had anterior infarct location, and 43.3% had cardiac

arrest either at first medical contact or during hospitalization. Among those with cardiogenic

shock at first medical contact, the mean (SD) systolic blood pressure was 94.9 (51.4) mm

Hg.
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7.3.2 Mechanical Circulatory Support Device Utilization

In this cohort of 28,304 patients with AMI complicated by cardiogenic shock undergoing

PCI, 1768 (6.2%) received only an intravascular microaxial LVAD, 8471 (29.9%) received only

an IABP, 1838 (6.5%) received other MCS devices or multiple devices, and 16,227 (57.3%)

received medical therapy alone and were not treated with MCS (Figure 7.1). Patients receiv-

ing intravascular microaxial LVAD were significantly younger than patients receiving IABP

(Table 7.3). Patients with intravascular microaxial LVAD were significantly less likely to have

acute ST-segment elevation myocardial infarction (78.2%) vs patients with IABP (84.4%; P

< .001) but significantly more likely to be transferred into a Chest Pain-MI–reporting facility

(patients with intravascular microaxial LVAD [27.3%] vs patients with IABP [23.8%]; P =

.02). There was no significant difference in the percentage of patients who experienced car-

diac arrest at first medical contact (intravascular microaxial LVAD [25.4%] vs IABP [24.3%];

P = .35).

7.3.3 Outcomes of Intravascular Microaxial LVAD vs IABP

Unadjusted outcomes are provided in Table 7.4. The 1:1 propensity matching algorithm

using data from all patients with AMI complicated by cardiogenic shock undergoing PCI

yielded 1680 matched pairs, accounting for 95.0% (1680 of 1768) of patients who received an

intravascular microaxial LVAD. Standardized mean differences for 74 of 75 (99%) character-

istics of the propensity-matched cohorts were below 0.10 (Table 7.3).

In the propensity-matched cohort, use of intravascular microaxial LVAD was associated

with a significantly higher risk of in-hospital death (45.0%) when compared with use of

IABP (34.1%; ARD, 10.9 percentage points [95% CI, 7.6-14.2]; P < .001; Figure 7.2). These

statistically significant differences were consistent, regardless of the timing of device place-

ment, among patients with intravascular microaxial LVAD placement before initiation of PCI

(45.5%) compared with patients receiving IABP before initiation of PCI (36.8%; ARD, 8.7

percentage points [95% CI, 3.1-14.4]; P = .003), and among those with intravascular microax-
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Figure 7.1: Patient Population With Acute Myocardial Infarction Complicated by Cardio-
genic Shock Undergoing Percutaneous Coronary Intervention. aCathPCI and Chest Pain-MI
are registries under the American College of Cardiology’s National Cardiovascular Data Reg-
istry. PCI indicates percutaneous coronary intervention; MI, myocardial infarction. bPatient
data were accessed from linked registries.

ial LVAD placement after initiation of PCI (44.0%) compared with IABP after initiation of

PCI (32.2%; ARD, 11.8 percentage points [95% CI, 6.6-17.0]; P < .001).

Use of an intravascular microaxial LVAD was also associated with a significantly higher

risk of in-hospital major bleeding (31.3%) compared with use of IABP (16.0%; ARD, 15.4

percentage points [95% CI, 12.5-18.2]; P < .001; Figure 7.2); both access site and nonaccess

site bleeding were significantly higher with intravascular microaxial LVAD (Table 7.5).

A secondary 1:1 propensity-matching algorithm using data from the 390 hospitals that

used both intravascular microaxial LVAD and IABP included 1570 matched pairs and found

consistent results (Figure 7.3). Results were also consistent in an additional 1:1 propensity-

matching algorithm among 1201 matched pairs that excluded patients transferred into a

treating facility (Figures 7.4 and 7.5). Results were also consistent in an instrumental variable

analysis among all patients with AMI complicated by cardiogenic shock and when limited

to patients with AMI complicated by cardiogenic shock receiving intravascular microaxial
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Table 7.4: Unadjusted Outcomes Among Patients Undergoing Percutaneous Coronary In-
tervention for Acute Myocardial Infarction Complicated by Cardiogenic Shock from October
1, 2015 – December 31, 2017

Medical
Therapy
Alone

Other MCS
Intravascular
Microaxial
LVAD Only

IABP Only

Number of patients 16,227 1,838 1,768 8,471
Outcomes
Death 3,241 (20) 798 (43) 801 (45) 2,461 (29)
Major Bleeding 1,688 (10) 552 (30) 556 (31) 1233 (14.6)

Table 7.5: Characteristics of Bleeding Type in Matched Cohort Undergoing PCI and Receiv-
ing Intravascular Microaxial Left Ventricular Assist Device or Intra-aortic Balloon Pump for
Acute Myocardial Infarction Complicated by Cardiogenic Shock, Among All Hospitals

Intravascular
Microaxial
LVAD matched

IABP
Matched

Number of patients 1,680 1,680
Overall bleeding 526 (31.3) 268 (16.0)
Access site bleed 188 (11.2) 55 (3.3)
Gastrointestinal bleed 115 (6.8) 73 (4.3)
Genito-urinary bleed 43 (2.6) 12 (0.7)
Retroperitoneal bleed 25 (1.5) 7 (0.4)
Other bleed 210 (12.5) 108 (6.4)
Surgery required for bleed 96 (5.7) 37 (2.2)

Red blood cell / whole blood transfusion 623 (37.1) 315 (18.8)
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Figure 7.2: In-Hospital Outcomes Among Propensity-Matched Patients With Acute My-
ocardial Infarction Complicated by Cardiogenic Shock Undergoing Percutaneous Coronary
Intervention With Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic
Balloon Pump

LVAD or IABP only.

7.3.4 Outcomes of IABP vs Medical Therapy Alone

The 1:1 propensity-matching algorithm using data from all patients with AMI com-

plicated by cardiogenic shock undergoing PCI yielded 7805 matched pairs. Standardized

differences for the characteristics of both propensity-matched cohorts were all below 10%.

In the propensity-matched cohort, IABP use was not associated with lower in-hospital

mortality when compared with medical therapy alone; there was a small but statistically

significantly higher risk (IABP, 28.6% vs 26.5% for medical therapy alone; ARD, 2.2 per-

centage points [95% CI, 0.8-3.6]; P = .002). In-hospital major bleeding was significantly

higher among patients receiving IABP (14.5% vs 11.0%; ARD, 3.5 percentage points [95%

CI, 2.5-4.5]; P < .001) (Figure 7.6).

7.4 Discussion

Among patients with AMI complicated by cardiogenic shock, use of intravascular mi-

croaxial LVAD was associated with significantly higher risks of patients experiencing in-

hospital mortality and major bleeding compared with use of IABP. These findings were
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Figure 7.3: In-Hospital Outcomes among Propensity-Matched Patients with Acute Myocar-
dial Infarction Complicated by Cardiogenic Shock Undergoing PCI with Intravascular Mi-
croaxial Left Ventricular Assist Device vs Intra-Aortic Balloon Pump, Among All Hospitals
with At Least 1 Intra-aortic Balloon Pump and 1 Intravascular Microaxial Left Ventricular
Assist Device

consistent for patients regardless of the timing of device placement and transfer status.

The significantly higher risk of in-hospital mortality contrasts with prior RCTs, which

failed to show a mortality benefit of intravascular microaxial LVAD but did not show overall

harm. There are a number of potential explanations for the findings of this study relative to

the previous clinical trials. First, by using national registry data, this study was larger than

prior RCTs [146, 150], which cumulatively enrolled only 74 total patients. Second, this study

examined clinical experience, rather than device performance among highly selected patients

treated by experienced physicians and hospitals in RCTs [146, 150]. The recent experience

with Impella RP is instructive: the FDA’s May 2019 advisory warning [183] suggests expe-

rience with devices as they are used in everyday clinical practice must be closely monitored.
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Figure 7.4: In-Hospital Outcomes among Propensity-Matched Patients Who Were Not
Transferred to a Treating Facility with Acute Myocardial Infarction Complicated by Cardio-
genic Shock Undergoing PCI with Intravascular Microaxial Left Ventricular Assist Device
vs Intra-Aortic Balloon Pump (IABP), Among All Hospitals

While a recent matched pair analysis of 237 patients from the IABP-SHOCK II trial and

237 patients receiving intravascular microaxial LVAD in a multinational registry found a

point estimate of 2.1% higher mortality among patients receiving intravascular microaxial

LVAD compared with IABP that was not statistically significant, that analysis did demon-

strate higher risk of severe or life-threatening bleeding in patients receiving intravascular

microaxial LVAD [177]. The results showing higher risk of severe or life-threatening bleed-

ing are consistent with the current analysis, which shows higher risk of severe in-hospital

major bleeding among patients treated with intravascular microaxial LVAD. These results

are also consistent with a large observational study of patients undergoing PCI with MCS,

which found that use of intrasvascular microaxial LVAD was associated with higher risk of

in-hospital adverse events, including death and major bleeding [152]. Additionally, mortality

137



Figure 7.5: In-Hospital Outcomes among Propensity-Matched Patients with Acute Myocar-
dial Infarction Complicated by Cardiogenic Shock Undergoing PCI with Intravascular Mi-
croaxial Left Ventricular Assist Device vs Intra-Aortic Balloon Pump (IABP), Among All
Hospitals with At Least 1 Intra-aortic Balloon Pump and 1 Intravascular Microaxial Left
Ventricular Assist Device

risk when comparing patients receiving IABP vs medical therapy only were consistent with

those observed in the IABP-SHOCK II trial [142], the largest RCT of IABP in cardiogenic

shock, and support the robustness of this analytic approach. A potential explanation for the

increase in mortality may be the increased bleeding with intravascular microaxial LVAD as

compared with IABP, which is consistent with prior studies [150, 184, 185]. Bleeding and

transfusions are associated with adverse outcomes, including mortality, among patients with

AMI [186, 187] and receiving PCI [188].

Taken together, these results highlight the need for additional data to guide the optimal

management of AMI complicated by cardiogenic shock in general and the role of MCS devices,

in particular. Specifically, robust RCTs and complementary analyses of clinical populations

are necessary. The former, including the ongoing DanGer trial of intravascular microaxial
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Figure 7.6: In-Hospital Outcomes among Propensity-Matched Patients with Acute Myocar-
dial Infarction Complicated by Cardiogenic Shock Undergoing PCI with Intra-Aortic Balloon
Pump vs Medical Therapy Alone

LVAD vs medical therapy in AMI complicated by cardiogenic shock [189], may provide

definitive data on efficacy and safety, while the latter may provide important information

about device performance in unselected settings and possible off-label indications.

A 2017 American Heart Association scientific statement noted little evidence to guide the

timing or selection of patients with cardiogenic shock who are suitable for MCS devices [151].

Furthermore, given that cardiogenic shock is a complex, heterogenous syndrome requiring

complex team-based clinical care infrastructure and highly specialized clinicians, a recently

released classification scheme [168] may improve the phenotyping of patients with shock to

better align therapeutic interventions with the cause and degree of hemodynamic derange-

ment. In this context, this analysis of outcomes among patients receiving MCS devices may

inform these efforts.
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7.4.1 Limitations

This study has several limitations. First, the presence of cardiogenic shock was based

on site documentation. More detailed hemodynamic and clinical data, including the use

of vasopressor therapy at the time of MCS device placement, would have enabled a more

granular patient profile but are not captured in either the Chest Pain-MI or CathPCI case

report forms. However, the registry definition for shock is consistent with many clinical

trials, and sites are subject to random audit [129]. Moreover, the event rate among patients

included in the propensity-matched analyses suggests these patients had cardiogenic shock.

Second, registry data provide clinical information, such as hemodynamics and laboratory

values, at a single time point; cardiogenic shock is an evolving process, and the specific infor-

mation at the time of decision to use a particular MCS device was not available. Therefore,

the possibility cannot be excluded that comparable patient clinical status at presentation

might have changed during subsequent hospital course prior to initiation of therapy and

have affected the observed outcome differences between intravascular microaxial LVAD and

IABP.

Third, there may be residual confounding whereby patients receiving intravascular mi-

croaxial LVADs had greater severity of illness than those receiving IABPs. While this study

employed a propensity match using detailed demographics, clinical history and presentation,

infarct location, coronary anatomy, and clinical laboratory data from a large, national reg-

istry, other clinical parameters that may affect or be associated with MCS device selection,

such as right heart catheterization measurements, lactate levels, or success of reperfusion

were not available. However, approximately 95% of all patients receiving intravascular mi-

croaxial LVADs were matched, suggesting that these results may represent the experience

of the majority of patients receiving intravascular microaxial LVAD for AMI complicated by

cardiogenic shock.

Fourth, different types of intravascular microaxial LVADs, specifically the Impella 2.5,

CP, 5.0, and RP, could not be distinguished. While there are differences in the degree of
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hemodynamic support provided by these devices, the Impella 5.0 device requires specialized

vascular access and is unlikely to be the initial support device used in a patient with AMI

complicated by cardiogenic shock. Impella RP was approved in September 2017 and was only

available for approximately 3 months of the study period. To further mitigate these concerns,

this analysis was limited to patients who received only the intravascular microaxial LVAD

or IABP such that patients who had an escalation in their support with device replacement

were excluded.

7.5 Conclusions

Among patients undergoing PCI for AMI complicated by cardiogenic shock from 2015

to 2017, use of intravascular microaxial LVAD compared with IABP was associated with

higher adjusted risk of in-hospital death and major bleeding complications, although study

interpretation is limited by the observational design. Further research may be needed to

understand optimal device choice for these patients.
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8. A DYNAMIC MODEL TO ESTIMATE EVOLVING RISK OF MAJOR BLEEDING

AFTER PCI

This chapter shifts focus slightly away from AMI-CS and more broadly to all patients

receiving percutaneous coronary intervention. Here, we look to predict bleeding following

that procedure. A key focus in this chapter is examining risk. We do this not as a static

one-time estimate, but rather as a more complex estimation that evolves over time. As

a patient is treated, many decisions occur and the clinical scenario evolves. This chapter

discusses a method to follow that patient through a complex process with multiple rounds of

decision making. At each step, new information is learned and the model updates to account

for what is available. Through this, the model is able to dynamically adapt to reflect the

most current state of the patient, paving the way for improved clinical support.

8.1 Introduction

Bleeding is a common and serious complication associated with percutaneous coronary in-

tervention (PCI). Bleeding is associated with significant morbidity, mortality, and cost [190].

To assess post-PCI bleeding risk, several prediction tools have been developed, including

two risk models [191, 192] from the National Cardiovascular Data Registry (NCDR) [193].

By informing clinicians about bleeding risk, these models can aid use of bleeding avoidance

strategies (e.g., combination of radial access and bivalirudin), particularly in high-risk pa-

tients, thereby reducing rates of major bleeding complications and improving care quality

and clinical outcomes [194, 195]. However, rates of bleeding among different demographic

groups and among different sites exists [196, 197]. This variation suggests the existence of

opportunities for improvement. In addition, many patients at the highest risk for bleeding

complications fail to receive guideline based bleeding avoidance strategies [198]. One possible

reason for the lack of use of bleeding avoidance strategies is the static nature of the existing

risk models.
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Current models produce a single estimate of bleeding risk anchored at a single point in

time. As treatment decisions are made or unforeseen events occur, these models are unable

to adapt and incorporate new information. Development of a dynamic model is needed to

allow for estimations to adapt and update throughout an episode of care. Bleeding risk is

a dynamic process affected by multiple pre-, intra-, and post-PCI patient and procedural

factors throughout the care pathway. As data are gathered and treatment decisions made,

risk estimates should account for all of the information currently available, including changes

in patient clinical status.

The development of risk models that update across the patient episode of care has the

potential to improve our ability to individualize risk prediction. Providing physicians up-to-

date feedback may inform optimization of therapeutic strategies, through enhanced decision-

support at actionable points across a cardiac catheterization laboratory visit. These models

may also improve the understanding of the dynamics and key variables affecting bleeding

risk. Such models would represent a transformational change in risk prediction and embrace

the principles of a learning health care system [199].

8.2 Methods

8.2.1 Study cohort

This study included all index PCIs in the National Cardiovascular Data Registry (NCDR)

CathPCI registry version 4.4 from July 2009 through April 2015 [193, 154]. To examine the

improvement of dynamic data over static risk prediction models, we used the same cohort

as Mortazavi et al. [200]. We excluded patients during readmissions, who died in the

hospital, who had missing data regarding if they had any bleeding events or not, or who

underwent coronary artery bypass grafting (CABG) during the index admission, consistent

with previous work [192, 200].

The primary outcome was any in-hospital bleeding event within 72 hours after the start

of PCI. Bleeding was defined as a hemoglobin drop ≥3 g/dL, whole blood or packed red
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blood cell transfusion, or intervention/surgery at the bleeding site to reverse/stop or correct

bleeding. We further excluded patients with multiple, unknown, or brachial access sites,

to evaluate the treatment decision point of radial versus femoral access. We additionally

excluded patients with multiple closure methods.

8.2.2 Variables of Interest

This study considered all data available from the CathPCI Registry prior to patient

discharge [193]. This included all data used by the existing models [192, 200], as well as

additional variables as described below. The full existing NCDR bleeding risk model [192]

uses 31 variables: 23 patient characteristics at the time of presentation and 8 characteristics

related to coronary anatomy and lesion characterization. The additional data considered here

consists of additional laboratory data, past medical history, coronary anatomy (including

percent stenosis), stent type, and closure method categories (manual compression, sealant,

mechanical, suture, patch, staple, other, or none).

8.2.3 Staged Model Analysis

We first sorted all available CathPCI data into key decision stages of a PCI episode of

care. First, we defined three decision points that affect bleeding risk: 1) choice of access

site (radial versus femoral); 2) choice of medications (including those administered 24 hours

pre-procedure and intra-procedure); and 3) choice of closure device.

Using these three key decision points, we evaluated variables available at three stages:

Stage 1) variables available at patient presentation to the catheterization lab; stage 2) vari-

ables available after diagnostic coronary angiography; and stage 3) variables related to the

PCI procedure. Combining these three decision points and the information available at each

of them, six models were designed Figure 8.1. The first included only variables available at

presentation. Each subsequent model adds either a decision node or the information that

can inform the next decision. The final model included all variables and clinical decisions

through the PCI procedure, evaluating remaining bleeding risk for post-procedure care.
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Figure 8.1: Model hierarchy. Each model integrated information of all features from prior
models, as well as an added set of features.

8.2.4 Data Preparation

The NCDR goes through a high quality review and adjudication process, ensuring mini-

mal missingness of variables [129]. However, several steps in data preparation were necessary

prior to model development. First, situations exist where a parent variable value of “no”,

indicates that daughter variables would not be captured. Most daughter variables already

had a category of missing, unknown, or other. We re-categorized the daughter variables to

have a value of No/Not Drawn, and integrated “missing” for the few cases where the parent

variable was a Yes/Drawn variable and daughter variable was in fact missing.

Second, medication was categorized as no, yes, blinded, or contraindicated. We recate-

gorized blinded as missing and recategorized contraindicated as no.
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Third, missing values were imputed using multiple multivariate feature imputation. Each

missing feature was modeled using Bayesian ridge regressors trained in a round-robin fashion.

This imputation was performed using the Iterative Imputer package in scikit-learn 0.24.1

[67], based on the multivariate imputation by chained equations (mice) package for R [201].

Following imputation, binary and ordinal variables were set to the nearest allowed value.

Multiple imputations were produced by sampling from the regressor models multiple times;

each discrete sampling is a new overall sample from the model. This sampling was used

to produce five folds of imputations. In this work, we used a re-imputation technique for

handling the longitudinal nature of the data, producing multiple imputed datasets at each

stage through an episode of care [202]. The imputation models were trained on the training

dataset prior to cross validation [203]. The test sets were multiply imputed, but the regressors

used for this imputation were trained only on training data.

8.2.5 Training, Testing, and Evaluating

The cohort was divided into an initial 80% cohort (July 1, 2009 through December 31,

2013) for model training and a later 20% cohort (January 1, 2014 through December 31,

2014) for model validation [204, 205]. This temporal split allows for a fair evaluation of the

model through testing it on the most distinct possible subset. This approach protects against

biasing the result of the overall model by including more recent data. While an external

validation set would be preferable, this method of separating data allows for the most realistic

testing of the model. As discussed above, five imputation folds were created for each stage.

This, in effect, resulted in five trained models for each stage or decision point. The model used

was XGBoost, a gradient descent boosted decision tree model [206]. This model is capable

of evaluating higher order, non-linear interactions between variables. This is necessary, since

bleeding models based upon logistic regression selected the key variables based primarily on

statistical tests between the variable and its relationship with incidence of major bleeding

[192]. We conducted an internal five-fold cross-validation to tune the hyperparameters of

the model for each stage and each fold. The hyperparameters tuned were maximum depth
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of each tree (2, 4, 6, or 8), number of tree estimators (100, 500, 1000, or 5000), and learning

rate for the model (0.1, 0.15, 0.2, or 0.3). This internal cross-validation was performed using

a halving grid search as implemented by the scikit-learn package HalvingGridSearchCV [67].

Optimal performance was found in 27 of the 30 experiments (6 stages * 5 folds) to be given

by 1000 estimators with a max depth of 2 and a learning rate of 0.1.

The five imputation folds allow for training and validating the model multiple times,

providing both estimates of overall model performance and uncertainty [204]. From this, we

calculated the area under the receiver operating characteristics curve (AUROC) for evaluat-

ing model discrimination. To better understand the model’s positive predictive value across

the full range of risk stratification, we also calculated the area under the precision recall

curve (AUPRC). Briefly, the precision-recall curve calculates the tradeoff between precision

(positive predictive value) and recall (sensitivity) across the full range of thresholds [207].

This number is directly impacted by the number of positive predictions made versus false

positive or false negative estimates made, an important factor when considering cases with

low event rates such as major bleeding (4.1%, Table 8.1). This model calibration also allows

us to calculate the Brier Skill Score, which provides the Brier score for model calibration on

an easy to interpret scale of 0-100% for calibration fit. Model performance metrics at each

stage are provided in Table 8.2.

8.2.6 Variable Importance

Looking beyond model performance, model interpretation is a key factor in clinical utility

[204]. One approach for interpreting models is Shapley Additive exPlanations (SHAP) [208].

SHAP attributes an importance value to each feature of a given sample and allows for an

ordering of features from those with the greatest impact on the model output to least impact

on the model output. This technique allows for explanations in nonlinear models where a

given feature might have different impacts at different values. We use SHAP here to provide

an analysis for patients undergoing PCI, therefore providing visual understanding about the

impact of factors driving changes in accuracy of the risk prediction model and decisions
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Table 8.1: Bleeding model patient characteristics.

Overall Training Validation

(n=2,868,808) (n=2,314,446) (n=554,362)
Demographics
Age, mean (SD), y 64.6 (12.0) 64.6 (12.0) 64.9 (11.9)
Men 1,960,409 (68.3) 1,577,369 (68.2) 383,040 (69.1)
BMI, mean (SD) 30.0 (6.4) 30.0 (6.4) 30.1 (6.4)

Cardiovascular Comorbidities
Diabetes 1,057,221 (36.9) 844,928 (36.5) 212,291 (38.3)
Hypertension 2,353,798 (82.1) 1,895,949 (81.9) 457,849 (82.6)
Peripheral Vascular Disease 339,316 (11.8) 274,039 (11.8) 65,278 (11.8)
Chronic Kidney Disease 861,391 (30.0) 705,765 (30.5) 155,626 (28.1)
Previous PCI 1,178,346 (41.1) 948,367 (41.0) 229,978 (41.5)
Previous CABG 510,781 (17.8) 414,560 (17.9) 96,222 (17.4)

PCI Procedural Status
Elective 1,196,485 (41.7) 992,525 (42.9) 203,961 (36.8)
Urgent 1,152,328 (40.2) 906,226 (39.2) 246,101 (44.4)
Emergent 512,404 (17.9) 409,659 (17.7) 102,744 (18.5)
Salvage 6,440 (0.2) 5,029 (0.2) 1,411 (0.3)
Unknown 1,150 (0.04) 1,007 (0.04) 145 (0.03)

STEMI 468,270 (16.3) 373,792 (16.2) 94,477 (17.0)
Cardiogenic Shock 64,743 (2.3) 51,689 (2.2) 13,055 (2.4)
Cardiac arrest within 24h of PCI 49,008 (1.7) 38,840 (1.7) 10,168 (1.8)
Preprocedure hemoglobin, median (IQR), g/dL 13.7 (12.4-14.9) 13.7 (12.4-14.9) 13.7 (12.4-14.9)
Access Site
Femoral 2,394,173 (83.5) 1,997,049 (86.3) 397,124 (71.6)
Radial 474,635 (16.5) 317,397 (13.7) 157,238 (28.4)

Medications Used
Ticlopidine 5,895 (0.2) 5,186 (0.2) 709 (0.1)
Clopidogrel 1,988,178 (69.3) 1,654,031 (71.5) 334,147 (60.3)
Prasugrel 433,079 (15.1) 339,902 (14.7) 93,177 (16.8)
Ticagrelor 167,838 (5.9) 80,318 (3.5) 87,520 (15.8)
Fondaparinux 15,816 (0.6) 14,837 (0.6) 979 (0.2)
Low Molecular Weight Heparin 272,261 (9.5) 224,180 (9.7) 48,081 (8.7)
Unfractionated Heparin 1,528,882 (53.3) 1,197,304 (51.7) 331,578 (59.8)
Bivalirudin 1,695,225 (59.1) 1,375,031 (59.4) 320,194 (57.8)
GP llb/llla (any) 677,865 (23.6) 576,753 (24.9) 101,112 (18.2)
Direct Thrombin Inhibitor 29,512 (1.0) 24,961 (1.1) 4,551 (0.8)

Closure Method
Manual Compression 965,618 (33.7) 815,354 (35.2) 150,264 (27.1)
Sealant 916,374 (31.9) 745,456 (32.2) 170,918 (30.8)
Mechanical 512,968 (17.9) 358,927 (15.5) 154,041 (27.8)
Suture 264,494 (9.2) 215,420 (9.3) 49,074 (8.9)
Patch 99,690 (3.5) 84,853 (3.7) 14,837 (2.7)
Staple 184 (0.0) 171 (0.0) 13 (0.0)
Other 94,818 (3.3) 82,626 (3.6) 12,192 (2.2)
None/Missing 14,662 (0.5) 11,639 (0.5) 3,023 (0.5)

Post-PCI Major Bleeds 118,327 (4.1) 98,167 (4.2) 20,160 (3.6)
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Table 8.2: Comparison of model performances for bleeding prediction.

Model AUROC AUPRC Brier Skill Score Brier Reliability Brier Resolution

1 0.812 (0.812-0.812) 0.203 (0.203-0.203) 0.088 (0.088-0.088) 2.6E-4 (2.6E-4-2.6E-4) 3.3E-3 (3.3E-3-3.3E-3)
2 0.817 (0.817-0.817) 0.204 (0.204-0.205) 0.091 (0.091-0.091) 2.0E-4 (1.9E-4-2.0E-4) 3.4E-3 (3.4E-3-3.4E-3)
3 0.825 (0.825-0.825) 0.208 (0.208-0.208) 0.094 (0.094-0.094) 2.1E-4 (2.0E-4-2.1E-4) 3.5E-3 (3.5E-3-3.5E-3)
4 0.832 (0.832-0.832) 0.217 (0.216-0.217) 0.102 (0.102-0.102) 1.4E-4 (1.3E-4-1.4E-4) 3.7E-3 (3.7E-3-3.7E-3)
5 0.844 (0.844-0.845) 0.241 (0.240-0.241) 0.118 (0.118-0.118) 1.1E-4 (1.1E-4-1.2E-4) 4.2E-3 (4.2E-3-4.2E-3)
6 0.845 (0.845-0.845) 0.242 (0.241-0.242) 0.119 (0.119-0.119) 1.0E-4 (1.0E-4-1.1E-4) 4.3E-3 (4.3E-3-4.3E-3)

through the stages outlined in Figure 8.1.

SHAP feature importance plots are shown in Figures 8.2-8.7. In each plot, the variables

are sorted in order of decreasing importance. The color of a variable relates to the value of

that variable, while location along the x-axis represents how much that variable contributes

to the risk of bleeding. Features most strongly driving predictions of high bleeding risk appear

on the right with high SHAP values, while features most predictive of low bleeding risk appear

at the left. To further understand dynamic risk predictions following a decision, shift tables

were generated. These tables are useful for visualizing changing risks of bleeding before and

after a decision or for comparing the performance of the initial and final models. To describe

these changes, patients were classified into categories of low risk (<1%), moderate risk (1%-

4%), or high risk (>4%) of bleeding. These thresholds were chosen to approximately balance

patients between categories across all models [209]. Table 8.3 shows shift tables before and

after each decision, while Table 4 shows a shift table from the initial to final model. The

earlier model is displayed left to right, while the later model is displayed top to bottom. The

top number in each cell represents the number of patients assigned to that risk bin by each

model. The bottom number in each cell is the overall bleeding rate of all patients in that

cell. NaN represents that no patients were in that combination of bins.

All analyses were conducted in Python version 3.8.6 or R version 4.0.3. Data analysis

was performed using scikit-learn 0.24.1 [67] and XGBoost 1.3.3 [206] for gradient descent

boosting. SHAP explanations were generated and visualized with SHAP 0.38.1 [208]. Model

calibrations generated in R with mgcv 1.8-33 [210] and calibration variances with sandwich
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Figure 8.2: SHAP Tree explainer for Model 1

3.0-0 [211]). Source code is available online.

8.3 Results

8.3.1 Patient Cohort and Variables Used

We included 2,868,808 PCIs in the NCDR CathPCI registry; 2,314,446 (80.7%) prior to

2014 for model training and 554,362 (19.3%) after 2014 for validation and model interpreta-

tion. The mean (SD) age of patients was 64.6 (12.0) years and 68.3% were male (Table 8.1).

Overall, there were 118,327 (4.1%) major bleeding events: 98,167 (4.2%) major bleeding

events in the training set and 20,160 (3.6%) in the validation set.
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Figure 8.3: SHAP Tree explainer for Model 2

8.3.2 Stage 1: Clinical Presentation (Model 1)

The initial model uses information available to a clinician at the time that a patient

presents and predicted bleeding risk with an AUROC of 0.812 and AUPRC of 0.203. The

Brier skill score of this model is 0.088, representing the degree that this model improves

over a naïve model (higher is better). The Brier reliability is 2.6E-4, representing distance

to true probabilities (lower is better), while the resolution is 3.3E-3, representing forecast

distances to the mean rate (higher is better). The SHAP plot shows that this model is

most strongly driven by preprocedural hemoglobin and coronary artery disease symptoms

at presentation (Figure 8.2). The higher a variable is in Figure 8.2, the greater overall

importance that variable exhibits for the model. Red values indicate high values for that
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Figure 8.4: SHAP Tree explainer for Model 3

variable (if continuous or ordinal) or “true” (if binary), while blue values indicate the opposite.

Points to the right of the axis (positive SHAP values) indicate that a feature of that value

increases model estimate of bleeding risk, while points to the left of the axis (negative SHAP

values) indicate that a feature of that value decreases the model estimate of bleeding risk.

For instance, on the top row of Figure 8.2, a preprocedural hemoglobin greater than 13 is

associated with an increased risk of bleeding, while value less than 13 is associated with

a decreased risk. The wide range of SHAP values for this variable shows that while the

direction of association is constant, the degree to which this feature impacts risk is not

constant.

152



Figure 8.5: SHAP Tree explainer for Model 4

8.3.3 Decision 1: Access Site (Model 2)

The first decision point in this model is the choice of arterial access site: femoral or

radial. When accounting for this decision, the AUROC improved to 0.817 and the AUPRC

improved to 0.204. The Brier skill score improved to 0.091, the Brier reliability improved to

2.0E-4. The SHAP plot shows that femoral access is the ninth most informative variable in

Model 2 (Figure 8.3). Procedures performed via a femoral access site had a slightly increased

rate of bleeding, while those performed via a radial access site had a variably decreased rate

of bleeding. Procedures performed via femoral access are represented by the narrow red line

to the right of the axis. The fact that these procedures have similar SHAP values indicates
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Figure 8.6: SHAP Tree explainer for Model 5

that the model assigns similar risk to procedures with femoral access. In contrast, the blue

points to the left of the axis represent procedures performed with radial access, and their

elongated shape indicates that the radial access has a variable effect on bleeding risk, with

the risk for some procedures being decreased by much more than the risk for others.

Table 8.3a presents a shift table describing patient risk categories (23). Among 123,712

patients classified as low (<1%) risk of bleeding by the clinical presentation model, 9,071

(7.3%) were reclassified as medium (1-4%) risk of bleeding by the model incorporating access

site (Table 8.3a). Among 270,485 patients classified as medium risk of bleeding by the initial

model, 33,129 (12.2%) were reclassified as low risk by the subsequent model, while 6,465

(2.4%) were reclassified as high (>4%) risk. Among 160,165 patients classified as high risk
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Figure 8.7: SHAP Tree explainer for Model 6

of bleeding by the initial model, 14,582 (9.1%) were reclassified as medium risk.

8.3.4 Stage 2: Cardiac Catheterization Laboratory (Model 3)

The cardiac catheterization laboratory model uses information available after performing

a diagnostic cardiac catheterization, but prior to choice of peri-procedural medications and

initiation of PCI. In this model, bleeding prediction improved with an AUROC of 0.825 and

an AUPRC of 0.208. The Brier skill score improved to 0.094, the Brier reliability worsened

to 2.1E-4, and the Brier resolution improved to 3.5E-3. Of features added in this model,

the SHAP plot shows that predictions are highly influenced by the presence of thrombi

in coronary lesions (13th most informative variable) and pre-procedure Thrombolysis in

Myocardial Infarction (TIMI) flow (14th most informative variable) (Figure 8.4).
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Table 8.3: Shift tables following each decision point. Top value in each cell is number of
patients classified into that risk bin by the two respective models. The bottom value in each
cell indicates the actual bleeding rate of all patients within that cell.

Initial vs After Access Site Decision

Model 1
<1% 1-4% >4% All

Model 2 Patients, N Patients, N Patients, N Patients, N
Observed Rate Observed Rate Observed Rate Observed Rate

<1% 114,641 33,129 147,770
0.57% 0.54% NaN 0.56%

1-4% 9,071 230,891 14,582 254,544
0.99% 1.69% 2.54% 1.72%

>4% 6,465 145,583 152,048
NaN 3.11% 10.14% 9.84%

All 123,712 270,485 160,165 554,362
0.60% 1.58% 9.45% 3.64%

(a) Shift table comparing Model 1 to Model 2.

In Cath Lab Before vs After Medication Decisions

Model 3
<1% 1-4% >4% All

Model 4 Patients, N Patients, N Patients, N Patients, N
Observed Rate Observed Rate Observed Rate Observed Rate

<1% 140,103 32,764 172,867
0.43% 0.64% NaN 0.47%

1-4% 11,244 207,541 21,612 240,397
1.20% 1.67% 3.24% 1.79%

>4% 11,448 129,650 141,098
NaN 4.37% 11.22% 10.67%

All 151,347 251,753 151,262 554,362
0.49% 1.66% 10.08% 3.64%

(b) Shift table comparing Model 3 to Model 4.

Post PCI Before vs After Closure Decision

Model 5
<1% 1-4% >4% All

Model 6 Patients, N Patients, N Patients, N Patients, N
Observed Rate Observed Rate Observed Rate Observed Rate

<1% 178,911 12,095 191,006
0.43% 0.54% NaN 0.44%

1-4% 8,561 213,367 7,268 229,196
0.81% 1.73% 3.56% 1.76%

>4% 5,703 128,457 134,160
NaN 3.30% 11.76% 11.40%

All 187,472 231,165 135,725 554,362
0.45% 1.71% 11.32% 3.64%

(c) Shift table comparing Model 4 to Model 5.

156



8.3.5 Decision 2: Pre-Procedure Medication (Model 4)

The next decision point is the choice of intra-procedural antiplatelets and anticoagulants.

Following inclusion of this decision, the model performance increases to an AUROC of 0.832

and an AUPRC of 0.217. The Brier skill score improved to 0.102, the Brier reliability

improved to 1.4E-4, and the Brier resolution improved to 3.7E-3. Of features added in

this model the SHAP plot shows that use of GP IIb/IIIa inhibitors was strongly associated

with an increased risk of bleeding (4th most informative variable), while unfractionated

heparin was less strongly associated with an increased risk of bleeding (14th most informative

variable) (Figure 8.5).

Among 151,347 patients classified as low risk of bleeding by the cardiac catheterization lab

model (Model 3), 11,244 (7.6%) were reclassified as moderate risk by the model incorporating

medication choices (Model 4), (Table 8.3b). Among 251,753 patients classified as moderate

risk of bleeding by Model 3, 32,764 (13.0%) were reclassified as low risk by Model 4, while

11,448 (4.5%) were reclassified as high risk. Among 151,262 patients classified as high risk of

bleeding by Model 3, there were 21,612 (14.3%) patients who were reclassified as moderate

risk by Model 4.

8.3.6 Stage 3: PCI (Model 5)

The post-PCI model uses all information through PCI but prior to choice of closure

method. This model improves upon the performance of prior models, with an AUROC of

0.844 and AUPRC of 0.241. The Brier skill score improved to 0.118, the Brier reliability

improved to 1.1E-4, and the Brier resolution improved to 4.2E-3. The new features intro-

duced in this model that were most associated with increased bleeding risk are proxies of

PCI complexity and duration, including fluoroscopy time (10th most informative variable)

and contrast volume (20th most important variable) (Figure 8.6). Use of a drug eluting stent

was variably associated with risk of bleeding (13th most important variable).
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8.3.7 Decision 3: Closure Method (Model 6)

The final decision point is closure. This decision had minimal effect on overall prediction,

with AUROC remaining at 0.845 and AUPRC improving slightly to 0.242. The Brier skill

score improved slightly to 0.119, the Brier reliability improved to 1.0E-4, and the Brier

resolution improved to 4.3E-3. Figure 8.7 shows a SHAP explanatory plot for this model.

Manual compression is the closure method most strongly predictive of increased bleeding

risk (12th most informative variable).

Among 187,472 patients classified as low risk of bleeding by the post-PCI model (Model

5), 8,561 (4.6%) were reclassified as moderate risk by the model incorporating closure decision

(Model 6) (Table 8.3c). Notably, those patients had a bleeding rate of 0.81%, suggesting that

this reclassification on average may have been overly pessimistic. Among 231,165 patients

classified as moderate risk of bleeding by Model 5, 12,095 (5.2%) were reclassified as low risk

by Model 6, while 5,703 (2.5%) were reclassified as high risk. While the patients reclassified

as low risk had an appropriately low rate of bleeding in aggregate (0.54%), those patients

reclassified to high risk had a moderate aggregated rate of bleeding (3.30%). Among 135,725

patients classified as high risk of bleeding by Model 5, there were 7,268 (5.4%) patients who

were reclassified as moderate risk by Model 6.

Total reclassification from the initial model to the final model is shown in Table 4. Among

123,712 patients classified as low risk by the initial model, 14,441 (11.7%) were reclassified

as moderate risk, while 723 (0.6%) patients were reclassified as high risk. Notably, the

bleeding rate among those patients reclassified to high risk was 12.5%. Among 270,485

patients classified as moderate risk by the initial model, 82,418 (30.5%) were reclassified to

low risk by the final model, while 16,577 (6.1%) were reclassified to high risk by the final

model. Finally, among 160,165 patients classified as high risk by the initial model, there

were 40 (<0.1%) patients reclassified to low risk, and 43,265 (27.0%) patients reclassified to

moderate risk.
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Table 8.4: Shift table across models. Top value in each cell is number of patients classified
into that risk bin by the two respective models. The bottom value in each cell indicates the
actual bleeding rate of all patients within that cell.

Initial vs Final Estimate

Model 1
<1% 1-4% >4% All

Model 6 Patients, N Patients, N Patients, N Patients, N
Observed Rate Observed Rate Observed Rate Observed Rate

<1% 108,548 82,418 40 191,006
0.41% 0.48% 0.00% 0.44%

1-4% 14,441 171,490 43,265 229,196
1.47% 1.59% 2.50% 1.76%

>4% 723 16,577 116,860 134,160
12.45% 6.99% 12.02% 11.40%

All 123,712 270,485 160,165 554,362

8.3.8 Case Studies

Because severe bleeding is a relatively rare event, risk for most patients will change by

a small amount. However, some patients’ risk changes dramatically throughout the course

of their treatment. Overall, the median difference of risk from the initial to final prediction

is -0.41% (IQR -1.16%, +0.02%). However, the full range of risk changes was much larger,

ranging from -44.42% to +83.21%. To understand the factors that drive risk prediction, two

patients with illustrative risk profiles were chosen as case studies.

8.3.8.1 Case Study A

A 63-year-old man presented for emergent PCI for STEMI. In the initial model, his risk

of bleeding was estimated to be 4.3%. This risk was driven predominantly by the emergent

need for PCI, his preprocedural hemoglobin, his coronary artery disease on presentation, his

sex, and his weight. The decision was made to use radial access, after which his bleeding

risk was estimated to be 2.8%. There were no factors that increased predicted risk during

diagnostic coronary angiography, and risk decreased to 2.1%. He received prasugrel and
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Figure 8.8: SHAP explainer for Case Study A

unfractionated heparin, after which his risk fell to 1.5%. Following successful PCI, his risk

further fell to 1.2%. His access site was sutured, and the final bleeding risk was 1.0%. Plots

of individual SHAP values for this patient at each model stage are shown in Figure 8.8.

8.3.8.2 Case Study B

A 66-year-old woman presented for elective PCI for stable angina. In the initial model,

her risk of bleeding was 0.9%. This risk was driven predominantly by her preprocedural

hemoglobin, her sex, the stable nature of her coronary artery disease, and her weight. The

decision was made to use femoral access, after which her risk increased to 1.0%. Upon

diagnostic coronary angiography, it was discovered that she had significant stenosis present.

The model at this stage estimated risk of bleeding to be 1.7%. She received unfractionated

heparin and clopidogrel, after which her estimated risk was 1.4%. PCI was notable for high

complexity (reflected by a long fluoroscopy time), after which her risk of bleeding increased
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Figure 8.9: SHAP explainer for Case Study B

to 5.1%. Her access site was sutured, and her final risk was 4.0%. Ultimately, this patient

experienced a bleed. Plots of individual SHAP values for this patient at each model stage

are shown in Figure 8.9.

8.4 Discussion

8.4.1 Limitations and Future Directions

There are several key limitations to our study. First, the real-time data availability are a

significant challenge. The NCDR relies upon manual chart abstraction for many variables,

such as past medical history variables. The implementation of such a system within an

electronic health record environment, where data may be available within near real-time

capacity, requires additional investigation of natural language processing techniques, models

that handle advanced time-series data, and appropriate evaluation of user interface design
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for reducing clinician burden when interacting with such a model.

The second is the timing of the available variables. The registry abstracts some vari-

ables as pre- and intra- procedure, so some confounding may exist from reactions to bleeds

during the procedure. This nature of the variables could prevent accounting for some intra-

procedural variables, such as if there was initially acute closure after PCI requiring additional

steps in the procedure.

8.5 Conclusion

By evaluating risk at different stages of patient care, we present a model that pro-

vides up-to-date and dynamic bleeding risk estimates. These advanced methods demon-

strate evolution in variable importance as clinical decisions are made through course of PCI.

These models hold significant potential to provide updating information that informs clinical

decision-making that can mitigate bleeding risk.
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9. OUTCOMES-DRIVEN CLINICAL PHENOTYPING IN CARDIOGENIC SHOCK

USING A MIXTURE OF EXPERTS∗

Returning to the cohort discussed in Chapters 6 and 7, we now look at developing a

method beyond propensity matching for cohort analysis. As discussed, a key limitation of

propensity matching is that while care is taken to group by similarity, at a fundamental

level, the propensity score is a scalar used for matching. Here, we apply the deep mixture

of experts approach in order to jointly learn phenotypes and predict outcomes.

9.1 Introduction

Cardiogenic shock (CS) is a life threatening condition where the heart is unable to suf-

ficiently supply blood. Despite being an active area of research, in-hospital and 30-day

mortality from CS remains near 40% [212, 213]. Assisting the heart with a mechanical

circulatory support (MCS) device such as an intra-aortic balloon pump (IABP) or an in-

travascular microaxial left ventricular assist device (Impella®) is a common strategy to treat

CS. However, evidence proving the treatment effect of MCS devices is lacking [212]. Several

RCTs have attempted to assess the treatment effectiveness of these devices, but have failed

to show difference in mortality outcomes [177]. Despite this lack of evidence, device usage

remains high [214].

Given the difficult nature of performing randomized prospective studies with MCS de-

vices, observational studies are an attractive approach for hypothesis generating studies. A

recent retrospective study performed propensity score matching and found that Impella®

use was associated with a higher risk of in-hospital death in comparison to IABP [153].

However, the study could have been influenced by unmeasured confounders, a drawback of

propensity score matching. While propensity matching on a full population may provide

some insights, unidentified clinical phenotypes, representing homogeneous subpopulations
∗This chapter is reprinted with permission from SUBMISSION PENDING
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within the heterogeneous cohort, may actually have an opposite relationship with the out-

come [215]. Identifying these phenotypes could help explain treatment effectiveness while

appropriately accounting for risk.

A technique is needed that jointly learns phenotypes while also learning patient risk of

death. Prior selection of features by clinicians may yield interesting results, but are likely

to identify phenotypes that match current clinical understanding, limiting discovery of novel

phenotypes. Using a supervised learning technique to model risk, then looking at treat-

ment effectiveness heterogeneity has numerous causal inference implications and challenges

[216, 217]. We propose here a two stage model that jointly learns phenotypes and verifies

risk stratification through accurate risk models. We propose this model as a deep mixture

of experts (MoE) approach [218, 219] to jointly address both risk modeling and clinical

phenotyping in observational clinical data. We apply the technique designed by [219] for

human activity recognition to the principles of CS using data from [153] and find that we

appropriately quantify risk as well as phenotype jointly. We are better able to explore the

impact of the use of Impella® and IABP with patients who are better matches than those

that do not consider learning risk factors for major adverse events.

9.2 Related Work

Identification of heterogeneity in disease can allow for improved understanding of disease

processes and in treatment approaches. Unsupervised and semi-supervised clinical pheno-

typing approaches are valuable techniques given the vast amount of electronic health data

produced and the sparsity of known phenotype labels. Classical unsupervised techniques are

one approach for finding clinical phenotypes [220]. Deep learning techniques have expanded

the scope of data-driven strategies in clinical phenotyping. Reference [53] used sparse autoen-

coders followed by t-distributed stochastic neighbor embedding to identify subpopulations in

patients with a shared laboratory finding to distinguish very different pathologies. Reference

[221] used uniform manifold approximation and projection (UMAP) to extract clusters from

patients presenting to an emergency room with given clinical complaints.
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Figure 9.1: Deep MoE model for clustering and predicting clinical outcomes.

Deep learning has also been utilized in causal effect inference [222, 223]. One approach

has been to perform causal inference using variational autoencoders and inferring causal

structure within the latent space of those encoders [222]. Another approach has been to

estimate treatment effect using local similarities within a latent space representation [223].

9.3 Methods

The objective of this work is two-fold: 1) A supervised learning problem where clinical

outcomes are predicted from patient features; 2) An unsupervised learning problem of finding

phenotypes among the patient population. We assume that treatment decisions are based

on presenting characteristics and that outcomes are based on presenting characteristics and

treatments. While no direct causal inference is made here, this work lays the groundwork

for future causal inference. The objectives are learned from information in three tiers: initial

data, data following treatment, and outcomes.

The three tiers of information result in a staged model design. In the first stage, initial in-

formation is fed into a fully connected neural network, the α-network, with two outputs. The

first output feeds into the second stage, while the second output gives a softmax distribution
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of probabilities that the patient belongs to any of n clusters, where n is a searchable hyper-

parameter denoting the number of experts in the model. In the second stage, information

from the point of treatment onward is concatenated with the output from the first stage and

fed into n fully connected neural networks, the β-networks. Each of these networks estimate

the likelihood of outcome occurrence which is then weighted by the probability distribution

given by the α-network. What follows is our modification to the αβ-network first introduced

by Huo et al. for clinical data and objectives, trained as in their work [219]. An illustration

of the model is shown in Figure 9.1. Models were implemented in Tensorflow 2.3.2.

There are five different configurations of the overall model: three of different overall size,

and two with variant connections between the α-network and the β-network. In the largest

network, the α-network and each β-network are composed of 3 fully connected layers with

50 nodes, the mid-sized network features 2 fully connected layers with 24 nodes, and the

smallest network features 2 fully connected layers with 24 nodes in the α-network, and 1

fully connected layer with 24 nodes in each β-network. Those with variant connections are

broadly constructed in nearly the same way as the largest network. However, in one variant,

there is no connection from the α-network’s fully connected layers into the β-networks’ fully

connected layers- the only connection is via the gating function of the α-network. In the

other variant, the α-network is concatenated with the second fully connected layer of the

β-network rather than the first.

Rather than being used exclusively as a monolithic model, this model is intended to

function in two modalities. In the simplest case, this model performs well in the supervised

learning task. In the second modality, after being trained on data incorporating all tiers of

information, the model can be assign clusters learned during the training from the α-network.

This cluster assignment, although learned with gradients incorporating information from

outcomes and treatment decisions, only requires information from the earliest tier. By this

means, the model can be trained on one set while producing cluster assignments based only

on factors present prior to treatment.
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Table 9.1: Clinical dataset mortality AUROC values for all models with L2 regularization =
0.01.

Baseline 2 Experts 4 Experts 5 Experts 6 Experts 8 Experts 10 Experts

XGBoost 0.880 ± 0.006
Logistic Regression 0.839 ± 0.004
Small Model 0.843 ± 0.011 0.851 ± 0.006 0.848 ± 0.009 0.851 ± 0.004 0.849 ± 0.008 0.848 ± 0.005
Mid-Sized Model 0.841 ± 0.013 0.846 ± 0.011 0.842 ± 0.003 0.843 ± 0.007 0.841 ± 0.008 0.840 ± 0.011
Large Model 0.763 ± 0.098 0.822 ± 0.012 0.814 ± 0.009 0.812 ± 0.006 0.810 ± 0.013 0.818 ± 0.017
Later Hidden Connection 0.626 ± 0.132 0.559 ± 0.108 0.688 ± 0.134 0.701 ± 0.107 0.756 ± 0.097 0.645 ± 0.115
No Hidden Connection 0.618 ± 0.115 0.755 ± 0.040 0.722 ± 0.054 0.777 ± 0.007 0.712 ± 0.071 0.729 ± 0.079

9.3.1 Number of Experts

Much work has been done on very large deep MoEs with huge numbers of experts [218].

Here we limit the number of experts to be searched to 10, aiming to constrain patient

populations to at most 10 clusters. This limit was chosen in order to maximize the clinical

interpretability of any discovered clusters, but also protects this model from the shrinking

batch problem. The objective of this work is not only to generate experts, but to harness

them in a way that their utilization and gating can be of use in the clinic.

9.3.2 Baseline Models

For baseline outcome predictions, logistic regression and XGBoost were used. Logistic

regression represents a versatile linear classifier (with L2 regularization), while XGBoost is

a powerful nonlinear classifier (with hyperparameters: 0.3 learning rate, maximum depth of

each tree 6, and number of trees 100).

9.3.3 Metrics

For the supervised task, area under the receiver operating characteristic curve (AUROC)

is reported. Similarity of different partitionings into clusters is assessed with the adjusted

Rand index (ARI). ARI is used as a way to assess clustering stability between different model

folds, where zero indicates that any similarity in the paritionings is likely due to chance and

one indicates similar clustering.
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Figure 9.2: Mean pairwise ARI given n experts and various L2 penalties in the clinical
dataset. Confidence bars express 95% CI.

9.4 Experiment and Results

The clinical dataset used in this project is derived from two linked American College

of Cardiology registry datasets from the National Cardiovascular Data Registry (NCDR)

[154]: the Chest Pain-MI registry and the CathPCI registry. These registries include well-

curated, independently audited data on patient characteristics, clinical features, and in-

hospital outcomes for all patients admitted for an acute myocardial infarction (AMI) in the

Chest Pain-MI registry or undergoing percutaneous coronary intervention (PCI) in the Cath-

PCI registry from over 1500 participating clinical institutions, with extremely low rates of

missing data or outliers due to noise [129]. This study was reviewed and approved by the

human investigation committee (TAMU IRB # 2018-0856).

The clinical cohort as first described by [153] included linking episodes of care through the

two registries with a probabilistic linkage technique, resulting in 28,304 CS patients. Twelve
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presentation features were selected for clustering and 15 additional features were selected

for mortality prediction [153]. Five-fold cross validation was used for every experiment.

When training neural networks, 20% of the available training data was used as an internal

validation split for hyperparameter tuning. All results reported here reflect the mean ± 95%

confidence interval over the cross validated results.

The final complete model produces an estimation of the outcome occurring. This estimate

is informed by decisions made at treatment time and information learned after treatment,

and so should not be used for describing patient phenotypes. However, the multilayered

setup of the model allows for similarity groupings made entirely prior to treatment choices.

While the model is learned with the insight provided by the later information, it is applicable

to patients prior to that point. This allows for similar groups of patients to be found prior

to treatment, allowing for group characterization. This is similar to the overall goal of

techniques such as propensity matching, but allows for extension of the classification method

to subjects lacking treatment and outcome information. Future extensions of this work could

be to analyze patient clusters and to produce improved treatment effect estimations for the

subpopulations of those clusters, rather than on the population as a whole.

Each model was trained on the clinical dataset with initial and treatment variables as

described above. The outcome prediction AUROCs for all models is shown in Table 9.1.

The small and mid-sized models each have performance comparable to one of the baselines,

while the others show less discrimination. However, the focus of this work is not primarily

to predict outcomes, but to use that prediction in classification.

Figure 9.2 shows a plot of pairwise ARI values among each fold of the small model.

Following each cross validation fold, the entire dataset was classified using the α-network.

(A single monolithic cluster is undesirable; this value was set to 0 for any pairings involving

a singular clustering.) Despite the lack of a ground truth label, the best-performing model

shows a significantly higher level of inter-fold cluster stability.

In all folds of this highest-scoring model, there was one large cluster, smaller clusters, and
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Table 9.2: Clinical cluster characteristics. STEMI = ST Elevation Myocardial Infarction.
MD = Multivessel Disease

C0 C1 C2 C3 C4

Number 21,728 2,809 2,053 1,639 75
Age (SD) 68.2 (11.8) 54.9 (9.4) 56.1 (7.5) 52.3 (9.5) 46.0 (7.5)
Male 61.14% 92.49% 81.39% 81.82% 97.33%
Smoker 31.06% 48.74% 55.14% 52.47% 44.00%
STEMI 81.45% 80.99% 71.02% 55.09% 97.33%
MD 56.83% 71.09% 19.48% 48.81% 18.67%
Urgent PCI 11.03% 11.82% 19.82% 30.69% 0.00%
Emergent PCI 78.78% 82.48% 75.35% 64.37% 93.33%
Mortality 30.33% 14.63% 7.45% 7.26% 10.67%
Only IABP 30.3% 35.2% 22.7% 25.1% 22.7%
Only Impella® 6.5% 7.7% 3.4% 4.3% 1.3%
No MCS Device 56.7% 49.1% 68.4% 65.3% 75.3%

Table 9.3: Per-cluster mortality rate. Gray values reflect those groups for which there is
not a significant difference between that group and the corresponding group in the total
population.

Entire Group Only IABP Only Impella® None

C0 30.3 (29.7-30.9) 33.9 (32.7-35.0) 49.8 (47.1-52.4) 24.3 (23.5-25.0)
C1 14.6 (13.3-16.0) 14.5 (12.3-16.8) 29.6 (23.6-36.2) 8.6 (7.2-10.2)
C2 7.5 (6.4-8.7) 10.5 (7.9-13.7) 25.7 (16.0-37.6) 4.2 (3.2-5.4)
C3 7.3 (6.1-8.6) 7.8 (5.4-10.8) 22.9 (13.7-34.4) 5.0 (3.7-6.4)
C4 10.7 (4.7-19.9) 11.8 (1.5-36.4) 0.0 (0.0-97.5) 9.1 (3.0-20.0)
All 25.7 (25.2-26.2) 29.0 (28.1-30.0) 45.2 (42.9-47.6) 19.9 (19.3-20.5)

one empty or nearly empty cluster. Cluster features are shown in Table 9.2. Patients in the

largest cluster are generally older, more likely to be female, and have a higher mortality rate

than the other clusters. Patients in the next cluster were younger, more likely to be male,

and had lower mortality rates despite having increased MCS device utilization. Patients in

the next two clusters were of similar age, gender, and mortality. However, those in cluster

2 were differentiated by much higher rates of emergent PCI featuring much lower rates of

multivessel disease. The last cluster was very small. Patients in Cluster 1 were at higher risk
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of receiving IABP in comparison to the overall population, and patients in Cluster 2 were

at lower risk of receiving IABP. Patients in Cluster 1 were more likely to receive any type

of MCS device, while patients in Clusters 2, 3, and 4 were less likely to receive any type of

MCS device.

Mortality rates in each clinical cluster and by MCS device are shown in Table 9.3. This

table is shown with 95% confidence intervals as calculated by the Clopper-Pearson method.

Among given MCS utilizations, patients in cluster 0 have significantly higher mortality than

patients with the same MCS utilization in clusters 1, 2, or 3. In every cluster except cluster

4 the mortality rate among patients receiving only Impella® was higher than the mortality

rate among patients receiving only IABP, and patients with IABP had a significantly higher

mortality rate than patients without an MCS device.

9.5 Limitations and Future Directions

This work features several aspects that will be expanded in future work. The regular-

ization term here is pivotal to the model’s function. One approach would be to extend this

with an additional L1 penalty. Another uses a Bayesian model, reformulating the α-network

to output a probabilistic distribution of experts. The clustering here loses some nuance of

the α-network gating. The gating is a soft gating, with each β-network output being multi-

plied by its share of the α-network’s softmax activation, but the analysis here classifies each

subject into a single cluster (via argmax).

9.6 Conclusion

CS is a life-threatening condition with an extremely high mortality rate. Given this high

loss of life, it is desirable to understand the heterogeneities of patients with CS. Given the

difficulty in collecting randomized data, development of techniques applied to retrospective

data is necessary. A technique is needed that jointly learns phenotypes while also learning

patient risk. We apply a deep MoE here to find phenotypes among patients with CS. We

predict mortality with an AUROC of 0.85 ± 0.01, finding five interpretable clusters. The
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largest cluster is generally older, sicker, and at higher risk of mortality. The smaller clusters

are younger and at lower risk of mortality. Patients receiving only Impella® had a signif-

icantly higher rate of mortality than did patients receiving only IABP, and in three of the

clusters patients receiving only IABP had a significantly higher rate of mortality than did pa-

tients receiving no MCS device. This method is suitable for jointly performing observational

comparative effectiveness and risk modeling.
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10. LATENT SPACE ANALYSIS OF SEMI-SUPERVISED LEARNING WITH A DEEP

MIXTURE OF EXPERTS

Developing on from the prior chapter, we now turn to a more refined analysis of het-

erogeneity as exposed by the deep mixture of experts model. Here, we look more closely

at the gating provided by the α-network and analyze clustering assignments not as mutu-

ally exclusive phenotypes, but rather as complementary archetypes. We examine the latent

space to better understand the certainty with which the model makes predictions and assigns

groupings.

10.1 Introduction

The practice of medicine consists of diagnosis, prognosis, and treatment [224]. Diagnosis

categorizes illness into understood and recognized diseases. Once an underlying disease has

been diagnosed, patient prognosis and appropriate treatment can be decided. However,

diagnosis is only as good as the understanding of the disease. Heterogeneity inherent in

disease processes can limit this understanding [225]. While two patients may appear to have

the same disease, one might benefit from an intervention while the other might be harmed by

that same intervention. To improve patient care, it is essential to understand this underlying

heterogeneity in diseases.

Phenotyping and archetyping represent two similar methods to understand a heteroge-

neous population and to group it into smaller, more homogeneous subpopulations. Pheno-

typing involves the identification of discrete clusters within the population and assigning

each population member into one of those clusters. Each member belongs to one pheno-

type and exactly one phenotype. As used here, phenotyping is the clinical application of

hard clustering. Archetyping involves the identification of example members throughout the

population that are representative of particular set of characteristics. Each member of the

population can be described as some combination of the archetypes. A particular member
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might more strongly align with one archetype over another, but can share varying degrees of

similarities with all archetypes. As used here, archetyping is the clinical application of soft

clustering.

By identifying archetypes or phenotypes within a heterogeneous population, subpopula-

tions of increasing homogeneity can be found. Within these subpopulations, personalized

prognosis and treatment decisions can be made. By recognizing that a patient belongs to

a particular group, an improved understanding of likely outcomes for that patient may be

reached. With this improved understanding, personalized decisions can be made, leading to

improved outcomes.

While the method described previously (Chapter 9) was able to find phenotypes within

a population, that method can be improved. No subject is inherently classified as belonging

to a single cluster- but the classifier assigns subjects to whichever phenotype is the most

probably. This decision could be made even if a subject’s cluster likelihoods were nearly

evenly split. How appropriate is it, then, to group that subject with another subject who is

purely in that cluster? This inspection reveals the weakness of phenotyping and suggests a

need to proceed to archetyping.

Further developing on the earlier work, this work develops an approach for finding more

nuanced archetypes within the deep mixture of experts (MoE) model. We inspect the latent

space of the α-network and discover that the certainties with which it assigns β-networks

can be harnessed for both a more confident prediction of clinical outcome and a deeper

understanding of patient archetypes.

10.2 Related Work

10.2.1 Clinical Phenotyping

Clinical identification of a disease is the first step in treating that disease. However,

diseases vary and their heterogeneity can greatly complicate the process of diagnosing and

treating them [226]. Successfully finding and identifying that heterogeneity can allow for
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drastically improved understanding and targeted treatment [225]. Unsupervised and semi-

supervised clinical phenotyping approaches are valuable techniques given the vast amount

of electronic health data produced and the sparsity of known phenotype labels. Classical

unsupervised techniques have been widely studied for finding clinical phenotypes [220].

More recently, deep learning techniques have expanded the scope of data-driven strate-

gies in clinical phenotyping. Beaulieu-Jones et al. [227] used a semi-supervised technique

combining a denoising autoencoder and random forest classifier to discover phenotypes of

patients with amyotrophic lateral sclerosis. Several techniques have recently been used for

finding phenotype clusters using risk profiles. Chapfuwa et al. proposed a novel approach

that involved clustering patients in a latent space and differentiated clusters by different

time-to-event risks. Their clustering was performed with a joint learning of cluster assign-

ments and time-to-event predictions. Nagpal et al. [229] used a generative mixture model

for inferring treatment effect differences in patients treated with opioids and whether or not

patients would still be using opioids one year after initial treatment.

10.2.2 Deep Mixture of Experts

The concept of using a deep MoE for supervised learning was first proposed in the early

1990s [230, 231]. In their earliest formulation, these MoEs were each simple feed-forward

networks and the gating function a softmax function over those outputs. More recently, the

concept has attracted a great deal of attention in applications involving large neural networks

for a variety of tasks such as language modeling [218] activity recognition [232, 219], and

image recognition [233].

Shazeer et al. [218] used an extremely wide MoE between stacked long short-term memory

(LSTM) layers for language recognition and described how sparse gating of their model

allowed for decreased overall computational cost. They described several challenges faced in

the training of MoE-based models, namely the problem of batch sizes effectively shrinking

as gating functions are learned and the challenge of balancing expert contributions. The

shrinking batch problem can be addressed by keeping number of experts small, by increasing
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batch size in proportion to number of experts, or by taking advantage of data structure via

convolutionality. In this work, we keep the number of experts small with the primary goal

to improve clinical interpretability, but with the secondary goal of addressing this problem.

Shazeer et al. balanced expert contributions through the use of a loss function penalizing

unequal expert importances.

10.3 Methods

Building off of the model described in Chapter 9, the joint objective remains in the semi-

supervised realm. As a supervised learning problem, the goal is to predict clinical outcomes

in a patient population. As an unsupervised learning problem, the goal has advanced to

discovering and explaining the interaction of archetypes within the patient population. By

coupling these objectives, we formulate a semi-supervised problem where a clustering schema

can be learned as part of the supervised problem, but separated from the supervised case

for the classification of new patients prior to treatment. In this work information is learned

in three tiers: initial data, data following treatment, and outcomes. The initial data contain

information that could be useful for identifying how to treat a patient. Once treatment

has begun, a second tier of additional information is available, but as this information was

influenced by treatment choices, it should not be used for clustering. Finally, after treatment,

outcomes occur. A key assumption in this work is that tiers of information are causally

blocked; features in one layer may have causal effect on later features, but the temporal

setup should not allow later features to have causal effect on earlier features.

10.3.1 Data

The dataset used in this work is the same as that previously described in Section 9.4.

The data was separated at random into 80% for model development and training, and 20%

for validation. The model was trained using a 5-fold internal cross validation set of the

training data, with each fold evaluated independently and used for establishing performance

confidence intervals.
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Figure 10.1: AUROC for mortality prediction given n experts and various L2 penalties.
Confidence bars express 95% CI. Note truncated axis.

10.3.2 Model

The main MoE model remains unchanged from that presented in Chapter 9. The input

to the α-network (first tier of information) is passed through a number of fully connected

layers. The final fully connected layer is passed on to each β-network, and is also fed into

a gating layer with size equal to number of experts. Each β-network concatenates its input

(second tier of information, treatment information and later) to the pass-though output of

the α-network, and then this is fed through several fully connected layers. The final layer of

each expert outputs an outcome prediction. Each of these predictions are weighted by the

α-network’s gating layer and summed for the final model prediction.

A chief difficulty in building and training this model lies in the appropriate choice of

regularization for the α-network probability outputs. In underregularized setups, this model
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Figure 10.2: AUPRC for mortality prediction given n experts and various L2 penalties.
Confidence bars express 95% CI. Note truncated axis. Overall mortality (25.7%) is the lower
bound of a naive model.

collapses to use only a single expert, while in overregularized setups the model uses all experts

evenly, but does not consistently group any subjects together. L2 regularization penalties

were applied to the output of the α-network. These penalties encourage an even utilization

of all experts, allowing the overall model to selectively use specific experts for classification.

This work elaborates and refines over the regularization shown in Figure 9.2. Given that the

0.01 term there was the only performant model, we searched over regularizations closer to

that value and used that search to refine our final results.

The latent space produced by the gating layer is a key point of interest. The softmax

output of that layer scales all outputs collectively to sum to 1. This results in many outputs

being either very close to 0 or very close to 1, but some of subjects have less extreme

weightings assigned to their experts. We observed previously that even though optimal
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Figure 10.3: Mean pairwise ARI given n experts and various L2 penalties in the clinical
dataset. Confidence bars express 95% CI.

Table 10.1: Weight contribution of each cluster. As only three clusters can be visualized at
once, this table aids in assessing impact of truncation.

Cluster 5 Experts, L2 Reg = 0.004 3 Experts, L2 Reg = 0.01

A 77.0% 62.9%
B 12.2% 20.0%
C 8.5% 17.2%
D 2.1% -
E 0.09% -

performance was achieved with 3-5 experts (Figure 9.2), some number of experts contain

very few assignments (Table 9.2). Therefore, for ease of visualization, we display the latent

space of the α-network’s gating layer using a ternary plot and we truncate beyond three

experts. We align the expert assignments so that the expert receiving the greatest overall

weight is always shown in the bottom right of these plots (labeled "A"), the expert receiving

the second most weight is shown to the top (labeled "B"), and the expert receiving the

third most weight is shown to the bottom left (labeled "C"). Points in these plots are

colored based on their predicted label using a simple 50% prediction threshold (True/False
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Figure 10.4: Ternary plot of α-network output with 5 Experts and L2=0.004.

Positive/Negative). To assess the model performance and uncertainty as a function of the

latent space, heatmaps were generated with local AUROCs.

10.4 Results

The mean pairwise adjusted Rand index for each regularization and expert combination is

shown in Figure 10.3. 5 Experts/L2=0.004 and 3 Experts/L2=0.01 were selected for further

analysis. 5 Experts/L2=0.004 was selected for having a high ARI with few experts, while 3

Experts/L2=0.01 was selected for having the highest AUROC performance with few experts

(Figure 10.1), as well as the highest AUPRC performance overall (Figure 10.2).

10.4.1 5 Experts, L2=0.004

A ternary plot of all folds overlaid on each other is shown in Figure 10.4. Two experts

are truncated. However, their combined impact to all predictions is minimal: one expert

supplies a total of 2.1% weight of all experts, while the other supplies less than 0.1% of that

weight (Table 10.1). Cluster A can be seen to be the most weighty cluster, contributing 77%

of all weight.

A representative fold from this model is shown in Figure 10.5. In this figure, true positives
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Figure 10.5: Selected single-fold ternary plot with 5 Experts and L2=0.004. Colors indicate
prediction and correctness assuming a simple 50% threshold.

are found more often near Cluster A, while subjects more distributed throughout the other

clusters exhibit lower overall risk. Local prediction performance is shown in Figures 10.6

and 10.7. Prediction quality can be seen to improve among patients who are more balanced

between clusters.

10.4.2 3 Experts, L2=0.01

A ternary plot of all folds overlaid on each other is shown in Figure 10.8. All experts are

shown. Cluster A is again the most heavily weighted cluster with 63% of assignments, with

Clusters B and C near equal (Table 10.1).

A representative fold from this model is shown in Figure 10.9. In this figure, true positives

are one again found more often near Cluster A, while subjects more distributed throughout

the other clusters exhibit lower overall risk. Local prediction performance is shown in Figures

10.10 and 10.11. Prediction quality can be seen to improve among patients who are more

balanced between clusters.
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Figure 10.6: Local AUROCs of model with 5 Experts and L2=0.004. Cells with insufficient
subjects for scoring are set to 0.5.

10.5 Discussion

In this work, we explore the latent space of a deep MoE classifier to understand how

it can aid in assigning archetypes. Rather than assigning to a single most representative

cluster, this approach allows for a nuanced balancing and understanding of soft clustering.

The outcomes-driven nature of the joint model training does strongly bias patients with

the outcome of interest into one group. This allows for the model to separate patients by

severity, with patients further from the strongest cluster exhibiting lower clinical risk. At

the same time, the overall model performance does well further from this strong cluster

membership. This approach shows that the deep MoE is successful and appropriate for

separating heterogeneity in a clinical population and for separating those patients by disease

severity.
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Figure 10.7: Local AUPRCs of model with 5 Experts and L2=0.004. Cells with insufficient
subjects for scoring are set to 0.

Figure 10.8: Ternary plot of α-network output with 3 Experts and L2=0.01.
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Figure 10.9: Selected single-fold ternary plot with 3 Experts and L2=0.01. Colors indicate
prediction and correctness assuming a simple 50% threshold.

Figure 10.10: Local AUROCs of model with 3 Experts and L2=0.01. Cells with insufficient
subjects for scoring are set to 0.5.
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Figure 10.11: Local AUPRCs of model with 3 Experts and L2=0.01. Cells with insufficient
subjects for scoring are set to 0.
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11. CHALLENGES AND OPPORTUNITIES IN SENSING AND ANALYTICS FOR

RISK FACTORS OF CARDIOVASCULAR DISORDERS∗

We now look beyond the clinic to applying machine learning in remote settings. The

development of remote sensors are outpacing the development of machine learning techniques

to analyze and use the rich data that they produce. With the advent of the Internet of things,

opportunities for remote sensing for healthcare is boundless. This chapter details ways in

which these signals can be harnessed for cardiovascular monitoring.

11.1 Introduction

Cardiovascular diseases are the worldwide leading cause of death [234]. In 2016, cardio-

vascular diseases accounted for nearly 1 in 3 deaths in the United States. While the range of

cardiovascular diseases and treatments can be broad, the Framingham Heart Study teaches

us that a number of the risk factors that lead to primary adverse events or secondary recur-

rent events are often the same or quite similar [235, 236, 237]. Real-time monitoring of these

risk factors (i.e. the signs and symptoms associated with cardiovascular disorders) allows

for care providers to track patient progress and to rapidly respond to any changes in patient

condition. In the hospital, monitoring patients is part of routine clinical practice. Providers

are able to monitor cardiac status and basic vitals from anywhere in the hospital at any

time. Slight deterioration in health can be observed and interventions put into place before

patients suffer worsening harm. However, length of stay in these acute care settings is often

quite short [9, 10], representing only a small portion of a patient’s life despite the prolonged

impact that the decision making in these settings have. Such monitoring is currently defi-

cient in remote settings, where the ability to diagnose new conditions or monitor treatment

effectiveness based upon measured changes in vitals and cardiac status that are known to be
∗This chapter is reprinted with permission from "A Survey of Challenges and Opportunities in Sensing

and Analytics for Risk Factors of Cardiovascular Disorders" by Hurley, N. C., Spatz, E. S., Krumholz, H.
M., Jafari, R., & Mortazavi, B. J., 2020. ACM Health. Copyright 2020 by Nathan C. Hurley. et al.
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risk factors for primary adverse events or secondary recurrent events is important to prevent

future admissions to acute care settings. Monitoring physiologic parameters and symptoms

outside of the hospital in ambulatory and/or remote settings can enable better detection and

response systems before a person becomes acutely ill and requires hospitalization or after

hospitalization to prevent early readmission to the hospital; however, many of the devices

today are targeted to healthy people. With the prevalence and ubiquitous nature of remote

and wearable sensors, opportunities exist to broaden the applications of sensing and for

adapting analytic techniques to enhance diagnosis, monitoring, and treatment of risk factors

for primary and secondary prevention of cardiovascular disease. In particular, the ability

to capture these measurements is only the first step. Indeed, end-to-end smart health sys-

tems are needed that couple the hardware development with advanced analytic techniques

to provide both patient and clinical provider necessary confidence in data and risk prediction

based upon the measured risk factors.

A challenge in monitoring patients with or at risk for cardiovascular disorders is design-

ing the technology and algorithms to support a variety of conditions and signs/symptoms.

While the treatment of cardiovascular disorders such as heart failure [236], coronary artery

disease [238], and stroke [237], may differ (the latter, for example, moving from monitor-

ing a potential cardiovascular disorder to neurological treatment), they share a common set

of cardiovascular risk factors [239, 240, 241]. The selection of these three disorders high-

lights their global disease burden, but certainly the Framingham Heart Study teaches that

the important risk factors that should be monitored are not limited to tracking only these

disorders.

Patients at risk for cardiovascular disorders (or recurrent events due to diagnosed car-

diovascular disorders) present a number of challenges for remote monitoring and diagnosis

because of complexities within the diseases or trajectory leading to the initial diagnosis.

Many of these diseases involve seemingly trivial symptoms that may suddenly change from

a minor inconvenience to a debilitating lack of function. A patient with a given disease
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may feel well for multiple years, and then suddenly decompensate and require emergent

care. Ideally, remote monitoring along with advanced analytics on the captured ambulatory

data should be able to track the slow, daily progression of a disease states and alert the

patient and healthcare providers to worsening disease before decompensation and patient

suffering. However, preliminary studies in remote monitoring have failed at preventing ad-

verse events, such as in preventing repeated hospital admissions in patients diagnosed with

HF. For example, the Telemonitoring in Patients with Heart Failure trial (Tele-HF) used pa-

tient self-reports of daily changes in symptoms, weight, and a variety of other factors (e.g.,

medication changes, depression scores, etc.) to identify worsening symptoms in an effort to

intervene prior to another acute event, but did not find a statistically significant difference

between control and intervention arms [242]. However, an analysis of participant subgroups

did find that patient self-reported data could improve prediction of readmission likelihood,

showing potential for more advanced analytic techniques to better identify participant risk

and to improve estimates in this space [243]. The BEAT-HF trial was designed as a fur-

ther exploration in automating the capture of the relevant biometric signals, including heart

rate, blood pressure, and weight, using remote sensors rather than participant self-report

of such data. This study, however, was similarly unable to find a statistically significant

difference in control and intervention arms [244], suggesting that further exploration of ad-

ditional biomedical signals are needed and that the advancements in improved remote and

ambulatory monitoring of these key risk factors, alone, is not sufficient to address clinical

need. Instead, improved remote and ambulatory sensing likely needs to be coupled with

advancements analytic techniques needed to process and interpret data generated by these

sensors.

Remote sensing technologies have increased in prevalence and have made personalized

health data collection feasible. In human activity recognition (HAR), wearable sensors and

inertial measurement units embedded within smartphones and smartwatches have enabled

the tracking of detailed motions [245, 246]. Coupled with nearable sensors that capture mo-
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tion via video, these sensing systems allow for the tracking of motions of healthy participants

[247] to tracking of disease state with custom-built sensors, such as smartshoes [248]. The

data provided by these wearable and remote sensors has more recently enabled advanced ma-

chine learning techniques to identify more complex patterns of motions, better understanding

personalized behavior [249, 250]. Eventually, these techniques have emerged to personalize

models of activity recognition to individual users, and this personalized modeling provides

the most robust interpretation of activities of daily living per user [251], enabling feedback

and the measurement of clinical outcomes [252]. This progression from the development

of new sensing modalities to the analytic techniques that detect patterns within the data

and finally to personalization in tracking and disease progression modeling is an end-to-

end pathway that is required for advanced clinical disorders monitoring for smart health

technologies.

The development of new sensors to measure risk factors (e.g. symptoms) of cardiovascular

disorders would ideally enable a similar progression for tracking of cardiovascular outcomes.

These new sensors would be able to identify conditions that may not be apparent to patients

or providers, such as different sounds from the heart, slowly decreasing patterns of activity,

or combination of vitals that may appear normal in isolation but may be indicative of risk

given a combination of values and certain patient contexts. By identifying dangerous signs

before symptoms manifest, earlier interventions can lead to improved health outcomes. A

variety of technologies and machine learning techniques to this purpose exist in condition-

specific settings [253, 254] to varied success [125, 255, 256]. Understanding the pathologies

of the disorders is important in understanding the clinical needs and opportunities that exist

in developing new wearable and remote sensors for diagnosis and treatment of a variety of

cardiovascular conditions and using advanced analytic techniques that are enabled from the

collection of new, comprehensive patient ambulatory risk factor data.

In this survey, we break down the needs and opportunities in monitoring risk factors for

the prevention of primary or secondary recurrent adverse events of select cardiovascular dis-
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orders into key technological areas that couple remote sensing with analytic developments:

1) we discuss different sensing modalities that have been or that could be applied to tracking

cardiac health in remote settings; 2) we consider the opportunities that advanced analytic

strategies present with the acquisition of remote sensing data for continuous risk modeling;

and 3) we discuss the needs and opportunities for advancements in clinical models using

machine learning techniques, including advancements in longitudinal monitoring and inter-

pretability made possible through newer deep learning techniques. As cardiac pathologies

manifest, they can also be indirectly observed through physical changes in the body, po-

tentially measured by sensors on or around the body. These changes can be utilized to

track patient health, to plan interventions to maximize patient wellness, and to decrease

the overall impacts of the disease. One of the oldest technologies used for assessing cardiac

health is the stethoscope. In the digital era, the electronic stethoscope is a varied group

of technologies that incorporate a microphone in order to automate acoustic diagnose and

facilitate remote monitoring [257]. Other technologies, such as photoplethysmography and

sphygmomanometry, allow for remote measurement of the characteristics of a heart beat

including heart rate and blood pressure [258]. Doppler radar can detect vital signs such

as respiratory rate and heart rate [259]. Electrical techniques such as electrocardiography

(ECG) or other conduction studies such as Bio-impedance can give insights into the internal

physiology of the heart [260].

Sensing systems provide for opportunities to proactively detect and alert patients and

physicians to worsening health states. However, to allow for timely and effective interventions

as well as to rapidly evaluate the impact of those interventions, development of advanced

signal processing and machine learning techniques need to keep pace with the development of

raw sensor modalities. This paper presents a survey of state-of-the-art sensing technologies

and analytics with respect to monitoring key risk factors for cardiovascular disorders, in

order to highlight successes and provide areas for additional growth. Two key ways in which

analytics associated with sensing systems can provide support are to develop personalized
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models for longitudinal tracking of the risk factor measurements and to develop clinical risk

prediction models that monitor disease state trajectories for identifying the onset of a new

disease and to track the progression of preexisting disease to avoid recurrent adverse events.

Tracking the progression of existing disease is the easier task: once an underlying disease

state is known, appropriate monitoring can be put into place and utilized to follow the

progression of the disease. Monitoring for the start of new disease is more difficult, as the

focus is more general. In either case, sensing and clinical characteristics must be combined

for decision support with the aid of machine learning approaches. In this paper, we survey

the current state of the art in patient monitoring and analytics for patient risk and care,

highlighting needs and opportunities for advancements in the field of smart health with

respect to monitoring signs, symptoms, and treatments in patients at risk for diagnosis and

adverse events with respect to cardiovascular disorders. We highlight the need to view this

technical challenge as an end-to-end smart health solution, requiring both advancements in

sensing systems and advancements in analytic techniques to properly analyze and interpret

data generated from these systems. The workflow described in this paper towards developing

new tools for remote clinical decision support is shown in Figure 11.1.

The rest of this work is organized as follows. Section 11.2 introduces the cardiovascular

disorders, their common risk factors, and needs in remote and ambulatory monitoring for

these conditions. This section provides a focus for the clinical tasks and describes how the

particular case studies generalize to common risk factors and outcomes. Then the paper pro-

vides a description of the current state of technologies, remaining needs (technical gaps), and

opportunities for technological advancements in end-to-end smart health systems designed

for addressing the clinical needs by discussing sensing (Section 11.3), analytics on the sensing

systems (Section 11.4), and clinical analytic models on the data generated for patient and

provider use (Section 11.5). Finally, Section 11.6 provides a discussion and conclusion.
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Figure 11.1: Overview of a workflow to developing personalized, remote clinical decision
support tools for patients to monitor risk factors of cardiovascular disorders. Needs are shown
in three categories: needs in sensor development and data handling, needs in continuous data
collection and analysis, and needs in developing comprehensive and personalized analytical
models. Addressing these three categories will allow for improved personalized remote clinical
decision support for patients and the design of end-to-end smart health systems for clinical
modeling.
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11.2 Case Studies and Needs

This work considers risk factors associated with primary adverse events and secondary

recurrent adverse events associated with the diagnosis and treatment of cardiovascular dis-

orders. A number of the chronic conditions listed may have disparate treatment patterns,

however, the underlying risk factors that lead to the initial events have significant overlap.

To highlight this, we consider several conditions, namely, heart failure (HF), coronary artery

disease (CAD) and acute myocardial infarction (AMI), and stroke. In particular, we include

stroke as a condition given the primary risk factors are cardiovascular in nature, even if

treatment afterwards may tend to be covered by neurologists. In this section we provide a

brief overview of the conditions, their measurable factors, and provide definitions and ab-

breviations used throughout the manuscript. Table 11.1 provides a list of the key terms and

definitions for this section.

HF is typically a chronic condition where the heart is unable to drive blood forward

through the body sufficiently or can only do so under damagingly high pressures. HF is a

debilitating disease that causes significant global disease burden. In 2016, HF was the most

rapidly growing cardiovascular condition in the world [261]. CAD occurs when blood flow

through the coronary arteries, the small arteries that provide blood to the heart, becomes

impeded. This occurs both gradually as plaque builds up within the coronary arteries and

suddenly when a plaque ruptures and clots. The former causes chest pain and exercise

intolerance, while the latter, commonly known as an MI, can cause severe pain, loss of

consciousness, and death. Each year around 800,000 Americans suffer an AMI, and rapid

care following an AMI is a chief predictor for minimizing long term morbidity and mortality

[262, 263, 264]. Stroke is any disease impacting the blood vessels to the brain. In particular,

acute stroke is a condition that occurs when either a blood vessel in the brain ruptures, or

when one of those blood vessels becomes blocked. Stroke manifests with the sudden onset

of neurological deficits, some of which may be irreversible. Stroke is the fifth leading cause

of death in the United States and is a leading cause of long-term disability [234].
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This work considers three primary cardiovascular disorders for the review of gaps and

opportunities, though by no means encompasses the entirety of technologies available for

monitoring and treating these conditions nor the entirety of conditions to which these tech-

nologies could be applied. Instead, these conditions serve as meaningful examples in which

technical solutions that monitor and model the known clinical risk factors would be clinically

impactful, and demonstrate the similarity in key risk factors despite the potentially divergent

care required after the diagnosis of each condition.

11.2.1 Clinical Conditions

HF occurs when one or both halves of the heart are unable to drive blood flow forward

at the rate required by the body or can only do so under high pressures. This discussion of

pathology will focus primarily on left-sided HF rather than right-sided HF, but the two are

often closely associated and technologies for monitoring the two will have a large amount of

overlap. The two will also often coexist. HF can result from ineffective heart contractions,

from high pressure limiting the effect of heart contractions, or from difficulty in filling the

heart. The first two causes lead to HF with reduced ejection fraction (HFrEF), and the

last leads to HF with preserved ejection fraction (HFpEF). Ineffective heart contractions can

result from muscle damage caused by CAD, by chronic volume overload as seen in mitral

regurgitation (MR) or aortic regurgitation (AR), or by a family of cardiac muscle disorders

known as cardiomyopathies. High pressure can lead to HF either from aortic stenosis (AS)

or from uncontrolled hypertension. In either case, the pressure that the heart works against

is so high that the pumping becomes ineffective. Difficulty in filling the heart can be caused

by ventricular hypertrophy, cardiomyopathy, fibrosis, disease around the outside of the heart

(the pericardium), or by CAD.

Coronary artery disease (CAD) is a family of diseases where blood flow through the small

arteries of the heart, the coronary arteries, is restricted. This restriction can be caused by

deposits of fatty plaques within the arteries, or by clotting caused by the rupture of one

of these plaques. Depending on the extent of the blood flow restriction and the current
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oxygen demands of the heart, CAD may cause different symptoms. CAD is represented by

a spectrum of conditions that are defined by specific clinical and physiological signs.

Stroke occurs when blood supply in and around the brain is acutely disrupted, and results

in acute neurologic defects. Ischemic stroke is a type of stroke where a blockage in cerebral

arteries rapidly blocks off blood flow, leading to cell death. Hemorrhagic stroke is a type of

stroke where a blood vessel in the brain ruptures, rapidly raising pressure inside the skull and

causing cell death. Transient ischemic attacks (TIAs) are similar in cause and presentation

to strokes but resolve spontaneously. They are often an indicator of underlying disease and

put the patient at increased risk for future TIA or stroke. The neurological pathology goes

beyond the scope of this work, but there are several notable cardiovascular impairments that

may cause a stroke.

A common key risk factor to all the conditions above is hypertension (HTN). HTN is a

condition where a patient’s blood pressure is persistently elevated and is often a condition

that serves as a modifiable precursor to each of the three cardiovascular disorders discussed

[265]. HTN is divided by cause into two categories: primary (or essential) HTN, which has

no particular medical cause, and secondary HTN, which is caused by some other medical

condition. Primary HTN accounts for roughly 90% of all HTN, while secondary HTN ac-

counts for the remaining 10%. Causes of secondary HTN include renal disease and endocrine

diseases that disrupt the body’s natural control of blood pressure [266]. Essential HTN is a

diagnosis of exclusion and requires ruling out the possibility of any secondary causes. Risk

factors for essential HTN include both hereditary and environmental factors [267]. There is

a strong association between HTN, obesity, and insulin resistance. HTN is associated with

poor diet, excessive alcohol intake, and age. By measuring blood pressure and identifying pa-

tients with HTN, we can consider HTN as both a disease state, and potential progression to

the other conditions listed in this work, while also similarly considering it a measurable risk

factor for those conditions. Because an HTN diagnosis is a modifiable risk factor prevalent

in numerous cardiovascular disorders, we highlight it here specifically as a clinical condition
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in its own right, but consider the measurement of blood pressure as a key sensing parameter

for the rest of this work for both diagnosing HTN and for using blood pressure directly as a

risk factor for the other cardiovascular conditions.

Figure 11.2: Progress from individual building blocks provided by new sensing opportunities
to joint, multi-modal analytics, to combined end-to-end modeling for clinical use (y axis)
and how they generally relate to each of the three conditions (x axis).

11.2.2 Needs for Monitoring Signs and Symptoms for Cardiovascular Disorders

Figure 11.2 illustrates the three primary needs this survey will discuss: 1) need for sens-

ing technologies that track longitudinal trends of the measures important in identifying risk

of cardiovascular disorder despite infrequent, noisy, or missing data measurements; 2) need

for new analytic techniques designed in a longitudinal, continual fashion to aid in the devel-

opment of new risk prediction techniques and in tracking disease progression; and 3) need

for personalized and interpretable machine learning techniques, allowing for advancements

in clinical decision making. A number of varied signs and symptoms exist for HF, CAD, and

stroke. The remainder of this section briefly introduces some common signs and symptoms.

Here, a symptom is a change caused by disease that is noticed by and likely an irritant to
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the patient, while a sign is a change that the patient may not notice or that may not be

concerning to the patient.

In HF, the symptoms result both from insufficient blood flow and from excess fluid

buildup. The three main symptoms that are associated with diagnosis of HF and quantifica-

tion of its severity are dyspnea (shortness of breath) on exertion; sudden, choking dyspnea

at night; and difficulty breathing while lying down. In left-sided HF pulmonary vein pres-

sure increases, causing buildup of fluid in the lungs (pulmonary edema) that worsens while

lying down. In right-sided HF systemic venous congestion results in fluid buildup in the

periphery (peripheral edema) that worsens while upright, resulting in noticeable swelling

in the wrists and ankles. HF is difficult to precisely define as it is a clinical syndrome re-

sulting from many different heart conditions, and many variants exist. Therefore, attempts

to understand HF and to monitor its progression must focus on identifying the symptoms

and identifying cardiac dysfunctions. Symptoms that can be measured include peripheral

edema (swelling of ankles, rapid weight gain), decreased activity, and changes in respiratory

patterns when lying down versus remaining upright. Changes in blood flow to the kidneys

result in decreased urine production during the day, and increased urine production at night.

Patients with HF will therefore often get up frequently in the night. These patients will also

likely change posture in the night, with patients with advanced HF needing to sleep up-

right. One of the most used classification schemes for HF is the New York Heart Association

(NYHA) Functional Classification [268]. In this classification scheme, classes are separated

based on the physical activity that the patient is able to achieve and the discomfort that

results from physical activity. Class I is when no symptoms are present, and in Class IV

the patient is unable to perform any physical activity without discomfort and symptoms of

heart failure are never alleviated. As can be seen, a variety of sensing modalities could be

employed to track signs and symptoms of HF, from measurements of peripheral blood flow,

respiration rate, exercise capacity, and posture while sleeping. This illustrates the need for

new sensors that can measure each of these various symptoms. However, not every sensor
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may be worn at all times, due to excessive burden on the user. Therefore, there is a need

for new sensing modalities that can track different patterns and trends in captured data, as

well as transfer learning techniques that can be adapted to estimate values of sensors that

may be malfunctioning or not worn.

If the right set of sensors are selected and are designed to be worn longitudinally, new

patterns and trends in signs and symptoms might be detected. In CAD, for example, re-

strictions in blood flow of the coronary artery may result in a condition called stable angina

(SA). The rate at which the restrictions in blood flow occur, however, might change as the

disease progresses. At some point, the restriction responsible for SA may rapidly increase,

producing a situation where the patient is in emergent need of medical care. The most

common way for this progression to occur is for a fatty plaque to rupture, leading to the

formation of a clot that blocks blood flow. The first disease after this point is unstable

angina (UA). As the restriction increases to a partial occlusion, the patient will experience

chest pain that worsens without activity or that is not relieved with rest. Both stable and

unstable angina present similarly in a patient. Typically, the patient will have episodes of

chest pain that last from 3-10 minutes, but potentially lasting up to 30 minutes. This pain

may radiate to the jaw, neck, shoulder, or arm. The patient will likely feel short of breath

and may also experience nausea. If the patient takes a medication called nitroglycerine, the

pain should resolve within 1-3 minutes. In UA, damage is still reversible, but intervention

is emergently necessary to ensure that the disease does not progress. If UA progresses, it

will progress to a condition commonly known as a heart attack, or in medical terminology as

a myocardial infarction (MI). There are two types of MI: non-ST-elevation MI (NSTEMI),

and ST-elevation MI (STEMI). In NSTEMI, some muscle in the heart has begun to die, and

therefore at least some of the damage caused is irreversible. In a STEMI, there is a complete

blockage of blood flow at some point and a large amount of muscle in the heart has begun to

die. NSTEMI and STEMI are distinguished by characteristic findings on ECG; in a STEMI,

the ST segment will be elevated above the baseline in some leads, while this elevation is
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absent in NSTEMI. The leads showing this change reflect the area of the heart impacted by

the MI. This demonstrates the second need, longitudinal monitoring of continuous signals

that can identify disease progression, and machine learning techniques that can account for

the personal progression and varied rates of this progression.

In order to prevent conditions such as stroke, which are treated by neurologists after the

primary adverse event, interventions are necessary in known cardiovascular risk factors, such

as HTN, which can lead to stroke in multiple ways. Very high blood pressure raises the

risk of hemorrhagic stroke, as blood vessels in the brain may not be able to support higher

pressures. Additionally, chronic HTN is the main risk factor associated with ischemic stroke.

The diagnosis of HTN requires repeated blood pressure measurements (sustained HTN), as

measured by ambulatory blood pressure measurements. Various reasons for blood pressure

elevation must be identified, including white coat HTN (when the blood pressure is elevated

during a visit to a doctor but normal when measured in home settings), masked HTN (when

blood pressure is regularly elevated but detected as normal during a visit to a doctor),

and evaluation in changes of blood pressure when sleeping versus when awake (nocturnal

nondipping HTN). HTN typically does not manifest with any symptoms, as the body is

very good at masking the feeling of this pressure. Although high blood pressure has been

colloquially associated with stress, headaches, or dizziness, these symptoms are typically

not caused by chronic HTN. The primary sign (and part of the diagnostic criteria) of HTN

is an elevated blood pressure. For diagnosis, at least two measurements on two different

occasions of blood pressure above 120/80 mmHg are required. More recently, guidelines

have suggested measuring blood pressure with an ambulatory blood pressure monitor over

a 24-hour period, measuring blood pressure every 15 minutes during the day and every 30

minutes during sleep at night, and using the average values to have a better understanding

of a patient’s blood pressure [269]. This sustained elevation may result in stiffer arteries,

reducing arterial compliance. Additionally, over time, this chronic elevation may result in

left ventricular hypertrophy seen on ECG or in changes in the retina. Most patients with
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HTN are largely asymptomatic, with the chief clinical sign being that of elevated blood

pressure. When symptoms of HTN do manifest, they are largely caused by organ damage

that results from chronically elevated blood pressures. Chronically elevated blood pressure

can lead to heart damage, as the heart must work harder than normal to produce these

elevated pressures. This can lead to HF as the heart gains mass and loses efficiency, or

to CAD as the increased mass of the heart requires increased myocardial oxygen supply.

Chronically elevated blood pressure can also lead to damage of the arteries. This can lead to

atherosclerosis, where plaque buildups can compromise coronary arteries, leading to CAD or

cerebral arteries, leading to stroke. Weakening of arterial walls can lead to kidney disease or

to retinal disease. Advanced HTN can cause changes to the eye that can be observed visually

by a physician. The definition of high blood pressure has undergone changes in recent years,

with the SPRINT trial indicating that aggressive treatment of blood pressure to <120/<80

mmHg is associated with decreased mortality [270]. The potential measurement of blood

pressure from new sensing modalities can enable analytic techniques to identify cases of

HTN and evaluate the effectiveness of medication on reducing blood pressure, such as in the

SPRINT trial. This illustrates the third need, where machine learning techniques, trained

on continual data captured from new sensing modalities (the prior two needs), must provide

actionable, interpretable estimations of signs, symptoms, and disease progress, in order to

help guide treatment decision making and evaluate treatment effectiveness both prior to a

diagnosis of a cardiovascular disorder and in the treatment and evaluation of recovery from

an adverse cardiovascular event.

Table 11.2 highlights the available commercial devices that currently suited for tracking

a number of the risk factors highlighted for the three cardiovascular disorders. Most devices

use light-based sensing for tracking heart rate, pulse oxygenation, and a few have additional

sensing capabilities. In the following sections, we explore the state-of-the-art in technology

associated with each of the clinical needs, highlighting research advancements beyond the

currently available commercial solutions. This survey reviews the technology available, the
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gaps that remain in addressing the needs, and highlights opportunities for researchers within

the smart health field to design solutions with impact to clinical decision-making problems.

11.3 New Sensors, Trends in Longitudinal Capture, Missing Data, and Sensor

Selection

New sensing techniques that capture acute data as well as detecting changes in sensed

data over time, are needed to measure the important signs and symptoms that are risk

factors for HF, CAD, and stroke. Each condition has a set of similar risk factors as well

as unique signs and symptoms that manifest through a variety of changes in the body. For

HF, improper blood flow can result in fluid retention (edema) in the lungs or the periphery,

as well as causing signs of heart remodeling. Heart remodeling can be evidenced by third

and fourth heart sounds (S3 and S4), as well as by a laterally or inferiorly displaced point of

maximal impulse (PMI) of the heart on physical exam; the place where the heartbeat can

be felt most strongly will migrate down and to the left of the thorax. One way in which

improper blood flow can be detected is that the extremities will be cooler than normal.

In CAD, stable and unstable angina will often result in physical pain felt by the patient

in an episode that may last up to 30 minutes in the chest that may also radiate to the

jaw neck and arm. The patient’s heart rate and blood pressure will initially be elevated,

although these can potentially decrease in NSTEMI and STEMI as the heart fails to operate

optimally. The patient will breathe more quickly and will put more effort into breathing.

Additionally, abnormal sounds may be heard with a stethoscope. It is possible for rales, an

abnormal lung sound, to be heard at the posterior base of each lung. During chest pain,

an ECG will show ST-segment depression, but this will change and progress to ST-segment

elevation in STEMIs.

For stroke, this work focuses on the signs and symptoms that might lead to a stroke.

Atrial fibrillation (AFib) is a relatively common arrhythmia that increases risk of stroke.

AFib results when the atria of the heart beat ineffectively and randomly, causing turbulence

within the atria. This turbulent flow allows for clots to form within the atria. If these

201



clots are dislodged, they may travel through the arteries and become lodged in the brain,

causing an ischemic stroke. AFib is classically defined as an “irregularly irregular” beat- the

beat is not a typical rhythm (irregular) and additionally has no pattern determining when

beats occur (irregularly). This is most often seen as absent P waves on ECG with variably

occurring QRS complexes over a noisy baseline. However, this pattern could be detected by

many techniques that measure pulse. Chief risk factors that predispose patients to AFib are

age, other heart disease, diabetes, and chronic lung disease. HTN can also lead to stroke

in multiple ways. Very high blood pressure raises the risk of hemorrhagic stroke, as blood

vessels in the brain may not be able to support higher pressures. Chronic HTN is the main

risk factor associated with ischemic stroke.

These cardiac conditions present a range of sensing opportunities:

• Acoustic measurement: capture of heart sounds to identify specific classes as well

as respiratory effort are important in understanding acute conditions and changes in

heart function over time. This also includes respiratory distress when lying down,

causing patients diagnosed with HF to need to sleep in a more upright position. (See

Section 11.3.1.1)

• Electrical measurement: Remote ECG measurements can identify periods of atrial

fibrillation and other arrhythmias or help identify progression of CAD during an acute

event. (See Section 11.3.1.2)

• Heart Beat and Associated Characteristics: Understanding cardiac output, as well

as measurement of blood pressure, is an important risk factor that needs periodic

measurement. (See Section 11.3.1.3 and 11.3.1.4)

• Fluid retention/Weight change: HF often results in lung and peripheral edema that

results in swelling and can be measured by cooler temperatures in the periphery and

changes in weight. (See Section 11.3.1.5)

202



• Diet, exercise, and pain: In all cases, patient diet (for identifying glucose intolerance,

obesity, etc.), patient self-reported pain, fatigue, and general physical activity may

be surrogates for worsening conditions. Activity recognition can include posture de-

tection to link with respiratory measurements, and can impact monitoring of glucose

intolerance, which can lead to diabetes. (See Section 11.3.1.6 and 11.3.1.7)

11.3.1 Existing Technologies and Applications

11.3.1.1 Acoustic Sensing/Vitals

Vital sign monitoring has been explored through a variety of technologies. Each sensor

type has been designed to address some of the sensing needs described in the previous section

in an effort to replace or replicate tools available in acute care settings for remote environ-

ments. The stethoscope is one of the oldest such tools in medicine and is an implementation

of acoustic sensing. By hearing and interpreting sounds from the patient, the physician can

develop insights into the health of the patient and the functionality of the organs. Recently,

digital stethoscopes have been utilized to better capture sounds. Digital stethoscopes pro-

vide benefit in allowing soft sounds to be more easily heard, but also allow for recording of

sounds for later manual or computational analysis. As physicians have grown more reliant

on advanced imaging techniques such as ultrasound, physical exam skill, including skill at

auscultation, has decreased [288].

Developing a digital stethoscope involves multiple components requiring heart sound

capture, segmentation of the audio signal, and understanding of the cardiac cycle, best

paired with an external signal such as ECG or pulse to determine the reference interval as

described by Leng et al. [257]. A limitation here is that the time from electrical activity

to sound production is not constant in all samples. Direct segmentation techniques involve

utilizing Shannon energy to calculate an envelope and to find its peaks, and then use those

peaks to reconstruct the cardiac cycle. Following sound segmentation, it is necessary to then

classify these sounds. Leng et al. describe various machine learning techniques to classify

these sounds, including support vector machines (SVM), artificial neural networks (ANN),
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hidden Markov models (HMM), and Gaussian mixture models (GMM), for identifying sounds

and identifying next likely sound given the state in the heart beat cycle currently detected.

Leng et al. report that these techniques have accuracies near 90% for classifying signals

as either normal or as having aortic or mitral valvular lesions [257]. In 2016 a collection

of heart sounds was published [289] and this dataset has served as a standardized way to

benchmark progress in identifying heart sounds. Work in this dataset was summarized by

Clifford et al. in the 2016 PhysioNet Computing in Cardiology Challenge, who reported that

several varied techniques reached high performance [290]. Notably, the top three models had

completely different approaches but similar performances. Those three models consisted of

AdaBoost and a convolutional neural network (CNN), an ensemble of SVMs, or a regularized

neural network. Subsequent work has continued to improve on this task with performance

improving with more sophisticated ensemble algorithms [291].

Work has also been done to develop low-cost devices that can act as a bridge between a

traditional stethoscope and a cell phone [292]. Constructing a cavity with good resonance is

necessary in collecting good quality sound transmissions from the stethoscope. In particular,

Sinharay et al. have evaluated using different kind of sensors to capture sounds to be

transmitted from and to smartphones for analysis.

In addition to detecting abnormal sounds in the cardiac cycle, there has been successful

work in eliciting heart pathology from abnormalities within normal heart sounds. The normal

cardiac cycle is composed of two sounds, S1 and S2. S2 in turn is caused by the superposition

of two separate sounds occurring nearly simultaneously, one from the aortic valve closing and

the other from the pulmonic valve closing. Both happen at nearly the same time, typically

creating a single sound. However, some heart pathologies can impact the time between these.

In a study of pediatric patients, high pressure in the pulmonary vasculature was found to

be predicted by certain aortic and pulmonic valve relative intensities [293]. Although this

work has not been applied to adult patients, it could theoretically help to elicit information

about the pressures at different points within the heart.
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In several cases, radar has been utilized instead of direct, on-body measurement for

detecting vital signs. Radar is able to detect periodic changes caused by both breathing and

the heart, allowing heart rate and respiratory rate to be detected. Vinci et al. described a

remote sensor that uses a six-point radar to monitor respiration and heartbeat [294]. It uses

a continuous 24 GHz wave and a radiated power of less than 3 microwatts. It captures these

values noninvasively in patients at rest. This is notable as it is a sensing modality that does

not require attaching sensors to the human body. This is particularly valuable in infants, in

adults in severe conditions that cannot have additional attachments placed on the body, and

as a modality that improves patient quality of life by limiting on-body sensors. The sensor

designed in this paper does not have the limitations of other radar systems that require

a wide frequency band to achieve more accurate results. Because of the six-point receiver

architecture, this sensor can accurately measure angle and displacement by only measuring

phase difference in backscatter patterns. Models regarding the permittivity of the skin

allow them to estimate that their signal has 1.52 mm penetration as well as estimates of

blanket and clothing impact. As a result, they can estimate where the edge of the torso

is to aid in monitoring breathing. This provides an opportunity to noninvasively measure

respiration and heart rate. However, it requires known, fixed postures of the individuals.

Additionally, it will only work for one patient at a time. While this modality provides

activity, displacement, and vitals monitoring in controlled, clinical environments or within

specific remote environments (such as in the bedroom while asleep), it does not provide

flexibility while moving. There are needs to extend such sensing systems to a variety of

environments.

Work by Li et al. explore the use of radar technology for vital sign monitoring [259].

Their system uses a hardware-controlled clutter cancellation system. This allows their radar

technology to identify the difference between the person being monitored and background

clutter that are likely present in rooms the person would be in. Authors propose taking ka-

band radar systems that are meant for motion sensing and modify them for vitals sensing.
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Authors discuss existing work, design considerations for advancements, then opportunity

to extend this to infant monitoring. The advancements in radar usage have come through

the detection of the right frequency band to use. Different frequencies were shown to be

able to go through different rubble with and without metal mesh. Authors then discuss the

chip-level decisions that need to be made to create CMOS Doppler-based motion detectors.

This allows vital sign detection through obstacles which can be important for noninvasive

monitoring and for detection of vitals in emergency disaster scenarios. The application,

however, is not clear for advanced signal processing of multiple vitals.

11.3.1.2 Electrical Measurements

Remote ECG monitoring has been utilized since the development of the Holter monitor

in 1962 [295]. However, recent advances allow for not only recording of remote ECGs, but for

real-time analysis and for longer periods. One necessary advancement for increased length

of monitoring was the long-term electrode. Traditional wet electrodes are poor choices for

long term monitoring due to their inconvenience [296]. Chi et al. surveyed a number of

advancements in dry-contact and noncontact electrodes that have been developed [296].

Majumder et al. similarly survey numerous developments in dry electrodes that provide

superior remote monitoring performance for long duration ECG monitoring [297].

Remote ECG monitoring has been explored by a number of researchers, primarily to

solve the challenges that arise in noisy measurement. One issue that arises in continuous

ECG monitoring, as with wearable ECG implementations, is that signals are often hidden by

the noise of activity. Li et al. presented an approach for quantifying this noise [298]. While

earlier approaches focused on labeling ECGs as either clean or noisy, the approach presented

by Li introduced five classifications, each with different amounts of information available to

be extracted from the ECG. They defined the noisiest strips as those where artifact obscures

signals to the point that there can be no confidence in any interpretation of the ECG. Strips

with severe noise were those where some interpretation could be made, but interpretations

could be confused as to where the QRS complexes fell or to whether ventricular flutter
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rhythms were present. In strips with moderate noise the QRS complex and presence or

absence of ventricular flutter rhythms could be assessed, but finer signals such as P or T

waves could not be extracted. Minor noise was the label given to strips with some amount of

noise, but where P waves and T waves could be extracted. This level of noise allows for the

analysis of atrial arrhythmias such as atrial flutter. Finally, clean ECGs were those where

no noise was present. The authors produced training data by adding three types of noise to

the original clean dataset: baseline wandering, electrode motion, and muscle artifact. They

trained an SVM to classify strips based on the amount of noise present and validated this

classification scheme on real noisy data. This validation showed good agreement between

manually annotated labels and model output labels, with the greatest confusion present

where samples had been manually annotated as having minor noise, but the model labeled

the samples as having moderate noise. The authors note that a chief limitation of this work

was that the model was not trained for or with an arrhythmia database, which substantially

lowers its effectiveness on samples with arrhythmias. Additionally, they note that methods

based on continuous features rather than discretely extracted features would be likely to

show greater performance.

Once identified, several approaches have been implemented in order to account for and

to correct motion artifacts. Sriram et al. addressed this problem by utilizing a triaxial

accelerometer [299]. ECG signals are usable as a means of continuous biometric security.

However, this continuous security is lost when the ECG signal is distorted with motion arti-

fact. This approach shows that supplementing the raw ECG signal with features extracted

from acceleration allows for accurate classification of ECG subject identity. They segmented

signals to windows containing roughly four heartbeats, averaged those four beats together,

and then corrected for baseline abnormalities with linear interpolation of q-minima and a

high pass filter in association with the accelerometer features. These features then served to

correctly identify users using either a k-nearest neighbors or a Bayesian network classifier.

Several wearable ECG devices have been developed recently. The BioStamp is a wireless
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wearable device that received FDA 510(k) for medical use [300]. The BioStamp provides

ECG signals that are comparable to a traditional ECG [301]. It also includes accelerometers

and gyroscopes, and in a population of 30 healthy adults and was able to provide accurate

measures of heart rate, heart rate variability, respiratory rate, activity, and sleep events [302].

Another FDA approved device incorporating ECG monitoring is the iRhythm ZioXT [303]

This device is applied to a patient as an adhesive patch, and was found to be more sensitive

than a traditional Holter monitor at detecting arrhythmias [304]. This device is able to be

worn for up to 14 days.

Another issue that arises with automatic ECG monitoring is that many abnormalities

might be troubling in one patient while normal in another. Chen et al. [305] described an

approach to train ECG monitoring systems to discover patient-specific abnormalities. This

work utilized an accelerometer to reduce the number of false alarms in monitoring systems.

Over time, this system learns the normal for a given patient and uses a knowledge of this

normal in order to reduce false alarms.

11.3.1.3 Blood Pressure

The American College of Cardiology and the American Heart Association (ACC/AHA)

recently released guidelines that suggest ambulatory blood pressure measurements, those

taken at home in 15 minute intervals including during sleep, should be captured to better

understand a patient’s blood pressure and potential cardiovascular risks associated with HTN

[267]. The sphygmomanometric and oscillometric techniques are well-established as the pre-

dominant means by which blood pressure is typically measured [306]. Both methods involve

the inflation of a pressurized cuff, typically around the patient’s upper arm and maintained

at the level of the heart. The pressure in the cuff is increased to above realistic values of the

systolic blood pressure, and then slowly decreased. In the auditory sphygomomanometric

method, sounds called Korotkoff sounds can be heard just distal to the cuff as it deflates.

The pressure at which these sounds are first heard is the systolic pressure, and the pressure

at which these sounds are no longer heard is the diastolic pressure. In the oscillometric
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technique, minute variations in pressure as the heart beats against the pressurized cuff are

measured and the systolic and diastolic blood pressures are extracted from these variations

[307]. Most at-home blood pressure monitoring devices utilize the oscillometric technique,

which is well-validated to have performance similar in quality to the sphygmomanometric

technique [308]. Recently, cuff-less blood pressure monitoring techniques have been explored

in order to record blood pressure.

The most common cuff-less approach thus far is to use photoplethysmography (PPG)

and ECG to capture pulse arrival time, pulse transit time (and pulse wave velocity), as

surrogates for blood pressure, then use analytic techniques to estimate the systolic and

diastolic blood pressure values [309, 310]. If the posture of an individual is known, these

techniques are able to measure an estimate of the blood pressure, without disturbing the

individual with frequent cuff inflations. However, the ECG and PPG combination can result

in error in blood pressure estimation because it does not appropriately account for artifacts

that exist between the ECG measurement of a pulse and the PPG capture of the pulse arrival

time [311]. In particular, the ECG and PPG combination shortcomings are a direct result

of the pre-ejection period of the heart. The pre-ejection period constitutes a time delay

between the electrical stimulation of the heart and the actual mechanical expulsion of the

blood for each heartbeat [312]. The pre-ejection period can vary under different conditions

and is not easy to measure, leading to an unpredictable error in estimating blood pressure

when using ECG. Vascular tone can additionally complicate this estimation. Vascular tone

can change as patients age or take different medications, and these changes can increase this

error [313]. To account for this, researchers have turned towards dual PPG capture [314, 315]

over a small portion of the artery to account for pulse transit time, which are better able

to locate the artery and avoid capturing blood profusion time into capillaries [316, 317].

Ballistocardiogram approaches look to capture pulse arrival time through the small changes

in pressure sensed by the waves in each pulse, providing a method for capturing cuff-less

blood pressure whenever participants are still [318, 319, 320]. These approaches all look
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to address cuff-less blood pressure when the participant is in a fixed, known position, and

provide the opportunity for more frequent ambulatory blood pressure measurement.

More recently, bio-impedance based approaches have also been developed to measure

blood pressure in a cuff-less manner [321]. The impedance signals allow the sensors to

identify the location of the arteries within the wrist, eliminating errors in blood pressure

estimation that are a direct result of the pre-ejection period or the misplacement of light

sources that may capture both the pulse transit time in the artery and blood profusion

through the capillaries. Estimation of blood pressure characteristics were then made by ex-

tracting characteristic features from the multiple bio-impedance channels. This is enhanced

by adding other heart beat characteristics, including capturing the inter-beat intervals for

heart rate and heart rate variability characteristics [322], as well as respiratory rate [323].

11.3.1.4 Blood Flow

Blood flow is a complex system characterized by pulsatile flow in a dynamic system

[324]. While measurements related to arterial blood pressure are often a good proxy for

systemic blood flow, different physiologic or pathologic states can alter this relationship

[325]. Most notably, isolated vasoconstriction or a thromboembolic event can cause flow

along an artery to drop while systemic pressure is relatively unchanged, or atherosclerosis

can cause chronically decreased flow to various organs [326]. Ultrasonography can be used

to assess blood flow along an artery [327, 328] and can also be used to estimate degree

of systemic atherosclerosis [329]. Magnetic resonance imaging (MRI) can also be used to

measure blood flow [330].

11.3.1.5 Fluid Retention

While prior studies, such as Tele-HF and Beat-HF, attempted to use weight scales as a

surrogate for fluid retention in HF, the measurement of 3 pounds of weight change was not

an alert that was able to reduce HF readmissions [242, 243, 244]. A number of attempts

to measure peripheral edema and fluid retention have focused on the development of smart
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socks that look to measure fluid buildup in the ankles [331, 332]. A stretch sensor measures

the expanding duration of the patient’s ankle both as edema increases throughout the day

and as edema increases over time. The context-awareness allows the device to discard ankle

measurements when motion, muscle contractions, or an incorrect posture would interfere

with the measurement. This sock was able to reliably determine the participant’s posture,

and measurements of fluid retention were well correlated, but additional study is needed to

determine if this measurement is accurate enough, and whether it can generate alerts early

enough to intervene in HF patients. Yao et al. came to similar conclusions of needing further

study of their sensor to classify edema [333], as this remains an open area of research.

11.3.1.6 Physical Activity and Posture

Activity, posture, and pain are important measurements in understanding symptom and

treatment effectiveness in patients diagnosed with cardiovascular disorders. Measurement

of respiratory distress in HF patients requires a measurement of posture, measurement of

blood pressure through proxy measures such as pulse transit time require a measurement

of posture, as did the smart sock for fluid retention (Section 11.3.1.5). While each sensor

can capture posture, smartphones excel at this [334], often coupled with other applications

tracking activities of daily living [335, 336]. Recently, smartwatches have shown to accurately

detect postures and exercises [337, 338], which is important for patient monitoring, since

smartphones are often in the proximity of the user, but often not physically on the user,

unlike smartwatches [339]. These can also provide important context to the measurements

captured by the other modalities discussed in this section [253].

11.3.1.7 Diet Monitoring and Glucose Intolerance

Thirty million Americans live with diabetes, and another 80 million have pre-diabetes,

a condition that left untreated often leads to diabetes [340]. Diabetes occurs when blood

sugar is too high due to poor nutrition (e.g., too many refined carbohydrates) and/or in-

adequate insulin regulation (i.e., insulin resistance). Sustained high levels of blood glucose
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can have disastrous long-term health consequences, including cardiovascular diseases. An

essential component of clinical interventions for diabetes is monitoring dietary intake, as it

can help individuals and health practitioners manage dietary habits and understand how

dietary choices affect blood glucose. Various sensing techniques have been explored to cap-

ture dietary intake, such as wearable sensors (microphones, accelerometers) to detect eating

behaviors such as hand gestures and chewing/swallowing [341], or computer vision tech-

niques to recognize foods from photographs [342]. Using continuous glucose monitors has

allowed researchers to develop models of estimated food intake [343], and when coupled with

other personal measures, such as gut microbiome data can provide educational informa-

tion towards treating glucose intolerance at a personalized level [344]. Not only is glucose

intolerance, and a diagnosis of diabetes, a key factor that increases risk of cardiovascular

disorders, but other parameters, such as salt intake, may impact blood pressure [345]. More

recently, authors have shown that detecting glucose excursions, such as hyperglycemia or

hypoglycemia is possible from ECG signals [346]. This provides a potentially non-invasive

way to track glucose variability while primarily developing sensors for tracking risk factors

of a primarily cardiovascular nature.

11.3.2 Gaps

Table 11.3 summarizes the key developments in sensing including remaining gaps in the

technologies. As these technology gaps are addressed, richness of the available data will in-

crease. As richness of data increases across the variety of sensors, the potential for noise and

missingness increases as well. It is difficult to understand the context in which measurements

are captured. Accuracy of posture detection and presence of other noisy attributes impact

the potential success of different sensing modalities. It is also unlikely a patient will wear all

sensors all the time, as this will provide excessive burden. While a measurement performed

on occasion is likely to be a high-quality measurement, continuous and automated measure-

ments introduce a greater deal of variability in the quality of measurements. For instance,

a once-a-day measurement is likely to be a measurement where the patient will intention-
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ally position themselves appropriately and remain motionless during the measurement. A

patient monitoring their blood pressure will likely sit upright with their legs uncrossed, or a

technician performing an ECG will ensure that the printed ECG is taken at a point where

the patient is motionless, and no artifacts are present. Conversely, more frequent or contin-

uous monitoring must account for noise introduced by motion artifacts as well as from noise

introduced from other sub-optimal measuring conditions. As such, a number of challenges

remain in capturing the necessary signals:

• Acoustic measurement: Non-wearable sensors are limited by the challenge of identifying

a particular patient when multiple people are present. Wearable sensors must account

for noise across a variety of motions, environments, and potential sensor misplacement.

• Electrical Measurement: Continuous ECG requires multiple leads to be worn at the

same time. Devices such as the Apple watch provide potential for requesting ECG

periodically when other sensing modalities dictate when it is necessary [260], but the

correlation between these modalities and necessary ECG readings has not been well

studied outside of AFib.

• Blood Pressure: Pre-ejection period and vascular tonal changes can impact estima-

tion, resulting in pulse transit time calculations capturing both the arterial pulse as

well as profusion into the capillaries. Additionally, misplacement of sensors may alter

the accuracy of the readings, impacting performance of analytic models used to es-

timate blood pressure from data captured by these sensors. Cuff-less blood pressure

monitoring must extend to continuous, beat-to-beat measurements without constantly

restraining users to fixed, known postures.

• Fluid Retention/Weight Change: Edema measurements have not been clinically vali-

dated to show the degree of fluid retention which must generate alerts that can clinically

improve outcomes.
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• Physical activity and pain: Remote measurement of acute and chronic pain remains

an open challenge.

• Glucose Intolerance: Tracking of diet, nutrition, and the direct link to cardiovascular

care remains an open-ended problem without the use of invasive glucose monitoring

technologies.

11.3.3 Opportunities

An additional source of noise can be introduced by the redundancy of signals that can

exist. Different physical phenomena can be measured by different modalities, many of which

will produce slightly different readings. Heart rate can be derived from multiple sources:

auditorily by stethoscope, electrically by ECG, optically by PPG, and electromagnetically

by radar. It stands to reason that these redundant values could be exchanged for each other,

but that exchange may not completely be a one-to-one relationship. Transfer learning is

an ongoing field of study that seeks to apply existing models to data that was not used in

training or was only used minimally in training [347, 348, 349]. Transfer learning could be

applied to this problem as a way to apply a single model to patients with disparate data

collection modalities.

Missingness in data also increases as richness increases. While binary parameters used in

many risk models (e.g. history of HF, current diabetic status, etc.) are easy to collect and

even possible to impute, continuous monitoring opens the possibility of more complicated

missingness. A battery may fail on a sensor leading to a variable period of missingness. Wear-

able sensors may introduce missingness secondary to poor compliance or poor utilization.

The missingness introduced by gaps in continuous monitoring is more difficult to impute and

presents a challenge in building comprehensive models [350, 351]. Deep learning techniques

to address missing data have shown promising results, however, simple imputation of time-

series signals is currently the best approach [350], leaving the door open to further work to

address this at the sensors and anlytics level. A number of opportunities emerge for im-
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mediate and impactful research on sensing signs and symptoms of cardiovascular disorders,

illustrated in Figure 11.3, and listed below:

• Integration of multiple sensing modalities into a single platform, reducing the number

sensors needed to be worn. High impact areas appear to be the wrist (smartwatch)

and chest (heart and lung sounds). Analytics that leverage this integration will be

discussed further in Section 11.4.

• Using analytic techniques to estimate parameters traditionally captured invasively with

non-invasive surrogates (e.g. glucose and hypoglycemia using wearable ECG.

• Integration of machine learning techniques to help identify when longitudinal data cap-

ture is necessary, similarly to ECG requests to verify periods of arrhythmias associated

with AFib detection with the Apple Watch [260].

• Transfer learning, when coupled with uncertainty quantification techniques, enables

improvement of model performance through personalization (See Section 11.4.1.5).

However, when accounting for varying sensor types of the different domains, techniques

are needed to quantify what domains of data and what quantity of those data are

needed to transfer learn. Additionally, knowing which portions of models to re-train

in a transfer learning mechanism should be further explored.

11.4 Continuous Data Collection and Analytic Models

Beyond the acute sensing and detection of symptoms related to HF, CAD, and stroke,

analytic opportunities arise in the processing of this data longitudinally and continuously.

As discussed, the progression of CAD from stable and unstable angina to NSTEMI and

STEMI represent longitudinal changes that may have periods of rapid change interspersed.

Similarly, untreated HTN can lead to stroke if untreated. Changes in heart remolding in HF

may be represented by changes in heart sounds as captured by acoustic sensing. Patients

living with HF may experience long term changes in the amount of physical exertion required
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Figure 11.3: Overview of selected sensor categories proceeding to selected signs and symp-
toms measured and their potential progression to adverse events and diagnoses. The number
of crossing connections illustrate the commonality in risk factors that can be sensed in pro-
gression to primary adverse events and secondary recurrent adverse events for a variety of
cardiovascular conditions. The colors are only illustrative of different pathways in each level
and are not meant to be illustrative between subsequent levels.
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to perform activities of daily living. These changes may be gradual and unnoticeable to the

patient, but may represent worsening condition or recovery.

These cardiac conditions present a range of analytic techniques necessary to capture

longitudinal changes in continuously-sensed data:

• Continuous capture of acoustic sensing: Understanding how sounds change over time

may allow for the identification of new signals that represent earlier identifiers of wors-

ening conditions or treatment effectiveness. (See Section 11.4.1.1)

• Continuous capture of electrical signals: While the detection of arrhythmias may be

present in surrogate measures such as heart rate, detection of changes in ST segments

of an ECG may allow for early alerts and acute care. (See Section 11.4.1.2)

• Continuous capture of vitals signals: Understanding the changes in the variety of vitals

signals captured and how they may relate to each other can provide an understand-

ing of improving or worsening risk factors relevant to HF, CAD, and stroke. (See

Section 11.4.1.3)

• Continuous capture of physical activity: Physical activity and sleep are important

functional measures of recovery, and accurate, longitudinal understanding of functional

change can be correlated with improved mortality and prevention of adverse events.

(See Section 11.4.1.4)

• Deep learning techniques for data analysis and modeling: A variety of deep learning

techniques have the ability to develop personalized models using continuous, longitu-

dinal data. While long short-term memory networks (LSTM) and general Recurrent

Neural Networks (RNN) provide a standardized framework for signals, this section ex-

plores modification of existing techniques to work with a wider array of data discussed

in this section. (See Section 11.4.1.5)
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11.4.1 Existing Technologies and Applications

11.4.1.1 Continuous Capture of Acoustic Sensing

A primary application of acoustic sensing is for the assessment of cardiac murmurs [288].

Most auscultative techniques have not been developed for continuous monitoring but are

rather focused on individual discrete observations. However, continuous wave Doppler mon-

itoring can be used in fetal monitoring [352] and continuous fetal monitoring has been shown

to have superior outcomes relative to intermittent monitoring [353]. There has been some

work in extending this technology to continuous adult cardiac auscultation [354]. Mc Lough-

lin and Mc Loughlin found that continuous auscultation was able to detect impaired ventricle

relaxation and lesions of the aortic and mitral valves with higher sensitivity than was avail-

able with traditional auscultation alone [354]. However, there is a pronounced absence of

further work in continuous cardiac auscultation.

Electronic auscultation is useful for deriving characteristics of other parts of the cardio-

vascular system than sounds generated specifically by the heart. A carotid bruit is a sound

created by turbulent blood in a carotid artery, often caused by narrowing that in turn is

produced by atherosclerotic plaques. Knapp et al. looked at the effectiveness of carotid

bruit detection by electronic auscultation [355]. Out of 1,371 patients in this study, 84 were

found to have carotid bruits by electronic auscultation. These patients were matched with

controls who did not have bruits, and both patients from each pair were assessed with duplex

ultrasound to determine extent of carotid stenosis. Bruit detection with electronic ausculta-

tion and manual annotation was found to have a sensitivity of 88% for stenosis ≥ 50%, and

a specificity of 58% with duplex ultrasound providing the ground truth.

Work by Palaniappan et al. surveyed machine learning techniques to further analyze lung

sounds [356]. They evaluated 59 papers that used signal processing and machine learning

techniques on a variety of lung sound problems including normal breath sounds, abnormal

breath sounds, and a series of sounds called adventitious lung sounds. This survey high-
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lights an important need by evaluating short term sounds, long term sounds, and identifying

normal and abnormal sounds across the different time periods. Most works in this survey

focused on specific frequencies (between 150 and 2000 Hz, though they found that most work

typically worked at 150 Hz), and evaluated machine learning techniques such as k-nearest

neighbor, ANNs, HMMs, GMMs, genetic algorithms, SVMs, and fuzzy logic to classifying a

variety of lung sounds. They found that by using piezoelectric microphones, contact micro-

phones, and electric microphones, and one commercially available lung sound instrument,

they could design electronic stethoscopes that filtered out heart sounds to capture necessary

lung sounds. Similarly, one could use the same techniques to filter out the lung sound to cap-

ture the heart sounds. Using standard time-domain and frequency-domain signal processing

features, algorithms were able to classify lung sounds with between 83-93% accuracy. Rocha

et al. published a database of lung sounds that were used in the 2017 ICBHI Scientific Chal-

lenge as a challenge for lung sound classification [357]. These sounds consisted of wheezes,

crackles, wheezes and crackles, or normal breath sounds. Several groups have achieved good

performance on this dataset by applying CNNs to this dataset [358, 359]. There is contin-

uing work in applying RNN and LSTM architecture to this task as well [360, 361]. Work

in this domain is largely limited by the large variation in pathological sounds and by a lack

of additional publicly available datasets. Given the traditionally subjective nature of sound

interpretation, there has also been some disagreement in lung sound nomenclature [362]. In

addition to wheezes and crackles, there are many other sounds which should be included in

training, including rhonchi, pleural rubs, diminished breath sounds, and differentiation of

crackles into either fine or coarse crackles. Another step that could be accomplished in this

domain is the replacement of particular sound identification with the identification of the

underlying pathology. As additional data is collected and annotated, further developments

should be made possible.
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11.4.1.2 Continuous Capture of Electrical Signals

In clinical settings, most ECGs are performed as 12-lead ECGs. In these ECGs, there

are 10 electrodes attached to the patient and 12 different measurements taken from these

electrodes. Each provide a one-dimensional view of the magnitude of the vectors of all

electrical impulses in the heart relative to a given axis. Different axes allow for information

to be obtained about the functionality about different parts of the heart. Depending on the

goals of remote monitoring, remote ECGs will typically only include a subset of these typical

views. As a result, methods that can accurately detect essential signals from minimal lead

ECGs are necessary.

Work by Jambukia et al. surveyed machine learning techniques to analyze and classify

ECG signals [363]. They evaluated 31 papers that used signal processing and machine learn-

ing techniques in order to extract clinically significant features from raw ECG signals. Most

of the papers evaluated used the MIT-BIH arrhythmia dataset [364] for both training and

testing purposes. Two aspects of ECG classification considered were ECG beat classification

for individual, isolated beats, and ECG signal classification for interpretation of a longer sig-

nal. Some approaches evaluated involve signal feature extraction followed by threshold-based

algorithms such as the Pan-Tompkins algorithm. Other approaches utilized various neural

network architectures, with the authors finding that of the architectures studied, multilayer

perceptron neural networks provided the best performance. Recurrent neural networks, such

as the LSTM architecture, were not evaluated in this survey. Deep learning techniques have

also been utilized for ECG evaluation. Yildirim showed that a bidirectional LSTM archi-

tecture can reliably classify five different rhythms from the MIT-BHI arrhythmia database

[365]. This bidirectional LSTM model achieved accuracies greater than other techniques.

Additional deep learning techniques that combine CNN and LSTM have been used to detect

AFib without explicit feature extraction (such as R peak extraction) [366]. Further deep

learning techniques have looked at a variety of processing individual beat anomalies and

sequence anomalies [367], though time series presented to CNN models often needs fixed
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windows of time to be pre-determined for evaluation. Additionally, some work uses a sin-

gle lead [368] for detecting arrhythmia, though it is likely at least two leads are currently

necessary for other ECG feature extraction.

There is evidence to suggest that patients at risk of cardiac pathology benefit from more

continuous remote ECG monitoring. The mHealth Screening to Prevent Strokes (mSToPS)

randomized clinical trial is an ongoing trial of 2659 patients investigating the benefit of

continuous monitoring for AFib [303]. As reported by Steinhubl et al., the initial phase

of the trial discovered that for individuals at risk of AFib, home ECG monitoring was

superior to routine care for discovering new incidence of AFib. In the actively monitored

group, there was a 3.9% diagnosis of new-onset AFib, vs 0.9% in the control. This resulted

in earlier initiation of anticoagulative therapy (a preventative measure for stroke) in these

patients. However, this has also resulted in a higher healthcare utilization among these

actively monitored patients. This trial is still ongoing- the ultimate clinical impact is still

unknown. Clinical outcomes are due to be published in a 3-year follow-up.

11.4.1.3 Continuous Capture of Vitals Sensing

Ultrasonography is a technique that uses ultrasonic sound waves to produce images of

tissues beneath the skin. Ultrasonography is valuable for visualizing structures that are

unreachable noninvasively. In hospital settings, point-of-care ultrasound has increasingly

grown in utilization as mobile ultrasound systems become cheaper and comparable in quality

to larger ultrasound systems [369]. Point-of-care ultrasonography is useful as a tool that

physicians can bring to the bedside for aid in diagnosis, much like a stethoscope, but deep

learning techniques are necessary to evaluate the ultrasound images and classify changes in

conditions.

Ultrasonography can also be used to evaluate the fluid status of the lungs. As described

in Assaad et al., lung ultrasound is a valuable tool for quickly assessing the health of a

patient’s lungs [370]. Certain visual findings, such as “B-lines” are highly associated with

edema and various pulmonary pathologies. These visual findings also change very rapidly,
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reflecting the present disease state more accurately in some cases than measures such as blood

oxygen saturation. Lung ultrasonography is also useful in differentiating between cardiogenic

and noncardiogenic pulmonary edema; cardiogenic pulmonary edema typically shows more

uniform findings and plural effusion (fluid buildup in the tissue surrounding the lungs).

Lung ultrasonography is an underutilized technique in medicine and lacks standardization

in training and implementation.

Work by Bhuyan et al. explores an exciting possibility of wearable ultrasound for the

monitoring of internal function noninvasively [371]. In order to create a small form factor

that could be used to measure organ function with wearable, remote ultrasound, they created

a small, flexible probe through a flexible PCB integrated circuit. They also used a system

that has only one transmit and one receive channel to avoid excess signal degradation. This

system has a bandwidth of 10 MHz, power consumption of 6.72 mW per channel, and uses

16 such channels to measure a 5.6 mm x 1.6 mm area. They used classical image processing

with ultrasound for their validation. Their system, however, used an attached cable to

measure. There is an opportunity to create a remote, continuous version of such a system if

a flexible PCB-based wearable ultrasound with necessary battery and wireless transmission

capabilities were added, but, computer vision techniques are needed to enhance the analytic

component of the wearable ultrasound.

Echocardiography is the practice of using ultrasound in order to visualize the struc-

tures of the heart. Echocardiography can take place either as an invasive transesophageal

echocardiography (TEE) or as the noninvasive transthoracic echocardiography (TTE). Many

different aspects of the heart can be described and quantified via echocardiography [372],

including size, function, and mass of various structures of the heart. Measurement of these

parameters aids in the diagnosis of HF. For instance, left ventricular mass or poor emptying

are markers of HF. Valvular disfunction, such as stenoses or regurgitations can be directly

observed. These measurements also aid in assessing cardiac function in CAD, particularly

following MI; injured portions of the cardiac wall will often move less than they normally
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would.

Various groups have found preliminary success in applying deep learning computer vision

techniques to the analysis of ultrasonographic images. The first step in automatic analysis

of ultrasonographic images is to recognize the view in question. Østvik et al. describe the

use of a CNN to classify TTE images according to the view being presented [373]. This

method showed classification high accuracy in distinguishing among seven different TTE

views. Additionally, the authors described a technique for extracting 2D slices from 3D

images and achieved a mean error of 4°.

Techniques for measuring edema include cuffs that track ankle circumference and mea-

surement of electrical impedance. Weight monitoring is sometimes used as a proxy for track-

ing edema, as edema co-presents with fluid retention. There has been success in implantable

impedance monitors to measure pulmonary edema. Yu et al. found that intrathoracic

impedance serves as a predictor for imminent hospitalization due to fluid overload [374]. In

a population of 33 patients with HF, a device consisting of a pacemaker and defibrillator

was implanted. The device measured the impedance between those two leads. This study

found that there was a significant decrease in impedance prior to hospitalization with fluid

overload. This decrease began on average two weeks prior to hospitalization and continued

through the date of hospitalization.

Impedance monitoring has also been implemented in noninvasive and ambulatory moni-

toring systems. Weyer et al. describe a system that incorporates both ECG and noninvasive

impedance cardiography [375]. This device includes Bluetooth connectivity and a battery

that lasts for up to 21 hours. This system could be implemented for long-term monitor-

ing in patients with HF to monitor pulmonary congestion and to potentially allow remote

interventions before hospitalization is necessary.

The internal and external jugular veins provide drainage from the head into the heart.

The right jugular veins are positioned almost directly above the right atrium, and therefore

the pressure within them is very closely tied to the pressure of the right atrium. The external
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jugular vein’s filling level indicates the pressure within the right atrium and will be distended

in cases of right heart failure. Pulsations can be observed with great difficulty in the internal

jugular vein. These pulsations provide evidence as to the relative timing and forces involved

in right atrial contraction, atrial relaxation, right ventricular contraction, venous filling after

the closing of the tricuspid valve, and emptying of the atrium after opening of the tricuspid

valve.

As venous pressures are so much lower than arterial pressures, measurement of the jugular

venous pulse is much more difficult than the measurement of arterial pulses. However,

Amelard et al. were recently able to utilize a technique called PPG Imaging (PPGI) as a

viable technique to correctly measure the jugular venous pressure [376]. This technique uses

a system located approximately 1.5 meters away from a supine patient. A light shines on

the patient and the reflected light is analyzed to identify pulsations. The arterial pulsation

from the carotid artery is easier to detect, and the jugular pulsation can be identified as a

corresponding inverted pulsation at a location near but lateral to the arterial pulsation. In

this study, the ground truth arterial waveform was verified with a PPG measuring device.

Pertinent clinical features were consistently able to be extracted from the venous waveform,

including the c, v, x, and y waves (corresponding to the contraction of the right ventricle,

systolic filling of the right atrium, relaxation of the right atrium, and beginning of the filling

of the right ventricle). In about half of subjects, the a wave was also observed (corresponding

to the contraction of the right atrium). The ability to regularly monitor and quantify these

waveforms could allow for new techniques in monitoring right heart function.

Signals that capture continuous blood pressure, described in Section 11.3, may also be

extended to capture a variety of heart rate, heart rate variability, blood pressure, respiratory

rate, and changes in these values [323, 377, 378]. Obstructive sleep apnea, a condition in

which airwaves are restricted causing the body to wake up from sleep to begin breathing

again, increases heart rate, respiratory rate, and blood pressure, keeping patients from falling

asleep. This has a direct relationship with blood pressure and nocturnal nondipping HTN,
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and treatments for apnea have shown to be correlated to improvements in blood pressure

[379]. This means approaches for measuring cuff-less blood pressure cannot be restricted to

periodic, ambulatory measurements, but must transition to continuous beat-to-beat mea-

surement and interpretation.

Finally, telemonitoring trials for HF readmission have tracked longitudinal measurements

of symptoms, vitals, and patient qualitative reports [242, 243, 244]. In the Tele-HF study, a

number of vitals signals and patient reported outcomes generated alerts for interventions if

the values were below a specified threshold, or represented a significance drop from the prior

day’s values. However, the study was unable to find a statistically significant reduction in

readmissions in the intervention arm. Ong et al. in the Beat-HF study tried to use some

machine learning techniques to further identify risks of adverse events, and while the study

was unable to reduce readmissions, the techniques did show some promise in stratifying

patients [380], as did further statistical techniques applied to the Tele-HF data [243, 125].

With the addition of more signals captured, and techniques that can better account for

varied time-domain aspects of analytics, it is possible that better just-in-time alerts can be

generated for preventing future recurrent HF events.

11.4.1.4 Continuous Capture of Physical Activity

For cardiovascular disorders, the detection of activities and postures is important in

understanding the other biomarkers captured, providing context for their readings. For

example, at nighttime, knowing the posture of the user provides context for dyspnea mea-

surements and heart sound recordings for HF patients. In addition to providing context for

the other vitals measurements related to cardiovascular disorders, the change in physical

activity performance can show increasing effects of HF symptoms, pain as a result of CAD,

and acts as a surrogate for the general well-being of these patients.

Many research-oriented activity recognition platforms focus on the detection of activities

of daily living [253, 381, 382, 383] and understanding daily exercise intensities. These sensors

are capable of tracking sports movements in the healthy and measure sedentary time in the
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elderly, and come in many forms of smartwatches, smartphones, smartwatch-sized sensors

[337, 381], embedded within shoes, and most recently within eTextiles [384, 385].

HF participants have had improved outcomes in mortality and readmission when involved

in cardiac rehabilitation programs that encourage continuous physical exercise [386]. This

physical exercise routine has shown that measurements in improved peak exercise capacity

correlate with improved cardiovascular outcomes. Home-based cardiac rehabilitation systems

centered on physical activity detection in order to quantify a home-based exercise routine

[387]. However, such systems do not yet quantify improvement directly from physical activity

measurements. This is necessary since adherence in cardiac rehabilitation programs is often

quite low [388].

11.4.1.5 Deep Learning for Personalized and multi-modal models

Deep neural network techniques have enabled the analysis and modeling of the data

gathered from these sensing systems for a variety of event detection techniques. RNN and

LSTM are deep learning models that are particularly well-suited for developing models for

event detection on time-series data, such as segments of ECG signals [389], blood glucose

[390], sleep [391], and in general are good for medical diagnostics using time-series data

[392]. Often, the key to these techniques is the ability to generate its own features. For

example, improvement in processing of ECG signals with deep neural networks rather than

other machine learning techniques allows for the automatic identification of arrhythmias

[393]. CNNs, when combined with LSTMs allow for robust, automatic feature engineering

that improves the classification of signals extracted from wearable sensors.

These models are further improved through two techniques: through personalization

and through integrated multiple sensing modalities together in one model. While these deep

neural networks are able to extract features that represent important classification properties,

person-to-person differences may impact model performance. Therefore, techniques that can

train on a user’s own data then perform functions on later-captured data can show improved

performance [346]. Personalized modeling techniques have been used to detect and warn of
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cardiac arrhythmias [394], and risk of recurrent events in HF patients by tracking changes to

cardiac biomarkers [395], which presents a modeling opportunity if sensors can be developed

to track those biomarkers in remote and ambulatory settings.

While having enough properly-labeled data is a challenge, uncertainty quantification

techniques can identify when labeled data is necessary to personalize models for improved

performance. Deep neural networks are particularly well suited to this task because of

the ability to implement uncertainty quantification techniques on the probabilistic output

generated by the models as well as rapidly re-weigh the network through transfer learning

or domain adaptation techniques. In HAR tasks, for example, uncertainty quantification

techniques that look at the maximum entropy measure from the generated predictions to

determine if the model is performing well on existing activities or identifying new users

or activity types [396, 219]. Once these periods of uncertainty are found, new data can be

captured and transfer learning techniques identify what part of the deep neural network must

be modified to account for the new user, new activity, or new sensor type [397, 349, 251].

A number of tools have been developed for assistance in annotating subject-dependent

data [398]. An initial challenge in the annotation of data is event detection and segmentation.

Adams et al. described a model for event detection and activity segmentation in wearable

sensor data streams [399]. They validated their model on several datasets, including one in

which events were instances when a user took a puff from a cigarette and activity segmen-

tation was determining whether a user was smoking or not at a given time. This allowed

for a system by which smoking event analysis was able to proactively provide feedback to

assist in smoking cessation [400]. Labeled data is often collected in artificially constrained

environments. However, several groups have focused on developing approaches for collecting

annotations in natural environments. Akbari et al. described one such algorithm [401]. This

algorithm was demonstrated on a smartwatch, and requested the user to annotate activities

whenever uncertainty exceeded a threshold, but limited these requests to prevent overwhelm-

ing the user with request fatigue. Similarly, Fallahzadeh et al. describe an algorithm which
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uses context in order to determine the optimal time to request annotations from the user

[402]. Each of these techniques allows for collection of personalized annotations which could

then be used in training of more sophisticated models.

While requiring a large amount of data, deep neural networks are well suited to improving

classification tasks and analyzing the data from wearable sensors of various sources. Multiple-

sensor fusion approaches have improved a number of modeling tasks, including estimating

of blood pressure from ECG and PPG signals [403] and HAR through the use of inertial

measurement units that integrate accelerometers, gyroscopes, and magnetometers, with use

of multiple sensors across the body [404]. Additionally, multi-modal deep learning has been

used to estimate certain biomedical signals with devices primarily meant to capture other

signals, such as smartphones for heart rate estimation [405] and in recognition tasks outside

of the cardiovascular domain, including stress monitoring [406], highlighting a key gap and

opportunity to improve sensing in cardiovascular care.

In a multi-modal setting, data synchronization, sensor selection, and power optimization

are important, in both settings with multiple sensors and settings with sensors integrated into

a single platform device. When distinct events are to be detected and classified that event

detection can be used to synchronize the data streams to ensure all are capturing the same

events at the same time [407]. Additionally, sensor selection techniques can identify the key

features for specific recognition tasks and reduce the number of sensors needed, optimizing

the power [396]. Synchronizing data and optimizing usage of sensors and power is of extreme

importance in longitudinal use of these sensors, but are themselves a subject that requires

deep analytic technique reviews out of the scope of this cardiovascular disorder survey, given

the current lack of integrated sensing platforms for important risk factor monitoring.

11.4.2 Gaps

Deep learning techniques have made the exploration of time series data more fruitful

with the development of automatic features that represent longitudinal risk or outcomes.

Techniques such as attention-based LSTMs have shown promise in exploring continuous
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time-series data to predict clinical mortality, decompensation, and length of stay, which

outperform hand-crafted feature extraction, and other deep-learning techniques that do not

find focus on specific periods of time, in intensive care unit data [408]. However, these

techniques have not been applied to this remote data yet because the integration of these

sensing techniques have not yet occurred.

A number of the analytic techniques tied to the use of these new sensing paradigms have

focused on the diagnosis of specific anomalies or classification of specific types of sounds or

signals captured. What is still needed is the following:

• Integrated sensors that can capture signals frequently, or continuously, over entire study

periods.

• Machine learning techniques that can explore multiple windows of time over multiple

combinations of available signals in order to quantify trajectories in signals, identifying

longitudinal patterns and changes in signal that may be indicative or worsening con-

ditions or treatment effectiveness and recovery, extending beyond anomaly detection

and signal classification.

• Data synchronization in multi-modal platforms, identifying how many sensors are

needed for an application and minimizing the user burden in wearing them and need-

ing to re-charge them is an important problem that will need to be addressed as these

systems are developed for longitudinal use.

• Deep learning techniques listed demonstrate how personalization can improve model

performance. However, personalization requires the labeling of data samples for super-

vised learning techniques. The longitudinal capture of these labels may result in undue

burden on the users of the system. Finding a balance between the types and quantity

of data needed and the passive collection is of utmost importance for user adherence.
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11.4.3 Opportunities

One way in which advanced work in analytics could be incorporated is in better per-

sonalized monitoring for risk of CAD. As previously discussed, CAD is a condition often

characterized by gradual worsening of chest pain that culminates in a heart attack. Ideally,

monitoring systems would be able to follow gradual changes prior to the rupture of a plaque

that causes a heart attack. In the early stages of CAD, activity monitoring could be used

to assess wellness. By tracking a certain threshold of activity that the patient does not (or

cannot) exceed, a monitoring system can estimate the severity of angina. As that threshold

begins to decrease, the patient’s angina is likely increasing and greater intervention may

be warranted. The monitoring system for a patient at risk of CAD should also include an

ECG system to watch for changes associated with a heart attack. If any electrical changes

concerning for a heart attack begin to appear in the patient’s ECG, then emergency services

would be required. Earlier interventions are associated with better outcomes, and a mon-

itoring system like this coupled with improved analytics could potentially allow for earlier

treatment, leading to less overall damage and better patient outcomes.

Improved analytics could also be implemented to better treat valvular diseases. Unlike the

other pathologies discussed here, there are few risk models for predicting future valvular heart

disease. However, advanced analytics could be implemented to allow for earlier detection

of valvular disease. As discussed above, these abnormalities change the way in which blood

flows through the chambers of the heart, producing turbulence that can be detected as

sound. The most straightforward evaluation for valvular disease in remote wearable settings

would involve electronic stethoscopes continuously monitoring the patient’s heart sounds. By

learning the normal sound profile of a patient, new changes and murmurs could be quickly

identified. After identifying a particular valvular disease and its associated murmur, long-

term monitoring with electronic stethoscopes could be used to characterize the severity of

the valvular insult; most murmurs initially increase in intensity, but in later disease stages

decrease in intensity. Rather than risking false negative screening in physical examinations,
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a longitudinal monitoring system could detect the changes along this trajectory to allow

for more informed decision making. As a more advanced option in monitoring valvular

disease, miniaturized ultrasound probes could be incorporated into a wearable system. These

could be used for imaging and analyzing the valvular parameters such as cross section and

flow. Additional work into computer vision interpretation of ultrasound images would be

necessary in order to automatically process these signals. Vital monitoring can also directly

feed into an understanding of valvular disease. In particular, blood pressure can reflect

aortic valve lesions. Finally, systems to monitor valvular disease could monitor symptomatic

disease progression. As many types of valvular disease may ultimately lead to HF, the

opportunities presented above for HF apply here as well. Foremost among them would be

activity recognition, where late stage valvular disease can manifest with a loss of stamina in

day-to-day activities.

Opportunities:

• Improved Machine Learning Processing of Existing Sensor Modalities: Development

of machine learning techniques that can extract meaningful data from non-numerical

sources, expanding on the computer vision work done in automatically processing and

interpreting ultrasound images.

• Time-Series Machine Learning Models: Development of machine learning techniques

that can process longitudinal data and account for multiple channels of data, sampled

at different frequencies, and with different segment lengths of importance, are required

to develop new risk prediction techniques and alerts based upon continuously captured

data.

• Applying attention mechanisms to deep learning techniques to interpret what features

are being extracted and better understand the interdependence of the multi-modal

learning techniques will enable more rapid selection of key sensors for longitudinal

tracking and event detection.
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11.5 Clinical Interpretability, Analytic Models, and Treatment Paradigms

Clinical risk prediction models and those that predict adverse events have helped guide

medical treatments and improve patient care. These techniques, with machine learning mod-

eling, have the potential to improve clinical care in both the acute care settings [409] and

remote care settings. This includes understanding the diagnosis and progression of diseases

and the personalized patterns and signals that can be captured by advances made in cat-

egories listed in Sections 3 and 4. Some preliminary work has been conducted in clinical

trials on HF patients, understanding distinct patient phenotypes within the disease. In one

such HF trial, clinically-distinct clusters of patients were found to have different time-to-

event predictions and outcome rates [57]. Another relevant clinical trial in HF patients is

the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist

(TOPCAT) trial [410, 411]. The purpose of this trial was to determine if a treatment de-

signed specifically for HF patients with preserved ejection fraction could improve outcomes,

a patient population where such treatments have not been found to universally treat these

patients. This trial was also unsuccessful in showing that HF patients treated with Spirono-

lactone had better outcomes [411]. However, due to some issues with data gathered in certain

regions, investigators began taking a closer look at subsets of patients, to determine if specific

patients were actually helped by the treatment. The investigators found regional variations

lead to different treatment effectiveness in cohorts of participants [412, 410]. This indicates

that HF patients diagnosed with preserved ejection fraction may benefit from cluster analy-

sis, looking at personalized differences in outcome rates where different treatments may be

helpful for different subsets of patients. These provide for the basis of the following needs:

• Risk prediction models: as illustrated by the TOPCAT findings, these diseases are

quite complex and understanding the person-to-person variation allows for specific risk

prediction based upon data collected, along with matching techniques that allow for

comparison to patients most similar to the individual modeled. (See Section 11.5.1.1)
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• Dynamic adaptation: models must account for the varied data types potentially col-

lected, the varied rate at which they are collected, how well to link them to data

gathered in acute care settings, and be able to update as a disease progression wors-

ens or treatment regimen proves effective, including providing confidence metrics that

suggest the collection of additional data, if necessary. (See Section 11.5.1.2)

• Time-to-Event Modeling: With longitudinal sensing, methods of survival analysis that

adapt to time-varying would allow for updated risk estimates for adverse events both

in terms of likelihood of event as well as in estimating the likely time to that event

occurrence. (See Section 11.5.1.3)

• Multi-task learning: Deep learning techniques are well-suited to estimate risks of mul-

tiple, potentially varying adverse events, leveraging the commonality in risk factors

associated with the primary adverse events or secondary recurrent events related to

the different cardiovascular disorders. (See Section 11.5.1.4)

• Interpretable machine learning: as the data size progresses, medical models must be

able to explain the driving risk factors in a manner interpretable to clinicians in order

to guide treatment decision making. (See Section 11.5.1.5)

11.5.1 Existing Technologies and Applications

11.5.1.1 Risk Prediction Models

Much of stroke risk prediction is tied to the risk associated with AFib. In particular,

it may be appropriate for patients with AFib to undergo anticoagulation therapy in order

to reduce their risk of stroke. Anticoagulation therapy is any therapy that works to reduce

the rate at which blood clots form. This type of therapy can be beneficial by preventing

thromboembolic stroke. Conversely, this type of therapy can be detrimental by promoting

life-threatening bleeds, such as in hemorrhagic stroke. Therefore, implementation of any

anticoagulation therapy must be implemented with great care. In addition to models that
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predict only stroke risk, the ACC/AHA Pooled Cohort Equations treat stroke and CAD

together.

CHA2DS2-VASc is a model that predicts 12-month thromboembolic event rate (including

stroke, pulmonary embolism, and peripheral thromboembolism) in patients with AFib who

are not undergoing anticoagulation therapy [413]. Creation of this model drew upon the

efforts of and improved upon multiple older models in order to apply more broadly and

accurately to diverse patient populations. One chief exclusion in this model is that only

patients with non-valvular AFib are considered. The parameters considered in this model

are presence of HF, HTN, age, diabetic status, history of stroke or other thromboembolic

event, history of any vascular disease, and gender. This model aids clinicians in prescribing

anticoagulants, which increase the risk of bleeds but decrease the risk of thromboembolic

events (including stroke).

The HAS-BLED model was created to predict the risk of bleeding in anticoagulated pa-

tients with AFib [414]. The parameters included in this model are HTN, history of liver

or kidney dysfunction, history of stroke, history of bleeding, difficulty calibrating oral an-

ticoagulation therapy, use of alcohol, and use of certain drugs that may increase bleeding

risk. Recommendations by groups such as the European Society of Cardiology [415] are that

CHA2DS2-VASc and HAS-BLED be used in conjunction for informed decision making, and

that HAS-BLED alone should not be a reason to withhold anticoagulant therapy.

Other models have been produced to predict general risk of stroke. The MyRisk_Stroke

Calculator is a model to predict 10-year risk of stroke [416]. This estimator was built on

a prospective dataset where collection began in 1992 and validated with a second dataset

with collection beginning in 1998. Follow-up was through the year 2007. In this cohort, the

parameters found with an association to stroke risk were age, gender, education status, high

blood pressure, smoking status, alcohol consumption, activity levels, anger, depression, and

anxiety. Additionally, comorbidities such as renal disease, diabetic status, HF status, CAD,

peripheral arterial disease were included as features in this model. The model was created
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as a Cox proportional-hazards model and predicts 10-year risk of any type of stroke.

Another stroke risk model is the QStroke score [417]. QStroke was developed to be used

for all patients without history of stroke but intended specifically to be used as a supplement

or replacement for CHA2D2-VASc in predicting risk associated with AFib. The QStroke

model features the following as parameters: age, gender, ethnicity, Townsend deprivation

index (an index related to socioeconomic status), smoking status, body mass index, systolic

blood pressure, blood lipid levels, and family history of CAD. HTN, diabetic status, AFib

status, HF status, CAD, presence of rheumatoid arthritis, renal disease, and valvular disease

were also included as pertinent comorbidities. The QStroke model was created as a Cox

proportional-hazards model and predicts 10-year risk of any type of stroke.

Many attempts have been made to assess the risks of developing CAD. Among the most

current of these are from the ACC/AHA Task Force on Practice Guideline [269]. That

work introduced a set of models termed the Pooled Cohort Equation to predict a primary

CAD event within 10 years. The predicted risk in this model is based on age, gender, race,

blood pressure (systolic and diastolic), diabetic status, smoking status, various cholesterol

lab values, and on certain current medications (HTN control, statins, or aspirin). This risk

prediction tool was built to predict any type of “hard” atherosclerotic-based disease, and

therefore in addition to predicting future CAD is also predicts future stroke. However, it

does not distinguish between risks for these two different outcomes and treats them both as

a positive outcome.

11.5.1.2 Remote and Dynamic Models

Remote and telemonitoring studies that use telephones and call-centers as the primary

source of data have been used to track HF patients, in the hope of reducing heart failure

admissions. These systems are intended to track patient symptoms, including impact of

medication, weight gain (as a surrogate for edema), and depression, to identify early signs of

decompensation aimed at providing interventions that prevent hospital readmissions in HF

patients. In Tele-HF, Krumholz et al. found that a self-report telemonitoring system was not
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able to reduce readmissions in heart failure patients based upon daily reports of symptoms,

medication usage, weight, and depression [243]. Ong et al., in the Beat-HF trial, looked to

automate some of the data collection surrounding blood pressure and weight, with machine

learning risk models to drive interventions, but found similarly that HF readmissions were

not reduced [244]. Anker et al. surveyed meta-analyses and prospective clinical trials that

evaluated the efficacy of telemonitoring in patients with HF [418]. They found disagreement

between the efficacy of telemonitoring for HF in different types of trials, but stress that the

outcomes of telemedicine depend on personalization to the particular patient.

Models that predict risks within varied windows of time have, thus far, been restricted to

medical settings. Henry et al. used a rolling model to predict the risk of sepsis in a hospital

setting, selecting important features and identifying dynamic risks of sepsis within a single

hospital admission [419]. Such dynamic models could be adapted to remote and longitudinal

settings, but have not done so yet.

Few models exist, however, that estimate clinical risks of adverse events using remote

and sensible data. Cakmak et al. used a smartphone to estimate answers to the Kansas City

Cardiomyopathy Questionnaire, which aims to rate health status and severity of symptoms

of conditions such as HF [420]. These personalized models that use remote data to estimate

clinically-validated instruments used in current clinical models present a significant gap and

opportunity for the systems discussed here.

11.5.1.3 Deep Time-to-Event

Survival analysis is an important domain of clinical modeling where data provided to a

model estimates the likelihood of an event occurring as a function of time and the measured

risk factors. This provides both an estimate of the likelihood of an event occurring but when

it will occur, providing better longitudinal analysis of risk. The primary method for this

technique has been a Cox Proportional Hazards model, which estimates the likelihood of

survival over time with an underlying logistic regression model, which is linear in nature.

Recently, deep learning techniques have improved upon the fit of these estimates over time by
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allowing for complex, non-linear interactions [421]. Similarly, work by Lee et al. estimate the

directly survival using deep neural networks [422], and continued improving upon this work

by allowing for a range of dynamic covariates prior to the point of estimation rather than

just the last value available for each time series [423]. Lee, Chen, and Ishwaran proposed a

new model for survival analysis based upon adaptive boosting, which allows for time-varying

covariates that can change at different points in time, allowing for flexibility in captured

time-series signals and the features used from them to estimate risk [424]. Ultimately, these

models will need to be adapted to the use of remote sensing data to track long-term risk of

events based upon daily captured data for individuals wearing remote sensing systems.

11.5.1.4 Multi-task learning and Attention

The use of multiple sensing signals to track common risk factors over an array of differing

cardiovascular disorders requires models that are robust to estimating multiple outcomes.

Deep learning techniques are well-suited for this multi-task learning, having already demon-

strated model performance superiority in clinical settings, such as estimating outcomes of

patients in an intensive care unit [425]. Similarly, multi-task learning has proven to have

superior performance using clinical time-series data [350] and in estimating in-hospital mor-

tality [426]. The primary principle behind the multi-task learning environment is modifying

loss functions to account for how accurate the model is estimating a set of outcomes rather

than an individual prediction, with the assumption that the features being extracted from

the data sources can estimate risk of each outcome, due to their dependent nature. This

presents an opportunity to adapt these models to estimate risks from both in-hospital and

remote, sensing data.

While these models are primarily built with CNNs, RNNs, and LSTMs, two key chal-

lenges arise when using these techniques: Limiting the input space to signals of the same

length sampled at the same duration and Interpretation of their findings. While RNNs and

LSTMs can handle varying-length sequences better than CNNs, with padding and masking

techniques, they still sample time-series data across multiple channels at fixed time inter-
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vals. With larger sequences of varying types of data, models that can adapt to different

lengths, such as those used in natural language processing techniques, are needed, namely,

transformers. The transformer architecture presents opportunities to further enhance model

performance of time-series signals by allowing for additional flexibility to point the deep

learning model at which portions of signals to focus on [427] that may not be properly

aligned [428]. This modification to the more standard CNN, RNN, and LSTM architecture

allows for more accurate modeling of clinical time-series data by leveraging when signals

change and when they are invariant [429], and by adapting time-warping techniques [430].

Transformers have an attention property that allow it to attune to specific regions of data.

This attention allows for more accurate clinical risk prediction models using time-series data

[408]. The attention mechanism also has a property of providing a level of interpretability to

deep learning techniques by identifying portions of signals that are deemed more important

for feature extraction and model training.

11.5.1.5 Interpretable Machine Learning

A recent push in the machine learning field has been to explain predictions provided

by deep learning methods that are generally considered black box techniques. Ribiero et al.

developed a technique by which local logistic regression models are able to identify the reasons

a particular prediction is made based upon the variables that generated the prediction of that

element and similar model elements [431]. This work demonstrates model interpretability,

which comes naturally in CNN deep learning models that can visualize data in intermediate

models but becomes much more complicated in time-series based models such as LSTMs.

Work by Lundberg and Lee looked to develop personalized levels of interpretation that are

model agnostic, demonstrating a feature distribution and visualization technique that shows

how certain actors matter for each user in a model and how that impacts the overall model

performance [208]. Additional interpretation of models for how personal factors impact

estimations provide personalization of interpretation Additional machine learning techniques

look to automatically cluster patients and explain the phenotype discovery [432], while also
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learning to predict multiple outcomes at the same time across different patient types [425],

but work on explaining the findings remains in preliminary stages [433].

Interpretability also indicates the confidence in estimations, and understanding what data

helps and hurts the predictive accuracy of techniques. In work aimed at improving real-time

context and activity detection, Ardywibowo et al. evaluated selected sensors to improve

HAR with constraints on the types of sensors and the power those sensors consume [396].

Work by Solis et al. use the idea of uncertainty quantification in order to direct users to

gather more data in real-time, diet logging settings [434]. Uncertainty quantification is an

emerging field of interpretable machine learning that has the ability to guide confidence in

predictions collected as well as suggest additional data that patients and clinicians should

consider collecting.

11.5.2 Gaps

Existing models for predicting risk in cardiovascular conditions rely on sparse data that

are measured on rare occasions. Many parameters are trivial to measure (age, gender), and

many parameters are Boolean values relating to history. In comparison to the data produced

continuous monitoring systems, these data are sparse and likely overly-simplistic. There are

two chief ways in which the limitations posed by this sparsity of data can be overcome with

richer data: existing models can be updated to include richer data sources, and richer data

sources can be analyzed for anomaly detection and rare event detection.

The following gaps remain in developing personalized analytic models based upon the

remote sensing data gathered:

• Integration of sensing data with acute care data and outcomes for robust risk prediction

models.

• The clinical models, to date, do not use complex remote, ambulatory sensing data.

The initial development of models that leverage this data is needed.

• Learning key features for predicting adverse events from longitudinal capture without
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the presence of ground truth data remains a challenge. Understanding how to extract

features that work in accurate risk prediction models using remote sensing data and

providing confidence to clinicians on these findings will require collecting vast amounts

of data on user’s to track for the potential of clinical events. This means integrating

the sensing systems with electronic health record models that have the ground truth

diagnosis and treatment information for such events.

• Development of dynamic models that are flexible to the types of data collected, the

windows of data collected, and the changing in patient condition throughout observa-

tion.

• Deep learning-based time-to-event models either do not update when covariates change

over time, fixing a longitudinal prediction with data set at a certain point in time, or

update model estimations at fixed time-grid intervals. A time-to-event model that is

able to adapt to time-varying covariates as they are captured, such as those from the

sensing systems described in this work, is needed to update risk estimation.

• Interpretable machine learning to explain the predictions of these complex models, and

help guide clinical decision making, including identifying similar patients and explain-

ing potentially new phenotypes that might be discovered.

11.5.3 Opportunities

Existing models to quantify disease state and future disease risk could be improved

through the implementation of richer data sources into the mode. The NYHA Functional

Classification of HF relies in part on physical activity levels. The levels are subjective, with

definitions in part of “no limitation of physical activity” (class I), “slight limitation of physical

activity” (class II), “marked limitation of physical activity” (class III), and “unable to carry

on any physical activity” (class IV). These classes are inherently subjective, and therefore

susceptible to variability between patients with the same underlying disease state. Augment-

ing this classification with patterns detected from signals such as HAR and effort involved
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in activity (such as via heartrate monitoring) would allow for objective measurements from

beyond the limited scope of direct patient-physician contact. The increase of objective mea-

surements would likely lead to updates to existing models and better information to aid in

making clinical decisions.

Existing models could also be improved by the detection of rare or uncommon events.

For instance, when a patient presents with AFib, the duration of the AFib is typically

unknown. As discussed above, the CHA2DS2-VASc score can aid physicians in predicting

stroke and the appropriateness of implementing oral anticoagulation therapy. However, the

parameters which contribute to the CHA2DS2-VASc score are simplistically sparse. Age

and gender are (for cardiac risk purposes) nonmodifiable risk factors. Each of the other

parameters are positive if the patient has ever had the given event once in their life: HF,

HTN, stroke/TIA/thromboembolism, vascular disease, or diabetes. It stands to reason that

this model may be improved from richer data, such as the pattern or frequency with which

the patient experiences episodes of AFib. Addition of this richer data to the model could

potentially result in a model which is better able to discriminate between those at risk of

stroke and those at lower risk of stroke, allowing for more appropriate and judicious use of

oral anticoagulants.

The emergence of new sensing and internet of things (IoT) technologies creates a need

for new models to incorporate new data for better prediction and understanding of disease

states. The drastic increase in technology such as smartphones and smartwatches allows

for new rich data sources, and also creates a need for the utilization of these data sources.

Recently, smartwatches have been adapted to detect conditions such as AFib [435]. Further

work should look at implementing these new modalities into longitudinal risk models. For

instance, HAR recognition could be implemented as a parameter in monitoring activity

tolerance in patients with HF. This could supplement the existing subjective measures of

heart failure with newer objective measures.

Ultimately, data from new rich data sources is only valuable so far as it contributes to
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improving the quality of patient healthcare. In order for this contribution to take place,

models must generate actionable feedback that can be used for informed clinical decision

making. Rather than presenting modeling through a black box approach where data is

supplied to the model and an answer is returned, it is desirable that the reasoning behind

the risk score is understandable. If a model is interpretable, then the factors leading to a given

score can be understood and interventions made to address the risk and to improve patient

outcomes. Additionally, the greater the interpretability of a model, the more information

that the physician and patient are able to have about the overall disease state. As this

information is understood by the physician and the patient, it can be used to better inform

and guide care. As a result, the following opportunities exist for immediate and impactful

machine learning research:

• Machine learning models with cross-sectional and time-series data: Integration of sens-

ing data with acute care data and outcomes for robust risk prediction models.

• Development of dynamic models that are flexible to the types of data collected, the

windows of data collected, and the changing in patient condition throughout observa-

tion.

• Interpretable machine learning to explain the predictions of these complex models, and

help guide clinical decision making, including identifying similar patients and explain-

ing potentially new phenotypes that might be discovered.

• Transfer learning: transfer learning techniques will be able to take developed models

and adapt to a variety of signals captured, a variety of patients modeled, or a combina-

tion therein, improving the flexibility of any analytic techniques developed to advance

the prior three opportunities.

• Deep learning: adaptation of deep learning techniques that have proven successful in

natural language processing tasks and computer vision tasks to time-series modeling
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based upon the remote sensors discussed in this work provide an opportunity to develop

new transformer and attention-based models that are adaptable to various signals of

different domains and lengths.

• Adaptive time-to-event models: As deep time-to-event models improve the estimation

of risk longitudinally, developing dynamic models that adapt the model structure to

data that is newly available through different sensors is needed that account not only for

changes in the values of the modeled covariates, but that can adapt to new time-series

signals as they become available.

11.6 Discussion and Conclusion

We surveyed the field of sensing technologies and machine learning analytics that exist

in the field of remote monitoring for the tracking of risk factors that lead to primary adverse

events and secondary recurrent events associated with cardiovascular disorders. Through the

evaluation of these sensing modalities and machine learning techniques, we highlighted the

potential for addressing three critical areas of need for care in patients monitoring risk factors

associated with heart failure, coronary artery disease (and myocardial infarction), and stroke:

1) need for sensing technologies that track longitudinal trends of the cardiovascular disorder

despite infrequent, noisy, or missing data measurements; 2) need for new analytic techniques

designed in a longitudinal, continual fashion to aid in the development of new risk prediction

techniques and in tracking disease progression; and 3) need for personalized and interpretable

machine learning techniques, allowing for advancements in clinical decision making. We

highlight these needs based upon the current state-of-the-art in smart health technologies

and analytics and discuss the ample opportunities that exist in addressing all three needs in

the development of smart health technologies and machine learning (primarily deep learning)

approaches applied to the field of cardiovascular disorders and care. Whereas the progression

of smart health technologies in these needs has demonstrated success in fields such as HAR

and physical disorder monitoring, the opportunities for addressing cardiovascular care are
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many.

These cardiovascular disorders are often very complex conditions characterized by mul-

tiple changes in a patient, many of which are slow and difficult to notice. However, systems

could be built to take into account and monitor many different changes in order to track risk

factor progress for disease state monitoring and to allow clinical decisions to be made before

rapid decompensations. As a disease progresses, regular monitoring of heart sounds could

be used in order to track heart remodeling. Instead of noticing these sounds in an acute

care visit, computer-aided auscultation though wearable electronic stethoscopes could allow

for earlier detection. Quantitative edema tracking would allow for monitoring functional

changes within the heart. As pulmonary edema increases, clinicians are able to tell that

left heart function is decreasing. Changes in ECG signals may indicate progression of CAD

disorders, that may result in additional patient pain, prior to leading to heart attack. As a

patient’s condition worsens, they may gradually lose the stamina to walk certain distances or

to perform a certain amount of activity, demonstrating changes in physical activity capacity,

respiratory rate, or sleep quality. These changes may be so gradual that patients may not

notice them. Instead, new analytics for progression could instead build activity recognition

into the modeling to understand slow changes in baseline function. In this, departures from

a patient’s baseline level of activity would be significant and could be useful information for

guiding clinical care. Similarly, alterations in blood flow may lead to changes in urination

habits. As blood flow to the kidneys might be restricted during the day and increased at

night due to postural changes, the kidneys will produce more urine at night. Tracking fre-

quency of nocturnal urination could provide more clues as to overall health. Note that this

will be sensitive, but not specific for heart failure. Additional measurement of hemodynamic

characteristics, such as HTN, may show treatment effectiveness and better guide the im-

provement of factors that would lead to conditions such as stroke. In total, a comprehensive

system to track the progression of cardiovascular disorders should incorporate a body of in-

tegrated sensors, capture this data over longitudinal periods of time, and as a result, enable
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new advancements in machine learning techniques that can make best use of this data to help

guide patient and clinician alike in improving patient care through personalized, dynamic

time-to-event modeling.

This survey highlighted the needs in developing smart health applications to treat HF,

CAD, and stroke, and the risk factors associated with them. It reviewed the existing tech-

nologies, highlighting the current gaps in solutions presented for those needs. Finally, it

presented a series of opportunities, including advanced analytic techniques to be developed

once new sensing solutions are available that can guide impactful changes in the way patients

with cardiovascular disorders are cared for.
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Table 11.1: Abbreviations and Definitions of key clinical terms

Abbreviation Clinical Term Definition
AFib Atrial Fibrillation Cardiac arrythmia that is highly associated with risk

of stroke
AR Aortic Regurgitation Disease state where the aortic valve fails to completely

close during diastole, allowing for backwards flow of
blood into the heart

AS Aortic Stenosis Disease state where the aortic valve encounters resis-
tance during opening, requiring additional force from
the heart to drive blood forward

BP Blood Pressure The pressure present in the arterial circulatory sys-
tem. Blood pressure oscillates from a peak value (sys-
tolic blood pressure) to a trough value (diastolic blood
pressure) as the heart beats

CAD Coronary Artery Disease Disease state characterized by impaired blood flow in
the small arteries around the heart (the coronary ar-
teries)

ECG Electrocardiography/Electrocardiogram Tracing that shows a measurement of cardiac electrical
activity

HAR Human Activity Recognition Utilizing sensors to classify a patient’s physical activ-
ities

HF Heart Failure Disease state characterized by an impaired ability of
the heart to drive blood forward

HFpEF HF with preserved ejection fraction Heart failure state characterized by a normal ejection
fraction, often related to defects in ventricular filling
during diastole

HFrEF HF with reduced ejection fraction Heart failure state characterized by a decreased ejec-
tion fraction, often related to impaired ventricular con-
tractility or to pressure overload

HTN Hypertension A health condition characterized by chronically in-
creased blood pressure that puts patients at risk of
heart disease

(A)MI (Acute) Myocardial Infarction Disease state characterized by impaired coronary
blood flow leading to some degree of cardiac muscle
death. Commonly known as a "heart attack."

MR Mitral Regurgitation Disease state where the mitral valve fails to completely
close during systole, allowing for backwards flow of
blood within the heart

MRI Magnetic Resonance Imaging Imaging technique using powerful magnets to image
internal structures

NSTEMI Non-ST-elevation MI MI characterized by a lack of ST segment elevation on
ECG

NYHA New York Heart Association Entity that issues guidelines for heart failure classifi-
cation

PMI Point of Maximal Impulse Point on a patient’s chest where the movement of the
patient’s heart can most strongly be felt.

S3 Third heart sound A heart sound occurring after the normal second heart
sound. It is benign in younger patients, but indicative
of pathology in older patients

S4 Fourth heart sound A heart sound occurring prior to the normal first heart
sound. It is indicative of pathology

SA Stable Angina Chest pain that occurs after a certain amount of exer-
tion caused by restricted blood flow through the coro-
nary arteries

STEMI ST-elevation MI MI characterized by an elevation of the ST segment
on ECG

TEE Transesophageal echocardiography Imaging technique that uses ultrasonography and a
probe in the esophagus to evaluate the function of the
heart

TIA Transient Ischemic Attack Temporary restriction of blood flow to a part of the
brain. Similar to a stroke, but resolves within minutes.

TTE Transthoracic echocardiography Imaging technique that uses ultrasonography and a
probe on the chest to evaluate the function of the heart

UA Unstable Angina Chest pain that occurs at rest caused by restricted
blood flow through the coronary arteries
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Table 11.2: Sample of current commercially-available devices and common cardiovascular
parameter monitoring

Product Class Product (Optical) Heart Rate Blood Pressure Other Measures
Smartwatch Amazfit Verge[271] X × ECG

Apple Watch[272] X × ECG
Empatica Watch[273] X × Galvanic Skin Re-

sponse & Temperature
Fitbit[274] X ×
Garmin Fenix
Watch[275]

X × PulseOx & Tempera-
ture

Samsung Galaxy
Watch[276]

X X

Valencell-associated
smartwatches[277]

X ×

Withings (Move ECG,
ScanWatch, Steel HR,
Pulse HR)[278]

X × PulseOx, ECG

Smart Ring Oura (Ring)[279] X ×
Headphones Samsung Galaxy

Buds[276]
X ×

Valencell Blood Pres-
sure Kit[280]

X X

Valencell-associated
earbuds[277]

X ×

Chest Strap Garmin HRM-Series
Chest Strap[281]

× × ECG

Polar H-Series Chest
Strap[282]

× × ECG

QardioCore Chest
Strap[283]

× × ECG

Medical Devices AliveCor ECG[284] × × ECG
Caretaker[285] X X PulseOx
Finapres Nova[286] X X PulseOx
QardioArm[287] × X

247



Table 11.3: Summary of sensing types, analytic possibilities, and the advantages and disad-
vantages of the technologies

Technology Sensor Analytics Advantages Disadvantages
Digital
stethoscope[288, 292]

Microphone and appro-
priate casing

Automated segmenta-
tion could be applied to
segment beats and an-
alyze characteristics of
heart sounds

Relatively cheap and
accessible technologies

Commercially available
models require physi-
cian evaluation

Radar vital sign
measuring[294, 259]

Radar receiver to mon-
itor patient physiolo-
gies

Analyze movement to
extract heartrate and
respiratory rate

No contact required Requires knowing pa-
tient posture, Limited
to a single patient at a
time

Electrocardiography[300,
301, 304]

Measurement of car-
diac electrical impulses

Automated segmenta-
tion required for analy-
sis, pattern recognition
required for detection
of changes such as arry-
thmias or ST elevations

Gold standard in car-
diac monitoring

Requires lead place-
ment, Susceptible to
noise, Difficult to inter-
pret

Cuff-Based BP
Monitor[306]

Pressure impulse or
sound during cuff
deflation

Automated analysis of
cuff pressure allows for
extraction of systolic
and diastolic BPs

Perform well at provid-
ing accurate measures
of patient BP, Easy to
use

Unable to provide con-
tinuous blood pressure,
Obtrusive

PPG-Based BP
Monitor[309, 310]

PPG signal in coordi-
nation with ECG sig-
nal

Extracts blood pres-
sure by relationship of
electrical signal and
pulse signal arrivals.

Could be applied to
continous monitoring

Requires multiple sig-
nals, Poor accuracy
due to variable pre-
ejection period timing

Bioimpedance-based
BP Monitor[321]

Bioimpedance signal Extracts blood pres-
sure by relationship of
bioimpedance along ar-
teries.

Could be applied to
continous monitoring

Not commercially
available

Ultrasonography[327,
328]

Ultrasound genera-
tor sends pulses into
patient and analyzes
rebounding signals to
construct an image

Image analysis re-
quired for flow as-
sessment and vessel
characterization

Allows direct visualiza-
tion of blood vessel, al-
lows for real time visu-
alization

Not available in wear-
able form, Noisy im-
age, quality dependent
on skill with device,
Requires expert evalu-
ation

Smart Sock [331, 332] Accelerometer and
stretch sensor

Estimates leg edema
using learned mapping
of inputs

Allows for remote mon-
itoring of extremity
edema

Not commercially
available

Continuous Glucose
Monitor[343]

Subdermal electrode to
sample interstitial fluid

Allows for estimation
of food intake and for
personalized treatment
of glucose intolerance

Captures a difficult sig-
nal that is closely re-
lated to long term
health issues

Invasive, Unlikely to
reach universal adapta-
tion, Needs to be re-
placed after 14 days
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12. ESTIMATING BEAT-TO-BEAT CUFFLESS BLOOD PRESSURE WITH NEURAL

ARCHITECTURE SEARCH

This chapter now examines a particular application of machine learning to remote sen-

sors. As detailed in Chapter 11, smart watches are able to provide a wide range of monitor-

ing. However, there does not yet exist a commercially available watch-based cuffless blood

pressure monitoring system. This chapter details analytic approaches for estimating blood

pressure from a novel bioimpedance wrist-worn device.

12.1 Introduction

Hypertension, a disease marked by chronically elevated blood pressure, affects one in

four adults worldwide, causes an estimated 7.6 million deaths per year, and results in the

loss of 92 million disability-adjusted life-years [436]. A cornerstone of lowering cardiovas-

cular risk is the management of hypertension [265, 437, 438, 439, 440], as blood pressure

is the most modifiable physiological marker that drives risk for cardiovascular disorders

[265]. However, evidence is abundant that measurement of blood pressure outside a clini-

cal visit provides better prognostic information [265], including the identification of masked

hypertension [441], white coat hypertension [442], or nocturnal non-dipping hypertension

[443]. Studies estimate 10% of the population is unaware of their added risks in these cases

[444, 445, 446, 447, 448, 449], supporting the need for ambulatory measurements taken more

frequently for each patient. While ambulatory blood pressure monitoring devices better

capture blood pressure measurements that indicate hypertension, these devices present a

number of serious shortcomings that prevent widespread adoption and use, for example,

startling or even awakening asleep subjects and leading to a misdiagnosis of a ‘non-dipper’

[450]. As a result, studies are hard to repeat and typically limited to measuring ambulatory

blood pressure in a single 24-hour period [451, 452, 453]. Studies [454, 455] have shown that

additional measurements over a single 48-hour period or two 24-hour measurement periods
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provide significant additional prognostic value. Therefore, a solution is needed that allows

for continuous and unobtrusive monitoring. More specifically, a cuffless device that enables

readings without subject disturbance is needed.

Cuffless blood pressure monitoring devices measure surrogates of blood pressure and

utilize regression modeling techniques in order to provide diastolic and systolic blood pres-

sure readings from these surrogates. Devices that use photoplethysmography (PPG) and

electrocardiography (ECG) [456], or bioimpedance [457, 458] have recently been developed

to measure the pulse transit time (PTT) or pulse wave velocity (PWV), which are known

surrogates for blood pressure [459, 321, 460]. These work focus on collecting physical sig-

nals and formulating the relationship to the blood pressure, but lack algorithms for further

modeling and analysis. Recent work by Ibrahim and Jafari [321] demonstrated that their

bioimpedance-based sensor better located arterial sites from which to measure these phys-

iologic surrogates of blood pressure. Using an AdaBoost regression technique and a series

of maneuvers on feature selection, they built a window-based personal model that measures

diastolic and systolic blood pressure to with respective errors of 2.6 mmHg and 3.4 mmHg,

within the ISO standard that requires errors less than 10 mmHg [461]. However, the aver-

aging calculation of features and labels lost many details, and is not a straightforward map

from the physical signals to blood pressure. Additionally, this tree-based algorithm ignores

the relationship between diastolic and systolic blood pressure, and relies on personal feature

extraction thus does not fit future exploration, e.g. a generalized model.

As the dataset from Ibrahim and Jafari [321] is made available to us, we seek to examine

this model and dataset, with the intention of developing regression models that provide an

extension of a beat-to-beat regression model that provides estimates of blood pressure for

each heartbeat, rather than average value over time. Since blood pressure is a function of car-

diac output and arterial compliance, a change in arterial compliance impacts how much the

PTT varies when blood pressure varies [462, 463]. The beat-to-beat measurements of blood

flow relate to both diastolic and systolic blood pressure, but in a non-linear relationship. For
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instance, high systolic blood pressure can be associated with a correspondingly high dias-

tolic blood pressure but might also be associated with an unchanged diastolic blood pressure.

Therefore, we develop a multitask learning (MTL) network to estimate both diastolic and

systolic blood pressure, and hypothesize that an MTL framework that first measures the

changes in bioimpedance signals and then uses task-specific layers to correlate those changes

to diastolic and systolic blood pressure will be more accurate than developing task-specific

models. Additionally, while work by Ibrahim and Jafari [321] identified a number of manual

features that correlate PTT and specific bioimpedance features to blood pressure, we seek to

both explore a neural architecture that is able to automatically learn features of importance

as well as to use a neural architecture search (NAS) technique to identify the appropriate

model structure to optimize this task. We train a controller network that produces an op-

timal number of layers and network depth without requiring background knowledge on the

type of data and depth of network necessary to tune in a manual grid-searched fashion.

Generalizable Insights about Machine Learning in the Context of Healthcare

• We implement models able to produce patient blood pressure by noninvasive means

from wearable sensor signals.

• The design of the MTL model allows for top-level healthcare knowledge to guide ma-

chine learning exploration. Model design encompassing this top-level domain knowl-

edge allows for better models that are able to realize complex relationships present in

the underlying physiological processes.

• Application of the NAS algorithm into the physiologically-motivated MTL network

allows for further design space exploration and improved performance at the extremes

of prediction error. This integration improves upon variation present in underlying

physiological assumptions.
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12.2 Related Work

12.2.1 Cuffless Blood Pressure

There is substantial interest in developing cuffless blood pressure monitoring devices.

One common approach to develop such a device is through the simultaneous use of ECG

and PPG signals. Kachuee et al. [464] describe an algorithm for extracting blood pressure

from ECG and PPG using both manual feature extraction techniques and vector-based

matching on shape and timing, but cannot meet the ISO standard. Zheng et al. [460] used

an armband equipped with ECG and PPG to measure PTT by manually deriving the PTT

using R-R intervals and manually discarding signals with motion artifacts. Linear and non-

linear models based upon Moens-Korteweg were applied and obtained a root mean squared

error (RMSE) of 8.7 mmHg for systolic blood pressure over a 24-hour monitoring period.

Approaches that use ECG and PPG suffer inaccuracies resulting from the pre-ejection period,

which constitutes a time delay between the electrical stimulation of the heart and the actual

mechanical expulsion of the blood for each heartbeat [312]. One approach to overcoming the

limitations of PPG is to use a dual PPG system. Wang et al. [465] proposed utilizing one PPG

on the forearm and one on the wrist coupled with an accelerometer to build a system that can

measure PWV while remaining robust to motion artifacts. Nabeel et al. [466] similarly used

a dual-PPG system and were able to estimate diastolic blood pressure with an RMSE of 5.26

mmHg, but reported greater difficulties in measuring systolic blood pressure. In addition to

PPG and ECG, Chandrasekaran et al. [467] proposed a novel method of using the built-in

camera and microphone from two smartphones to estimate blood pressure. The authors used

a physical model relating the transit time to the blood pressure, and report accuracies of 90%

when implementing their regression models. This smartphone-based cuffless blood pressure

estimation method has a high error margin of 6 mmHg, and requires subjects to touch the

phone, and therefore is not able to capture nocturnal blood pressure. A chief limitation in

all of these works was often the manual extraction of key features with pre-designed models
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for linear or non-linear regressions.

Ibrahim and Jafari [321] developed a wrist-worn device to capture bioimpedance signals

for continuous blood pressure estimation. By evaluating measurements along the wrist,

this method does not suffer from timing errors as a result of the pre-ejection period. To

evaluate the method, they recruited ten healthy subjects aged between 18 and 30 years

old and collected data from them using the wrist-worn sensors as well as the reference

using the Finapres NOVA system. Data was collected after exercising in order to induce

physiologic changes in subject blood pressure. The Finapres NOVA device measures the

reference diastolic and systolic blood pressure for each heartbeat. This reference beat-by-

beat blood pressure is related to the bioimpedance curves measured by the four pairs of

sensors throughout the beat. There are 50 features extracted from the bioimpedance signals

representing diastolic peak, maximum slope, systolic foot, and inflection point, representing

PTT and personal vessel elasticity information. Finally, the extracted features are averaged

over 10-beat windows and applied to two separate AdaBoost regression models to estimate

window-based diastolic and systolic individually. The results show an average RMSE and

correlation coefficient (R) of 2.6 mmHg and 0.77 for the diastolic blood pressure and 3.4

mmHg and 0.86 for the systolic blood pressure.

12.2.2 Neural Architecture Search

Neural Architecture Search (NAS) is an approach for optimizing network architecture to

improve performance and has been successfully applied in multiple domains. Chen et al.

[468] describe a NAS applied to building shared-hierarchical MTL models for natural lan-

guage processing tasks. They utilize NAS to determine an optimal way in which to share

modules between tasks, allowing similar tasks to share additional modules and dissimilar

tasks to share fewer modules. Several studies have shown benefits from utilizing NAS to

optimize models in medical domains, such as Weng et al. [469] and Faes et al. [470]. Weng

et al. [469] proposed a method for applying NAS on medical image segmentation. Fonseca

et al. [471] applied NAS to build a convolutional neural net classifying tissue composition
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in patients undergoing mammography, producing a model with performance comparable to

several experienced radiologists. Balaprakash et al. [472] developed a reinforcement learning-

based NAS to automate a finding an optimal deep learning-based model for predicting cancer

using a class of non-representative data. Liu et al. [473] built a human activity recognition

system from human motion information captured by distributed infrared sensors, and ap-

plied NAS to learn the best mask structure for the recognition task. These approaches

all demonstrate applicability and utility of NAS methods to work in multiple domains to

improve model architecture, and we employ such a method here.

12.3 Dataset and Data Preprocessing

12.3.1 Dataset

The dataset for this paper was collected from 11 subjects by a wrist bioimpedance sensor

[321]. The sensor collects four channels at a sampling rate of 20 kHz and measures the

impedance corresponding to blood volume changes within the the ulnar and radial arteries.

The data is collected for each subject through a few workout trials with resting periods

between. Workout serves to elevate blood pressure and ensure that a range of physiologic

values are measured. Noise has been removed from the dataset and 13.47 ± 4.05 minutes

of resting measurements remain for all subjects, except for one outlier with only has five

minutes of data. When collecting data from the wrist bioimpedance sensor, the participants

also wore the Finapres NOVA device to capture beat-to-beat diastolic and systolic blood

pressure as the reference blood pressure. We use this dataset in our work.

12.3.2 Data Preprocessing

The raw bioimpedance signals are segmented into windows by heartbeat. The segmented

beat-to-beat signals are fed into an LSTM for time-series feature extraction. The heartbeat

sequence length of the dataset varies from 5 to 25 thousand, representing heart rates from

48-240 beats per minute. Samples with a sequence length over 20,000 are removed as the

majority of these represent erroneously detected heartbeats with beat length far longer than
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physiologically likely in the subject demographic. While LSTM models have proven to

be functional in extracting features from time-series data, a reasonable limit of at most a

few hundred timesteps is often used in practice. Therefore, all sequences are downsampled

from 20 kHz to 100 Hz by equally sampling at a ratio of 200:1, giving each heartbeat

at most 100 measurements. An illustrative figure and further details are provided in the

appendix. We then zero pad the beginning of all samples to make their length 100 for

shorter sequences. Although the LSTM layers are used as an alternative to manual feature

extraction as described in Ibrahim and Jafari [321], we augment the four available signal

channels with their first derivative to increase performance of the LSTM. This implicitly

provides additional timing information akin to extracting the PTT or PWV, which are

important factors in estimating blood pressure. Finally, we add the timing of each point

in the sequence as an extra channel. The final input to the LSTM consists of these nine

channels across 100 timesteps.

12.4 MTL for Personalized Blood Pressure Estimation

12.4.1 Model Development

The model development consisted of three key steps: 1) embedding time series data, 2)

using a network to extract diastolic and systolic blood pressures from the shared LSTM out-

put, and 3) optimal network architecture search. We used this configuration to first encode

shared relationship information between the bioimpedance signals for each heartbeat with

both diastolic and systolic blood pressure models, then developed task-specific layers. Both

diastolic and systolic blood pressure are functions of cardiac output and arterial compliance

but are always linearly related. For instance, variability in this difference is known to be

related to the nocturnal dipping status of patients [474]. The MTL framework takes the

features extracted though data embedding and uses two task-specific networks to correlate

the same features to diastolic and systolic blood pressures separately.

A structure of our general model is represented in figure 12.1. Our model uses a single
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Figure 12.1: Overall network architecture. Each time point along a heartbeat is fed into the
LSTM, and the final output of the LSTM is fed into the feature network for calculating blood
pressures. As depicted here, the network is structured using an MTL approach following a
shared layer. For the baseline single-task models, only one branch of the MTL (systolic
(SBP) or diastolic (DBP) blood pressure) is present.

layer LSTM at each time step with 30 units to encode the beat-to-beat time-series signals.

The LSTM first step is initialized with random values. LSTM allows for the memorizing of

historical information, so we use LSTM to embed time-series signals in order to extract the

changing of signals within each beat. A given state h in the LSTM includes the historical

bioimpedance information of a beat sequence, and x is the input at each time point within

a sequence. The output from the final LSTM cell, which memorizes the bioimpedance

information of the entire beat, is utilized in predicting the blood pressure.

After the LSTM, we add a dropout layer with keep probability 0.7. The LSTM model

extracts historical information from the time-series data. However, it is essential that the

model be able to incorporate the relationship between adjacent signals, consisting of pairs of

channels with data from the same artery. This relationship implicitly describes the movement

of the arterial pulsation distally along the artery. Notably, the PTT and PWV, hallmarks of

earlier work, can only be measured by observing the signal at two separate locations along

the same artery, and knowing the distance between those locations. Therefore, we added a

shared fully connected layer after the LSTM and dropout layer for feature extraction. The

hidden size of this single layer is 30 nodes, which are delivered to the task-specific networks
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for estimating diastolic and systolic blood pressures.

The two networks take the same features from the shared layer as inputs. Both networks

contain a tunable number of fully connected layers with ReLU activation functions and

tunable hidden sizes for each layer. We manually searched the number of layers from two to

seven and let the hidden size vary from 20 to 100 as an initial exploration space to prevent

overfitting. We observed that the results of blood pressure estimation decrease whenever the

number of layers exceeds five or the size of a hidden layer exceeds 50, and then we decided

to extensively search from two to five layers with 20 to 50 hidden nodes per layer. Initial

exploration outside of this range lead to rapidly decreasing performance metrics. After the

multiple task-specific layers, each network output is converted to a single value using a fully

connected layer with a linear activation function to estimate the respective blood pressure.

The optimal setting varies between subjects. However, three layers with hidden size 30 (prior

to the output layer) works well for many of the subjects. When using a different number

of layers between the two networks in a given subject, the accuracy suffers as the different

network depths fail to converge given the limitations of back propagation. The shared loss

function used for blood pressure estimation is:

LBP =

√∑
i

(ES
i − T S

i )
2 + (ED

i − TD
i )2 (12.1)

where ED and ES represent the estimated diastolic and systolic pressures, respectively,

and T S and TD are their target values respectively. This way, both diastolic and systolic

blood pressures are estimated by using different networks but the same features, and when

updating the model parameters they control both their own part and the shared network. A

comparison between the performances of the MTL-based model and the individual estimation

models is provided below.

Using an internal validation set from the training data, we manually searched the number

of units in each LSTM cell from 20 to 50, the hidden size of the shared layer from 20 to
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50, and the keep probability for the dropout layer from 0.5 to 1. Changing the LSTM cell

unit count and the shared layer size did not contribute significantly to performance, while

optimal performance was achieved by dropout of 0.7. However, when changing the number

of layers and their hidden size for the task-specific layers in the MTL, the result changes for

each subject and the best setting varies between subjects. As mentioned earlier, the results

decrease whenever the number of task-specific layer is over 5 or the hidden size of them is

over 50. Therefore, we hypothesized that a very big network over-computes the features,

resulting in a model with excessive bias.

Our current dataset has 11 subjects in total, allowing for a manual search for personalized

models. However, searching for optimal architecture and hyperparameters becomes infea-

sible when expanding to arbitrary future subjects. Therefore, we decided to search model

architectures for the best performing architecture when applied to an arbitrary subject in

our dataset. Grid searching is an easy approach to this problem, but it has two limitations:

1) it requires manually searching to obtain background knowledge and decide the search

range, and 2) when the dataset becomes big, the model needs to run all the possible settings

for all the subjects, which is a time-concerning work.

To better search the space of appropriate size and layers of the MTL network, we utilized

NAS. NAS uses a recurrent network as a controller which produces an architecture for a child

model. The controller network is updated with a reinforcement learning approach that treats

the performance of the produced model as its reward. When producing the child model, the

output of each step is used as a hyperparameter, and is delivered to the next step for the

recurrent network as input. We fix the MTL with five layers and use the recurrent network

with ten units as the controller that produces the hidden size for each hidden layer one at a

time. The MTL layers are produced as follows:

pi = C(ui−1, pi−1) (12.2)
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Rj =
1

Lj
BP

(12.3)

where C represents the recurrent controller network. In each step i, it takes the state ui−1

and output pi−1 from the previous step i− 1 to compute the output pi at the current step.

Here pi refers to the produced hidden size for a given network at a certain MTL layer, and

pi−1 indicates the hidden size of the opposite network from the previous layer. To update the

controller in the reinforcement episode j, we calculate the reward Rj as above to encourage

the controller network being trained to obtain lower blood pressure estimation loss LBP as

defined in equation 12.1. From grid searching, the best number of layers varies between 2

to 4, and the results decrease rapidly when the number of layers is over 5. Therefore, we

searched through adding one layer beyond that when applying NAS in order to give NAS

enough space to search and explore. The controller has 10 steps in total including 5 layers

and 2 prediction at each layer. The controller network was implemented using the NAScell

package in Tensorflow to produce the MTL model, and the produced child network is trained

as naive MTL [475].

12.4.2 Experimental Results

We tested both individual task models and the MTL model for each subject. For both

models, we used 10-fold cross validation to train each subject. In each fold, 80% of data was

randomly picked as training set, 10% as validation set, and 10% as test set. The validation

set and test set had no overlap among folds, and the models were re-initialized with random

parameters at the beginning of each fold. After 10 folds of training and testing, we took the

estimated diastolic and systolic values from all folds and returned to the original time-series

order, then calculated RMSE and correlation for evaluation. We then improved over this

baseline by utilizing NAS as described above. After finding optimal architecture using NAS

to construct the task-specific layers for, the resulting MTL model was trained, validated,

and tested in the same way.

Table 12.1 compares the baseline individual task models, our MTL model, and the MTL
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model as optimized by NAS. With separate models, diastolic blood pressure estimation

gets 3.43 mmHg average MSRE with 0.79 standard deviation and 0.73 average correlation.

Systolic blood pressure has 5.25 mmHg average RMSE with 1.87 standard deviation and

0.75 average correlation. All subjects have RMSE within ISO standards for error of 85% of

beats with under 10 mmHg absolute error.

Table 12.1: Mean ± Standard Deviation RMSE (mmHg) and R for individual task models,
MTL model, and NAS-MTL model for beat-to-beat diastolic and systolic blood pressure
estimation (DBP & SBP)

Model DBP RMSE SBP RMSE DBP R SBP R
Individual task 3.43± 0.79 5.25± 1.87 0.73± 0.10 0.75± 0.10

MTL 3.18± 0.50 4.53± 1.03 0.77± 0.09 0.80± 0.10
NAS-MTL 2.91± 0.47 4.46± 0.90 0.89± 0.01 0.92± 0.02

Table 12.2: Individual task model beat-to-beat performance per subject for diastolic and
systolic blood pressure (DBP & SBP) RMSE (mmHg) and R.

Subject DBP RMSE SBP RMSE DBP R SBP R
1 2.98 4.08 0.81 0.75
2 3.58 4.65 0.83 0.91
3 2.95 5.64 0.74 0.62
4 3.26 5.21 0.61 0.76
5 2.94 2.66 0.84 0.89
6 4.99 6.61 0.61 0.70
7 3.95 6.00 0.68 0.74
8 4.69 9.88 0.58 0.62
9 2.85 4.17 0.72 0.67
10 2.90 4.46 0.72 0.71
11 2.61 4.39 0.84 0.87

Mean 3.43± 0.79 5.25± 1.87 0.73± 0.10 0.75± 0.10

Table 12.2 contains the beat-to-beat results from the baseline model while Table 12.3

shows the results from the MTL model. The baseline models in Table 12.2 are composed
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Table 12.3: MTL beat-to-beat performance per subject for diastolic and systolic blood pres-
sure (DBP & SBP) RMSE (mmHg) and R.

Subject DBP RMSE SBP RMSE DBP R SBP R
1 3.40 4.43 0.74 0.69
2 3.71 4.60 0.81 0.91
3 2.28 3.29 0.85 0.89
4 3.18 5.26 0.65 0.76
5 2.82 2.75 0.85 0.89
6 3.87 5.12 0.79 0.84
7 3.37 5.11 0.78 0.82
8 3.52 6.50 0.79 0.86
9 2.63 3.70 0.77 0.76
10 3.45 4.66 0.56 0.59
11 2.72 4.32 0.83 0.86

Mean 3.18± 0.50 4.53± 1.03 0.77± 0.09 0.80± 0.10

of individual separated diastolic or systolic prediction networks. We observe that the MTL

model averages RMSE 3.18 mmHg with 0.50 standard deviation for diastolic blood pressure

estimation and 4.53 mmHg with 1.03 standard deviation for systolic blood pressure. All

the subjects have error with the ISO standard. At the same time, diastolic blood pressure

averages 0.77 correlation and systolic blood pressure achieves 0.80, with standard deviation

0.09 and 0.10 respectively.

In order to compare with the previous work of Ibrahim and Jafari [321], we calculated

the blood pressure as averaged over a 10-beat window. The previous work, two AdaBoost

regression models with manually extracted features, estimated diastolic blood pressure with

an RMSE of 2.6 mmHg and correlation of 0.77 and systolic blood pressure with an RMSE of

3.4 mmHg and correlation of 0.86. The MTL model obtained an RMSE of 1.57 mmHg and

correlation of 0.93 for diastolic blood pressure and an RMSE of 2.31 mmHg and correlation

of 0.94 for systolic blood pressure. See appendix for more details. As we primarily focus

on beat-to-beat estimation in this paper the remaining results focus solely on beat-to-beat

findings.

Figure 12.2 shows a randomly chosen example of estimated blood pressures and their tar-
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Figure 12.2: The estimated and target blood pressures for a randomly chosen subject as
generated by the MTL model (left) and NAS-MTL model (right).

gets from a randomly chosen subject and is representative of all subjects. In these plots, the

predicted blood pressures from the MTL and NAS-MTL accurately estimates the changing of

blood pressure, even though it does not match every beat perfectly. The impact of Valsalva

near beat 200 can be seen by a rise in systolic blood pressure and a corresponding but smaller

rise in the diastolic blood pressure. We notice that the MTL model can accurately estimate

peaks from targets, e.g. the peak at around the 100th beat and before the 200th. However,

the estimated blood pressures are more stable comparing to the targets. The target blood

pressures vary more but our estimated blood pressures are smoother. In comparison to the

naive MTL, the estimated systolic blood pressure from NAS-MTL is closer to target values

after the blood pressure increases near beat 200.

The Bland-Altman plot for beat-to-beat MTL predicted blood pressures for all subjects

is shown in Figure 12.3. The top two figures show the estimated and reference (target) blood

pressures. The lower two figures include the absolute error for all predictions. The lower

figures show the 95% confidence intervals (CIs) for the limits of agreement. To compare

with the ISO standard, we also calculated the 85th percentile of errors from the estimated

blood pressure. In this model, 85% of predictions have errors within 4.05 mmHg diastolic

and within 5.72 mmHg systolic. With this model 98.4% of predictions have diastolic error
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less than 10 mmHg and 95.4% of predictions have systolic error less than 10 mmHg.

Figure 12.3: Bland Altman plot for MTL beat-to-beat model.

Table 12.4 provides the beat-to-beat results from the MTL with architecture optimized by

NAS. Diastolic blood pressure averages RMSE of 2.91 mmHg with 0.47 standard deviation,

and systolic blood pressure averages RMSE of 4.46 mmHg with 0.90 standard deviation. All

subjects have diastolic RMSE less than 4 mmHg and all systolic RMSE are below 6 mmHg.

The Bland-Altman plot for beat-to-beat NAS-MTL is shown in figure 12.4. The upper

figures show that the NAS-MTL model is able to estimate blood pressure in all ranges. The

95% CI for the limit of agreement for diastolic and systolic blood pressure estimation are

shown in red. In this model, 85% of predictions have errors within 4.21 mmHg diastolic and

within 6.30 mmHg systolic. With this model 99.2% predict with diastolic error less than 10

mmHg, and 95.7% of predictions have systolic error less than 10 mmHg.
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Table 12.4: NAS-MTL beat-to-beat performance per subject for diastolic and systolic blood
pressure (DBP & SBP) RMSE (mmHg) and R.

Subject DBP RMSE SBP RMSE DBP R SBP R
1 2.88 4.03 0.91 0.87
2 3.39 5.00 0.92 0.95
3 2.31 3.20 0.92 0.95
4 2.66 4.65 0.87 0.90
5 3.11 3.05 0.90 0.93
6 3.97 5.43 0.88 0.91
7 3.33 5.14 0.89 0.91
8 3.56 5.71 0.89 0.94
9 2.56 3.57 0.88 0.88
10 2.53 3.55 0.90 0.89
11 3.00 4.82 0.88 0.91

Mean 2.91± 0.47 4.46± 0.90 0.89± 0.01 0.92± 0.02

12.4.3 Analysis

As shown in figure 12.2, the MTL model is able to accurately estimate the changing of

blood pressures and track along with the ground truth blood pressure through its peaks,

troughs, and rapid changes. We also notice that the plots from estimated blood pressure

are smoother than the plots of measured blood pressure. When comparing table 12.2 and

table 12.3, we observe that the MTL model has better performance for both diastolic and

systolic blood pressures across all metrics in comparison to individual models. The MTL

model decreases the average diastolic RMSE by 0.25 mmHg and the average systolic RMSE

by 0.72 mmHg. The lower RMSE and higher correlation indicate that the estimated blood

pressure from the MTL model has superior alignment with the targets. More importantly,

the performance of the MTL model is more stable across subjects than are the independent

models. For some subjects, such as subjects 6, 7, and 8, separate models obtain startlingly

worse performance. Therefore, the two outcomes produced by the MTL model and its joint

loss function clearly provides some performance boost that is lacking in the individual case.

These results also show a difference in the difficulty of the two tasks. Diastolic blood

pressure is typically estimated with a lower error than is the systolic blood pressure. Systolic
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Figure 12.4: Bland Altman plot for NAS-MTL beat-to-beat model.

blood pressure has a wider physiological range than does diastolic and, in our dataset, the

systolic blood pressure similarly shows this wider range. However, the high correlation

exhibited by our estimations of systolic blood pressure shows that the model follows along

with the variations across this wider range.

Applying NAS has variable results, with the optimal model from some subjects providing

a much higher performance than for others. For many subjects, it finds architectures that

give similar results as to the MTL without NAS, meaning that NAS saves the effort of

manually searching and producing models with some good results. However, there are some

subjects, namely subjects 5, 6 and 11, which have inferior results to the model produced

by manual searching. This likely results from fixing the number of MTL hidden layers to

at most five and only searching the hidden size of each layer. It is possible that five layers

are overwhelmed for these three subjects, as the manual search found that two layers gives

a superior performance for these subjects. Here we only focus on using NAS to search the
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Figure 12.5: Plots comparing absolute error by percentile for MTL and NAS-MTL models.
The base MTL model has lower error for the most values, but higher error among its 10%
worst predictions of diastolic error and among its 5% worst predictions of systolic error. NAS
performs slightly worse on most points, but has smaller error at the extremes, represented
by where the plots cross. Both plots show the same data, but the plot on the right is scaled
to show the transition between the relative model performance.

hidden size. We plan to extend to the number of layers in our future work.

One unexpected result in analyzing the output from the NAS-searched space was that in

several cases, the size of the hidden layer surpassed sizes that were expected and searched

manually. In several cases NAS found optimal performance with up to 76 nodes in a hidden

layer, which was beyond the range of what we expected to be worth considering in our manual

search. This reflects a central limitation of manual grid searching in that the search space

can be limited by initial selection. We also found that the NAS-searched architecture has

a similar hidden size for all subjects in the first three layers, meaning that all the subjects

may have an underlying relation that is found by those three layers, and that the last two

layers account for personal variability in blood pressure estimation.

When comparing NAS searched and manually searched MTL model, NAS searched MTL

is more accurate for the extreme blood pressure estimation, as shown in figure 12.2, and

has less errors over 10 mmHg, as shown in figures 12.3 and 12.4. However, NAS searched

MTL acts worse than manually searched MTL for the middle blood pressure. Starting from
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90% percentile and 95% percentile of errors, NAS has benefits over manually searching. The

tradeoff of where NAS outperforms MTL is more readily seen in figure 12.5. Here we see that

the most extreme errors produced by the NAS model are smaller than the errors produced

by the MTL model, but that the less extreme errors are greater in NAS model. We conclude

that NAS searched architecture has better performance on extreme blood pressure estimation

than manually searched MTL but is worse for the middle blood pressure. The reason is that

the number of layers for NAS is fixed to be five, and the searched architecture has bigger

hidden size than manually searched architecture. Therefore, NAS searched architecture can

provide more computation for the more difficult to estimate extreme blood pressures but

may cause redundant computation for a middle and easy blood pressure.

12.5 Discussion

Our study shows that an MTL-based regression is able to estimate patient blood pressure

successfully with bioimpedance signals. Our proposed beat-to-beat model performs with

RMSE of 2.91 mmHg and 4.46 mmHg for diastolic and systolic blood pressure, which has

a significant improvement over the ISO standard of 10 mmHg. The high correlation means

that our estimation not only has low errors, but also accurately represents the range of

physiologic blood pressures in our sample population. The MTL model is more efficient and

accurate than separate models, decreasing the RMSE of diastolic blood pressure by 0.52

mmHg and 0.79 mmHg for systolic blood pressure. Diastolic and systolic blood pressure

are not linearly related, but are both fundamentally tied to the true arterial blood pressure,

and are both estimated from the same bioimpedance signals. The shared LSTM and dense

layers in the model are trained by both diastolic and systolic blood pressure, and thus can

be balanced during training and allow for the shared network to learn features important to

both tasks. This approach can be extended to other applications by predicting other tasks

and diseases that are inherently related.

In comparison to traditional tree-based blood pressure estimation algorithms, the deep

learning-based MTL model not only improves performance but allows for further optimiza-
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tion. We applied NAS on the MTL to optimize model architecture by producing the task-

specific networks layer-by-layer. Even though the task-specific networks are separate, the

multiple tasks are related and from the same shared layer. Thus, NAS is able to successful

produce the hyperparameters layer by layer sequentially from a recurrent network. NAS is

encouraged and trained toward better MTL performance, but replaces manual search with

an optimizer for more accurate guidance and thus can provide a superior method of searching

the hyperparameter space. The MTL model produced by NAS has improved estimation at

extreme blood pressures and has lower errors in the extremes,allowing for greater practical

utility.

12.5.1 Limitations & Future Directions

A chief limitation in this work is in the nature of the population from which our data was

derived. The data was derived from subjects who were healthy individuals aged between 18

and 30 with no evidence of or known cardiovascular disease. Needless to say, these subjects

do not represent the full spectrum of patient physiologies that should be incorporated in this

modeling approach. Future work has been planned to collect data on patients in a clinical

setting, and to better understand the variation present in a more robustly varied population.

As more data becomes available, the methods outlined in this paper can be adapted to

account for the anticipated increase in diversity. The logical continuation beyond that point

is to collect the data of patients with known hypertension and to assess the clinical utility

of utilizing this technique for adaptation to direct patient care. From there, this technique

could be expanded to acutely ill patients in an ICU setting who may be experiencing rapid

changes in blood pressure, and who could benefit from increased continuous noninvasive

monitoring.

Another limitation and future direction of NAS is to better understand the searching

space in which data measurements that belong to a given subject exist. Our application of

NAS is under a restriction of a given number of layers and only searching the hidden size. A

reasonable next extension of NAS would be to search over not only the hidden layer width,
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but to also search over the optimal number of hidden layers. Further, the time for training

a NAS model and the minimal training data are also worth exploring in our future work.

Finally, future work is needed to further explore ways of interpreting this work. What

physical signal(s) are important to this model? For instance, while we hypothesize that

PTT and PWV are important findings directly related to the physical interpretation and

measurement of blood pressure, our current model functions as a black box and does not

allow for evaluation which would determine how large of a role derived physical features play

in blood pressure determination. Interpreting the mechanism of this model and peering into

the black box could allow for more directed sensor measurements and an overall improved

system.

12.5.2 Conclusion

In this paper, we propose an MTL based beat-to-beat blood pressure estimation model

from cuffless bioimpedance signals. The MTL model achieved 3.18 ± 0.50 mmHg and

4.53 ± 1.03 RMSE with 0.77 ± 0.09 and 0.80 ± 0.10 correlation for diastolic and systolic

blood pressure, respectively, which shows benefits of MTL over the individual-task models.

Additionally, the MTL model obtained an RMSE of 1.57 mmHg and correlation of 0.93

for diastolic blood pressure and an RMSE of 2.31 mmHg and correlation of 0.94 for sys-

tolic blood pressure when comparing against the 10-beat averaged state of the art model.

When comparing our manually searched MTL architecture and the results from NAS, we

observed that NAS improves over the manually searched model, and the discovered optimal

architecture from NAS is beyond the initial expected search parameters from preliminary

experiments. In the future, we consider expanding the NAS approach to a bigger searching

space, and apply it on reduced training data for a common problem of the time-consuming

data collection process in clinic.
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13. USING IOT SENSORS OPPORTUNISTICALLY TO ENHANCE HUMAN

ACTIVITY RECOGNITION USING A MIXTURE OF DEEP NEURAL

NETWORKS

Returning to the deep mixture of experts approach, this penultimate chapter uses envi-

ronmental sensors in concert with on-body sensors to estimate activity and context. The

mixture of experts approach allows for intelligently selecting optimal sensors based on a

small subset of on-body sensors. This approach could be expanded for intelligently selecting

from among any longitudinal sensors for the most appropriate to use for predictive tasks at

any given time.

13.1 Introduction

Personal health monitoring and tracking has become more feasible through ubiquitous,

wearable sensors, such as smartwatches and smartphones [476]. Systems built around these

devices can track personal activity and query individuals for understanding behavior and

health [477, 478]. For example, tracking food intake enables users to maintain a healthier

diet [479], tracking exercise can improve recovery after heart attacks [480], and understanding

emotion and behavior of individuals allows for better interpersonal conflict resolution [481].

As sensing technologies become more pervasive, the internet of things (IoT) applications can

be augmented to enable the internet of medical things (IoMT) through the combination of

wearable sensors and sensors in the immediate environment, referred to as nearable sensors

[232]; we focus on wearable sensors for personal tracking as a base for all IoMT applications

by either extracting direct parameters of human activity recognition (as is necessary for

cardiac rehabilitation [480]) or as context for other tracking activities [232]. Smartwatches

are powerful IoT devices that allow for accurate activity tracking in a wide variety of scenarios

involving constrained problems, such as that as a known workout routine [337]. However,

such solutions may present much lower accuracies when relaxed into further unconstrained
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environments, potentially requiring help from additional data sources to recover performance

[232].

The increasing prevalence of wearable and nearable sensors has increased the quantity

and types of data that can be collected on individuals in remote environments [482]. This

abundance of sensing results in an abundance of data that can be processed for tracking,

processing, decision making, and alerting (if needed). However, this heterogeneous data may

be produced at different rates, for different applications, and determining what IoT data

is useful to help applications is becoming an equally important challenge to having high

accuracy and ease of usability in those applications [482]. Modeling techniques are necessary

to intelligently sort through the abundance of available data and identify the key sensors

from which to capture data.

In many applications of machine learning, heterogeneous data is divided into smaller ho-

mogeneous groups that can be modeled more accurately through clustering. This clustering

provides interpretability as each sample can be described more readily by the group to which

it belongs. Models can be trained on each specific cluster in order to identify the key features

relevant to each cluster rather than the entire heterogeneous dataset. In mixture of experts

(MoE) models [483] such group-level clustering and supervised modeling are developed as

a single training step, rather than splitting data a priori to then build models. MoEs have

successfully served different applications from classification and regression tasks [484, 485]

to phenotyping in medical datasets [486].

MoE-based approaches provide an opportunity to address personal tracking systems in

IoT environments that have an abundance of sensors providing interaction data. By con-

sidering primary sensors to be those on-body (wearable) sensors that track personal health

and all other off-body (nearable) sensors as indirect IoT sensors, we develop a deep MoE

technique that enhances remote and wearable monitoring applications. This MoE technique

opportunistically identifies a limited subset of sensors that can help in human activity recog-

nition (HAR) tasks, boosting performance. This work develops this modeling technique for
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improving HAR algorithms through the judicious leverage of IoT data. The contributions

of this paper are as follows:

• Creates a multitask learning (MTL) deep mixture of experts technique to improve HAR

from wearable sensors by augmenting estimations with data from nearable sensors,

which we call the αβ-network.

• Develops an opportunistic MoE sensor selection technique for improving HAR tasks

based upon the model performance and accuracy of the activities predicted from the

wearable sensors.

• Provides an evaluation of model performance based upon the grouping of IoT sensors,

the MoE approach, and the MTL addition to the MoE network.

The rest of this paper is organized as follows. Section 13.2 highlights recent work in IoT

sensor selection, highlighting challenges and opportunities in the expanding data availability

to enable personal and medical applications (internet of medical things). Section 13.3 dis-

cusses our deep MoE approach to enhancing personal tracking and activity recognition with

intelligent selection of nearable sensors in an instrumented environment with IoT data, while

Section 13.4 highlights case studies in a smart home environment and discusses the results.

Section 13.5 discusses future opportunities from those findings, and Section 13.6 concludes

this work.

13.2 Related Works

13.2.1 IoT Sensor Selection

The abundance of data generated by IoT applications, while providing accuracy to each

individual application, can provide overwhelming amounts of data that make information

processing difficult [487]. It is important to understand the context of the specific application
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and quality of service needed to modify processing of the data [488]; however, these solu-

tions provide application-specific solutions that are better than random clustering of sensors,

focusing on cluster ability and not the end application performance [487].

Shukla, Maiti, and Sahoo discussed this challenge in growing data and the need to in-

telligently identify the most suited sensors for IoT applications by creating a mapping of

sensors to applications in the context of latency and energy usage [489]. While they discuss

the challenges, they focus on a latency-driven greedy approach to facilitate data collection.

This work identifies an approach to sensor selection that is based in model and application

accuracy for evaluation.

Jones et al. investigated a tiered approach to grouping sensors: by performance require-

ments, by environmental requirements, and by costs associated with application implemen-

tation [490].

Yachir et al. discuss methods of aggregating individual sensors into a cohesive system

[491]. In this system, they partition sensing devices by general response type in order to

improve system latency while retaining performance. Our work similarly looks at sensor

response types, but looks at selection in response to performance rather than clustering and

quality of service measurements.

Intelligent selection for applications has improved energy efficiency and application per-

formance. However, these solutions are centered on the deployment of sensors for applications

rather than processing data after deployment for a variety of applications.

Increasing prevalence of IoT sensors has lead to the problem of too many data streams

to incorporate by traditional techniques. Detecting streams with high information yield and

excluding streams with low information yield is a necessary task for intelligently utilizing

these sensors. One approach to detecting novelty in sensors is to analyze the homoscedasticity

and statistical features of incoming data streams [482]. These features have been found to

be useful in real time analysis of event detection in IoT monitoring systems. However, these

techniques are chiefly beneficial when distinguishing between event or no event, and do not
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lend themselves to distinguishing between additional events and events caused by different

users within the same environment.

13.2.2 IoT and Health

IoT devices of are particular interest in the context of assisting with user health. Many

implementations of IoT device systems have been built with the goal of connecting patients

with their healthcare providers [492]. These systems incorporate a wide array of devices

including wearable devices to monitor motion or biological signals, and nearable devices to

monitor activity at home. Yang et al. investigated some of the issues entailed in integrating

the feeds of these various sensors into a single format that helpfully shares information both

with the patient and with remote healthcare services [492]. However, while this technology

succeeds in integrating specific and handcrafted IoT sensors into a single implementation,

many of its sensors are specifically crafted to work with this system. For instance, one

sensor is a smart pillbox that is able to calculate how many pills are taken at a given time

by measuring the change in weight of the pillbox. This limits the ability of the system in

scaling to new sensors in the absence of handcrafting the meaning of those sensors.

IoT devices are of key interest in assisting members of an aging population with perform-

ing activities of daily living (ADLs). Zhu et al. presented an overview of sensing systems

that can be utilized for ambient assisted living and outlined barriers in sensor platforms for

incorporating these systems [493].

Roggen et al. propose a paradigm of opportunistic activity recognition in the context of

dynamic IoT environments [494] [495]. They show that opportunistic activity recognition

is a superior approach than classical activity recognition given the rise of pervasive IoT

technologies. They discuss ways in which this approach could be implemented in highly

instrumented environments and provide such an instrumented dataset. Our work provides

an implementation of opportunistic activity recognition based on this dataset, but reduces

the number of wearable sensors to those that represent those that are currently the most

pervasive: smartphones and smartwatches.

274



Ordóñez and Roggen additionally developed a deep neural network that achieves good

activity recognition through fusing multimodal wearable sensors [404]. Their network archi-

tecture uses all wearable sensors, and is not expanded to nearable sensors. Our work allows

for increased scalability over the model they describe, and incorporates nearable sensors

opportunistically.

13.2.3 Mixture of Experts

In conventional MoE approaches, class assignments are completely unobserved and are

chosen in the training process in a way that maximizes the log likelihood in each iteration

[496]. These techniques can explore individual model performance by showing when a para-

metric model is incorrect and the impact of data towards model performance [497]. This

type of grouping can also be used to interpret class assignments [486], explaining data and

samples that provide interpretation for model performance. Therefore, it is important to se-

lect a model with enough expressive power that can fully explore the dynamic range of data

and classification tasks. These techniques can potentially improve deep learning models, and

have seen preliminary improvements [498], providing ample opportunity to improve activity

recognition techniques.

Solis et al. used an MoE approach to automatically identify the context in which activities

took place [232]. This paper defined a two-level network that pre-defined locations in which

certain activities might take place and then used a second level to estimate actions, such as

eating, in those places. However, their approach limited the benefits of the MoE approach by

supervising the definition of location and the distribution of the two-staged network through

the addition of the KL Divergence term in the optimization. In this work, we extend the idea

presented by Solis et al. by developing a similar MoE approach that overcomes limitations

of the prior approach by using an unsupervised technique to model activity from wearable

sensors. and searches for the correct distribution of nearable sensors to augment/enhance

the initial estimation of activities.
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Figure 13.1: Single task deep MoE model with a α-network that always chooses one of
several β-networks. Although in the abstract case soft labels of the β-networks could allow
for distributions of multiple β-networks to be selected, in this implementation we restrict
the α-network to selecting one β-network for every task.

13.3 Methods

To accomplish personal tracking and activity recognition via the efficient utilization of

nearable sensors, we implement an MoE model to select the sensors which are most likely to

provide high-yield information about user activity. The overall objective of this MoE model

is to accurately classify user activity while minimizing the number of sensors used. While

user activity can be classified with reasonable accuracy based on wearable sensors, addi-

tion of nearable IoT sensors may enhance activity classification. However, not all nearable

IoT sensors will necessarily contribute to classification at any given point. For instance, in

real-world situations other users may be active within the environment, introducing noise.

Additional nearable IoT sensors may in fact cause difficulty in identifying user activity by

confounding classification. As the number of nearable IoT sensors grows, the task of in-

corporating all sensors into a single expanding model might become intractable (or at least

impractical). Therefore, depending on particular situation requirements, the goal may be to
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provide this classification utilizing a minimal set of nearable sensors.

Our MoE is composed of a two-step set of models, called a αβ-network. The construction

of the two-step αβ-network is adaptable to allow the network designer to focus on particular

sensing needs and limitations. However, in any implementation, the base design stays the

same. The first step of the αβ-network is called the α-network. This α-network takes input

from some set of sensors and generates two predictions. The first is a raw prediction of the

current user activity. The second is a prediction of which network and set of sensors in the

second step is most likely to usefully supply additional information about the user and give

a high prediction accuracy. Whatever this α-network’s structure, its purpose is to generate

an initial prediction and to select the optimal network in the second step for user activity

classification.

The second step of the αβ-network is a family of β-networks. Each β-network takes as

input different subsets of the overall sensor feeds and makes a prediction as to the user’s

activity. Each β-network is trained on a different subset of environmental IoT sensors.

Although this training must be performed over all groupings of sensors, at runtime not all

β-networks will be invoked. Indeed, if the α-network’s initial certainty is sufficiently high,

no additional β-network needs to be invoked, reducing resource utilization and processing

required for prediction.

Here we describe the motivation for the design of the αβ-network, as well as multiple

configurations of the αβ-network that allow for differential prioritization of resources and

that can be adapted for different problems. We begin by describing the base α-network

and the combined αβ-network. We then discuss our training approach, our hyperparameter

tuning, and our approach for model evaluation.

13.3.1 β-network: DNN for HAR

Deep neural networks have proven to be effective for Human Activity Recognition (HAR)

and have been used extensively in this domain. Convolutional neural networks (CNN) are

powerful tools for extracting descriptive features from images or any data with a structure
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similar to that of the images. As our base model, we use a 3 layer CNN network developed for

HAR [499]. This model serves as our base and the networks that we develop, the α-network

and the β-network, are its extensions. Their characteristics are explained below.

13.3.2 αβ-network

Here we develop the αβ-network model and its two components, the α-network and the

β-network as a more selective and opportunistic model for HAR. A schematic view of the

αβ-network model is presented in Fig. 13.1. Based on the input from a restricted and

privileged set of inputs (in this work, wearable sensors), the α-network selects a particular

β-network from all available β-networks. This selected β-network will then contribute to

the final prediction by drawing on a particular set of inputs (in this work, some subset of

nearable sensors). The selection of inputs to both α-network and β-network are determined

by the application. In the abstract case, the α-network gives a distribution over different

β-networks and then the final output would be the weighted average of the β-networks’

outputs using the distribution given by α-network. Each β-network then uses a subset of the

sensors to produce activity predictions. One of the objectives of our work is to intelligently

select the β-network used in order to minimize the number of sensors that are used, allowing

model scalability to larger systems. In order to achieve this minimization given the size

of the dataset utilized here, we use hard assignments rather than soft assignments of β-

networks. Rather than computing a weighted average where the weight vector is composed

of probabilities of different β-networks being chosen, we set a 1 for the most probable β-

network and 0 for all others. Therefore, only one β-network would be used for each prediction.

This translates to using only one set of senors for each prediction. This is desirable as a

smaller number of sensors entails lesser computation and resource expenditure, as discussed

previously in Section 13.2.
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Figure 13.2: Multitask learning deep MoE model. This α-network can optionally select
to either return its prediction, or to opportunistically utilize the sensors associated with a
particular β-network. While in the abstract case a distribution of multiple β-networks could
be selected, in this implementation we restrict the α-network to either implicitly select itself
or to explicitly select exactly one β-network.

13.3.3 Baseline Models

In this work, we develop a model that in the first step uses a limited set of signals, and then

opportunistically adds an expanded set of signals for a final prediction. In order to establish

a baseline, we constructed two models that represent the full spectrum of performance from

the minimal to maximal number of sensors. The baseline model shown in Fig. 13.3 consists

of an activity recognition network trained only on wearable sensors. At the other extreme,

the baseline model shown in Fig. 13.4 consists of wearable sensors and all nearable sensors

belonging to a specific β-network. Although that network is tractable for the size of the

dataset used here, larger datasets would become intractable in that model, requiring a more

selective and opportunistic model to run pragmatically.
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13.3.4 αβ-network Extension: Multitask Learning

In the first form of the αβ-network the α-network acts as a model selector and the β-

network acts as a predictor. As an extension, we next explored implementing the α-network

in a way such that it initially produces some prediction and an estimation of the certainty

of that prediction by computing its entropy. Such uncertainty is used to decide whether the

α-network and the sensors it is using is sufficient for making a prediction or we need to use

an β-network and consequently IoT sensors. In some cases, the sensors in α-network may be

sufficient to make a decision, reducing the benefit of utilizing an β-network. Additionally,

the original sensors might have detected some activity that is not well-predicted by the β-

network. Therefore, we developed the multitask learning framework so that the α-network

makes a prediction of the output. If the model certainty in that prediction is below a given

threshold, the model will select an additional β-network to augment the initial prediction. In

the case that the α-network does not choose a separate β-network, the α-network is implicitly

selecting itself for the prediction. Otherwise, it will select some other β-network. This model

design is shown in Fig. 13.2.

13.3.5 Hyperparameter Tuning and Pretraining

The training process of deep MoE models can experience instabilities if not handled

appropriately [232]. Pretraining can lead to a better modeling performance as the model is

able to be guided through the highly non-convex optimization problem of training. It has

been seen that in many cases the α-network can collapse into selecting only one β-network,

no matter how many we provide. This happens as the initial state of the β-networks can be

initialized in a way that a given β-network has a smaller error than others and the α-network

gives it more weight. Larger weight causes the network to have a larger share in the output,

making the error rate share larger as well. Consequently, this cycle may cause one network

to provide a major contribution while others provide trivial contributions to the output.

This can hamper the performance by making the α-network selection ineffective and trivial,
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Figure 13.3: Baseline model incorporating only wearable sensors. This is a negative control,
where no nearable IoT sensors are ever available to the base model.

hampering the benefit of the MoE approach.

To mitigate the complications of this error, we implemented a pretraining scheme as

described in [232]. In pretraining, we train the α-network to output specific β-network

assignments so that when the actual training begins our α-network starts from a balanced

point so it will be more stable. β-network assignments used differ based on the application.

In applications where there is no specific mapping between different β-networks and their

usage, methods such as K-means clustering can be used and the α-network can be trained

on such assignments. In this application we have used domain knowledge to group and

assign β-networks (and equivalently, which sensor sets) to probable labels. We pretrain our

α-network based on that assumption in order to rapidly achieve a stable starting point.

Pretraining based on unsupervised clustering methods would be appropriate in the absence

of such domain knowledge. The details regarding such assignments can be found in Table

13.1.
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13.3.6 Training

The training was performed following the EM algorithm [496]. In EM, the lower bound

of the log-likelihood is maximized in an iterative approach consisting of two stages, the E-

step and the M-step. In the E-step, the parameters of the network computing the expected

value of the log-likelihood, the α-network, are optimized while in the M-step, the parameters

of the modeling networks, the β-networks, are optimized. Therefore, in the E-step the α-

network is optimized while β-networks are frozen and in the M-step vice versa. The EM

training alternates iterations of training either α-network network or β-network networks

while keeping the other(s) frozen. It should be noted that, while the pre-trained networks

are supervised, this final training step is unsupervised in terms of the β-network network

assignments and solved using EM.

Multi-Task-Learning Training : The learning of the multitask learning network is slightly

different from the training procedure of the basic α-network. In the multitask learning

network there are two locations in the network that might output a prediction. The first is

by the α-network and the second by the selected β-network. In contrast to the αβ-network

where the loss function is only the cross entropy between the β-network output and the

target, in multitask learning network the cross entropy between α-network and target is also

added. We guide this with domain knowledge, when available. For example, the action of

opening a door in our dataset is likely to be sufficiently detected by the door sensors, rather

than dishwasher sensors or needing the wearable sensors. In these cases, the sensor set and

consequently the β-network that uses that set can be known in advance. This label can be

used for guiding the α-network regarding which β-network to choose. This will be similar to

the pretraining process detailed above where α-network is trained to choose the β-networks.

Here it is done in the while training, rather than before it.

282



Figure 13.4: Baseline model incorporating a single expert model. This is one β-network from
among the MoE, but has access to the signals typically provided to the α-network. Each
individual β-network is implemented within its own expert baseline model.

13.4 Evaluation and Results

In this work, we build models which utilize a subset of sensors for a primary α-network.

This α-network outputs either an activity prediction or a selection of the most appropriate

group of sensors/β-network to provide an activity prediction. This allows for the α-network

to select groupings of sensors that are most likely to return a high information yield, while

excluding sensors that are unlikely to provide useful information. The α-network here is

provided a minimal and privileged set of sensors (all utilized wearable sensors) and uses the

information from these sensors to select the most appropriate additional signals, allowing

for the system to entirely ignore the signals from irrelevant sensors. This has the desirable

effect of opportunistically lowering resource utilization and computational complexity, while

maintaining or improving accuracy.

In all implementations discussed here, the α-network makes a hard assignment as to

which β-network is most appropriate to further specify the activity. While in the abstract

it would be desirable for the α-network instead to output a probability distribution over

all β-networks, the size of the dataset utilized here best exhibits the opportunistic gains of
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this system by performing hard assignments. This choice of implementation was selected

to ensure at each time instance one specific sensor set is used in order to maintain good

performance while ensuring low resource utilization. If soft assignments were to be used, all

the sensor sets in the dataset here would have a contribution to the output, defeating the

purpose of using only one set. Hard assignments ensure that the increased cost of including

all sensor streams does not happen.

Here we present the design of the different implementations of our αβ-network. We

implement it in several increasingly sophisticated tasks as we develop its robustness. In

Section 13.4.1 we detail the overal model setup. In Section 13.4.2 we describe the sensor

used from the dataset and the motivation for choosing this dataset. Section 13.4.3 describes

the specific network architecture used, and Sections 13.4.4, 13.4.5, and 13.4.6 describe the

three case studies explored here. The case study described in Section 13.4.4 is built with a

α-network that always chooses one β-network. The case study in Section 13.4.5 introduces

artificial noise into the system and allows the α-network to optionally ignore all β-networks

and instead to implicitly self-select when its confidence in its own estimation is high. The final

case study in Section 13.4.6 expands the sensors used in the base α-network to incorporate

multiple wearable sensors, a smartphone in addition to a watch.

13.4.1 Experimental Setup

The first α-network configuration uses a restricted set of wearable sensors in order to

select between β-networks that share sensors with the α-network, but otherwise feature

sensors that mutually exclusive to each other (Fig. 13.1). The α-network here has access to

an wrist-mounted accelerometer and arm-mounted gyroscope that we treat as a smartwatch.

This situation is of interest in cases where accessing sensor sets is expensive, but always

accessing at least some external information is desirable. The α-network points the model

to access one β-network to make the prediction. This configuration differs from the earlier

implementation of Solis et al. [232] in the assumptions regarding cost of sensor acquisition

and computation. In their configuration all sensors were accessible to all secondary networks
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without computational cost as a limiting factor. In this configuration, not all sensors are

accessible at the any time and α-network has access to limited wearable sensors. Based on

those sensors, only one of several β-networks will be accessed to make the prediction.

The next α-network configuration featured a set of wearable sensors belong to the α-

network where initial activity recognition is performed by the α-network, and further activity

confirmation if necessary is performed by the identified β-network (Fig. 13.2). Again, the

α-network here has access to an arm-mounted accelerometer and gyroscope that we treat as

a smartwatch. Here, initial processing is limited to the set of sensors that uniquely belong

to the user. This first step can ignore all other sensor feeds (the β-networks). Once a likely

class of activity has been identified, the second step can utilize the appropriate β-network

to more precisely identify the activity. As before, each β-network is restricted to a mutually

exclusive set of sensors. However, here these β-networks are also mutually exclusive to the

α-network, and are entirely nearable sensors. This implementation reflects the real-world

situation where the wearable sensors are always of interest, but the nearable sensors are only

of use in the (relatively) uncommon situation that the user is probably interacting with some

instrumented object. In this setting, the decision is made by the first network and the result

from the β-networks is used for augmentation rather than making the primary prediction.

When the user is unlikely to be interacting with the instrumented object, signals from that

object may be safely ignored, allowing for lower resource utilization.

In the final α-network configuration, we repeated the above above while augmenting

the α-network. In addition to the arm-mounted accelerometer and gyroscope, we added a

hip-mounted accelerometer. We treat this sensor as a smartphone that couples with the

smartwatch to provide additional measurements of wearable activity.

In order to assess the αβ-network, we make performance comparisons to the baselines

described in Section 13.3.3. These baselines are single β-networks built on different sets

of sensors. Such a comparison is made to see how the model would perform if no sensor

selection was performed and a single model was built on the sensors. The first baseline

285



Table 13.1: List of sensors used by β-networks in the case studies. In case studies 1 and 2
the α-network has access to the watch sensors. In case study 3 the α-network has access to
watch and phone sensors. β-networks have access to mutually exclusive nearable sensors.

Name Sensors list
Watch Wrist Accelerometer and Arm Gyroscope
Phone Hip Accelerometer

Expert 1 Sensors on Door 1, Door 2, Fridge
Expert 2 Sensors on Drawer 1, Drawer 2, Drawer 3
Expert 3 Dishwasher, Chair, Objects on Table

Table 13.2: Case study 1: Comparison between accuracies and F1 scores of αβ-network and
the baselines, a single β-network network. The recognition task was activity recognition in
the Opportunity dataset.

Model Sensors Accuracy F1 Score F1 Gain
β-network Watch 0.24 (0.03) 0.32 (0.05) -
β-network Watch & Expert 1 0.44 (0.08) 0.43 (0.02) 34.4%
β-network Watch & Expert 2 0.39 (0.06) 0.39 (0.04) 21.9%
β-network Watch & Expert 3 0.26 (0.01) 0.37 (0.04) 15.6%
αβ-network Watch & Experts (All) 0.44 (0.05) 0.40 (0.06) 25.0%

is an β-network which using only the restricted set of wearable sensors (Fig. 13.3). This,

specifically, is opposed to the case where a α-network uses particular wearable sensors to

decide which β-network to select. This baseline would pinpoint the modeling capability of a

single β-network built on that restricted sensor set. The other baselines are β-networks built

on the sensor sets α-network could to choose from. This baseline was designed to get an

understanding of how good any of the β-networks to be chosen can perform assuming they

are always chosen when appropriate. This enables us to isolate the effect of the α-network

in constructing the composite αβ-network.
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Figure 13.5: Opportunity selected sensors and IoT sensors broken up by category. Notice
that the Misc. sensors represent a greater number but that the data provided by all the
sensors are roughly evenly distributed.

Table 13.3: Case study 2: Comparison between accuracies and F1 scores of αβ-network and
the baselines, a single β-network network, when noise is present in the data. The recognition
task was activity recognition in the Opportunity dataset.

Model Sensors Accuracy F1 Score F1 Gain
β-network Watch 0.26 (0.03) 0.29 (0.06) -
β-network Watch & Expert 1 0.46 (0.04) 0.42 (0.02) 44.8%
β-network Watch & Expert 2 0.36 (0.09) 0.34 (0.08) 17.2%
β-network Watch & Expert 3 0.35 (0.08) 0.31 (0.08) 6.9%
αβ-network Watch & Experts (All) 0.42 (0.04) 0.38 (0.06) 31.0%

13.4.2 Opportunity

The Opportunity dataset [495] is a valuable dataset for human activity recognition gath-

ered by a variety of sensors in a smart-home environment. Items that users could interact

with had sensors indicating this interaction, and the users wore inertial measurement units

on their upper bodies, hips and legs for activity tracking. This dataset is well-suited for our

problem as it entails a great deal of both wearable and nearable sensors in an environment

where the user is interacting with various objects. For wearable sensors, we emulated a
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smartwatch by using sensors attached to the arm and emulated a smartphone in a pocket by

using sensors attached to the hip. The sensors utilized here are shown in Table 13.1 and the

instrumented nearable objects are represented in Fig. 13.5. The data collected was labeled in

a hierarchical structure, where each activity had different levels of annotations, from higher

order understanding of the activity to specific movements each hand is performing (e.g.,

relaxing vs. opening or closing a specific door). Specifically, the Opportunity dataset has 7

levels of hierarchical labels. Higher level labels describe details such as subject posture while

lower level labels describe the hand movements or the objects they are interacting with. We

chose activity performed by both hands, such as opening door, as the activity. In total, the

dataset contains 18 different activities performed sensed by 72 different sensors.

For data processing, we used non-overlapping windows of 1 second (30 samples) to divide

up the time series data. The data had missing values and was mean imputed to fill these

missing parts. We used a five-fold cross-validation to evaluate our models with testing

accuracy and micro F1 score as performance metrics. All results reported in Tables 13.2-

13.5 are presented as mean (standard deviation) of test fold accuracy or F1 score.

13.4.3 Networks Architecture

Following the model developed by [499] we used 3 convolutional layers followed by 3

fully connected layers for both the α-network and β-networks. Note that the only difference

between the two networks’ architectures was in terms of the number of neurons in the output

layer. The implementation of the multitask learning network also differs from the other two

in terms of the number of the neurons in the last layer. We implemented all the networks

using PyTorch library in Python. Networks were trained using stochastic gradient descent

with an initial learning rate of 0.001 and a momentum of 0.9, which provided the best results

in cross-validation.

288



13.4.4 Case Study 1: Sensor Requesting

In our first case study, we implement the αβ-network to perform well in a situation where

the cost of accessing and processing additional sensor feeds is high. In this case, we restrict

the α-network to only a specific subset of wearable sensors, specifically, sensors on the wrist

which resemble the data collected by a watch which is a ubiquitous means of data collection.

Each β-network is composed of the wearable sensors in addition to a category of nearable

sensors that is mutually exclusive to the other β-networks. The list of the sensors used for

each network can be found in Table 13.1. β-networks, on top of the α-network have access

to non-overlapping parts of the data. At each instance, the α-network requests access to

and uses only one β-network to perform the prediction. We define each β-network to be

all sensors on a specific class of object. In this particular implementation one β-network is

composed of all sensors on drawers, another is composed of all sensors on doors that rotate

about a vertical axis (i.e. not the dishwasher’s door), and the last is all remaining sensors

(objects on the table and the dishwasher).

Table 13.2 compares αβ-network with the baselines of single β-networks trained using

different sensors in Table 13.1. We find that the baseline network with only wearable sensors

performs at an accuracy of 0.24 and F1 score of 0.32, while the αβ-network performs similarly

to a single β-network with accuracy of 0.44 and F1 score of 0.40, which represents a 25% gain

over the wearable-only baseline. We see that while a single β-network on the watch data can

produce similar results to the αβ-network, several of these fail to adequately accommodate for

complexities in the data. That yields the worst performance among all as it fails to capture

many of the complexities in the data. Note that although the accuracies/F scores presented

in the table seem low, these values are deflated due to the utilization of 17 different labels

predicted by a limited sensor set. This demonstrates both the degradation of HAR when

conducting activities that may or may not be detected by smartwatches in unconstrained

environments, and the improvements that can be achieved by augmenting estimations with

available nearable sensor data. This result aligns with other published work relating to
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Table 13.4: Multitask learning network. As the noise of the dataset increases, the α-network
becomes more likely to rely on itself than to utilize separate β-networks. These αβ-networks
incorporate signals from the Watch and from all Experts.

Dataset Accuracy F1 Score Implicit Self-Selection Rate
Clean 0.43 (0.03) 0.39 (0.05) 3.62%
Noisy 0.41 (0.06) 0.36 (0.07) 6.15%

Table 13.5: Case study 3: Comparison between accuracies and F1 scores of αβ-network and
the baselines, a single β-network network, when implemented with a α-network that includes
both a smartwatch and a smartphone.

Model Sensors Accuracy F1 Score F1 Gain
β-network Watch & Phone 0.23 (0.02) 0.29 (0.06) -
β-network Watch, Phone, & Expert 1 0.48 (0.01) 0.44 (0.01) 51.7%
β-network Watch, Phone, & Expert 2 0.42 (0.06) 0.39 (0.06) 34.5%
β-network Watch, Phone, & Expert 3 0.29 (0.06) 0.37 (0.02) 27.6%
αβ-network Watch, Phone, & Experts (All) 0.38 (0.09) 0.33 (0.12) 13.8%

smartwatch HAR accuracy in unconstrained environments [337].

13.4.5 Case Study 2: Intelligent Sensor Selection

In our second case study, we implement the αβ-network to perform well in a situation

where the cost of accessing and processing additional sensor feeds is low, but where the

additional feeds come with a large amount of noise. While some signal is contained within

these sensors, it is as before desirable to implement the network so that only the most

information-rich sensors are included. Here however, we make the assumption that accessing

any additional sensors may be too expensive. Therefore, the α-network is structured so

that it is able to ignore all other β-networks by implicitly selecting itself, provided that its

confidence is high. In this situation, we construct the α-network to receive input from all

sensors. The α-network then returns the identity of the β-network with the highest potential
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information yield. The list of the sensors the β-networks have access is unchanged and shown

in Table 13.1.

In order to implement a noisy environment, in each time window we randomly add noise

to various nearable sensors. In this approach, each object is given a chance to have each of

three types of noise added. All channels from a given object’s sensors (i.e. all acceleration

and gyroscope axes of a particular object) are subjected to the same type of noise. The

chance of each of these are independent, with the possibility for multiple types of noise to be

added. The types of noise are a) zeroing the signal for the entire window, b) adding uniform

random noise of the within the amplitude of the signal, and c) adding Gaussian noise with

0 mean and σ equal to the amplitude of the signal. The first type of noise represents a

malfunctioning sensor that is inappropriately offline or unable to connect. The second noise

represents multiple users interacting within the environment, and activating sensors with

signals that are not of interest to the system. The final noise represents random noise from

potential communication cross-talk in a highly instrumented environment.

Table 13.3 compares αβ-network with the baselines of single β-networks trained using

different sensors in Table 13.1. Here as before, we see that the αβ-network is able to appro-

priately select from among the various β-networks in order to maintain good accuracy and

F1 score, despite the introduced noise. Here we see that the αβ-network reaches as F1 score

of 0.38, which represents a 31% gain over the wearable-only baseline. Additionally, Table

13.4 details the self-selection rate in the clean dataset and in the noisy dataset. In the clean

dataset, the α-network produces an estimate with high confidence 1% of the time. However,

when trained on the dataset with injected noise, the α-network recognizes the decreased re-

liability of environmental sensors and self-selects 6% of the time. This shows that our model

is able to opportunistically recognize and evaluate the quality of its training data. When

that data is distorted to the point of no longer being useful, the model intelligently accounts

for that lack of reliability.
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13.4.6 Case Study 3: Augmented α-network

In our final case study, we replicated the architectures from above, but augmented the α-

network by introducing an additional accelerometer to represent a phone in the user’s pocket.

This duplicates the scenarios from above, but represents the user having an additional wear-

able IoT device. Both smartphones and smartwatches feature a growing prevalence, and

thus this α-network is particularly well-suited as a realistic example of what a user might

have access to.

Table 13.5 compares the αβ-network featuring this larger α-network with the baselines

of single β-networks trained using different sensors in Table 13.1. The results here show that

even though the baseline α-network is a poorer raw predictor than the baseline α-network

in earlier studies, this baseline coupled with the β-networks give improved performance.

This result underscores a limitation in our design where it appears that the baseline model

which always utilizes β-network 1 (accelerometers on doors) outperforms any other system,

including the opportunistic αβ-network. As this dataset is limited in environmental size, it

stands to reason that certain β-networks have signals containing information that allows for

greater overall predictive power than others. Applying this model to a dataset with more

β-networks spread out more in space would likely remove this increased performance that

this particular β-network has.

13.5 Limitations and Future Work

Although the Opportunity dataset is a high-quality dataset with a great deal of instru-

mented and labeled data, it is still fundamentally a small enough dataset that training and

utilizing a DNN approach on all data within it is not computationally restrictive. Addition-

ally, this dataset is very clean and while we were able to introduce synthetic noise, this is still

less structured than true noise from other users would be. However, this work still provides a

proof of concept for a system that could be extended to a much larger system with multiple

active users introducing noise into the system. Additionally, the dataset used here lacked
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a wrist-mounted gyroscope as is contained in many smartwatches. Ideally, the α-network

would be constructed of data from a single on-wrist wearable rather than composed of multi-

ple wearables at slightly different locations. Future work may be directed into implementing

this framework in larger and noisier datasets and in less constrained environments.

One limitation of this work is the lack of soft selection of β-networks by the α-network.

Given the size of this dataset and that the objects belonging to the three β-networks are

in such close proximity in a single-user environment, this dataset is inappropriate for im-

plementing soft selection over the β-networks. Future work in a larger dataset could be

directed towards utilizing the full potential of this model by allowing for soft β-network se-

lection. This would increase computational overhead, but could be tailored to balance this

overhead with expected gains in recognition accuracy.

This work was constructed using domain knowledge to facilitate the construction of the β-

networks and to improve the pretraining of the αβ-network. This level of domain knowledge

might not always be available when implementing this framework. Future work should be

directed to improving and facilitating the process of constructing the β-networks and training

the αβ-network without such domain knowledge.

Future work could also be directed towards applying this MoE framework to fields beyond

that of HAR. This deep MoE approach could be applied to many situations where there is a

large amount of unstructured data with underlying groupings of signals that would be more

easily and more correctly predicted with specialized β-networks.

13.6 Conclusion

In this work we present a model for opportunistically utilizing IoT sensors for augmenting

HAR. This model is developed with two implementations: one in which a primary α-network

selects from among several β-networks in order to classify an activity with a minimal set of

nearable sensors, and one in which a primary α-network either provides a classification, or

chooses a minimal set of nearable sensors with which to classify the activity. The purpose

of this model is to utilize IoT sensors for HAR when there is a significant reason to do so,
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but to ignore the sensors when they provide little benefit. This is important as IoT devices

continue to become more pervasive as simply merging all IoT features into a single model

becomes intractable with increasing sensors. We validate our model using a highly instru-

mented dataset that provides both wearable and nearable sensors within an environment.

In particular, we show that our model is able to change its behavior to recognize unreliable

or noisy environmental sensors and can alter its mode of opportunistic MoE consultation

depending on the reliability of those sensors.

This work provides a framework for and example of constructing a deep MoE model that

opportunistically utilizes additional information when initial model uncertainty is low, or that

provides model outcomes without using unnecessary information when model uncertainty is

high. This method of opportunistically selecting a particular β-network allows for an overall

system that is extensible to environments with large amounts of excess data without needing

to directly include every aspect of the environment in individual model outputs. This will

allow for HAR systems that are well-suited to operation in large and unbounded environments

with improved prediction quality when incorporating all signals is intractable.
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14. CONCLUSION

This dissertation presents applications and developments in machine learning for the

advancement of healthcare. This dissertation first examines applications of advanced ma-

chine learning techniques in clinical settings for outcome prediction. While deep learning

techniques represent the cutting edge of research in machine learning, we see that naively

applying them on clinical datasets provides small or no benefits in comparison to shallower

machine learning techniques such as logistic regression or gradient boosted trees. Along with

slim or minimal prediction improvements, neural networks are inherently less interpretable

than logistic regression or even gradient boosted approaches.

Logistic regression is trivially interpretable. As seen in Chapter 2, the weights of a logistic

regression model are directly translatable to odds ratios. In the analysis of patients testing

positive for COVID-19, variables strongly predictive of both admission (Figure 2.4) and

mortality (Figure 2.6) are directly interpretable. This highlights one of the most important

factors of logistic regression: linear interactions are easily visualizable and interpretable.

Cursory inspection of Figures 2.4 and 2.6 immediately shows that age is a driving predictor

for those outcomes. Further inspection shows that sex and certain comorbidities similarly

contribute to predictions for those outcomes.

However, when judiciously applied, neural networks may aid in interpretation. The deep

MoE presented here allows for a structuring such that the underlying model structure allows

for patient grouping and interpretation. Rather than exploring traditional dimensionality

reduction and clustering techniques such as described in Chapter 3, this model allows for a

clustering approach driven by outcomes in a semi-supervised manner. By training multiple

experts and a classifier among experts, each expert can be trained to have higher perfor-

mance on a given subset of patients, while the classifier learns to classify patient subsets.

Backpropogation through the entire model allows for the classifier to be driven by outcome

prediction, but in a way that allows for future classification prior to knowing outcomes, or
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even all inputs.

Neural networks are also increasingly valuable over shallower approaches as data becomes

longitudinal. Shallow approaches work well with tabular data. To some extent, longitudinal

data can be coerced into a tabular form, but this approach has diminishing returns. This is

notably true in natural language processing. Chapter 4 details a novel end-to-end framework

for utilizing deep learning to extract problem categories using free-text notes. This approach

allows for a translation from longitudinal text data into a tabular problem list. This approach

further aided interpretability through the use of an attention mechanism to interpret the

relative importance of words in the narrative.

This dissertation next looks at advancing clinical decision support. Propensity score

matching is a tool that allows for retrospective estimations of what prospective studies might

have uncovered. However, linear techniques for propensity score matching can oversimplify

relationships, missing complexities inherent in heterogeneous data. In this work, traditional

propensity score matching was first enhanced by use of nonlinear gradient boosted trees

instead of the simpler logistic regression to generate propensity scores. This nonlinear ap-

proach allows for matching along more complex relationships as higher order interactions

may be learned. The deep MoE approach in particular is a novel and suitable tool for this

task, allowing for more direct modeling and grouping of heterogeneity within a population.

This approach allows for the realization of a more personalized machine learning approach

that describes neighborhoods of patients within the deep network latent space, rather than

by nearness of a scalar propensity score.

Traditional propensity score matching entails matching one or more cases with one or

more controls. A propensity score is created by using logistic regression to estimate the

likelihood that a patient will receive an intervention. In the work described in Chapter 7,

propensity score matching was performed with XGBoost and validated independently with

logistic regression. Nearly all patients receiving a microaxial LVAD (1680 patients out of

1768, Figure 7.1) were successfully matched with a patient receiving an IABP. In this analysis,
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use of an intravascular LVAD was associated with a significantly higher risk of in-hospital

mortality in comparison with patients receiving IABP (45.0% vs 34.1%, p<0.001; Figure 7.2).

However, these findings and other findings presented in Chapter 7 were met with concerns

that the techniques used may have missed key interactions which would show benefit under

certain situations [500, 501, 502]. This limitation was motivating in the following chapters.

Applying a dynamic series of models, Chapter 8 analyzed heterogenous effects in cohorts

undergoing PCI. This work highlights the importance of incorporating information in a

longitudinal manner, and allows for doing so in a particular setting. The variability in

patient risk scores as they proceed through an episode of care highlights the heterogeneity of

the population, driving the need for further advanced models that can better describe that

heterogeneity among patients and treatment effectiveness at a population level.

Chapter 9 applied the deep MoE approach to discover phenotypic clusters within the

population of patients with AMI-CI. This approach aimed to account for heterogeneity that

could lead to misleading propensity score matching. This approach allowed for a joint learn-

ing of both phenotypes and outcomes, and separation of variables by timing allows for a

model that learns with the advantage of outcome information, but that can fairly assign

phenotypes earlier in patient presentation. This approach allows for learning a representa-

tion more specific and personalized to a local and more homogeneous population from among

the wider heterogeneous population.

Finally, this dissertation describes the expansion of the techniques used here to natural

environments. A key factor driving the necessity of using deep learning models is longitu-

dinal data: while approaches such as logistic regression and gradient boosted trees perform

well on tabular data, they expand poorly to longitudinal data. This is increasingly perti-

nent as wearable sensors for remote health monitoring are developed and widely adopted.

As described in Chapter 11, wearable sensors are not only being developed as medical de-

vices, but are widely proliferating in the consumer sphere. Apple Watches, Galaxy Watches,

smartphones, and other consumer devices feature powerful sensors that are able to collect
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continuous cardiac signals for upwards of 20 hours per day.

Wrist-worn monitoring devices represent a rich opportunity for growth in remote moni-

toring. One particular application of this is in using bioimpedance signals to estimate blood

pressure. The approach detailed in Chapter 12 characterizes the development of a deep

model to infer blood pressure from such a wearable sensor. Future development of this de-

vice into a commercially viable device would be a boon for remote health monitoring and

for improving diagnosis of various types of masked hypertension.

Additional environmental sensors, while not yet as widely pervasive, are a ripe oppor-

tunity in the realm of home health monitoring. In Chapter 13 an approach for using the

deep MoE to select subsets of sensors is detailed. This approach assumes that environmental

monitoring can grow widely to an unbounded network of longitudinal sensors. The approach

described allows for intelligent selection of sensor groups such that the MoE can intelligently

infer and utilize context. Increasing breadth of IoT increases need for approaches such as

this that can extract and discover biomarkers from the noisy longitudinal sensors.

This dissertation aims to advance and apply machine learning for health care through

three main goals. First, it described utilization of advanced machine learning techniques

for clinical modeling, predicting harmful outcomes among vulnerable populations (Chapters

2-5). Second, it described advanced machine learning techniques to handle heterogeneity in

retrospective analyses, introducing a novel application of a deep MoE for phenotype discovery

(Chapters 6-9). Finally, it surveyed needs and opportunities in harnessing remote sensors for

medical applications and described two particular instances where useful biomarkers were

extracted from longitudinal sensors (Chapters 11-13). Through these goals, this dissertation

presents and advances machine learning for healthcare applications both within and beyond

the clinic.

298



REFERENCES

[1] R. L. McNamara, K. F. Kennedy, D. J. Cohen, D. B. Diercks, M. Moscucci, S. Ramee,

T. Y. Wang, T. Connolly, and J. A. Spertus, “Predicting in-hospital mortality in pa-

tients with acute myocardial infarction,” Journal of the American College of Cardiol-

ogy, vol. 68, no. 6, pp. 626–635, 2016.

[2] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghassemi, B. Moody,

P. Szolovits, L. A. Celi, and R. G. Mark, “MIMIC-III, a freely accessible critical care

database,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[3] B. Moody, G. Moody, M. Villarroel, G. Clifford, and I. Silva, “MIMIC-III waveform

database (version 1.0),” 2020. [Online]. Available: https://physionet.org/content/

mimic3wdb/1.0/

[4] A. E. Johnson, T. J. Pollard, N. R. Greenbaum, M. P. Lungren, C.-y. Deng, Y. Peng,

Z. Lu, R. G. Mark, S. J. Berkowitz, and S. Horng, “Mimic-cxr-jpg, a large publicly avail-

able database of labeled chest radiographs,” arXiv preprint arXiv:1901.07042, 2019.

[5] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks

for multivariate time series with missing values,” Scientific reports, vol. 8, no. 1, pp.

1–12, 2018.

[6] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu, X. Liu,

J. Marcus, M. Sun et al., “Scalable and accurate deep learning with electronic health

records,” NPJ Digital Medicine, vol. 1, no. 1, p. 18, 2018.

[7] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,

G. Corrado, S. Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature

medicine, vol. 25, no. 1, pp. 24–29, 2019.

[8] D. Cirillo and A. Valencia, “Big data analytics for personalized medicine,” Current

opinion in biotechnology, vol. 58, pp. 161–167, 2019.

[9] S. Wright, D. Verouhis, G. Gamble, K. Swedberg, N. Sharpe, and R. Doughty,

299

https://physionet.org/content/mimic3wdb/1.0/
https://physionet.org/content/mimic3wdb/1.0/


“Factors influencing the length of hospital stay of patients with heart failure,”

European Journal of Heart Failure, vol. 5, no. 2, pp. 201–209, 2003. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/12644013

[10] D. W. Baker, D. Einstadter, S. S. Husak, and R. D. Cebul, “Trends in postdischarge

mortality and readmissions: has length of stay declined too far?” Archives of internal

medicine, vol. 164, no. 5, pp. 538–544, 2004.

[11] N. Genes, S. Violante, C. Cetrangol, L. Rogers, E. E. Schadt, and Y.-F. Y. Chan,

“From smartphone to ehr: a case report on integrating patient-generated health data,”

NPJ digital medicine, vol. 1, no. 1, pp. 1–6, 2018.

[12] E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard to track covid-

19 in real time,” The Lancet infectious diseases, vol. 20, no. 5, pp. 533–534, 2020.

[13] S. Richardson, J. S. Hirsch, M. Narasimhan, J. M. Crawford, T. McGinn, K. W.

Davidson, D. P. Barnaby, L. B. Becker, J. D. Chelico, S. L. Cohen et al., “Presenting

characteristics, comorbidities, and outcomes among 5700 patients hospitalized with

covid-19 in the new york city area,” Jama, vol. 323, no. 20, pp. 2052–2059, 2020.

[14] G. Suleyman, R. A. Fadel, K. M. Malette, C. Hammond, H. Abdulla, A. Entz, Z. De-

mertzis, Z. Hanna, A. Failla, C. Dagher et al., “Clinical characteristics and morbidity

associated with coronavirus disease 2019 in a series of patients in metropolitan detroit,”

JAMA network open, vol. 3, no. 6, pp. e2 012 270–e2 012 270, 2020.

[15] G. L. Anesi, S. D. Halpern, and M. K. Delgado, “Covid-19 related hospital admissions

in the united states: needs and outcomes,” 2020.

[16] E. J. Williamson, A. J. Walker, K. Bhaskaran, S. Bacon, C. Bates, C. E. Morton, H. J.

Curtis, A. Mehrkar, D. Evans, P. Inglesby et al., “Opensafely: factors associated with

covid-19 death in 17 million patients.” Nature, 2020.

[17] R. Verity, L. C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-

Dannenburg, H. Thompson, P. G. Walker, H. Fu et al., “Estimates of the severity

of coronavirus disease 2019: a model-based analysis,” The Lancet infectious diseases,

300

https://www.ncbi.nlm.nih.gov/pubmed/12644013


vol. 20, no. 6, pp. 669–677, 2020.

[18] G. Onder, G. Rezza, and S. Brusaferro, “Case-fatality rate and characteristics of pa-

tients dying in relation to covid-19 in italy,” Jama, vol. 323, no. 18, pp. 1775–1776,

2020.

[19] F. Chen, W. Sun, S. Sun, Z. Li, Z. Wang, and L. Yu, “Clinical characteristics and risk

factors for mortality among inpatients with covid-19 in wuhan, china,” Clinical and

translational medicine, 2020.

[20] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu

et al., “Clinical course and risk factors for mortality of adult inpatients with covid-19

in wuhan, china: a retrospective cohort study,” The lancet, vol. 395, no. 10229, pp.

1054–1062, 2020.

[21] R. K. Wadhera, P. Wadhera, P. Gaba, J. F. Figueroa, K. E. J. Maddox, R. W. Yeh,

and C. Shen, “Variation in covid-19 hospitalizations and deaths across new york city

boroughs,” Jama, vol. 323, no. 21, pp. 2192–2195, 2020.

[22] C. C.-. R. Team, C. C.-. R. Team, C. C.-. R. Team, S. Bialek, V. Bowen, N. Chow,

A. Curns, R. Gierke, A. Hall, M. Hughes et al., “Geographic differences in covid-19

cases, deaths, and incidence–united states, february 12–april 7, 2020,” Morbidity and

Mortality Weekly Report, vol. 69, no. 15, pp. 465–471, 2020.

[23] Yale New Haven Health, “Facts and figures,” https://www.ynhh.org/ynhhs/about/

corporate-overview/system-statistics, 2020, accessed: 2021-4-23.

[24] OHSDI, “OMOP common data model,” https://www.ohdsi.org/data-standardization/

the-common-data-model/, 2019, accessed: 2021-4-23.

[25] J. McPadden, T. J. Durant, D. R. Bunch, A. Coppi, N. Price, K. Rodgerson, C. J.

Torre Jr, W. Byron, A. L. Hsiao, H. M. Krumholz et al., “Health care and precision

medicine research: analysis of a scalable data science platform,” Journal of medical

Internet research, vol. 21, no. 4, p. e13043, 2019.

[26] W. L. Schulz, T. J. Durant, C. J. Torre Jr, A. L. Hsiao, and H. M. Krumholz, “Agile

301

https://www.ynhh.org/ynhhs/about/corporate-overview/system-statistics
https://www.ynhh.org/ynhhs/about/corporate-overview/system-statistics
https://www.ohdsi.org/data-standardization/the-common-data-model/
https://www.ohdsi.org/data-standardization/the-common-data-model/


health care analytics: Enabling real-time disease surveillance with a computational

health platform,” Journal of Medical Internet Research, vol. 22, no. 5, p. e18707, 2020.

[27] V. Ogievetsky, J. Heer, and J. Bostock, “D3 data-driven documents,” IEEE Trans. Vis.

Comput. Graph, vol. 17, no. 12, pp. 2301–2309, 2011.

[28] A. Elixhauser, C. Steiner, D. R. Harris, and R. M. Coffey, “Comorbidity measures for

use with administrative data,” Medical care, pp. 8–27, 1998.

[29] A. Gasparini, “comorbidity: An r package for computing comorbidity scores,” Journal

of Open Source Software, vol. 3, no. 23, p. 648, 2018.

[30] B. J. Moore, S. White, R. Washington, N. Coenen, and A. Elixhauser, “Identifying

increased risk of readmission and in-hospital mortality using hospital administrative

data,” Medical care, vol. 55, no. 7, pp. 698–705, 2017.

[31] C. van Walraven, P. C. Austin, A. Jennings, H. Quan, and A. J. Forster, “A modifi-

cation of the elixhauser comorbidity measures into a point system for hospital death

using administrative data,” Medical care, pp. 626–633, 2009.

[32] R. J. Klein, Age adjustment using the 2000 projected US population. Department of

Health & Human Services, Centers for Disease Control, 2001, no. 20.

[33] U.S. Census Bureau, “U.s. census bureau quickfacts: Connecticut,” https://www.

census.gov/quickfacts/CT, 2020, accessed: 2021-4-23.

[34] C. M. Petrilli, S. A. Jones, J. Yang, H. Rajagopalan, L. O’Donnell, Y. Chernyak, K. A.

Tobin, R. J. Cerfolio, F. Francois, and L. I. Horwitz, “Factors associated with hospital

admission and critical illness among 5279 people with coronavirus disease 2019 in new

york city: prospective cohort study,” Bmj, vol. 369, 2020.

[35] J.-M. Jin, P. Bai, W. He, F. Wu, X.-F. Liu, D.-M. Han, S. Liu, and J.-K. Yang, “Gender

differences in patients with covid-19: focus on severity and mortality,” Frontiers in

public health, vol. 8, p. 152, 2020.

[36] A. Di Castelnuovo, M. Bonaccio, S. Costanzo, A. Gialluisi, A. Antinori, N. Berselli,

L. Blandi, R. Bruno, R. Cauda, G. Guaraldi et al., “Common cardiovascular risk

302

https://www.census.gov/quickfacts/CT
https://www.census.gov/quickfacts/CT


factors and in-hospital mortality in 3,894 patients with covid-19: survival analysis and

machine learning-based findings from the multicentre italian corist study,” Nutrition,

Metabolism and Cardiovascular Diseases, vol. 30, no. 11, pp. 1899–1913, 2020.

[37] T. Takahashi, M. K. Ellingson, P. Wong, B. Israelow, C. Lucas, J. Klein, J. Silva,

T. Mao, J. E. Oh, M. Tokuyama et al., “Sex differences in immune responses that

underlie covid-19 disease outcomes,” Nature, vol. 588, no. 7837, pp. 315–320, 2020.

[38] J. Chen, W. J. Kelley, and D. R. Goldstein, “Role of aging and the immune response

to respiratory viral infections: potential implications for covid-19,” The Journal of

Immunology, vol. 205, no. 2, pp. 313–320, 2020.

[39] V. Abedi, O. Olulana, V. Avula, D. Chaudhary, A. Khan, S. Shahjouei, J. Li, and

R. Zand, “Racial, economic, and health inequality and covid-19 infection in the united

states,” Journal of racial and ethnic health disparities, pp. 1–11, 2020.

[40] C. P. Gross, U. R. Essien, S. Pasha, J. R. Gross, S.-y. Wang, and M. Nunez-Smith,

“Racial and ethnic disparities in population-level covid-19 mortality,” Journal of general

internal medicine, vol. 35, no. 10, pp. 3097–3099, 2020.

[41] E. G. Price-Haywood, J. Burton, D. Fort, and L. Seoane, “Hospitalization and mortality

among black patients and white patients with covid-19,” New England Journal of

Medicine, vol. 382, no. 26, pp. 2534–2543, 2020.

[42] K. M. Azar, Z. Shen, R. J. Romanelli, S. H. Lockhart, K. Smits, S. Robinson, S. Brown,

and A. R. Pressman, “Disparities in outcomes among covid-19 patients in a large health

care system in california: Study estimates the covid-19 infection fatality rate at the us

county level.” Health Affairs, vol. 39, no. 7, pp. 1253–1262, 2020.

[43] D. A. Kass, P. Duggal, and O. Cingolani, “Obesity could shift severe covid-19 disease

to younger ages,” Lancet (London, England), 2020.

[44] C. Gao, Y. Cai, K. Zhang, L. Zhou, Y. Zhang, X. Zhang, Q. Li, W. Li, S. Yang,

X. Zhao et al., “Association of hypertension and antihypertensive treatment with covid-

19 mortality: a retrospective observational study,” European heart journal, vol. 41,

303



no. 22, pp. 2058–2066, 2020.

[45] M. P. Lin, O. Baker, L. D. Richardson, and J. D. Schuur, “Trends in

emergency department visits and admission rates among US acute care hospitals,”

JAMA Intern Med, vol. 178, no. 12, pp. 1708–1710, 2018. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/30326057

[46] N. Farrohknia, M. Castren, A. Ehrenberg, L. Lind, S. Oredsson, H. Jonsson,

K. Asplund, and K. E. Goransson, “Emergency department triage scales and

their components: a systematic review of the scientific evidence,” Scand J

Trauma Resusc Emerg Med, vol. 19, no. 1, p. 42, 2011. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/21718476

[47] P. Tanabe, R. Gimbel, P. R. Yarnold, D. N. Kyriacou, and J. G. Adams,

“Reliability and validity of scores on the emergency severity index version

3,” Acad Emerg Med, vol. 11, no. 1, pp. 59–65, 2004. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/14709429

[48] W. S. Hong, A. D. Haimovich, and R. A. Taylor, “Predicting hospital admission at

emergency department triage using machine learning,” PloS one, vol. 13, no. 7, p.

e0201016, 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/30028888

[49] J. M. Kwon, Y. Lee, Y. Lee, S. Lee, H. Park, and J. Park, “Validation

of deep-learning-based triage and acuity score using a large national dataset,”

PLoS One, vol. 13, no. 10, p. e0205836, 2018. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pubmed/30321231

[50] S. Levin, M. Toerper, E. Hamrock, J. S. Hinson, S. Barnes, H. Gardner, A. Dugas,

B. Linton, T. Kirsch, and G. Kelen, “Machine-learning-based electronic triage more

accurately differentiates patients with respect to clinical outcomes compared with the

emergency severity index,” Ann Emerg Med, vol. 71, no. 5, pp. 565–574 e2, 2018.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/28888332

[51] K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, and P. P.

304

https://www.ncbi.nlm.nih.gov/pubmed/30326057
https://www.ncbi.nlm.nih.gov/pubmed/21718476
https://www.ncbi.nlm.nih.gov/pubmed/14709429
https://www.ncbi.nlm.nih.gov/pubmed/30028888
https://www.ncbi.nlm.nih.gov/pubmed/30321231
https://www.ncbi.nlm.nih.gov/pubmed/30321231
https://www.ncbi.nlm.nih.gov/pubmed/28888332


Sengupta, “Machine learning in cardiovascular medicine: are we there yet?”

Heart, vol. 104, no. 14, pp. 1156–1164, 2018. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pubmed/29352006

[52] T. Ahmad, L. H. Lund, P. Rao, R. Ghosh, P. Warier, B. Vaccaro,

U. Dahlstrom, C. M. O’Connor, G. M. Felker, and N. R. Desai, “Machine

learning methods improve prognostication, identify clinically distinct phenotypes,

and detect heterogeneity in response to therapy in a large cohort of heart failure

patients,” J Am Heart Assoc, vol. 7, no. 8, p. e008081, 2018. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/29650709

[53] T. A. Lasko, J. C. Denny, and M. A. Levy, “Computational phenotype

discovery using unsupervised feature learning over noisy, sparse, and irregular

clinical data,” PLoS One, vol. 8, no. 6, p. e66341, 2013. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/23826094

[54] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine

learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[55] E.-a. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine, S. C.

Bendall, D. K. Shenfeld, S. Krishnaswamy, G. P. Nolan, and D. Pe’er, “visne

enables visualization of high dimensional single-cell data and reveals phenotypic

heterogeneity of leukemia,” Nature Biotechnology, vol. 31, p. 545, 2013. [Online].

Available: https://doi.org/10.1038/nbt.2594

[56] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and

projection for dimension reduction,” 2018.

[57] T. Ahmad, M. J. Pencina, P. J. Schulte, E. O’Brien, D. J. Whellan, I. L. Piña, D. W.

Kitzman, K. L. Lee, C. M. O’Connor, and G. M. Felker, “Clinical implications of

chronic heart failure phenotypes defined by cluster analysis,” Journal of the American

College of Cardiology, vol. 64, no. 17, pp. 1765–1774, 2014. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/25443696

305

https://www.ncbi.nlm.nih.gov/pubmed/29352006
https://www.ncbi.nlm.nih.gov/pubmed/29352006
https://www.ncbi.nlm.nih.gov/pubmed/29650709
https://www.ncbi.nlm.nih.gov/pubmed/23826094
https://doi.org/10.1038/nbt.2594
https://www.ncbi.nlm.nih.gov/pubmed/25443696


[58] C. Seymour, J. Kennedy, S. Wang, Z. Xu, C. Chang, Q. Mi, Y. Vodovotz, G. Cler-

mont, S. Visweswaran, and J. Weiss, “Feasibility of sepsis phenotyping using electronic

health record data during initial emergency department care,” in American Journal of

Respiratory and Critical Care Medicine, vol. 197, Amer Thoracic Soc 25 Broadway, 18

FL, New York, NY 10004 USA. Amer Thoracic Soc 25 Broadway, 18 FL, New York,

NY 10004 USA, 2018, Conference Proceedings.

[59] B. K. Beaulieu-Jones, C. S. Greene, and A. L. S. C. T. C. Pooled Resource

Open-Access, “Semi-supervised learning of the electronic health record for phenotype

stratification,” J Biomed Inform, vol. 64, pp. 168–178, 2016. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/27744022

[60] J. C. Kirby, P. Speltz, L. V. Rasmussen, M. Basford, O. Gottesman, P. L. Peissig,

J. A. Pacheco, G. Tromp, J. Pathak, D. S. Carrell, S. B. Ellis, T. Lingren, W. K.

Thompson, G. Savova, J. Haines, D. M. Roden, P. A. Harris, and J. C. Denny,

“Phekb: a catalog and workflow for creating electronic phenotype algorithms for

transportability,” J Am Med Inform Assoc, vol. 23, no. 6, pp. 1046–1052, 2016.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/27026615

[61] Y. Wang, L. Luo, M. T. Freedman, and S. Y. Kung, “Probabilistic principal

component subspaces: a hierarchical finite mixture model for data visualization,”

IEEE Trans Neural Netw, vol. 11, no. 3, pp. 625–36, 2000. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/18249790

[62] K. Y. Yeung and W. L. Ruzzo, “An empirical study on principal component analysis for

clustering gene expression data,” Department of Computer Science and Engineering,

University of Washington, 2000.

[63] K. A. Oetjen, K. E. Lindblad, M. Goswami, G. Gui, P. K. Dagur, C. Lai, L. W.

Dillon, J. P. McCoy, and C. S. Hourigan, “Human bone marrow assessment by

single-cell rna sequencing, mass cytometry, and flow cytometry,” JCI Insight, vol. 3,

no. 23, 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/30518681

306

https://www.ncbi.nlm.nih.gov/pubmed/27744022
https://www.ncbi.nlm.nih.gov/pubmed/27026615
https://www.ncbi.nlm.nih.gov/pubmed/18249790
https://www.ncbi.nlm.nih.gov/pubmed/30518681


[64] E. Becht, L. McInnes, J. Healy, C. A. Dutertre, I. W. H. Kwok, L. G. Ng, F. Ginhoux,

and E. W. Newell, “Dimensionality reduction for visualizing single-cell data using

umap,” Nature Biotechnology, vol. 37, no. 1, pp. 38–+, 2019. [Online]. Available:

<GotoISI>://WOS:000454804600017

[65] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification, vol. 2, no. 1,

pp. 193–218, 1985.

[66] K. Y. Yeung and W. L. Ruzzo, “Details of the adjusted rand index and clustering algo-

rithms, supplement to the paper an empirical study on principal component analysis

for clustering gene expression data,” Bioinformatics, vol. 17, no. 9, pp. 763–774, 2001.

[67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[68] S. L. Cartwright and M. P. Knudson, “Evaluation of acute abdominal pain in adults.”

American family physician, vol. 77, no. 7, 2008.

[69] A. W. Group, “Problem list guidance in the ehr,” Journal of AHIMA, vol. 82, no. 9,

pp. 52–58, Sep. 2011.

[70] C. Holmes, “The problem list beyond meaningful use: Part i: The problems with

problem lists,” Journal of AHIMA, vol. 82, no. 2, pp. 30–33, Feb. 2011.

[71] C. Holmes, M. Brown, D. S. Hilaire, and A. Wright, “Healthcare provider

attitudes towards the problem list in an electronic health record: a mixed-

methods qualitative study,” BMC medical informatics and decision making,

vol. 12, pp. 127–127, Nov. 2012, 23140312[pmid]. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pubmed/23140312

[72] S. Jain, R. Mohammadi, and B. C. Wallace, “An analysis of attention over clinical

notes for predictive tasks,” CoRR, vol. abs/1904.03244, 2019. [Online]. Available:

http://arxiv.org/abs/1904.03244

307

<Go to ISI>://WOS:000454804600017
https://www.ncbi.nlm.nih.gov/pubmed/23140312
https://www.ncbi.nlm.nih.gov/pubmed/23140312
http://arxiv.org/abs/1904.03244


[73] S. Khadanga, K. Aggarwal, S. Joty, and J. Srivastava, “Using clinical notes with time

series data for icu management,” 2019.

[74] J. Liu, Z. Zhang, and N. Razavian, “Deep ehr: Chronic disease prediction using

medical notes,” in Proceedings of the 3rd Machine Learning for Healthcare Conference,

ser. Proceedings of Machine Learning Research, F. Doshi-Velez, J. Fackler,

K. Jung, D. Kale, R. Ranganath, B. Wallace, and J. Wiens, Eds., vol. 85.

Palo Alto, California: PMLR, 17–18 Aug 2018, pp. 440–464. [Online]. Available:

http://proceedings.mlr.press/v85/liu18b.html

[75] H. M. Krumholz, Y. Wang, J. A. Mattera, Y. Wang, L. F. Han, M. J. Ingber, S. Roman,

and S.-L. T. Normand, “An administrative claims model suitable for profiling hospital

performance based on 30-day mortality rates among patients with an acute myocardial

infarction,” Circulation, vol. 113, no. 13, pp. 1683–1692, 2006. [Online]. Available:

https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.105.611186

[76] D. He, S. C. Mathews, A. N. Kalloo, and S. Hutfless, “Mining high-dimensional

administrative claims data to predict early hospital readmissions,” Journal of the

American Medical Informatics Association : JAMIA, vol. 21, no. 2, pp. 272–279, 2014,

24076748[pmid]. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/24076748

[77] M. Ghassemi, T. Naumann, F. Doshi-Velez, N. Brimmer, R. Joshi, A. Rumshisky,

and P. Szolovits, “Unfolding physiological state: Mortality modelling in intensive

care units,” KDD : proceedings. International Conference on Knowledge Discovery &

Data Mining, vol. 2014, pp. 75–84, Aug. 2014, 25289175[pmid]. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/25289175

[78] A. Pakbin, P. Rafi, N. Hurley, W. Schulz, M. Harlan Krumholz, and J. Bobak Mor-

tazavi, “Prediction of icu readmissions using data at patient discharge,” in 2018 40th

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), Jul. 2018, pp. 4932–4935.

[79] J. Shang, T. Ma, C. Xiao, and J. Sun, “Pre-training of graph augmented transformers

308

http://proceedings.mlr.press/v85/liu18b.html
https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.105.611186
https://pubmed.ncbi.nlm.nih.gov/24076748
https://www.ncbi.nlm.nih.gov/pubmed/25289175


for medication recommendation,” in Proceedings of IJCAI, 2019, pp. 5953–5959.

[80] S. Barbieri, J. Kemp, O. Perez-Concha, S. Kotwal, M. Gallagher, A. Ritchie, and

L. Jorm, “Benchmarking deep learning architectures for predicting readmission to the

icu and describing patients-at-risk,” Scientific Reports, vol. 10, no. 1, p. 1111, 2020.

[Online]. Available: https://doi.org/10.1038/s41598-020-58053-z

[81] S. Blecker, S. D. Katz, L. I. Horwitz, G. Kuperman, H. Park, A. Gold, and D. Sontag,

“Comparison of Approaches for Heart Failure Case Identification From Electronic

Health Record Data,” JAMA Cardiology, vol. 1, no. 9, pp. 1014–1020, 12 2016.

[Online]. Available: https://doi.org/10.1001/jamacardio.2016.3236

[82] T. Baumel, J. Nassour-Kassis, R. Cohen, M. Elhadad, and N. Elhadad, “Multi-label

classification of patient notes: Case study on icd code assignment,” 2018. [Online].

Available: https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16881

[83] J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun, and J. Eisenstein, “Explainable prediction

of medical codes from clinical text,” in Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers). Association for Computational Linguistics,

2018, pp. 1101–1111. [Online]. Available: http://aclweb.org/anthology/N18-1100

[84] N. Sadoughi, G. P. Finley, J. Fone, V. Murali, M. Korenevski, S. Baryshnikov,

N. Axtmann, M. Miller, and D. Suendermann-Oeft, “Medical code prediction with

multi-view convolution and description-regularized label-dependent attention,” 11

2018.

[85] K. Xu, M. Lam, J. Pang, X. Gao, C. Band, P. Mathur, F. Papay, A. K. Khanna, J. B.

Cywinski, K. Maheshwari, P. Xie, and E. P. Xing, “Multimodal machine learning

for automated ICD coding,” CoRR, vol. abs/1810.13348, 2018. [Online]. Available:

http://arxiv.org/abs/1810.13348

[86] H. M. Krumholz, Z. Lin, P. S. Keenan, J. Chen, J. S. Ross, E. E. Drye, S. M.

Bernheim, Y. Wang, E. H. Bradley, L. F. Han, and S.-L. T. Normand, “Relationship

309

https://doi.org/10.1038/s41598-020-58053-z
https://doi.org/10.1001/jamacardio.2016.3236
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16881
http://aclweb.org/anthology/N18-1100
http://arxiv.org/abs/1810.13348


Between Hospital Readmission and Mortality Rates for Patients Hospitalized With

Acute Myocardial Infarction, Heart Failure, or Pneumonia,” JAMA, vol. 309, no. 6,

pp. 587–593, 02 2013. [Online]. Available: https://doi.org/10.1001/jama.2013.333

[87] S. Jain and B. C. Wallace, “Attention is not explanation,” CoRR, vol. abs/1902.10186,

2019. [Online]. Available: http://arxiv.org/abs/1902.10186

[88] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” CoRR, vol.

abs/1908.04626, 2019. [Online]. Available: http://arxiv.org/abs/1908.04626

[89] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” CoRR, vol.

abs/1310.4546, 2013. [Online]. Available: http://arxiv.org/abs/1310.4546

[90] J. C. Denny, M. D. Ritchie, M. A. Basford, J. M. Pulley, L. Bastarache,

K. Brown-Gentry, D. Wang, D. R. Masys, D. M. Roden, and D. C. Crawford,

“PheWAS: demonstrating the feasibility of a phenome-wide scan to discover

gene–disease associations,” Bioinformatics, vol. 26, no. 9, pp. 1205–1210, 03 2010.

[Online]. Available: https://doi.org/10.1093/bioinformatics/btq126

[91] W.-Q. Wei, L. A. Bastarache, R. J. Carroll, J. E. Marlo, T. J. Osterman, E. R.

Gamazon, N. J. Cox, D. M. Roden, and J. C. Denny, “Evaluating phecodes, clinical

classification software, and ICD-9-CM codes for phenome-wide association studies in

the electronic health record,” PLOS ONE, vol. 12, no. 7, p. e0175508, Jul. 2017.

[Online]. Available: https://doi.org/10.1371%2Fjournal.pone.0175508

[92] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in neural information processing

systems, 2017, pp. 5998–6008.

[93] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.

abs/1412.6980, 2014.

[94] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).

310

https://doi.org/10.1001/jama.2013.333
http://arxiv.org/abs/1902.10186
http://arxiv.org/abs/1908.04626
http://arxiv.org/abs/1310.4546
https://doi.org/10.1093/bioinformatics/btq126
https://doi.org/10.1371%2Fjournal.pone.0175508


Association for Computational Linguistics, 2014, pp. 1746–1751. [Online]. Available:

http://aclweb.org/anthology/D14-1181

[95] T. E. Chang, J. H. Lichtman, L. B. Goldstein, and M. G. George, “Accuracy of icd-9-

cm codes by hospital characteristics and stroke severity: Paul coverdell national acute

stroke program,” Journal of the American Heart Association, vol. 5, no. 6, p. e003056,

May 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/27247334

[96] C. Benesch, D. M. Witter, A. L. Wilder, P. W. Duncan, G. P. Samsa, and D. B.

Matchar, “Inaccuracy of the international classification of diseases (icd-9-cm) in

identifying the diagnosis of ischemic cerebrovascular disease,” Neurology, vol. 49, no. 3,

pp. 660–664, 1997. [Online]. Available: https://n.neurology.org/content/49/3/660

[97] E. Birman-Deych, A. D. Waterman, Y. Yan, D. S. Nilasena, M. J. Radford, and

B. F. Gage, “Accuracy of icd-9-cm codes for identifying cardiovascular and stroke

risk factors,” Medical Care, vol. 43, no. 5, pp. 480–485, 2005. [Online]. Available:

http://www.jstor.org/stable/3768402

[98] H. Ellekjær, J. Holmen, O. Krüger, and A. Terent, “Identification of incident

stroke in norway,” Stroke, vol. 30, no. 1, pp. 56–60, 1999. [Online]. Available:

https://www.ahajournals.org/doi/abs/10.1161/01.STR.30.1.56

[99] E. S. Fisher, F. S. Whaley, W. M. Krushat, D. J. Malenka, C. Fleming,

J. A. Baron, and D. C. Hsia, “The accuracy of medicare’s hospital claims data:

progress has been made, but problems remain.” American Journal of Public

Health, vol. 82, no. 2, pp. 243–248, 1992, pMID: 1739155. [Online]. Available:

https://doi.org/10.2105/AJPH.82.2.243

[100] S. R. Heckbert, C. Kooperberg, M. M. Safford, B. M. Psaty, J. Hsia, A. McTiernan,

J. M. Gaziano, W. H. Frishman, and J. D. Curb, “Comparison of Self-Report,

Hospital Discharge Codes, and Adjudication of Cardiovascular Events in the Women’s

Health Initiative,” American Journal of Epidemiology, vol. 160, no. 12, pp. 1152–1158,

12 2004. [Online]. Available: https://doi.org/10.1093/aje/kwh314

311

http://aclweb.org/anthology/D14-1181
https://www.ncbi.nlm.nih.gov/pubmed/27247334
https://n.neurology.org/content/49/3/660
http://www.jstor.org/stable/3768402
https://www.ahajournals.org/doi/abs/10.1161/01.STR.30.1.56
https://doi.org/10.2105/AJPH.82.2.243
https://doi.org/10.1093/aje/kwh314


[101] S. A. Jones, R. F. Gottesman, E. Shahar, L. Wruck, and W. D. Rosamond,

“Validity of hospital discharge diagnosis codes for stroke,” Stroke, vol. 45, no. 11, pp.

3219–3225, 2014. [Online]. Available: https://www.ahajournals.org/doi/abs/10.1161/

STROKEAHA.114.006316

[102] H. Kumamaru, S. E. Judd, J. R. Curtis, R. Ramachandran, N. C. Hardy,

J. D. Rhodes, M. M. Safford, B. M. Kissela, G. Howard, J. J. Jalbert,

T. G. Brott, and S. Setoguchi, “Validity of claims-based stroke algorithms

in contemporary medicare data,” Circulation: Cardiovascular Quality and

Outcomes, vol. 7, no. 4, pp. 611–619, 2014. [Online]. Available: https:

//www.ahajournals.org/doi/abs/10.1161/CIRCOUTCOMES.113.000743

[103] K. Lakshminarayan, J. C. Larson, B. Virnig, C. Fuller, N. B. Allen, M. Limacher,

W. C. Winkelmayer, M. M. Safford, and D. R. Burwen, “Comparison of

medicare claims versus physician adjudication for identifying stroke outcomes in the

women&#x2019;s health initiative,” Stroke, vol. 45, no. 3, pp. 815–821, 2014. [Online].

Available: https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.113.003408

[104] V. Rodriguez and A. Perotte, “Phenotype inference with semi-supervised mixed mem-

bership models,” 2018.

[105] S. Tonekaboni, S. Joshi, M. McCradden, and A. Goldenberg, “What clinicians want:

Contextualizing explainable machine learning for clinical end use,” 05 2019.

[106] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S.

Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption generation

with visual attention,” CoRR, vol. abs/1502.03044, 2015. [Online]. Available:

http://arxiv.org/abs/1502.03044

[107] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” CoRR,

vol. abs/1808.00033, 2018. [Online]. Available: http://arxiv.org/abs/1808.00033

[108] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019

312

https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.114.006316
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.114.006316
https://www.ahajournals.org/doi/abs/10.1161/CIRCOUTCOMES.113.000743
https://www.ahajournals.org/doi/abs/10.1161/CIRCOUTCOMES.113.000743
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.113.003408
http://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1808.00033


Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).

Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp.

4171–4186. [Online]. Available: https://www.aclweb.org/anthology/N19-1423

[109] E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi, T. Naumann, and

M. McDermott, “Publicly available clinical BERT embeddings,” in Proceedings of the

2nd Clinical Natural Language Processing Workshop. Minneapolis, Minnesota, USA:

Association for Computational Linguistics, Jun. 2019, pp. 72–78. [Online]. Available:

https://www.aclweb.org/anthology/W19-1909

[110] K. A. Fox, O. H. Dabbous, R. J. Goldberg, K. S. Pieper, K. A. Eagle, F. Van de Werf,

Á. Avezum, S. G. Goodman, M. D. Flather, F. A. Anderson et al., “Prediction of risk

of death and myocardial infarction in the six months after presentation with acute

coronary syndrome: prospective multinational observational study (grace),” bmj, vol.

333, no. 7578, p. 1091, 2006.

[111] C. B. Granger, R. J. Goldberg, O. Dabbous, K. S. Pieper, K. A. Eagle, C. P. Cannon,

F. Van de Werf, A. Avezum, S. G. Goodman, M. D. Flather et al., “Predictors of

hospital mortality in the global registry of acute coronary events,” Archives of internal

medicine, vol. 163, no. 19, pp. 2345–2353, 2003.

[112] E. M. Antman, M. Cohen, P. J. Bernink, C. H. McCabe, T. Horacek, G. Papuchis,

B. Mautner, R. Corbalan, D. Radley, and E. Braunwald, “The timi risk score for

unstable angina/non–st elevation mi: a method for prognostication and therapeutic

decision making,” Jama, vol. 284, no. 7, pp. 835–842, 2000.

[113] A. D. Souza and H. S. Migon, “Bayesian binary regression model: an application to in-

hospital death after ami prediction,” Pesquisa Operacional, vol. 24, no. 2, pp. 253–267,

2004.

[114] M. Zoni-Berisso, D. Molini, S. Viani, G. S. Mela, and L. Delfino, “Noninvasive pre-

diction of sudden death and sustained ventricular tachycardia after acute myocardial

313

https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/W19-1909


infarction using a neural network algorithm,” Italian Heart Journal, vol. 2, pp. 612–620,

2001.

[115] X. Li, H. Liu, J. Yang, G. Xie, M. Xu, and Y. Yang, “Using machine learning models

to predict in-hospital mortality for st-elevation myocardial infarction patients.” Studies

in health technology and informatics, vol. 245, pp. 476–480, 2017.

[116] M. D. Samad, A. Ulloa, G. J. Wehner, L. Jing, D. Hartzel, C. W. Good, B. A. Williams,

C. M. Haggerty, and B. K. Fornwalt, “Predicting survival from large echocardiography

and electronic health record datasets: optimization with machine learning,” JACC:

Cardiovascular Imaging, vol. 12, no. 4, pp. 681–689, 2019.

[117] I. Yosefian, E. Mosa Farkhani, and M. R. Baneshi, “Application of random forest

survival models to increase generalizability of decision trees: a case study in acute

myocardial infarction,” Computational and mathematical methods in medicine, vol.

2015, 2015.

[118] P. D. Myers, B. M. Scirica, and C. M. Stultz, “Machine learning improves risk strat-

ification after acute coronary syndrome,” Scientific reports, vol. 7, no. 1, pp. 1–12,

2017.

[119] H. Mansoor, I. Y. Elgendy, R. Segal, A. A. Bavry, and J. Bian, “Risk prediction model

for in-hospital mortality in women with st-elevation myocardial infarction: a machine

learning approach,” Heart & Lung, vol. 46, no. 6, pp. 405–411, 2017.

[120] P. C. Austin, “A comparison of regression trees, logistic regression, generalized additive

models, and multivariate adaptive regression splines for predicting ami mortality,”

Statistics in medicine, vol. 26, no. 15, pp. 2937–2957, 2007.

[121] R. Shouval, A. Hadanny, N. Shlomo, Z. Iakobishvili, R. Unger, D. Zahger, R. Alcalai,

S. Atar, S. Gottlieb, S. Matetzky et al., “Machine learning for prediction of 30-day

mortality after st elevation myocardial infraction: An acute coronary syndrome israeli

survey data mining study,” International journal of cardiology, vol. 246, pp. 7–13, 2017.

[122] R. Bigi, A. Mafrici, P. Colombo, D. Gregori, E. Corrada, A. Alberti, A. De Biase,

314



P. S. Orrego, C. Fiorentini, and S. Klugmann, “Relation of terminal qrs distortion

to left ventricular functional recovery and remodeling in acute myocardial infarction

treated with primary angioplasty,” The American journal of cardiology, vol. 96, no. 9,

pp. 1233–1236, 2005.

[123] R. Bigi, D. Gregori, L. Cortigiani, A. Desideri, F. A. Chiarotto, and G. M. Toffolo,

“Artificial neural networks and robust bayesian classifiers for risk stratification following

uncomplicated myocardial infarction,” International journal of cardiology, vol. 101,

no. 3, pp. 481–487, 2005.

[124] D. Zhang, X. Song, S. Lv, D. Li, S. Yan, and M. Zhang, “Predicting coronary no-

reflow in patients with acute st-segment elevation myocardial infarction using bayesian

approaches,” Coronary artery disease, vol. 25, no. 7, p. 582, 2014.

[125] B. J. Mortazavi, N. S. Downing, E. M. Bucholz, K. Dharmarajan, A. Manhapra,

S.-X. Li, S. N. Negahban, and H. M. Krumholz, “Analysis of machine

learning techniques for heart failure readmissions,” Circulation: Cardiovascular

Quality and Outcomes, vol. 9, no. 6, pp. 629–640, 2016. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/28263938

[126] L. Breiman et al., “Statistical modeling: The two cultures (with comments and a

rejoinder by the author),” Statistical science, vol. 16, no. 3, pp. 199–231, 2001.

[127] R. Shouval, O. Bondi, H. Mishan, A. Shimoni, R. Unger, and A. Nagler, “Application of

machine learning algorithms for clinical predictive modeling: a data-mining approach

in sct,” Bone marrow transplantation, vol. 49, no. 3, pp. 332–337, 2014.

[128] E. Von Elm, D. G. Altman, M. Egger, S. J. Pocock, P. C. Gøtzsche, and J. P. Van-

denbroucke, “The strengthening the reporting of observational studies in epidemiology

(strobe) statement: guidelines for reporting observational studies,” Annals of internal

medicine, vol. 147, no. 8, pp. 573–577, 2007.

[129] J. C. Messenger, K. K. Ho, C. H. Young, L. E. Slattery, J. C. Draoui, J. P. Curtis, G. J.

Dehmer, F. L. Grover, M. J. Mirro, M. R. Reynolds et al., “The national cardiovascular

315

https://www.ncbi.nlm.nih.gov/pubmed/28263938


data registry (ncdr) data quality brief: the ncdr data quality program in 2012,” Journal

of the American College of Cardiology, vol. 60, no. 16, pp. 1484–1488, 2012.

[130] E. D. Peterson, D. Dai, E. R. DeLong, J. M. Brennan, M. Singh, S. V. Rao, R. E. Shaw,

M. T. Roe, K. K. Ho, L. W. Klein et al., “Contemporary mortality risk prediction for

percutaneous coronary intervention: results from 588,398 procedures in the national

cardiovascular data registry,” Journal of the American College of Cardiology, vol. 55,

no. 18, pp. 1923–1932, 2010.

[131] T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost: Extreme gradient

boosting (r package version 0.6. 4.1)[computer software],” 2018.

[132] G. W. Brier, “Verification of forecasts expressed in terms of probability,” Monthly

weather review, vol. 78, no. 1, pp. 1–3, 1950.

[133] S. Siegert, “Specsverification: forecast verification routines for ensemble forecasts of

weather and climate. r package version 0.5–2. 2017.”

[134] C. G. Walsh, K. Sharman, and G. Hripcsak, “Beyond discrimination: a comparison of

calibration methods and clinical usefulness of predictive models of readmission risk,”

Journal of biomedical informatics, vol. 76, pp. 9–18, 2017.

[135] D. E. Leisman, “Rare events in the icu: an emerging challenge in classification and

prediction,” Read Online: Critical Care Medicine; Society of Critical Care Medicine,

vol. 46, no. 3, pp. 418–424, 2018.

[136] C. D. Galloway, A. V. Valys, J. B. Shreibati, D. L. Treiman, F. L. Petterson, V. P.

Gundotra, D. E. Albert, Z. I. Attia, R. E. Carter, S. J. Asirvatham et al., “Devel-

opment and validation of a deep-learning model to screen for hyperkalemia from the

electrocardiogram,” JAMA cardiology, vol. 4, no. 5, pp. 428–436, 2019.

[137] Z. I. Attia, P. A. Noseworthy, F. Lopez-Jimenez, S. J. Asirvatham, A. J. Deshmukh,

B. J. Gersh, R. E. Carter, X. Yao, A. A. Rabinstein, B. J. Erickson et al., “An ar-

tificial intelligence-enabled ecg algorithm for the identification of patients with atrial

fibrillation during sinus rhythm: a retrospective analysis of outcome prediction,” The

316



Lancet, vol. 394, no. 10201, pp. 861–867, 2019.

[138] Z. I. Attia, S. Kapa, F. Lopez-Jimenez, P. M. McKie, D. J. Ladewig, G. Satam, P. A.

Pellikka, M. Enriquez-Sarano, P. A. Noseworthy, T. M. Munger et al., “Screening for

cardiac contractile dysfunction using an artificial intelligence–enabled electrocardio-

gram,” Nature medicine, vol. 25, no. 1, pp. 70–74, 2019.

[139] D. S. Kazi and K. Bibbins-Domingo, “Accurately predicting cardiovascular risk–and

acting on it,” Annals of internal medicine, vol. 172, no. 1, pp. 61–62, 2020.

[140] J. A. Dodson, A. M. Hajduk, M. Geda, H. M. Krumholz, T. E. Murphy, S. Tsang, M. E.

Tinetti, M. G. Nanna, R. McNamara, T. M. Gill et al., “Predicting 6-month mortality

for older adults hospitalized with acute myocardial infarction: a cohort study,” Annals

of internal medicine, vol. 172, no. 1, pp. 12–21, 2020.

[141] P. T. O’gara, F. G. Kushner, D. D. Ascheim, D. E. Casey, M. K. Chung, J. A.

De Lemos, S. M. Ettinger, J. C. Fang, F. M. Fesmire, B. A. Franklin et al., “2013

accf/aha guideline for the management of st-elevation myocardial infarction: a report

of the american college of cardiology foundation/american heart association task force

on practice guidelines,” Journal of the American college of cardiology, vol. 61, no. 4,

pp. e78–e140, 2013.

[142] H. Thiele, U. Zeymer, F.-J. Neumann, M. Ferenc, H.-G. Olbrich, J. Hausleiter,

G. Richardt, M. Hennersdorf, K. Empen, G. Fuernau et al., “Intraaortic balloon

support for myocardial infarction with cardiogenic shock,” New England Journal of

Medicine, vol. 367, no. 14, pp. 1287–1296, 2012.

[143] H. Thiele, U. Zeymer, F.-J. Neumann, M. Ferenc, H.-G. Olbrich, J. Hausleiter,

A. de Waha, G. Richardt, M. Hennersdorf, K. Empen et al., “Intra-aortic balloon coun-

terpulsation in acute myocardial infarction complicated by cardiogenic shock (iabp-

shock ii): final 12 month results of a randomised, open-label trial,” The Lancet, vol.

382, no. 9905, pp. 1638–1645, 2013.

[144] S. Unverzagt, M. Buerke, A. de Waha, J. Haerting, D. Pietzner, M. Seyfarth, H. Thiele,

317



K. Werdan, U. Zeymer, and R. Prondzinsky, “Intra-aortic balloon pump counterpul-

sation (iabp) for myocardial infarction complicated by cardiogenic shock,” Cochrane

Database of Systematic Reviews, no. 3, 2015.

[145] Y. Ahmad, S. Sen, M. J. Shun-Shin, J. Ouyang, J. A. Finegold, R. K. Al-Lamee, J. E.

Davies, G. D. Cole, and D. P. Francis, “Intra-aortic balloon pump therapy for acute

myocardial infarction: a meta-analysis,” JAMA internal medicine, vol. 175, no. 6, pp.

931–939, 2015.

[146] M. Seyfarth, D. Sibbing, I. Bauer, G. Fröhlich, L. Bott-Flügel, R. Byrne, J. Dirschinger,

A. Kastrati, and A. Schömig, “A randomized clinical trial to evaluate the safety and ef-

ficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pump-

ing for treatment of cardiogenic shock caused by myocardial infarction,” Journal of the

American College of Cardiology, vol. 52, no. 19, pp. 1584–1588, 2008.

[147] V. K. Rathi, A. S. Kesselheim, and J. S. Ross, “The us food and drug administra-

tion 515 program initiative: addressing the evidence gap for widely used, high-risk

cardiovascular devices?” JAMA cardiology, vol. 1, no. 2, pp. 117–118, 2016.

[148] R. Khera, P. Cram, X. Lu, A. Vyas, A. Gerke, G. E. Rosenthal, P. A. Horwitz, and

S. Girotra, “Trends in the use of percutaneous ventricular assist devices: analysis of

national inpatient sample data, 2007 through 2012,” JAMA internal medicine, vol.

175, no. 6, pp. 941–950, 2015.

[149] A. Sandhu, L. A. McCoy, S. I. Negi, I. Hameed, P. Atri, S. J. Al’Aref, J. Curtis,

E. McNulty, H. V. Anderson, A. Shroff et al., “Use of mechanical circulatory support

in patients undergoing percutaneous coronary intervention: insights from the national

cardiovascular data registry,” Circulation, vol. 132, no. 13, pp. 1243–1251, 2015.

[150] D. M. Ouweneel, E. Eriksen, K. D. Sjauw, I. M. van Dongen, A. Hirsch, E. J. Packer,

M. M. Vis, J. J. Wykrzykowska, K. T. Koch, J. Baan et al., “Percutaneous mechanical

circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute

myocardial infarction,” Journal of the American College of Cardiology, vol. 69, no. 3,

318



pp. 278–287, 2017.

[151] S. Van Diepen, J. N. Katz, N. M. Albert, T. D. Henry, A. K. Jacobs, N. K. Kapur,

A. Kilic, V. Menon, E. M. Ohman, N. K. Sweitzer et al., “Contemporary management

of cardiogenic shock: a scientific statement from the american heart association,” Cir-

culation, vol. 136, no. 16, pp. e232–e268, 2017.

[152] A. P. Amin, J. A. Spertus, J. P. Curtis, N. Desai, F. A. Masoudi, R. G. Bach, C. Mc-

Neely, F. Al-Badarin, J. A. House, H. Kulkarni et al., “The evolving landscape of

impella use in the united states among patients undergoing percutaneous coronary

intervention with mechanical circulatory support,” Circulation, vol. 141, no. 4, pp.

273–284, 2020.

[153] S. S. Dhruva, J. S. Ross, B. J. Mortazavi, N. C. Hurley, H. M. Krumholz, J. P. Curtis,

A. Berkowitz, F. A. Masoudi, J. C. Messenger, C. S. Parzynski et al., “Association of use

of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump

with in-hospital mortality and major bleeding among patients with acute myocardial

infarction complicated by cardiogenic shock,” Jama, vol. 323, no. 8, pp. 734–745, 2020.

[154] R. G. Brindis, S. Fitzgerald, H. V. Anderson, R. E. Shaw, W. S. Weintraub, and

J. F. Williams, “The american college of cardiology-national cardiovascular data

registry™(acc-ncdr™): building a national clinical data repository,” Journal of the

American College of Cardiology, vol. 37, no. 8, pp. 2240–2245, 2001.

[155] E. D. Peterson, M. T. Roe, J. S. Rumsfeld, R. E. Shaw, R. G. Brindis, G. C. Fonarow,

and C. P. Cannon, “A call to action (acute coronary treatment and intervention out-

comes network) a national effort to promote timely clinical feedback and support con-

tinuous quality improvement for acute myocardial infarction,” Circulation: Cardiovas-

cular Quality and Outcomes, vol. 2, no. 5, pp. 491–499, 2009.

[156] C. P. Cannon, A. Battler, R. G. Brindis, J. L. Cox, S. G. Ellis, N. R. Every, J. T.

Flaherty, R. A. Harrington, H. M. Krumholz, M. L. Simoons et al., “American college

of cardiology key data elements and definitions for measuring the clinical management

319



and outcomes of patients with acute coronary syndromes: a report of the american col-

lege of cardiology task force on clinical data standards (acute coronary syndromes writ-

ing committee) endorsed by the american association of cardiovascular and pulmonary

rehabilitation, american college of emergency physicians, american heart association,

cardiac society of australia & new zealand, national heart foundation of australia, so-

ciety for cardiac angiography and interventions, and the taiwan society of cardiology,”

Journal of the American College of Cardiology, vol. 38, no. 7, pp. 2114–2130, 2001.

[157] K. Larsen and J. Merlo, “Appropriate assessment of neighborhood effects on individual

health: integrating random and fixed effects in multilevel logistic regression,” American

journal of epidemiology, vol. 161, no. 1, pp. 81–88, 2005.

[158] J. E. Pustejovsky and E. Tipton, “Small-sample methods for cluster-robust variance

estimation and hypothesis testing in fixed effects models,” Journal of Business & Eco-

nomic Statistics, vol. 36, no. 4, pp. 672–683, 2018.

[159] H. Wickham and W. Chang, “ggplot2,” Computer software]. Retrieved from

http://ggplot2. org, 2012.

[160] A. Signorell, K. Aho, N. Anderegg, T. Aragon, A. Arppe, A. Baddeley, B. Bolker,

F. Caeiro, S. Champely, D. Chessel et al., “Desctools: tools for descriptive statistics.

2019,” R package version 0.99, vol. 24, 2019.

[161] G. Grolemund, H. Wickham et al., “Dates and times made easy with lubridate,” Journal

of statistical software, vol. 40, no. 3, pp. 1–25, 2011.

[162] B. Ibanez, S. James, S. Agewall, M. J. Antunes, C. Bucciarelli-Ducci, H. Bueno, A. L.

Caforio, F. Crea, J. A. Goudevenos, S. Halvorsen et al., “2017 esc guidelines for the

management of acute myocardial infarction in patients presenting with st-segment el-

evation: The task force for the management of acute myocardial infarction in patients

presenting with st-segment elevation of the european society of cardiology (esc),” Eu-

ropean heart journal, vol. 39, no. 2, pp. 119–177, 2018.

[163] T. M. Atkinson, E. M. Ohman, W. W. O’Neill, T. Rab, J. E. Cigarroa, and I. S. C.

320



of the American College of Cardiology, “A practical approach to mechanical circulatory

support in patients undergoing percutaneous coronary intervention: an interventional

perspective,” JACC: Cardiovascular Interventions, vol. 9, no. 9, pp. 871–883, 2016.

[164] J. B. Strom, Y. Zhao, C. Shen, M. Chung, D. S. Pinto, J. J. Popma, D. J. Cohen, and

R. W. Yeh, “Hospital variation in the utilization of short-term nondurable mechan-

ical circulatory support in myocardial infarction complicated by cardiogenic shock,”

Circulation: Cardiovascular Interventions, vol. 12, no. 1, p. e007270, 2019.

[165] D. D. Berg, C. F. Barnett, B. B. Kenigsberg, A. Papolos, C. L. Alviar, V. M. Baird-

Zars, G. W. Barsness, E. A. Bohula, J. Brennan, J. A. Burke et al., “Clinical practice

patterns in temporary mechanical circulatory support for shock in the critical care

cardiology trials network (ccctn) registry,” Circulation: Heart Failure, vol. 12, no. 11,

p. e006635, 2019.

[166] H. Thiele, S. Desch, and A. Freund, “Microaxial left ventricular assist devices: In search

of an appropriate indication,” Jama, vol. 323, no. 8, pp. 716–718, 2020.

[167] J. B. Strom, Y. Zhao, C. Shen, M. Chung, D. S. Pinto, J. J. Popma, and R. W. Yeh,

“National trends, predictors of use, and in-hospital outcomes in mechanical circulatory

support for cardiogenic shock.” EuroIntervention: journal of EuroPCR in collabora-

tion with the Working Group on Interventional Cardiology of the European Society of

Cardiology, vol. 13, no. 18, pp. e2152–e2159, 2018.

[168] D. A. Baran, C. L. Grines, S. Bailey, D. Burkhoff, S. A. Hall, T. D. Henry, S. M.

Hollenberg, N. K. Kapur, W. O’Neill, J. P. Ornato et al., “Scai clinical expert consensus

statement on the classification of cardiogenic shock: this document was endorsed by

the american college of cardiology (acc), the american heart association (aha), the

society of critical care medicine (sccm), and the society of thoracic surgeons (sts) in

april 2019,” Catheterization and Cardiovascular Interventions, vol. 94, no. 1, pp. 29–37,

2019.

[169] C. S. Rihal, S. S. Naidu, M. M. Givertz, W. Y. Szeto, J. A. Burke, N. K. Kapur,

321



M. Kern, K. N. Garratt, J. A. Goldstein, V. Dimas et al., “2015 scai/acc/hfsa/sts

clinical expert consensus statement on the use of percutaneous mechanical circulatory

support devices in cardiovascular care: endorsed by the american heart assocation,

the cardiological society of india, and sociedad latino americana de cardiologia inter-

vencion; affirmation of value by the canadian association of interventional cardiology-

association canadienne de cardiologie d’intervention,” Journal of the American College

of Cardiology, vol. 65, no. 19, pp. e7–e26, 2015.

[170] G. D’Onofrio, B. Safdar, J. H. Lichtman, K. M. Strait, R. P. Dreyer, M. Geda, J. A.

Spertus, and H. M. Krumholz, “Sex differences in reperfusion in young patients with

st-segment–elevation myocardial infarction: results from the virgo study,” Circulation,

vol. 131, no. 15, pp. 1324–1332, 2015.

[171] A. F. Hernandez, G. C. Fonarow, L. Liang, S. M. Al-Khatib, L. H. Curtis, K. A.

LaBresh, C. W. Yancy, N. M. Albert, and E. D. Peterson, “Sex and racial differences

in the use of implantable cardioverter-defibrillators among patients hospitalized with

heart failure,” Jama, vol. 298, no. 13, pp. 1525–1532, 2007.

[172] B. Ahmed and H. L. Dauerman, “Women, bleeding, and coronary intervention,” Cir-

culation, vol. 127, no. 5, pp. 641–649, 2013.

[173] B. Redfors, O. Angerås, T. Råmunddal, C. Dworeck, I. Haraldsson, D. Ioanes,

P. Petursson, B. Libungan, J. Odenstedt, J. Stewart et al., “17-year trends in inci-

dence and prognosis of cardiogenic shock in patients with acute myocardial infarction

in western sweden,” International journal of cardiology, vol. 185, pp. 256–262, 2015.

[174] R. V. Jeger, D. Radovanovic, P. R. Hunziker, M. E. Pfisterer, J.-C. Stauffer, P. Erne,

and P. Urban, “Ten-year trends in the incidence and treatment of cardiogenic shock,”

Annals of internal medicine, vol. 149, no. 9, pp. 618–626, 2008.

[175] D. Kolte, S. Khera, W. S. Aronow, M. Mujib, C. Palaniswamy, S. Sule, D. Jain,

W. Gotsis, A. Ahmed, W. H. Frishman et al., “Trends in incidence, management, and

outcomes of cardiogenic shock complicating st-elevation myocardial infarction in the

322



u nited s tates,” Journal of the American Heart Association, vol. 3, no. 1, p. e000590,

2014.

[176] US Food and Drug Administration, “Summary of safety and effectiveness data (ssed):

Impella ventricular support systems,” https://www.accessdata.fda.gov/cdrh_docs/

pdf14/P140003S004B.pdf, 2016, accessed: 2021-4-23.

[177] B. Schrage, K. Ibrahim, T. Loehn, N. Werner, J.-M. Sinning, F. Pappalardo, M. Pieri,

C. Skurk, A. Lauten, U. Landmesser et al., “Impella support for acute myocardial

infarction complicated by cardiogenic shock: Matched-pair iabp-shock ii trial 30-day

mortality analysis,” Circulation, vol. 139, no. 10, pp. 1249–1258, 2019.

[178] J. M. Brennan, E. D. Peterson, J. C. Messenger, J. S. Rumsfeld, W. S. Weintraub,

K. J. Anstrom, E. L. Eisenstein, S. Milford-Beland, M. V. Grau-Sepulveda, M. E.

Booth et al., “Linking the national cardiovascular data registry cathpci registry with

medicare claims data: validation of a longitudinal cohort of elderly patients undergoing

cardiac catheterization,” Circulation: Cardiovascular Quality and Outcomes, vol. 5,

no. 1, pp. 134–140, 2012.

[179] American College of Cardiology National Cardiovascular Data Registry, “What

each registry collects,” https://cvquality.acc.org/NCDR-Home/Data-Collection/

What-Each-Registry-Collects, accessed: 2021-4-23.

[180] L. Mauri, T. S. Silbaugh, P. Garg, R. E. Wolf, K. Zelevinsky, A. Lovett, M. R. Varma,

Z. Zhou, and S.-L. T. Normand, “Drug-eluting or bare-metal stents for acute myocardial

infarction,” New England Journal of Medicine, vol. 359, no. 13, pp. 1330–1342, 2008.

[181] X. S. Gu and P. R. Rosenbaum, “Comparison of multivariate matching methods: Struc-

tures, distances, and algorithms,” Journal of Computational and Graphical Statistics,

vol. 2, no. 4, pp. 405–420, 1993.

[182] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and

M. Müller, “proc: an open-source package for r and s+ to analyze and compare roc

curves,” BMC Bioinformatics, vol. 12, no. 1, p. 77, Mar. 2011. [Online]. Available:

323

https://www.accessdata.fda.gov/cdrh_docs/pdf14/P140003S004B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf14/P140003S004B.pdf
https://cvquality.acc.org/NCDR-Home/Data-Collection/What-Each-Registry-Collects
https://cvquality.acc.org/NCDR-Home/Data-Collection/What-Each-Registry-Collects


https://doi.org/10.1186/1471-2105-12-77

[183] US Food and Drug Administration, “Update: increased rate of mortal-

ity in patients receiving abiomed impella rp system–letter to health care

providers,” https://www.fda.gov/medical-devices/letters-health-care-providers/

update-increased-rate-mortality-patients-receiving-abiomed-impella-rp-system-letter-health-care,

2019, accessed: 2021-4-23.

[184] B. Wernly, C. Seelmaier, D. Leistner, B. E. Stähli, I. Pretsch, M. Lichtenauer, C. Jung,

U. C. Hoppe, U. Landmesser, H. Thiele et al., “Mechanical circulatory support with

impella versus intra-aortic balloon pump or medical treatment in cardiogenic shock–a

critical appraisal of current data,” Clinical Research in Cardiology, vol. 108, no. 11,

pp. 1249–1257, 2019.

[185] B. Alushi, A. Douedari, G. Froehlig, W. Knie, T. H. Wurster, D. M. Leistner, B.-E.

Staehli, H.-C. Mochmann, B. Pieske, U. Landmesser et al., “Impella versus iabp in

acute myocardial infarction complicated by cardiogenic shock,” Open Heart, vol. 6,

no. 1, p. e000987, 2019.

[186] J. W. Eikelboom, S. R. Mehta, S. S. Anand, C. Xie, K. Fox, S. Yusuf et al., “Ad-

verse impact of bleeding on prognosis in patients with acute coronary syndromes,”

Circulation, vol. 114, no. 8, pp. 774–782, 2006.

[187] S. Chatterjee, J. Wetterslev, A. Sharma, E. Lichstein, and D. Mukherjee, “Association

of blood transfusion with increased mortality in myocardial infarction: a meta-analysis

and diversity-adjusted study sequential analysis,” JAMA internal medicine, vol. 173,

no. 2, pp. 132–139, 2013.

[188] T. D. Kinnaird, E. Stabile, G. S. Mintz, C. W. Lee, D. A. Canos, N. Gevorkian,

E. E. Pinnow, K. M. Kent, A. D. Pichard, L. F. Satler et al., “Incidence, predictors,

and prognostic implications of bleeding and blood transfusion following percutaneous

coronary interventions,” The American journal of cardiology, vol. 92, no. 8, pp. 930–

935, 2003.

324

https://doi.org/10.1186/1471-2105-12-77
https://www.fda.gov/medical-devices/letters-health-care-providers/update-increased-rate-mortality-patients-receiving-abiomed-impella-rp-system-letter-health-care
https://www.fda.gov/medical-devices/letters-health-care-providers/update-increased-rate-mortality-patients-receiving-abiomed-impella-rp-system-letter-health-care


[189] N. J. Udesen, J. E. Møller, M. G. Lindholm, H. Eiskjær, A. Schäfer, N. Werner,

L. Holmvang, C. J. Terkelsen, L. O. Jensen, A. Junker et al., “Rationale and design

of danger shock: Danish-german cardiogenic shock trial,” American heart journal, vol.

214, pp. 60–68, 2019.

[190] A. K. Chhatriwalla, A. P. Amin, K. F. Kennedy, J. A. House, D. J. Cohen, S. V. Rao,

J. C. Messenger, S. P. Marso, f. t. National Cardiovascular Data Registry et al., “Asso-

ciation between bleeding events and in-hospital mortality after percutaneous coronary

intervention,” Jama, vol. 309, no. 10, pp. 1022–1029, 2013.

[191] S. K. Mehta, A. D. Frutkin, J. B. Lindsey, J. A. House, J. A. Spertus, S. V. Rao, F.-S.

Ou, M. T. Roe, E. D. Peterson, and S. P. Marso, “Bleeding in patients undergoing

percutaneous coronary intervention: the development of a clinical risk algorithm from

the national cardiovascular data registry,” Circulation: Cardiovascular Interventions,

vol. 2, no. 3, pp. 222–229, 2009.

[192] S. V. Rao, L. A. McCoy, J. A. Spertus, R. J. Krone, M. Singh, S. Fitzgerald, and E. D.

Peterson, “An updated bleeding model to predict the risk of post-procedure bleeding

among patients undergoing percutaneous coronary intervention: a report using an

expanded bleeding definition from the national cardiovascular data registry cathpci

registry,” JACC: Cardiovascular Interventions, vol. 6, no. 9, pp. 897–904, 2013.

[193] I. Moussa, A. Hermann, J. C. Messenger, G. J. Dehmer, W. D. Weaver, J. S. Rumsfeld,

and F. A. Masoudi, “The ncdr cathpci registry: a us national perspective on care and

outcomes for percutaneous coronary intervention,” Heart, vol. 99, no. 5, pp. 297–303,

2013.

[194] D. V. Baklanov, S. Kim, S. P. Marso, S. Subherwal, and S. V. Rao, “Comparison of

bivalirudin and radial access across a spectrum of preprocedural risk of bleeding in

percutaneous coronary intervention: analysis from the national cardiovascular data

registry,” Circulation: Cardiovascular Interventions, vol. 6, no. 4, pp. 347–353, 2013.

[195] S. Subherwal, E. D. Peterson, D. Dai, L. Thomas, J. C. Messenger, Y. Xian, R. G.

325



Brindis, D. N. Feldman, S. Senter, and L. W. Klein, “Temporal trends in and factors

associated with bleeding complications among patients undergoing percutaneous coro-

nary intervention: a report from the national cardiovascular data cathpci registry,”

Journal of the American College of Cardiology, vol. 59, no. 21, pp. 1861–1869, 2012.

[196] S. L. Daugherty, L. E. Thompson, S. Kim, S. V. Rao, S. Subherwal, T. T. Tsai,

J. C. Messenger, and F. A. Masoudi, “Patterns of use and comparative effectiveness

of bleeding avoidance strategies in men and women following percutaneous coronary

interventions: an observational study from the national cardiovascular data registry,”

Journal of the American College of Cardiology, vol. 61, no. 20, pp. 2070–2078, 2013.

[197] A. N. Vora, E. D. Peterson, L. A. McCoy, K. N. Garratt, M. A. Kutcher, S. P. Marso,

M. T. Roe, J. C. Messenger, and S. V. Rao, “The impact of bleeding avoidance strate-

gies on hospital-level variation in bleeding rates following percutaneous coronary in-

tervention: insights from the national cardiovascular data registry cathpci registry,”

JACC: Cardiovascular Interventions, vol. 9, no. 8, pp. 771–779, 2016.

[198] S. P. Marso, A. P. Amin, J. A. House, K. F. Kennedy, J. A. Spertus, S. V. Rao, D. J.

Cohen, J. C. Messenger, J. S. Rumsfeld, and N. C. D. Registry, “Association between

use of bleeding avoidance strategies and risk of periprocedural bleeding among patients

undergoing percutaneous coronary intervention,” Jama, vol. 303, no. 21, pp. 2156–2164,

2010.

[199] G. A. Aarons, A. E. Green, L. A. Palinkas, S. Self-Brown, D. J. Whitaker, J. R. Lutzker,

J. F. Silovsky, D. B. Hecht, and M. J. Chaffin, “Dynamic adaptation process to im-

plement an evidence-based child maltreatment intervention,” Implementation Science,

vol. 7, no. 1, pp. 1–9, 2012.

[200] B. J. Mortazavi, E. M. Bucholz, N. R. Desai, C. Huang, J. P. Curtis, F. A. Masoudi,

R. E. Shaw, S. N. Negahban, and H. M. Krumholz, “Comparison of machine learning

methods with national cardiovascular data registry models for prediction of risk of

bleeding after percutaneous coronary intervention,” JAMA network open, vol. 2, no. 7,

326



pp. e196 835–e196 835, 2019.

[201] S. v. Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by chained

equations in r,” Journal of statistical software, pp. 1–68, 2010.

[202] X. Kavelaars, S. Van Buuren, and J. Van Ginkel, “Multiple imputation in data that

grow over time: A comparison of three strategies,” arXiv preprint arXiv:1904.04185,

2019.

[203] B. C. Jaeger, N. J. Tierney, and N. R. Simon, “When to impute? imputation before

and during cross-validation,” arXiv preprint arXiv:2010.00718, 2020.

[204] L. M. Stevens, B. J. Mortazavi, R. C. Deo, L. Curtis, and D. P. Kao, “Recommendations

for reporting machine learning analyses in clinical research,” Circulation: Cardiovas-

cular Quality and Outcomes, vol. 13, no. 10, p. e006556, 2020.

[205] B. Nestor, M. B. McDermott, W. Boag, G. Berner, T. Naumann, M. C. Hughes,

A. Goldenberg, and M. Ghassemi, “Feature robustness in non-stationary health records:

caveats to deployable model performance in common clinical machine learning tasks,”

in Machine Learning for Healthcare Conference. PMLR, 2019, pp. 381–405.

[206] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining,

2016, pp. 785–794.

[207] E. Pinker, “Reporting accuracy of rare event classifiers,” NPJ digital medicine, vol. 1,

no. 1, pp. 1–2, 2018.

[208] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”

in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran

Associates, Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/

paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[209] R. Khera, J. Haimovich, N. C. Hurley, R. McNamara, J. A. Spertus, N. Desai, J. S.

Rumsfeld, F. A. Masoudi, C. Huang, and S.-L. Normand, “Use of machine learning

327

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf


models to predict death after acute myocardial infarction,” JAMA cardiology, 2021.

[210] S. N. Wood, Generalized additive models: an introduction with R. CRC press, 2017.

[211] A. Zeileis, S. Köll, and N. Graham, “Various versatile variances: An object-oriented

implementation of clustered covariances in r,” Journal of Statistical Software, vol. 95,

no. 1, pp. 1–36, 2020.

[212] H. Thiele, U. Zeymer, N. Thelemann, F.-J. Neumann, J. Hausleiter, M. Abdel-Wahab,

R. Meyer-Saraei, G. Fuernau, I. Eitel, R. Hambrecht et al., “Intraaortic balloon pump in

cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome

of the randomized iabp-shock ii trial,” Circulation, vol. 139, no. 3, pp. 395–403, 2019.

[213] R. Khera, E. A. Secemsky, Y. Wang, N. R. Desai, H. M. Krumholz, T. M. Maddox,

K. A. Shunk, S. S. Virani, D. L. Bhatt, J. Curtis et al., “Revascularization practices and

outcomes in patients with multivessel coronary artery disease who presented with acute

myocardial infarction and cardiogenic shock in the us, 2009-2018,” JAMA Internal

Medicine, vol. 180, no. 10, pp. 1317–1327, 2020.

[214] S. S. Dhruva, J. S. Ross, B. J. Mortazavi, N. C. Hurley, H. M. Krumholz, J. P.

Curtis, A. P. Berkowitz, F. A. Masoudi, J. C. Messenger, C. S. Parzynski et al.,

“Use of mechanical circulatory support devices among patients with acute myocardial

infarction complicated by cardiogenic shock,” JAMA network open, vol. 4, no. 2, pp.

e2 037 748–e2 037 748, 2021.

[215] G. B. Holt, “Potential simpson’s paradox in multicenter study of intraperitoneal

chemotherapy for ovarian cancer,” Journal of Clinical Oncology, vol. 34, no. 9, pp.

1016–1016, 2016.

[216] L. Yao, Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang, “A survey on causal inference,”

arXiv preprint arXiv:2002.02770, 2020.

[217] R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu, “A survey of learning causality with

data: Problems and methods,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp.

1–37, 2020.

328



[218] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean,

“Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,”

in 5th International Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[219] Z. Huo, A. PakBin, X. Chen, N. Hurley, Y. Yuan, X. Qian, Z. Wang,

S. Huang, and B. Mortazavi, “Uncertainty quantification for deep context-aware

mobile activity recognition and unknown context discovery,” arXiv preprint

arXiv:2003.01753, vol. 108, pp. 3894–3904, 26–28 Aug 2020. [Online]. Available:

http://proceedings.mlr.press/v108/huo20a.html

[220] R. Xu and D. C. Wunsch, “Clustering algorithms in biomedical research: a review,”

IEEE Reviews in Biomedical Engineering, vol. 3, pp. 120–154, 2010.

[221] N. C. Hurley, A. D. Haimovich, R. A. Taylor, and B. J. Mortazavi, “Visualization

of emergency department clinical data for interpretable patient phenotyping,” arXiv

preprint arXiv:1907.11039, 2019.

[222] C. Louizos, U. Shalit, J. Mooij, D. Sontag, R. Zemel, and M. Welling, “Causal effect

inference with deep latent-variable models,” arXiv preprint arXiv:1705.08821, 2017.

[223] L. Yao, S. Li, Y. Li, M. Huai, J. Gao, and A. Zhang, “Representation learning for

treatment effect estimation from observational data,” Advances in Neural Information

Processing Systems, vol. 31, 2018.

[224] P. Croft, D. G. Altman, J. J. Deeks, K. M. Dunn, A. D. Hay, H. Hemingway,

L. LeResche, G. Peat, P. Perel, S. E. Petersen et al., “The science of clinical prac-

tice: disease diagnosis or patient prognosis? evidence about “what is likely to happen”

should shape clinical practice,” BMC medicine, vol. 13, no. 1, pp. 1–8, 2015.

[225] D. M. Mannino, “COPD: epidemiology, prevalence, morbidity and mortality, and dis-

ease heterogeneity,” Chest, vol. 121, no. 5, pp. 121S–126S, 2002.

[226] E. Feczko and D. A. Fair, “Methods and challenges for assessing heterogeneity,” Bio-

logical psychiatry, vol. 88, no. 1, pp. 9–17, 2020.

329

http://proceedings.mlr.press/v108/huo20a.html


[227] B. K. Beaulieu-Jones, C. S. Greene et al., “Semi-supervised learning of the electronic

health record for phenotype stratification,” Journal of biomedical informatics, vol. 64,

pp. 168–178, 2016.

[228] P. Chapfuwa, C. Li, N. Mehta, L. Carin, and R. Henao, “Survival cluster analysis,”

in Proceedings of the ACM Conference on Health, Inference, and Learning, 2020, pp.

60–68.

[229] C. Nagpal, D. Wei, B. Vinzamuri, M. Shekhar, S. E. Berger, S. Das, and K. R. Varsh-

ney, “Interpretable subgroup discovery in treatment effect estimation with application

to opioid prescribing guidelines,” in Proceedings of the ACM Conference on Health,

Inference, and Learning, 2020, pp. 19–29.

[230] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of

local experts,” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

[231] S. Nowlan and G. E. Hinton, “Evaluation of adaptive mixtures of competing experts,”

Advances in neural information processing systems, vol. 3, pp. 774–780, 1990.

[232] R. Solis, A. Pakbin, A. Akbari, B. J. Mortazavi, and R. Jafari, “A human-centered

wearable sensing platform with intelligent automated data annotation capabilities,” in

Proceedings of the International Conference on Internet of Things Design and Imple-

mentation. ACM, 2019, pp. 255–260.

[233] X. Wang, F. Yu, L. Dunlap, Y.-A. Ma, R. Wang, A. Mirhoseini, T. Darrell, and J. E.

Gonzalez, “Deep mixture of experts via shallow embedding,” in Uncertainty in Artificial

Intelligence. PMLR, 2020, pp. 552–562.

[234] E. J. Benjamin, P. Muntner, and M. S. Bittencourt, “Heart disease and

stroke statistics-2019 update: A report from the american heart association,”

Circulation, vol. 139, no. 10, pp. e56–e528, 2019. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pubmed/30700139

[235] R. B. Schnabel, X. Yin, P. Gona, M. G. Larson, A. S. Beiser, D. D. McManus,

C. Newton-Cheh, S. A. Lubitz, J. W. Magnani, P. T. Ellinor et al., “50 year trends in

330

https://www.ncbi.nlm.nih.gov/pubmed/30700139
https://www.ncbi.nlm.nih.gov/pubmed/30700139


atrial fibrillation prevalence, incidence, risk factors, and mortality in the framingham

heart study: a cohort study,” The Lancet, vol. 386, no. 9989, pp. 154–162, 2015.

[236] D. S. Lee, P. Gona, R. S. Vasan, M. G. Larson, E. J. Benjamin, T. J. Wang, J. V.

Tu, and D. Levy, “Relation of disease etiology and risk factors to heart failure with

preserved or reduced ejection fraction: insights from the national heart, lung, and

blood institute’s framingham heart study,” Circulation, vol. 119, no. 24, p. 3070, 2009.

[237] J. R. Romero, S. R. Preis, A. Beiser, C. DeCarli, A. Viswanathan, S. Martinez-Ramirez,

C. S. Kase, P. A. Wolf, and S. Seshadri, “Risk factors, stroke prevention treatments,

and prevalence of cerebral microbleeds in the framingham heart study,” Stroke, vol. 45,

no. 5, pp. 1492–1494, 2014.

[238] M. Galderisi, M. S. Lauer, and D. Levy, “Echocardiographic determinants of clinical

outcome in subjects with coronary artery disease (the framingham heart study),” The

American journal of cardiology, vol. 70, no. 11, pp. 971–976, 1992.

[239] D. M. Lloyd-Jones, M. G. Larson, E. P. Leip, A. Beiser, R. B. D’Agostino, W. B.

Kannel, J. M. Murabito, R. S. Vasan, E. J. Benjamin, and D. Levy, “Lifetime risk

for developing congestive heart failure: the framingham heart study,” Circulation, vol.

106, no. 24, pp. 3068–3072, 2002.

[240] G. F. Mitchell, S.-J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg,

J. A. Vita, D. Levy, and E. J. Benjamin, “Arterial stiffness and cardiovascular events:

the framingham heart study,” Circulation, vol. 121, no. 4, p. 505, 2010.

[241] C. J. O’Donnell and R. Elosua, “Cardiovascular risk factors. insights from framingham

heart study,” Revista Española de Cardiología (English Edition), vol. 61, no. 3, pp.

299–310, 2008.

[242] S. I. Chaudhry, J. A. Mattera, J. P. Curtis, J. A. Spertus, J. Herrin,

Z. Lin, C. O. Phillips, B. V. Hodshon, L. S. Cooper, and H. M. Krumholz,

“Telemonitoring in patients with heart failure,” New England Journal of

Medicine, vol. 363, no. 24, pp. 2301–2309, 2010. [Online]. Available: https:

331

https://www.ncbi.nlm.nih.gov/pubmed/21080835
https://www.ncbi.nlm.nih.gov/pubmed/21080835


//www.ncbi.nlm.nih.gov/pubmed/21080835

[243] H. M. Krumholz, S. I. Chaudhry, J. A. Spertus, J. A. Mattera, B. Hodshon, and

J. Herrin, “Do non-clinical factors improve prediction of readmission risk?: results

from the tele-hf study,” JACC: Heart Failure, vol. 4, no. 1, pp. 12–20, 2016.

[244] M. K. Ong, P. S. Romano, S. Edgington, H. U. Aronow, A. D. Auerbach, J. T. Black,

T. De Marco, J. J. Escarce, L. S. Evangelista, and B. Hanna, “Effectiveness of remote

patient monitoring after discharge of hospitalized patients with heart failure: the better

effectiveness after transition–heart failure (beat-hf) randomized clinical trial,” JAMA

internal medicine, vol. 176, no. 3, pp. 310–318, 2016.

[245] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wear-

able sensors,” IEEE communications surveys & tutorials, vol. 15, no. 3, pp. 1192–1209,

2012.

[246] A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, and P. Havinga, “Activity

recognition using inertial sensing for healthcare, wellbeing and sports applications: A

survey,” in 23th International conference on architecture of computing systems 2010,

VDE. VDE, 2010, Conference Proceedings, pp. 1–10.

[247] C. Chen, R. Jafari, and N. Kehtarnavaz, “A survey of depth and inertial sensor fusion

for human action recognition,” Multimedia Tools and Applications, vol. 76, no. 3, pp.

4405–4425, 2017.

[248] B. Eskofier, S. Lee, M. Baron, A. Simon, C. Martindale, H. Gaßner, and J. Klucken, “An

overview of smart shoes in the internet of health things: gait and mobility assessment

in health promotion and disease monitoring,” Applied Sciences, vol. 7, no. 10, p. 986,

2017.

[249] E. Hoque and J. Stankovic, “Aalo: Activity recognition in smart homes using active

learning in the presence of overlapped activities,” in 2012 6th International Confer-

ence on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Work-

shops. IEEE, 2012, Conference Proceedings, pp. 139–146.

332

https://www.ncbi.nlm.nih.gov/pubmed/21080835
https://www.ncbi.nlm.nih.gov/pubmed/21080835


[250] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-based activity

recognition: A survey,” Pattern Recognition Letters, vol. 119, pp. 3–11, 2019.

[251] S. A. Rokni, M. Nourollahi, and H. Ghasemzadeh, “Personalized human activity recog-

nition using convolutional neural networks,” in Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[252] B. H. Dobkin and C. Martinez, “Wearable sensors to monitor, enable feedback,

and measure outcomes of activity and practice,” Current neurology and neuroscience

reports, vol. 18, no. 12, p. 87, 2018. [Online]. Available: https://www.ncbi.nlm.nih.

gov/pubmed/30293160

[253] B. Mortazavi, M. Pourhomayoun, H. Ghasemzadeh, R. Jafari, C. K. Roberts, and

M. Sarrafzadeh, “Context-aware data processing to enhance quality of measurements

in wireless health systems: An application to met calculation of exergaming actions,”

IEEE Internet of Things Journal, vol. 2, no. 1, pp. 84–93, 2014.

[254] I. Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens, “Contextual motifs: Increasing

the utility of motifs using contextual data,” in Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, 2017,

Conference Proceedings, pp. 155–164.

[255] ——, “Deep multi-output forecasting: Learning to accurately predict blood glucose

trajectories,” in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. ACM, 2018, Conference Proceedings, pp. 1387–

1395.

[256] S. Hijazi, A. Page, B. Kantarci, and T. Soyata, “Machine learning in cardiac health

monitoring and decision support,” Computer, vol. 49, no. 11, pp. 38–48, 2016.

[257] S. Leng, R. San Tan, K. T. C. Chai, C. Wang, D. Ghista, and L. Zhong, “The

electronic stethoscope,” Biomedical engineering online, vol. 14, no. 1, p. 66, 2015.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/26159433https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC4496820/pdf/12938_2015_Article_56.pdf

333

https://www.ncbi.nlm.nih.gov/pubmed/30293160
https://www.ncbi.nlm.nih.gov/pubmed/30293160
https://www.ncbi.nlm.nih.gov/pubmed/26159433 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496820/pdf/12938_2015_Article_56.pdf
https://www.ncbi.nlm.nih.gov/pubmed/26159433 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496820/pdf/12938_2015_Article_56.pdf


[258] Z. Zhang, “Photoplethysmography-based heart rate monitoring in physical activities

via joint sparse spectrum reconstruction,” IEEE transactions on biomedical

engineering, vol. 62, no. 8, pp. 1902–1910, 2015. [Online]. Available: https:

//www.ncbi.nlm.nih.gov/pubmed/26186747

[259] C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu, “Radar remote monitoring of

vital signs,” IEEE Microwave Magazine, vol. 10, no. 1, pp. 47–56, 2009.

[260] J. Wasserlauf, C. You, R. Patel, A. Valys, D. Albert, and R. Passman, “Smartwatch

performance for the detection and quantification of atrial fibrillation,” Circulation:

Arrhythmia and Electrophysiology, vol. 12, no. 6, p. e006834, 2019. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/31113234

[261] B. Ziaeian and G. C. Fonarow, “Epidemiology and aetiology of heart failure,”

Nature Reviews Cardiology, vol. 13, no. 6, p. 368, 2016. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/26935038

[262] R. L. McNamara, Y. Wang, J. Herrin, J. P. Curtis, E. H. Bradley, D. J. Magid, E. D.

Peterson, M. Blaney, P. D. Frederick, and H. M. Krumholz, “Effect of door-to-balloon

time on mortality in patients with st-segment elevation myocardial infarction,”

Journal of the American College of Cardiology, vol. 47, no. 11, pp. 2180–2186, 2006.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/16750682

[263] H. M. Krumholz, J. Herrin, L. E. Miller, E. E. Drye, S. M. Ling, L. F. Han, M. T. Rapp,

E. H. Bradley, B. K. Nallamothu, and W. Nsa, “Improvements in door-to-balloon

time in the united states, 2005 to 2010,” Circulation, vol. 124, no. 9, pp. 1038–1045,

2011. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/21859971

[264] B. K. Nallamothu, S.-L. T. Normand, Y. Wang, T. P. Hofer, J. E. Brush Jr, J. C.

Messenger, E. H. Bradley, J. S. Rumsfeld, and H. M. Krumholz, “Relation between

door-to-balloon times and mortality after primary percutaneous coronary intervention

over time: a retrospective study,” The Lancet, vol. 385, no. 9973, pp. 1114–1122, 2015.

[265] M. H. Olsen, S. Y. Angell, S. Asma, P. Boutouyrie, D. Burger, J. A. Chirinos,

334

https://www.ncbi.nlm.nih.gov/pubmed/26186747
https://www.ncbi.nlm.nih.gov/pubmed/26186747
https://www.ncbi.nlm.nih.gov/pubmed/31113234
https://www.ncbi.nlm.nih.gov/pubmed/26935038
https://www.ncbi.nlm.nih.gov/pubmed/16750682
https://www.ncbi.nlm.nih.gov/pubmed/21859971


A. Damasceno, C. Delles, A.-P. Gimenez-Roqueplo, and D. Hering, “A call to

action and a lifecourse strategy to address the global burden of raised blood

pressure on current and future generations: the lancet commission on hypertension,”

The Lancet, vol. 388, no. 10060, pp. 2665–2712, 2016. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/27671667

[266] E. Onusko, “Diagnosing secondary hypertension,” American family physician, vol. 67,

no. 1, pp. 67–74, 2003. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/

12537168

[267] D. M. Reboussin, N. B. Allen, M. E. Griswold, E. Guallar, Y. Hong, D. T. Lackland,

E. P. R. Miller, T. Polonsky, A. M. Thompson-Paul, and S. Vupputuri, “Systematic

review for the 2017 acc/aha/aapa/abc/acpm/ags/apha/ash/aspc/nma/pcna guideline

for the prevention, detection, evaluation, and management of high blood pressure in

adults: a report of the american college of cardiology/american heart association task

force on clinical practice guidelines,” Journal of the American College of Cardiology,

vol. 71, no. 19, pp. 2176–2198, 2018.

[268] R. Levin, M. Dolgin, C. Fox, and R. Gorlin, “The criteria committee of the new york

heart association: Nomenclature and criteria for diagnosis of diseases of the heart and

great vessels,” LWW Handbooks, vol. 9, p. 344, 1994.

[269] D. C. Goff, D. M. Lloyd-Jones, G. Bennett, S. Coady, R. B. D’Agostino, R. Gib-

bons, P. Greenland, D. T. Lackland, D. Levy, and C. J. O’Donnell, “2013 acc/aha

guideline on the assessment of cardiovascular risk: a report of the american college

of cardiology/american heart association task force on practice guidelines,” Journal of

the American College of Cardiology, vol. 63, no. 25 Part B, pp. 2935–2959, 2014.

[270] S. R. Group, “A randomized trial of intensive versus standard blood-pressure control,”

New England Journal of Medicine, vol. 373, no. 22, pp. 2103–2116, 2015.

[271] “Amazfit verge.” [Online]. Available: https://en.amazfit.com/verge.html

[272] A. Support, “Your heart rate. what it means, and where on apple watch you’ll find

335

https://www.ncbi.nlm.nih.gov/pubmed/27671667
https://www.ncbi.nlm.nih.gov/pubmed/12537168
https://www.ncbi.nlm.nih.gov/pubmed/12537168
https://en.amazfit.com/verge.html


it.” [Online]. Available: https://support.apple.com/en-us/HT204666

[273] Empatica, “Real-time physiological signals | e4 eda/gsr sensor.” [Online]. Available:

https://www.empatica.com/research/e4

[274] F. Help, “How do i track my heart rate with my fitbit device?” [Online]. Available:

https://help.fitbit.com/articles/en_US/Help_article/1565

[275] Garmin and G. L. subsidiaries, “Garmin fenix® 6 | multisport fitness watch.”

[Online]. Available: https://buy.garmin.com/en-US/US/p/641449

[276] S. E. America, “Samsung heart rate sensor.” [Online]. Available: https:

//www.samsung.com/us/heartratesensor/

[277] Valencell, “Valencell | customers.” [Online]. Available: https://valencell.com/

customers/

[278] Withings, “Fitness trackers and hybrid smartwatches by withings.” [Online]. Available:

https://www.withings.com/us/en/watches

[279] O. Ring, “Get to know oura.” [Online]. Available: https://ouraring.com/

get-to-know-oura

[280] Valencell, “Blood pressure blood pressure.” [Online]. Available: https://valencell.com/

bloodpressure/

[281] Garmin and G. L. subsidiaries, “Garmin | heart rate monitors.” [Online]. Available:

https://buy.garmin.com/en-US/US/c14662-p1.html

[282] P. USA, “Polar usa.” [Online]. Available: https://www.polar.com/us-en/products/

compare

[283] Qardio, “Qardiocore.” [Online]. Available: https://store.getqardio.com/products/

qardiocore

[284] AliveCor, “Alivecor.” [Online]. Available: https://www.alivecor.com/kardiamobile6l/

[285] Caretaker Medical, “Medical papers – caretaker medical.” [Online]. Available:

https://www.caretakermedical.net/medical-papers/

[286] Finapres Medical Systems, “Finapres medical systems | products - finapres® nova.”

336

https://support.apple.com/en-us/HT204666
https://www.empatica.com/research/e4
https://help.fitbit.com/articles/en_US/Help_article/1565
https://buy.garmin.com/en-US/US/p/641449
https://www.samsung.com/us/heartratesensor/
https://www.samsung.com/us/heartratesensor/
https://valencell.com/customers/
https://valencell.com/customers/
https://www.withings.com/us/en/watches
https://ouraring.com/get-to-know-oura
https://ouraring.com/get-to-know-oura
https://valencell.com/bloodpressure/
https://valencell.com/bloodpressure/
https://buy.garmin.com/en-US/US/c14662-p1.html
https://www.polar.com/us-en/products/compare
https://www.polar.com/us-en/products/compare
https://store.getqardio.com/products/qardiocore
https://store.getqardio.com/products/qardiocore
https://www.alivecor.com/kardiamobile6l/
https://www.caretakermedical.net/medical-papers/


[Online]. Available: http://www.finapres.com/Products/Finapres-NOVA

[287] Qardio, “Irregular heart beat detection.” [Online]. Available: http://support.getqardio.

com/hc/en-us/articles/203579482

[288] R. D. Conn and J. H. O’Keefe, “Cardiac physical diagnosis in the digital

age: an important but increasingly neglected skill (from stethoscopes to

microchips),” The American journal of cardiology, vol. 104, no. 4, pp. 590–595,

2009. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/19660617https:

//www.ajconline.org/article/S0002-9149(09)00957-6/fulltext

[289] C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells, J. M.

Roig, I. Silva, A. E. Johnson et al., “An open access database for the evaluation of

heart sound algorithms,” Physiological Measurement, vol. 37, no. 12, p. 2181, 2016.

[290] G. D. Clifford, C. Liu, B. Moody, D. Springer, I. Silva, Q. Li, and R. G. Mark,

“Classification of normal/abnormal heart sound recordings: The physionet/computing

in cardiology challenge 2016,” in 2016 Computing in Cardiology Conference (CinC).

IEEE, 2016, pp. 609–612.

[291] M. E. Chowdhury, A. Khandakar, K. Alzoubi, S. Mansoor, A. M Tahir, M. B. I.

Reaz, and N. Al-Emadi, “Real-time smart-digital stethoscope system for heart diseases

monitoring,” Sensors, vol. 19, no. 12, p. 2781, 2019.

[292] A. Sinharay, D. Ghosh, P. Deshpande, S. Alam, R. Banerjee, and A. Pal, “Smartphone

based digital stethoscope for connected health–a direct acoustic coupling technique,” in

2016 IEEE First International Conference on Connected Health: Applications, Systems

and Engineering Technologies (CHASE). IEEE, 2016, Conference Proceedings, pp.

193–198.

[293] M. Elgendi, P. Bobhate, S. Jain, J. Rutledge, J. Y. Coe, R. Zemp, D. Schuurmans, and

I. Adatia, “Time-domain analysis of heart sound intensity in children with and without

pulmonary artery hypertension: a pilot study using a digital stethoscope,” Pulmonary

circulation, vol. 4, no. 4, pp. 685–695, 2014.

337

http://www.finapres.com/Products/Finapres-NOVA
http://support.getqardio.com/hc/en-us/articles/203579482
http://support.getqardio.com/hc/en-us/articles/203579482
https://www.ncbi.nlm.nih.gov/pubmed/19660617 https://www.ajconline.org/article/S0002-9149(09)00957-6/fulltext
https://www.ncbi.nlm.nih.gov/pubmed/19660617 https://www.ajconline.org/article/S0002-9149(09)00957-6/fulltext


[294] G. Vinci, S. Lindner, F. Barbon, S. Mann, M. Hofmann, A. Duda, R. Weigel, and

A. Koelpin, “Six-port radar sensor for remote respiration rate and heartbeat vital-sign

monitoring,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5,

pp. 2093–2100, 2013.

[295] B. D. Mar, “The history of clinical holter monitoring,” Annals of Noninvasive Electro-

cardiology, vol. 10, no. 2, pp. 226–230, 2005.

[296] Y. M. Chi, T.-P. Jung, and G. Cauwenberghs, “Dry-contact and noncontact biopo-

tential electrodes: Methodological review,” IEEE reviews in biomedical engineering,

vol. 3, pp. 106–119, 2010.

[297] S. Majumder, L. Chen, O. Marinov, C.-H. Chen, T. Mondal, and M. J. Deen, “Non-

contact wearable wireless ecg systems for long-term monitoring,” IEEE reviews in

biomedical engineering, vol. 11, pp. 306–321, 2018.

[298] Q. Li, C. Rajagopalan, and G. D. Clifford, “A machine learning approach

to multi-level ecg signal quality classification,” Computer methods and programs

in biomedicine, vol. 117, no. 3, pp. 435–447, 2014. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/25306242

[299] J. C. Sriram, M. Shin, T. Choudhury, and D. Kotz, “Activity-aware ecg-based patient

authentication for remote health monitoring,” in Proceedings of the 2009 international

conference on Multimodal interfaces. ACM, 2009, Conference Proceedings, pp. 297–

304.

[300] M. Kang, E. Park, B. H. Cho, and K.-S. Lee, “Recent patient health monitoring plat-

forms incorporating internet of things-enabled smart devices,” International neurourol-

ogy journal, vol. 22, no. Suppl 2, p. S76, 2018.

[301] M. M. Kabir, E. A. Perez-Alday, J. Thomas, G. Sedaghat, and L. G. Tereshchenko,

“Optimal configuration of adhesive ecg patches suitable for long-term monitoring of a

vectorcardiogram,” Journal of electrocardiology, vol. 50, no. 3, pp. 342–348, 2017.

[302] E. Sen-Gupta, D. E. Wright, J. W. Caccese, J. A. Wright Jr, E. Jortberg, V. Bhatkar,

338

https://www.ncbi.nlm.nih.gov/pubmed/25306242


M. Ceruolo, R. Ghaffari, D. L. Clason, J. P. Maynard et al., “A pivotal study to validate

the performance of a novel wearable sensor and system for biometric monitoring in

clinical and remote environments,” Digital Biomarkers, vol. 3, no. 1, pp. 1–13, 2019.

[303] S. R. Steinhubl, J. Waalen, A. M. Edwards, L. M. Ariniello, R. R. Mehta,

G. S. Ebner, C. Carter, K. Baca-Motes, E. Felicione, and T. Sarich, “Effect of a

home-based wearable continuous ecg monitoring patch on detection of undiagnosed

atrial fibrillation: the mstops randomized clinical trial,” Jama, vol. 320, no. 2, pp.

146–155, 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/29998336

[304] P. M. Barrett, R. Komatireddy, S. Haaser, S. Topol, J. Sheard, J. Encinas, A. J.

Fought, and E. J. Topol, “Comparison of 24-hour holter monitoring with 14-day novel

adhesive patch electrocardiographic monitoring,” The American journal of medicine,

vol. 127, no. 1, pp. 95–e11, 2014.

[305] J. Chen, H. Peng, and A. Razi, “Remote ecg monitoring kit to predict patient-specific

heart abnormalities,” Journal of Systemics, Cybernetics and Informatics, vol. 15, no. 4,

pp. 82–89, 2017.

[306] E. O’brien, B. Waeber, G. Parati, J. Staessen, and M. G. Myers, “Blood

pressure measuring devices: recommendations of the european society of

hypertension,” Bmj, vol. 322, no. 7285, pp. 531–536, 2001. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/11230071

[307] C. F. Babbs, “Oscillometric measurement of systolic and diastolic blood pressures

validated in a physiologic mathematical model,” Biomedical engineering online,

vol. 11, no. 1, p. 56, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/

pubmed/22913792

[308] J. Hodgkinson, J. Mant, U. Martin, B. Guo, F. Hobbs, J. Deeks, C. Heneghan,

N. Roberts, and R. McManus, “Relative effectiveness of clinic and home blood pressure

monitoring compared with ambulatory blood pressure monitoring in diagnosis of

hypertension: systematic review,” Bmj, vol. 342, p. d3621, 2011. [Online]. Available:

339

https://www.ncbi.nlm.nih.gov/pubmed/29998336
https://www.ncbi.nlm.nih.gov/pubmed/11230071
https://www.ncbi.nlm.nih.gov/pubmed/22913792
https://www.ncbi.nlm.nih.gov/pubmed/22913792


https://www.ncbi.nlm.nih.gov/pubmed/21705406

[309] T. Ma and Y.-T. Zhang, “A correlation study on the variabilities in pulse transit

time, blood pressure, and heart rate recorded simultaneously from healthy subjects,”

in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE,

2006, Conference Proceedings, pp. 996–999.

[310] S. S. Thomas, V. Nathan, C. Zong, E. Akinbola, A. L. P. Aroul, L. Philipose,

K. Soundarapandian, X. Shi, and R. Jafari, “Biowatch-a wrist watch based signal

acquisition system for physiological signals including blood pressure,” in 2014 36th

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society. IEEE, 2014, Conference Proceedings, pp. 2286–2289.

[311] F. C. Bennis, C. van Pul, J. J. van den Bogaart, P. Andriessen, B. W. Kramer, and

T. Delhaas, “Artifacts in pulse transit time measurements using standard patient mon-

itoring equipment,” PloS one, vol. 14, no. 6, p. e0218784, 2019.

[312] L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and con-

tinuous blood pressure monitoring: Pulse transit time method is promising?” Irbm,

vol. 35, no. 5, pp. 271–282, 2014.

[313] R. Payne, C. Symeonides, D. Webb, and S. Maxwell, “Pulse transit time measured

from the ecg: an unreliable marker of beat-to-beat blood pressure,” Journal of Applied

Physiology, vol. 100, no. 1, pp. 136–141, 2006.

[314] W.-X. Dai, Y.-T. Zhang, J. Liu, X.-R. Ding, and N. Zhao, “Dual-modality arterial

pulse monitoring system for continuous blood pressure measurement,” in 2016 38th

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC). IEEE, 2016, Conference Proceedings, pp. 5773–5776.

[315] Z. Trujillo, V. Nathan, G. L. Coté, and R. Jafari, “Design and parametric analysis of a

wearable dual-photoplethysmograph based system for pulse wave velocity detection,”

in 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,

2017, Conference Proceedings, pp. 1–4.

340

https://www.ncbi.nlm.nih.gov/pubmed/21705406


[316] T. Huynh, R. Jafari, and W.-Y. Chung, “An accurate bioimpedance measurement

system for blood pressure monitoring,” Sensors, vol. 18, no. 7, p. 2095, 2018.

[317] B. Ibrahim, A. Akbari, and R. Jafari, “A novel method for pulse transit time estima-

tion using wrist bio-impedance sensing based on a regression model,” in 2017 IEEE

Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2017, Conference Pro-

ceedings, pp. 1–4.

[318] O. T. Inan, A. Q. Javaid, S. Dowling, H. Ashouri, M. Etemadi, J. A. Heller, S. Roy,

and L. Klein, “Using ballistocardiography to monitor left ventricular function in heart

failure patients,” Journal of Cardiac Failure, vol. 22, no. 8, p. S45, 2016.

[319] C.-S. Kim, S. L. Ober, M. S. McMurtry, B. A. Finegan, O. T. Inan, R. Mukkamala,

and J.-O. Hahn, “Ballistocardiogram: Mechanism and potential for unobtrusive

cardiovascular health monitoring,” Scientific reports, vol. 6, p. 31297, 2016. [Online].

Available: https://www.ncbi.nlm.nih.gov/pubmed/27503664

[320] C.-S. Kim, A. M. Carek, O. T. Inan, R. Mukkamala, and J.-O. Hahn,

“Ballistocardiogram-based approach to cuffless blood pressure monitoring: proof of

concept and potential challenges,” IEEE Transactions on Biomedical Engineering,

vol. 65, no. 11, pp. 2384–2391, 2018. [Online]. Available: https://www.ncbi.nlm.nih.

gov/pubmed/29993523

[321] B. Ibrahim and R. Jafari, “Cuffless blood pressure monitoring from an array of wrist

bio-impedance sensors using subject-specific regression models: Proof of concept,”

IEEE transactions on biomedical circuits and systems, vol. 13, no. 6, pp. 1723–1735,

2019.

[322] A. Aygun, H. Ghasemzadeh, and R. Jafari, “Robust interbeat interval and heart rate

variability estimation method from various morphological features using wearable sen-

sors,” IEEE Journal of Biomedical and Health Informatics, 2019.

[323] K. Sel, J. Zhao, B. Ibrahim, and R. Jafari, “Measurement of chest physiological signals

using wirelessly coupled bio-impedance patches,” in 2019 41st Annual International

341

https://www.ncbi.nlm.nih.gov/pubmed/27503664
https://www.ncbi.nlm.nih.gov/pubmed/29993523
https://www.ncbi.nlm.nih.gov/pubmed/29993523


Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,

2019, pp. 376–381.

[324] D. N. Ku, “Blood flow in arteries,” Annual Review of Fluid Mechanics, vol. 29, no. 1,

pp. 399–434, 1997. [Online]. Available: https://doi.org/10.1146/annurev.fluid.29.1.399

[325] A. C. Burton and S. Yamada, “Relation between blood pressure and flow in the human

forearm,” Journal of applied physiology, vol. 4, no. 5, pp. 329–339, 1951.

[326] N. M. Hamburg and M. A. Creager, “Pathophysiology of intermittent claudication in

peripheral artery disease,” Circulation Journal, pp. CJ–16, 2017.

[327] R. W. Gill, “Measurement of blood flow by ultrasound: accuracy and sources of error,”

Ultrasound in Medicine and Biology, vol. 11, no. 4, pp. 625–641, 1985.

[328] N. A. Martin, C. Doberstein, C. Zane, M. J. Caron, K. Thomas, and D. P. Becker,

“Posttraumatic cerebral arterial spasm: transcranial doppler ultrasound, cerebral blood

flow, and angiographic findings,” Journal of neurosurgery, vol. 77, no. 4, pp. 575–583,

1992.

[329] E. de Groot, G. K. Hovingh, A. Wiegman, P. Duriez, A. J. Smit, J.-C. Fruchart,

and J. J. Kastelein, “Measurement of arterial wall thickness as a surrogate marker for

atherosclerosis,” Circulation, vol. 109, no. 23_suppl_1, pp. III–33, 2004.

[330] G. Nayler, D. Firmin, D. Longmore et al., “Blood flow imaging by cine magnetic

resonance,” J Comput Assist Tomogr, vol. 10, no. 5, pp. 715–722, 1986.

[331] R. Fallahzadeh, M. Pedram, and H. Ghasemzadeh, “Smartsock: A wearable platform

for context-aware assessment of ankle edema,” in 2016 38th Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,

2016, Conference Proceedings, pp. 6302–6306.

[332] R. Fallahzadeh, M. Pedram, R. Saeedi, B. Sadeghi, M. Ong, and H. Ghasemzadeh,

“Smart-cuff: A wearable bio-sensing platform with activity-sensitive information qual-

ity assessment for monitoring ankle edema,” in 2015 IEEE International Conference on

Pervasive Computing and Communication Workshops (PerCom Workshops). IEEE,

342

https://doi.org/10.1146/annurev.fluid.29.1.399


2015, Conference Proceedings, pp. 57–62.

[333] J. Yao, E. M. Weaver, B. D. Langley, S. M. George, and S. R. Hardin, “Monitoring

peripheral edema of heart failure patients at home: Device, algorithm, and clinic

study,” in 2017 39th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC). IEEE, 2017, Conference Proceedings, pp.

4074–4077.

[334] O. Yürür, C. H. Liu, and W. Moreno, “Light-weight online unsupervised posture de-

tection by smartphone accelerometer,” IEEE Internet of Things Journal, vol. 2, no. 4,

pp. 329–339, 2015.

[335] K. Ouchi and M. Doi, “Smartphone-based monitoring system for activities of daily

living for elderly people and their relatives etc,” in Proceedings of the 2013 ACM

conference on Pervasive and ubiquitous computing adjunct publication. ACM, 2013,

Conference Proceedings, pp. 103–106.

[336] I. Pires, N. Garcia, N. Pombo, and F. Flórez-Revuelta, “From data acquisition to data

fusion: a comprehensive review and a roadmap for the identification of activities of

daily living using mobile devices,” Sensors, vol. 16, no. 2, p. 184, 2016.

[337] B. J. Mortazavi, M. Pourhomayoun, G. Alsheikh, N. Alshurafa, S. I. Lee, and M. Sar-

rafzadeh, “Determining the single best axis for exercise repetition recognition and

counting on smartwatches,” in 2014 11th International Conference on Wearable and

Implantable Body Sensor Networks, IEEE. IEEE, 2014, Conference Proceedings, pp.

33–38.

[338] S. Sen, V. Subbaraju, A. Misra, R. K. Balan, and Y. Lee, “The case for smartwatch-

based diet monitoring,” in 2015 IEEE international conference on pervasive computing

and communication workshops (PerCom workshops). IEEE, 2015, Conference Pro-

ceedings, pp. 585–590.

[339] K. Van Laerhoven, M. Borazio, and J. H. Burdinski, “Wear is your mobile? investigat-

ing phone carrying and use habits with a wearable device,” Frontiers in ICT, vol. 2,

343



p. 10, 2015.

[340] C. for Disease Control, Prevention et al., “National diabetes statistics report, 2017:

Estimates of diabetes and its burden in the united states. atlanta, ga: Centers for

disease control and prevention; 2017,” 2019.

[341] H. Kalantarian, N. Alshurafa, T. Le, and M. Sarrafzadeh, “Monitoring eating habits us-

ing a piezoelectric sensor-based necklace,” Computers in biology and medicine, vol. 58,

pp. 46–55, 2015.

[342] S. Fang, Z. Shao, D. A. Kerr, C. J. Boushey, and F. Zhu, “An end-to-end image-

based automatic food energy estimation technique based on learned energy distribution

images: Protocol and methodology,” Nutrients, vol. 11, no. 4, p. 877, 2019.

[343] Z. Huo, B. J. Mortazavi, T. Chaspari, N. Deutz, L. Ruebush, and R. Gutierrez-Osuna,

“Predicting the meal macronutrient composition from continuous glucose monitors,”

in 2019 IEEE EMBS International Conference on Biomedical & Health Informatics

(BHI). IEEE, 2019, pp. 1–4.

[344] D. Zeevi, T. Korem, N. Zmora, D. Israeli, D. Rothschild, A. Weinberger, O. Ben-

Yacov, D. Lador, T. Avnit-Sagi, M. Lotan-Pompan et al., “Personalized nutrition by

prediction of glycemic responses,” Cell, vol. 163, no. 5, pp. 1079–1094, 2015.

[345] F. Elijovich, M. H. Weinberger, C. A. Anderson, L. J. Appel, M. Bursztyn, N. R. Cook,

R. A. Dart, C. H. Newton-Cheh, F. M. Sacks, and C. L. Laffer, “Salt sensitivity of blood

pressure: a scientific statement from the american heart association,” Hypertension,

vol. 68, no. 3, pp. e7–e46, 2016.

[346] M. Porumb, S. Stranges, A. Pescapè, and L. Pecchia, “Precision medicine and artificial

intelligence: A pilot study on deep learning for hypoglycemic events detection based

on ecg,” Scientific Reports, vol. 10, no. 1, pp. 1–16, 2020.

[347] M. Xie, N. Jean, M. Burke, D. Lobell, and S. Ermon, “Transfer learning from deep

features for remote sensing and poverty mapping,” in Thirtieth AAAI Conference on

Artificial Intelligence, 2016, Conference Proceedings.

344



[348] S. A. Rokni and H. Ghasemzadeh, “Plug-n-learn: automatic learning of computational

algorithms in human-centered internet-of-things applications,” in Proceedings of the

53rd Annual Design Automation Conference. ACM, 2016, Conference Proceedings,

p. 139.

[349] ——, “Autonomous training of activity recognition algorithms in mobile sensors: A

transfer learning approach in context-invariant views,” IEEE Transactions on Mobile

Computing, vol. 17, no. 8, pp. 1764–1777, 2018.

[350] Z. C. Lipton, D. C. Kale, and R. Wetzel, “Modeling missing data in clinical time series

with rnns,” arXiv preprint arXiv:1606.04130, 2016.

[351] Y. Liu, Z. Li, Z. Liu, and K. Wu, “Real-time arm skeleton tracking and gesture inference

tolerant to missing wearable sensors,” in Proceedings of the 17th Annual International

Conference on Mobile Systems, Applications, and Services. ACM, 2019, Conference

Proceedings, pp. 287–299.

[352] S. B. Thacker, D. Stroup, M.-h. Chang, and S. L. Henderson, “Continuous electronic

heart rate monitoring for fetal assessment during labor,” Cochrane database of system-

atic reviews, no. 2, 2001.

[353] Z. Alfirevic, G. M. Gyte, A. Cuthbert, and D. Devane, “Continuous cardiotocography

(ctg) as a form of electronic fetal monitoring (efm) for fetal assessment during labour,”

Cochrane database of systematic reviews, no. 2, 2017.

[354] M. J. Mc Loughlin and S. Mc Loughlin, “Cardiac auscultation: Preliminary findings of

a pilot study using continuous wave doppler and comparison with classic auscultation,”

International journal of cardiology, vol. 167, no. 2, pp. 590–591, 2013.

[355] A. Knapp, V. Cetrullo, B. A. Sillars, N. Lenzo, W. A. Davis, and T. M. Davis,

“Carotid artery ultrasonographic assessment in patients from the fremantle diabetes

study phase ii with carotid bruits detected by electronic auscultation,” Diabetes

technology & therapeutics, vol. 16, no. 9, pp. 604–610, 2014. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/24988112

345

https://www.ncbi.nlm.nih.gov/pubmed/24988112


[356] R. Palaniappan, K. Sundaraj, and N. U. Ahamed, “Machine learning in lung sound

analysis: a systematic review,” Biocybernetics and Biomedical Engineering, vol. 33,

no. 3, pp. 129–135, 2013.

[357] B. Rocha, D. Filos, L. Mendes, I. Vogiatzis, E. Perantoni, E. Kaimakamis, P. Natsiavas,

A. Oliveira, C. Jácome, A. Marques et al., “A respiratory sound database for the

development of automated classification,” in International Conference on Biomedical

and Health Informatics. Springer, 2017, pp. 33–37.

[358] K. Kochetov, E. Putin, S. Azizov, I. Skorobogatov, and A. Filchenkov, “Wheeze de-

tection using convolutional neural networks,” in EPIA Conference on Artificial Intel-

ligence. Springer, 2017, pp. 162–173.

[359] D. Perna, “Convolutional neural networks learning from respiratory data,” in 2018

IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE,

2018, pp. 2109–2113.

[360] K. Kochetov, E. Putin, M. Balashov, A. Filchenkov, and A. Shalyto, “Noise masking

recurrent neural network for respiratory sound classification,” in International Confer-

ence on Artificial Neural Networks. Springer, 2018, pp. 208–217.

[361] D. Perna and A. Tagarelli, “Deep auscultation: Predicting respiratory anomalies and

diseases via recurrent neural networks,” in 2019 IEEE 32nd International Symposium

on Computer-Based Medical Systems (CBMS). IEEE, 2019, pp. 50–55.

[362] H. Pasterkamp, P. L. Brand, M. Everard, L. Garcia-Marcos, H. Melbye, and K. N.

Priftis, “Towards the standardisation of lung sound nomenclature,” European Respira-

tory Journal, vol. 47, no. 3, pp. 724–732, 2016.

[363] S. H. Jambukia, V. K. Dabhi, and H. B. Prajapati, “Classification of ecg signals using

machine learning techniques: A survey,” in 2015 International Conference on Advances

in Computer Engineering and Applications. IEEE, 2015, Conference Proceedings, pp.

714–721.

[364] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,”

346



IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/11446209

[365] Ö. Yildirim, “A novel wavelet sequence based on deep bidirectional lstm network

model for ecg signal classification,” Computers in biology and medicine, vol. 96, pp.

189–202, 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/29614430

[366] R. S. Andersen, A. Peimankar, and S. Puthusserypady, “A deep learning approach for

real-time detection of atrial fibrillation,” Expert Systems with Applications, vol. 115,

pp. 465–473, 2019.

[367] U. B. Baloglu, M. Talo, O. Yildirim, R. San Tan, and U. R. Acharya, “Classification of

myocardial infarction with multi-lead ecg signals and deep cnn,” Pattern Recognition

Letters, vol. 122, pp. 23–30, 2019.

[368] S. M. Mathews, C. Kambhamettu, and K. E. Barner, “A novel application of deep

learning for single-lead ecg classification,” Computers in biology and medicine, vol. 99,

pp. 53–62, 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/29886261

[369] C. L. Moore and J. A. Copel, “Point-of-care ultrasonography,” New England

Journal of Medicine, vol. 364, no. 8, pp. 749–757, 2011. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/21345104

[370] S. Assaad, W. B. Kratzert, B. Shelley, M. B. Friedman, and A. Perrino Jr,

“Assessment of pulmonary edema: principles and practice,” Journal of cardiothoracic

and vascular anesthesia, vol. 32, no. 2, pp. 901–914, 2018. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/29174750

[371] A. Bhuyan, J. W. Choe, B. C. Lee, P. Cristman, Ö. Oralkan, and B. T. Khuri-Yakub,

“Miniaturized, wearable, ultrasound probe for on-demand ultrasound screening,” in

2011 IEEE International Ultrasonics Symposium. IEEE, 2011, Conference Proceed-

ings, pp. 1060–1063.

[372] R. M. Lang, L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande, F. A.

Flachskampf, E. Foster, S. A. Goldstein, and T. Kuznetsova, “Recommendations for

347

https://www.ncbi.nlm.nih.gov/pubmed/11446209
https://www.ncbi.nlm.nih.gov/pubmed/29614430
https://www.ncbi.nlm.nih.gov/pubmed/29886261
https://www.ncbi.nlm.nih.gov/pubmed/21345104
https://www.ncbi.nlm.nih.gov/pubmed/29174750


cardiac chamber quantification by echocardiography in adults: an update from the

american society of echocardiography and the european association of cardiovascular

imaging,” European Heart Journal-Cardiovascular Imaging, vol. 16, no. 3, pp. 233–271,

2015.

[373] A. Østvik, E. Smistad, S. A. Aase, B. O. Haugen, and L. Lovstakken, “Real-time stan-

dard view classification in transthoracic echocardiography using convolutional neural

networks,” Ultrasound in medicine & biology, vol. 45, no. 2, pp. 374–384, 2019.

[374] C.-M. Yu, L. Wang, E. Chau, R. H.-W. Chan, S.-L. Kong, M.-O. Tang, J. Christensen,

R. W. Stadler, and C.-P. Lau, “Intrathoracic impedance monitoring in patients with

heart failure: correlation with fluid status and feasibility of early warning preceding

hospitalization,” Circulation, vol. 112, no. 6, pp. 841–848, 2005. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/16061743

[375] S. Weyer, T. Menden, L. Leicht, S. Leonhardt, and T. Wartzek, “Development

of a wearable multi-frequency impedance cardiography device,” Journal of medical

engineering & technology, vol. 39, no. 2, pp. 131–137, 2015. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/25559781

[376] R. Amelard, R. L. Hughson, D. K. Greaves, K. J. Pfisterer, J. Leung, D. A.

Clausi, and A. Wong, “Non-contact hemodynamic imaging reveals the jugular venous

pulse waveform,” Scientific reports, vol. 7, p. 40150, 2017. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/28065933

[377] S. Dash, K. H. Shelley, D. G. Silverman, and K. H. Chon, “Estimation of respira-

tory rate from ecg, photoplethysmogram, and piezoelectric pulse transducer signals:

a comparative study of time–frequency methods,” IEEE Transactions on Biomedical

Engineering, vol. 57, no. 5, pp. 1099–1107, 2010.

[378] M. Bolanos, H. Nazeran, and E. Haltiwanger, “Comparison of heart rate variability

signal features derived from electrocardiography and photoplethysmography in healthy

individuals,” in 2006 International Conference of the IEEE Engineering in Medicine

348

https://www.ncbi.nlm.nih.gov/pubmed/16061743
https://www.ncbi.nlm.nih.gov/pubmed/25559781
https://www.ncbi.nlm.nih.gov/pubmed/28065933


and Biology Society. IEEE, 2006, pp. 4289–4294.

[379] M. Sánchez-de-la Torre, A. Khalyfa, A. Sánchez-de-la Torre, M. Martinez-

Alonso, M. Á. Martinez-García, A. Barceló, P. Lloberes, F. Campos-Rodriguez,

F. Capote, and M. J. Diaz-de Atauri, “Precision medicine in patients with

resistant hypertension and obstructive sleep apnea: blood pressure response

to continuous positive airway pressure treatment,” Journal of the American

College of Cardiology, vol. 66, no. 9, pp. 1023–1032, 2015. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/26314530

[380] M. Pourhomayoun, N. Alshurafa, B. Mortazavi, H. Ghasemzadeh, K. Sideris,

B. Sadeghi, M. Ong, L. Evangelista, P. Romano, and A. Auerbach, “Multiple model

analytics for adverse event prediction in remote health monitoring systems,” in 2014

IEEE Healthcare Innovation Conference (HIC). IEEE, 2014, Conference Proceedings,

pp. 106–110.

[381] B. Mortazavi, S. Nyamathi, S. I. Lee, T. Wilkerson, H. Ghasemzadeh, and M. Sar-

rafzadeh, “Near-realistic mobile exergames with wireless wearable sensors,” IEEE Jour-

nal of Biomedical and Health Informatics, vol. 18, no. 2, pp. 449–456, 2013.

[382] T. R. Bennett, C. Savaglio, D. Lu, H. Massey, X. Wang, J. Wu, and R. Jafari, “Motion-

synthesis toolset (most): a toolset for human motion data synthesis and validation,”

in Proceedings of the 4th ACM MobiHoc workshop on Pervasive wireless healthcare.

ACM, 2014, Conference Proceedings, pp. 25–30.

[383] V. Nathan, S. Paul, T. Prioleau, L. Niu, B. J. Mortazavi, S. A. Cambone, A. Veer-

araghavan, A. Sabharwal, and R. Jafari, “A survey on smart homes for aging in place:

Toward solutions to the specific needs of the elderly,” IEEE Signal Processing Maga-

zine, vol. 35, no. 5, pp. 111–119, 2018.

[384] Y.-t. Zhang, C. C. Poon, C.-h. Chan, M. W. Tsang, and K.-f. Wu, “A health-shirt

using e-textile materials for the continuous and cuffless monitoring of arterial blood

pressure,” in 2006 3rd IEEE/EMBS International Summer School on Medical Devices

349

https://www.ncbi.nlm.nih.gov/pubmed/26314530


and Biosensors. IEEE, 2006, Conference Proceedings, pp. 86–89.

[385] M. Abtahi, J. V. Gyllinsky, B. Paesang, S. Barlow, M. Constant, N. Gomes, O. Tully,

S. E. D’Andrea, and K. Mankodiya, “Magicsox: An e-textile iot system to quantify

gait abnormalities,” Smart Health, vol. 5, pp. 4–14, 2018.

[386] B. S. Heran, J. M. Chen, S. Ebrahim, T. Moxham, N. Oldridge, K. Rees, D. R.

Thompson, and R. S. Taylor, “Exercise-based cardiac rehabilitation for coronary heart

disease,” Cochrane database of systematic reviews, no. 7, p. CD001800, 2011. [Online].

Available: https://www.ncbi.nlm.nih.gov/pubmed/21735386

[387] R. Maddison, J. C. Rawstorn, A. Rolleston, R. Whittaker, R. Stewart, J. Benatar,

I. Warren, Y. Jiang, and N. Gant, “The remote exercise monitoring trial for

exercise-based cardiac rehabilitation (remote-cr): a randomised controlled trial

protocol,” BMC Public Health, vol. 14, no. 1, p. 1236, 2014. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/25432467

[388] K. N. Karmali, P. Davies, F. Taylor, A. Beswick, N. Martin, and S. Ebrahim,

“Promoting patient uptake and adherence in cardiac rehabilitation,” Cochrane

Database of Systematic Reviews, no. 6, p. CD007131, 2014. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/24963623

[389] S. Saadatnejad, M. Oveisi, and M. Hashemi, “Lstm-based ecg classification for contin-

uous monitoring on personal wearable devices,” IEEE journal of biomedical and health

informatics, 2019.

[390] S. Mirshekarian, R. Bunescu, C. Marling, and F. Schwartz, “Using lstms to learn

physiological models of blood glucose behavior,” in 2017 39th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,

2017, pp. 2887–2891.

[391] Y. Zhang, Z. Yang, K. Lan, X. Liu, Z. Zhang, P. Li, D. Cao, J. Zheng, and J. Pan,

“Sleep stage classification using bidirectional lstm in wearable multi-sensor systems,”

in IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops

350

https://www.ncbi.nlm.nih.gov/pubmed/21735386
https://www.ncbi.nlm.nih.gov/pubmed/25432467
https://www.ncbi.nlm.nih.gov/pubmed/24963623


(INFOCOM WKSHPS). IEEE, 2019, pp. 443–448.

[392] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to diagnose with lstm

recurrent neural networks,” arXiv preprint arXiv:1511.03677, 2015.

[393] S. L. Oh, E. Y. Ng, R. San Tan, and U. R. Acharya, “Automated diagnosis of arrhyth-

mia using combination of cnn and lstm techniques with variable length heart beats,”

Computers in biology and medicine, vol. 102, pp. 278–287, 2018.

[394] S. Kiranyaz, T. Ince, and M. Gabbouj, “Personalized monitoring and advance warning

system for cardiac arrhythmias,” Scientific reports, vol. 7, no. 1, pp. 1–8, 2017.

[395] N. van Boven, L. C. Battes, K. M. Akkerhuis, D. Rizopoulos, K. Caliskan, S. S. An-

roedh, W. Yassi, O. C. Manintveld, J.-H. Cornel, A. A. Constantinescu et al., “Toward

personalized risk assessment in patients with chronic heart failure: detailed tempo-

ral patterns of nt-probnp, troponin t, and crp in the bio-shift study,” American heart

journal, vol. 196, pp. 36–48, 2018.

[396] R. Ardywibowo, G. Zhao, Z. Wang, B. Mortazavi, S. Huang, and X. Qian, “Adap-

tive activity monitoring with uncertainty quantification in switching gaussian process

models,” in The 22nd International Conference on Artificial Intelligence and Statistics,

2019, Conference Proceedings, pp. 266–275.

[397] A. Akbari and R. Jafari, “Personalizing activity recognition models with quantifying

different types of uncertainty using wearable sensors,” IEEE Transactions on Biomed-

ical Engineering, 2020.

[398] K. D. Feuz and D. J. Cook, “Real-time annotation tool (rat),” in Workshops at the

Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[399] R. Adams, N. Saleheen, E. Thomaz, A. Parate, S. Kumar, and B. Marlin, “Hierarchical

span-based conditional random fields for labeling and segmenting events in wearable

sensor data streams,” in International conference on machine learning, 2016, pp. 334–

343.

[400] R. S. Sadasivam, E. M. Borglund, R. Adams, B. M. Marlin, and T. K. Houston,

351



“Impact of a collective intelligence tailored messaging system on smoking cessation:

the perspect randomized experiment,” Journal of medical Internet research, vol. 18,

no. 11, p. e285, 2016.

[401] A. Akbari, R. S. Castilla, R. Jafari, and B. J. Mortazavi, “Using intelligent personal

annotations to improve human activity recognition for movements in natural environ-

ments,” IEEE Journal of Biomedical and Health Informatics, 2020.

[402] R. Fallahzadeh, S. Aminikhanghahi, A. N. Gibson, and D. J. Cook, “Toward person-

alized and context-aware prompting for smartphone-based intervention,” in 2016 38th

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC). IEEE, 2016, pp. 6010–6013.

[403] F. Miao, Z. Liu, J. Liu, B. Wen, and Y. Li, “Multi-sensor fusion approach for cuff-

less blood pressure measurement,” IEEE journal of biomedical and health informatics,

2019.

[404] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural networks

for multimodal wearable activity recognition,” Sensors, vol. 16, no. 1, p. 115, 2016.

[405] R. Mohamed and M. Youssef, “Heartsense: Ubiquitous accurate multi-modal fusion-

based heart rate estimation using smartphones,” Proceedings of the ACM on Interac-

tive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 1–18, 2017.

[406] J. H. Lee, H. Gamper, I. Tashev, S. Dong, S. Ma, J. Remaley, J. D. Holbery, and S. H.

Yoon, “Stress monitoring using multimodal bio-sensing headset,” in Extended Abstracts

of the 2020 CHI Conference on Human Factors in Computing Systems Extended Ab-

stracts, 2020, pp. 1–7.

[407] D. Bannach, O. Amft, and P. Lukowicz, “Automatic event-based synchronization of

multimodal data streams from wearable and ambient sensors,” in European Conference

on Smart Sensing and Context. Springer, 2009, pp. 135–148.

[408] H. Song, D. Rajan, J. J. Thiagarajan, and A. Spanias, “Attend and diagnose: Clinical

time series analysis using attention models,” in Thirty-Second AAAI Conference on

352



Artificial Intelligence, 2018, Conference Proceedings.

[409] J. A. Rymer and S. V. Rao, “Enhancement of risk prediction with machine learning:

Rise of the machines,” JAMA network open, vol. 2, no. 7, pp. e196 823–e196 823, 2019.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/31290985

[410] S. de Denus, E. O’Meara, A. S. Desai, B. Claggett, E. F. Lewis, G. Leclair, M. Jutras,

J. Lavoie, S. D. Solomon, and B. Pitt, “Spironolactone metabolites in topcat–new

insights into regional variation,” New England Journal of Medicine, vol. 376, no. 17,

pp. 1690–1692, 2017.

[411] B. Pitt, M. A. Pfeffer, S. F. Assmann, R. Boineau, I. S. Anand, B. Claggett, N. Clausell,

A. S. Desai, R. Diaz, J. L. Fleg et al., “Spironolactone for heart failure with preserved

ejection fraction,” New England Journal of Medicine, vol. 370, no. 15, pp. 1383–1392,

2014.

[412] M. A. Pfeffer, B. Claggett, S. F. Assmann, R. Boineau, I. S. Anand, N. Clausell,

A. S. Desai, R. Diaz, J. L. Fleg, and I. Gordeev, “Regional variation in patients

and outcomes in the treatment of preserved cardiac function heart failure with an

aldosterone antagonist (topcat) trial,” Circulation, vol. 131, no. 1, pp. 34–42, 2015.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/25406305

[413] G. Y. Lip, R. Nieuwlaat, R. Pisters, D. A. Lane, and H. J. Crijns, “Refining clinical risk

stratification for predicting stroke and thromboembolism in atrial fibrillation using a

novel risk factor-based approach: the euro heart survey on atrial fibrillation,” Chest,

vol. 137, no. 2, pp. 263–272, 2010.

[414] R. Pisters, D. A. Lane, R. Nieuwlaat, C. B. De Vos, H. J. Crijns, and G. Y. Lip, “A

novel user-friendly score (has-bled) to assess 1-year risk of major bleeding in patients

with atrial fibrillation: the euro heart survey,” Chest, vol. 138, no. 5, pp. 1093–1100,

2010. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/20299623

[415] A. F. Members, A. J. Camm, G. Y. Lip, R. De Caterina, I. Savelieva, D. Atar, S. H.

Hohnloser, G. Hindricks, P. Kirchhof, and E. C. f. P. Guidelines, “2012 focused update

353

https://www.ncbi.nlm.nih.gov/pubmed/31290985
https://www.ncbi.nlm.nih.gov/pubmed/25406305
https://www.ncbi.nlm.nih.gov/pubmed/20299623


of the esc guidelines for the management of atrial fibrillation: an update of the 2010

esc guidelines for the management of atrial fibrillation developed with the special con-

tribution of the european heart rhythm association,” European heart journal, vol. 33,

no. 21, pp. 2719–2747, 2012.

[416] L. Nobel, N. E. Mayo, J. Hanley, L. Nadeau, and S. S. Daskalopoulou, “Myrisk_stroke

calculator: a personalized stroke risk assessment tool for the general population,”

Journal of Clinical Neurology, vol. 10, no. 1, pp. 1–9, 2014. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/24465256

[417] J. Hippisley-Cox, C. Coupland, and P. Brindle, “Derivation and validation of qstroke

score for predicting risk of ischaemic stroke in primary care and comparison with other

risk scores: a prospective open cohort study,” Bmj, vol. 346, 2013.

[418] S. D. Anker, F. Koehler, and W. T. Abraham, “Telemedicine and remote management

of patients with heart failure,” The Lancet, vol. 378, no. 9792, pp. 731–739, 2011.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/21856487

[419] K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, “A targeted

real-time early warning score (trewscore) for septic shock,” Science translational

medicine, vol. 7, no. 299, pp. 299ra122–299ra122, 2015. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/26246167

[420] A. S. Cakmak, E. Reinertsen, H. A. Taylor, A. J. Shah, and G. D. Clifford, “Person-

alized heart failure severity estimates using passive smartphone data,” in 2018 IEEE

International Conference on Big Data (Big Data). IEEE, 2018, pp. 1569–1574.

[421] J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger, “Deepsurv:

personalized treatment recommender system using a cox proportional hazards deep

neural network,” BMC medical research methodology, vol. 18, no. 1, p. 24, 2018.

[422] C. Lee, W. R. Zame, J. Yoon, and M. van der Schaar, “Deephit: A deep learning ap-

proach to survival analysis with competing risks,” in Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

354

https://www.ncbi.nlm.nih.gov/pubmed/24465256
https://www.ncbi.nlm.nih.gov/pubmed/21856487
https://www.ncbi.nlm.nih.gov/pubmed/26246167


[423] C. Lee, J. Yoon, and M. Van Der Schaar, “Dynamic-deephit: A deep learning approach

for dynamic survival analysis with competing risks based on longitudinal data,” IEEE

Transactions on Biomedical Engineering, 2019.

[424] I. H. Lee D, Chen N, “Boosted nonparametric hazards with time-dependent covariates,”

SSRN 2906586, 2017.

[425] H. Suresh, J. J. Gong, and J. V. Guttag, “Learning tasks for multitask learning: Het-

erogenous patient populations in the icu,” in Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. ACM, 2018, Con-

ference Proceedings, pp. 802–810.

[426] R. Yu, Y. Zheng, R. Zhang, Y. Jiang, and C. C. Poon, “Using a multi-task recurrent

neural network with attention mechanisms to predict hospital mortality of patients,”

IEEE journal of biomedical and health informatics, 2019.

[427] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer networks,” in

Advances in neural information processing systems, 2015, pp. 2017–2025.

[428] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and R. Salakhutdinov,

“Multimodal transformer for unaligned multimodal language sequences,” arXiv preprint

arXiv:1906.00295, 2019.

[429] J. Oh, J. Wang, and J. Wiens, “Learning to exploit invariances in clinical time-series

data using sequence transformer networks,” arXiv preprint arXiv:1808.06725, 2018.

[430] S. Lohit, Q. Wang, and P. Turaga, “Temporal transformer networks: Joint learning of

invariant and discriminative time warping,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 12 426–12 435.

[431] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining the

predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining. ACM, 2016, Conference Pro-

ceedings, pp. 1135–1144.

[432] J. Henderson, H. He, B. A. Malin, J. C. Denny, A. N. Kho, J. Ghosh, and J. C. Ho,

355



“Phenotyping through semi-supervised tensor factorization (psst),” in AMIA Annual

Symposium Proceedings, vol. 2018. American Medical Informatics Association, 2018,

Conference Proceedings, p. 564.

[433] A. H. Gee, D. Garcia-Olano, J. Ghosh, and D. Paydarfar, “Explaining deep classifi-

cation of time-series data with learned prototypes,” arXiv preprint arXiv:1904.08935,

2019.

[434] R. Solis Castilla, A. Pakbin, A. Akbari, B. J. Mortazavi, and R. Jafari, “A human-

centered wearable sensing platform with intelligent automated data annotation capa-

bilities,” in Proceedings of the International Conference on Internet of Things Design

and Implementation. ACM, 2019, Conference Proceedings, pp. 255–260.

[435] J. M. Bumgarner, C. T. Lambert, A. A. Hussein, D. J. Cantillon, B. Baranowski,

K. Wolski, B. D. Lindsay, O. M. Wazni, and K. G. Tarakji, “Smartwatch

algorithm for automated detection of atrial fibrillation,” Journal of the American

College of Cardiology, vol. 71, no. 21, pp. 2381–2388, 2018. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/29535065

[436] A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai,

E. S. Ford, C. S. Fox, and S. Franco, “Executive summary: heart disease and stroke

statistics–2014 update: a report from the american heart association,” Circulation, vol.

129, no. 3, pp. 399–410, 2014.

[437] P. Sosner, M. Gayda, O. Dupuy, M. Garzon, C. Lemasson, V. Gremeaux, J. Lalongé,

M. Gonzales, D. Hayami, and M. Juneau, “Ambulatory blood pressure reduction follow-

ing high-intensity interval exercise performed in water or dryland condition,” Journal

of the American Society of Hypertension, vol. 10, no. 5, pp. 420–428, 2016.

[438] M. Sipola-Leppänen, R. Karvonen, M. Tikanmäki, H.-M. Matinolli, S. Martikainen, A.-

K. Pesonen, K. Räikkönen, M.-R. Järvelin, P. Hovi, and J. G. Eriksson, “Ambulatory

blood pressure and its variability in adults born preterm,” Hypertension, vol. 65, no. 3,

pp. 615–621, 2015.

356

https://www.ncbi.nlm.nih.gov/pubmed/29535065


[439] G. Torres, M. Sánchez-de-la Torre, M. Martínez-Alonso, S. Gomez, O. Sacristan,

J. Cabau, and F. Barbe, “Use of ambulatory blood pressure monitoring for the screen-

ing of obstructive sleep apnea,” The Journal of Clinical Hypertension, vol. 17, no. 10,

pp. 802–809, 2015.

[440] J. A. Staessen, L. Thijs, R. Fagard, E. T. O’brien, D. Clement, P. W. De Leeuw,

G. Mancia, C. Nachev, P. Palatini, and G. Parati, “Predicting cardiovascular risk

using conventional vs ambulatory blood pressure in older patients with systolic hyper-

tension,” Jama, vol. 282, no. 6, pp. 539–546, 1999.

[441] E. O’Brien, R. Asmar, L. Beilin, Y. Imai, G. Mancia, T. Mengden, M. Myers, P. Pad-

field, P. Palatini, and G. Parati, “Practice guidelines of the european society of hy-

pertension for clinic, ambulatory and self blood pressure measurement,” Journal of

hypertension, vol. 23, no. 4, pp. 697–701, 2005.

[442] T. G. Pickering, G. D. James, C. Boddie, G. A. Harshfield, S. Blank, and J. H. Laragh,

“How common is white coat hypertension?” Jama, vol. 259, no. 2, pp. 225–228, 1988.

[443] T. G. Pickering, G. A. Harshfield, H. D. Kleinert, S. Blank, and J. H. Laragh, “Blood

pressure during normal daily activities, sleep, and exercise: comparison of values in

normal and hypertensive subjects,” Jama, vol. 247, no. 7, pp. 992–996, 1982.

[444] R. Sega, R. Facchetti, M. Bombelli, G. Cesana, G. Corrao, G. Grassi, and G. Mancia,

“Prognostic value of ambulatory and home blood pressures compared with office blood

pressure in the general population: follow-up results from the pressioni arteriose moni-

torate e loro associazioni (pamela) study,” Circulation, vol. 111, no. 14, pp. 1777–1783,

2005.

[445] P. Palatini, M. Winnicki, M. Santonastaso, L. Mos, D. Longo, V. Zaetta, M. D. Follo,

T. Biasion, and A. C. Pessina, “Prevalence and clinical significance of isolated ambula-

tory hypertension in young subjects screened for stage 1 hypertension,” Hypertension,

vol. 44, no. 2, pp. 170–174, 2004.

[446] T. Ohkubo, A. Hozawa, J. Yamaguchi, M. Kikuya, K. Ohmori, M. Michimata, M. Mat-

357



subara, J. Hashimoto, H. Hoshi, and T. Araki, “Prognostic significance of the nocturnal

decline in blood pressure in individuals with and without high 24-h blood pressure:

the ohasama study,” Journal of hypertension, vol. 20, no. 11, pp. 2183–2189, 2002.

[447] J. Mallion, N. Genes, L. Vaur, P. Clerson, B. Vaisse, G. Bobrie, and G. Chatellier,

“Blood pressure levels, risk factors and antihypertensive treatments: lessons from the

sheaf study,” Journal of human hypertension, vol. 15, no. 12, pp. 841–848, 2001.

[448] E. O’Brien, “Dippers and non-dippers,” Lancet, vol. 2, p. 397, 1988.

[449] P. Verdecchia, F. Angeli, C. Borgioni, R. Gattobigio, and G. Reboldi, “Ambulatory

blood pressure and cardiovascular outcome in relation to perceived sleep deprivation,”

Hypertension, vol. 49, no. 4, pp. 777–783, 2007.

[450] E. Dolan, A. Stanton, L. Thijs, K. Hinedi, N. Atkins, S. McClory, E. D. Hond, P. Mc-

Cormack, J. A. Staessen, and E. O’Brien, “Superiority of ambulatory over clinic blood

pressure measurement in predicting mortality: the dublin outcome study,” Hyperten-

sion, vol. 46, no. 1, pp. 156–161, 2005.

[451] J. R. Banegas, L. M. Ruilope, A. de la Sierra, E. Vinyoles, M. Gorostidi, J. J. de la

Cruz, G. Ruiz-Hurtado, J. Segura, F. Rodríguez-Artalejo, and B. Williams, “Relation-

ship between clinic and ambulatory blood-pressure measurements and mortality,” New

England Journal of Medicine, vol. 378, no. 16, pp. 1509–1520, 2018.

[452] J. E. Schwartz, M. M. Burg, D. Shimbo, J. E. Broderick, A. A. Stone, J. Ishikawa,

R. Sloan, T. Yurgel, S. Grossman, and T. G. Pickering, “Clinic blood pressure underes-

timates ambulatory blood pressure in an untreated employer-based us populationclin-

ical perspective: Results from the masked hypertension study,” Circulation, vol. 134,

no. 23, pp. 1794–1807, 2016.

[453] M. R. Irvin, J. N. Booth III, M. Sims, A. P. Bress, M. Abdalla, D. Shimbo, D. A.

Calhoun, and P. Muntner, “The association of nocturnal hypertension and nondipping

blood pressure with treatment-resistant hypertension: The jackson heart study,” The

Journal of Clinical Hypertension, vol. 20, no. 3, pp. 438–446, 2018.

358



[454] C. Cuspidi, V. Giudici, F. Negri, and C. Sala, “Nocturnal nondipping and left ventric-

ular hypertrophy in hypertension: an updated review,” Expert review of cardiovascular

therapy, vol. 8, no. 6, pp. 781–792, 2010.

[455] G. Mancia and P. Verdecchia, “Clinical value of ambulatory blood pressure: evidence

and limits,” Circulation research, vol. 116, no. 6, pp. 1034–1045, 2015.

[456] S. S. Thomas, V. Nathan, C. Zong, K. Soundarapandian, X. Shi, and R. Jafari,

“Biowatch: A noninvasive wrist-based blood pressure monitor that incorporates train-

ing techniques for posture and subject variability,” IEEE journal of biomedical and

health informatics, vol. 20, no. 5, pp. 1291–1300, 2016.

[457] B. Ibrahim, J. McMurray, and R. Jafari, “A wrist-worn strap with an array of electrodes

for robust physiological sensing,” in 2018 40th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018, pp. 4313–

4317.

[458] B. Ibrahim and R. Jafari, “Continuous blood pressure monitoring using wrist-worn

bio-impedance sensors with wet electrodes,” in 2018 IEEE Biomedical Circuits and

Systems Conference (BioCAS). IEEE, 2018, pp. 1–4.

[459] N. Luo, W. Dai, C. Li, Z. Zhou, L. Lu, C. C. Poon, S.-C. Chen, Y. Zhang, and

N. Zhao, “Flexible piezoresistive sensor patch enabling ultralow power cuffless blood

pressure measurement,” Advanced Functional Materials, vol. 26, no. 8, pp. 1178–1187,

2016.

[460] Y.-L. Zheng, B. P. Yan, Y.-T. Zhang, and C. C. Poon, “An armband wearable device for

overnight and cuff-less blood pressure measurement,” IEEE transactions on biomedical

engineering, vol. 61, no. 7, pp. 2179–2186, 2014.

[461] G. S. Stergiou, B. Alpert, S. Mieke, R. Asmar, N. Atkins, S. Eckert, G. Frick, B. Fried-

man, T. Graßl, T. Ichikawa et al., “A universal standard for the validation of blood

pressure measuring devices: Association for the advancement of medical instrumenta-

tion/european society of hypertension/international organization for standardization

359



(AAMI/ESH/ISO) collaboration statement,” Hypertension, vol. 71, no. 3, pp. 368–374,

2018.

[462] L. Ghazi, M. M. Safford, Y. Khodneva, W. T. O’Neal, E. Z. Soliman, and S. P. Glasser,

“Gender, race, age, and regional differences in the association of pulse pressure with

atrial fibrillation: the reasons for geographic and racial differences in stroke study,”

Journal of the American Society of Hypertension, vol. 10, no. 8, pp. 625–632, 2016.

[463] G. E. McVeigh, C. W. Bratteli, D. J. Morgan, C. M. Alinder, S. P. Glasser, S. M.

Finkelstein, and J. N. Cohn, “Age-related abnormalities in arterial compliance identi-

fied by pressure pulse contour analysis: aging and arterial compliance,” Hypertension,

vol. 33, no. 6, pp. 1392–1398, 1999.

[464] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuffless blood pres-

sure estimation algorithms for continuous health-care monitoring,” IEEE Transactions

on Biomedical Engineering, vol. 64, no. 4, pp. 859–869, 2016.

[465] Y. Wang, Z. Liu, and S. Ma, “Cuff-less blood pressure measurement from dual-channel

photoplethysmographic signals via peripheral pulse transit time with singular spectrum

analysis,” Physiological measurement, vol. 39, no. 2, p. 025010, 2018.

[466] P. Nabeel, S. Karthik, J. Joseph, and M. Sivaprakasam, “Arterial blood pressure esti-

mation from local pulse wave velocity using dual-element photoplethysmograph probe,”

IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1399–

1408, 2018.

[467] V. Chandrasekaran, R. Dantu, S. Jonnada, S. Thiyagaraja, and K. P. Subbu, “Cuf-

fless differential blood pressure estimation using smart phones,” IEEE Transactions on

Biomedical Engineering, vol. 60, no. 4, pp. 1080–1089, 2012.

[468] J. Chen, K. Chen, X. Chen, X. Qiu, and X. Huang, “Exploring shared structures and

hierarchies for multiple nlp tasks,” arXiv preprint arXiv:1808.07658, 2018.

[469] Y. Weng, T. Zhou, Y. Li, and X. Qiu, “Nas-unet: Neural architecture search for medical

image segmentation,” IEEE Access, vol. 7, pp. 44 247–44 257, 2019.

360



[470] L. Faes, S. K. Wagner, D. J. Fu, X. Liu, E. Korot, J. R. Ledsam, T. Back, R. Chopra,

N. Pontikos, and C. Kern, “Automated deep learning design for medical image clas-

sification by health-care professionals with no coding experience: a feasibility study,”

The Lancet Digital Health, vol. 1, no. 5, pp. e232–e242, 2019.

[471] P. Fonseca, J. Mendoza, J. Wainer, J. Ferrer, J. Pinto, J. Guerrero, and B. Castaneda,

“Automatic breast density classification using a convolutional neural network archi-

tecture search procedure,” in Medical Imaging 2015: Computer-Aided Diagnosis, vol.

9414. International Society for Optics and Photonics, Conference Proceedings, p.

941428.

[472] P. Balaprakash, R. Egele, M. Salim, S. Wild, V. Vishwanath, F. Xia, T. Brettin,

and R. Stevens, “Scalable reinforcement-learning-based neural architecture search for

cancer deep learning research,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, Conference Proceedings,

pp. 1–33.

[473] G. Liu, R. Ma, and Q. Hao, “A reinforcement learning based design of compressive

sensing systems for human activity recognition,” in 2018 IEEE SENSORS. IEEE,

Conference Proceedings, pp. 1–4.

[474] P. Jerrard-Dunne, A. Mahmud, and J. Feely, “Circadian blood pressure variation: re-

lationship between dipper status and measures of arterial stiffness,” Journal of hyper-

tension, vol. 25, no. 6, pp. 1233–1239, 2007.

[475] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” arXiv

preprint arXiv:1611.01578, 2016.

[476] E. Jovanov, “Preliminary analysis of the use of smartwatches for longitudinal health

monitoring,” in 2015 37th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 865–868.

[477] V. Ahanathapillai, J. D. Amor, Z. Goodwin, and C. J. James, “Preliminary study

on activity monitoring using an android smart-watch,” Healthcare technology letters,

361



vol. 2, no. 1, pp. 34–39, 2015.

[478] E. Årsand, M. Muzny, M. Bradway, J. Muzik, and G. Hartvigsen, “Performance of the

first combined smartwatch and smartphone diabetes diary application study,” Journal

of diabetes science and technology, vol. 9, no. 3, pp. 556–563, 2015.

[479] G. Schiboni and O. Amft, “Automatic dietary monitoring using wearable accessories,”

in Seamless Healthcare Monitoring. Springer, 2018, pp. 369–412.

[480] J. C. Rawstorn, N. Gant, A. Meads, I. Warren, and R. Maddison, “Remotely deliv-

ered exercise-based cardiac rehabilitation: design and content development of a novel

mhealth platform,” JMIR mHealth and uHealth, vol. 4, no. 2, p. e57, 2016.

[481] A. C. Timmons, T. Chaspari, S. C. Han, L. Perrone, S. S. Narayanan, and G. Margolin,

“Using multimodal wearable technology to detect conflict among couples,” Computer,

no. 3, pp. 50–59, 2017.

[482] H. M. Raafat, M. S. Hossain, E. Essa, S. Elmougy, A. S. Tolba, G. Muhammad, and

A. Ghoneim, “Fog intelligence for real-time iot sensor data analytics,” IEEE Access,

vol. 5, pp. 24 062–24 069, 2017.

[483] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the em algorithm,”

Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[484] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,” IEEE

transactions on neural networks and learning systems, vol. 23, no. 8, pp. 1177–1193,

2012.

[485] A. Miech, I. Laptev, and J. Sivic, “Learnable pooling with context gating for video

classification,” arXiv preprint arXiv:1706.06905, 2017.

[486] M. Courbariaux, C. Ambroise, C. Dalmasso, M. Szafranski, M. Consortium et al.,

“A mixture model with logistic weights for disease subtyping with integrated genome

association study,” 2018.

[487] K. Nithya, M. V. Prathap, and K. R. Babu, “Cluster oriented sensor selection for

context-aware internet of things applications,” in International Conference on Intelli-

362



gent Data Communication Technologies and Internet of Things. Springer, 2018, pp.

981–988.

[488] S.-Y. Yu, C.-S. Shih, J. Y.-J. Hsu, Z. Huang, and K.-J. Lin, “Qos oriented sensor

selection in iot system,” in 2014 IEEE International Conference on Internet of Things

(iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE

Cyber, Physical and Social Computing (CPSCom). IEEE, 2014, pp. 201–206.

[489] J. Shukla, P. Maiti, and B. Sahoo, “Low latency and energy efficient sensor selec-

tion for iot services,” in 2018 Technologies for Smart-City Energy Security and Power

(ICSESP). IEEE, 2018, pp. 1–5.

[490] P. M. Jones, Q. Lonne, P. Talaia, G. J. Leighton, G. G. Botte, S. Mutnuri, and

L. Williams, “A straightforward route to sensor selection for iot systems,” Research-

Technology Management, vol. 61, no. 5, pp. 41–50, 2018.

[491] A. Yachir, Y. Amirat, A. Chibani, and N. Badache, “Event-aware framework for dy-

namic services discovery and selection in the context of ambient intelligence and inter-

net of things,” IEEE Transactions on Automation Science and Engineering, vol. 13,

no. 1, pp. 85–102, 2015.

[492] G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. Da Xu, S. Kao-Walter, Q. Chen,

and L.-R. Zheng, “A health-iot platform based on the integration of intelligent pack-

aging, unobtrusive bio-sensor, and intelligent medicine box,” IEEE transactions on

industrial informatics, vol. 10, no. 4, pp. 2180–2191, 2014.

[493] N. Zhu, T. Diethe, M. Camplani, L. Tao, A. Burrows, N. Twomey, D. Kaleshi,

M. Mirmehdi, P. Flach, and I. Craddock, “Bridging e-health and the internet of things:

The sphere project,” IEEE Intelligent Systems, vol. 30, no. 4, pp. 39–46, 2015.

[494] D. Roggen, G. Troester, P. Lukowicz, A. Ferscha, J. d. R. Millán, and R. Chavarriaga,

“Opportunistic human activity and context recognition,” Computer, vol. 46, no. 2, pp.

36–45, 2012.

[495] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukow-

363



icz, D. Bannach, G. Pirkl, A. Ferscha et al., “Collecting complex activity datasets in

highly rich networked sensor environments,” in Networked Sensing Systems (INSS),

2010 Seventh International Conference on. IEEE, 2010, pp. 233–240.

[496] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the em algorithm,” Journal of the Royal Statistical Society: Series B

(Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[497] F. G. Cozman, I. Cohen, and M. C. Cirelo, “Semi-supervised learning of mixture mod-

els,” in Proceedings of the 20th International Conference on Machine Learning (ICML-

03), 2003, pp. 99–106.

[498] S. E. Chazan, S. Gannot, and J. Goldberger, “Training strategies for deep latent models

and applications to speech presence probability estimation,” in International Confer-

ence on Latent Variable Analysis and Signal Separation. Springer, 2018, pp. 319–328.

[499] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, “Deep convolutional

neural networks on multichannel time series for human activity recognition.” in Ijcai,

vol. 15, 2015, pp. 3995–4001.

[500] H. B. Ravn, O. K. L. Helgestad, and J. E. Møller, “Intravascular Microaxial

Left Ventricular Assist Device vs Intra-aortic Balloon Pump for Cardiogenic

Shock,” JAMA, vol. 324, no. 3, pp. 302–303, 07 2020. [Online]. Available:

https://doi.org/10.1001/jama.2020.7557

[501] J. A. Rizzo and H. Dove, “Intravascular Microaxial Left Ventricular Assist Device

vs Intra-aortic Balloon Pump for Cardiogenic Shock,” JAMA, vol. 324, no. 3, pp.

303–303, 07 2020. [Online]. Available: https://doi.org/10.1001/jama.2020.7551

[502] S. S. Dhruva, B. J. Mortazavi, and N. R. Desai, “Intravascular Microaxial

Left Ventricular Assist Device vs Intra-aortic Balloon Pump for Cardiogenic

Shock–Reply,” JAMA, vol. 324, no. 3, pp. 303–304, 07 2020. [Online]. Available:

https://doi.org/10.1001/jama.2020.7560

364

https://doi.org/10.1001/jama.2020.7557
https://doi.org/10.1001/jama.2020.7551
https://doi.org/10.1001/jama.2020.7560

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Characteristics and Outcomes after SARS-CoV-2 infection
	Introduction
	Methods
	Study setting and data collection
	Study cohort
	Outcome ascertainment
	Treatment pathways
	Statistical analyses

	Results
	Characteristics of individuals tested for SARS-CoV-2
	Features associated with admission in patients with Covid-19
	Outcomes in discharged patients with Covid-19
	Treatment pathways for admitted patients with Covid-19

	Discussion
	Conclusion

	Visualization of emergency department clinical data for interpretable patient phenotyping
	Introduction
	Related Work
	Methods
	Datasets
	Synthetic Data
	Clinical Data

	Data Preprocessing
	Dimensionality Reduction and Clustering
	Clustering Analysis
	Clinical Cluster Analysis

	Results
	Synthetic Data
	Clinical Data
	Shortness of Breath
	Abdominal Pain
	Chest Pain
	Back Pain
	Falls


	Discussion
	Clinical Interpretation
	Limitations and Future Work

	Conclusion

	Dynamically Extracting Problem Lists from Clinical Notes
	Introduction
	Related Work
	Data and cohort
	Methods
	Embedding techniques
	Target Problems
	Problem extraction model
	Outcome classification
	Training procedure

	Experiments and results
	Baselines
	Outcome Results
	Problem Extraction Results
	Effect of End-to-End Training
	Comparison Against Oracle
	Label Integrity

	Interpretability
	Global Trends
	Individual Predictions 

	Qualitative Expert User Study
	Limitations and Future Work

	Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction
	Introduction
	Methods
	The CP-MI Registry
	Patient Population
	Patient Variables and Data Definitions
	Modeling Strategies
	Statistical Analysis

	Results
	Characteristics of Study Population
	Model Discrimination
	Model Calibration
	Subgroup Analyses

	Discussion
	Limitations

	Conclusions

	Use of Mechanical Circulatory Support Devices Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock
	Introduction
	Methods
	Data Sources and Study Population
	Hemodynamic Support and Covariates
	Statistical Analysis

	Results
	MCS Device Use and Change Over Time
	Hospital-Level Variation in MCS Device Use
	MCS Device Use by Hospital Characteristics
	MCS Device Use by Patient Demographic and Clinical Characteristics
	Characteristics Associated With MCS Device Use and With Intravascular Microaxial LVAD vs IABP Use

	Discussion
	Limitations

	Conclusions

	Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock
	Introduction
	Methods
	Data Source
	Study Population
	Registry Linkage
	Hemodynamic Support
	Outcomes
	Covariates
	Statistical Analysis

	Results
	Study Cohort
	Mechanical Circulatory Support Device Utilization
	Outcomes of Intravascular Microaxial LVAD vs IABP
	Outcomes of IABP vs Medical Therapy Alone

	Discussion
	Limitations

	Conclusions

	A dynamic model to estimate evolving risk of major bleeding after PCI
	Introduction
	Methods
	Study cohort
	Variables of Interest
	Staged Model Analysis
	Data Preparation
	Training, Testing, and Evaluating
	Variable Importance

	Results
	Patient Cohort and Variables Used
	Stage 1: Clinical Presentation (Model 1)
	Decision 1: Access Site (Model 2)
	Stage 2: Cardiac Catheterization Laboratory (Model 3)
	Decision 2: Pre-Procedure Medication (Model 4)
	Stage 3: PCI (Model 5)
	Decision 3: Closure Method (Model 6)
	Case Studies
	Case Study A
	Case Study B


	Discussion
	Limitations and Future Directions

	Conclusion

	Outcomes-Driven Clinical Phenotyping in Cardiogenic Shock using a Mixture of Experts
	Introduction
	Related Work
	Methods
	Number of Experts
	Baseline Models
	Metrics

	Experiment and Results
	Limitations and Future Directions
	Conclusion

	Latent Space Analysis of Semi-Supervised Learning with a Deep Mixture of Experts
	Introduction
	Related Work
	Clinical Phenotyping
	Deep Mixture of Experts

	Methods
	Data
	Model

	Results
	5 Experts, L2=0.004
	3 Experts, L2=0.01

	Discussion

	Challenges and Opportunities in Sensing and Analytics for Risk Factors of Cardiovascular Disorders
	Introduction
	Case Studies and Needs
	Clinical Conditions
	Needs for Monitoring Signs and Symptoms for Cardiovascular Disorders

	New Sensors, Trends in Longitudinal Capture, Missing Data, and Sensor Selection
	Existing Technologies and Applications
	Acoustic Sensing/Vitals
	Electrical Measurements
	Blood Pressure
	Blood Flow
	Fluid Retention
	Physical Activity and Posture
	Diet Monitoring and Glucose Intolerance

	Gaps
	Opportunities

	Continuous Data Collection and Analytic Models
	Existing Technologies and Applications
	Continuous Capture of Acoustic Sensing
	Continuous Capture of Electrical Signals
	Continuous Capture of Vitals Sensing
	Continuous Capture of Physical Activity
	Deep Learning for Personalized and multi-modal models

	Gaps
	Opportunities

	Clinical Interpretability, Analytic Models, and Treatment Paradigms
	Existing Technologies and Applications
	Risk Prediction Models
	Remote and Dynamic Models
	Deep Time-to-Event
	Multi-task learning and Attention
	Interpretable Machine Learning

	Gaps
	Opportunities

	Discussion and Conclusion

	Estimating Beat-To-Beat Cuffless Blood Pressure with Neural Architecture Search
	Introduction
	Related Work
	Cuffless Blood Pressure
	Neural Architecture Search

	Dataset and Data Preprocessing
	Dataset
	Data Preprocessing

	MTL for Personalized Blood Pressure Estimation
	Model Development
	Experimental Results
	Analysis

	Discussion
	Limitations & Future Directions
	Conclusion


	Using IoT Sensors Opportunistically to Enhance Human Activity Recognition Using a Mixture of Deep Neural Networks
	Introduction
	Related Works
	IoT Sensor Selection
	IoT and Health
	Mixture of Experts

	Methods
	-network: DNN for HAR
	-network
	Baseline Models
	-network Extension: Multitask Learning
	Hyperparameter Tuning and Pretraining
	Training

	Evaluation and Results
	Experimental Setup
	Opportunity
	Networks Architecture
	Case Study 1: Sensor Requesting
	Case Study 2: Intelligent Sensor Selection
	Case Study 3: Augmented -network

	Limitations and Future Work
	Conclusion

	Conclusion
	REFERENCES

