Development and Field Testing of Strain Gauge Based Torque measurement system for Oil Pipeline Pump Application

Hemanth Satish, P.E. Chris Barkow Dan Phillips

48th Turbomachinery & 35th Pump Symposia |

TURBOMACHINERY

• & PUMP SYMPOSIA

Presenter Bios

Hemanth Satish, P.Eng.

- Principal Engineer, USGO Reliability
- Specializing in rotor-dynamics, vibration, pulsation analysis, modal Analysis, RCFI, exotic metallurgy, condition monitoring and predictive analytics related to equipment for O&G industry

Dan Phillips, CMRP

- Technology Director, PTS Monitoring & Diagnostics
 - B.S. Mechanical Engineering, University of Maryland Baltimore County
- 15 years of field experience with rotating equipment for O&G and Heavy Industries

Chris Barkow

٠

- B.S. Mechanical Engineering, Purdue University
- 15 years experience with Engineering Services, Preventive & Predictive Maintenance
- Previously Senior Equipment Specialist at major US steel producer

Short text of an Abstract (approx.80 words) to print in show guide

As part of a PRCI (Pipeline Research Council International) project that involved developing a field testing
procedure for large oil pipeline pumps, this case study focuses on the development of a system to precisely
measure power at the pump shaft which paramount to the accurate estimation of the pump-motor performance.
The conclusion of the case study details the lessons learned, future test plans on alternate motor-pump
configurations, and the implications of transient torsional vibration on machinery health for these applications.

Case Study Overview

- Background and Problem Statement
 - Pipeline Research Council Initiative
 - Efficiency Calculation Challenges
- Telemetry System Integration with Flexible Coupling
- Field Testing & Data Review
- Torsional Vibration for Machinery Diagnostics
- Conclusion

Background

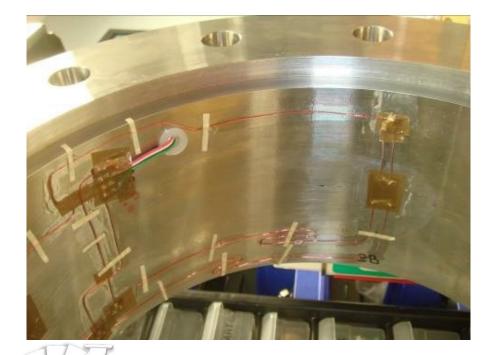
- Lack of industry Accepted standards and Procedure for field performance testing of large Pipeline Pumps in viscous application;
- Lack of Standardized Accurate estimation of HP consumed on large Pipeline Pumps, making performance/efficiency estimation a challenge.
- Pipeline Research Council International (PRCI) Initiative Development of Pump field performance testing procedure and validation (CPS 7-10);
- In support of the PRCI initiative there was a need to measure mechanical HP consumed for accurate performance estimation of pipeline pumps.
- TC Energy oil pumping stations used for field performance testing proof of concept.

Problem Statement

- True input torque to pump shaft needs to be measured.
- Least intrusive system needs to be used for minimizing installation and set up times – to avoid expensive line/station outages;
- Capable of continuous operation;
- No Major Modifications allowed on the pump or drive systems; use of existing coupling preferred;
- Torque measurement system should be interchangeably used on different TCE pumps (same makes);
- Simple set up, remote operation, minimal invasive cabling & portability;
- Dynamic torques measurement capability Understand VFD oscillations, performance and effect on pump & motor;
- Capable of serving as a tool for torsional analysis with high resolution data.

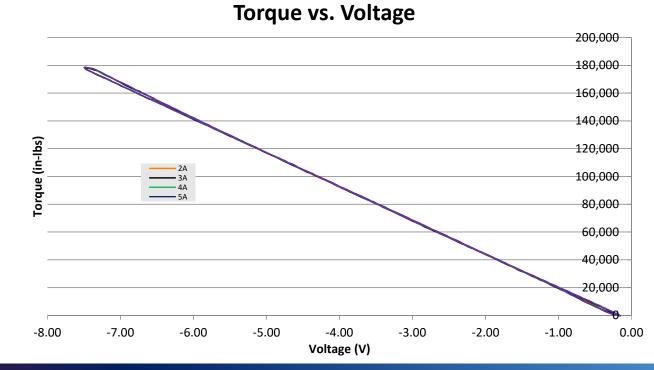
Telemetry System – Coupling Integration

- Major Components
 - (2) Strain gage bridges mounted inside diameter of the coupling spacer
 - Transmitter mounted to the outside diameter of the coupling spacer
 - Brass hoop antenna to receive torque data from the transmitter
 - Data acquisition box which is connected to the antenna by a coaxial cable



Telemetry System – Coupling Integration

- Redundant strain gage bridges installed on inner diameter of coupling spacer
- Temperature compensation requirement of -40 to +55 deg C
- Gages constructed 'EA' constantan foil, are rated to -75°C (-103°F) Adhesive rated for -269°C using M-Bond 610 and protective coating rated to -75°C



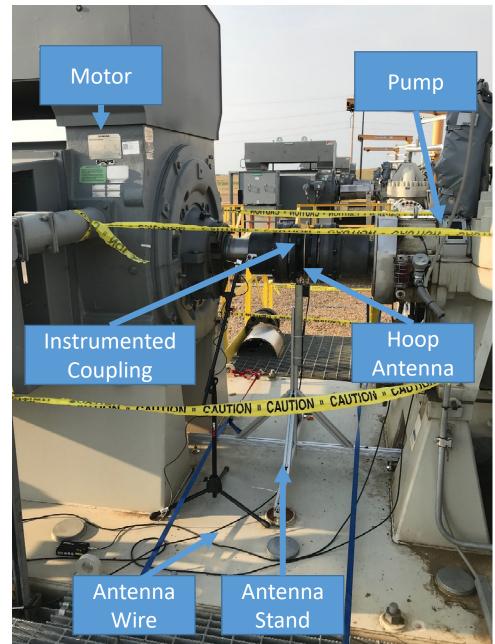
Telemetry System – Static Calibration

- Calibration data was taken in both rotational directions (CW and CCW)
- Torque ranged continuously from 0 in-lbs up to 177,037 in-lbs, and back down to 0 in-lbs, for each of the two strain gage outputs
- 3 complete tests were performed for each of the two strain gage outputs for repeatability
- Each test included 5 valid runs up and down in torque (Voltage below shows negative due to the bridge output)
- Verified repeatability and linearity of the gage outputs and determined the scaling factor required for each gage circuit.

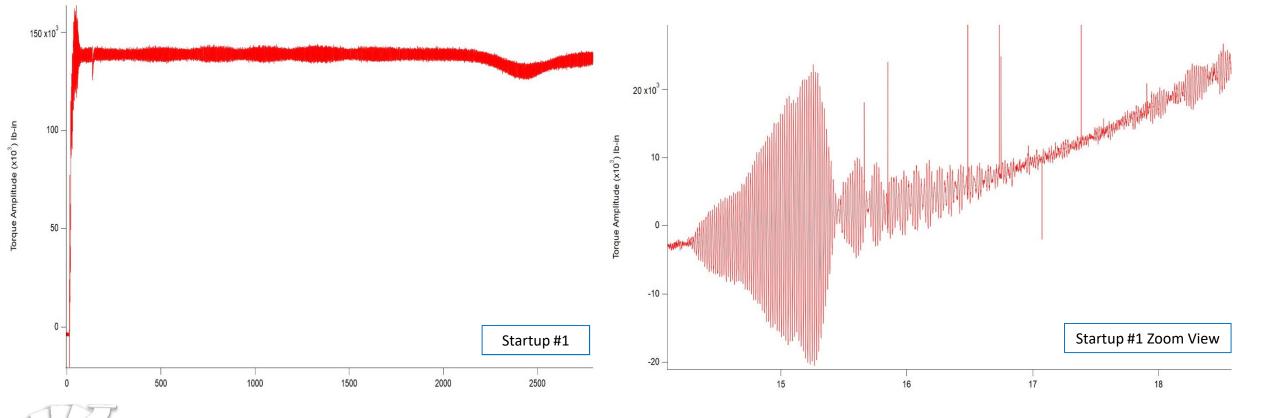
Telemetry System – Dynamic Testing & Balancing

- Dynamic testing ensures that speed and related forces do not affect signal
- Testing help gain knowledge of the expected signal quality in the field and the possible effects of poor connections at the hoop antenna
- Dynamic balancing to API 671 standard (component balance) after instrumentation was installed

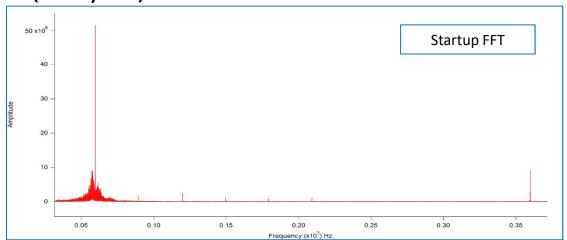
Dynamic Test Stand

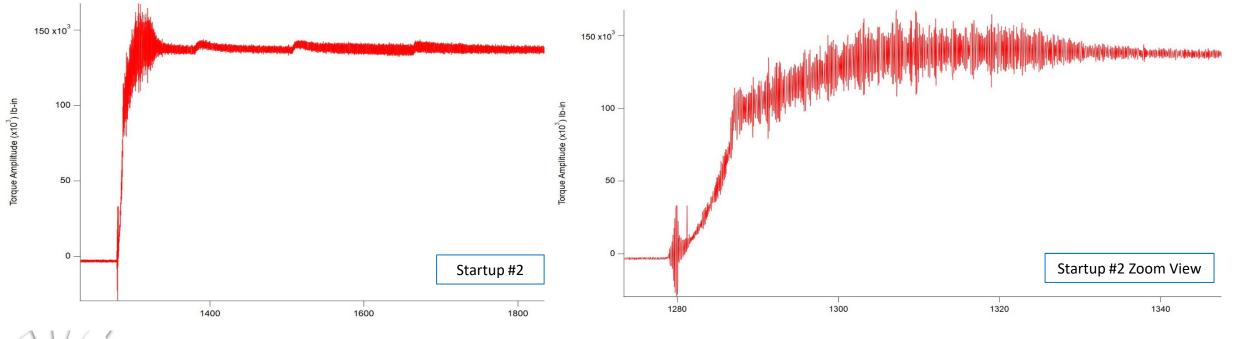

TURBOMACHINERY & PUMP SYMPOSIA

Dynamic Balancing


Field Testing Setup

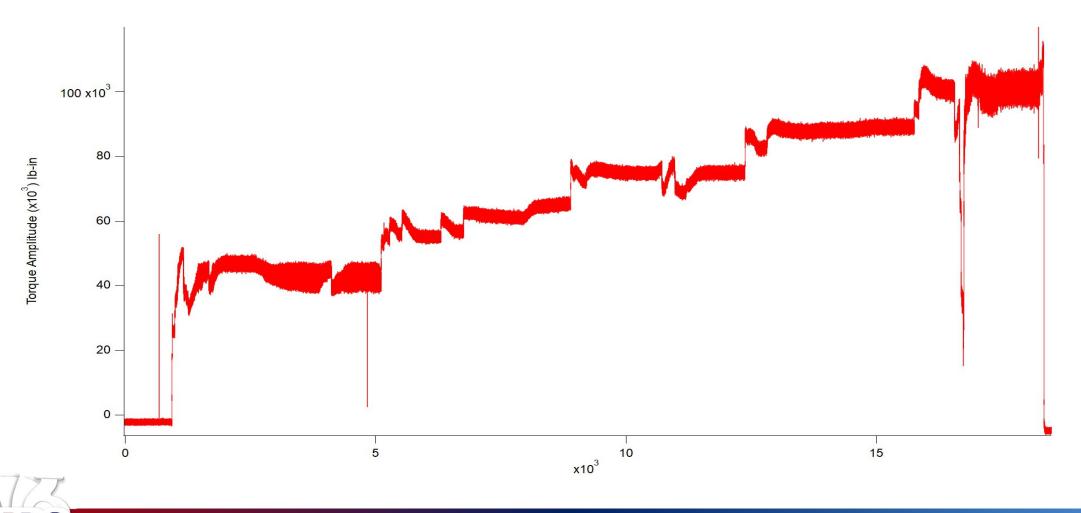
- Antenna support stand held the hoop antenna from the side or from the bottom of the coupling
- Field operation proved the antenna had to be held in two places to keep coupling windage and external wind forces from moving/vibrating the antenna
- A larger hoop antenna was used in the field vs testing to help clear the coupling bolt circle
- Coupling guards did not fit with the instrumentation and the area was taped off for safety during the operational testing
- The data acquisition box was set up outside of the taped off area so it was accessible for data logging


Field Testing Results – Test Site #1 (Day 1)


- Testing site #1 was a non-VFD operated motor
- The operator had valves closed during startup(s)
- Torsional resonance at 56 Hz and reversing torques noted at startup, along with low amplitude 360 Hz oscillations
- Steady state motor speed is constant throughout the test after startup
- Variances in torque are due to valve shifts and other external factors such as fluid inertia, pumped media changes, etc

Field Testing Results – Test Site #1 (Day 2)

- Testing site #1 was a non-VFD operated motor
- The operator had valves closed during startup
- Torsional resonance at 56 Hz and reversing torques noted at startup, along with low amplitude 360 Hz oscillations
- Speed is constant throughout the test after startup
- Variances in torque are due to valve shifts and other external factors such as fluid inertia, pumped media changes, etc



- Test site #2 utilized a VFD driven motor
- Data was collected continuously at 2,000 Samples/Sec while varying speed and loads.
- The VFD started initially at 55% motor speed and increased in steps up to 100% speed over 5 hours and 8 minutes
- Some minor adjustments occurred to the VFD controlled speed during the test.
- Torque data was continuously logged while other parameters were recorded in a notebook

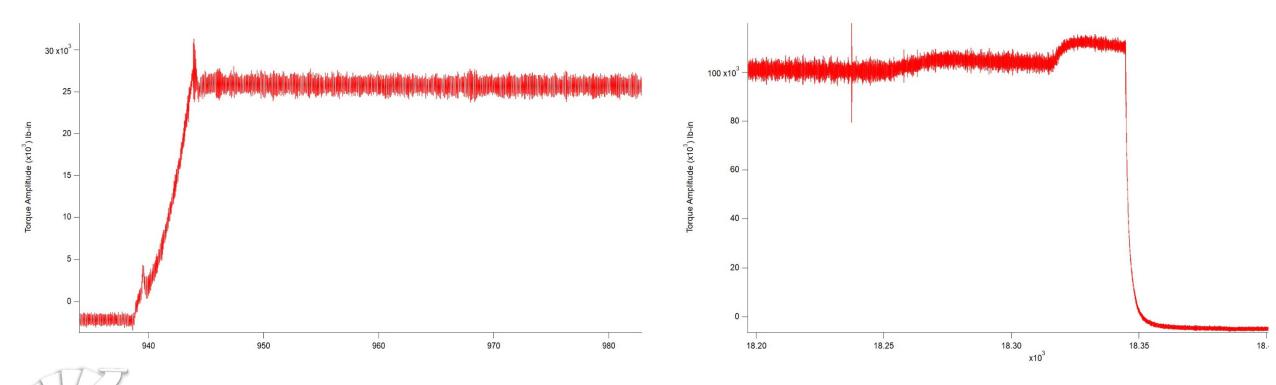
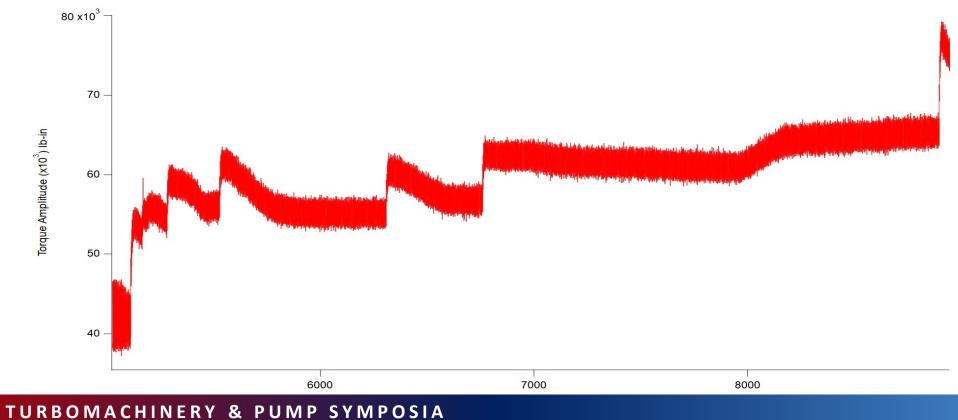
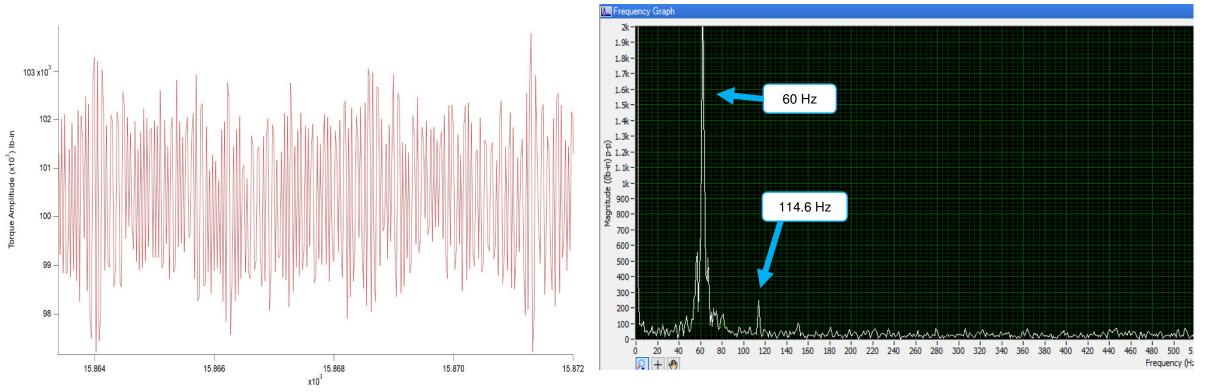
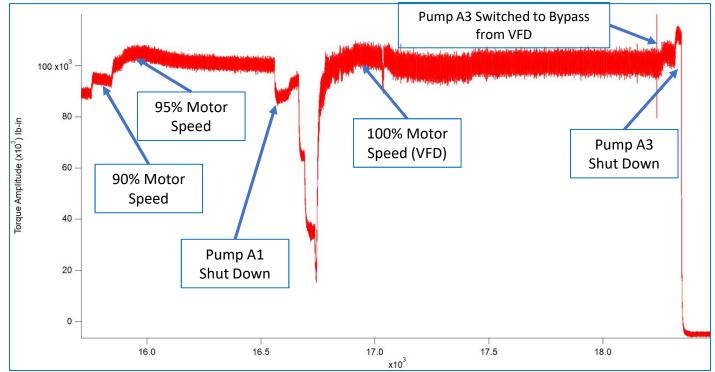

Percentage of Motor Speed	Reported Shaft Speed	Actual Time of Day	VFD Freq.	Case Pressure	Suction Pressure	Discharge Pressure	Temperature	Flow rate
55%	960 RPM	10:41	31.0 Hz	3158 kPag	-	-	32.9 °C	3064.0 m^3/hr
65%	1198 RPM	12:13	39.6 Hz	3304 kPag	-	-	32.9 °C	3038.0 m^3/hr
67%	1230 RPM	12:22	41.0 Hz	3363 kPag	-	-	32.9 °C	3061.5 m^3/hr
77%	1400 RPM	12:54	46.7 Hz	3578 kPag	2459 kPag	3598 kPag	32.9 °C	3116.0 m^3/hr
75%	1351 RPM	13:25	45.1 Hz	-	2513 kPag	3561 kPag	32.9 °C	-
77%	1397 RPM	13:45	46.6 Hz	-	2550 kPag	3675 kPag	32.9 °C	3170.0 m^3/hr
84%	1520 RPM	13:53	50.6 Hz	-	-	-	32.9 °C	-
87%	1573 RPM	14:37	52.4 Hz	3911 kPag	2445 kPag	3951 kPag	32.9 °C	3186.0 m^3/hr
95%	1733 RPM	14:51	57.3 Hz	-	-	-	-	-
100%*	1809 RPM	15:14	60.3 Hz	3123 kPag	1031 kPag	3149 kPag	32.5 °C	2775.0 m^3/hr

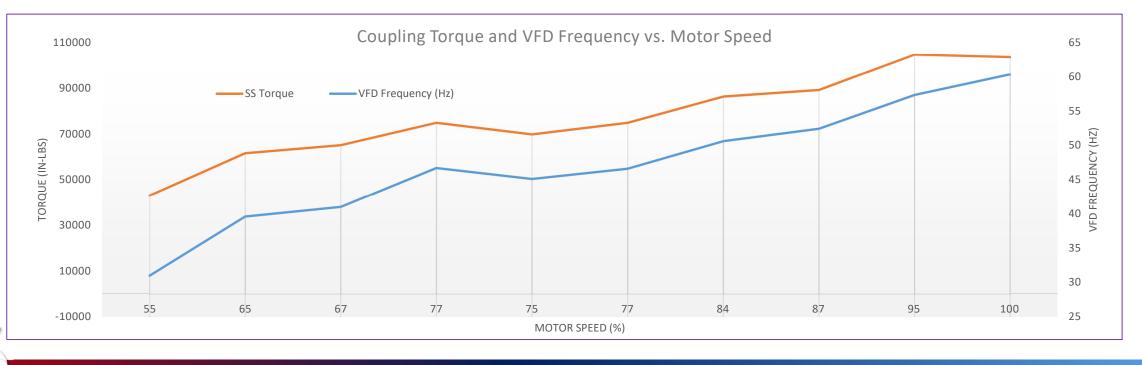
Table 1 – Overview of data collected from torque telemetry system and on-site test notes


- Steady state coupling torque increases linearly with VFD frequency
- A direct relationship exists, once the pumped fluid gains inertia, which can be used in efficiency calculations

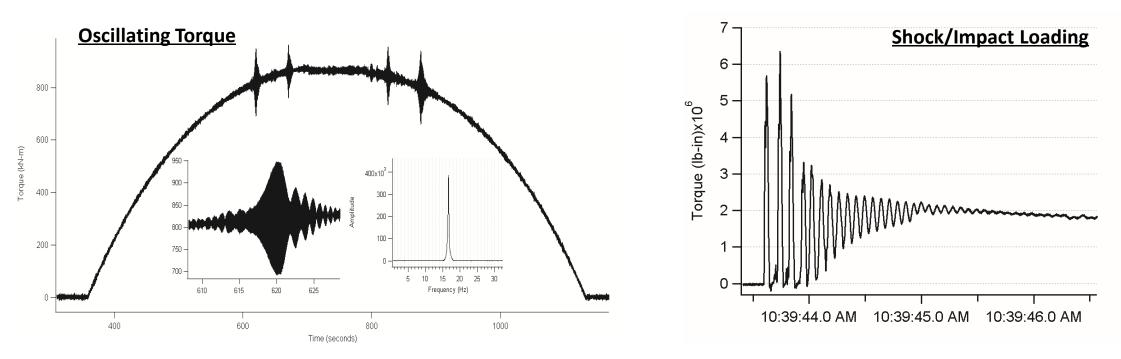

- Torsional oscillations at 60 Hz and 2x the VFD operational frequency can be seen in transient torque data
- Steady state torque amplitudes for pipeline pumping systems falls within a range for each speed. This may be related to varying suction and discharge pressures dependent on ancillary pumps/conditions
- No reversing torques or torsional resonance seen during startup compared to the non-VFD data from testing site #1, likely due to valves being open during startup at testing site #2


- A sample of transient torque data from Hour 2 of VFD driven testing is shown in the figure below
- Small speed adjustments can be noted to cause spikes in torque
- Torque spikes up, then decreases in magnitude as pumped fluid gains inertia
- A variance is seen from initial steady state torque to final steady state torque of around 500 in-lb
- The difference from the peak average torque spike amplitude to the final average steady state amplitude is around 11% of the steady state value. Peak-to-peak oscillations were around 3750 lb-in at steady state.

- A zoomed in view of torque data where oscillations at 60 Hz and 114.6 Hz are noted in the FFT shown in the below figure
- The VFD is at 57.3 Hz in this test segment
- A clear 2x VFD frequency exists at every speed step during testing, until the pump runs from line voltage at the end of the test
- Oscillations at steady state showed an average peak-to-peak amplitude of 3750 in-lb in the VFD driven data and non-VFD data across the full range of torque amplitudes (at both sites)

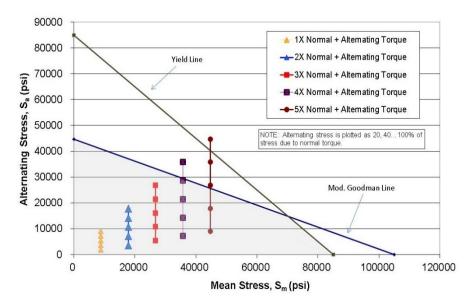


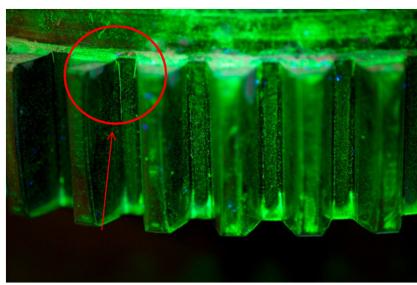
- Pump A1 was shut down during the last speed step of the test (Hour 5)
- Pump A3 was the test subject which had the instrumented coupling spacer installed
- Torque and speed at A3 were affected by the shutdown of pump A1
- The amplitude of the peak-to-peak torsional oscillations at A3 increased after A1 was shut down, through torque at steady state was nearly the same
- Decreasing steps in torque are due to the operational procedure during pump A1 shutdown

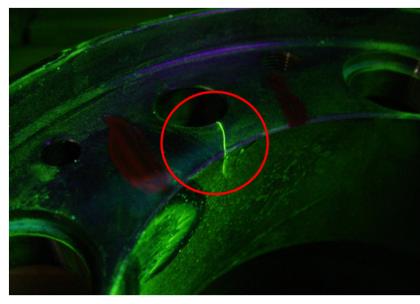


Field Testing Results - Overall

- Testing was initially done with valves closed (Test Site #1), which resulted in torsional oscillations at startup
 resembling intermittent resonance at a natural frequency and included some reversing torques down to -20k in-lb
 spikes
- Testing site #1 operated at a fixed speed; no VFD was used at the site
- Further testing at Test Site #2 with an alternate operator, VFD controlled motor, with valves open and no torsional resonance was noted during startup
- The testing site #2 utilized a VFD operated motor and was able to gradually increase pump speed (shown below)

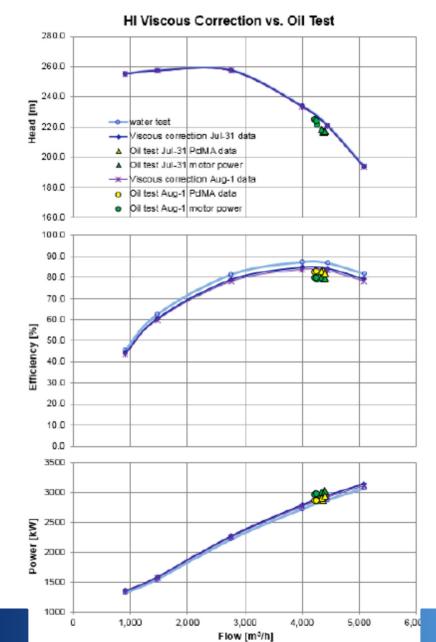

Transient Torque Measurement for Machinery Diagnostics

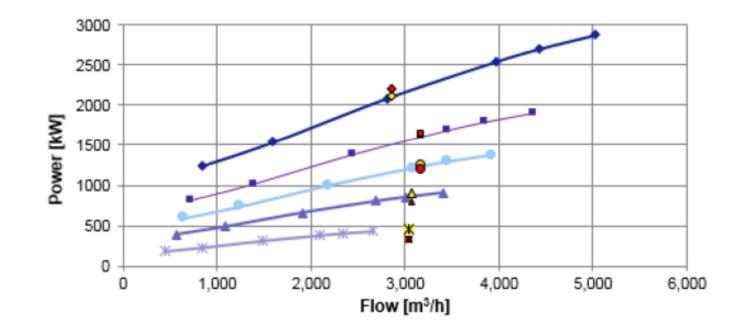



- Torsional vibration can be observed as oscillations (vibratory) or sudden peaks
- Magnitude determines severity (i.e. stress), frequency identifies source
- Potential sources: resonance, operational/process faults, start-up/shut-down, electrical

Transient Torque - Effect on Rotating Equipment

- Torque is directly related to the mechanical stress which it induces in a drivetrain component.
- Damage occurs when stresses in the load-transmitting material exceed the endurance limit or yield limit.
- Simple geometries can be analyzed with classical stress calculations
- Complex geometries typically require finite element analyses to determine allowable torque levels



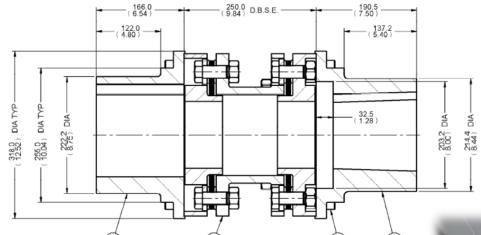

Pump Field Performance Testing Results

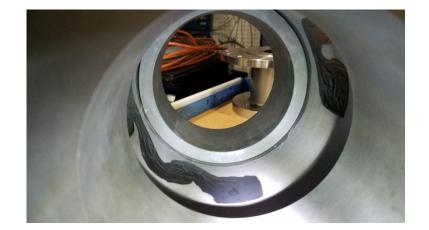
Measurement no.			1	2	3	4
			July 31, 2018,	July 31, 2018,	July 31, 2018,	July 31, 2018,
Date/Time	t		2:54pm	3:14pm	3:49pm	4:11pm
Pump power in (Torque mesurement)	Pin	kW	2927.1	2981.6	2929.3	2970.0
Pump power in (PLC / generic eff.)	Pin	kW	3026.9	2964.2	2998.0	3034.6
Difference	ΔP_{in}	%	-3.41	0.58	-2.35	-2.18
Measurement no.			5	6	7	8
			Aug. 1, 2018,	Aug. 1, 2018,	Aug. 1, 2018,	Aug. 1, 2018,
Date/Time	t		8:38am	8:48am	8:58am	9:08am
Pump power in (Torque mesurement)	Pin	kW	2913.3	2902.7	2889.8	2890.5
Pump power in (PLC / generic eff.)	Pin	kW	2970.0	2966.2	2957.5	2969.1
Difference	ΔP_{in}	%	-1.95	-2.19	-2.34	-2.72
Measurement no.			1	2	3	4
			July 31, 2018,	July 31, 2018,	July 31, 2018,	July 31, 2018,
Date/Time	t		2:54pm	3:14pm	3:49pm	4:11pm
Pump power in (Torque mesurement)	Pin	kW	2927.1	2981.6	2929.3	2970.0
Pump power in (PdMA data)	Pin	kW	2934.0	2878.0	2908.8	2943.4
Difference	ΔP_{in}	%	-0.24	3.48	0.70	0.89
Measurement no.			5	6	7	8
			Aug. 1, 2018,	Aug. 1, 2018,	Aug. 1, 2018,	Aug. 1, 2018,
Date/Time	t		8:38am	8:48am	8:58am	9:08am
Pump power in (Torque mesurement)	Pin	kW	2913.3	2902.7	2889.8	2890.5
Pump power in (PdMA data)	Pin	kW	2860.3	2858.4	2856.5	2856.5
Fump power in (FumA data)						

Pump Field Performance Testing Results

Measurement no.			1	2	3	4	5
			Oct 23, 2018,				
Date/Time	t		1:39pm	2:26pm	3:42pm	6:27pm	5:20pm
Pump speed	n _P	rpm	950	1218	1398	1559	1792
Pump power in (Torque mesurement)	Pin	kW	455.23	897.09	1232.29	1623.22	2120.25
Pump power in (PLC / generic eff)	Pin	kW	333.0	789.4	1190.0	1632.6	2204.8
Difference	ΔP_{in}	%	26.84	12.01	3.43	-0.58	-3.99

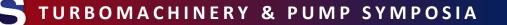
Conclusions

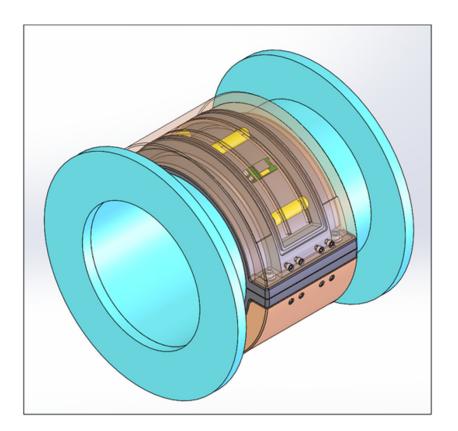

- A custom dynamic torque measurement system developed to meet the project objectives.
- Torque measurement system provided accurate power measurements verified by secondary electrical power measurements and PDMA testing;
- System facilitated identification of efficiency discrepancy b/w motor name plate and measured values;
- System facilitated VFD- Motor- Pump Train mechanical operation validation; VFD excitation estimated to be within the tolerance;
- Demonstrated case study to use the system as a troubleshooting tool to pin point performance degradation on VFD or Motor or Pump.
- Can be used for performance guarantee by accurate HP efficiency estimation during new pump installs and brownfield modifications to the pump.


Appendix

TURBOMACHINERY & PUMP SYMPOSIA

Telemetry System – Additional Images




Effect on Rotating Components – Alternate Photos

Telemetry System – Future Integration

- Fully enclosed housing encapsulating wireless transmitter, battery cells, and strain gages, benefits includes:
 - Decreased windage
 - Improved balance characteristics
 - Increased battery life
 - Simplified field installation no hoop antenna

