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Abstract

This tutorial discusses concepts and methods involved in performing and
evaluating centrifugal pump rotordynamic analysis. The presentation includes
Lomakin Effect, Gyroscopic Effect, Cross-Coupling, Rotordynamic Stabillity,
Critical Speeds and their Mode Shapes, Forced Response, common Excitation
Forces (both hydraulic and mechanical), and typical plant rotordynamic

problems and solutions. Case Histories are included to provide examples of

successful use of rotordynamic analysis.
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Rotor Dynamics

»Critical Speeds & Mode Shapes
»Forced Response
» Stabllity
» Specifications
(API1-610 12" & 684, HI 9.6.4,
Hl 9.6.8, ISO 10816-7)
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Approximating Natural Frequency
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Approximate Natural Frequency Calculation
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Example: Axially Split Case Double Suction Pump
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Natural Frequency Resonance

“‘FFT" OR SIGNATURE PLOT:
VIBRATION VS. SPEED (OR VS. FREQUENCY)
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Rotor Dynamics Is Best Evaluated by Computer




Types of Rotordynamic Computer Programs

Transfer matrix (type of “Holzer Method”)
Limited in its “stations” or "nodes”

* Very fast computation time

» QOlder “Legacy codes” use this method

Finite element analysis

iInclude essentially unlimited nodes
easily couple In the structure effects

use general purpose codes (e.g. ANSYS)

Can
Can

Can



Rotor Idealization
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First Critical Speed Operating Bump Test
Double Suction SS Pump
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Backward vs.
Forward Precession
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Backward: —
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Gyroscopic Dynamics
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Lomakin Effect in Centrifugal Pumps
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Concept of the “Wet Critical Speed”
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Lomakin Result:
Critical Speeds Shift Up
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Approximate Calculation of
Lomakin Stiffness

R= Radius - RL AP
L= Length K sox = C K e
C= Radial

clearance o o
AP=Pressure Kes= ('14‘7(5)? = 0.04 (L = 2R)

drop Ll ) / ‘
A= fric factor = 0.40 (L\\ZR)

AL
where ¢ === /




Lomakin Effect: Dependence on Various
Parameters

: CLEARANCE, OR
SPEED GROOVE # OR DEPTH
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Some Key Issues In
Lomakin Effect Strength:

* Grooving

 Surface Roughness

* Inlet Conditions (Swirl, Corners, Deposits, Cavitation)
* Available Total Pressure at Inlet

 Alignment, Eccentricity

* Frequency Content, Orbit Shape

* Wear or Erosion




Liquid “Added Mass” Effect

Fluid inside the impeller flow passages

“Swept volume™ of impeller exterior shape times the density of
water (In addition to impeller mass itself)

Added mass in close clearance annular seals (“Stokes Effect”)
Torsional added mass is usually small, hard to predict, may be
neglected




Forced Response:
Sources of Damaging Forces

Inlet or Discharge "Blade Pass"
Pressure Pulsations Pressure Pulsations Due to
Blade/\VVane Interactions, or
- Possible Recirculation & Stall

Torsional
Pulsations

Possible Qil
Film Instabilities

Coupling
Imbalance

Misalignment
Due to Pedestal
Distortion or
Piping Nozzle
Loads

Suction Pressure |
Pulsations Due to

Inlet Recirculation |
or Rotating Stall |

| Swirl or
| Pulsations

| at Thrust
"l Balance Drum

Seismic
citation
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How Natural Frequencies Affect Vibration

PASSIVE RESPONSE

Accel |

4 ACTIVE RESPONSE
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Typical Rotor Exaggerated “Mode Shape”

Wear Rings

Seal Bearing

d |



Rotordynamic Critical Speed Map
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Typical Rotor Vibration Response vs. Speed
Exhibits Several Natural Frequencies

2= = =HSAZmMmEmMOrron=0
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Plotting Resonance w/ Campbell Diagram

300 + Freq = Number ?
of Impeller
Vanes *
Runni
Sgegldng \
g, fn3
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SPEED, RPM V.

NOTE: fn’s are natural frequencies

= Zones of Potential Resonance \ \/
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Rotordynamic Exciting Frequencies
F-REQUENCY SOURCE
0.05 - 0.35 x  DIFFUSER STALL

0.43 - 0.48 x  INSTABILITY
0.500 x RUBBING
0.65 - 0.95 X IMPELLER STALL
1 X IMBALANCE
1 X 2 X MISALIGNMENT

#Vanes X VANE/VOLUTE GAP

#Blades x  BLADE/DIFFUSER GAP




Vibration Cause by Oscillating Force
Example: Imbalance
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ORBIT:
1 mil =
VIbratIOn COMMON CAUSES:

w a) MECHANICAL UNBALANCE

1x Running SPECTRUM: P USOALLY HIGH 2 x ALSO)

c) BENT SHAFT
,Speed 3 mils +

HARMFUL EFFECTS:

a) INTERNAL RUBBING

ON BEARINGS AND SEALS
b) OVERLOAD OF ROLLING
T mil T —I ELEMENT BEARINGS

. VIBRATION
N
3
=
!

NORMAL
RANGE : : | | 3
1 1

1 1
1T x N 2 x N 3 x N 4 x N 5 x N M
FREQUENCY SR
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API-610 Allowable Imbalance

API1-610 gives a table:

« Between 4W/N and 24W/N

* Depends on rotor bore fit

* Depends on other detalls

* Weight is Ibm per bearing, N is RPM
* |Imbalance is oz-inches

Note:
AWI/N =1SO G 0.66 (l.e. < ISO G 1.0)
24W/IN = 1SO G 4.0 r

40 W/N = 1SO 6.6 (i.e. about ISO G 6.3) 4




IMPORTANT VIBRATION PROBLEMS
IN TURBOMACHINERY

2. HIGH 1x AND 2x

AT
NI

Vibration SPECTRUM:
Problem No. 2: g% meT
1X & 2X |
Running Speed ’

1x 2X 3% 4x bx
FREQUENCY

COMMON CAUSES: a) MECHANICAL MISALIGNMENT
b) LOOSENESS IN BEARING RETENTION
c) SEVERE SHAFT OR BEARING
HOUSING CRACK

HARMFUL EFFECTS: a) INTERNAL RUBBING V.
b) COUPLING WEAR )
c) SHAFT FATIGUE \ \/
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T s ASA/ANSI Alignment Limits

Alignment Grades
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Angular Misalignment

An ODS is created by collecting
vibration data and using
specialized processing. It shows
exaggerated motion (but to
scale) at specific frequencies.
Left - animated Operating
Deflection Shape (ODS) of
typical angular misalignment.
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Offset Misalighment

I
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| =< J - |
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View: 3D Yiew [Complex] e =
BLK: Pumpl1_ODS == <] S R R A [ QU
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An ODS is created by collecting
vibration data and using
specialized processing. It shows
L’ exaggerated motion (but to
scale) at specific frequencies.
Left - animated Operating
Deflection Shape (ODS) of
typical parallel misalignment.
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Method of Accounting Misalignment Force

» Determine net offset between pump & driver coupling hubs

* Assign 1/2 of this as effective imbalance eccentricity to
coupling hub, and 1/4 of this to spacer spool piece, acting
at pump coupling hub

* Run unbalance response analysis including this effective
extra “imbalance




“Vane Pass’ Vibration Source

Tongue Tongue

Local : :
Peak ! :
Pressure : :
l i

!__- 0 |

b i

! '

| }

b |

1 i

Angle about centerline: 0° 180° 360° 4
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ORBIT: (J\—7
PN

SPECTRUM:
- 3 mils T
@)
E 2 mils
Vibration R
Problem No. 3: S ST,
High Vane Pass FREQUENCY

COMMON CAUSES: a) "GAP B" TOO TIGHT
b) DISCHARGE RECIRCULATION
c) FLAT OR DAMAGED VOLUTE
TONGUES
d) INTERNAL RESONANCE OF
DIFFUSER WALLS OR VANES

HARMFUL EFFECTS: a) FATIGUE IN INSTRUMENTATION
WIRE CONNECTIONS OR DRAIN y
PIPE CONNECTIONS
b) IF INTERNAL RESONANCE IS THE T o
CAUSE, FATIGUE CRACKING OF THE \ \/
RESONATING PART
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Method of Including Vane Pass

* Putin as an effective imbalance load

* Good approximation since vane pass load depends on
sguare of speed, just like imbalance

» Level of effective imbalance discussed later. Can be as
high as discharge pressure times discharge “projected
area” (D x blade height) times 0.36. Usually about 10x
lower than this.




The Most Frequent “Subsynchronous”
Vibration Problem:

Rotordynamic Instability

Symptoms:

» ”"Half speed” (48%N) whirl

» Other frequencies occur!!

» Loop-de-loop orbit

» Cross-coupling > Damping




(\, SUBSYNCHRONUS VIBRATION

SYNCHRONOUS VIBRATION

flxRPM 2 x RPM

i )
g . : ‘ “JCKJTL
Unstable Rotor ¢! — =
Whirl at “Half” = — ——
Running Speed ¢ - e
g : — o , - : —
 NATURAL FREQU E:;erY 5\)6 V.

\
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Cross-Coupled Stiffness
Oy

CROSS
COUPLED
FORCE S
Fyx Y
- b
BEARING OIL
PRESSURE —
K
NET : DIRECT VIEW A-A
REACTION _—, REACTION
FORCE =~ V- FORCE , /
& SR
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lllustration of
Phase Angle

Definition:

The "Lag" in Degrees Shaft
of the Vibration Cycle Orblt
(360° per Cycle) / F¢
, i

P 4

/ u//::>>//;§?\
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Volute Center Center

s — —
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180° 360°
| |
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| |
| I
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Vibration & Phase vs. Frequency

Natural Frequency

+ Very Slow N Very Fast
Motion Motion

._I —

X

Xl—

Static

£/ fn




How Cross-Coupling
Leads to Instability

1) CROSS-COUPLING:

CAUSE (DISPLACEMENT)

& EFFECT (SHEAR FORCE)
ARE 90° OUT OF PHASE AT
LOW (D/(DN

2) CAUSES SLOW PRECESSION OF
ROTOR, WITH PRECESSION SPEED
OF ~1/2 ROTOR SPEED

3) WHEN Opgppcession™ ®4st CRIT SPEED
ADDITIONAL 90° PHASE SHIFT

OCCURS

—> Response displacement ends up in the same direction as

the cross-coupling force, in the same direction as the

minimum clearance. y
= Enough damping trumps cross-coupling \ \/ S
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Anti-Whirl Bearing Fixes
JOURNAL BEARING TYPES

d) 4-AXIAL GROOVE
JOURNAL BEARING

e) ROCKER PIVOT TILT PAD y_
JOURNAL BEARING

c) OFFSET SPLIT JOURNAL BEARING A / \
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Issues In Rotordynamics
Not Well Enough Understood

* Hydrodynamic “active” forces

» Impeller reaction coefficients

* Swirl Incoming to annular seals

» Effect of spiral grooving In seals
* Unique seal groove geometries




Impeller Excitation Forces:
Sulzer/ EPRI Tests

* Fr
"R " pgHD;B;
D o = Impeller diameter,

B 5 = Impeller exit width
Alternate Rule- » = Density, g = Gravity, H= Head

Normalization:

*
_ : F'r = Normalized radial force,
Of Thumb nondimensional 180°
* _ Double | Single
FR —O. 1 tO 10 K Diffuser | Volute Vo|§te
Where K= (Sst(z(;f:)r;\ el .01( 64508 .02( 65515 .05( 1-5535
] Static asymmetry) ' ' )
Steppanoff Radial Normal impeller | T~ T,
(no suction '01( 03) O( 04510 '03( 06) 0
asymmetry) ' ' )
Thrust Factor oy
| rotational frequency (.03) (.03) (.03)
Pymanmic Hr{g;?ggg = 005 - .03 [005 - .10[.05 - .30
ll'jotationale’frequency (.02) (.03) (.05)

Ranges for FR for Q=25% to 125% of Design Point
Values in brackets: typical for Design Point
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Vibration Pulsation vs. Flow
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Actual Field Data Vibration vs. Flow
Axially Split Case Double Suction Pump
[} S S o S -
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API1-610 Accounting of Flow Effects

Vibr.
8
§ \.&
Typical vibration I
shutoff ~ 855 Flow
Figure 2-7—Relationship Between Flow and Vibration
Recommended
vibration
" measurement

locations

|
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Flow Rate and the “Angle-of-Attack”

Relative Velocity
Blade © . of Incoming Flow
Tip =
Velocity
Motion
of Blade

Through -
Flow
Velocity




Vane Stalling at Low Flows

Relative

Tip oy
Velocity |

Motion
of Blade

Through - |
Flow
Velocity



Example of Stalled Blade

e » q&-‘ -:“i?‘ -y
Ioe Bena RS
%21'.:;3'3‘.32 - .

-
.

T W s e
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w e e T ‘
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Onset of Internal Recirculation

Discharge Recirculation

Suction
Recirculation




Vibration
Problem No. 4:
Subsynchronous

(below 1x)

IMPORTANT VIBRATION PROBLEMS
IN TURBOMACHINERY

5. "BROADBAND" SUBSYNCHRONOUS
VIBRATION

ORBIT: TYPE 1{9\ TYPE 2:
"Half-

vy,

SPECTRUM:
X % OF RUNNING SPEED

1x | ) 3x | x ) )4
SUBSYNCHRONOUS PEAK

POSSIBLE CAUSES:
TYPE 1:
a) x =40 TO 49% : BEARING INSTABILITY
b) x = 50% EXACTLY: SEVERE RUB
(OR EXACTLY 1/3 & 2/3)
c) x =5TO 30% : DIFFUSER STALL
TYPE 2:
d x =65 TO 95% : 1. IMPELLER STALL
2. SUCTION
RECIRCULATION
e) GENERALLY HIGH "FLOOR" 0 - 1x :
CAVITATION
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Suppressing Incoming Swirl

~ -
-
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FRr K*= 1 k

. . . * _ 2 2
Normalization: Fp ogHD5 By (B B2pm
. 1
D o = Impeller diameter, c'm 5 C
T 1y° Bopw
g = Gravity, H= Head it 21 -
T ry“ Bop
|mpe”er ro = Impeller Radius, B2 = Impeller exit width
_ p = Density, ® = rotational angular frequency
Radlal * = Normalized quantities (dimensionless)
Reaction 15 + -
Forces: oo ] | ]
5 ——
Sulzer/ EPRI i k B
Tests ST K* o* ‘m* k* ¢* m*
For circular orbit of whirl frequency Q:
Radial (in dir. of displ.) Tangential (in dir. of rot.) y
*__*_*Q *2_2 I E *ﬂ *Qz \'
Fr=k CC(m)+m(m) F= Kt (co)+mc(m) [

~ -
“"\.
—
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Multistage Pump
Inboard Bearing Chronic Failure
Case History




Pump with Inboard Bearing Failures

b \\\\\\\ L ]

IMPELLERS\\‘“

FFUSER /)
OUTBOARD BEARING

=N ,;_,_‘//>>|

INBOARD BEARING | \

PAFIT Y27 SR

SHAFT i} * eay 2 it ///

\
SUCTION DISCHARGE y
FLOW FLOW

|
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Shaft Orbits of Problem Pump

W7 TINE A VW2 B ' v -
Y: 1.150 : TRIN Y oens221bU™,
X+ 4.6DV _ . L § T4

SETUF us ) FLEX ' 0.04159218

' _ THRUST
* END

& COUPLING
¥ | END

N7 TINKE A Vs B .
BT JI%E, P STORED NAIH 185al
¥ 4 &CU x1 - "
SETUF  S4 FLEX ! 0.04158218
HW? TIME B Vs B NAIN Y. =-93.2aU
Yt 1.060 T: 43 . 45%us
¥ 4.240 ¥+ ~3127mb
SETUP W4 FLEX : 0.04
. END y
M7. TIME A M2 B T . STORED . ¥a  =371eU *
HIEE - IR I 43y 2T ey
s:rur'%ﬂ__ FLEX -+ 2.60742187 |

I
43TH TURBOMAGHINERY &
3ETH PUMP SYMPOSIA




Vibration Spectra for Problem Pump

43 -qurofseEc cu.A . C 2 -s'p'eed ;1'54:00 RPM,
: 0 to 800 Hz

27x .
VERT

HOR

$4 ﬂuTO'SPE.C cH. .8
1

w auroseec cun  d : Speed = 5445 RPM,
Y+  408mlU  R8S 8048 ,
Xy §.N00HxT + 100HZ . ——

0 to 100 Hz

1%

VERT

= 91 H;

HOR

us ﬁngousrgﬁscu 8 o ) ‘ ral
{ 3 1
Bhaiiolls S

M O.000HX + \
-
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Impact Test Results Showing Shaft
Critical Speed at 5280 rpm

FREQ RESF HI NYQUIST

¥: $5.95u
¥: 3.9« )
#(: 371
X
- | f = 88 Hz
LOG 10 g | o
VIBRATION_‘ . ..& 0.034 p/kg

FREQUENCY

FREQ RESP H:

: =44 _ 348 4048
X: OHz + a00Hx < 200 Hz
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“What If’ Analysis for Problem Pump

15

NAT.
FREQ.
kepm
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0 | UNLOADED | | DESIGN | .
N - — y
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Bearing Groove Change from
0.040 in. Deep to 0.010 in. Deep

C-END BEARING MODIFICATIONS

B aiiiin ‘;}/ | AREA REDUCING GROOVE

] ~—=&_ |
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Vibration Spectrum After Bearing Fix
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: : : Note: Fluid “Added Mass”
Torsional Vibration Model s nearly zero for practical

pump impellers

PUMP or
ROTARY privER Pl CPLG

COMPRESSOR
INERTIA HUB HUB ROTOR
TORS. DRIVE FLEXIBLE MAIN
STIFFNESS SHAFT COUPLING SHAFT
. DRIVER ELASTOMER PUMP or
D,AT\EAFFE?NG LOSS COUPLING COMPRESSOR

ELEMENT LOSS
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-
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Typical Torsional Critical Speeds
and p-p Torque Pulsation Levels
0.1+ "

TORQUE
(P.U.)

TORS. 0.05+
VIBR.

[ PULSE.

0.0

! i

0 1x 2x  3x 4x  bx ESX '}‘i FREQ
TYPICAL fnT1 TYPICAL 1‘nT2 BLADE PASS

© VALUES @ MIN. FLOW (BEP IS 2x - 5x LOWER)
© VALUES MAY VARY BY ~ +/- 0.05

© SOME EXCIT. @ VANE PASS x2, x3, . . ., xi (~2) y
© VFD's: LINE FREQ, 2x LINE FREQ, 6x/12x/18x Nyi5toR
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Summary of API 610
Rotordynamic Requirements

Rotor must be analyzed If:

* A similar pump Is not already operating
successfully

* The rotor is not “classically stiff’, i.e. its 15
critical speed is not 20%+ above 1x N




API-610 & 684 Analysis Guidelines

* Do not Include stiffness of either loose fit or press fit impellers,
sleeves, and hubs

* Do include the full mass of all impellers, sleeves, and hubs,
located at their center-of-mass

* [nclude fluid added mass

* [nclude Lomakin Effect

 Base Lomakin Effect on 1x and 2x API clearances:. Meet
separation margins for both extremes

* Account for bearing support stiffness & mass

* Driver not included for lateral critical speeds, but MUST be for
torsionals.




APl Required Rotordynamic Results

* First three lateral critical speeds

» All critical speeds up to at least 2.2x running speed

* Amplitude v. frequency & phase angle "Bode” plots
(forced response plots)

« Campbell diagrams of critical speeds v. N

* No guantitative stability assessment for pumps




Separation Margin Guidelines
per API-610 11t Edition

* Forcing frequency v. natural frequency “separation
margin” needed depends on degree of damping.

* For damping ratio of 0.15 or higher no separation
margin Is required

* Fig. .1 shows separation (up to 26%) required for
lesser amounts of damping




Conclusions

* Rotordynamics Is complex
» Keys to success:
v Knowledge
v Experience
v" The Right Tools
* API-610 and API-684, as well as HI
and ISO Specs, provide a good
evaluation guide
» Check out the new HI 9.6.8 pump
dynamics evaluation guide! -




