49th Turbomachinery & 36th Pump Symposia

DECEMBER 7-10, 2020 | NOW VIRTUAL

NOW VIRIUAL

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

An End-User's Guide to Centrifugal Pump Rotordynamics

William D. Marscher, P.E. MSI CEO & Senior Consultant Member TAMU Pump Symposium Advisory Committee

December 10, 2020

Abstract

This tutorial discusses concepts and methods involved in performing and evaluating centrifugal pump rotordynamic analysis. The presentation includes Lomakin Effect, Gyroscopic Effect, Cross-Coupling, Rotordynamic Stability, Critical Speeds and their Mode Shapes, Forced Response, common Excitation Forces (both hydraulic and mechanical), and typical plant rotordynamic problems and solutions. Case Histories are included to provide examples of successful use of rotordynamic analysis.

AUTHOR

William D. Marscher, P.E.

Mechanical Solutions, Inc. – President & Tech. Director Past President, Society of Tribologists & Lubrication Engineers Past President, Machinery Failure Prevention Tech Society Member of TAMU Pump Advisory Committee Previously worked at P&W, Worthington, Dresser **BS, MS ME Cornell University** MS Applied Mechanics RPI **ISO TC108 Machinery Vibration Committee** Hydraulic Institute Standards Partner

Rotor Dynamics

Critical Speeds & Mode Shapes
 Forced Response
 Stability
 Specifications

 (API-610 12th & 684, HI 9.6.4, HI 9.6.8, ISO 10816-7)

Approximating Natural Frequency

$f_{n_1} = \frac{60}{2\pi} \sqrt{\frac{\text{keffective}}{\text{meffective}}}$

Approximate Natural Frequency Calculation

Example: Axially Split Case Double Suction Pump

Natural Frequency Resonance

Rotor Dynamics Is Best Evaluated by Computer

ASTH TURBOMACHINERY & SGTH PUMP SYMPOSIA

Types of Rotordynamic Computer Programs

Transfer matrix (type of "Holzer Method")

- Limited in its "stations" or "nodes"
- Very fast computation time
- Older "Legacy codes" use this method

Finite element analysis

- Can include essentially unlimited nodes
- Can easily couple in the structure effects
- Can use general purpose codes (e.g. ANSYS)

Rotor Idealization

ANGULAR POSITION.

First Critical Speed Operating Bump Test Double Suction SS Pump

Backward vs. Forward Precession

Gyroscopic Dynamics

Lomakin Effect in Centrifugal Pumps

Concept of the "Wet Critical Speed"

Lomakin Result: Critical Speeds Shift Up

Approximate Calculation of Lomakin Stiffness

 $k_{xx} \cong \frac{RL \Delta P}{c} K_{xx}$ **R**= Radius L= Length C= Radial clearance $\mathbf{K}_{\mathrm{xx}} \cong \frac{\pi\sigma}{(1+2\sigma)^2} \cong 0.04 \quad (\mathbf{L} \cong 2\mathbf{R})$ $\cong 0.40 \quad (\mathbf{L} << 2\mathbf{R})$ ΔP =Pressure drop λ = fric factor AT

where
$$\sigma = \frac{\lambda L}{c}$$

Lomakin Effect: Dependence on Various Parameters

Some Key Issues in Lomakin Effect Strength:

- Grooving
- Surface Roughness
- Inlet Conditions (Swirl, Corners, Deposits, Cavitation)
- **Available Total Pressure at Inlet**
- Alignment, Eccentricity
- Frequency Content, Orbit Shape
- Wear or Erosion

Liquid "Added Mass" Effect

- Fluid inside the impeller flow passages
- "Swept volume" of impeller exterior shape times the density of water (in addition to impeller mass itself)
- Added mass in close clearance annular seals ("Stokes Effect")
- Torsional added mass is usually small, hard to predict, may be neglected

Forced Response: Sources of Damaging Forces

How Natural Frequencies Affect Vibration

49TH TURBOMACHINERY & 36TH PUMP SYMPOSIA

Typical Rotor Exaggerated "Mode Shape"

25

Rotordynamic Critical Speed Map

Typical Rotor Vibration Response vs. Speed Exhibits Several Natural Frequencies

27

Plotting Resonance w/ Campbell Diagram

Rotordynamic Exciting Frequencies

FREQUENCY	SOURCE
0.05 - 0.35 x	DIFFUSER STALL
0.43 - 0.48 x	INSTABILITY
0.500 x	RUBBING
0.65 - 0.95 x	IMPELLER STALL
1 x	IMBALANCE
1 x +2 x	MISALIGNMENT
#Vanes x	VANE/VOLUTE GAP
#Blades x	BLADE/DIFFUSER GAP

Vibration Cause by Oscillating Force Example: Imbalance

API-610 Allowable Imbalance

API-610 gives a table:

- Between 4W/N and 24W/N
- Depends on rotor bore fit
- Depends on other details
- Weight is Ibm per bearing, N is RPM
- Imbalance is oz-inches

Note: 4W/N = ISO G 0.66 (i.e. < ISO G 1.0) 24W/N = ISO G 4.0 40 W/N = ISO 6.6 (i.e. about ISO G 6.3)

Vibration Problem No. 2: 1x & 2x Running Speed

c) SHAFT FATIGUE

Misalignment represented as angles at the flex planes: $angle A(orB) = \frac{offset}{span} \left(\frac{mils}{inch}\right)$

For Offset Only, hub-to-hub, mils, divide vertical values by two.

Source: ANSI/ASA S2.75-2017/Part 1

ASA/ANSI Alignment Limits

9TH TURBOMACHINERY **36TH PUMP SYMPOSI**

Angular Misalignment

An ODS is created by collecting vibration data and using specialized processing. It shows exaggerated motion (but to scale) at specific frequencies. Left - animated Operating Deflection Shape (ODS) of typical angular misalignment.

Offset Misalignment

Method of Accounting Misalignment Force

- Determine net offset between pump & driver coupling hubs
- Assign 1/2 of this as effective imbalance eccentricity to coupling hub, and 1/4 of this to spacer spool piece, acting at pump coupling hub
- Run unbalance response analysis including this effective extra "imbalance"

"Vane Pass" Vibration Source

49TH TURBOMACHINERY & 36TH PUMP Symposia

Method of Including Vane Pass

- Put in as an effective imbalance load
- Good approximation since vane pass load depends on square of speed, just like imbalance
- Level of effective imbalance discussed later. Can be as high as discharge pressure times discharge "projected area" (D x blade height) times 0.36. Usually about 10x lower than this.

The Most Frequent "Subsynchronous" Vibration Problem:

Rotordynamic Instability

Symptoms:
"Half speed" (48%N) whirl
Other frequencies occur!!
Loop-de-loop orbit
Cross-coupling > Damping

1

49TH TURBOMACHINERY & 36TH PUMP Symposia

Cross-Coupled Stiffness

Illustration of Phase Angle

Vibration & Phase vs. Frequency

How Cross-Coupling Leads to Instability

CROSS-COUPLING: 1)

> CAUSE (DISPLACEMENT) & EFFECT (SHEAR FORCE) ARE 90° OUT OF PHASE AT LOW ω/ω_N

CAUSES SLOW PRECESSION OF 2) ROTOR, WITH PRECESSION SPEED OF ~1/2 ROTOR SPEED

- 3) WHEN $\omega_{\text{PRECESSION}} = \omega_{1\text{st CRIT SPEED}}$, ADDITIONAL 90° PHASE SHIFT **OCCURS**
- \Rightarrow Response displacement ends up in the same direction as the cross-coupling force, in the same direction as the minimum clearance.
- \Rightarrow Enough damping trumps cross-coupling

Anti-Whirl Bearing Fixes

Issues in Rotordynamics Not Well Enough Understood

- Hydrodynamic "active" forces
- Impeller reaction coefficients
- Swirl incoming to annular seals
- Effect of spiral grooving in seals
- Unique seal groove geometries

Impeller Excitation Forces: Sulzer/ EPRI Tests

Alternate Rule- ρ = Density, g = Gravity, H = Head of-Thumb: $F_{R}^{*} = 0.1 \text{ to } 1.0 \text{ K}$ Where K= Static **Steppanoff Radial Thrust Factor**

Normalization: $F_R^* = \frac{F_R}{\rho g H D_2 B_2}$ D_2 = Impeller diameter, B_2 = Impeller exit width $\mathbf{F}_{\mathbf{R}}^{\star}$ = Normalized radial force, nondimensional 180° Double Single Diffuser Volute Volute Suction impeller .01 - .08 .02 - .15 .05 - .35 (suction (.05)(.04)(.15)asymmetry) Normal impeller .01 - .06 .01 - .10 .03 - .25 (no suction (.03)(.04)(.06)asymmetry) Broad Band up .01 - .12 .01 - .12 .01 - .15 to 1.2 times (.03)(.03)(.03)rotational frequency Dynamic Hydraulic 005 - .03 005 - .10 .05 - .30 unbalance, at (.02)(.03)(.05)rotational frequency

Ranges for FR for Q=25% to 125% of Design Point Values in brackets: typical for Design Point

Actual Field Data Vibration vs. Flow Axially Split Case Double Suction Pump

Vibration (mils p-p)

9TH TURBOMACHINERY **36TH PUMP SYMPOSI**

API-610 Accounting of Flow Effects

Flow Rate and the "Angle-of-Attack"

Vane Stalling at Low Flows

Example of Stalled Blade

Vibration Problem No. 4: Subsynchronous (below 1x)

IMPORTANT VIBRATION PROBLEMS IN TURBOMACHINERY

5x

Suppressing Incoming Swirl

Multistage Pump **Inboard Bearing Chronic Failure Case History**

Pump with Inboard Bearing Failures

Shaft Orbits of Problem Pump

Vibration Spectra for Problem Pump

Impact Test Results Showing Shaft Critical Speed at 5280 rpm

"What If" Analysis for Problem Pump

Bearing Groove Change from 0.040 in. Deep to 0.010 in. Deep

C-END BEARING MODIFICATIONS

Vibration decreased a factor of ten!

Vibration Spectrum After Bearing Fix

Note: Fluid "Added Mass" Is nearly zero for practical pump impellers

Typical Torsional Critical Speeds and p-p Torque Pulsation Levels

Summary of API 610 **Rotordynamic Requirements**

Rotor must be analyzed if:

- A similar pump is not already operating successfully
- The rotor is not "classically stiff", i.e. its 1st critical speed is not 20%+ above 1x N

API-610 & 684 Analysis Guidelines

- Do not include stiffness of either loose fit or press fit impellers, sleeves, and hubs
- Do include the full mass of all impellers, sleeves, and hubs, located at their center-of-mass
- Include fluid added mass
- Include Lomakin Effect
- Base Lomakin Effect on 1x and 2x API clearances: Meet separation margins for both extremes
- Account for bearing support stiffness & mass
- Driver not included for lateral critical speeds, but MUST be for torsionals.

API Required Rotordynamic Results

- First three lateral critical speeds
- All critical speeds up to at least 2.2x running speed
- Amplitude v. frequency & phase angle "Bode" plots • (forced response plots)
- Campbell diagrams of critical speeds v. N
- No quantitative stability assessment for pumps

Separation Margin Guidelines per API-610 11th Edition

- Forcing frequency v. natural frequency "separation margin" needed depends on degree of damping.
- For damping ratio of 0.15 or higher no separation margin is required
- Fig. I.1 shows separation (up to 26%) required for lesser amounts of damping

Conclusions

- Rotordynamics is complex
- Keys to success: ✓ Knowledge
 - ✓ Experience
 - ✓ The Right Tools
- API-610 and API-684, as well as HI and ISO Specs, provide a good evaluation guide
- Check out the new HI 9.6.8 pump dynamics evaluation guide!

