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ABSTRACT 

Current methodologies on health assessment and diagnostics of systems and components are limited in analysis and accuracy. 
Methodologies like artificial intelligence or limit checks examine statistical significance rather than the actual degradation occurring in 
the system’s components. The authors have demonstrated two approaches based on information theory and thermodynamics to analyze 
the degradation dynamics and their significance in faults. 
 
In previous publications, the authors have established the similarity between a machine and Shannon’s communication channel and the 
relation between machine degradation and channel capacity [the amount of information that can be transmitted through a given channel]. 
The authors call this equivalency “Machine Capacity,” and it relates to the machine availability to perform the desired work with enough 
quality and confidence under time and information constraints. Different degradation mechanisms increase Entropy (which decreases 
Information Entropy used for channel capacity), in particular “modes'' that might be detectable under the right conditions and with 
appropriate sensors. Experimental results have shown that a quick health screening and assessment can be conducted with limited 
historical data, and can yield definite fault isolation with enough historical data. Additionally, due to its simple implementation, this 
methodology can be done online with simple computing units. 
 
Degradation of systems –like motor-pumps, compressors, or fans– induce thermodynamic changes. Those changes, related to 
degradation mechanisms such as friction, fracture, heat transfer, plastic deformation, among others, generate entropy. The methodology 
in this work quantifies the entropy generated by degradation in a system, correlates this entropy with the rate of specific degradation 
mechanisms, and shows how it affects particular variables of interest. These methods resulted in the Degradation-Entropy Generation 
(DEG) Theorem that successfully assessed battery, grease, material fatigue, and motor degradation. DEG models show an impressive 
near 100% correlation with measured data. Via deviations from baseline values and profiles obtained from a healthy motor pump, this 
article shows how DEG elements consistently detect faults in the pump, including shaft imbalance, soft foot, and misalignment. 
 
The experimental approaches have demonstrated that this method can be used for failure analysis and fault detection on a variety (any) 
systems, including pumps, compressors, dry gas seals, valves, fuel cells, etc. This study compares and combines these two methods to 
understand how they can be used as tools to assess machine health and availability. The process and control data such as voltages, 
currents, speeds, pressures, temperatures, and flow rates were acquired in several experiments. 
 
 
INTRODUCTION 

Asset diagnosis and prognosis has always been a necessity in the industry to schedule timely maintenance while avoiding catastrophic 
failures. Machines ultimately fail and current methodologies and solutions are not yielding the results they promised. Basic algorithms 
like limit-check often oversimplify the underlying issues and conclude in false-positives or missed faults. More complex solutions such 
as artificial intelligence use pattern recognition to find faults on huge amounts of (big) data with almost no science to back results. These 
shortfalls in diagnosis and prognosis cost companies millions of dollars every year in maintenance, repairs and loss of production. The 
authors have demonstrated two approaches based on information theory and thermodynamics that analyze the degradation dynamics. 
These methodologies look at the underlying problem of degradation towards failure and what it means in terms of the physical model.  
 
 
HEALTH ASSESSMENT USING SHANNON’S COMMUNICATION THEORY 

When a machine is built, even before it is put to work, its components start to degrade. Failure occurs when physical or chemical changes 
alter the machine’s functioning to the point the machine no longer works–defined as when the machine is no longer capable of 
performing its intended function satisfactorily. While changes induced by degradation can be delayed, failure is inevitable without 
proper maintenance. This health assessment methodology determines if degradation has increased significantly or if a fault exists on the 
asset. This methodology quickly assesses a machine’s overall health condition without complex simulations or extensive calculations, 
nor does it require extensive knowledge from the machine and extensive historic data. Under the hood, this methodology applies channel 
communications theory to machines to measure degradation. The methodology was first introduced by Bryant and Choi (2012) and 
further demonstrated in industrial applications by Costuros (2013), Bryant (2014) and Rincon (2020). 
 
Shannon’s Theorems   
Claude Shannon (1948) presented his theories of information, reviewed in “Communication in the Presence of Noise” (Shannon, 1998). 
Shannon quantified the amount of information contained in a message sent over a communications channel and encoded into a signal 
by a transmitter. The communications channel is imperfect: the channel contains physical faults that  contaminate the signal with noise. 
The receiver accepts the noisy signal and attempts to extract the message for the destination, despite the noise. This process is shown as 
block diagrams in Figure 1. A little noise allows recovery of the message. Excessive noise obscures the signal and hampers recovery of 
the message. Shannon’s channel capacity assesses the ability of a communications channel to extract the message from a noisy signal.  
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Although Shannon’s formulations used probability theory and “information entropy”, the channel capacity formulas only involve useful 
engineering quantities.  The channel capacity is the maximum amount of information per unit time that can be transmitted over a channel 
and successfully extracted from the received signal, despite an amount of noise with power N on the channel. The channel capacity 
formula involves the ratio S/N of the powers of signal S to noise N, and the frequency bandwidth W of the channel. 
 

 
Figure 1. General Communication System (Shannon, 1948) 

Theorem: Shannon Channel Capacity (Shannon, 1998) 
The capacity of a channel 𝐶!" of bandwidth 𝑊,	involving a received signal of power 𝑆#,	contaminated with white Gaussian noise of 
average power 𝑁, is given by  

𝐶!" = 𝑊𝑙𝑜𝑔$(
%!
&
). (1) 

If we consider a channel without noise (𝑁	 = 	0), the channel capacity of infinity means the transmitted signal can be easily decoded 
into the original message. Accordingly, if the noise (which obscures the signal) increases, the channel capacity decreases, and less 
information per unit time can be sent through the channel, received and decoded without error. As 𝑆#/𝑁 diminishes, it becomes more 
difficult to decode the signal into the original message. Implied is that a threshold on	𝑆#/𝑁	exists for decoding a signal and extracting 
the message. This threshold extends to the channel capacity 𝐶!". 
 
White Gaussian noise has a flat or constant amplitude over the entire frequency band of the power spectrum. If non-flat Gaussian noise 
must be modeled, the channel capacity can be obtained by integrating equation (1) over all frequency bands of the signal and noise 
power spectral densities,  giving 

𝐶!" = ∫ 𝑙𝑜𝑔$(
%!(()
&(()

)	𝑑𝑓	!
* , (2) 

where, the bandwidth 𝑊	is the highest frequency the channel can conduct. Similar to the white noise model, when the average noise 
𝑁(𝑓)is zero at a given frequency 𝑓, the signal-noise ratio 𝑆𝑦(𝑓)/𝑁(𝑓)	becomes infinite. Nonetheless, in real world applications noise 
contaminates all bands of the system, so this state is not observed in practice.  
 
Equations (1) or (2) quantify the physical condition of and ability to send and receive signals over a noisy communications channel. 
Other theorems of Shannon (1998) quantified the rate R of information transmitted by a source, and posed an inequality R < C necessary 
for the success of a communications channel wherein R serves as a threshold of success for the channel capacity C.  Shannon’s theorems 
are the “Newton’s laws” of the multi-trillion dollar communications industry (Internet, television and radio transmissions, data storage 
and retrieval, among others). If a communications channel obeys the inequality R < C, it functions within specifications and it works! 
Otherwise, it does not work! 
 
Analogy of Machine to Communication Channel  
Shannon’s theories quantify the ability of a communication channel to perform its function (send and receive information). If the channel 
degrades, by noise injection, it limits the ability to transmit information effectively. If we compare a machine to a communication 
channel, we can use Shannon’s theory to quantify the ability of a machine to perform its function. A machine transfers power in its 
various forms (mechanical, electrical, hydraulic, etc.) through the machine’s elements to accomplish a task. For example, a pump takes 
mechanical power (input signal) to generate pressure and flow of a liquid (received signal). Faults in the machine change the signals of 
power flowing through the machine system, equivalent to noise altering the signals that flow through a communication channel.  Similar 
to how noise disrupts the reception of information in a communication channel, faulty components in a machine add ‘fault noise’ to the 
power signals flowing through the machine, which prevents the normal functioning of the machine.  Signals carrying power through a 
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machine can include current, pressure, force, or velocity. A ‘Healthy Machine’ should produce a desired ideal output signal 𝑦*(𝑡), while 
a ‘Faulty Machine’ produces an actual output signal 𝑦(𝑡). The machine degradation (fault) in the system perturbs the signal from 𝑦*(𝑡) 
to 𝑦(𝑡). We treat the difference between 𝑦*(𝑡) and 𝑦(𝑡) as the induced “fault noise” 𝑛(𝑡) = 𝑦(𝑡) − 𝑦*(𝑡). With this approach, we can 
quantify the powers in the signal to noise ratio 𝑆#/𝑁	and apply Shannon’s channel capacity, equations (1) or (2), to the (machine) 
channel to assess its ability to perform its function. Changes to the machine’s channel capacity, C, measures the effects of faults 
(degradation via fault noise) on the machine’s performance. 
 
Health Assessment and Degradation Metric  
In an industrial environment, a baseline-signal, 𝑦*(𝑡),	measured from a ‘healthy’ machine indicates an acceptable low-noise machine 
communication channel. As the machine system degrades, the measured signal will change from the baseline signal. This change 
represents fault noise, 𝑛(𝑡) = 𝑦(𝑡) − 𝑦*(𝑡), which reduces the machine’s channel capacity C.  In the end, as faults worsen, channel 
capacity, C, decreases and finally declines below  an acceptable limit, the threshold for proper machine functioning.  
 
To quantify the system degradation with the channel capacity technique, a baseline is defined, followed by an evaluation of system 
degradation: 
 

1. Design of Experiments (DOE): Establish a testing procedure where the system has the most variability in its dynamics (Turn 
on, turn off, loading, Step). The test requires the motor to be excited in as many modes as possible and exercised over its 
expected operating range. This testing procedure will be used every time data is collected. Variances, such as different sampling 
rates, different loading conditions, among others, could be interpreted as noise. Especially for systems with nonlinear dynamics. 

2. Collect Data on Healthy System: Operate a ‘healthy’ system at normal conditions and acquire the signals. A small sample, 
usually five tests, is required to achieve statistical significance. 

3. Clean Data on Healthy System: Sync signals so that they have the same starting point and number of samples. 
4. Process Data  on Healthy System: At each point in time, average all signatures to obtain an average system response. This is 

the baseline signal 𝑦*. 
5. Collect Data on Current Status: Using the same initial testing procedure, operate the system, and acquire the signal. Similar to 

the baseline, a small sample, usually five tests, is required to achieve statistical significance. 
6. Clean Data on Current Status: Sync signals to have the same starting point and number of samples, similar to the baseline 

measurement. 
7. Process Data on Current Status: Extract the noise from each signal by subtracting baseline signal: 

𝑛+ 	= 	𝑦+ 	−	𝑦*+ 	 (6) 

8. Compute Machine Capacity: Calculate the machine (channel) capacity via Equation (1) or (2) where, W is the (executed) 
sampling frequency that accounts for the bandwidth of the channel. 

9. Perform Diagnosis: Calculate the mean machine channel capacity from the signals for diagnostics. 
10. Obtain a threshold or critical value of machine capacity. From machines exhibiting unacceptable levels of performance,  

associate the threshold with that unacceptable machine having the largest machine capacity . 
 

DEGRADATION ENTROPY GENERATION (DEG) METHODOLOGY 

Entropy measures disorganization. Manufacturing, which organizes materials into finished components, reduces entropy.  Aging and 
degradation, which disorganizes materials, increases entropy.  The thermodynamic degradation entropy generation methods realizing 
this, relate degradation to the entropy produced by aging and degradation. 
 
Historically, engineering thermodynamics focused on combustion engines, air conditioning and power generation. Beyond these 
common applications, a typical engineer does not consider thermodynamics as a tool for system analysis. It has been established that 
entropy, introduced by the Second Law of Thermodynamics to measure a system’s microstructural configuration (order or disorder), is 
a direct function of energy dissipation. With energy dissipation directly correlated with losses and reduced functionality/performance of 
a machine, entropy generation is fundamental to degradation.  
 
Recently, several works applying thermodynamics to degradation/failure analysis have emerged including work by Kuhn (2016, 2015,  
2018), Naderi (2010, 2009, 2011, 2012a, 2012b 2013), among others. While these works show high, albeit limited, consistency and 
accuracy in characterizing degradation, the authors report significant inadequacies. Some apply only at certain conditions, others apply 
to specific systems/components. Employing a fundamental denotation of the second law of thermodynamics, the Degradation-Entropy 
Generation (DEG) methodology directly correlates any system’s degradation to its entropy generation, consistently at near 100% 
accuracy.  
 
The Degradation-Entropy Generation (DEG) theorem (Bryant, et al. 2008), formulated in 2008 after several experimental studies, states 
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that a system’s transformation of degradation measure 𝑤 is directly proportional to the entropy generated by the active dissipative 
processes 𝑆+′. Mathematically, 

𝑤 =9𝐵+𝑆+ ′
+

 (3) 

where 𝐵+ = 𝜕𝑤/𝜕𝑆+ ′ are degradation coefficients. Details on the DEG theorem, proof and early application can be found in Bryant, et 
al. (2008). Osara and Bryant (2019a, 2019b 2019c, 2019d, 2020), extending the original DEG theorem and procedure, introduced and 
demonstrated the new DEG methodology for instantaneous characterization of multi-disciplinary, multi-scale, multi-component systems 
undergoing nonlinear transformations. Their approach introduced new characteristic geometric elements, in addition to the existing 
degradation coefficients. Published DEG models characterizing variegated engineering systems include friction induced wear (Bryant, 
et al. 2008), charge cycling fade of battery capacity and other electrochemical systems (Osara and Bryant 2019a, 2019b, 2020), stress 
induced general metal fatigue (Osara and Bryant 2019c) and work induced deterioration of grease and other lubricants (Osara and Bryant 
2019d). 
 
DEG Procedure 

1. Identify the active dissipative mechanisms that are driving the degradation.  
2. Formulate phenomenological entropy generation including all active mechanisms. 
3. Select an appropriate parameter, the degradation measure w, that describes and quantitatively measures the degradation. 
4. Measure system properties in the entropy generation formulation along with the chosen degradation measure. 
5. Plot entropy generation terms against degradation measure.  
6. Evaluate degradation coefficients 𝐵+ as the slopes of the planes on which the degradation-entropy generation plot lays. 
7. Re-combine  the 𝐵+ coefficients with entropy generation to evaluate the system’s phenomenological transformation that 

instantaneously  combines the effects of active mechanisms. These transformations are used in degradation/failure monitoring. 
 

Osara and Bryant, applying this procedure, derived and named the Degradation-Entropy Generation (DEG) geometric elements Osara 
and Bryant (2019a, 2019b 2019c, 2019d, 2020, 2021): 

● DEG trajectory: the multi-dimensional plot of the degradation parameter vs. entropy generation components, with increasing 
time tracing consecutive points on the trajectory; 

● DEG plane: the planar surface on which the DEG trajectory lays; 
● DEG domain: the multidimensional space enclosing the DEG plane. 

Figure 2 shows an example of these planes for battery fade (degradation), with degradation parameter w being the maximum charge the 
battery can hold at the current time (the max charge fades over time). The entropy generations pertain to internal Joule work dissipation 
(ohmic entropy) and equilibration of internal mass/electro-chemical diffusion/mass transport and heat (ECT entropy). To relate the 
battery maximum charge to the two entropies, the DEG trajectory is plotted in a 3D space of charge versus entropies. Using standard 
computational algorithms the goodness of fit of the DEG trajectory to the DEG plane was near 100% and partial slopes of this plane 
with respect to the entropy axes become the 𝐵+ coefficients of degradation in Equation (3). 

 
Figure 2. A lithium-ion battery’s DEG geometric elements for discharge and charge processes Osara and Bryant (2020). 

Thermodynamics of Open Systems 

Open systems are systems through which mass and energy flow. Examples are pumps, compressors, pipe networks, valves and others. 
The first law of thermodynamics, a statement of energy conservation, for a non-reacting system (open and closed) is 
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�̇� =9�̇� −9�̇� +9(𝑢 + 𝑃𝑣)	Ṅ,	
(4) 

where �̇� is the system’s internal energy change rate, ∑ �̇� sums the rates of heat transfers into and out of the system, ∑ �̇�	sums all 
external work transfer rates by and on the system, and ∑ (𝑢 + 𝑃𝑣)	Ṅ, sums energy flows in and out of the system via mass flow Ṅ,	
(Osara and Bryant 2021). The second law of thermodynamics for an open system is 

Ṡ =9
𝑄
𝑇 +9

(𝑢 + 𝑃𝑣)	Ṅ,
𝑇 + Ṡ ′ 

(5) 

where Ṡ is the rate of entropy change in the system, ∑ -
.
 sums all entropy transfer rates into and out of the system via heat, ∑ (/012)	Ṅ"

.
 

sums all entropy transfer rates into and out of the system via mass flow, and Ṡ′ is the system’s entropy generation rate (Osara and Bryant 
2021). Rearranging Equation (5) as ∑ �̇� + ∑ (𝑢 + 𝑃𝑣)	Ṅ, = 𝑇Ṡ− 𝑇Ṡ′, and substituting the left side into Equation (4) yields the 
combined form of the first and second laws of thermodynamics for a non-reacting system (open and closed), 

�̇� = 𝑇Ṡ−9Ẇ−𝑇Ṡ′ (6) 

which is rearranged to obtain entropy generation, 

Ṡ′ =
1
𝑇 (𝑇Ṡ−9Ẇ− �̇̇�)	 (7) 

Equation (7), applicable to all systems, open and closed, requires knowledge of entropy and internal energy changes as the system 
outputs or receives work. Currently, entropy measurement devices do not exist: entropy must be calculated from other measurements. 
Osara and Bryant (2021) combined Equation (7) with the Helmholtz free energy, a thermodynamic potential that adequately 
characterizes externally loaded systems, to obtain a more convenient measure of entropy generation 

Ṡ′ =
∑ [(ṁ	𝑠	𝑇)5/6 − (ṁ	𝑠	𝑇)+7]

𝑇 −9
Ẇ
𝑇  (8) 

which monitors instantaneous transformation of a loaded open system using readily measured properties: inlet/exit temperatures T and 
pressures (used to evaluate inlet/outlet specific entropies 𝑠), mass flow rates ṁ and power Ẇ. Examples of loaded open systems are 
compressors and pumps. Unloaded open systems are pipe networks, valves, etc., for which Ẇ=0. The first right side term in Equation 
(8) is the microstructure thermal (MST) entropy 𝑆′8%. and the second term is the work or load entropy 𝑆′9. For more on the detailed 
derivation of Equation (8), please see Osara and Bryant (2021). 

Open systems such as compressors, pumps, gas seals, etc., often monitor pressure drop across the inlet and outlet as an indication of 
performance and degradation. The effects of leaks, fouling, motor components degradation and other performance-impacting 
mechanisms can be observed in the system’s pressure drop. As such, using pressure drop 𝛥𝑃 as the transformation measure w in Equation 
(3), and substituting Equation (8) into Equation (3) yields the DEG governing equation or model for open non-reacting systems, 

𝛥𝑃 = 𝐵8%.
∑ [(ṁ𝑠𝑇)5/6 − (ṁ𝑠𝑇)+7]

𝑇 − 𝐵!9
Ẇ
𝑇  (9) 

where 𝐵8%.is the microstructure thermal (MST) degradation coefficient measuring the impact of the MST entropy on pressure drop, 
and 𝐵!is the work degradation coefficient measuring the impact of the external work entropy on pressure drop. Both coefficients are 
obtained from the orthogonal slopes of the DEG plane (recall 𝐵+ = 𝜕𝑤/𝜕𝑆+ ′), as explained previously, and demonstrated subsequently. 
 
Understanding Entropy via the DEG Theorem 
Entropy is a measure of disorganization. As such, for the entropy generations of Equations (8) and (9): 

● Work or load entropy 𝑆′9: Measures the dissipative and damaging  effects of the external (boundary) loads on the system, such 
as input torques, forces, flows or pressures. This work provides much of the energy that disorganizes a material’s 
microstructure, which degrades the material. 

● Microstructure Thermal (MST) entropy 𝑆′8%.: Measures the dissipative internal response to all prevalent processes such as the 
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thermal damage done to materials by the transfer of heat dissipated by the mechanical work.   
In most systems, 𝑆′9 ≫ 𝑆′8%.. The DEG coefficients  𝐵! and 𝐵8%., via the DEG theorem, are influence functions that predict the 
contribution of the entropy terms to system degradation (recall 𝐵+ = 𝜕𝑤/𝜕𝑆+ ′). In systems degrading at a slow rate, the external 
interaction (often a load or energy input) contributes most significantly to the system’s degradation. Examples are closed systems in 
which 𝐵!𝑆′9 ≫ 𝐵8%.𝑆′8%. (the load or the external work interaction dominates the degradation). In open systems, 𝐵8%.𝑆′8%. has an 
external component (via flow rate ṁ) with contribution comparable to that of 𝑆′9, i.e., 𝐵!𝑆′9 ∼ 𝐵8%.𝑆′8%. These phenomena can be 
seen in the spatial orientation of the DEG plane within the DEG domain. Contrast the orientations of the DEG planes in Figure 2--for a 
battery (closed system)--and Figure 12--for a pump (open system).  
 
MOTOR-PUMP SYSTEM DESCRIPTION 

Experiment  
To test the effectiveness of these two methodologies, experiments were designed on an industrial centrifugal pump, see Figure 3(a). A 
Motor-Pump system in a circulation loop is very common in industry, where a fluid taken from a source (typically a reservoir) is pumped 
through a circuit as part of a process. Typical examples are Cooling Water recirculation systems,  and, at higher scales, boiler water 
pumping systems. The selection of the arrangement for this particular application was the high likelihood of similar systems in industrial 
applications. The pump is powered by a three-phase 15-HP motor. The motor runs at 1760 RPM and has a maximum constant current 
of 19 Amps with the 480 volts configuration. The motor in its non-driver end has 6206 deep groove ball bearing and in its driver end 
6309 deep groove ball bearing. The motor is attached to the pump with a four-way flexible coupling that permits minor misalignment 
and limits vibration transmission in the system. The pump circulates water at 260-GPM through a network pipe that ends in a tank. 
Monitored parameters shown in Table 1, include voltage, current, 3-axial acceleration on all bearings, shaft speed, shaft displacement, 
static pressure at the inlet, static pressure at the outlet, dynamic pressure at the inlet, dynamic pressure at the outlet, flow rates, and motor 
and pump temperatures. While data from several sensors were recorded, each methodology used a small set of recorded data. Data was 
sampled at about 16 kHz to get a bandwidth of about 8 kHz and different fault modes were simulated. The faults of interest were: 
 

● Baseline “Healthy”, i.e., no imposed faults 
● Phase Unbalance 
● Shaft Imbalance 
● Misalignment 
● Soft Foot 

 

 
Figure 3(a). Motor Pump used for the experiment 

 
Table 1. List of sensors used in the experiments 

Sensor Range Accuracy 

Voltage Probes 0	𝑘𝑉to ±15	𝑘𝑉 ±1%	

Current Probes 0.1	𝐴𝑝𝑘	to 2000	𝐴𝑝𝑘 ≤ 1%	

Static Pressure PT Outlet 1.5	𝑝𝑠𝑖	to 5000	𝑝𝑠𝑖 0.1%	
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Static Pressure PT Inlet ∼ 0	𝑝𝑠𝑖	to 300	𝑝𝑠𝑖 ±1.5%	

Dynamic Pressure PT ∼ 0	𝑝𝑠𝑖	to 200	𝑝𝑠𝑖 2	𝑚𝑝𝑠𝑖	

Flow Meter 0.01	𝑚/𝑠	to 25	𝑚/𝑠  
Flow Velocity 

±0.5%	

Tachometer 30000	𝑅𝑃𝑀	 0.1%	

Accelerometers ±200	𝑔	𝑝𝑘	 0.0002	𝑔	𝑟𝑚𝑠	

Displacement Probes 10	𝑚𝑖𝑙𝑙𝑠	to 90	𝑚𝑖𝑙𝑠 ±1%	

Thermocouples −40	°𝐶	to 70	°𝐶	 < 	0.07		°𝐶	
 
Phase Unbalance of a three-phase motor occurs when one or more phases are mismatched. Three-phase power systems and equipment 
are designed to operate with all three phases balanced. Usually, a motor can safely operate the variance of a few volts, as long as it 
does not exceed 1% of the maximum voltage. The unbalanced voltages cause unbalanced currents in the motor windings, which 
increases the current amplitude and winding temperature. Over time these winding temperatures tend to deteriorate the insulation and 
create a turn-to-turn short. We simulated this fault by adding 200 ft. of 12 AWG1 to one of the phases. The excess wire would create 
an added small voltage drop due to about 0.3169 Ω  resistance and a small inductance added the affected phase. The wire was tied in a 
circular manner to counter the induction effects produced by the current flowing through this cable (Geiger, 1982) (Isermann and 
Freyermuth, 1991) (Thomsen and Kallesoe, 2006). 
 
Shaft Imbalance is produced when the center of gravity of the rotating equipment does not coincide with its center of rotation. This 
disparity creates unwanted centrifugal forces, which produce excessive vibration in the shafts. This fault could lead to bearing failure, 
distorted seals and shaft bending. We induced this fault by affixing an eccentric 50g weight to the shaft, Figure 3(b). Note that the 
imbalance is attached on the pump side.  
 

 

Figure 3(b). Mechanical Unbalance experiment. 

 
The next induced fault was shaft Misalignment. There are two types of misalignment, parallel and angular. Misalignment causes 
unwanted forces and stress on the shaft of the pump and the motor, which could lead to early shaft fatigue and bearing failure. We 
induced this fault by adding 0.1	𝑖𝑛 shims to the back of the motor, causing a 9.5	𝑚𝑖𝑙𝑠/𝑖𝑛 angular misalignment and 52.6	𝑚𝑖𝑙𝑠 parallel 
offset. 

 
1 12 American Wire Gauge, solid wire with resistance of about 1.5844 mΩ/ft. 
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The last induced fault, soft foot, occurs when a motor is not properly secured to a stable base or plate due to bent or damaged supports, 
bolts incorrectly torqued, or corrosion of the base or foot. Over time this fault can cause bearing failure, seal deterioration, bent shaft, 
and excessive vibration. We induced this fault by softening (loosening) one of the bolts at the non-driver end (NDE). 
 
Standard Accelerometer Diagnosis 
Current technologies such as vibration analysis and frequency spectral analysis are challenging to implement, and scale poorly. They 
usually require an expert to analyze data and/or complex, unreliable artificial intelligence algorithms to detect anomalies. As a 
diagnosis baseline, we performed a vibration analysis on data to compare our solution to good vibration practices as presented on 
(SKF Reliability Systems 2000).  Power spectral density results in Figures 4-11 have baseline data marked with blue points, and fault 
data marked with orange points.  

Table 2. Motor Bearing Fundamental Frequencies 

 Driver End 6309 Bearing Non-Driver End 6206 Bearing 

Ball Pass Frequency Inner Race 
(BPFI) 

148	𝐻𝑧	 162	𝐻𝑧	

Ball Pass Frequency Outer Race 
(BPFO) 

91	𝐻𝑧	 107	𝐻𝑧	

Fundamental Train Frequency (FTF) 11	𝐻𝑧	 12	𝐻𝑧	

Ball Pass Frequency 60	𝐻𝑧	 70	𝐻𝑧	

 
The Phase Unbalance did not present any significant change in the spectrum or the amplitude of the acceleration. This is consistent 
with electrical faults which have to be very severe in order to diagnose with vibration analysis.  Shaft imbalance produced very little 
fault indication and misalignment and soft foot suggested a possible fault. In any of the tests a bearing fault was not detected 
concluding that the induced faults had not affected the bearing in the motor or pump. A further analysis in the envelope detection 
concluded that the system did not have any detectable bearing fault because the magnitude was not significant and did not align with 
fundamental bearing frequencies. 
 
In the shaft imbalance fault, the vibration analysis resulted in very little increment as seen in Figures 4 and 5.  For this type of fault, 
the vibration should indicate a significant increase in the first harmonic in all radial vibration, in this case horizontal vibration and 
vertical vibration.  However the data only indicated a 10% - 15% increase. The shaft imbalance is not seen on the motor 
accelerometers because the flexible coupling is damping most of the vibration. However, similar behavior is shown on the pump 
accelerometers where axial vibration increased little.   

 
Figure 4. Experimental results: Driver-End Vertical vibration spectrum for Shaft Imbalance. 
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Figure 5. Experimental results: Driver-End Horizontal vibration spectrum for Shaft Imbalance. 

 
For angular misalignment the dominant frequency [~30 Hz] should cause the axial vibration to increase 100% - 200%. In our analysis, 
that increase was only 10%. For parallel misalignment the dominant frequency is 2x on radial vibrations. While on the vertical 
vibration in Figure 7 the magnitude of 2x did not increase, on the horizontal vibration in Figure 8 significantly increased. This 
behavior suggests that the parallel misalignment might be more severe than the angular. The analysis did not yield severe 
misalignment, but it might be a result of the flexible coupling.  

 
Figure 6. Experimental results: Driver-End Axial vibration spectrum for Misalignment. 

 
Figure 7. Experimental results: Driver-End Vertical vibration spectrum for Misalignment. 
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Figure 8. Experimental results: Driver-End Horizontal vibration spectrum for Misalignment. 

 
The Soft Foot vibration analysis yielded better results. Axial and vertical vibration on the non-driver end increased significantly 
almost 100%, and the axial vibration on the driver end increased to almost 200%. Additionally, several harmonics increased between 
20% -30% suggesting a soft foot.  

 
Figure 9. Experimental results: Non-Driver-end  Axial vibration spectrum for Soft Foot. 

 
Figure 10. Experimental results: Non-Driver End Vertical vibration spectrum for Soft Foot. 



 
Copyright© 2021 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station 

 
Figure 11. Experimental results: Driver End Axial vibration spectrum for  Soft Foot. 

 
APPLICATION OF FAILURE DETECTION METHODOLOGIES TO MOTOR-PUMP DATA  

Shannon’s Machine Capacity 
Instantaneous power  [P(t) = V(t) i(t)], was chosen as the signal for this methodology because many faults can be observed by the 
current/motor torque. Also, by using the input as a reference we can subtract any input noise coming from the voltage lines. Tables 3-7  
for various numbered tests (column 1) present machine channel capacity values (column 2) and the ratio of each test value to the baseline 
Test 1 value (column 3), for each machine condition: baseline, motor stator phase unbalance, shaft imbalance, shaft misalignment and 
soft foot. Figure 12, which plots these same channel capacity values and averages for each test group (red line), shows significant 
separation between average values for Baseline healthy and faulty systems. 
 
 

Table 3. Experimental results: Baseline Machine Channel Capacity (MCC). 
 Baseline Results 
 Channel Capacity Ratio to Baseline (Test 1) 

Test 1 61,349 1.00 
Test 2 68,274 1.11 
Test 3 55,791 0.90 

 
Table 4. Experimental MCC results: Phase Unbalance. 

 Phase Unbalance Results 
 Channel Capacity Ratio to Baseline (Test 1) 

Test 4 33,901 0.55 
Test 5 33,889 0.55 
Test 6 33,618 0.54 

 
Table 5. Experimental MCC results: Shaft imbalance. 

 Shaft Imbalance Results 
 Channel Capacity Ratio to Baseline (Test 1) 

Test 7 51, 718 0.84 
Test 8 53, 420. 0.83 
Test 9 53, 420. 0.87 

 
Table 6. Experimental MCC results: Misalignment. 

 Misalignment Results 
 Channel Capacity Ratio to Baseline (Test 1) 

Test 10 54, 693 0.89 
Test 11 52, 926 0.86 
Test 12 52, 768 0.86 
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Table 7. Experimental MCC results: Soft Foot. 

 Soft Foot Results 
 Channel Capacity Ratio to Baseline (Test 1) 

Test 13 53,515.22 0.87 
Test 14 52,578.38 0.85 
Test 15 50,939.55 0.82 

 
Since all faults showed a distinct drop in their average channel capacity value from the average value of the Baseline healthy system, it 
was possible to discriminate a healthy system from a faulty system using the “red lines”. Additionally, the algorithm was robust against 
occasional sensor failure. This became evident during test 3 of the baseline, when the sensor presented occasional failure on the voltage 
reading, which sometimes would shoot to 8000V, which was unrealistic for the 480 volt system. After detecting this sensor fault, the 
probe was adjusted and this error was not seen in subsequent tests. Nonetheless, the channel capacity was able to overcome occasional 
sensor failure. The health assessment yielded similar results, whether at start up,  steady state or during a loading operation.  
 
The Phase Unbalance fault indicated a channel capacity decrease of 45% (calculated from the red line averages), suggesting a 
considerable decline in system functional performance. This was expected to have considerable impact on the channel capacity since 
the fault directly affected the motor current signal used as “sensor” for the assessment. On the other hand, Shaft Imbalance, Misalignment 
and Soft Foot faults only decreased the capacity of the machine about 15%. These faults resulted in similar size motor current channel 
capacities because all physically manifested as vibrations that deformed the air gap between the stator and rotor, which changed the air 
gap magnetics of the motor, which in turn produced slight changes in the motor currents that the algorithm recognized. Hence, although 
the motor current “sensor” has different (lower) sensitivities to the vibration manifestation of these faults, with this methodology we 
were able to categorize between two different classes of faults: an electrical Phase Unbalance fault caused by altered motor electrical 
gear versus mechanical faults of Shaft Imbalance, Misalignment and Soft Foot rendered by air gap disturbances. 
 
By thresholding, the channel capacity can be a health screening technique. Threshold calibration would compare channel capacity values 
to human assessments of the same system performance, similar to Costuros (2013) and Bryant (2014). In column 3 Tables 3-7, a 
threshold on the Ratio to Baseline of 0.9 would detect all faults, given sensors operating within reasonable limits. 

 
Figure 12. Experimental results: Machine Channel Capacity for all experiments group by Failure Mode. The red lines are averages 

over the test values of a given fault group. 
 
 
Degradation-Entropy Generation 
All experiments included an initial 7-minute unloaded region followed by a two-step increase in back pressure (loading the pump). 
Figure 13 shows some of the parameters used in the DEG analysis: inlet and outlet pressures, pressure drop, and flow rate of the fluid. 
Measured inlet and outlet temperatures of the fluid for each experiment were  

● healthy pump: 18.836°C to 18.84°C  
● soft foot,  misalignment, shaft imbalance and phase unbalance: 16.302°C to 16.308°C.    
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Figure 13. Available experiments measured variables: inlet and outlet pressures, flow rate and temperatures (not shown, ~18.83-
18.84°C) during  healthy pump operation.  Note the operating condition changed and there is some (relatively small) noise in the 

measurements. 
 
Using instantaneous temperatures and pressures at the inlet and outlet of the pump, specific entropy of water was evaluated during the 
pump’s operation.  Following the DEG procedure stated in the previous section, we substituted the measured pressure drop, power, flow 
rates, temperatures and evaluated entropies into the DEG model.  Then, we plotted the pressure drop against the (various) components 
of entropy generation 𝑆%8.and 𝑆9 (in this case), and obtained a curve fit of the data to a plane, in order to obtain the coefficients of the 
DEG elements. Results from measured data show the DEG-predicted linear transformation as a function of entropies, per Equation (13), 
renders a consistent behavior in all datasets processed. Figure 14 shows the DEG elements obtained for a healthy pump, with 𝐵8%. =
46.28	and 𝐵! = 0.8878. The degradation coefficients for all tests are shown in Table 8. 

  
Figure 14. DEG elements obtained from a healthy pump, used in DEG model calibration. 
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Table 8. Experimental results: Degradation Entropy Generation Analysis 

Condition BW BMST Comments (Relative to Healthy State) 

Healthy/No Fault 0.8878 46.28 --  

Phase Unbalance 0.825 42.89 
Both BW and BMST drop slightly to indicate slight degradation with slight 
fluctuations. 
(Low to Average Observability). 

Shaft Imbalance 0.5896 38.54 
BW drops significantly and BMST drops significantly to indicate consistent 
degradation. 
(High Observability). 

Misalignment 0.6463 42.23 BW drops significantly and BMST drops slightly to indicate consistent degradation. 
(High Observability). 

Soft Foot 0.6182 46.68 BW drops significantly and BMST drops slightly to indicate consistent degradation. 
(High Observability). 

 

Prognosis: Phenomenology and Dissipation Monitoring 
Recombining the degradation coefficients  𝐵! and 𝐵8%. with the entropy generation components 𝑆′9 and 𝑆′8%. yields 
phenomenological pressure drop (Phen 𝛥𝑃) which includes the simultaneous effects of flow rates, temperatures and pressures hitherto 
unobservable in the measured pressure drop. In the plots on the left side of figures 15, Phen 𝛥𝑃 (Baseline) is the DEG model-predicted 
phenomenological pressure drop/rise evaluated by combining the current dataset’s B coefficients with the current dataset’s entropies. 
Phen 𝛥𝑃 (Actual) is the phenomenological pressure drop/rise evaluated by combining the calibration dataset’s B coefficients with the 
current dataset’s entropies. 
 
In the right plots, Baseline Dissipation is the difference between cumulative Measured 𝛥𝑃 and cumulative Phen 𝛥𝑃 (Baseline). Actual 
Dissipation is the difference between cumulative Measured 𝛥𝑃 and Phen 𝛥𝑃 (Actual). Dissipation Del = Actual-Baseline is the 
difference between Baseline and Actual Dissipations. Measured datasets are grouped into two categories: 

1. Calibration/Baseline data: measured during healthy system operation. Calibration degradation B coefficients for Equation 
(13) were calculated from these datasets (see above). 

2. Faults data: measured during faulty system operation. Calibration degradation B coefficients estimated in item 1 were 
combined with the faults data to determine actual phenomenological pressure drop, Phen 𝛥𝑃 (Actual). Faults degradation 
coefficients were combined with the faults data used to determine baseline pressure drop, Phen 𝛥𝑃 (Baseline). 

Data from five conditions (one healthy, four faulty) were processed: Healthy/Baseline, Soft Foot, Misalignment, Shaft Imbalance and 
Phase Unbalance. Figure 15 presents condition observability signals (phenomenology and dissipation plots). Other detailed DEG 
analysis plots are in appendix A. Various subfigures of Figure 15 give data for the cases: 

● Healthy (Figure 15 a) shows DEG-predicted phenomenological pressure drops (Phen 𝛥𝑃	Baseline	and	Phen 𝛥𝑃	Actual), and 
measured pressure drop (Measured  𝛥𝑃)	are very close during healthy operation, left plot. The curves often overlay. 

● Soft foot, misalignment and shaft imbalance faults (Figure 15 b, c, d) show significant negative separation from the 
baseline—left side plots titled “Phenomenology (PRESSURE DROP)”—which increases dissipation rate (slope of “Del” in 
the right side plot titled “Dissipation - MONITORING”). 

● Soft foot, misalignment and shaft imbalance faults (Figure 15 b, c, d) appear to show the same amount of dissipation. This 
similarity is also evident in the flow rates associated with all three faults.   

● Phase unbalance fault (Figure 15 e) shows low but observable positive separation from baseline. This indicates low 
dissipation rate, which is verified by the similar flow rates of both phase unbalance and healthy conditions (see detailed DEG 
analysis plots in appendix A). However, the direction of the separation is also an anomaly indicator. 

Note that measured pressure drop 𝛥𝑃, which is used as a transformation (or degradation) measure, is similar for ALL conditions. 
Whereas DEG’s phenomenological pressure drops, combining the effects of flow rates, pressures and temperatures instantaneously, 
show the actual changes in the system’s behavior, which is not observed in measured pressure drop. For this study, inlet and exit 
temperatures are assumed atmospheric. See detailed DEG analysis in Figure 16 of appendix A. 
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(a) Healthy pump 

 
(b) Pump with a soft foot fault condition. 
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(c) Pump with a misalignment fault condition. 

 
(d) Pump with shaft imbalance fault condition 

 
(e) Pump with phase unbalance fault condition 

Figure 15. Phenomenology and dissipation monitoring of the motorized pump during healthy and faulty operations. Phen ∆𝑃 is 
phenomenological pressure drop. 

 

Data from additional tests, similar to Figures 13-15, are given in Appendix A. 

 
CONCLUSIONS 

This article detailed the practical applications of two novel technologies to degradation/health analysis and fault monitoring of an 
industrial motor pump system. A machine channel capacity signal monitoring approach, based on Shannon’s information theory, was 
reviewed and applied to fault conditions typically observed in pump operation. The Degradation-Entropy Generation (DEG) 
methodology based on the DEG theorem was reviewed, a new entropy generation formulation for open systems presented, and the new 
DEG model applied to the experimental data from the motor pump. Motor-pump faults investigated and observed include soft foot, 
misalignment, shaft imbalance and phase unbalance. Both methodologies presented in this article show significant capabilities in 
observing/detecting degradation/failure of the motor pump (or other machinery) and its accessories, as long as the degradation 
mechanism impacts any of the typically observable system states (temperatures, pressures, flow rates, motor voltages and currents, shaft 
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vibrations and shaft speed).  The techniques presented did not account for discrimination between the different faults, which was outside 
the paper’s objective and scope.  Results showed the different faults to be observable (detectable) with the sensors used, but the proposed 
techniques using vibration measurements were not able to detect the electrical phase unbalance.  Similarly, for the misalignment fault, 
the vibration analysis results were marginal: the Machine Capacity was able to detect the misalignment fault, but was the less sensitive 
of all the faults, but with enough statistical significance.  For fault classification, additional metrics from different sensors may render 
the faults distinguishable.  This will be our next effort. 
 
APPENDIX A  

Presented in Figure 16 are the typical components of a DEG Analysis: monitored parameters during pump operation (inlet and exit 
pressures, volumetric flow rate and ambient temperature), and DEG elements (entropies, DEG domain, phenomenology and dissipation), 
for all the investigated conditions.    

a) Healthy: 
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b)  Soft Foot: 
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c) Misalignment: 
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       d) Shaft Imbalance: 
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e) Phase Unbalance 

 
 
Figure 16. Typical components of a DEG Analysis.  Monitored parameters include inlet and exit pressures, volumetric flow rate and 
ambient temperature. Shown are DEG elements (entropies, DEG domain, phenomenology and dissipation), for all the investigated 
conditions for (a) healthy, (b) soft foot, (c) misalignment, (d) shaft imbalance, and (e) phase Unbalance. 
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