

Introduction of SCC life time estimation for fir tree design on steam turbine

Presenter/Author Bios

Yuzo Tsurusaki

Engineer, Turbine Engineering & Design Section, Mitsubishi Heavy Industries Compressor

Corporation, Hiroshima, Japan. He has 21 years of experience as a turbine engineer. Mr.

Nishiyama graduated Kurume National College of Technology (Mechanical Engineering).

Kenichi Nishiyama <u>kenichi.nishiyama.25@mhi.com</u> Engineer, Turbine Engineering & Design Section, Mitsubishi Heavy Industries Compressor Corporation, Hiroshima, Japan. He has 9 years of experience as a turbine engineer. Mr. Nishiyama graduated from the Tokuyama College of Technology (Mechanical & Electrical Engineering).

Tomotaka Ouchi

Engineer, Turbine Engineering & Design Section, Mitsubishi Heavy Industries Compressor
Corporation, Hiroshima, Japan. He has 2 years of experience as a turbine engineer. Mr.
Ouchi graduated from Osaka University, Japan(Mechanical Engineering).

Contents

- 1. Problem Statement
- 2. Background
- 3. Possible cause of the crack
- 4. Residual life evaluation method for SCC
- 5. Repair plan for SCC
- 6. Other recommended repair plan for SCC
- 7. Lesson and learned

(SCC: Stress Corrosion Cracking)

1. Problem Statement

During inspection of a steam turbine rotor, cracks are found on the Fir tree blade groove. When this occurs, it is necessary to have a quick evaluation of the residual life in order to decide the maintenance plan and repair scheme.

This presentation describes:

- > a fast method to assess Stress corrosion cracking (SCC) residual life
- > the assessment of remaining life for the turbine of the case study
- > the repair done on the unit and an alternative repair to avoid SCC in the future.

2. Background

In 2020, the compressor drive steam turbine was inspected for performing rotor maintenance. And then, MT (Magnetic particle Testing) for all stage blade grooves were performed. As a result of the test, 3 indications were found on 10th stage blade groove.

Crack Indication: 3 ~ 27 mm

3. Possible cause of the crack

SCC (Stress Corrosion Cracking) is one of the possible cause of crack

> Factors affecting SCC

SCC will occur when these three factors occur at the same time. (Stress, Material, Environment)

When a crack is found, residual life must be evaluated to determine if continuous operation is possible.

Comparison of lead time

The residual life of Fir tree root groove calculated by...

This evaluation method determined in this study can give residual life in a short time (during maintenance operation), so that corrective actions can be taken immediately.

The stress intensity factor K describes the stress state at a crack tip and is used to calculate the residual life

General formula for K

$$K = \sigma_t \sqrt{\pi a} \cdot F(\xi)$$

 σ_t : tensile stress

 $F(\xi)$: coefficient of shape

 $a: \operatorname{crack} \operatorname{length}$

 ${\it W}$: width of groove

 $\xi = a/W$

Crack length a (mm)

 $F(\xi)$ for Fir tree root groove is determined as empirical formula by stress analysis using blade groove 2D model with a crack

Calculation procedure

- > v-K diagram is result of past SCC test for standard rotor material
- > K-a diagram is obtained by the general formula between K and a
- > The residual life is calculated using v-a diagram*

Residual life =
$$\int_{a_0}^{a_1} \frac{1}{v} da$$

^{*} v-a diagram is drawn as combining v-K diagram and K-a diagram. Residual life time evaluation method is well proved one with v-a diagram.

Calculation result

Calculated residual life is shorter than maintenance operation cycle

Rotor disk welding repair was performed

5. Repair plan for SCC

• Work flow of welding repair (Lead time is about 2 months)

6. Other recommended repair plan for SCC

Alternative welding material with High corrosion resistance

- •The alternative material has more than ten times corrosion resistance of standard rotor material
- •This alternative material can be welded on the standard rotor material.

The turbine rotor overlaid alternative welding material has high resistance to SCC

7. Lessons learned

- A fast method to assess residual SCC life on Fir tree blade groove of steam turbines was introduced. This method can give residual life in a short time (during maintenance operation), so that corrective actions can be taken immediately.
- ➤ Rotor disk welding repair was performed and calculated residual life was shorter than maintenance operation cycle. Evaluation of residual life was helpful in preventing unexpected SCC failures.
- New rotor welding material which has high corrosion resistance is introduced. An alternative material with higher resistance to corrosion was recommended to increase the SCC life.

END