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ABSTRACT

Active-Routing: Parallelization and Scheduling of 3D-Memory Vault Computations

Troy Fulton
Department of Computer Science & Engineering

Texas A&M University

Research Advisor: Dr. Eun Jung Kim
Department of Computer Science & Engineering

Texas A&M University

In an age where big data is more available than ever, new high-bandwidth, low-latency

memory technology, such as Hybrid Memory Cubes (HMC), have extended into the third dimen-

sion to tighten the increasing gap between memory and CPU speeds. Processing power built into

these new 3D memory technologies allows CPU cores to offload computations to memory, leading

to recent interest in the design space of Processing-In-Memory (PIM) when several HMC units

are chained together in a network. Using topology-oblivious Active-Routing technique in such a

network, computations like dot products over a large set of data can be distributed across a virtual

"tree" such that partial results are compounded at every branch "on the way" back to the CPU.

We propose driving performance of Active-Routing by offloading computations to memory

with high throughput offloading techniques. We present Vault-Level Parallelism to further paral-

lelize computations by strategically dispatching computations to DRAM vault controllers within

each HMC. Our new implementation distributes the resources of Active-Routing to each of the

vault controllers in the HMC so as to reduce contention for compute resources. We simulate our im-

plemented techniques and assess their performance using previously developed micro-benchmarks

and a widely accepted benchmark in scientific computing. The evaluation results show an increase

in overall data throughout the Active-Routing Tree with an aggregate 23× speedup.
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SECTION I

INTRODUCTION

For much of the history of computer architecture since the mid-1980s, there has been a

significant gap between CPU latency and memory latency [1], [2], [3]. Trends in CPU core speeds

have shown an exponential increase, while memory speeds show a much slower growth, leading

to a widening gap over recent decades [1]. Despite this deficit, recent improvements in technology

and the emergence of several networked devices put data availability at an all-time high, and the

need to process huge sets of data can be seen in several modern applications. Kernels in graph

processing [4], [5] and neural networks [6] for industries such as social networks [7], cognitive

computing [8], and warehouse-scale computing [9] have demonstrated the need for simple compu-

tations over large data sets with low data reuse [10], [11]. These kernels tend to generate excessive

data movement throughout cache and main memory, which wastes precious energy and bandwidth

and puts pressure on the communication fabrics in the memory hierarchy. Due to comparatively

high processor speeds and these trends in program behavior, modern computer system designs

now focus on maximizing memory retrieval efficiency and minimizing data movement across the

system.

Efforts to increase bandwidth and decrease latency of memory accesses have advanced

memory technology since the latest generations of DDR DRAM [3], [12], [13]. New 3D memory

stacking technologies, such as Hybrid Memory Cubes (HMC) [2] and High Bandwidth Memory

(HBM) [14], have been introduced to increase memory bandwidth and capacity in a cost-effective

way. An HMC, for example, avoids the bandwidth bottleneck of the DDR DRAM bus by making

use of DRAM stacking and Through-Silicon Via (TSV) technology to provide vertical slices of

logically independent "vaults" that can operate concurrently [2], [3], [13]. Die-stacked memory

also provides an abstraction of memory that scales well for dense, high-capacity memory. In the

traditional DDR DRAM architecture, the memory controller accesses DRAM chips through busses
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that must be reconfigured each time a new DRAM chip is added. However, since HMCs contain

built-in logic hardware at the base of their DRAM stacks, their controller logic can be expanded

to route data to and from other HMCs. Thus, HMCs can be chained together to form a packet-

switched network capable of delivering scalable-capacity and high-bandwidth memory.

To scale such bandwidth provisions to larger multi-core systems with many HMCs, the

traditional processor-centric design does not suffice. Kim, et. al. [12] suggest a memory-centric

interconnect design where all communication between cores routes through a shared network of

HMCs and a hybrid architecture where processors make use of both their own communication

fabric as well as the pool of shared memory. Although the memory-centric design often makes the

best use of both memory and processor bandwidth when compared with the processor-centric and

hybrid approaches, it still suffers from long multi-hop latency between cores and puts pressure on

the memory interconnection fabric because of excessive data movement [15].

Moreover, energy consumption due to data movement hinders processors from achieving

full computational potential. To solve this problem, recent research [5] has suggested moving

processing power closer to where data is stored. Throughout the memory hierarchy, Near-data

Processing (NDP) has been proposed as a paradigm for installing minimal computation hardware

close to data storage locations, such as main memory [5], cache [10], or persistent storage [16].

By providing processing power with direct access to DRAM, HMCs have realized one instance

of NDP known as Processing-In-Memory (PIM) [4], [9], [11], [5], [17], [18], [19], [20], which

suggests that processing hardware should be integrated on the same module as memory [2]. Of-

floading computations to memory has become a growing research area, and the proposed methods

for offloading computation to memory widely vary by application. Proposed techniques for imple-

menting PIM with existing 3D-Memory technologies include designing additional NDP accelera-

tor hardware in each HMC [5], [17], [19], [11], offloading instructions from the CPU to memory

[4], [18], and extending the Instruction Set Architecture (ISA) to PIM instructions [21], [20], [22].

The computation takes place in memory while the CPU is free to attend to other tasks until the re-

sult comes back, thereby mitigating the communications across the long, multi-hop path between
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memory and the CPU. These techniques perform well on irregular memory accesses for simple,

atomic, one- or two-operand operations because of their reduced communication traffic and energy

footprints [4], [11], [5], [18]. However, they do not perform well when data are scattered across

the network in different modules, since sequences of fetch operations for data in different modules

incur communication overhead and data movement in the interconnection network.

Several previous studies [11], [23] have proposed enhancing routing capabilities in the com-

munication network to improve the efficiency of a wider variety of memory access patterns. As

early as 1982, the NYU Ultracomputer [23] introduced a way to coalesce fetch-and-add synchro-

nization operations in a multi-node network by implementing adders in routers. In 1992, Eicken,

et. al. [24] proposed Active Messages as a way to encode the address of a handler function that

can quickly retrieve data in a message to a remote compute node, rather than inflating every packet

with a data payload. More recent proposals for communication fabric expansions include efforts to

optimize MPI collective communications [25], [26]. These proposals work well for a few atomic

operations, such as the MPI collective allreduce, but the modern demands of machine learning

require more complex and diverse operations, such as a dot product [7]. Kwon, et. al. recently pro-

posed MAERI [27], a configurable Deep Neural Network (DNN) accelerator that maps data-flows

in DNNs to reduction trees across the network to improve efficiency by reduced data movement.

The solution is limited, however, by the tree structure of the topology, as the multiplications in the

dot product can only be done in the leaves of the trees of the topology.

Huang, et. al. introduced "Active-Routing" in 2019 as a topology-oblivious routing ar-

chitecture for generalizing and accelerating reductions of data-flows in a dynamically constructed

routing tree [28]. In Active-Routing, a compute kernel is mapped to a reduction across interme-

diate operators. That kernel is then dynamically constructed as a virtual tree in the network and

computed as data flows up the tree to return to the root. The routing algorithm involves dispatch-

ing packets from the CPU to the network in three phases: (1) tree construction, where the compute

nodes used for reductions are recorded, (2) update, where in-memory computations take place,

and (3) gather, when reductions are sent up the tree towards the root of the reduction tree. To
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implement such a method, Huang, et. al. [28] show that routing logic in the intra-cube network of

each compute node can be expanded with an "Active-Routing Engine" (ARE), whereby "Active-

Routing Flows" created for each Active-Routing tree store the parent to which to send the partial

result. The Active-Routing Engine also stores a set of operand buffers needed for the computa-

tion as data are retrieved from memory and queued for computation. In order to compute a result

over a set of data in one memory cube, the steps involve registering a flow for the computation,

requesting each operand from the corresponding vault(s) one at a time as request packets come in

from the processor, filling the operand buffers with the response, computing the partial result, and

sending the result to the parent of the tree when requested. Active-Routing shows that runtime can

be improved by up to 7× over state-of-the-art PIM technologies [28] by performing computations

to aggregate data in the network "on the way" back to the CPU.

The Project

Despite the highly parallel nature of Active-Routing trees, high overhead incurred from

offloading limits Active-Routing from taking full advantage of the compute potential of the silicon

area available in the logic layer of each HMC. Instruction offloading in the current Active-Routing

implementation limits throughput due to the high overhead of fine-granular offloading, making

Active-Routing requests sparse in the memory network. Furthermore, its computing throughput

is limited by the single compute unit in each cube, leaving abundant spare areas vacant. To this

end, we propose kernel and page-level offloading as well as Vault-Level Parallelism to solve these

problems.

To reduce the instruction offloading overhead and improve the offloading throughput, we

first propose offloading kernels with page granularity to the memory network. In this project, we

implement a method for offloading the complete Active-Routing compute kernels to the Memory

Controller to avoid congestion from many processor cores to a few memory controllers traffic

pattern. To further increase the volume of computations embedded in a single packet, we introduce

page-granular offloading to embed several cache lines in a single packet.

Secondly, we propose a new Vault-Level Parallelism architecture to improve the compute
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throughput by making use of the additional area available in the logic layer. In the new architecture,

the ARE serves as a coordinator for the vault compute units in each cube. Vault controllers and the

ARE form a one-level sub-tree for intra-cube reductions, which distributes the compute burden on

each cube. Due to the increased compute power and higher dispatching rates offered by the VLP

architecture, VLP yields a significantly higher throughput than baseline.

Our evaluations show that kernel offloading leads to up to 4.5× runtime speedup over [28].

The highest offloading throughput comes from page-granular offloading, which gives 7× and 9×

improvement in runtime over kernel offloading. Moreover, Vault-Level Parallelism with page-

granular offloading yields up to a significant speedup of 23× over the architecture in [28].
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SECTION II

BACKGROUND

In this section, we explain the properties of Hybrid Memory Cubes and their roles with

Interconnection Networks. Then, we describe the properties of Processing-In-Memory necessary

to allow us to implement our Vault-Level Parallelism technique.

3D Memory Stacking

Although the concepts of DRAM stacking and Through Silicon Via (TSV) technologies

date back to the 1980s and 1960s, respectively [13], Micron’s recent realization of die-stacked

memory technology [2] has given way to a denser, more energy-efficient memory solution. Several

recent studies take advantage of this trait to study the effects of PIM in HMCs [5], [11]. The two

main competing 3D Memory techniques- Hybrid Memory Cubes (HMC) [2] and High Bandwidth

Memory (HBM) [14]- use TSVs to achieve high-bandwidth, low-latency communications between

a logic layer and layers of DRAM stacked on top. Without loss of generality, our implementation

makes use of Hybrid Memory Cubes as the underlying technology, but these techniques can also be

demonstrated on other die-stacked memory technologies, such as HBM, and other interconnects.

Figure 1 shows the configuration of an HMC. As introduced in 2011 [13], HMCs are

partitioned vertically into vaults, each corresponding to a vault controller in the logic layer and

several TSV connections [2]. Each HMC logic layer contains its own intra-cube network connected

to a high-speed network fabric local to the cube, connecting a number of I/O interfaces and the vault

controllers internal to the memory cube. In [28], the ARE is placed in the intra-cube network so

that it can control the flow of Active-Routing packets in its own cube and record the flow of packets

to and from other HMCs.
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Figure 1: Hybrid Memory Cube Configuration

Vault Controllers are spread out across the logic layer and leave plenty of vacant silicon

area for additional logical hardware. Some research studies have shown uses for minimal hardware

logic at the vault or cube levels [21], [4]. For example, [18] places a small amount of hardware

logic for each Linked-list engine in each vault to exploit locality in the Linked-list nodes. On the

other hand, some research has shown efficiency improvements in using accelerators with much

more processing power [5], such as the Mondrian Data Engine, which places an ARM Cortex A35

core, 1024-bit SIMD unit, stream buffer, and object buffer in every vault [11].

It should be noted that packets can be sent in any direction through the Intra-Cube Network.

The CPU exchanges request and response packets with HMCs to access and store memory, and

in the Intra-Cube Network, any such packet can enter from any port or vault and be routed to any

other port or vault. This feature enables the HMC to exercise routing functionality in the logic

layer so that several HMCs can be chained together in a network. In [28], the ARE is placed in the

Intra-Cube Network to monitor the flow of packets to and from its cube and to control the flow of

data in a particular cube.

Interconnection Networks

On-Chip Networks

In recent years, there has been an increase in demand to move to multi-core architectures

in a variety of fields, including IoT, mobile devices, and high-end servers [29]. By nature, these

9



multi-processor systems demand high-bandwidth, low-latency communication between cores. Tra-

ditional systems with 8 or fewer cores perform well using a bus or a crossbar switch. However,

for systems with increasing core counts, neither the bus nor crossbar will meet communication

requirements because of their poor scalability in terms of area, power, and performance [29]. To

meet these communication requirements, an On-Chip Network (or Network-on-Chip) that makes

use of interconnected switches has been adopted as a scalable solution.

In an On-Chip Interconnection Network, each communicating entity with an interface to

the network is a node, and the organization of connections between nodes is known as the topol-

ogy. Topologies are often automatically synthesized to optimize communication for specific ap-

plications [29], but there are also several well-known, generic topologies, such as ring, mesh, and

taurus. For example, Figure 3 shows a mesh topology, where each node is connected to its 2, 3, or

4 neighbor nodes.

C C

C C

C C

C C

C C

C C

C C

C C

Figure 2: Mesh Topology (C blocks are Compute Nodes)

When one node needs to communicate with another node in the network, it forms a mes-

sage, encodes the address(es) of the receiver(s) and perhaps other metadata in the message, and

inserts the message into the network. The network then decodes parts of the message to find the

recipient and delivers the message to the target node. In the mesh configuration in Figure 3, a com-
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pute node C can only communicate with its immediate neighbor, so if two nodes are not neighbors

and would like to communicate, they must communicate only through other intermediate node(s)

in the network.

When designing this interconnection fabric, designers often need to make choices related

to the expected performance. For example, the previously mentioned crossbar interconnect for

bidirectional communication between n entities is a n × n matrix of switches, which provides

sufficient bandwidth for a small number of communicating nodes, but when scaling networks to

a higher number of inputs, there is a strong motivation to use fewer connections. [29] shows

that topologies such as butterfly, ring, and torus cut down on power and provide better network

throughput for high volumes of traffic.

In reality, nodes often divide messages into individually addressed packets with meta-data,

which are routed through the network independently. This type of network fabric is known as a

packet-switched network. Routers in the network receive packets, read the meta-data to determine

where to send the packet, and transmit the packet either to the next router on the packet’s route to

its destination or to the packet’s destination node. When a router receives a packet, its routing algo-

rithm employed in the architecture tells the router how to decide which router to send a particular

packet next. Much of recent research into how to improve the performance of On-Chip Networks

involves improvements to this algorithm so that more can be computed in memory [28], [26], [27].

Similarity with Off-Chip Networks

It should be noted that although On-Chip Networks borrow ideas from Off-Chip Networks,

On-Chip Networks are subject to different constraints [29]. In On-Chip Networks, the abundance

of wires alleviates the bandwidth bottlenecks of Off-Chip Networks, and the long I/O delays of

transmitting messages off-chip are mitigated. However, in On-Chip Networks, the power and area

constraints are much tighter, since the network competes with the cores for silicon area. Unlike

the routers in the Internet, routers in an on-chip network do not often have the luxury of hardware

support for much complex functionality, such as monitoring traffic across the network.

Memory Networks

11



In a similar manner, HMCs can also be organized into interconnection networks so that

HMCs can route requests and responses between the CPU and memory to and from other HMCs.

Since modern memory requirements would require more DDR DRAM capacity than most proces-

sors have pins to support, it becomes cost-effective to chain HMCs together in their own memory

network. Since HMCs are packaged with space for routing functionality support, there is a dis-

tinction to be made between memory-centric network designs and processor-centric designs [12].

In traditional processor-centric designs like the one shown in Figure 3b, memory connects only to

its associated processor, so when a processor needs memory from another processor, it must first

request the memory from the connected processor.
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Network
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M MM
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M MM
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M MM
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Network
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M MM

C

M MM
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M MM
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(a) Memory-Centric

Inter-processor 
Network

C

M MM

C

M MM

C

M MM

Intra-memory 
Network

C

M MM

C

M MM

C

M MM

Inter-processor 
Network

Intra-memory 
Network

C

M MM

C

M MM

C

M MM
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Inter-processor 
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Intra-memory 
Network
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C
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C

M MM

(c) Hybrid

Figure 3: Network Designs in [12] for (M) memory- or (C) processor-centric networks.

Memory-centric designs like the one in Figure 3a, on the other hand, connect a chain of

HMCs to form the entire network. All inter-processor and inter-memory communications route

through the shared "pool" of memory. A recent study [12] has shown that memory-centric designs

for networks of HMCs lead to better overall throughput provisioning than the typical processor-

centric designs. Our system design adapts the hybrid architecture described in [12] shown in Fig-

ure 3c in which processors form their own Network-on-Chip for inter-processor communication

separate from the memory network connecting HMCs.
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As in [28] and [2], the HMC uses its four I/O Links to communicate with other compute

nodes. The memory network is controlled by a number of memory controllers, which connect

to the links of one or more HMCs in the memory network as gateways for traffic between the

memory controller and the Network-On-Chip. Routing logic implemented in the logic layer gives

each HMC the processing capabilities to forward packets to the correct HMC and vault in the

network. Thus, when an HMC receives a request for data from one of its ports, it can route the

packet either to one of its vaults (when the data are present locally) or to the link connected to the

next HMC on the path to the destination HMC. When the response holding the requested data is

ready from the vault, it is sent back to the intra-cube network, and the routing logic sends it to the

link that leads back to the memory controller, which will deliver the data to the CPU.
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SECTION III

RELATED WORK

In this section, we describe Active-Routing [28] to form a basis for our techniques. We then

discuss other recent, related techniques for PIM and processing in the Interconnection Network.

Active-Routing

PIM-Enabled Instructions

Ahn, et. al. introduced PIM-Enabled Instructions (PEI) [21] as a set of instructions that

can be added to the architecture (accompanied by hardware additions to the memory technology).

The architecture for PEI maintains both the illusion that the program executes sequentially and

that the processor executes all instructions, although the architecture dynamically decides when to

process in memory based on the locality of the data. Their evaluations show an overall increase

in system performance, and building upon PEI, Huang, et. al. [28] propose Active-Routing for

further optimizations in memory network.

The Architecture

Figure 4 shows the system used in [28] to demonstrate Active-Routing. In this configu-

ration, HMCs form a dragonfly network, and four HMCs connect to the Host CPU (left) via the

HMC Memory Controller. The out-of-order (O3) cores on the host CPU each have a Network

Interface (NI) to the NoC, through which they can send packets to the HMC Controller. The HMC

Controller can then convert and route the packet to its first HMC in the network.
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Figure 4: System Configuration for Active-Routing

In general, an Active-Routing flow (henceforth, a flow) maps a compute kernel to a reduc-

tion over the network. For each flow, an Active-Routing Tree (ARTree) is logically constructed in

the memory network such that each node of the tree serves as a compute point for a partial result of

the reduction. Each compute point is responsible for reducing the computations of its sub-tree and

reporting the result to its parent. Flows are each given a unique flow ID, and when the reduction is

done, the final result is routed back to the CPU. Figure 5 shows an example of an ARTree for one

dot product kernel (flow) in the same configuration as Figure 4.

Using the pseudocode in Figure 5 as an example, we now explain the architecture and

packet processing algorithm of Active-Routing. The host CPU dispatches two types of packets to

the memory network. An Update packet contains the address(es) of the operand(s) needed for

computation of a partial result, as well as the operation to be done on the operands and the Flow

ID. In Figure 5, each Ai×Bi pair is offloaded to the memory network as an Update packet. Once

the Update packet stream ends, a Gather packet is sent to the network as a signal to reduce all

partial results in the network on the way back to the CPU when the partial results become ready.

The algorithm handles these packets in three phases: (1) ARTree Construction, (2) Update, and (3)

Gather.
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Figure 5: Example Dot Product Active-Routing Tree and Accompanying Pseudocode

Figure 6 shows the three phases of packet processing using the abstract ARTree from Fig-

ure 5. In the ARTree Construction Phase (Figure 6a), Update packets are sent to the memory

and routed to the addressed cube. The ARTree is constructed along the paths that Update packets

take as they are routed to their compute point in the network. For example, all Update packets in

Figure 5 enter through cube 5. Operands in cube 2 are routed through intermediate cubes 4 and 1,

as shown in 6a. For cases such as that in Figure 5, where two operands reside in different cubes,

the compute point is chosen as the node where the routes for the two operands diverge. When an

Update packet is scheduled for a cube, that cube records the flow ID and its parent cube. If an

Update packet reaches a cube it is not scheduled for, the packet is routed to its scheduled com-

pute node, and the child compute node is recorded. Thus, the ARTree is recorded from each cube

storing its own parent and children information.
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Figure 6: 3-Phase Packet Processing for Active-Routing Trees [28]

The Update Phase (Figure 6b) occurs in parallel with the ARTree construction phase as

Update packets reach their destinations. In the Update Phase, operands are fetched from memory

and their partial results are scheduled to be computed in memory. Each Ai × Bi product requires

two operands Ai and Bi. When the two operands reside in the same memory cube, that cube fetches

the operands locally. However, in cases like the operand that resides in cube 10 of Figure 6b, the

operand(s) that do not reside in their compute point need to be fetched before the computation can

be scheduled during the Update phase. Once the product Ai × Bi has been computed, it can be

added to the partial sum in the compute point for that particular flow.

Finally, in the Gather Phase (Figure 6c), a Gather packet from the CPU serves as a signal

that the stream of Update packets has ended and that the Update phase is over. When each node of

the ARTree receives a Gather packet, it makes a copy of the packet to send to each of its children.

When each node finishes the Update phase, it replies to its parent with its partial sum. When a

node has received partial sums from all of its children, it sums the partial result, sends the partial

sum of its subtree to its parent, and commits and de-registers the flow.

In [28], the authors note that access patterns when fetching operands can significantly affect

performance. In the pseudocode for Figure 5, ∗A[i] and ∗B[i] dereference pointers independent
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from any underlying data structure. Data structures such as vectors tend to follow regular access

patterns, meaning that the data are spacially local to each other and can often be found in the same

cache block(s). When access patterns for both operands are regular, the authors refer to the pattern

as regular-regular and make use of the locality by offloading the computation at the granularity

of a cache block for vector processing. However, when both sets of operands come from more

complex structures, such as a graph [4] or linked list [18], they cannot often be found in the same

cache block and are referred to as irregular-irregular patterns. These access patterns incur large

overhead with Update packets for every operand and contribute significantly to network traffic

power usage. In a regular-irregular access pattern, only one data set follows irregular accesses

and can be loaded into spatially local storage before being processed with the regular data at the

cache block granularity. For memory access patterns that follow regular-regular or regular-irregular

access patterns, the overhead of packet metadata can be amortized by offloading multiple fetches

in one packet.

Implementation

In this subsection, we first describe the ISA extensions and changes to the user-facing

programming interface from Active-Routing. We then detail the hardware additions suggested

to support Active-Routing, including the Network Interface and ARE. Finally, we describe the

schemes used to enhance performance for Active-Routing.

Programming Interface and Extension to ISA

The programming interface implemented in [28] provides an API for the extensions made

to the ISA for offloading Update and Gather packets to memory. The programming model

communicates with the NI so that the NI can construct the packets and send them to the Memory

Controller. Figure 7 shows the Update and Gather APIs available to the user. The user supplies

RR, RI, or II to specify which datasets are regular or irregular, the sources for the operation, the

target address for the reduction, and the operation to be decoded by the HMC. Gather calls contain

only the target address needed to decode the flow ID and the number of threads dedicated to the

flow. This parameter is added as an implicit barrier, as the Memory Controller will not proceed to
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send the Gather packet to the network until it receives a Gather packet from each thread for that

flow. The API generalizes the op parameter to support simpler operations like move. The API is

translated by the compiler to the extended instructions.

Update/Gather API

UpdateRR(void *src1, void *src2, void *target, int op); 

UpdateRI(void *src1, void *src2[], void *target, int op); 

UpdateII(void *src1, void *src2, void *target, int op); 

Gather(void *target, int num_threads);

Figure 7: Programming API for Offloading Updates and Gathers for Active-Routing [28]

Hardware Components

The three main hardware components that drive Active-Routing are the NI and Memory

Controller in the On-Chip Network and the ARE in each HMC. Here, we describe the architectural

hardware used to implement Active-Routing.

In the On-Chip Network, each core has access to the network through their NI, which

handles the formation of packets and transmission to and from the network. In the NI, there are

dedicated registers added for the purposes of Active-Routing that hold the opcode and operands

for the NI to read when forming the packet. When these packets reach the HMC Controller, the

HMC Controller makes the first routing decision of where to put the root of the ARTree and holds

the final result if there are multiple roots.

The ARE located in the logic layer of each HMC both processes packets as they pass

through the Intra-Cube Network and stores the state of the algorithm, including the ARTree infor-

mation, flow state, and operand buffers, as seen in Figure 1. Figure 8 details each component of

the ARE. The Packet Processing Unit is responsible for decoding Update/Gather and operand

response packets, generating operand request packets, and committing the partial result to the

flow when ready. The Flow Table stores entries that record the state of the flow at any given

time, including the partial reduction to be committed, counters for the number of operand requests
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and responses to operand requests have been issued or received, respectively, and a gflag bit that

records whether or not the Gather packet has been received. Each flow commits its partial result

only after both the gflag has been set and there are no operand buffer entries left that are sched-

uled to compute for that flow. Operand Buffers serve as temporary storage for operands that have

been fetched from memory and are scheduled to be processed as Updates. The ARE uses a pool

of operand buffers to minimize their overhead and makes sure to reserve operand buffers before

issuing the operand requests to memory so as to avoid deadlocking requests for operand buffers

between flows. Operand buffers store their flow ID, opcode, operands, and a bit for each operand’s

status (whether it is ready or not) so that it can be scheduled for computation only after operands

have been fetched. Finally, the Arithmetic Logic Unit (ALU) provides lightweight compute power

with operations such as bitwise operations, add/multiply for integer and floating point operations.

Computation scheduling is done through queues holding the ID of the operand buffers in

use. When all operands in an operand buffer entry become available, the ID of the operand buffer is

enqueued in a ready queue. The ALU uses the ready queue to compute whatever operand buffer ID

is at the head of the queue. Then, when the computation is done, the operand’s ID is enqueued into

a queue of free operand buffers, from which the ARE dequeues IDs when allocating new operand

buffers on receipt of an Update packet.
Active Routing Engine

Packet Processing Unit

Flow Table

ALU

Operand Buffers

To Intra-Cube Network

Active-Routing Engine

Figure 8: Active-Routing Engine
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Figure 9 shows an abstracted view of the implementation for ARE as it is integrated with

the rest of the HMC in [28]. The HMC in Figure 9 can be seen as a detailed expansion of cube

5 from the example in Figure 5. For simplicity, each operand buffer entry is shown with only its

operands, and the Flow Table entries are shown only with their partial result and a pointer to the

parent cube in the ARTree.

When cube 5 receives an Update packet containing the addresses of A1 and B1 and a

multiply opcode, it first decodes the packet in the Packet Processing Unit. If these are the first

Update packets from this flow to reach cube 5, the ARE records the flow ID in the Flow Table,

along with the parent node and the opcode for the flow. Since cube 5 is the root of the ARTree, it

records the link to the HMC Controller as its parent. In the Flow Table, the response counter for

Update packets is incremented. The ARE then reserves one operand buffer entry for the pair A1

and B1 and records the associated flow ID and opcode. Once the operand buffer entry has been

reserved, the Packet Processing Unit dispatches the requests to the local vaults where A1 and B1

reside. If no operand buffer entries are available when the Update packet is processed, the ARE

stalls until one becomes available.
Cube-Level Active-Routing Tree (Old impl)

Intra-Cube Network

Vault 
Controller

Active-Routing Engine

𝐴1
ALU

Vault 
Controller

𝐵1
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Figure 9: Abstracted view of Active-Routing Engine integration with HMC. The left Flow Table
stores the partial result, and the right entry entry points to the parent node in the ARTree.

When operands A1 and B1 are fetched from the vault controller, their ready bits are set,
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and the operand buffer entry is enqueued to the queue of operand buffers ready for computation.

When the operand buffer reaches the head of the queue, the ALU is directed to compute A1 ×B1.

Once the computation finishes, the result updates the partial result in the Flow Table entry, and the

operand entry is freed. The Flow Table then increments the response counter.

For the purpose of discussion, we assume that, in the case of A2 × B2, B2 is located in

cube 4. In this case, cube 5 will be chosen as the compute point upon receipt of the packet with

A2 × B2. Then, the Packet Processing Unit will follow the same procedure as it did for A1 × B1,

only now, the operand request for B2 will be sent to cube 4. In cube 4, the Packet Processing Unit

will decode the packet as a request for an operand and forward the packet to the appropriate vault.

When the vault returns the operand to the Intra-Cube Network, it is routed back to cube 5, where

it is processed in the same manner as with A1 × B1. Unfortunately, this type of situation can lead

to long stalls in the HMC compute point because the operand buffer entry must stay reserved for

the request and response packets’ journeys between cubes, which is much longer than journeys

between vaults of the same cube.

Finally, when the Gather packet is received at cube 5, the Packet Processing Unit decodes

the flow ID and replicates the packet to immediately send to its recorded children. Note that with

the examples of just A1×B1 and A2×B2, there are no recorded children nodes yet. When Update

packets pass through a given cube to another compute point, the Flow Table entry’s request count

is incremented, and when the given cube receives the Gather response, it increments its response

count. The Packet Processing Unit then sets the gflag for that flow’s Flow Table entry to indicate

the initiation of Gather phase, and it waits until the request and response counts for the flow are

equal to commit the flow and send the updated result to its parent. As the cube receives responses

from its children, it updates its Flow Table partial result. Once the result has been sent to the parent,

the Flow Table entry is de-registered.

Enhancement Schemes

Two important factors that affect the performance of Active-Routing are how to dynami-

cally choose the root of the ARTree and offloading granularity. The authors of [28] present three
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schemes for enhancing Active-Routing by taking into consideration these performance factors.

The first performance consideration is where to place the root of the ARTree. The four

most obvious choices are those cubes who are linked with the Memory Controller (cubes 0, 5, 10,

and 15). A first approach might be to statically assign one cube to be the root for any flow, such as

cube 5 in Figure 5. This approach is referred to as Naïve-ART. In the enhanced ART-tid scheme,

each of the four corner HMCs are considered for the root of the ARTree. Each worker thread that

generates Update packet streams uses their ID to determine which cube should be the root of the

ARTree so that flows are more evenly spread across the network. However, this approach is not

always optimal because it tends to generate deep trees when data are not close to the chosen root.

To take advantage of data locality, the ART-addr scheme simply sends all Update packets to the

cube closest to its destination. ART-tid and ART-addr can create up to four trees for the same flow,

leading to a better distribution of traffic in the network in most cases.

Another performance consideration is offloading granularity. To reduce the overhead of

packets requesting data fetches and the overall number of data accesses, packets can be offloaded

with cache-line granularity. Spatially local data tend to be located in the same cache block in

memory, so it wastes fewer cycles to fetch a cache block than it does to fetch each operand seri-

ally. Benchmark testing in [28] shows that when combining the techniques of cache-line granular

offloading with ART-tid and ART-addr, the Naïve-ART approach leads to worse performance than

the baseline approach without any Active-Routing, but ART-tid and ART-tid provide an overall

speedup.

Near-Data Processing

Architectural improvements for NDP have recently become an active research area [28],

[5], [4], [11], [17], [18], [19], [20]. In NDP, processing power is brought closer to wherever

data are stored in the memory hierarchy. Studies show that enhancing data storage with anything

from lightweight compute power to a full ARM processor [16] leads to improved performance

in nearly every tier of data storage. For example, new bit-line SRAM circuit technology enables

Compute Caches [10] to compute in place, which nearly doubles system performance and cut

23



power usage in half. At the other end of the memory hierarchy, Riedel, et. al. introduced Active

Disks [16] to enhance disk storage with software-downloadability so that application-level code

can be run on directly on processors. Active-Routing [28] and this research propose techniques for

augmenting the main memory system with processing power, an instance of the NDP paradigm

called Processing-In-Memory (PIM).

The recent exponential growth in data availability in the big-data era and trends to move

large amounts of data to memory [5] have sparked recent interest in the use of 3D-Memory tech-

nology for PIM. Several recent studies [5], [28], [4], [18], [21], [11] have made use of the HMC as

the underlying 3D memory technology. For example, one of the first accelerators to make use of

HMC technology was Tesseract, introduced by Ahn, et. al. [5], which includes hardware prefetch-

ers specialized for parallel graph processing. Similarly, the Mondrian Data Engine [11] seeks to

improve memory access patterns by embedding a processor, SIMD unit, object buffer, and stream

buffer in each vault. Their algorithm-hardware co-design converts irregular memory accesses into

sequential ones, despite the tendency for data analytics applications to partition data into different

regions of memory.

Several other recent approaches to in-memory processing tend to focus on parallelizing

computations [11], [5], [18], [4], [17], [30], [31], [18] which is the focus of this research. The

Active Memory Cube (AMC) [17], [30] has been proposed as a way to integrate data-parallel

applications by placing vector processing units in the logic layer of the HMC. Similarly, in [31],

Fujiki, et. al. propose a programmable, in-memory processor architecture and a data-parallel

framework that takes advantage of massive parallelism in TensorFlow inputs for machine learning.

Their solution uses Non-Volatile Memories and takes advantage of native SIMD architectures in

GPUs and SIMD Processing Units. In [18], Hong, et. al. seek parallelism through batching

Linked-List Traversals (LLT). Their approach places an Engine driving LLT operations in each

vault of an HMC. The system memory manger partitions memory into memory groups across

the network so that nodes in the same linked list are often located in the same memory group.

Thus, the approach only sees benefits from its parallelism if it partitions the memory in such a
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way that several partitions can compute in memory at the same time, which only occurs when

batching computations to memory. The approach leads to 2.4x throughput using batching, but

the approach is not oblivious to the underlying data structure, while Active-Routing [28] targets

general applications.

Computation in the Interconnection Network

Active-Routing [28] and other previous studies [23], [32], [24] have shown performance

improvements when enhancing routing capabilities in the interconnection network. One of the

earliest examples of processing in the interconnection network is the 1983 NYU Ultracomputer

[23], which implemented adder logic in the switches of its interconnection network so that multi-

ple fetch-and-add synchronization primitives could be coalesced in the network and generalized to

other update operations. Later, in 1985, Pfister and Norton [32] proposed a technique for combin-

ing messages in multistage networks to avoid "Hot Spots," which can arise from situations where

global shared locks degrade traffic in the network. Once packet-switching in NoCs became more

common and sophisticated, Eicken, et. al. proposed Active Messages [24] to embed function

pointers in messages to offload kernels to remote compute nodes. When one compute node needs

to send large amounts of data to another, it embeds a pointer to a function that can load the data

from the local memory, rather than communicating with the remote node. The approach saves

power and significantly reduces overhead due to excessive data movement because the approach

overlaps more computation with communication than previous approaches.

Several other recent proposals suggest improvements for MPI and Collective Communica-

tion [33], [34], [26], [25]. Many multi-node distributed systems implement the MPI Standard as a

library for synchronization and other inter-process communications. The MPI Standard provides

a rich library of message passing concepts, such as reductions over data from several processes

and barrier synchronization. Two previous studys [25], [34] show that adding hardware support

in the network and enhancing the network interface improves the performance of MPI collective

communications, which are used for communication of shared data across processors, such as syn-

chronization, broadcasting, or gathering of data. Ma et. al. [33] suggest that a Balanced, Adaptive
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Multicast tree can collapse otherwise redundant reductions. In a multicast operation, messages are

passed from one source to many destinations, but when all the receiving nodes reply with an ACK

(acknowledgement) packet, the authors of [33] show that the messages along the same path can be

synchronized and collapsed into a single message, which improves network saturation.

An increasing concern in data analytics is the use of machine learning, whose operations

commonly include reductions over large sets of data (such as a dot product) and matrix multipli-

cation. MAERI [27], an architecture recently proposed by Kwon, et. al., targets dataflow applica-

tions in Deep Neural Networks (DNN) with a topology that supports data-flow computations. The

programmable DNN accelerator supports configurable DNN partitions, but the architecture still

suffers from data movement from memory to SRAM and can only be computed in the leaves of the

tree in the static topology. Active-Routing [28] supports topology-oblivious dynamic construction

of such a tree and further minimizes data movement.
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SECTION IV

COMPUTATION OFFLOADING TECHNIQUES

Through adjustments to the user-level API and enhancements to system configurations, we

find that the baseline Active-Routing method can be further streamlined and that there is more

opportunity for parallelism at the cube level. In this section, we describe our motivation for paral-

lelizing computations in the vaults of an HMC by first describing the benefits of kernel offloading

on the host CPU. Then, we explain the motivation for coalescing packets in the Memory Controller.

Finally, we describe the benefits of combining requests for several cache lines in the same page of

memory into a single Update packet.

Kernel Offloading

In the current implementation of Active-Routing, kernels are offloaded at instruction-level

granularity [28], as they are done in several previous studies [4], [21], [18]. When a user writes a

program using the API described in Figure 7, the compiler generates instructions for each Update

to communicate with the Network Interface (NI), and when a processor reaches this instruction,

it issues a request to the NI. The NI then sends the request to the Memory Controller through

the NoC, and upon receipt of the request, the Memory Controller returns a response, allowing the

processor to commit the Update instruction. Once the Memory Controller receives the request, it

buffers the request until the associated entry port to the network becomes available, at which point

the memory controller forms the Update packet and inserts it through the available port.

In typical systems with more cores than memory controllers, offloading instructions from

cores to memory controllers has many-to-few (many cores to a few memory controllers) commu-

nication patterns. For example, in a mesh network as shown in Figure 3, the Memory Controllers

only connect to the routers in the corners, then all of the other processors compete for bandwidth

to reach the Memory Controllers. Such a communication pattern can lead to NoC saturation and

thereby causing stalls in processor cores due to back pressure. Consequently, this bottleneck makes
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Update packets sparse in the memory network, since the Memory Controller can only receive a

few packets at a time from the NoC for offloading. To solve this problem, we offload the entire

kernel to the Memory Controllers to bypass the NoC and to allow the Memory Controllers to gen-

erate Active-Routing packets locally. As a result, they can quickly offload packets into the memory

network. This enhancement alleviates the need for additional hardware in the NI and improves the

offloading throughput in the Memory Controllers. Each memory controller can be augmented with

a simple SIMD instruction fetch/decode front end to facilitate offloading.

Update Packet Coalescing

Despite the benefits of offloading kernels to the Memory Controller, HMCs still sparsely

receive packets due to contention for the limited bandwidth of links entering the memory network.

In Figure 4, the Memory Controller can only communicate with the four corner HMCs. Each

HMC still receives packets infrequently enough that the ALU remains largely underutilized. We

observe that operand buffer usage does not significantly increase with kernel offloading, which

means that Update packets are often consumed quickly because the queueing delay for the ALU

is short. One reason Update packets arrive so sparsely to the HMC is because of the recurring

overhead of sending several Update packets even they are addressed to the same cube.

To achieve higher utilization of the ALU and storage in the ARE, we propose to combine

packets with the same metadata. When Update packets are generated in the Memory Controller,

we propose coalescing transactions if the data are local to the same cube for the same flow. When

generating a new packet, the Memory Controller can check if there are any outstanding transactions

belonging to the same flow are destined for the same cube. For any two transactions the Memory

Controller finds for the same flow, it first determines if the source data for that operand reside

in the same cube. If they do, the packet can embed all the addresses of both transactions in a

new transaction with the same metadata. For example, Figure 10a shows an Update transaction

for a one-operand reduction before coalescing. Figure 10b shows the Update packet once N

Transactions have been coalesced. In our experiments, we have seen only small numbers for N (10

or 12 coalesced transactions), so N does not require many bits of overhead in the new packet.
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Update Packet Coalesced

opflowID src1 src_cube dest_cube

opflowID src1 src2 … srcN src_cube dest_cubeN

(a) Update Transaction Before Coalescing

Update Packet Coalesced

opflowID src1 src_cube dest_cube

opflowID src1 src2 … srcN src_cube dest_cubeN

(b) Update Packet Coalesced

Figure 10: Update Packet Coalescing. (a) Update Transaction for a single address before coalesc-
ing and (b) Coalesced packet with N source addresses

When the packet reaches its destination HMC, the source addresses are unpacked and sent

to separate vaults at the same time. Thus, the link bandwidth becomes less of a limiting factor

for offloading throughput. Therefore, the compute power in the ARE can achieve better effective

throughput with more requests.

Page-Granular Offloading

Although packet coalescing in the Memory Controller improves offloading throughput, co-

alescing incurs significant overhead for the Memory Controller and ARE. The packet size grows

significantly with increasing temporal and spatial locality (when coalesced transactions are both

going to the same cube and issued at similar time). To amortize this overhead, we propose of-

floading operand data in page granularity. In [28], cacheline-granular offloading is achieved by

specifying only the base address of the cache line in the packet because the entire cache block is

guaranteed to reside in the same cube and the same vault. Similarly, if we allow packets to hold

the base address of a page and specify the number of cachelines to be reduced, we can offload up

to one page of computations to memory at a time. Such a way can better utilize the operand buffer

and ALU in the ARE.

We demonstrate the use of this technique for a uniform reduction of a sum over a large

set of data. We augment the API to make use of the function in Figure 11 instead of consecutive

calls to UpdateRR(). We then add logic in the Memory Controller to generate packets of this type.

Finally, we enhance the Packet Processing Unit in the ARE to generate the appropriate operand

requests based on the base address src1 and range inside the page num_lines.
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UpdatePage API

UpdatePage(void *src1, int num_lines, void *target, int op);

Figure 11: Update API for offloading consecutive cache lines in the same page

Because of the massive number of simultaneous requests made to different vaults of the

same cube, data is often returned densely from the vault controllers to the ARE all at once. There-

fore, the request rate is high enough to keep the ARE busy most of the time, leading to the max-

imum throughput of ARE. In many cases, it even introduces packet stalls on operand buffer re-

sources because the compute throughput of a single ARE lags behind the data supply rate. This

motivates vault-level parallelism to further increase compute throughput, which will be presented

in the following section.
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SECTION V

VAULT-LEVEL PARALLELISM

In this section, we describe our approach for enhancing Active-Routing with Vault-Level

Parallelism (VLP). Specifically, we will first introduce the architecture and algorithm of this method

using the previous ARTree example. Then, we will present our implementation of the approach.

Finally, we discuss the different techniques employed for choosing a vault as the compute point in

a cube.

Architecture

Vault-Level Parallelism makes use of the spare silicon in the HMC logic layer available for

additional hardware near the vault controllers. Due to the distributed nature of the Active-Routing

algorithm, inter-cube transactions are all treated the same way as in [28]. That is, the host CPU

sees the same view of the HMC as in the previous section, and all architectural changes occur

inside each HMC.HMC In VLP
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Figure 12: Role of Memory Cube and Vaults in Vault-Level Parallelism Architecture

VLP improves per-cube throughput by redistributing and adding resources in each vault
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of the HMC. Figure 12 shows the extended ARTree with VLP support. The ARE serves as a

coordinator for the vaults and can be considered the root of a one-level ARTree where each vault

involved in a flow is a child of the ARE. When Active-Routing packets are processed in the Packet

Processing Unit of the ARE, the ARE forwards them to the appropriate vault and marks that vault

as its "child" for that flow. Similarly, when a Gather packet is processed, the ARE distributes

a copy to each vault involved in that flow and expects a response from each. Lastly, the ARE

maintains a separate channel for communicating with each vault controller about operand buffer

allocation. This channel will be discussed in detail later in this section.
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Figure 13: 3-Phase Packet Processing for VLP extended ARTree for HMC 9

Figure 13 shows the inner workings of cube 9 during each phase of packet processing.

During ARTree Construction (13a), the ARE uses its additional channel to record the flow infor-

mation in vault 1. In the Update phase (13b), the ARE distributes Update packets to vault 31 in

cube 9 and vault 8 in cube 10 (the remote request), encoding vault 1 of cube 9 as the compute

point. The remote responses are sent back to cube 9 vault 1 for computation. In the Gather phase

(13c), each vault embeds its local partial result in the Gather response packet and sends it back
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to its parent ARE. Once the ARE receives all the Gather responses from its children, it initiates a

Gather response towards its parent cube and commits the flow.

Implementation with An Example

Figure 14 shows the organization of the augmented HMC to support VLP. Starting with

the Active-Routing implementation, each vault is granted a copy of all the ALU and Flow Table

resources in the ARE. The operand buffers available to the ARE are then divided as evenly as

possible among the vault controllers. Therefore, each vault controller has local compute capability

and operand buffers so as to realize vault-parallel acceleration.
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Figure 14: Vault-Level Parallelism Architecture for HMC 5 in Figure 5

Using Figure 14 as an example, we demonstrate an example of VLP processing for HMC

5 of Figure 5. When an Update packet for A1 × B1 first enters the HMC through one of the

I/O links and the Packet Processing Unit unfolds the operands, the Flow Table is updated with an

entry to record flow information. The ARE then inspects the packet and makes a decision about

which vault to choose for offloading the computation. It makes use of its additional channel to

each vault controller to query for operand buffer availability in the corresponding vault. If the

ARE is not able to allocate an operand buffer to the Update packet, the ARE stalls the offloading

of the computation until operand buffers are available. If a query to a vault results in a successful
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reservation of an operand buffer, the ARE forms operand request packets for each of the operands

in the same manner as in [28]. Each of these packets are then given an extra field indicating the

vault in which the operand buffers were reserved. In the case of A1 × B1, the ARE reserved an

operand buffer in Vault Controller 0 and sent requests to vaults 0 and 31.

In vaults 0 and 31, the vault controllers record the compute vault of the outstanding request

included in the packet meta data and generate DRAM commands to the DRAM command queue

at the same time. When the data are returned from DRAM, the vault controller inspects the corre-

sponding outstanding request of the response to determine whether it should send the response to

another vault. In the case of A1 in Figure 14, the data are immediately buffered, but in the case of

B1, the data are forwarded to vault 0 from vault 31. A1 ×B1 is then scheduled for computation in

vault 0, and the result updates the partial reduction in the vault controller 0 Flow Table. In the case

of A2 × B2, the ARE follows the same procedure, as HMC is still chosen as the compute point in

the network. One operand request is sent to vault 0 for A2, and the request for B2 is sent to the

next cube where the data are located. When the data are available in vault 31 of HMC 5, they will

be computed there.

Finally, when HMC receives a Gather packet from the HMC Controller, it copies the

Gather packet for each of the child cube nodes in the ARTree. In addition, it makes another set

of copies for the child vault nodes it has marked for the current flow. Similar to the Flow Tables

of the ARE, the vault controllers mark their gflag field, return the Gather packet to the ARE to

update the partial result kept in the Flow Table of the ARE, and commit the flow. When the ARE

has received all the responses from the child vaults and child cubes, it responds to its parent cube

in the ARTree with its partial result and commits the flow.

Dispatching Algorithms

One design choice that affects the performance of VLP is the choice of which vault to

use as the compute point. To avoid the additional overhead of response messages for inter-vault

communication as shown in Figure 13b, the algorithm for dispatching Update computations to

vaults should be carefully designed. We propose two methods for choosing a compute vault in a
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given HMC. We leave further optimization of this dispatching algorithm for future work.

The first approach is to dispatch computations to all the vaults in a round-robin manner. For

each new incoming Update packet, statically choose the next vault without inspecting the packet

contents. Although this approach has the potential to lead to many remote operand requests, it uti-

lizes all the operand buffers in the cube. Unfortunately, the delay and overhead of remote operand

requests often ruins performance before operand buffers are saturated, especially for computations

that requires two source operands.

The second approach, namely content-aware, suggests inspecting the Update packet before

dispatching to vaults. If the packet has any operand(s) in the current cube, the ARE tries to reserve

operand buffers and schedule it to compute at the local vault of the operand first. If those vaults do

not have free operand buffers, the ARE defaults to the static round-robin and avoids querying the

vaults that have already been queried. This approach leads to much better performance but often

at the cost of storage. When distributing the operand buffers to each of the vaults, each HMC often

gets very few operand buffers. If one vault is a "hot spot" for computations (i.e. it contains much

of the data needed for that flow), it will quickly run out of operand buffers and require the use of

operand buffers from other vaults. With room to expand the hardware budget, the content-aware

technique performs much better for kernels with high data locality.
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SECTION VI

METHODOLOGY

In this section, we describe our system configuration and modeling tools we used to simu-

late the techniques we implemented, as well as the workloads we used to test the performance of

our techniques.

System Configuration and Simulation

McSimA+ [35] simulates the microarchitecture of the cores and cache hierarchy in the

backend of our simulations using an execution-driven environment. We use CasHMC [36] for

cycle-accurate simulation of the HMC memories. To implement Active-Routing instructions, such

as those generated for UpdatePage(), we use the tool Pin [37] supported by McSimA+’s frontend.

We model the Active-Routing Engine logic in the Crossbar Switch and implement the vaut-level

Active-Routing logic directly in the vault controller.

We describe our system configurations in Table 1, as is depicted in Figure 4. We show here

the difference in design hardware between the baseline configuration and the VLP configuration

for the ARE and the vault controllers. We also configure the host CPU as a CMP with on-chip

network and a two-level cache hierarchy wit MESI coherence protocol. The memory network

configuration is a Dragonfly topology, as adopted from [12] in [28].

Workloads

Vault-Level Parallelism targets the same applications as [28]. Vault-Level Parallelism pro-

vides the most benefit to Active-Routing when reductions on large sets of data involve data-flow

with the opportunity for massive amounts of parallelism. In this work, we focus mainly on pure

reductions and multiply-and-accumulate operations. We evaluate the performance of our kernel

offloading techniques, packet coalescing, page-level offloading, and the VLP system configuration

using microbenchmarks available from [28] and kernels from benchmark suites that are use for
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Table 1: System Configurations

Parameter Baseline Configuration VLP Configuration

CPU

Core
16 OoO cores @ 2GHz

issues/commit width: 4, ROB: 128
L1 I/D Cache Private, 32 KB, 4-way

L2 Cache S-NUCA, 16 MB, 16-way, MESI
NoC 4x4 mesh, 4 MC at 4 corners

Memory
HMC 4GB/cube, 4 layers; 32 vaults, 8 banks/vault

HMC Network

16 cube DragonFly, 4 controllers
Minimal routing, virtual cut-through

16 lanes link, 12.5 Gbps/lane
CrossbarSwitch clock @ 1250 MHz

Active-
Routing
Engine

Flow Table 16 flow entries
Operand Buffer 128 buffer entries 0 buffer entries

Processing
Element

1250 MHz clock frequency
An arithmetic logic unit

Vault
Controller

Flow Table NA 16 flow entries
Operand Buffer NA 4 buffer entries

Processing
Element NA

1250 MHz clock frequency
An arithmetic logic unit

scientific computing. We re-implement these kernels with the Pthread library to maintain compat-

ibility with McSimA+ and use a sufficiently large data size to stress the last-level cache, memory

controller, and memory network. We summarize these workloads in Table 2.

Table 2: Evaluation Workloads

Workloads Optimization Region input Data Size
Benchmarks sgemm [38] matrix multiplication 4096x4096 matrix

Microbenchmarks
reduce

sum reduction over
a sequential vector 6400K dimension

mac
multiply-and-accumulate over

two sequential vectors
two vectors with
6400K dimension
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SECTION VII

RESULTS

In this section, we first present our experimental results from simulations of our offloading

techniques. Then, we compare performance between baseline and VLP architectures followed

by the performance results of round-robin and content-aware dispatching techniques. Finally, we

demonstrate the results of sensitivity testing between VLP and baseline architectures.

We use the Instruction Offloading (IO) and Kernel Offloading (KO) techniques discussed in

the previous section as suffixes to the names of each architecture. Baseline refers to the Instruction

Offloading architecture supported in [28] with none of the offloading techniques introduced in this

research. Architectures that support Page-granular Update packets are then further specified with

Page. Architectures supporting Update coalescing are specified with Coalesce. For example, a

VLP architecture that supports Kernel Offloading and Page-granular offloading would be referred

to as VLP-KO-Page. All the technique combinations are summarized in Table 3.

Table 3: Evaluation Workloads

Techniques Description
Baseline Instruction Offloading Active-Routing [28]

Kernel Offloading (KO)
Compute kernel offloaded to

Memory Controller for Active-Routing

Coalesce-KO
Coalescing packets of same flows that

go to the same cube with Kernel Offloading
IO-Page Page-granular Update packet using Instruction Offloading
KO-Page Page-granular Update packet using Kernel Offloading
VLP-IO Vault-level parallelism support with Instruction Offloading
VLP-KO Vault-level parallelism support with Kernel Offloading

VLP-IO-Page VLP-IO with Page-granular Update packet
VLP-KO-Page VLP-KO with Page-granular Update packet

38



Offloading Optimizations

Figure 15 compares the runtimes resulting from the different offloading techniques intro-

duced in Section IV. We show the normalized runtime speedup over Baseline for microbench-

marks mac and reduce as well as the sgemm (dense matrix multiplication) benchmark. The results

demonstrate that more frequent delivery of Update packets to HMCs significantly cuts down on

runtime, but coalescing Updates in the Memory Controller does not improve performance much.

We observe that there is no stalls in the ARE, meaning the request rate does not keep up with com-

putation throughput, leaving compute units underutilized. Next, we turn to page-level granular

Update packets to offload more computations to the Memory Controller with less overhead.
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Figure 15: Runtime Speedup for all workloads using Kernel Offloading and Update coalescing

Our technique for page-granular Update packet offloading can be demonstrated on any op-

eration. In this work, we show the results of implementing the architecture for a pure reduction

as a case study. Since page-granular Update packets can offload up to a whole page in a single

instruction, which significantly amortizes the overhead of offloading, thereby effectively increas-

ing offloading throughput. We present page-granular offloading both with and without the kernel

offloading technique, and compare the runtime speedup over kernel offloading on reduce as shown
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in Figure 16.
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Figure 16: Runtime Speedup of reduce using page-granular Update packets

With page-level granular instruction offloading, we observe a 8.6× speedup over kernel

offloading. When page-level granularity combines with kernel offloading, it achieves 9.4× per-

formance improvement. Regardless of such significant improvements, we notice that the operand

buffers in the ARE stall significantly more often when page-granular offloading is applied. This is

because the compute throughput does not keep up with the data supply rate. Therefore, we turn to

parallelizing these operations in the vaults while keeping the hardware budget for operand buffers

the same.

Vault-Level Parallelism

Figure 17 shows the runtime speedup of VLP with and without kernel offloading compared

with the instruction offloading Baseline. We again compare runtimes normalized to the kernel

offloading and page-granular version of the approach in the previous subsection, which we refer to

as baseline for this subsection. For all the experiments in this subsection, we use the round-robin

vault dispatching policy. Notably, the parallelism available in VLP does not make up for the low

throughput of Update packets in the Memory Controller when kernel offloading is not enabled.
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Even with kernel offloading enabled, however, VLP tends to match or perform slightly worse than

the baseline implementation with kernel offloading. We now turn to page-level granular offloading

to make use of the parallel compute power available in the vaults.
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Figure 17: Contribution of Kernel Offloading to workload performance on VLP Architecture

Page-level granular offloading, shown in Figure 18, utilizes the parallelism available in

each cube. In this figure, we show the speedup of the VLP architecture over the version of the

original architecture with both kernel offloading and page-granular Update packets to demonstrate

the increased throughput0 parallelism contributes to the system. Even without kernal offloading,

the approach still performs reduce about 1.5× faster than the architecture proposed in [28]. The

increased throughput from the parallel nature of the architecture allows fewer stalls due to operand

buffer contention between Updates which are present in the original architecture.
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VLP Results
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Figure 18: Runtime Speedup of reduce enabled by page-granular Updates in the VLP architecture

Dispatching Algorithms

We experimented with two classes of dispatching procedures (Round Robin and Content-

Aware) in the ARE that warrant attention for future research in Vault-Level Parallelism. While

Round Robin statically assigns a vault as the first vault for dispatching and always queries the next

vault in sequence by vault ID, the Content-Aware approach inspects the packet to determine where

the operand(s) are coming from. Our implementations for all the previously mentioned results

involve the use of Round Robin starting from the vault with the lowest ID. In this subsection, we

explore some other techniques for compute dispatching in the cube for two-operand cases. For

one-operand cases, content aware will always perform the best, but in the case where two operands

do not reside in the same cube, we observe similar performance for both dispatching algorithms.

We only analyze dispatching techniques of VLP-KO in this thesis. In the future, we plan to study

for Page-granular offloading as well as scheduling algorithms for determining compute cubes. We

demonstrate the Round Robin and Content-aware approaches for different numbers of operand

buffers in Figure 19.
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Update Dispatching
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Figure 19: Runtime Speedup of sgemm Benchmark over different operand buffer budgets

We also evaluate the sensitivity of VLP to the number of operand buffers by varying the

size as shown in Figure 19. For both approaches, fewer operand buffers means more stall time

when the operand buffers become full in the whole cube. After the number of operand buffers per

vault is more than 4, the performance improvement becomes very marginal. When the number of

operand buffers is more than 8, the performance is almost same. Therefore, we choose 4 as the

default operand buffer size for each vault.
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SECTION VIII

CONCLUSIONS

Active-Routing performance is restricted both by the costly instruction offloading and lim-

ited compute power. This research introduces two proposals to combat these problems. We first

investigate several methodologies for reducing the overhead of instruction offloading inherent in

[28], and then we propose a new architecture that uses the spare silicon in the HMC logic layer to

scale to the increased throughput demands. We first propose kernel offloading as a way to bypass

the contention for links in the NoC among processors. Although kernel offloading techniques in-

crease the throughput of packets into the memory network, the offloading throughput is still limited

by the small number of operand addresses that can be packed. We introduce a new API for offload-

ing an entire page of memory with a base address and number of cache lines. This page-granular

offloading allows each ARE to unfold dozens more operands in each packet without increasing the

size of the packet, which saturates the compute throughput of the HMC. Second, we propose the

Vault-Level Parallelism Architecture, which treats each ARE as the parent of a reduction branch

in each HMC. Using the spare silicon in the HMC logic layer, vault controllers are augmented

with their own copy of Active-Routing logic for storing the state of flows, decoding packets, and

computing partial results. We study the effects of this parallel architecture in a case study using

a one-operand pure reduction. Our simulations show a 23× speedup over the original baseline in

[28] when enhancing VLP with kernel offloading and page-granular offloading.
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