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Despite the vast amount of processes that depend on the co-evolution of supermassive black

holes (SMBHs) and their host galaxies, their physical relationship is still not fully understood.

Observations have revealed a well-constrained scaling relation between SMBH mass and galaxy

bulge mass in the local universe. In galaxy formation simulations, a different form of SMBH

growth behavior emerges at high redshift: prolonged slow growth in the early universe followed

by coherent fueling that results in a rapid increase in the central BH’s mass. After this “catch-up”

period of rapid growth, the SMBH growth resembles the well documented observed local scaling

relation between SMBH mass and galaxy bulge mass. We conduct an in-depth study of these

SMBH growth behaviors to explore implications it has on the early universe scaling relation.

We construct a simple model, using said behaviors, to predict the quasar luminosity func-
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tion which can be compared to well-documented observable quantities. To combine the simulation

behaviors with a mock catalog of galaxies, we employ mathematical convolution techniques. This

involves numerical integration methods over a population of dark matter halos and various models

that relate the dark matter halo population to quasar luminosity. The models this study produces

to resemble the simulation behaviors contains three free parameters. Thus, we employ a least

squares fit method on a three dimensional parameter space to find the free parameters that best fit

the predictions of our study to various observational data. These results allow us to systematically

quantify the range of allowed scenarios for the emergence of the scaling relation between SMBH

mass and galaxy bulge mass observed in the local universe.
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NOMENCLATURE

SMBH Supermassive Black Hole

BH Black Hole

FIRE Feedback In Realistic Environments

AGN Active Galactic Nuclei

QLF Quasar Luminosity Function

HMF Halo Mass Function

SMF Stellar Mass Function

SMHM Stellar Mass Halo Mass

UM Universe Machine

PDF Probability Distribution Function

sSFR specific Star Formation Rate

SMBHMF Supermassive Black Hole Mass Function

η Eddington Ratio

z redshift
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SECTION I

INTRODUCTION

In recent years, numerous cosmological simulations have been developed and continuously

improved on such as Illustris, EAGLE, and RAMSES ([1, 2, 3] respectively). The goal, of these

theoretical simulations, is to explore the long-timescale processes of the universe, motivated by

current understanding of physics, to stimulate findings that may be impossible to discover through

observation alone. The FIRE (Feedback In Realistic Environments) project aims to create more

detailed galaxy evolution simulations focusing on small scale processes, like feedback (stellar

winds, supernovae etc.), and their effects on the growth of galaxies [4, 5].

Observations indicate a well-constrained scaling relation between the supermassive black

hole mass and galaxy bulge mass in the local universe (for overview and example studies see

[6, 7, 8]), but astronomers know little about what the scaling relation may look like in the early

universe. The optimal way to approach this problem may be through a study of galaxy evolution

simulations to provide insight complementary to where observational techniques are limited.

Comparing predictions to observable quantities is essential in any theoretical study but

can be a difficult task. Direct measurements of galaxy bulge mass or a galaxy’s central black

hole are exceedingly challenging. An elegant solution to this problem is the indirect comparison

to an observable with vast amounts of data available across a large time-scale. Quasars are one

example of a fairly well documented observable. Quasars are extremely energetic and thus easy to

detect; quasars are the most energetic form of active galactic nuclei (AGN), an event resulting from

a SMBH taking on mass, and are a source of feedback within a galaxy. Feedback from SMBHs

appears to be the main “missing ingredient” in understanding the origin of “red and dead” elliptical

galaxies (elliptical galaxies no longer forming stars), which is arguably the biggest open question

in galaxy formation theory.

The behavior of the SMBH evolution in the FIRE simulations consistently produces a
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unique co-evolution between the SMBH and its host galaxy’s bulge mass (see [9, 10] for review).

This begins with prolonged slow growth in the early universe which is followed by a rapid increase

in mass. As discussed in [10], the rapid increase in mass is consistently seen to begin at some crit-

ical bulge mass of ∼ 1010M�. Finally an approach and eventual fall onto the SMBH mass galaxy

bulge mass local scaling relation is predicted. The delayed rapid growth of the SMBH is the focus

of our study. This growth behavior represents a scenario for the emergence of the SMBH mass -

bulge mass scaling relation that we wish to quantify.

Within our study, we analyze how the delayed supermassive black hole growth, predicted

by FIRE simulations, compares to observational data. We explore the implications this growth

behavior has on an early universe scaling relation. To test this more thoroughly we construct a

model, based on the predicted growth behavior, to compare to observables. As mentioned above,

quasars are some of the brightest objects and an ideal observable to compare to for SMBH-related

studies. Thus, we predict the quasar luminosity function (QLF) describing the number density of

quasars as a function of luminosity and redshift (z). Our predicted QLF agrees with observational

QLF data up to z = 4 with fairly well constrained, and physically reasonable, free parameters.

The layout of this paper will be as follows: SECTION II will describe the details of our

model through both the relations we establish (Known Relations and Simulation Motivated

Models) and the calculations required to convolve them (Mathematical Pipeline). We lay out

the results of our model in SECTION III, discuss implications in SECTION IV, and summarize

our main conclusions in SECTION V.
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SECTION II

METHODS

To construct the QLF we produce a cosmological population of quasars by convolving

the known statistics of galaxy populations (e.g., the halo mass function) with the SMBH growth

behavior predicted by simulations. This involves numerical integration methods over a population

of dark matter halos and several relations to connect dark matter halo mass, stellar mass, and

SMBH mass to quasar luminosity.

Of the relations utilized, the stellar mass SMBH mass relation and the SMBH accretion

rate model are directly motivated by the FIRE simulation behaviors this study aims to explore (see

Simulation Motivated Models). We see two growth behaviors. First the galaxy stellar mass and

central BH grow slowly in the early universe and accretion events tend to be scattered. Once the

galactic disk forms we begin to see the second growth behavior of more coherent fueling of the

central BH and an eventual fall onto the observed local scaling relation discussed in [7] and similar

studies. Both of these growth behaviors are modeled mathematically in two eras: a ‘pre-disk’ and

‘post-disk’ era. Which era we conduct calculations in is determined based on a host galaxy’s stellar

mass.

The pre-disk era is before the organization/settlement of a galactic disk. This era consists

of slow SMBH growth fed by sporadic inconsistent accretion events.

The post-disk era occurs after the formation of a galactic disk and is when the SMBH gains

the majority of its mass. To resemble the critical bulge mass seen in [10], the pre-disk era ends and

post-disk begins once the host galaxy’s stellar mass hits some critical threshold we dub M∗crit.

The post-disk era consists of more consistent SMBH accretion events and demonstrates

two growth behaviors: rapid growth due to the undermassive BH at the start of era, followed by

growth that falls onto the local scaling relation (using the local slope from [7]). Both of these

growth behaviors are achieved through a simple mathematical model of proportional growth rates
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between SMBH mass and galaxy stellar mass (see Universal Supermassive Black Hole Accretion

Model for more details).

All other relations are empirically-motivated using known scaling relations (e.g., the star

formation sequence) or results from dark-matter-only simulations (e.g., the halo mass function).

These known relations are described throughout Known Relations. When applicable, the free

parameters of these observational relations are chosen to be consistent with the FIRE simulations,

along with any other applicable relations, to ensure self-consistency of our study. We discuss these

free parameters, along with our choices for them, within each relations’ corresponding sub-sections

throughout Known Relations and Simulation Motivated Models.

The formulations of our calculations are discussed throughout Mathematical Pipeline.

A discussion on how the relations are implemented is conducted whenever each individual rela-

tion is required. Some relations are utilized in multiple calculations for different purposes; we

discuss specifics on the implementation each time. Formulations represented as integrals are car-

ried through numerically unless otherwise mentioned. Each integration is conducted over a range

deemed physically reasonable. These details are discussed further in appropriate sub-sections

within Mathematical Pipeline.

Known Relations

Halo Mass Function

The Halo Mass Function (HMF) quantifies the number density of halo masses as a function

of redshift ( dN
d lnMH

(MH, z)) for a given cosmology. For our model we use Colossus, a public, open-

source python package for calculations related to cosmology, the large-scale structure of matter in

the universe, and the properties of dark matter halos [11].

We generate a HMF using the Despali mass function model [12], as a function of virial

mass, assuming a Planck 2015 cosmology. The Despali halo mass function was chosen because

it covers the full range of redshifts we seek to study (z = 0 − 4) and we utilize a virial mass

definition for the halo mass for consistency with the stellar mass - halo mass relation described

in Stellar Mass - Halo Mass Relation. The Planck 15 parameters use a ΛCDM model and can be
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found in [13] table 4, column 6. The Planck 2015 parameters were chosen for consistency with

the other cosmological relations we employ, however we note that updating to the Planck 2018

parameters does not significantly change the results of our study.

Stellar Mass - Halo Mass Relation

We establish the redshift dependent stellar mass - halo mass (SMHM) relation using Uni-

verse Machine (UM) [14]. UM provides a ratio between median stellar mass and peak halo mass

utilizing the halo’s star formation history (M∗ (MH, z)). We utilize this for a direct conversion be-

tween stellar mass and halo mass and for the calculation of the slope of that relation at any given

point.

We set the SMHM relation scatter to σlnM∗ = 0.7 dex. In [14] §4.2.2. scatter on this

relation is explored thoroughly. We find our overall findings are not impacted by small variations

in this scatter.

Simulation Motivated Models

Stellar Mass - Supermassive Black Hole Mass Relation

As previously discussed, the relationship between stellar mass and SMBH mass (M∗−MBH)

is motivated by the behaviors exhibited in the FIRE simulations. It is modeled through two distinct

growth behaviors differing between the pre- and post-disk eras and separated by some critical

stellar mass M∗crit.

We know that in the pre-disk era the SMBH is undermassive and grows slowly therefore

we model this relation as the power law

log10 MBH = a log10 M∗ + b. (Eq. 1)

The slope of the power law, a, is chosen to be 0.2, to represent the slow growth of the

SMBH in this era. We find that small variations in this slope does not significantly change the

results of our predicted QLF. The intercept, b, is a normalization constant defined to ensure the

overall relationship is continuous at the point the two eras meet.

In the post-disk era, the galaxy is able to fuel the central BH at a rate proportional to the
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galaxy’s stellar mass growth. After an initial transition period of rapid growth, this manifests

observationally as the known local scaling relation between SMBH mass and galaxy bulge mass

[7]. We implement this local scaling relation as

d log MBH

d log M∗
≈ 1, (Eq. 2)

where we approximate their slope (which is closer to 1.12) as 1 for the sake of simplicity.

We thus model the post-disk era growth through

ṀBH = αṀ
β

∗ , (Eq. 3)

from which β is equivalent to Eq. 2 and is the slope for which the relation approaches asymp-

totically. The value for α is calculated using β, M∗crit, and a mass pair normalization point

(M∗ = 1011M�,MBH = 108.2M�). The normalization point was chosen to resemble that chosen

in [7].

In log space, Eq. 3 takes the form

d log MBH

d log M∗
= αβ

Mβ
∗

MBH
, (Eq. 4)

such that the relation between stellar mass and black hole mass is

log MBH = log
[
MBHcrit + αMβ−1

∗ (M∗ −M∗crit)
]

(Eq. 5)

at M∗ > M∗crit. Examples of the M∗ − MBH evolution for different M∗crit values can be seen in

Figure 1.

Within the framework of this model, different choices for M∗crit can result in more or less

undermassive BHs as the post-disk era is initialized; this behavior will affect the initial growth

rate of the central BH as era begins, but the overall behavior between the two will remain the

same. Decreasing M∗crit will just cause the post-disk era to be triggered sooner which results in

10



107 108 109 1010 1011 1012

M∗(M�)

104

105

106

107

108

109
M

B
H

(M
�

)
M∗crit(M�) = 10x

x = 11
x = 10
x = 9
x = 8
Local

Figure 1: Stellar mass - SMBH mass relation for varying M∗crit. The pre-disk era corresponds to
the shallow linear slope. The post-disk era corresponds to the asymptotic approach to the local
scaling relation between SMBH mass galaxy bulge mass. Note that this study uses galaxy stellar
mass and galaxy bulge mass interchangeably. Also note that we approximate the local scaling
relation slope to be 1 for the sake of simplicity.

more low-mass AGN that are less luminous. Increasing M∗crit will result in the opposite behavior:

higher mass AGN that are overall more luminous.

Universal Supermassive Black Hole Accretion Model

We incorporate a model for the difference in accretion behavior across the two eras. We do

this by enforcing consistency between the average growth rate of galaxies, given observationally,

through the star-forming sequence and our relation between stellar mass and SMBH mass. This

model should resemble the inconsistent and consistent accretion events in the pre-disk and post-

disk eras respectively.

To describe this behavior, we draw from a Gaussian distribution; the distribution has some

variance, as a free parameter, and a mean value that we can calculate analytically. For each of the
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two eras, we assign a unique variance to establish a universal relation to describe SMBH accretion

rate (ṀBH) in that era across all SMBH masses and redshift. This universal relation is defined

through the quantity

X ≡ ṀBH〈
ṀBH

〉 .
The quantity X, by design, has the characteristic 〈X〉 ≡ 1 and is described by a log-normal

distribution. Thus each era will have an established log-normal distribution of accretion rates

described exclusively through a unique variance σlnX. The probability distribution function (PDF)

is written as

p [ln X] =
1

σlnX
√

2π
exp

(
− (ln X− µlnX)2

2σ2
lnX

)
. (Eq. 6)

Using the variance σlnX and the fact that 〈X〉 ≡ 1, we constrain the mean value µlnX using

the fact

〈X〉 = exp
(
µlnX +

σ2
lnX

2

)
, (Eq. 7)

so the analytically determined mean is µlnX = −0.5σ2
lnX. We expect the spread of accretion rates

to be drastically different between pre-disk and post-disk eras, but fairly consistent within an era.

The sporadic accretion events of the pre-disk era manifest in this model through a higher variance

value. The consistent events of the post-disk era manifest through a variance smaller than that of

the pre-disk era.

In order to implement the accretion model we have just set up, we need to relate SMBH

mass and galaxy stellar mass to SMBH accretion rate. We begin with the identity

dMBH

dt
=

MBH

M∗

d ln MBH

d ln M∗

dM∗
dt

. (Eq. 8)

We then implement the relations we set up in Stellar Mass - Supermassive Black Hole Mass

12



Relation as

〈
ṀBH

〉
=


aMBH

〈Ṁ∗〉
M∗

M∗ < M∗crit

αβMβ−1
∗
〈
Ṁ∗
〉

M∗ > M∗crit

(Eq. 9)

where the values for α, β, a, and M∗crit are defined in said section. We get values for specific star

formation rate (sSFR or Ṁ∗/M∗) for a given redshift from UM, which we can interpolate for use

in our calculations. Eq. 9 provides an average SMBH accretion rate,
〈
ṀBH

〉
, directly related to M∗

and z.

We relate luminosities and accretion rates through the following formulations. The Edding-

ton luminosity and accretion rate are given through

LEdd = εṀEddc2 =
MBH

M�
1.26× 1038erg/s

( ε

1.0

)
, (Eq. 10)

where ε represents the efficiency with which the accreted mass-energy is released as luminosity.

We can then calculate a bolometric luminosity, Lbol, and Eddington ratio, η.

Lbol = εṀBHc2 (Eq. 11)

η ≡ ṀBH

ṀEdd
(Eq. 12)

We will assume an efficiency of ε = 0.1 (which translates to 10% of the accreted matter

being emitted as energy) throughout our calculations. We can implement these relations with the

accretion model set up at the start of this section to produce various distributions (e.g. η, ṀBH,

etc.). Figure 2 shows examples of accretion rate and Eddington ratio distributions resulting from

our accretion model.
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Figure 2: Accretion related distributions generated through the universal accretion model. Left
four panels: ṀBH distributions for varying M∗ at different z displayed in units of solar mass per
year. The process for which these distributions are calculated is laid out in Universal Supermassive
Black Hole Accretion Model. Right four panels: η distributions for varying M∗ at different z.
These distributions are calculated almost exactly as the M∗ distributions with the small variation
of ṀEdd where we use Eq. 12 and Eq. 10

Mathematical Pipeline

In this section we discuss the formulations we use to calculate the QLF using relations

described in the previous sections. We model scatter consistently throughout our formulations

by the use of log-normal probability distribution functions. Throughout this section we use the

terminology “direct conversion" which we intend to mean calculating value A from value B by

using the relation between A and B without implementing any form of scatter or uncertainty.

Obtaining the Stellar Mass Function

The foundation of all calculations is the HMF which describes the abundance of dark matter

halos (and the galaxies contained within) throughout the Universe. We convert the HMF ( dN
d lnMH

) to

a stellar mass function (SMF, dN
d lnM∗

) by convolving it with the SMHM relation and a given scatter

σlnM∗ . The formulation follows from the integral

dN
d ln M∗

=

∫
p [ln M∗| ln MH]

dN
d ln MH

d ln MH, (Eq. 13)
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with

p [ln M∗| ln MH] =
1√

2πσ2
lnM∗

exp

(
− (ln M∗ − µlnM∗)2

2σ2
lnM∗

)
, (Eq. 14)

and the dependency M∗ (MH, z).

Where µlnM∗ is given by the SMHM relation described in Stellar Mass - Halo Mass Re-

lation and σlnM∗ is assumed to be 0.7 dex. This PDF describes, for a specific halo mass, the

distribution of associated stellar masses. Eq. 13 generates a number density for some value ln M∗

for some redshift, and when we integrate we obtain a component of the SMF. Conducting this

calculation for multiple stellar masses gives the total SMF.

Obtaining the Supermassive Black Hole Mass Function

To obtain the SMBH mass function (SMBHMF) we convert the stellar mass function to

a black hole mass function using the two-era M∗-MBH relation defined in Stellar Mass - Super-

massive Black Hole Mass Relation. We neglect scatter for this particular conversion because it is

already included in the conversion from MH to M∗ and within the M∗ to ṀBH relation; adding addi-

tional scatter here would introduce degeneracy without providing additional physical information.

With no scatter we can retrieve the SMBHMF directly from the SMF and the appropriate

slope of the M∗-MBH relation in each era defined such that

dN
d ln MBH

=
dN

d ln M∗

d ln M∗
d ln MBH

. (Eq. 15)

This calculation has no explicit dependence on redshift, only implicitly through stellar

mass. The step of finding the SMBHMF is unnecessary when considering a no scatter relation-

ship of M∗-MBH. This is simply the proof of concept for implementing our various established

relationships.

Obtaining the QLF

Convolving the SMF with the relations we defined for M∗-MBH, and with Eq. 9 and Eq. 11

we can calculate the bolometric QLF,
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dN
d ln Lbol

=

∫
p [ln Lbol| ln M∗]

dN
d ln M∗

d ln M∗, (Eq. 16)

with

p [ln Lbol| ln M∗] =
1√

2πσ2
ln ṀBH

exp

(
−
(
ln ṀBH − µln ṀBH

)2
2σ2

ln ṀBH

)
, (Eq. 17)

where in our model the bolometric QLF is equivalent to a SMBH accretion rate function due to the

functions only differing by a constant (see Eq. 11).

The bolometric luminosity (or SMBH accretion rate) PDF (Eq. 17) is a product of the

model described in Universal Supermassive Black Hole Accretion Model, with mean and standard

deviation

µln ṀBH
= µlnX + ln

〈
ṀBH

〉
and

σln ṀBH
= σlnX

respectively.

The formulation for the mean is derived from Eq. 7 and Eq. 9. The standard deviation

remains exactly σlnX due to the values only differing by a constant. The value for ln ṀBH in the

PDF is the direct conversion from Lbol using Eq. 11. Eq. 17 describes, for a specific quasar

bolometric luminosity, a distribution of accretion rates. The last fractional quantity in Eq. 16

represents components of the SMF. An example of our predicted QLF for a representative z value

can be seen in 3

To ensure the accretion relation we established follows some form of continuity, we include

a smooth linear transition between the pre-disk and post-disk σlnX values. This transition expands

out from M∗crit spanning an equal fraction into both the pre-disk era and the “growth” regime of

the post-disk era.

This “growth” regime include all bins with an M∗ value greater than M∗crit but also an M∗-
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Figure 3: Our predicted QLF with contributions broken down for the pre- and post-disk eras. The
black dashed line is our predicted QLF, and solid black line is the QLF best fit to observational data
from [15]. Gray scatter correspond to their uncertainty on their best fit parameters to the observa-
tional data. The red and blue dashed lines correspond to the pre-disk and post-disk contributions
to the predicted QLF respectively.

MBH slope not within 5% of the local scaling relation (i.e. d lnMBH
d lnM∗

> 1.05). The variations in σlnX

that result from this linear transition can be seen in Figure 2.

Since µlnX depends on σlnX, seen in Eq. 7, it also follows the smooth transition across the

cut-off. This behavior also influences µln ṀBH
due to its dependency on µlnX.

Statistical Extractions

Along with a direct comparison of our QLF model to compiled quasar detection data, we

compare aspects of our model to other observational data. The two aspects we explore are SMBH
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duty cycles (f (λsBHAR > 0.01)) and specific black hole accretion rates (λsBHAR). We utilize data

compiled in [16] to make these comparisons. For the two quantities we explore, we explain how

[16] define them qualitatively and quantitatively, and how we implement those definitions with our

own models.

Specific Black Hole Accretion Rate

This quantity is explained thoroughly in §3.1 and Equation 2 of [16]. We summarize the

main points of their definitions needed to make a comparison: λsBHAR is the rate of accretion onto

a central SMBH normalized to the host galaxy’s stellar mass.

It is defined mathematically as

λsBHAR =
kbolLX

1.3× 1038erg s−1 × 0.002 M∗
M�

, (Eq. 18)

where kbol is a bolometric correction factor andLX is the rest-frame X-ray luminosity of the SMBH.

We assume that kbolLX = Lbol.

They state the scaling factors were chosen so that λsBHAR ≈ η under the assumption that

there is a direct scaling relation between the SMBH and its host galaxy. When you replace 0.002 M∗
M�

with MBH, Eq. 18 is exactly the Eddington ratio.

The main difference of our model is that it explores a scaling relation that is not direct, so we

compare our model to the [16] data using two different methods: (1) We will assume λsBHAR = η

and use the η distributions of our model (see Figure 2) as λsBHAR when comparing to their data. (2)

We use their definition exactly by using ṀBH distributions of our model (see Figure 2) along with

Eq. 11 to calculate Lbol. We then use this value in Eq. 18.

We believe method (2) will provide the best possible comparison as it most closely re-

sembles their methods; their study’s values are not directly Eddington ratios, but are a result of

post-processed observational data. We conduct the process for method (1) to explore discrepan-

cies.

Duty Cycle

In [16], they define the duty cycle in §3.4 as the fraction of central SMBHs that are accreting
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above the limit λsBHAR = 0.01. The fractional duty cycle of a given stellar mass at a given redshift

(fraction of SMBH with λsBHAR > 0.01) is defined as f(λsBHAR > 0.01) in Equation 3 of [16].

We extrapolate their equation to fit our model in two steps. First we define a duty cycle for

a singular M∗ and redshift,

f(λsBHAR > 0.01,M∗, z) =

∫ ∞
−4.6

p (lnλsBHAR| ln M∗, z) d lnλsBHAR, (Eq. 19)

where p (lnλsBHAR| ln M∗, z) is the probability distribution of λsBHAR calculated as explained in

Specific Black Hole Accretion Rate by use of methods (1) and/or (2) and −4.6 ≈ log [0.01].

When plotting the fractional duty cycle, the data was binned into different stellar mass

ranges. So, second we consider the stellar mass weights that are naturally seen in observational

data by implementing the SMF into the calculation with our model’s data. To do this we integrate

the duty cycle over the stellar mass range using the SMF as a weight, seen by

f(λsBHAR > 0.01) =

∫ M2
∗

M1
∗
f (lnλsBHAR| ln M∗, z) dN

d lnM∗
d ln M∗∫ M2

∗
M1

∗

dN
d lnM∗

d ln M∗
, (Eq. 20)

where M1
∗ and M2

∗ corresponds to the edges of the stellar mass bin we plot the fractional duty

cycle for. The duty cycle for methods (1) and (2) can be seen in the left panels of Figures 4 and 5

respectively.

Average Specific Black Hole Accretion Rate

The average λsBHAR of AGN (〈λsBHAR〉) is defined in [16] §3.4 as the average λsBHAR for

galaxies with SMBH accretion at a rate λsBHAR > 0.01. We calculate this value from our model

similarly to how we did for the duty cycle. Modifying Equation 4 in [16] we get our formulation

as

〈λsBHAR〉 (M∗, z) =

∫ ∞
−4.6

p (lnλsBHAR| ln M∗, z)λsBHARd lnλsBHAR, (Eq. 21)

which fits into
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< λsBHAR >=
1

f(λsBHAR > 0.01)
×
∫ M2

∗
M1

∗
< λsBHAR > (M∗, z) dN

d lnM∗
d ln M∗∫ M2

∗
M1

∗

dN
d lnM∗

d ln M∗
. (Eq. 22)

The value 〈λsBHAR〉 for methods (1) and (2) can be seen in the right panels of Figures 4 and

5 respectively.
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Figure 4: Left panel: f (λsBHAR > 0.01) as described in Duty Cycle. Right panel: 〈λsBHAR〉 as
described in Average Specific Black Hole Accretion Rate. The lower mass bins are not displayed
in this panel as there was significant uncertainty in the observational data (see [16] for additional
details). In both panels, the dotted points with error bars represent data from [16], and the smooth
lines represent the predictions of our model. The different colored lines correspond to different
mass bins and are labeled in a legend that applies to both panels. In this figure, we calculated the
quantities from our model using the assumption λsBHAR = η (method (1) in Specific Black Hole
Accretion Rate).
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Figure 5: Same as Figure 4 but using method (2) as described in Specific Black Hole Accretion
Rate.
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SECTION III

RESULTS

The Predicted QLF

The shape of our predicted QLF, seen in Figures 3 and 6, is defined by two distinct peaks;

one at an un-observable low luminosity and one within the observable luminosity range. As seen

in these Figures, the peak at low luminosity is dominated by quasars populating the pre-disk era.

The higher luminosity peak is dominated by quasars of the post-disk era.
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Figure 6: Same as Figure 3 but for various redshift values ranging from 0 to 4. The axes on the
smaller plots are identical to those on the largest plot.

When analyzing our predicted QLF, we compare to observational data compiled in [15],

which is an update on the [17] study. Within their study, they produce constraints on the bolometric

QLF from z = 0 to z = 7. They analyze multi-band observational data to do so. The limitations of

this comparison comes from the lack of observational data at the low luminosity end which is also

where our model differs from most others.

Our predicted QLF shape differs from typical QLF models which tend to express a “knee”

fit function (e.g. the single turnover or change in slope which can be seen in the [15] fits). Instead,
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in our prediction, we see a valley produced at the low luminosity end due to the gap between each

eras’ contribution to the overall QLF. This gap is due to the nature of the universal accretion rate

model our study implements. Our model produces accretion property distributions that differ for

various M∗ values and between the pre-disk and post-disk eras.

The gap is partially a result of the σlnX parameters we implement, and the gap would

narrow slightly if the two σlnX values were chosen to be closer in quantity. If we had chosen one

representative accretion distribution our predicted shape would more resemble that of many other

studies. The “knee” shape most studies see results from a constant Eddington ratio distribution

which produces that single turnover function. Again, since the differences in shapes occurs at the

un-observable end of the QLF, direct exploration is limited. We will explore this problem again

later on.

Looking at the observable end of the QLF, our predictions agrees fairly well with observa-

tional data. Some z values match much better than others. For example, looking at Figure 6, our

predicted QLF from z = 1.5 to z = 2.5 struggles to match the observable data more than other z

values.

It is important to note that the observational data at higher z values becomes more scarce

and that lower luminosity AGN are harder to detect. These observational biases are not something

we directly take into account when producing our predictions and thus reveals another limitation

in this direct comparison to observed QLF data.

The [15] study finds that the low luminosity end of their fits become progressively steeper

at higher redshifts. We also see this behavior in our predictions; higher redshift values shift the

contribution balance away from the post-disk era and towards the pre-disk era. This produces a

larger peak to peak difference between those contributions thus increasing the slope of the QLF at

the low luminosity end.

We explore the best fit parameters of our QLF model to this observational data later in the

section.
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The Duty Cycle and Average Specific Black Hole Accretion Rate

In Statistical Extractions we discussed how to further explore our model’s predictions

through f (λsBHAR > 0.01) and 〈λsBHAR〉. We did this utilizing two methods (1) assuming λsBHAR =

η and (2) using their exact definition for λsBHAR. The results of these methods can be seen in

Figures 4 and 5 respectively. We first discuss possible trends in the [16] data we compare to, then

discuss the co-existence or lack there of these trend in our predictions. Note that the uncertainty

associated with the observational data is quite large for some points and the trends we claim to see

are considered within these uncertainties.

On the Duty Cycle

For the duty cycle (left panels of Figures 4 and 5) we point out two behaviors of the [16]

data: (i) Looking at the mass bins collectively, there tends to be higher f (λsBHAR > 0.01) for larger

M∗. Of the highest two mass bins, each are about half above and half below the other. This could

imply that one bin is actually completely above or below the other, or simply that they do overlap

at some points. Considering the uncertainty on the data, each scenario is equally likely. (ii) Each

mass bin’s f (λsBHAR > 0.01) tends to increase with increasing redshift up to a point, after which

we see a decrease. This does not hold for the lowest mass bins, but the study claims the lowest

masses likely have larger uncertainties associated.

Looking at method (1) of our model’s predictions, behavior (i) holds up for the most part

for all mass bins. Behavior (ii) also holds up except instead of a decrease, our predictions tend to

plateau as z increases. We also see that all of the mass bins in our predictions tend to exhibit a

higher f (λsBHAR > 0.01) than the [16] data.

Looking at method (2) of our model’s predictions, behavior (i) does not hold well apart

from the lowest mass bins having smaller f (λsBHAR > 0.01) than the highest mass bins. We also

see some overlapping in the highest mass bins’ values at higher redshifts which resembles the

overlap seen in the observational data. Behavior (ii) holds in the same way as it did for method (1).

We also see that for the lowest three mass bins, our predictions show much lower f (λsBHAR > 0.01)

than what the [16] data exhibits, but the highest mass bins match better than they did for method
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(1).

On the Average Specific Black Hole Accretion Rate

For the average λsBHAR (right panels of Figures 4 and 5) we point out two behaviors of

the [16] data: (i) Opposite to what f (λsBHAR > 0.01) showed, 〈λsBHAR〉 tends to decrease with

higher mass bins. We again see an overlapping of the highest two mass bins. (ii) Each mass bin’s

〈λsBHAR〉 tends to increase with increasing redshift, apart from a few points. Also note that the

〈λsBHAR〉 values tend to have much larger relative uncertainty than the fractional duty cycle.

Looking at method (1) of our model’s predictions, behavior (i) holds apart from the lowest

mass bin which overlaps with the higher mass bins and tends to under-predict the observational

data. Behavior (ii) holds but again exhibiting the plateau at higher redshift. However, the plateau

behavior seems to match the observational data better for f (λsBHAR > 0.01) than for 〈λsBHAR〉.

Looking at method (2) of our model’s predictions, both behaviors (i) and (ii) hold in similar

ways as they did for method (1). Though it could be said that the second to lowest mass bin matches

the observational data better than it did for method (1), and the lowest mass bin under-predicts the

observational data more than method (1). It seems our predictions for 〈λsBHAR〉 vary little between

methods (1) and (2). The major differences in the methods appears in f (λsBHAR > 0.01) and

mainly in the lowest mass bins.

Which method provides an objectively better comparison to observable data is hard to say.

In our study, we favor method (2) as it most closely resembles how the [16] study processed

their data. We explore the best fit parameters of our QLF model by fitting method (2) to this

observational data. We discuss this process in the following sub-section.

Best Fit Parameters

We have three free parameters in our QLF model (pre-disk σlnX, post-disk σlnX, and M∗crit)

that we want to constrain using the observational data. Doing this will allow us to make more

confident conclusions on the results of this study. We find our best fit parameters by calculating the

least squares value for a 3-dimensional parameter space. We limit the parameter space to contain

only physically reasonable sets of values for each of our three free parameters.
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Figure 7: Likelihood of best fit grids to the [15] data for the free parameters M∗crit and post-
disk σlnX at various redshifts. These are plotted assuming the third parameter, pre-disk σlnX, is
optimized. The dashed black lines corresponds to a contour of χ2 = 10. The color-bar applies to
all grids and displays χ2 or the goodness of fit. Values closer to zero correspond to a better fit to
the data.

The first fit we produce is comparing our predicted bolometric QLF to the compiled obser-

vational data in the [15] study. Their study includes uncertainties on their best fit parameters, which

propagates to their QLF fit curves and can be seen in Figures 3 and 6 as the gray area around said

curves. We choose to ignore these uncertainties when running our script since we are comparing

to a fit to observational data and not directly to the observational data itself.

We only fit the bolometric QLF between the luminosity range of 108.95 to 1014.95Lbol/L�

since that is where the majority of the [15] observational data was available. The result of this

fit can be seen in Figure 7. We find a fairly consistent set of best fit parameters across different
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Figure 8: Likelihood of best fit grids for all three free parameters to the [16] data. In each 2-
dimensional plot the third parameter is optimized. The dashed line corresponds to pre-disk σlnX =
post-disk σlnX. The values above the line are not expected to be physically reasonable for our
model.

redshift values. The fits become less consistent starting at z = 5 but the observational data available

at higher redshift is scarce. We only display the parameter space of two parameters, post-disk σlnX

and M∗crit, since the third parameter, pre-disk σlnX is very poorly constrained by the [15] data.

These 2-dimensional parameter spaces are displayed assuming that the 3rd parameter is optimized.

The second fit we produce is comparing the observational data of [16], f (λsBHAR > 0.01)

and 〈λsBHAR〉, to predictions produced using our models and relations. When running our script,

we fit f (λsBHAR > 0.01) and 〈λsBHAR〉 simultaneously. We do this both across all redshift values

(see Figure 8), and for each redshift individually (see Figure 9).
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We weigh our fit using the error bars provided by the [16] study. These are implemented

in the denominator of the least squares sum, and we cap the ratio of the prediction vs. observation

difference squared over the error squared at 100. This ensures that our fits will not fixate on the

points with the smallest errors since the errors vary so drastically.

In Figure 8, we display all three 2-dimensional parameter spaces in a corner layout, each

space assuming the 3rd unseen parameter is optimized. We find that the best fit values for M∗crit

and post-disk σlnX align with what we saw in our predicted QLF fits. Unlike the QLF fits, the

pre-disk σlnX is constrained better allowing us to confidently pick all three optimized parameters

for our study.

We find that there is not a significant trend with redshift when fitting each redshift value

independently instead of together (see Figure 9). The amount of data available to fit is already lim-

ited when considering every redshift value and becomes even more limited for individual redshifts.

Therefore, running fits based on individual redshifts is not likely to give us a confident constraint

on our model’s free parameters.
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Figure 9: Same as Figure 8 but for the individual redshift values z = 0.3, 0.75, 1.25, 1.75, 2.25,
2.75, and 3.5. All axes are identical but the color scale varies between plots.
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SECTION IV

DISCUSSION

The Free Parameters

The effects of varying our model’s three free parameters on the overall shape of the QLF

can be seen in Figure 10 and are discussed as follows.

1040 1042 1044 1046 1048 1050

log10[Lbol/L ]
11
10

9
8
7
6
5
4
3
2

lo
g 1

0
(M

pc
3 lo

g 1
0[

L b
ol

]
1 )

M*crit = 109.0 M
M*crit = 1010.0 M
M*crit = 1011.0 M
Shen et al. 2020

1040 1042 1044 1046 1048 1050

log10[Lbol/L ]

pre-disk lnX = 2.0 dex
pre-disk lnX = 3.0 dex
pre-disk lnX = 4.0 dex
Shen et al. 2020

1040 1042 1044 1046 1048 1050

log10[Lbol/L ]

post-disk lnX = 1.5 dex
post-disk lnX = 2.0 dex
post-disk lnX = 2.5 dex
Shen et al. 2020

Figure 10: Effects of varying the three free parameters of our model on the predicted QLF. Non-
solid black lines correspond to the total predicted QLF. Red lines correspond to the pre-disk con-
tribution to the predicted QLF. Blue lines correspond to the post-disk contribution. The solid black
line corresponds to the observational fit of [15]. The left, middle, and right sub-plots correspond to
variances in the M∗crit, pre-disk σlnX, and post-disk σlnX parameters respectively. In each sub-plot,
if an era is not affected by varying the free parameter displayed then its contribution is not plotted.

Pre-disk σlnX Parameter

This parameter only affects the pre-disk contribution to the predicted QLF noticeably.

Changes in this value only affects the very low and very high luminosity (less so) ends of the QLF.

By increasing the value we see a decrease in quasar density at lower un-observable luminosities

and an increase in quasar density at higher luminosities where observational data is available.

Overall this parameter does not significantly affect the shape of our predicted QLF thus

30



we find it reasonable to accept the best fit value of ≈ 3.75 dex. This value is well within the fit

constraint that the [16] data gave through our least squares calculations. This value being fairly

high also confirms the idea that the pre-disk accretion events are scattered and inconsistent.

Post-disk σlnX Parameter

This parameter only affects the post-disk era. An increase in this value sees an increase

in density at the high luminosity end of the QLF. The increased scatter also sees a corresponding

decrease in the mean values for luminosity (recall the dependency of µlnX on σlnX). This change

in mean values follows directly from the way we set-up the SMBH accretion model (see Universal

Supermassive Black Hole Accretion Model).

Based on both of the observational fits we ran, we find the best fit value for this parameter

to be ≈ 2.0 dex. This value is lower than the pre-disk value which is the relation we expected to

see to confirm the accretion behaviors we saw in the simulations. The smaller value implies that

the accretion events in the post-disk era are much more consistent than those in the pre-disk era.

The M∗crit Parameter

This parameter affected the post-disk era growth regime in the most noticeable way. It is

also the parameter that has the largest effect on the overall shape of the predicted QLF.

When a low mass value is chosen for M∗crit, we see a dramatic increase in lower luminosity

quasar density. In this case the contributions come from mainly lower mass SMBHs which end up

corresponding to lower luminosity quasars (see Figure 1). When a larger mass value for M∗crit is

chosen, a much larger range of SMBH masses contribute, from which the more massive SMBHs

will produce more luminous quasars increasing the high luminosity density of the predicted QLF.

For this parameter, a value close to M∗crit = 1010 or 1011M∗/M� would resemble the de-

layed growth behavior this study aimed to explore. We find that our fits support a best fit value of

M∗crit ≈ 1010.25M∗/M� thus the delayed growth behavior appears to be favored.

On the Lack of Low Luminosity Quasar Detection

The overall shape of our predicted QLF varies enough from the “knee” fit function (typ-

ically produced by QLF models assuming continuous BH growth) to provoke a consideration on
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the extent to which our best fit values are valid. Fitting our predicted QLF to those from [15]

proves difficult since our predictions exhibit a double turnover behavior while theirs exhibit a sin-

gle turnover. This typically proves hardest to match at the knee of their QLF and at the high

luminosity end of the QLF.

We address a possible bias in our consideration on what constitutes a valid pre-disk σlnX

value. We have little observational data to motivate a fit at the low luminosity end of the QLF where

the pre-disk portion contributes. Our QLF fits (Figure 7) display the other two free parameters

with the third (pre-disk σlnX) optimized. These optimized values imply a best-fit value of pre-disk

σlnX ≈ 3-4 dex. But these values are not heavily favored, and if the actual value is dramatically

higher, then the high luminosity end of the QLF will be affect. If this is the case, the other free

parameters will need to be adjusted in order compensate for the dramatic change to the predicted

QLF. Changing all the best fit parameters in this way could potentially change the results of this

study.

We ran fits to f (λsBHAR > 0.01) and 〈λsBHAR〉 to provide a potential resolution to this issue.

We find that again, M∗crit and post-disk σlnX and the most constrained, but pre-disk σlnX is con-

strained better than it was by the QLF fits. This is likely due to the fact that pre-disk σlnX affects

mostly lower luminosity AGN, thus lower mass BHs, and finally lower galaxy stellar masses. A

decent portion of the [16] observational data was for lower stellar masses which allowed a more

reliable test for an optimized pre-disk σlnX value.

The QLF fits demonstrated a preferred range of values for M∗crit with smooth transitions to

the values surrounding, but the f (λsBHAR > 0.01) and 〈λsBHAR〉 fits demonstrated a hard cut off at

higher values (Figure 8). Looking back at Figure 5 it is clear why this is the case. The highest

mass bins have much larger fractional duty cycles than the lowest masses. The stellar mass bin

containing the value of M∗crit sits directly between the highest and lowest duty cycles.

Our model is set up to produce high mass, high luminosity AGN beginning after the tran-

sition to the post-disk era marked by M∗crit. The definition for the duty cycle we have set up

considers only higher luminosity AGN as quasars thus the duty cycle for M∗ values after M∗crit
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will be much higher than for those before it. Once you begin to raise M∗crit past a stellar mass of

about 1010.5M∗/M�, then higher stellar masses produce far less high luminosity AGN that can be

classified as quasars. This would drop those highest mass bins, in the left panel of Figure 5, down

to similar values that the lowest mass bins have; this would then produce a far worse fit. Thus the

preference for larger M∗crit values drops quickly.
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SECTION V

CONCLUSION

The predicted QLF from our model is based on both observational data and theoretical

behaviors seen in the FIRE simulations. Running fit techniques on our predictions with various

observational data allowed us to quantify the allowed scenarios in which our predicted QLF is

valid. We found fairly well constraints on our best fit parameters that support the behaviors we

aimed to explore.

We found that the best fit values for the pre- and post-disk era σlnX parameters supports

the accretion behavior the simulations exhibit. The SMBH grows slowly through inconsistent

accretion events at first, which is supported by a large σlnX in the pre-disk era. Then coherent

fueling allows the SMBH to grow rapidly and consistently, which is supported by a small σlnX in

the post-disk era. While small and large are relative terms, the main point is that pre-disk σlnX >

post-disk σlnX resembling the difference in accretion event consistency we see in the simulations.

We also found that the allowed best fit values for M∗crit match what was seen in [10]. This

supports the delayed SMBH growth model seen consistently in galaxy formation simulations. The

best fit values here line up with this SMBH growth behavior despite this study using galaxy stellar

mass and bulge mass interchangeably. Also, the delayed growth best fit value for M∗crit is not only

supported by our fit results, but tends to be favored over the purely linear M∗-MBH growth (which

would be represented by a M∗crit ≈ 108.0M� or less). These conclusions hold for the redshift values

of z = 0 to z = 4 that we aimed to explore.

Not only did our model predict a QLF that matches observational data fairly well, but

it also produced predictions for a duty cycle and specific black hole accretion rate that match

observational data. Limitations in matching those quantities lies in the observational uncertainty

associated with lower stellar mass galaxy detection and high redshift detection. The observational

data we compared to only spans redshift values of z = 0 to z = 4.0. Despite the limitations, our
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predictions decently match the observed data both quantitatively and qualitatively.

Implementing an additional sub-model relating galaxy stellar mass to galaxy bulge mass

would be insightful since using them interchangeably is typically only valid for bulge dominated

galaxies. However observational data relating these quantities seems fairly sparse. Returning to

this issue with the desired observational data in the future might be beneficial to confirm the results

of this study further.

It appears that both our model and other typical “knee” fit models for the QLF produce

allowed scenarios for the emergence of the local observed scaling relation between SMBH mass

and galaxy bulge mass. However, this is only considering the limited observational data we have

available, and the main differences between these models seems to appear in the low luminosity

end of the QLF where little to no observational data is available. We also must acknowledge the

difficulty of comparing any model at redshift values higher than z ≈ 4; after this z we struggle due

to the sparseness of the observational data. Further observations which push the known QLF down

to lower luminosities and/or higher redshifts may be able to distinguish between our delayed BH

growth model and models where BHs grow continuously throughout cosmic time.
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