IDENTIFICATION OF *SALMONELLA ENTERICA* SER. TYPHIMURIUM GENES NECESSARY FOR REGULATION OF FLAGELLIN PRODUCTION UNDER SPI-2-INDUCING GROWTH CONDITIONS

An Undergraduate Research Scholars Thesis

by

KATHARINE DIANN ANDREWS

Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor:

Dr. Lydia Bogomolnaya

May 2013

Major: Genetics Biochemistry

TABLE OF CONTENTS

TABLE OF	CONTENTS1
ABSTRACT	
DEDICATIO	DN
ACKNOWL	EDGEMENTS
NOMENCL	ATURE
CHAPTER	
Ι	INTRODUCTION
II	METHODS
III	Strains and growth conditions10Pilot study10Primary screening11Media sensitivity confirmation11Secondary screening12Western blot of select mutants12RESULTS15Pilot study15Primary screening15Media sensitivity confirmation16Secondary screening17Western blot of select mutants18
IV	CONCLUSIONS
REFERENC	ES
APPENDIX	
FIGURES	
TABLES	

ABSTRACT

Identification of *Salmonella enterica* ser. Typhimurium genes necessary for regulation of flagellin production under SPI-2-inducing growth conditions. (May 2013)

Katharine DiAnn Andrews Department of Biochemistry and Biophysics Texas A&M University

Research Advisor: Dr. Lydia Bogomolnaya Department of Microbial and Molecular Pathogenesis Texas A&M Health Science Center

Human food-borne pathogen *Salmonella enterica* ser. Typhimurium has evolved a sophisticated way to avoid the host immune response. *Salmonella* Typhimurium possesses various virulence factors to ensure successful colonization and persistence in the host, including but not limited to, fimbria, <u>Type 3 Secretion Systems</u> (T3SS-1 and T3SS-2), lipopolisaccharides (LPS), and flagella. Unlike many other bacteria, *Salmonella* can not only survive inside macrophages, but also replicate within these host cells. This strategy allows bacteria to stay invisible to the host immune system. Intracellular *Salmonella* can be detected by the host through flagellin recognition by Nod-like receptors (NLRs). NLRs in turn trigger Caspase-1 activation, which ultimately triggers pyroptosis of the host cell (Miao *et al.*, 2011). While sufficiently replicated intracellular *Salmonella* utilizes pyroptosis to be released from the macrophage to infect other host cells, premature activation of pyroptosis could be detrimental for intracellular *Salmonella in vivo*. In defense, *Salmonella* downregulates expression of flagellins through activation of T3SS-2 encoded on SPI (*Salmonella* <u>Pathogenicity Island)-2</u>. The goal of this project was to identify *Salmonella* single deletion mutants that can produce flagella despite SPI-2 activation in order to

expand our knowledge of genetic determinants involved in evasion of premature pyroptosis by *S*. Typhimurium .Screening of a library containing 2639 mutants, resulted in identification of 214 mutant candidates. We demonstrated that one of the mutants, identified and confirmed in our screen, $\Delta STM1697$, was expressing high levels of flagellin, despite expression of active T3SS-2. $\Delta STM1697$, predicted to encode a protein with putative diguanylate cyclase/phosphodiesterase domain 2, could play a role in c-di-GMP (cyclic di-GMP) metabolism. C-di-GMP is bacterial second messenger involved in control of motility/sessility lifestyle of *S*. Typhimurium.

Identification of gene products, such as *STM1697*, involved in protection of *Salmonella* Typhimurium against premature detection by host innate immune system during growth in macrophages will stimulate a search for therapeutic targets to fight typhoid fever.

DEDICATION

This report is dedicated to the Andrews-Polymenis laboratory, all of who have taught me an incredible amount about the world of scientific research in the past two and a half years.

ACKNOWLEDGEMENTS

I would like to acknowledge the Andrews-Polymenis laboratory for all of their enthusiastic guidance and support throughout this project. Specifically, I would like to thank Dr. Helene Andrews-Polymenis for opening the doors of her laboratory to me and allowing me the opportunity to learn under her expertise. Thank you to Dr. Johanna Eflenbein for a careful and critical reading of this manuscript. Also, thank you to Marissa Talamantes for helping me with supplies and preparation. I would especially like to thank my research advisor, Dr. Lydia Bogomolnaya, for gifting me with her project and imparting an incredible wealth of knowledge in bacterial science.

NOMENCLATURE

SCV	Salmonella-containing vacuole
T3SS	Type III Secretion System
SPI-1	Salmonella-pathogenicity-island-1
SPI-2	Salmonella-pathogenicity-island-2
NLR	Nod-like receptor
STM	Salmonella Typhimurium
NLRC4	NLR family CARD domain containing protein 4
NLRP3	NLR family pyrin domain containing protein 3
WT	Wild Type
SGD	Single gene deletion
LB	Luria-Bertani
MES	2-(N-morpholino)ethanesulfonic acid
OD ₆₀₀	Optical density measured at 600 nanometer wavelength
PBS	Phosphate Buffered Saline
SDS	Sodium Dodecyl Sulfate
TCA	Trichloroacetic acid
SDS-PAGE	SDS-Polyacrylamide gel electrophoresis
TEMED	(N,N,N',N')-Tetramethylethylenediamine
V	Volts
PVDF	Polyvinylidene fluoride
AP	Alkaline phosphatase

CHAPTER I

INTRODUCTION

Salmonella enterica subspecies *enterica* is a gram-negative, motile, rod-shaped bacterium from the family *Enterobacteriaceae*. Non-typhoidal *Salmonella enterica* ser. Typhimurium is a leading cause of bacterial food-borne gastroenteritis in the United States and worldwide, resulting in approximately 1 million cases in the United States alone each year. It is a leading food-borne cause of death, particularly among elderly, young, and immunocompromised patients (Voetsch *et. al.* 2004; CDC, 2011).

Salmonella Typhimurium is an intracellular pathogen, and replication occurs within a *Salmonella*-containing vacuoule (SCV) within macrophages. The *Salmonella* Typhimurium genome encodes two Type III Secretion Systems (T3SS). *Salmonella*-pathogenicity-island-1 (SPI-1) encodes the T3SS-1 necessary for invasion of host cells. Survival within the host macrophage requires expression of a group of virulence genes found within the *Salmonella*-pathogenicity-island-2 (SPI-2) locus (Agbor and McCormick, 2011). Upon entrance into the host cell, expression of SPI-1 is downregulated and SPI-2 upregulated (Miao *et. al.* 2010). SPI-2 encodes the T3SS-2 which secretes effector molecules that regulate maturation of the SCV and prevent host detection (Coombes *et. al.*, 2004). An important component of *Salmonella* virulence is the SPI-2-mediated downregulation of flagellin that enables evasion of the host innate immune system, however the specific role of the T3SS-2 in this process remains poorly understood (Miao *et. al.*, 2010).

Macrophages use Nod-like receptors (NLRs) of the innate immune system to detect the presence of intracellular *S*. Typhimurium T3SS-1 rod protein, PrgJ, and flagellin. Timely NLRC4 (NLR family CARD domain containing protein 4) detection is critical to host survival, and NLRC4 knockout mice are susceptible to infection with both wild type (WT) and constitutively expressing flagellin mutant *S*. Typhimurium, while NLRC4 +/+ mice efficiently clear off flagellin-expressing mutants (Miao *et. al.*, 2010).

Specifically, NLRC4 recognizes PrgJ and flagellin by their translocation into host cells and in response, activates Caspase-1. NLRP3 (NLR family pyrin domain containing protein 3) also detects *S*. Typhimurium and triggers Caspase-1 activity but by unknown mechanisms (Broz *et. al.*, 2010). Caspase-1 triggers cytokine-independent pyroptosis of the macrophage, which causes a pro-inflammatory release of cytosolic contents for capture and degradation by neutrophils. *Salmonella* can evade detection by NLRC4 by downregulating SPI-1 expression and upregulating SPI-2, whose T3SS rod protein, SsaI, is not recognized by NLRC4 (Miao *et. al.*, 2011). SPI-2 has also been shown to downregulate flagellin expression, and constitutively expressing flagellin mutants are avirulent in WT mice (Miao *et. al.*, 2010).

While it has been shown that pyroptosis can be a mechanism to release *Salmonella* after sufficient intracellular replication, premature pyroptosis due to host detection results in a clearance of *Salmonella in vivo* (Miao *et. al.*, 2010). Identifying *S*. Typhimurium genes that are critical for the appropriate downregulation of flagellin upon SPI-2 expression can help elucidate the signaling pathway behind *Salmonella* evasion of the host during the intracellular replication period. Ultimately, this knowledge could potentially offer novel therapeutic options.

To identify *S*. Typhimurium genes involved in SPI-2-mediated downregulation of flagellin, we have conducted a screening of our laboratory's collection of *S*. Typhimurium non-polar single gene deletion (SGD) mutants (containing 2639 out of approximately 5000 genes present in the *S*.Typhimurium genome) for mutants which are motile in SPI-2-inducing swimming media (Santiviago *et. al*, 2009; Andrews-Polymenis, unpublished data). SPI-2-inducing media is designed to mimic the SCV environment, and it has been used extensively to study induction of SPI-2 in *Salmonella* (Coombes *et. al.*, 2004). We identified 214 candidate mutants with motility under these conditions and quantitatively confirmed 74 candidates in a secondary screening process. Last, we confirmed flagellin expression on the cell surface and expression of SPI-2 apparatus by Western blotting analysis with anti-flagellin and anti-SPI-2 effector antibodies in five mutants.

CHAPTER II

METHODS

Strains and growth conditions

The strains used in this study were derived from *Salmonella enterica* serovar Typhimurium ATCC14028. A spontaneous nalidixic acid resistant derivative of ATCC14028, HA420 (Bogomolnaya *et al.*, 2008), was used as wild type. All deletion mutants were generated by a previously described method (Datsenko and Wanner, 2009). Mutants in $\Delta STM0557$ (Bogomolnaya *et al.*, 2008) and $\Delta macAB$ (Nishino *et al.*, 2006) were used as positive controls for motility under SPI-2 conditions based on previous observations from our laboratory (unpublished data). All strains were routinely grown in Luria-Bertani (LB)-broth supplemented with 50 mg/L Nalidixic acid or 50 mg/L Kanamycin where appropriate or in SPI-2-inducing media (see below) at 37° C.

Pilot study to determine methodology for SPI-2 motility assay

Motility of *S*. Typhimurium WT, $\Delta STM0557$ (a super-swimmer), and $\Delta macAB$ (previously observed to be expressing flagellins in SPI-2 conditions, unpublished data) strains was determined to verify motility in the nutrient-limited conditions of SPI-2-inducing media. First, colonies were transferred from LB agar to SPI-2 agar, grown overnight, and then transferred to a fresh SPI-2 agar dish and grown overnight.

Primary screening of S. Typhimurium mutants for motility in SPI-2-inducing conditions

A collection of 2639 *S*. Typhimurium SGD mutants arranged in 96-well format was screened for motility in SPI-2-inducing conditions. Colonies were transferred from solid LB agar to SPI-2 agar (1.5% agar, 10 mM KCl, 15 mM (NH₄)SO₄, 1 mM K₂SO₄, 160 mM MgCl₂, 674 mM KH₂PO₄, 160 mM 2-(N-morpholino)ethanesulfonic acid (MES), 0.6% glycerol, 0.2% casamino acids, diluted in ddH₂O and adjusted to pH 5.8) with a 96-pin metal replicator and grown overnight at 37°C. This process was repeated once to ensure maximal expression of SPI-2. Colonies were then transferred to SPI-2 swimming plates (0.3% agar in SPI-2 media), and allowed to grow for approximately 3 hours at 37°C. Mutants with motility halos on at least three of the four plates were designated as a candidate for secondary screening. Wild type (WT) and *ΔSTM0557* were added to each plate as negative and positive controls, respectively. Also, mutants that were unable to maintain growth on SPI-2 agar were recorded.

SPI-2 media sensitivity confirmation

Mutants in the primary screen unable to grow in SPI-2 conditions were confirmed before being removed from the screening process. SPI-2 media sensitive mutants were streaked in triplicate on LB, SPI-2, and M9 Minimal (1.6% agar, 1 mM MgSO₄, 0.2% glucose, 0.1 mM CaCl₂, 10% 10x M9 salts (0.25 M Na₂HPO₄ × 2H₂O, 0.22 M KH₂PO₄, 0.085 M NaCl, 0.187 M NH₄Cl) diluted in ddH₂O) agar plates and incubated overnight at 37°C. Growth was recorded and mutants that were sensitive to SPI-2 media were removed from the screening process.

Secondary screening to quantify motility halo diameters of primary candidates

A collection of 214 mutants underwent a quantitative secondary screening to verify motility in SPI-2 inducing conditions, as well as identify mutants displaying a significant phenotype. Each candidate was inoculated in both 5 mL LB-broth (supplemented with 50 mg/L Nalidixic acid or 50 mg/L Kanamycin where appropriate), as well as 5 mL SPI-2 liquid media and grown overnight at 37° C. The OD₆₀₀ of each culture was measured, and samples were diluted to a constant cell density using Phosphate Buffered Saline (PBS). A 5 µL aliquot of each LB culture was spotted on LB swimming agar, and a 5 µL aliquot of each SPI-2 culture was spotted on SPI-2 swimming agar. WT and *AmotA* (non-motile mutant) were added as positive and negative controls, respectively, to each LB agar plate, while *ASTM0557* and WT were added as positive and negative controls, respectively, to each SPI-2 agar plate. LB agar plates were incubated at 37° C for 3 hours, while SPI-2 agar plates were incubated at 37° C for 6 hours. The diameter of each motility halo was recorded.

Western blot of select confirmed mutants

Five mutants confirmed in the secondary screen process were selected for Western blotting analysis. Each mutant was inoculated in both 5 mL LB-broth (supplemented with 50 mg/L Nalidixic acid or 50 mg/L Kanamycin where appropriate) as well as SPI-2 liquid media and grown overnight at 37°C.

Cell concentration for each culture was normalized by reading the OD_{600} . LB and SPI-2 cultures were centrifuged at maximum speed (Eppendorf 5415) for 10 minutes and resuspended in 1 mL PBS. Bacteria were vortexed for 5 minutes each to generate a sheared flagella fraction, and cells

were separated by centrifugation for 5 minutes at maximum speed. The flagella-containing fractions were collected and Trichloroacetic acid (TCA) was added to make a final concentration of 6%. Samples were kept at 4°C overnight, followed by centrifugation at maximum speed for 15 minutes at 4°C. Precipitates were washed with 300 µL acetone twice. Resulting samples (flagella fraction), were resuspended in 100 µL of 2X Sodium Dodecyl Sulfate (SDS) sample buffer. Samples were boiled for 10 minutes and stored at -20°C until use. A whole cell lysate fraction was also prepared with the original bacterial pellet. After the removal of the sheared flagella fraction, the remaining pellet was resuspended in 200 µL 2X SDS sample buffer and boiled for 10 minutes. Whole cell lysates were stored at -20°C until use. A sample of SPI-2 culture supernatant was prepared to verify functioning SPI-2 machinery by removing the supernatant of the SPI-2 liquid cultures prior to flagella and whole cell fraction preparation. This supernatant was incubated with 6% TCA on ice for 30 minutes, followed by centrifugation for 30 minutes at 4000 rpm at 4°C (Sorvall Legend RT). The samples were washed twice with 300 µL acetone, and centrifuged briefly at maximum speed to generate a pellet. This pellet was resuspended in 100 µL 2X SDS sample buffer and boiled for 10 minutes. SPI-2 supernatant samples were stored at -20°C until use.

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) was performed using a 12% polyacrylamide gel (1.25 mL 4x lower Tris-Cl/SDS buffer , pH 8.8 (Sambrook and Russell, 2001), 2 mL of 30% acrylamide/bis solution, 37.5:1 (Bio-Rad), 1.725 mL H₂O, 30 μ L of 10% ammonium persulfate, and 10 uL (N,N,N',N')-Tetramethylethylenediamine (TEMED)) with a stacking layer (0.3875 mL 4x upper Tris/SDS, pH 6.8 (Sambrook and Russell, 2001), 0.234 mL of 30% acrylamide/bis solution, 37.5:1, 0.93 mL H₂O, 18 uL of 10% ammonium persulfate, and

6 uL TEMED). All samples were loaded, including WT, $\Delta STM0557$ (a super-swimmer), $\Delta fljB$, $\Delta fliC$ (mutants that does not produce flagella), $\Delta ssaK$ (mutant lacking SPI-2 machinery), and $\Delta sseD$ (mutant in SPI-2 effector) all prepared under LB and SPI-2 conditions. The gel underwent electrophoresis for 1 hour at 150 Volts (V). Proteins were transferred to an Immobilon-P polyvinylidene fluoride (PVDF) membrane (Millipore) for 1 hour at 100V at room temperature with stirring. After transfer, the membrane was blocked for 1 hour in 5% milk/0.1% Tween/PBS (blocking buffer) at room temperature.

Rabbit anti-*fljB*, *-fliC* (Difco) and *sseD* (gift from John Brumell, University of Toronto) antibodies were used at 1:1,000; 1:10,000 and 1:10,000 dilution in blocking buffer, respectively, to confirm flagellar (*fljB* and *fliC*) and SPI-2 effector expression (*sseD*). The membrane was placed in 10 mL primary antibody solution in blocking buffer, and incubated for 1 hour at room temperature. The membrane was washed four times with 0.1%/Tween/PBS for 10 minutes each, followed by a 45 minute incubation at room temperature with anti-rabbit goat IgG antibody conjugated with alkaline phosphatase (AP) (Sigma) used at 1:10,000 dilution in blocking buffer. The membrane was washed 3 times in 0.1%/Tween/PBS for 10 minutes each at room temperature, followed by a single wash in PBS for 10 minutes. The membrane was pressed against blotting paper for 5 minutes, followed by incubation with Immun-Star AP substrate (Bio-Rad) for 5 minutes at room temperature. The membrane was again pressed against blotting paper for 5 minutes, followed by X-ray detection.

CHAPTER III

RESULTS

Pilot study to determine methodology for SPI-2 motility assay.

To optimize the conditions for SPI-2 activation we used *S*. Typhimurium WT, $\Delta STM0557$, and $\Delta macAB$ strains. Wild type cells are not expressing flagellins on the surface when T3SS-2 is expressed and, therefore, cells are expected to be non-motile on SPI-2 motility plates. We used WT cells in this experiment as a control for SPI-2 induction. In previous work in the laboratory, it was shown that some mutants, namely, $\Delta STM557$ and $\Delta macAB$, are still expressing flagellins on the cell surface even when T3SS-2 is active (unpublished data). We used these mutants as the positive controls for swimming plates to determine the time required for initiation of swimming motility

Motility of *S*. Typhimurium $\Delta STM0557$, and $\Delta macAB$ strains, but not WT strain was visible on SPI-2 swimming agar best when strains were grown on LB agar first, then transferred to SPI-2 agar twice consecutively as described in Chapter II (data not shown). This double transfer ensures stored nutrients are depleted, which is necessary for SPI-2 induction. From this experiment, we also concluded that SPI-2-swimming plates should be incubated for 3 hours at 37 $^{\circ}$ C before motility halos become visible in 96-well format and 6 hours when mutants are individually spotted on swimming plates.

Primary screening of S. Typhimurium mutants for motility in SPI-2-inducing conditions

From the collection of 2639 *S*. Typhimurium SGD mutants screened for motility in SPI-2inducing conditions, 214 mutants created visible motility halos on at least three out of four SPI-2 agar plates within the three hour incubation period. A representative image of a motility halo from the primary screen is shown in Figure 1. These 214 mutants were classified using the Clusters of Orthologous Groups (COGs) online database, shown in Table A1. The COGs classifications varied significantly across the 214 mutants, lending no single majority class. However, some classifications were overrepresented, including transcription (8.5%), as well as amino acid and carbohydrate transport and metabolism (11% and 7.5% respectively). The entire breakdown for all clusters identified is shown in Figure 2. These classifications aligned with known functions of some mutants. For example, the *STM3860* is encoding for a homolog of *E.coli* transcriptional regulator, SgrR, involved in sugar phosphate stress (Horler and Vanderpool, 2009), and this gene was appropriately classified in the COGs database as involved in the amino acid transport and metabolism cluster. Also, the *STM2912* is a predicted LysR-type transcriptional regulator in *Salmonella* important for virulence (Yoon et al, 2011), and this gene was classified as a part of the transcription cluster by COGs.

SPI-2 media sensitivity confirmation

During the primary screening of the SGD library, 48 mutants were found to be sensitive to SPI-2-inducing media. The mutants did not grow, or displayed significant growth defects, on SPI-2inducing media in the 96-well format. These mutants were confirmed in triplicate by streaking on LB, M9 minimal media, and SPI-2 media prior to being removed from the screening process. Mutants confirmed to be sensitive to either M9 minimal, SPI-2, or both medias are listed in Table A3. All mutants were able to grow in LB media. Due to the similarity in M9 minimal and SPI-2 media composition, most mutants sensitive to the M9 minimal environment were also sensitive to SPI-2-inducing conditions. However, *ΔSTM4415*, *ΔSTM4101*, and *ΔSTM3526* were uniquely sensitive to SPI-2-inducing conditions only, suggesting these mutants are sensitive to either the low pH of SPI-2 media (pH 5.8) or an ingredient only found in SPI-2-inducing media. The nature of these mutants' sensitivity to SPI-2 –inducing media conditions is intriguing and will be investigated in the future.

Secondary screening to quantify motility halo diameters of primary candidates

Seventy-four SGD mutants found in the primary screen were individually placed on LB and SPI-2 motility media and incubated for 3 or 6 hours, respectively. Representative plates from the secondary screen are shown in Figures 3 and 4. Following incubation, the diameter of the resulting motility halo was measured for each SGD mutant, and this data was reported as the SGD mutant diameter's percentage of the WT motility halo for each preparation of media (Table 1).

Of the 74 mutants screened in the secondary process, some were confirmed to be producing motility halos in SPI-2-inducing conditions. Student's T-Test was used to determine whether motility halos were larger than WT by a statistically significant amount. Five mutants displaying large SPI-2 motility halos were selected for Western blotting analysis. These five mutants, $\Delta STM1444$ (*slyA*), $\Delta STM1697$, $\Delta STM2151$, $\Delta STM1055$ (*gtgE*), and $\Delta STM3792$, produced motility halos that were on average 263%, 231%, 209%, 180%, and 170% of the WT motility halo size, respectively (Table 1). Three of these mutants, $\Delta STM1444$, $\Delta STM2151$, and $\Delta STM1055$, were confirmed to produce motility halos in SPI-2-inducing conditions that were of a statistically significant difference from the WT halo, as determined by Student's T-Test (p<0.05). Also, $\Delta STM1697$ was found to produce a motility halo of a statistically significant diameter different

from WT on LB media. $\Delta STM1697$ and $\Delta STM3792$ was also producing a significant motility halo on SPI-2 plates (Figure 4) but there was a lot of variation between plates that resulted in high standard deviation. Therefore, we decided to include both $\Delta STM1697$ and $\Delta STM3792$ mutants in the list of candidates selected for Western blotting analysis. $\Delta STM1444$, or $\Delta slyA$, was expected to be motile in SPI-2-inducing conditions, because of the known function of slyA in SPI-2 activation (Fabrega and Vila, 2013). Without slyA, the SPI-2 apparatus cannot be activated, and therefore flagellin expression is not downregulated.

Western blot of select confirmed mutants

Flagellin expression in $\Delta STM1055$, $\Delta STM1444$, $\Delta STM1697$, $\Delta STM2151$, and $\Delta STM3792$ was determined by Western blot analysis probing against the minor *Salmonella* flagellin, FljB, and the major *Salmonella* flagellin, FliC. Strains prepared in LB media were able to express both flagellins when allowed sufficient exposure to X-ray film prior to detection (data not shown).. The exceptions to this are the antibody controls, $\Delta fljB$ and $\Delta fliC$, as expected, as well as $\Delta STM1444$, which is likely due to dilution error during sample preparation. As seen in Figure 5a, significant FljB expression was observed for $\Delta STM0557$, as well as $\Delta STM1697$. Previous experiments in the laboratory have shown that in $\Delta STM0557$ population, FljB and FliC are expressed at approximately equal amounts (unpublished data). Significant FliC expression is observed in all strains, as shown in Figure 5b, except in the antibody controls once again, as well as $\Delta STM1444$ due again to a dilution error. In our WT (S.Typhimurium ATCC14028s) strain, FliC is the predominant from of flagellin (unpublished data), and this is consistent with higher expression of FliC than FljB for WT sample. Interestingly, $\Delta STM1697$ has high expression of both flagellins compared to any of the other mutants.

Strains prepared in SPI-2 media were also used to evaluate flagellin expression. As expected, WT cells under SPI-2 conditions were producing neither FliC nor FljB (Figures 6a and 6b). In agreement with previous data from the lab (unpublished data), both FljB and FliC were expressed on the cell surface of $\Delta STM0557$ mutant. In addition, FljB expression was very high in $\Delta STM1697$ (Figure 6a). When allowed a longer exposure time to X-ray film prior to detection, FljB expression could be seen for $\Delta STM1055$, $\Delta STM2151$, and $\Delta STM1444$ (data not shown)... FliC expression was very high in $\Delta STM1697$ (Figure 6b), while a longer exposure time was required to show FliC expression in $\Delta STM1055$, and $\Delta STM1444$ (data not shown).

Supernatant of SPI-2 samples was also collected to probe against T3SS-2 effector molecule, SseD, in an attempt to determine if SPI-2 activation occurred for each strain. An operating T3SS-2 apparatus will secrete SseD effector molecules, which can be found in the supernatant of liquid cultures. Western blot with anti-*sseD* antibodies revealed that all mutants except $\Delta STM1444$ were activating T3SS-2 machinery in SPI-2-inducing conditions (Figure 7). $\Delta sSTM1444$, as mentioned previously, lacks the ability to activate SPI-2, and therefore flagellin is not receiving downregulation signals. Included samples were an antibody control, $\Delta sseD$, and $\Delta ssaK$, a mutant that cannot form SPI-2 machinery (Fabrega and Vila, 2013), neither of which showed presence of SPI-2 effector, SseD, as expected. Therefore, motility for these mutants as verified by flagellin expression is occurring simultaneously with SPI-2 activation.

 $\Delta STM1697$ shows the most significant phenotype of the five mutants selected for Western analysis. *STM1697*, predicted to encode a protein with putative diguanylate cyclase/phosphodiesterase domain 2, could play a role in c-di-GMP (cyclic di-GMP) metabolism (Jonas et al, 2010). C-di-GMP is an important bacterial second messenger involved in regulation of many cellular processes including transition from motility to sessility (Romling *et. al*, 2013). This is consistent with our findings, and suggests that Δ*STM1697* may overexpress flagellin or lack an ability to regulate flagellin expression, regardless of SPI-2 effector presence.

CHAPTER IV

CONCLUSIONS

This study initiated a screen of our laboratory's SGD mutant library for *Salmonella* Typhimurium mutants that are motile under SPI-2-inducing conditions. While we are excited to continue the screening of our library, we currently report five mutants, $\Delta STM1055$, $\Delta STM1444$, $\Delta STM1697$, $\Delta STM2151$, and $\Delta STM3792$, which produce significant levels of flagellin expression under SPI-2-inducing conditions. Only one of these mutants, $\Delta STM1444$, is defective in T3SS-2 activation. One mutant,, $\Delta STM1697$, shows a significant phenotype compared to the other mutants, and should be considered a novel therapeutic target. Exploring how $\Delta STM1697$ is able to bypass SPI-2 flagellin downregulation may reveal novel signaling pathways helpful in understanding *Salmonella* virulence.

REFERENCES

- 1. Agbor, T.A. and McCormick, B.A. (2011) *Salmonella* effectors: Important players modulating host cell function during infection *Cell Microbiol.* **13**(12): 1858-1869.
- 2. Andrews-Polymenis, H.L. *unpublished data*
- 3. Bogomolnaya, L.M., Santiviago, C.A., Yang, H.J., Baumler, A.J., Andrews-Polymenis, H.L. (2008) 'Form variation' of the O12 antigen is critical for persistence of *Salmonella* Typhimurium in the murine intestine *Mol Microbiol*. **70**(5): 1105-19.
- 4. Broz, P., Newton, K., Lamkanfi, M., Mariathasan, S., Dixit, V.M., Monack, D.M. (2010) Redundant roles for inflammasome receptor NLRP3 and NLRC4 in host defense against *Salmonella J Exp Med* **207**(8): 1745-55.
- CDC (2011) National Center for Emerging & Zoonotic Infectious Diseases http://www.cdc.gov/foodborneburden/PDFs/FACTSHEET_A_FINDINGS_updated4-13.pdf
- 6. Coombes B.K., Brown N.F., Valdez Y., Brumell J.H., and Finlay B.B. (2004) Expression and secretion of *Salmonella* pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL *J Biol Chem* 279: 49804-49815.
- 7. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci U.S.A.* 2000. Jun 6; 97(12): 6640-5.
- 8. Miao E.A., and Rajan J.V. (2011) *Salmonella* and caspase-1: A complex interplay of detection and evasion *Front Microbiol* **2**: 85.
- 9. Miao E.A., Leaf I.A., Treuting P.M., Mao D.P., Dors M., Sarkar A., *et al.* (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria *Nat Immunol* **11:** 1136-42.
- 10. Nishino K., Latifi T., Groisman E.A. (2006) Virulence and drug resistance roles of multidrug efflux systems of *Salmonella enterica* serovar Typhimurium *Molecular Microbiology*. 59(1): 126-141
- Santiviago, C. A., Reynolds, M.M., Porwollik, S., Choi, S.H., Long, F., Andrews-Polymenis, H.L., McClelland, M. (2009) Analysis of pools of targeted *Salmonella* deletion mutants identifies novel genes affecting fitness during competitive infection in mice. *PLoS Pathog.* 5: e1000477. doi: 10.1371/journal.ppat.1000477

- Voetsch, A.C., Van Gilder, T.J., Angulo, F.J., Farley, M.M., Shallow, S., Marcus, R., Cieslak, P.R., Deneen, V.C., Tauxe, R.V. (2004). FoodNet estimate of the burden of illness caused by nontyphoidal *Salmonella* infections in the United States *Clin Infect Dis* 38(Suppl 3): S127-34.
- 13. Sambrook, J., and Russell, D. (2001) Molecular Cloning: A Laboratory Manual. Woodbury, NY: Cold Spring Harbor Laboratory Press.
- 14. Horlor, R.S., and Vanderpool, C.K. (2009). Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence *Nucleic Acids Res* **37**(16): 5465-76
- 15. Yoon, H., Gros, P., Heffron, F. (2011). Quantitative PCR-based competitive index for high-throughput screening of *Salmonella* virulence factors *Infect Immun* **79**(1): 360-368
- 16. Fabrega, A., Vila, J. (2013). Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation *Clin Microbial Rev* **26**(2): 308-341
- Jonas, K., Edwards, A.N., Ahmad, I., Romeo, T., Romling, U., Melefors, O. (2010). Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of SalmonellaTyphimurium *Environ Microbiol* 12(2): 524-540
- 18. Romling, U., Galperin, M.Y., Gomelsky, M. (2013). Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger *Microbiol Mol Biol Rev* 77(1): 1-52

APPENDIX

		COGs Classification ^a (see key in Table A2)																					
STM	Gene	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
csrB																							22
ryeB																							22
STM0011	yaal																						22
STM0044	yaaY																						22
STM0108	tbpA			3																			
STM0170	hpt						6																
STM0301	safC												12		14								
STM0304	sinR								8														
STM0315	prfH																						22
STM0370	prpD																				20		
STM0375	ampH																			19			
STM0386	proC		2																				
STM0390	aroM																						22
STM0392	rgdC										10												
STM0413	tsx															15							
STM0441	cyoG																	17					
STM0466											10												
STM0526	ylbA																				20		
STM0548	fimF																						22
STM0549	fimZ								8										18				
STM0557																							22
STM0585	fepA			3																			
STM0595	entC	1						7															
STM0597	entB							7															
STM0637	dacA															15							
STM0654	ybeQ																				20		
STM0665	gltI		2																				
STM0665	gltl																		18				
STM0702	<i>kdpE</i>																		18				
STM0712	ybgJ		2																				
STM0764									8														
STM0785	ybhE				4																		
STM0788	hutG		2																				
STM0791	hutH		2																				
STM0811	ybhN																					21	
STM0817	ybhF																			19			
STM0826	ybiN																				20		
STM0836	ybiR			3																			
STM0940	ybjX ^b																					21	
STM0955	aat											11											
STM1055																							22

Table A1. COGs classification for primary screen candidates

STM1072									8										
STM1103	hpaD																		22
STM1128			2															20	
STM1152	усеК																		22
STM1159	yceO																		22
STM1222	potD		2																
STM1260														15					
STM1312	celA				4														
STM1325	ydiZ																		22
STM1341												11							
STM1344	ydiV																18		
STM1351	ydiT															17			
STM1357	ydiF					5													
STM1391	ssrB								8								18		
STM1427	cfa													15					
STM1444	slyA								8										
STM1547									8										
STM1551																			22
STM1562	hdeB																		22
STM1600																			22
STM1614																			22
STM1660.S	fnr												13						
STM1686	pspE			3															
STM1697																	18		
STM1775	hemK									9									
STM1798	ycgR																		22
STM1802	dadX													15					
STM1803	dadA		2																
STM1815	minD														16				
STM1816	minE														16				
STM1818	fadD					5		7											
STM1839																			22
STM1853	pphA																18		
STM1865																			22
STM1879	<i>ptrB</i>		2																
STM1883	purT						6												
STM1884	eda				4														
STM1886	zwf				4														
STM1888	pykA				4														
STM1892.S	znuC																		22
STM1911																			22
STM1932	ftnB			3															
STM1947	uvrY																18		
STM1992	dcm										10								
STM2009	amn						6												
STM2028	cbiG	1																	
STM2045	pduJ																		22

STM2072	hisD		2														
STM2100	wcaL											15					
STM2110	wcaF														20		
STM2112	wcaD																22
STM2151	<i>stcB</i>									12	14						
STM2167	dld																
STM2168	pbpG											15					
STM2184	sanA															21	
STM2231																	22
STM2256													17				
STM2273		1															
STM2289					4												
STM2298	pmrF											15					
STM2306	menC	1															
STM2307	menB	1															
STM2312	elaA														20		
STM2330	lrhA						8										
STM2367	dedA															21	
STM2369	usg		2														
STM2395	pgtE																22
STM2399	pgtP				4												
STM2405		1	2														
STM2426																	22
STM2440	cysM		2														
STM2454	eutR						8										
STM2465	eutM																22
STM2486															20		
STM2499.S	purM																22
STM2509	nupC							10									
STM2554	hcaT		2	3	4										20		
STM2609																	22
STM2613																	22
STM2614																	22
STM2650	yfiP															21	
STM2692												15					
STM2765																	22
STM2796	yqaE															21	
STM2848	hycF												17				
STM2856	hypC								11								
STM2907	pphB													18			
STM2912							8										
STM2916					4												
STM2923																	22
STM2927	surE														20		
STM2939	ygcH																22
STM2944	ygcB														20		
STM2995.S																	22

STM3043	dsbC											11								
STM3044	xerD										10									
STM3046	ygfX																			22
STM3062	serA	1	2																	
STM3093	endA										10									
STM3108	yggL																		21	
STM3122				3																
STM3124									8								18			
STM3135					4															
STM3168	ygiR															17				
STM3191																				22
STM3215	ygjl								8											
STM3241	<i>tdcE</i>															17				
STM3290	argG		2																	
STM3323	yhbJ																	20		
STM3330	gltB		2																	
STM3469	pabA	1	2																	
STM3505	feoA			3																
STM3506	feoB			3																
STM3525	glpE			3																
STM3614	dctA															17				
STM3616	yhjL																	20		
STM3623	yhjT																			22
STM3648	yiaG								8											
STM3663	bax																	20		
STM3685	mtlA				4															
STM3692	lidP															17				
STM3700	gpxA															17				
STM3702	grxC											11								
STM3704	pmgl				4															
STM3708	tdh		2															20		
STM3709	kbl	1																		
STM3726	mutM										10									
STM3734	rph									9										
STM3744	recG								8		10									
STM3746	gltS		2																	22
STM3/66																				22
STM3770																				22
STM2701					1											 				22
STM2790	uhnD				4												10			
STM2702	ипрь				1								 			 	10			
STM3201	dsdV		2		4															
STM3806	изил		2										 			 				22
STM3860			2																	
STM3879	vieN		-															20		
STM3922	rffG														15					
~	.,, 0						L			I										

STM3943	cyaY			3														
STM3969	yigN																21	
STM3973	tatA											14						
STM3979	fre	1												17				
STM3983	fadB					5												
STM3994	mobA	1																
STM4019					4													
STM4041																		22
STM4068								8										
STM4073	ydeW							8										
STM4114	pflD													17				
STM4120	argE		2															
STM4121	argC		2															
STM4189	yjbB			3														
STM4194	yjbD																	22
STM4266	soxR							8										
STM4278																		22
STM4296	adi		2															
STM4307																20		
STM4308																20		
STM4318								8								20		
STM4395	yifZ		2		4											20		
STM4400	sodC				4											20		
STM4500	yjhP						7									20		
STM4505																		22
STM4506							7											
STM4536																		22
STM4547	yjjQ							8							18			
STM4560	prfC								9									

^aThe Clusters of Orthologous Groups (COGs) classification places genes into probable generic functional groups and pathways. Primary screen candidates are listed with their COGs classification(s); the key is provided in Table A2. ^bAlso referred to as *somA*

CC	OGs Color Key ^a
1	Coenzyme transport and metabolism
2	Amino acid transport and metabolism
3	Inorganic ion transport and metabolism
4	Carbohydrate transport and metabolism
5	Lipid transport and metabolism
6	Nucleotide transport and metabolsim
7	Secondary Metabolites Biosynthesis, Transport, and Catabolism
8	Transcription
9	Translation, Ribosomal Structure and Biogenesis
10	Replication, Recombination, and Repair
11	Posttranslational Modification, Protein Turnover, and Chaperones
12	Cell Motility
13	Aerobic, Anaerobic Respiration; Osmotic Balance (CRP family)
14	Intracellular Trafficking, Secretion, and Vesicular Transport
15	Cell Wall/Membrane/Envelope Biogenesis
16	Cell Cycle Control, Cell Division, and Chromosome Partitioning
17	Energy Production and Conversion
18	Signal Transduction Mechanisms
19	Defense Mechanisms
20	General Function Prediction (by COGs) Only
21	Function Unknown
22	Uncharacterized in COGs

^aColor key for Table A1 shows the primary candidates' classification group titles

Figure A1. Graphic representation of COGs classification distribution for primary screen candidates highlights diversity of distribution. Color key is provided in Table A2.

		Media Sensitivity ^a					
STM	Gene	M9	SPI-2				
STM0067	carB						
STM0232	accA						
STM0421	yajO						
STM0533	purK						
STM0745	tolQ						
STM0746	tolR						
STM0978	aroA						
STM1163	pyrC						
STM1347	aroH						
STM1723	trpE						
STM1726	trpB						
STM1727	<i>trpA</i>						
STM2309	menD						
STM2324	nuoF						
STM2362	purF						
STM2565	purG						
STM2566							
STM2578	pdxJ						
STM2580	era						
STM2933	cysC						
STM2935	cysD						
STM2946	cysH						
STM3401	aroE_2						
STM3477	cysG						
STM3526	glpD						
STM3699	cysE						
STM3733	pyrE						
STM4008							
STM4101	metL						
STM4361	hfq						
STM4415	fbp						
STM4462	yjgG						

Table A3. SPI-2 media sensitive mutant confirmation

^aSTM mutants identified as SPI-2 media sensitive were confirmed in three separate trials by streaking on LB, M9 Minimal, and SPI-2 media. Red represents unable to grow, yellow represents significant growth defect, and green represents normal growth ability.

FIGURES

Figure 1. Representative picture of a SPI-2 motility plate from primary screening. Of the 96 mutants transferred to this SPI-2 motility plate from SPI-2 media, only one (highlighted in red circle) shows a motility halo comparable to the super-swimmer control, $\Delta STM0557$.

Figure 2. Major COGs classifications for primary screen candidates.

Figure 3. Representative motility plates with *ASTM1055*, *ASTM2151*, and *ASTM3792*

Figure 3a. The motility halos of *ASTM1055*, *ASTM2151*, and *ASTM3792* are larger than WT.

Figure 3b. *ASTM1055*, *ASTM2151*, and *ASTM3792* are producing motility halos in SPI-2-inducing media, while WT is non-motile.

Figure 4. Representative motility plates with *ASTM1697*

Figure 4a. The motility halo of $\Delta STM1697$ is larger than WT.

Figure 4b. Δ*STM1697* is producing a large motility halo in SPI-2 inducing media, while WT is non-motile.

Figure 5. Western blot analysis identifies mutants expressing flagellins under LB conditions

Figure 5a. Samples prepared in LB and probed with anti-FljB flagellin antibodies. Flagellin expression is shown around 55kDa. Strong expression is seen in STM0557 and STM1697. Weak expression is seen in $\Delta STM1055$, $\Delta STM2151$, and $\Delta STM3792$. $\Delta fljB$ was included as antibody control.

Figure 5b. Samples prepared in LB and probed with anti-FliC flagellin antibodies. Flagellin expression is shown around 55kDa. Strong expression is seen in WT, $\Delta STM0557$, $\Delta STM1055$, $\Delta STM1697$, $\Delta STM2151$, and $\Delta STM3792$. A weak expression is seen in $\Delta STM1444$. $\Delta fliC$ was included as antibody control.

Figure 6. Western blot analysis identifies mutants expressing flagellins under SPI-2 inducing conditions

Figure 6a. Samples prepared in SPI-2 and probed with anti-FljB flagellin antibodies. Flagellin expression is shown around 55kDa. Strong expression is seen in $\Delta STM0557$ and $\Delta STM1697$. Weak expression is seen in $\Delta STM1055$ and $\Delta STM1444$. No expression is shown in WT. $\Delta fljB$ was included as antibody control.

Figure 6b. Samples prepared in SPI-2 and probed with anti-FliC flagellin antibodies. Flagellin expression is shown around 55kDa. Strong expression is seen in STM1697. Weak expression is seen in $\Delta STM0557$, $\Delta STM1055$, and $\Delta STM1444$. No expression is shown in WT. $\Delta fliC$ was included as antibody control.

Figure 7. Western blot verifies SPI-2 activation for most mutants

Figure 7. Supernatant of samples prepared in SPI-2 media and probed with anti-*sseD* antibodies. SseD expression is shown around 22 kDa. Significant SseD expression, confirming SPI-2 activation, is found in all samples except antibody control, $\triangle sseD$, as well as $\triangle ssaK$ (cannot make SPI-2 machinery) and $\triangle STM1444$ (cannot activate SPI-2).

TABLES

Strain	Gene	LB %WT ^a	LB SD %WT ^b	LB T-Test ^c	SPI-2 %WT	SPI-2 SD %WT	SPI-2 T-Test
STM1444 ^{d,e}	slvA	111 74	18 89	0.683	262.90	33.67	0.018
STM1697	50911	142.48	8.52	0.050	231.00	121 71	0.208
STM0390	aroM	96.88	8.67	0.779	222.68	86.45	0.150
STM2151	stcB	114.93	27.61	0.597	208.94	30.15	0.015
STM1055		124.98	14.95	0.228	180.33	12.21	0.013
STM1600		99.42	14.51	0.967	176.90	37.04	0.092
STM3792		116.89	14.14	0.347	170.30	29.35	0.067
STM2330	lrhA	106.79	4.71	0.122	168.25	28.44	0.060
STM2907	pphB	142.81	13.45	0.081	157.85	25.85	0.048
STM3806		97.69	15.37	0.922	155.13	89.36	0.402
STM0549	fimZ	103.02	11.91	0.859	148.44	13.73	0.035
STM1660	fnr	114.36	15.04	0.552	142.95	50.84	0.303
STM1686	pspE	137.76	4.57	0.024	139.54	28.51	0.190
csrB		105.35	20.03	0.842	133.00	45.77	0.387
STM0557		147.94	12.46	0.017	124.38	21.80	0.252
STM1947	uvrY	86.70	8.34	0.544	122.07	40.88	0.468
STM2110	wcaF	78.29	2.98	0.031	121.11	29.12	0.360
STM1260		90.93	5.40	0.540	121.10	6.33	0.048
STM3781		84.23	3.83	0.053	118.89	26.20	0.369
STM2273		101.42	5.99	0.902	118.78	30.67	0.447
STM4068		106.66	10.34	0.678	117.33	31.77	0.484
STM1391	ssrB	85.37	10.04	0.479	106.17	5.83	0.480
STM2112	wcaD	85.08	3.92	0.074	105.05	1.03	0.372
STM3124		84.31	11.04	0.516	104.80	4.09	0.281
STM1547		75.93	14.34	0.396	103.78	3.75	0.563
STM2796	yqaE	95.32	10.38	0.826	103.44	4.58	0.428
STM4073	ydeW	102.58	10.26	0.836	103.36	15.36	0.795
STM3648	yiaG	87.17	8.74	0.562	103.22	9.58	0.679
STM1128		102.03	11.76	0.879	103.06	8.56	0.788
STM0548	fimF	98.73	5.23	0.931	102.28	7.02	0.708
STM2289		79.45	2.37	0.057	101.91	2.04	0.739
STM1816	minE	93.92	2.11	0.717	101.90	4.50	0.447
ryeB		109.38	26.77	0.761	101.22	3.47	0.852
STM0764		85.97	10.47	0.548	101.10	4.43	0.790
STM3860		104.32	4.77	0.719	101.02	1.07	0.787

Table 1. Candidate mutants tested by secondary screening

STM4506		84.27	5.96	0.256	101.00	2.65	0.862
STM0304	sinR	98.67	3.49	0.925	100.91	5.09	0.322
STM1159	yceO	96.72	11.07	0.881	100.77	5.73	0.876
STM1562	hdeB	105.03	21.47	0.519	100.11	5.23	0.987
STM4318		93.14	9.30	0.628	100.05	4.00	0.981
STM4307		88.88	14.83	0.645	99.89	4.80	0.974
STM4547	yjjQ	83.52	3.89	0.179	98.51	2.15	0.621
STM2231		87.12	7.15	0.079	98.25	6.77	0.814
STM2395	pgtE	93.89	13.36	0.803	97.95	3.56	0.755
STM0654	ybeQ	87.03	4.54	0.300	97.90	2.71	0.710
STM0301	safC	91.79	4.84	0.597	97.62	3.37	0.111
STM2509	nupC	83.74	6.40	0.241	96.56	9.64	0.721
STM2912		95.44	5.41	0.754	95.79	0.71	0.305
STM3191		84.96	8.66	0.505	95.64	5.59	0.406
STM4505		87.31	4.28	0.302	95.56	5.09	0.542
STM3771		84.27	13.30	0.530	95.36	1.14	0.056
STM4308		92.98	8.01	0.596	95.00	4.41	0.498
STM2614		85.62	9.37	0.529	94.68	9.16	0.472
STM3770		88.75	6.95	0.402	94.68	6.59	0.544
STM4395	yifZ	83.60	4.35	0.063	93.45	7.08	0.441
STM2613		86.11	6.05	0.306	92.07	7.22	0.411

^aMotility halo size is reported as a percentage of the WT sample incubated on the same motility plate as the mutant. ^bStandard deviation across motility halo diameters measured in triplicate

^cStudent's T-Test was used to identify motility halos of statistically significant diameter compared to WT. p<0.05

^dStrains identified in bold show a statistically significant motility halo in either LB or SPI-2 conditions

^eStrains highlighted in yellow were selected for Western blot analysis. Strains are listed in order of largest %WT motility halo in SPI-2-inducing conditions to smallest.