
RECOGNIZING SEATBELT-FASTENING ACTIVITY USING WEARABLE SENSOR

TECHNOLOGY

An Undergraduate Research Scholars Thesis

by

JAKE LELAND AND ELLEN STANFILL

Submitted to the Undergraduate Research Scholars Thesis program
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Tracy Hammond

May 2017

Major: Computer Science

ABSTRACT

Recognizing Seatbelt-Fastening Activity Using Wearable Sensor Technology

Jake Leland and Ellen Stanfill
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Tracy Hammond
Department of Computer Science

Texas A&M University

Many fatal car accidents involve victims who were not wearing a seatbelt, even though

systems for detecting such behavior and intervening to correct it already exist. Activity

recognition using wearable sensors has been previously applied to many health-related

fields with high accuracy. In this paper, activity recognition is used to generate an algo-

rithm for real-time recognition of putting on a seatbelt, using a smartwatch. Initial data

was collected from twelve participants to determine the validity of the approach. Novel

features were extracted from the data and used to classify the action, with a final accuracy

of 1.000 and an F-measure of 1.000 using the MultilayerPerceptron classifier using labo-

ratory collected data. Then, an iterative real-time recognition user study was conducted to

investigate classification accuracy in a naturalistic setting. The F-measure of naturalistic

classification was 0.825 with MultilayerPerceptron. This work forms the basis for further

studies which will aim to provide user feedback to increase seatbelt use.

ii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis (or) dissertation committee consisting of Profes-

sor Tracy Hammond of the Department of Computer Science & Engineering and Graduate

Student Mentor Mr. Josh Cherian of the Department of Electrical and Computer Engineer-

ing.

The data analyzed was collected and all user studies performed by the undergraduate

authors of this thesis, Jake Leland and Ellen Stanfill, under the advisement of Dr. Tracy

Hammond and Mr. Josh Cherian. The undergraduate authors also wrote and designed

their own IRB, also under the advisement of Dr. Tracy Hammond and Mr. Josh Cherian.

The IRB was approved on October 15, 2017, and was given the number: IRB2016-0705D.

All other work conducted for the thesis (or) dissertation was completed by the student

independently.

Funding Sources

Equipment, materials, and funds to support the graduate mentor, Mr. Josh Cherian,

were supplied in part by the TEES AggiE_Challenge program.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

CONTRIBUTORS AND FUNDING SOURCES iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . vii

1. INTRODUCTION . 1

2. RELATED WORK . 3

2.1 Vision-Based Recognition . 3
2.2 Sensor-based Recognition . 4

2.2.1 Recognition Through Wearable Sensing 4

3. DATA COLLECTION . 6

3.1 Activity Selection . 6
3.2 System Implementation . 7
3.3 User Studies . 7

3.3.1 Phase I: Controlled Testing . 8
3.3.2 Phase II: Naturalistic Testing . 9

4. INITIAL RECOGNITION AND FEATURES 10

4.1 Recognition Methodology . 10
4.1.1 Early Features . 10
4.1.2 Data Preprocessing . 11
4.1.3 Classification Algorithms . 12

4.2 Results . 14

5. IMPROVING RECOGNITION WITH ADDITIONAL FEATURES 18

5.1 Data Preprocessing . 18
5.1.1 Data Analysis . 19

iv

5.1.2 Additional Features . 22
5.2 Results . 25
5.3 Real-Time Recognition . 27

5.3.1 Algorithm Implementation . 27
5.4 Real-Time Results . 27

6. FUTURE WORK . 33

6.1 Further Recognition Improvements . 33
6.2 Additional Detection . 34
6.3 Feedback & Intervention . 34

7. CONCLUSION . 35

REFERENCES . 36

v

LIST OF FIGURES

FIGURE Page

5.1 Illustration of a rolling average function with window size w = 3. 19

5.2 Data plots from three different seatbelt-buckling activities, each before and
after the smoothing function was applied. 20

5.3 A plot of smoothed accelerometer data for one buckling instance with each
component marked. The first "half" of the data corresponds to the period
where the user lifts their arm to grab the buckle. The second "half" corre-
sponds to the period where the user lowers their arm to fasten the buckle. . 21

5.4 An illustration of the sliding window used to calculate features from the
raw accelerometer data. 23

5.5 Structure of the Android application used for real-time recognition. Each
incoming data packet triggers the chain of actions from the beginning,
starting with the "Receive Data" box. 28

5.6 Interface of the Android application used for real-time recognition testing.
The button at the bottom of the screen allows the user to indicate a false
negative (that is, they buckled their seatbelt but the application did not
recognize the motion as buckling). 29

5.7 During real-time recognition testing, a popup is shown when the classi-
fication algorithm detects a buckling motion. The user has the option to
mark the recognition as a true positive (they did buckle) or a false positive
(they did not buckle). 29

vi

LIST OF TABLES

TABLE Page

4.1 A sample of Pebble data packets that all fall within the same 0.5-second
window. 12

4.2 The features generated from the packets in Table 4.1. 13

4.3 Initial Classifier Accuracy using the early feature set on controlled data. . 15

4.4 Initial Classifier F-Measures using the early feature set on controlled data. 15

4.5 IBk Confusion Matrix using early feature set on controlled data. 17

4.6 J48 Confusion Matrix using early feature set on controlled data. 17

4.7 MultilayerPerceptron Confusion Matrix using early feature set on con-
trolled data. 17

4.8 Naive Bayes Confusion Matrix using early feature set on controlled data. . 17

4.9 Random Forest Confusion Matrix using early feature set on controlled data. 17

4.10 SMO Confusion Matrix using early feature set on controlled data. 17

5.1 Improved Classifier Accuracy using the expanded feature set on controlled
data. 25

5.2 Improved Classifier F-Measures using the expanded feature set on con-
trolled data. 26

5.3 Improved IBk Confusion Matrix using expanded feature set on controlled
data. 26

5.4 Improved J48 Confusion Matrix using expanded feature set on controlled
data. 26

5.5 Improved MultilayerPerceptron Confusion Matrix using expanded feature
set on controlled data. 26

vii

5.6 Improved Naive Bayes Confusion Matrix using expanded feature set on
controlled data. 26

5.7 Improved Random Forest Confusion Matrix using expanded feature set on
controlled data. 29

5.8 Improved SMO Confusion Matrix using expanded feature set on controlled
data. 29

5.9 Real-Time Classifier Accuracy using expanded feature set on naturalistic
data. 30

5.10 Real-Time Classifier F-Measures using expanded feature set on naturalis-
tic data. 31

5.11 Real-Time IBk Confusion Matrix using expanded feature set on naturalis-
tic data. 31

5.12 Real-Time J48 Confusion Matrix using expanded feature set on naturalistic
data. 31

5.13 Real-Time MultilayerPerceptron Confusion Matrix using expanded fea-
ture set on naturalistic data. 31

5.14 Real-Time Naive Bayes Confusion Matrix using expanded feature set on
naturalistic data. 31

5.15 Real-Time Random Forest Confusion Matrix using expanded feature set
on naturalistic data. 32

5.16 Real-Time SMO Confusion Matrix using expanded feature set on natural-
istic data. 32

viii

1. INTRODUCTION

Motor vehicle crashes are a leading cause of death of Americans under the age of 60.

More than half of those under 45 who died in crashes in 2014 were not wearing a seatbelt

at the time of the crash [1]. According to statistics published by the CDC, young adults

are the least likely age group to wear a seatbelt [2, 3]. Furthermore, men are less likely

to wear their seatbelt than women [3]. Detection and warning systems exist to determine

whether a driver or passenger has fastened their seatbelt. Most of these mechanisms are

integrated within the car [4] or buckle itself [5] and provide interventions such as a tone

or a light on the dashboard [6]. However, these existing mechanisms do not appear to be

sufficient to prompt safe user behavior.

Activity recognition has received much attention in recent years with the advent of

portable personal computing devices like smartphones and smartwatches. Data is collected

from sensors, often accelerometers [7], within these devices. After the data is preprocessed

according to standard techniques [8], it is used to train machine learning classifiers to rec-

ognize the activities being performed. Activity recognition is central to achieving context-

aware computing, which aims to change the behavior of systems based on what the user

is doing at the time of use [7]. Activity recognition also serves as the foundation for many

health-related applications which monitor eating habits or other self-care activities [9–11]

and intervene to correct undesirable behaviors [7, 12, 13]. However, this technology has

not yet been applied to the task of checking whether a driver has fastened their seatbelt. A

more detailed review of prior research is included in the next section.

This work seeks to apply activity recognition to accelerometer data collected from a

smartwatch in order to identify when the user has bucked their seatbelt. A system based

on such recognition would have many applications. The system could detect that the user

1

is moving at the speed of a car, check whether the user has buckled their seatbelt, and then

intervene to correct the user’s behavior. Such a system could also be used to track user

behavior, i.e. for insurance purposes. A behavior tracking and intervention system would

be particularly useful for young drivers. Parents could monitor the safety habits of their

teenaged driver, while insurance companies could make use of the data gathered by the

system in order to more accurately determine insurance rates. Because this system would

correspond to the individual driver and not the car, system data would not be contaminated

by the bad habits of other drivers and would thence be useful to set individual insurance

rates.

Additionally, the system would have an advantage over existing seatbelt-detection sys-

tems because these systems can be easily beaten. For example, people may buckle their

seatbelt across the seat and then sit on top of it in order to quiet the warning tone. There

are also not typically any seatbelt-detection systems installed in the middle or back rows

of the seats in a car. A wearable system does not require the user to sit in a specific car

seat in order to function. It would simply need to check the speed at which the user is

travelling. Thus, the system would be useful for all passengers in a car, not just the driver.

In this work, the feasibility of such activity recognition is first investigated by attempt-

ing to classify the motion using features of the data commonly found in literature. Recog-

nition accuracy is then improved by incorporating novel features unique to the action of

putting on a seatbelt. Finally, recognition is tested in real time with moderately successful

results, indicating that our approach is effective in recognizing the buckling motion.

2

2. RELATED WORK

When designing an activity recognition system, several factors must be considered, as

laid out by Lara and Labrador [10]. The four most essential of these factors are:

1. Selection of attributes and sensors: It is desirable that only the features which most

effectively discriminate between activities are observed. To be useful, a recognition

system should also minimize costs as far as possible. Therefore, a system should be

composed of carefully selected sensors which collect only the data which is neces-

sary.

2. Obtrusiveness: In order for a recognition system to be practical for everyday use, it

must not interfere with the user’s activities.

3. Data collection protocol: Data is typically collected in a laboratory setting, but a

more naturalistic protocol may allow the recognition system to better scale to real-

life applications.

4. Recognition performance: The system must accurately recognize the desired activity

with minimal false positives or false negatives.

Each sub-areas of activity recognition performs better on some of these factors than on

others. Work in these sub-areas will be discussed next.

2.1 Vision-Based Recognition

Activity recognition can be partitioned into vision-based and sensor-based recognition

[7]. Vision-based recognition uses cameras or other imaging platforms to monitor a user’s

behavior and interaction with the environment. An example of vision-based recognition is

found in [14]. Although sensor-based recognition is the focus of this paper, some work has

3

been done using low-resolution infrared imaging to identify and track driver postures [15].

The costs associated with this method are lower than those of other imaging systems, but

they are still substantial. In contrast, this work uses off-the-shelf smartwatches to perform

recognition, which cost less, are not obtrusive, and can be used for additional purposes

besides recognition.

2.2 Sensor-based Recognition

Sensor-based activity recognition may involve sensors attached to the user (wearable

sensing) or sensors attached to objects in the environment (dense sensing) [7]. Examples of

object interaction recognition using dense sensing can be found in [16–19]. Eye-tracking

and associated applications fall into this category as well because the sensors are inte-

grated with the environment, not the user [20–22]. Existing seatbelt-buckling detection

systems [4, 5] are examples of dense sensing because they rely on sensors within the vehi-

cle. Wearable-based activity recognition was chosen for this task instead of dense sensing

because the recognition application may be implemented on a platform (in this case, a

smartwatch) that the user already owns and uses for other tasks.

2.2.1 Recognition Through Wearable Sensing

Much work has been done with wearable-based recognition in literature. Early work

used multiple accelerometers [23] or many other types of sensors [9, 24–27] attached to

various locations on the body. These other types of sensors included barometers, gyro-

scopes, heart rate sensors, humidity sensors, light sensors, microphones, and thermome-

ters. Lester et al. noted that not all of these sensors were necessary to successfully clas-

sify user activities and demonstrated similar precision and recall using a sensor subset

containing accelerometers, microphones, and barometers [9]. In each of these experi-

ments, sensors were arranged in custom-built arrays which are intrusive and impractical

for widespread use. Two notable exceptions are Maurer et al. (2006), which used sensors

4

integrated with an eWatch, a platform similar in shape and size to a modern smartwatch,

and Győrbíró et al. (2008) which used MotionBands that were also similar in shape and

size to a smartwatch [26, 28]. However, neither of these platforms are widely available

and they cannot be used for other tasks beyond sensor data collection.

Further research has demonstrated that collecting data from only a few biaxial or tri-

axial accelerometers is sufficient to recognize many activities [7, 23, 25, 28–31]. Bao and

Intille (2004) provides a summary of previous sensor-based works which collected data

from two or more accelerometers positioned at multiple locations on the body [32]. These

data were used to recognize multiple activities, typically some combination of ambulation

(walking, running, etc.), posture, typing, talking (gesticulating), shaking hands, writing,

and other activities. These previous studies were largely conducted in a laboratory set-

ting, so Bao and Intille implemented a semi-naturalistic collection protocol [32]. Again,

these studies used multiple custom sensor arrangements, which are intrusive and not easily

obtained by consumers.

Recent work has focused on off-the-shelf products such as smartphones [33, 34] and

smartwatches [11, 35, 36], with the idea that commercial devices will not confer social

stigma upon the user [9], are more practical for daily wear, and may be used for other

tasks to compensate for the initial hardware cost. These studies use the devices’ built-in

accelerometers and/or gyroscopes to collect data. None of these wearable-based recogni-

tion studies have considered the motion of buckling a seatbelt, instead focusing on other

health-related applications [7, 27] such as meal tracking [11, 24, 36], monitoring cleanli-

ness (brushing teeth, showering) [9, 31, 35, 37], and exercise encouragement [12, 25, 38].

This work implements smartwatch-based recognition to detect the action of putting on a

seatbelt, an activity which has been neglected in the literature.

5

3. DATA COLLECTION

This section focuses on the selection of activities to be observed, the system for data

collection, and the two user studies that were conducted over the course of this research.

3.1 Activity Selection

To best recognize when a seatbelt is being fastened, the activities included in the user

studies were carefully chosen to involve motions similar to those of the desired action.

When buckling a seatbelt, the motion consists generally of an arm-raising motion (to reach

up and grab the seatbelt) immediately followed by an arm-lowering motion (to pull the

buckle down and secure it). With this in mind, we selected a number of control motions:

1. Reaching up to remove something from a shirt pocket.

2. Putting a phone in a pants pocket after sending a text.

3. Putting a phone in a pants pocket after ending a phone call.

4. Putting on a backpack.

5. Taking off glasses/sunglasses.

6. Putting on a jacket.

7. Reaching up and touching one’s face or adjusting hair.

These activities were chosen to ensure that we could distinguish seatbelt motion from

similarly-patterned activities. The full set of activities included in the user study may be

broadly thought of as buckling and non-buckling activities. Note that the movement to put

a phone in one’s pocket after texting has a different starting position than the movement to

6

put a phone in one’s pocket after calling. Therefore, both were included in the initial data

collection.

3.2 System Implementation

Because the arm is the primary limb involved in fastening a seatbelt, during the study

the sensor is attached to the user’s wrist. Using accelerometer data from the wrist is well

established in literature, especially for activities concentrated in the upper body and arms

[11, 29, 32, 35]. To collect this user movement data, we used a Pebble smartwatch, which

possesses a 4G 3-axis accelerometer [39]. These watches were chosen above other smart-

watches containing accelerometers because they are simple to use, easy to program, rela-

tively inexpensive, and already available to the Sketch Recognition Lab. The watches were

paired via Bluetooth to Android phones running a data collection application. The Pebble

and Android applications used for data collection were identical to those used by Cherian

et al. [37]. When the Android application is activated, the watch transmits packets of

accelerometer data to the phone via Bluetooth and the phone stores the data in a database

for future use. Accelerometer data was sampled for all three axes at a rate of 25 Hz. Each

entry in the database is marked with a timestamp, as well as a custom label noting the

activity that the user was performing at the time of collection.

3.3 User Studies

Our data collection occurred in two phases. Phase I consisted of an initial user study,

which provided the data used to develop the first iteration of our algorithm. Phase II con-

sisted of iterative improvements to the recognition algorithm through real-time naturalistic

data collection.

7

3.3.1 Phase I: Controlled Testing

As mentioned in Section 3.1, two forms of data were collected: buckling gestures and

non-buckling gestures. During the first user study, data was collected in a discrete fash-

ion. That is, an experimenter started the data collection, the user performed the specified

action, and the experimenter halted data collection with minimal time between steps. This

provided us with individual instances of gestures, separated by periods of time when data

was not being collected.

First, users performed the action of fastening their seatbelts. Each user completed 10

trials of seatbelt buckling. Here, data collection was complicated by the fact that people

may put on seatbelts in any of three different ways:

1. Reaching up with their left arm, then bringing the buckle all the way down to com-

pletion.

2. Reaching up with their right arm, then bringing the buckle all the way down to

completion.

3. Reaching up with their left arm, transferring the buckle from their left hand to their

right hand, then fastening the buckle with their right arm.

Because of this, each user was encouraged to perform the trial once without wearing

the Pebble watch, thereby revealing which method they used to fasten their seatbelt. The

experimenters then put the watch on whichever arm the subject used to perform the initial

reach toward the buckle. The user continued to wear the watch on that same arm for the

remainder of the data collection process. After the buckling action, each user completed 5

trials each for all seven of the supplemental actions.

Data was collected from twelve research participants of mixed ages, ethnicities, and

genders. Two participants used buckling method 1 (left hand only), seven participants

8

used buckling method 2 (right hand only), and three participants used buckling method 3

(transferring hands). Therefore, five participants (left hand and transferring hands) wore

the smartwatch on their left hand, while the remaining seven participants (right hand) wore

the smartwatch on their right hand. In total, this resulted in 120 instances of buckling and

60 instances of each supplemental activity, for a total of 540 instances all together.

3.3.2 Phase II: Naturalistic Testing

Data collection via discrete trials allowed construction of the initial algorithm. To in-

vestigate the algorithm’s effectiveness in real time, a second, more naturalistic user study

was conducted where each participant buckled their seatbelt at some point during a spec-

ified time period. The algorithm was expected to recognize the buckling action when it

occurred.

The Android and Pebble applications were modified to run the previously developed

detection algorithm in real time. Five research participants participated in this study. Data

was collected from each participant over a period of 25 minutes, wherein the participants

buckled their seatbelt at least once. During the remainder of the period, participants walked

down a hallway, ascended and descended stairs, and repeated at least one action from the

previous study (Section 3.1). Each session was observed by a researcher.

9

4. INITIAL RECOGNITION AND FEATURES

After collecting accelerometer data from our user study, we began the process of

preparing the data for analysis.

4.1 Recognition Methodology

The general process of activity recognition begins by collecting raw data from the

chosen sensors. This data cannot be successfully classified in its raw form because it is

typically full of environment noise. Instead, representative features (characteristics of the

data) must be extracted from the raw signal. The chosen classification algorithm may then

classify the data as representing a particular activity based on those extracted features [8].

More detail will provided for each of these steps in subsequent sections.

4.1.1 Early Features

To prepare the accelerometer data for analysis, a set of features was extracted from the

data over a specified window of time. This window might, for example, be one second

long. In this case the feature set would be generated by somehow aggregating all of the

sensor packets from each second. This is standard procedure for activity recognition [8,

10]. The chosen features were selected due to their simplicity and their precedent for

use in literature [8]. We wished to focus only on simple features that require very few

computational resources to calculate in on-the-fly, since these would be most useful for

our goal of real-time recognition. The results provided by analyzing these basic features

acted as a baseline against which we could judge the effectiveness of our improvements.

Twelve initial features were extracted. The set of initial features consisted of:

• Average X, Y, Z

• Minimum X, Y, Z

10

• Maximum X, Y, Z

• Correlation between axes: X×Y, X×Z, Y×Z

Note: the "correlation" measures were approximated by pairwise multiplying the axes

together (resulting in a product axis), and then calculating the average value of that axis.

Equation 4.1 provides an example of how the XY correlation value is calculated.

XY =

∑N
n=1 xn ∗ yn

N
where N is the size of the data set (4.1)

4.1.2 Data Preprocessing

To extract features from our raw data set, we divided the data points into windows of

0.5 seconds and then generated the features from the data within each window. This win-

dow length was chosen in an attempt to recognize individual components of the buckling

activity: raise arm, grab buckle, lower arm, fasten buckle. Therefore, the accelerometer

data was segmented into 0.5-second long time segments and the twelve features discussed

in Section 4.1.1 were then extracted from the data within each window.

A simple Python script was written to traverse the raw accelerometer data (where each

row was a Pebble watch packet) and generate an output CSV (Comma-Separated Values)

file. Starting with the oldest packet in the data set, the script created a new window and

added to that window every subsequent data point that fell within the 0.5 second range.

Once the script reached a data point that was outside of the 0.5 second range, the features

were calculated from the collected data points and appended to a second file. Next, a new

window was created beginning with the most recently seen data point, and this process

repeated until the end of the data set was reached. When the script was complete, the

original data was unmodified and the second file contained features for all windows in the

11

Time Epoch (ms) X (mG) Y (mG) Z (mG) Activity
1479433861850 173 93 -1064 Buckling
1479433861900 33 163 -734 Buckling
1479433861940 -125 221 -393 Buckling
1479433861980 -221 204 -307 Buckling
1479433862020 -385 326 -91 Buckling
1479433862060 -809 245 419 Buckling
1479433862100 -554 -168 464 Buckling
1479433862140 -707 3 512 Buckling
1479433862180 -715 25 618 Buckling
1479433862220 -736 484 591 Buckling
1479433862260 -327 844 2522 Buckling
1479433862300 -673 -413 996 Buckling
1479433862340 -684 -1 838 Buckling

Table 4.1: A sample of Pebble data packets that all fall within the same 0.5-second window.

data. An example of this transformation may be observed in Tables 4.1 and 4.2. A series

of raw Pebble data packets within the same 0.5-second window are shown in Table 4.1.

The resulting feature entry is in Table 4.2.

Additionally, it is worth noting that the raw data points were each labeled with the

activity being performed at the time ("Buckling", "Shirt", "Texting", "Calling", "Back-

pack", "Glasses", "Jacket", "Face", or "Nothing"). Since this research is focused only

on recognizing seatbelt-fastening activities as opposed to discriminating between multiple

activities, we were only concerned with knowing if the data point was a buckling ac-

tion or not. Therefore, each completed feature set was re-labeled as either "Buckling" or

"Not_Buckling" according to the activity that was being performed.

4.1.3 Classification Algorithms

To evaluate the effectiveness of the initial feature set, seven classification algorithms

were selected. Each classifier is commonly used in prior literature [10]. These classifiers

were:

12

Average X Average Y Average Z
-440.769230769 155.846153846 336.230769231
Minimum X Minimum Y Minimum Z
-809.00 -413.00 -1064.00
Maximum X Maximum Y Maximum Z
173.00 844.00 2522.00
X * Y X * Z Y * Z
-68692.1893491 -148200.177515 52400.2721893
Number of Points Start Time End Time Activity
13 1479433861850 1479433862340 Buckling

Table 4.2: The features generated from the packets in Table 4.1.

1. k-Nearest Neighbors: kNN classifies data points based on the most similar points in

the data set. Similarity is defined based on a Euclidean distance function which is

used to compare each data point to every other data point within the set [10, 23].

2. C4.5 Decision Tree: C4.5 constructs a hierarchical tree where each edge represents

a possible value (or range of values) for the given feature [10, 34]. This classifier

is particularly good for real-time or mobile applications where computational re-

sources are limited, because the generated decision tree is easy to implement and

quick to execute.

3. MultilayerPerceptron: A Multilayer Perceptron is a type of Neural Network. This

classifier relies on back-propagation to classify data points [34, 40]. Neural Net-

works are unsuited for real-time or limited-resource applications because they re-

quire large amounts of time and computational energy.

4. Naive Bayes: Naive Bayes calculates probabilities for each class using conditional

probabilities calculated from features of the data point. This classifier assumes that

every feature is independent, which may lead to errors when applied to data with

correlations between features [10, 31].

13

5. Random Forest: Random Forest constructs a series of decision trees based a random

sample of data points. When classifying a given point, each tree gets one vote. The

class with the most votes is assigned to the data point [11, 41].

6. Support Vector Machine: SVMs attempt to find linear decision boundaries (aka sup-

port vectors) between classes [10, 11].

7. ZeroR: ZeroR is a type of straw man classification wherein the most common class

is applied to every data point in the set. That is, if the majority of points belong to a

given class, ZeroR will predict that every point belongs to that class. [34, 42]. ZeroR

provides a baseline against which to judge the performance of other classifiers.

4.2 Results

The effectiveness of the initial feature set was evaluated using the classification al-

gorithms from Section 4.1.3 as implemented in the WEKA data analysis tool [43]. In

WEKA, the implementation of kNN is called IBk [44, 45], the implementation of C4.5 is

called J48 [46, 47], and the implementation of SVM is called SMO [48–51]. The other

algorithm implementations keep their original names. We shall refer to the classifiers by

their WEKA implementation nomenclature. Every classifier was run in WEKA with its

default settings [43]. The results of these classifiers are shown in Tables 4.3 and 4.4.

As seen in Table 4.3, all of the classifiers reported overall accuracy measures of ap-

proximately 80-90%. However, these results must be compared to the frequency that

each activity actually occurred in the data. In this case, 79% of the data belonged to the

Not_Buckling class. This means that even the ZeroR classifier was correct for 79% of the

data points. The large number of Not_Buckling data instances falsely inflates the accu-

racy metric, since it is calculated across all classes (Equation 4.2). Instead, we look to

F-measures to provide a more realistic picture of classification success.

14

Classifier Accuracy
IBk 88.4%
J48 86.7%
MultilayerPerceptron 87.8%
Naive Bayes 84.7%
Random Forest 90.1%
SMO 85.0%
ZeroR 79.0%

Table 4.3: Initial Classifier Accuracy using the early feature set on controlled data.

Classifier Activity F-Measure
IBk Buckling 0.727

Not_Buckling 0.926
J48 Buckling 0.702

Not_Buckling 0.914
MultilayerPerceptron Buckling 0.716

Not_Buckling 0.922
Naive Bayes Buckling 0.685

Not_Buckling 0.899
Random Forest Buckling 0.760

Not_Buckling 0.938
SMO Buckling 0.604

Not_Buckling 0.907
ZeroR Buckling 0.000

Not_Buckling 0.883

Table 4.4: Initial Classifier F-Measures using the early feature set on controlled data.

15

F-measure is based on the precision and recall values of the classifier. Precision is the

ratio of correctly classified positives (true positives) to the total number of classified pos-

itives (true positives and false positives). The formula for Precision is shown in Equation

4.3. Recall is the ratio of true positives to total positives (true positives and false negatives);

it is calculated according to Equation 4.4. F-measure, then, combines both Precision and

Recall as in Equation 4.5 [10].

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

Precision =
TP

TP + FP
(4.3)

Recall =
TP

TP + FN
(4.4)

F -measure = 2 ∗ Precision ∗Recall

Precision+Recall
(4.5)

The F-measures from each of the classifiers (Table 4.4) reveal mediocre recognition

performance. Closer investigation of the confusion matrices generated by the classifiers

reveals a significant number of both false negatives and false positives (Tables 4.5 - 4.10).

It is apparent that applying only a simplistic set of traditional features is not effective

to recognize seatbelt activity. Therefore, we must generate novel features specific to the

motion of buckling a seatbelt in order to most effectively recognize that motion.

16

a b <– classified as
535 191 a = Buckling
211 2522 b = Not_Buckling

Table 4.5: IBk Confusion Matrix using early feature set on controlled data.

a b <– classified as
541 185 a = Buckling
275 2458 b = Not_Buckling

Table 4.6: J48 Confusion Matrix using early feature set on controlled data.

a b <– classified as
533 193 a = Buckling
299 2504 b = Not_Buckling

Table 4.7: MultilayerPerceptron Confusion Matrix using early feature set on controlled
data.

a b <– classified as
575 151 a = Buckling
379 2354 b = Not_Buckling

Table 4.8: Naive Bayes Confusion Matrix using early feature set on controlled data.

a b <– classified as
541 185 a = Buckling
156 2577 b = Not_Buckling

Table 4.9: Random Forest Confusion Matrix using early feature set on controlled data.

a b <– classified as
396 330 a = Buckling
189 2544 b = Not_Buckling

Table 4.10: SMO Confusion Matrix using early feature set on controlled data.

17

5. IMPROVING RECOGNITION WITH ADDITIONAL FEATURES

Previously, none of the features we applied were unique to the seatbelt action itself.

In order to improve the gesture recognition algorithm, we plotted each individual seatbelt

motion trial and began to look for patterns.

5.1 Data Preprocessing

Upon studying the accelerometer data, it became apparent that our data needed to be

additionally preprocessed in order for it to best be useful. Due to the sampling frequency

of the sensors, the data was rather noisy even after feature extraction. The Pebble watch

accelerometers transmitted data at a rate of 25 Hz, meaning that there was far more gran-

ularity than we were interested in. Because of this, we applied a smoothing function to

the data before extracting features from it. This step is recommended in literature [8]. The

purpose of smoothing was twofold:

1. The smoothing function acts as a filter, filtering out fine movements and other

anomalies and leaving only the broad, sweeping motions that we were interested

in, i.e. gross arm motion.

2. The smoothing function makes it easier to analyze the overall patterns in the data,

without having to sift through noise.

There is a tradeoff associated with filtering values too crudely. Excessive smoothing

runs the risk of masking important information about the data. Therefore, it is important

to carefully choose the number of data points which are smoothed together.

To achieve the desired smoothing effect, we used a rolling average function. Given

a window size w, the rolling average function is applied such that each data point be-

comes an average of its w surrounding points. Figure 5.1 illustrates how a rolling average

18

Figure 5.1: Illustration of a rolling average function with window size w = 3.

function works, with each "smoothed" point being calculated using Equation 5.1. For this

study, the data was smoothed with w = 10. This value for w was chosen because it re-

duced data noise without hiding important information. Originally, the 25 Hz sampling

frequency yielded one packet every 0.04 seconds. After application of the filter function,

each point was an average of every packet within a 0.4 second range. This mimicked the

initial procedure of splitting the data into 0.5-second windows before calculating features.

As with that early effort, the goal was to capture information about only the individual

components of the buckling motion, as opposed to the exact quiver of a hand. Figure 5.2

illustrates the difference between raw data and the corresponding smoothed data.

x′n =
1

w
∗

n+bw−1
2
c∑

i=n−dw−1
2
e

xi where n is the index of the data point being smoothed (5.1)

5.1.1 Data Analysis

Upon investigating the plotted data trials, it was apparent that the motion of buckling

has two distinct sections, or "halves". The first section corresponds to when the user raises

their arm to reach for their seatbelt. The second section corresponds to when the user

19

Figure 5.2: Data plots from three different seatbelt-buckling activities, each before and
after the smoothing function was applied.

20

Figure 5.3: A plot of smoothed accelerometer data for one buckling instance with each
component marked. The first "half" of the data corresponds to the period where the user
lifts their arm to grab the buckle. The second "half" corresponds to the period where the
user lowers their arm to fasten the buckle.

21

lowers their arm to fasten the buckle. This two-section structure holds no matter which

arm is used to buckle, because every user wore the watch on the arm that performed the

initial reach. With this structure in mind, we modified our feature generation procedure.

Because a seatbelt motion displays less periodicity than other activities such as running

or brushing teeth, a 0.5-second window was recognized as too short to capture any useful

component of a seatbelt motion. Therefore, the window size was expanded to 5 seconds,

the observed average total duration of the activity. Additionally, to mitigate the chances

of an activity being "caught" between two windows, we implemented a sliding window.

Because of the precise nature of the gesture and its two distinct components, we used a

3-second window overlap, illustrated in Figure 5.4. Every two seconds, a new window is

calculated with the result that every window overlaps by three seconds.

Even though our feature window size now encompassed the entire gesture, we still

wanted to recognize the distinct characteristics of the first half of the motion as compared

to the second half of the motion. To capture the nuances of these different components,

we considered each feature independently over the first half of the window and again over

the second half of the window. Thus, we have three columns for each feature, with each

column representing a different time period: one entry that is independent for the entire

window, one entry calculated from the first half of the window, and one entry calculated

from the last half of the window.

5.1.2 Additional Features

Plotting the motions revealed correlations between the three data streams that were

not well captured by the original feature set. As shown in Figure 5.3, during the first

half of the motion, Y and Z appear to be directly related, while X is inversely related.

Additionally, the Y and Z axes appear to be very close numerically. During the second

half of the motion, Y and X appear to be directly related, while Z is inversely related.

22

Figure 5.4: An illustration of the sliding window used to calculate features from the raw
accelerometer data.

23

Appropriately, the Y and X values are very close. Based on this, we constructed features

from the differences between axes: X - Y, X - Z, and Y - Z. We also added the absolute

value of these differences, yielding the true differences between the axes. Finally, a feature

was created to reflect the difference between the X-Y and the Y-Z difference. Because

there is a high X-Y difference and a low Y-Z difference in the first half, followed by a

low X-Y difference and a high Y-Z difference in the second half, the difference between

the two difference measures should theoretically stay more constant throughout the whole

motion.

The following eight features were used to augment our existing feature set. Sample

formulas are included for each group of features. In each case, a new axis is created by

performing the desired operation on each pair of points within the window (for instance,

by pairwise subtracting Y values from X values). Then, these results are averaged together

across all n points in the window to create the final value of the feature for that window.

• Difference between axes: X-Y, X-Z, Y-Z

X-Y =

∑n
i=1Xi − Yi

n
Difference between X and Y axes. (5.2)

• Absolute difference between axes: |X-Y|, |X-Z|, |Y-Z|

|X-Y| =

∑n
i=1 |Xi − Yi|

n
Absolute difference between X and Y axes. (5.3)

• Difference between XY-difference and YZ-difference: |X-Y|-|Y-Z|

|X-Y|-|Y-Z| =

∑n
i=1 |Xi − Yi| − |Yi − Zi|

n
(5.4)

24

Classifier Accuracy
IBk 99.8%
J48 97.9%
MultilayerPerceptron 100%
Naive Bayes 99.4%
Random Forest 99.4%
SMO 99.8%
ZeroR 89.2%

Table 5.1: Improved Classifier Accuracy using the expanded feature set on controlled data.

• Absolute difference between XY-difference and YZ-difference: ||X-Y|-|Y-Z||

||X-Y|-|Y-Z|| =

∑n
i=1 ||Xi − Yi| − |Yi − Zi||

n
(5.5)

Because each feature was calculated three times for different components of the win-

dow, there was a total of 60 features for each window. These features were generated on

the original data set, so no new data was collected.

5.2 Results

The new feature set was evaluated against the same set of classifiers from WEKA used

in the initial study: IBk, J48, MultilayerPerceptron, Naive Bayes, Random Forest, SMO,

and ZeroR. The results are shown in Tables 5.1 and 5.2. The confusion matrices for each

classifier are in Tables 5.3 - 5.8.

The new feature set greatly improved classification success on the data from the first

user study. F-measures for both activities were above 0.900 for every classifier tested

(excluding ZeroR). The IBk classifier had no false negatives. Several classifiers (Naive

Bayes, Random Forest, and SMO) had no false positives. MultilayerPerceptron returned

no misclassifications at all. These results indicate that the new feature set is much more

representative of the unique characteristics of the buckling motion.

25

Classifier Activity F-Measure
IBk Buckling 0.990

Not_Buckling 0.999
J48 Buckling 0.902

Not_Buckling 0.988
MultilayerPerceptron Buckling 1.000

Not_Buckling 1.000
Naive Bayes Buckling 0.970

Not_Buckling 0.996
Random Forest Buckling 0.970

Not_Buckling 0.996
SMO Buckling 0.990

Not_Buckling 0.999
ZeroR Buckling 0.000

Not_Buckling 0.943

Table 5.2: Improved Classifier F-Measures using the expanded feature set on controlled
data.

a b <– classified as
51 0 a = Buckling
1 420 b = Not_Buckling

Table 5.3: Improved IBk Confusion Matrix using expanded feature set on controlled data.

a b <– classified as
46 5 a = Buckling
5 416 b = Not_Buckling

Table 5.4: Improved J48 Confusion Matrix using expanded feature set on controlled data.

a b <– classified as
51 0 a = Buckling
0 421 b = Not_Buckling

Table 5.5: Improved MultilayerPerceptron Confusion Matrix using expanded feature set
on controlled data.

a b <– classified as
48 3 a = Buckling
0 421 b = Not_Buckling

Table 5.6: Improved Naive Bayes Confusion Matrix using expanded feature set on con-
trolled data.

26

5.3 Real-Time Recognition

A second user study was conducted to test the validity of this approach and feature set

for real-time recognition.

5.3.1 Algorithm Implementation

The Python script which extracted features from the data was translated into Java and

integrated with the Android application so that features could be generated on the fly. The

J48 classifier outputs the decision tree it creates, so we integrated this tree with the Android

application as a method for real-time recognition. As a result of these two additions, the

Android application not only collected data, but also generated features in real time and

checked those features against the J48 decision tree in an attempt to recognize a buckling

action during the current time window. A diagram of the updated application structure is

included in Figure 5.5. The application alerts the user when the classification algorithm

detects a buckling activity. It also contains fields where the user may report true posi-

tives, false positives, and false negatives. The resulting input may be used to continuously

improve classification. During the first few rounds of naturalistic testing, we used the real-

time results to manually update our classification and improve our results. However, this

improvement process should be automated within the application. This improvement is

left for future work. Screenshots of the application interface are shown in Figures 5.6 and

5.7.

5.4 Real-Time Results

Although only the J48 decision tree was implemented to run in real time during the

second user study, other classifiers were run after the fact on the naturalistic data obtained

during that study. The results of these classifiers are in Tables 5.9 and 5.10. The confusion

matrices for each classifier are in Tables 5.11 - 5.16.

27

Figure 5.5: Structure of the Android application used for real-time recognition. Each
incoming data packet triggers the chain of actions from the beginning, starting with the
"Receive Data" box.

28

a b <– classified as
48 3 a = Buckling
0 421 b = Not_Buckling

Table 5.7: Improved Random Forest Confusion Matrix using expanded feature set on con-
trolled data.

a b <– classified as
51 1 a = Buckling
0 421 b = Not_Buckling

Table 5.8: Improved SMO Confusion Matrix using expanded feature set on controlled
data.

Figure 5.6: Interface of the Android ap-
plication used for real-time recognition
testing. The button at the bottom of the
screen allows the user to indicate a false
negative (that is, they buckled their seat-
belt but the application did not recognize
the motion as buckling).

Figure 5.7: During real-time recognition
testing, a popup is shown when the clas-
sification algorithm detects a buckling
motion. The user has the option to mark
the recognition as a true positive (they
did buckle) or a false positive (they did
not buckle).

29

The F-measures show a significant drop between the controlled data and the naturalistic

data. However, an F-measure of 0.825 is still achieved with the MultilayerPerceptron

classifier. J48, the classifier which was run in real time on the Android application, yielded

an F-measure of 0.734. More investigation is needed to improve the effectiveness of the

real-time system, but we know from the lab data results that such effectiveness is possible.

Possible improvements will be discussed in Section 6.1.

Classifier Accuracy
IBk 97.0%
J48 96.5%
MultilayerPerceptron 97.6%
Naive Bayes 90.4%
Random Forest 97.5%
SMO 97.3%
ZeroR 93.6%

Table 5.9: Real-Time Classifier Accuracy using expanded feature set on naturalistic data.

30

Classifier Activity F-Measure
IBk Buckling 0.775

Not_Buckling 0.984
J48 Buckling 0.734

Not_Buckling 0.981
MultilayerPerceptron Buckling 0.825

Not_Buckling 0.987
Naive Bayes Buckling 0.550

Not_Buckling 0.946
Random Forest Buckling 0.772

Not_Buckling 0.987
SMO Buckling 0.769

Not_Buckling 0.986
ZeroR Buckling 0.000

Not_Buckling 0.967

Table 5.10: Real-Time Classifier F-Measures using expanded feature set on naturalistic
data.

a b <– classified as
74 18 a = Buckling
25 1325 b = Not_Buckling

Table 5.11: Real-Time IBk Confusion Matrix using expanded feature set on naturalistic
data.

a b <– classified as
69 23 a = Buckling
27 1323 b = Not_Buckling

Table 5.12: Real-Time J48 Confusion Matrix using expanded feature set on naturalistic
data.

a b <– classified as
80 12 a = Buckling
22 1328 b = Not_Buckling

Table 5.13: Real-Time MultilayerPerceptron Confusion Matrix using expanded feature set
on naturalistic data.

a b <– classified as
85 7 a = Buckling
132 1218 b = Not_Buckling

Table 5.14: Real-Time Naive Bayes Confusion Matrix using expanded feature set on nat-
uralistic data.

31

a b <– classified as
61 31 a = Buckling
5 1345 b = Not_Buckling

Table 5.15: Real-Time Random Forest Confusion Matrix using expanded feature set on
naturalistic data.

a b <– classified as
65 27 a = Buckling
12 1338 b = Not_Buckling

Table 5.16: Real-Time SMO Confusion Matrix using expanded feature set on naturalistic
data.

32

6. FUTURE WORK

6.1 Further Recognition Improvements

Although the recognition approach presented in this paper was very successful at clas-

sifying historical data, it was less successful at real-time classification. One possible ex-

planation for this is that the data that was gathered during the initial user study is not

representative of naturalistic data. For example, users during the real-time study often

experienced false positives (the Android application told them they were buckling their

seatbelt) when they were sitting still or walking. No data for these normal activities was

collected during the initial user study, so the classification algorithm had not been trained

to discriminate between these actions and buckling actions. Once we began to conduct

naturalistic trials, we supplemented our original test data with the new, real-time data. We

manually sent this data back through the WEKA J48 classifier in order to generate a sig-

nificantly more accurate decision tree. In the future, this process of improvement should

be made automated. This idea is elaborated below.

One method to overcome shortcomings of incomplete data sets is to implement adap-

tive recognition. Adaptive recognition does not require prior knowledge about the user or

the activities being performed [23]. The classifier is adjusted to assimilate new data as it

is provided. This technique should be investigated in the context of real-time recognition

through the Android application. The input which is accepted from the user (denotation of

true positives, false positives, and false negatives) may be used to reconstruct the classifier

automatically. Additionally, such an adaptive classification implementation could allow

each Android application to build a unique model for each user, leading to more person-

alized buckling detection. Individually constructed models have shown success in other

research [33]. Individual classification models may handle classification errors which stem

33

from underlying differences in how users perform the seatbelt-buckling action, such as the

dominant hand used. Future studies should consider adaptively adjusting classifiers in real

time, in addition to constructing unique classifiers for each user.

6.2 Additional Detection

The goal of this research is to provide a foundation to implement a warning system

which detects whether a user who is in a car has fastened their seatbelt. If they have not

done so, it should provide an appropriate intervention to the user. Components of this

process are:

1. Detect whether the user has fastened their seatbelt.

2. Detect whether the user is driving or riding in a car.

3. If statement 1 is not true but statement 2 is true, alert the user.

This work offers a method for statement 1. Further studies should seek to integrate our

method with a method for detecting that the user is driving [52].

6.3 Feedback & Intervention

To promote behavioral modification, the detection system must alert the user that they

are engaging in undesirable behavior. It must do so in a way which is helpful but not

annoying, as this might discourage user participation. Suitable modes of feedback might

include haptic vibrations [53–56], auditory stimuli, or visual cues [13]. Additional studies

should determine the optimal mode of feedback and test the effectiveness of the integrated

system. Together with an intervention, the process of detection can be used as the basis of

many safety applications which track and improve behavior.

34

7. CONCLUSION

This research investigated the use of activity recognition to detect the action of buck-

ling a seatbelt, using accelerometer data collected from a Pebble smartwatch. This work is

necessary because although most cars contain seatbelt-buckling detection systems [4, 5],

these systems are frequently ignored, resulting in many deaths related to car crashes [2].

Activity recognition is a popular field with many applications to healthcare [12, 13], but

no prior work has sought to apply wearable activity recognition techniques to detect the

action of buckling a seatbelt.

We began by applying simple traditional features found in literature [8] to accelerome-

ter data collected through an initial user study. These features were moderately successful

at discriminating between data that indicated buckling and data that did not. We were

able to greatly improve recognition performance by expanding this feature set to reflect

characteristics of the data that are unique to the buckling motion. The final F-measures for

controlled recognition of buckling reached 1.000 using MultilayerPerceptron. Finally, we

tested the effectiveness of the new feature set in a naturalistic user study, resulting in an

F-measure of 0.825 with MultilayerPerceptron.

These results indicate the high effectiveness of our feature set and of activity recogni-

tion in general for recognizing the action of buckling a seatbelt. This recognition may be

incorporated into future systems that aim to promote safe behavior. Through these future

systems, public health and safety can be improved.

35

REFERENCES

[1] N. H. T. S. Administration, “Traffic safety facts, 2014 data: occupant protection.

Washington, DC: US department of transportation, national highway traffic safety

administration; 2016,” 2016.

[2] Centers for Disease Control and Prevention (CDC), “Seat belts: Get

the facts.” http://www.cdc.gov/motorvehiclesafety/seatbelts/

facts.html, July 5, 2016. Accessed: 2017-04-09.

[3] T. W. Strine, L. Beck, J. Bolen, C. Okoro, and C. Li, “Potential moderating role of

seat belt law on the relationship between seat belt use and adverse health behavior,”

American journal of health behavior, vol. 36, no. 1, pp. 44–55, 2012.

[4] H. Yoshihiro, “Patent us3689881 - device in an automobile for detecting a pull-out

motion of a seat belt.” https://www.google.com/patents/US3689881,

1971. Accessed: 2017-04-09.

[5] K. Aoki, T. Yasuda, S. Masanori, K. Osamu, and A. Kaisha, “Patent us4885566

- apparatus for detecting the wearing of a seat belt assembly.” https://www.

google.com/patents/US4885566, 1987. Accessed: 2017-04-09.

[6] R. Yano, “Patent us6498562 - seat belt buckle engagement detector and seat belt sys-

tem.” https://www.google.com/patents/US6498562, 2000. Accessed:

2017-04-09.

[7] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-based activity recog-

nition,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), vol. 42, pp. 790–808, Nov 2012.

36

[8] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso, “Preprocessing techniques for

context recognition from accelerometer data,” Personal and Ubiquitous Computing,

vol. 14, no. 7, pp. 645–662, 2010.

[9] J. Lester, T. Choudhury, and G. Borriello, “A practical approach to recognizing

physical activities,” in International Conference on Pervasive Computing, pp. 1–16,

Springer, 2006.

[10] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using

wearable sensors.,” IEEE Communications Surveys and Tutorials, vol. 15, no. 3,

pp. 1192–1209, 2013.

[11] E. Thomaz, I. Essa, and G. D. Abowd, “A practical approach for recognizing eat-

ing moments with wrist-mounted inertial sensing,” in Proceedings of the 2015 ACM

International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1029–

1040, ACM, 2015.

[12] J. Bartley, J. Forsyth, P. Pendse, D. Xin, G. Brown, P. Hagseth, A. Agrawal, D. Gold-

berg, and T. Hammond, World of workout: a contextual mobile RPG to encourage

long term fitness. 2013.

[13] V. Rajanna, F. Alamudun, D. Goldberg, and T. Hammond, “Let me relax: Toward

automated sedentary state recognition and ubiquitous mental wellness solutions,” in

Proceedings of the 5th EAI International Conference on Wireless Mobile Communi-

cation and Healthcare, pp. 28–33, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2015.

[14] J. M. Peschel, B. Paulson, and T. Hammond, “A surfaceless pen-based interface,” in

Proceedings of the Seventh ACM Conference on Creativity and Cognition, C&C

’09, (New York, NY, USA), pp. 433–434, ACM, 2009.

37

[15] I. J. Amin, A. J. Taylor, and R. M. Parkin, “Driver tracking and posture detection

using low-resolution infrared sensing,” Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering, vol. 221, no. 9, pp. 1079–

1088, 2007.

[16] B. Paulson and T. Hammond, “Office activity recognition using hand posture cues,”

in Proceedings of the 22Nd British HCI Group Annual Conference on People and

Computers: Culture, Creativity, Interaction - Volume 2, BCS-HCI ’08, (Swinton,

UK, UK), pp. 75–78, British Computer Society, 2008.

[17] B. Paulson, D. Cummings, and T. Hammond, “Object interaction detection using

hand posture cues in an office setting,” Int. J. Hum.-Comput. Stud., vol. 69, pp. 19–

29, Jan. 2011.

[18] P. Taele and T. Hammond, “Invisishapes: A recognition system for sketched 3d prim-

itives in continuous interaction spaces,” in Proceedings of the 2015 International

Symposium on Smart Graphics, Chengdu, China, SG, p. 12, 2015.

[19] J. Miller and T. Hammond, “Wiiolin: A virtual instrument using the wii remote,”

in Proceedings of the 2010 Conference on New Interfaces for Musical Expression

(NIME), (Sydney, Australia), p. 497âĂŞ500, June 15-18 2010.

[20] P. Kaul, V. Rajanna, and T. Hammond, “Exploring users’ perceived activities in a

sketch-based intelligent tutoring system through eye movement data,” in ACM Sym-

posium on Applied Perception (SAP ’16), SAP, p. 1, 2016.

[21] F. Alamudun, H.-J. Yoon, T. Hammond, K. Hudson, G. Morin-Ducote, and

G. Tourassi, “Shapelet analysis of pupil dilation for modeling visuo-cognitive be-

havior in screening mammography,” in Proc. SPIE, vol. 9787 of SPIE, pp. 97870M–

97870M–13, 2016.

38

[22] F. Alamudun, H.-J. Yoon, K. B. Hudson, G. Morin-Ducote, T. Hammond, and G. D.

Tourassi, “Fractal analysis of visual search activity for mass detection during mam-

mographic screening,” Medical Physics, 2017.

[23] K. Van Laerhoven and O. Cakmakci, What shall we teach our pants?, pp. 77–83.

IEEE Press, 2000.

[24] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen, “Activ-

ity classification using realistic data from wearable sensors,” IEEE Transactions on

information technology in biomedicine, vol. 10, no. 1, pp. 119–128, 2006.

[25] E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Fried-

man, “Real-time recognition of physical activities and their intensities using wireless

accelerometers and a heart rate monitor,” in Wearable Computers, 2007 11th IEEE

International Symposium on, pp. 37–40, IEEE, 2007.

[26] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recognition

and monitoring using multiple sensors on different body positions,” in Wearable and

Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on,

pp. 4–pp, IEEE, 2006.

[27] D. Brhlik, C. Young, and T. Otuyelu, “Enhancing blind navigation with the use of

wearable sensor technology,” undergraduate honors thesis, Texas A&M University,

May 2016.

[28] N. Győrbíró, Á. Fábián, and G. Hományi, “An activity recognition system for mobile

phones,” Mobile Networks and Applications, vol. 14, no. 1, pp. 82–91, 2009.

[29] F. Foerster, M. Smeja, and J. Fahrenberg, “Detection of posture and motion by ac-

39

celerometry: a validation study in ambulatory monitoring,” Computers in Human

Behavior, vol. 15, no. 5, pp. 571–583, 1999.

[30] C. Randell and H. Muller, “Context awareness by analysing accelerometer data,” in

Digest of Papers. Fourth International Symposium on Wearable Computers, pp. 175–

176, Oct 2000.

[31] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition from

accelerometer data,” in Aaai, vol. 5, pp. 1541–1546, 2005.

[32] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,”

in International Conference on Pervasive Computing, pp. 1–17, Springer, 2004.

[33] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition from accelerome-

ter data on a mobile phone,” in International Work-Conference on Artificial Neural

Networks, pp. 796–799, Springer, 2009.

[34] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone

accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2, pp. 74–82,

2011.

[35] E. Garcia-Ceja, R. F. Brena, J. C. Carrasco-Jimenez, and L. Garrido, “Long-term

activity recognition from wristwatch accelerometer data,” Sensors, vol. 14, no. 12,

pp. 22500–22524, 2014.

[36] G. M. Weiss, J. L. Timko, C. M. Gallagher, K. Yoneda, and A. J. Schreiber,

“Smartwatch-based activity recognition: A machine learning approach,” in Biomed-

ical and Health Informatics (BHI), 2016 IEEE-EMBS International Conference on,

pp. 426–429, IEEE, 2016.

40

[37] J. Cherian, V. Rajanna, D. Goldberg, and T. Hammond, “Did you remember to brush?

: A noninvasive wearable approach to recognizing brushing teeth for elderly care.,” in

11th EAI International Conference on Pervasive Computing Technologies for Health-

care., ACM, 2017.

[38] V. Rajanna, R. Lara-Garduno, D. J. Behera, K. Madanagopal, D. Goldberg, and

T. Hammond, “Step up life: a context aware health assistant,” in Proceedings of

the Third ACM SIGSPATIAL International Workshop on the Use of GIS in Public

Health, pp. 21–30, ACM, 2014.

[39] Pebble, “Pebble time steel.” https://www.pebble.com/

pebble-time-steel-smartwatch-features. Accessed: 2017-04-

09.

[40] M. Ware, “weka.classifiers.functions class MultilayerPerceptron.” http:

//weka.sourceforge.net/doc.dev/weka/classifiers/

functions/MultilayerPerceptron.html. Accessed: 2017-04-09.

[41] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[42] E. Frank, “weka.classifiers.rules class ZeroR.” http://weka.sourceforge.

net/doc.dev/weka/classifiers/rules/ZeroR.html.

[43] E. Frank, M. Hall, and I. Witten, The WEKA Workbench. Online appendix for “Data

Mining: Practical Machine Learning Tools and Techniques”. Morgan Kaufmann,

4 ed., 2016.

[44] S. Inglis, L. Trigg, and E. Frank, “weka.classifiers.lazy class IBk.” http://weka.

sourceforge.net/doc.dev/weka/classifiers/lazy/IBk.html.

Accessed: 2017-04-09.

41

[45] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine Learning,

vol. 6, pp. 37–66, 1991.

[46] E. Frank, “weka.classifiers.trees class J48.” http://weka.sourceforge.

net/doc.dev/weka/classifiers/trees/J48.html. Accessed: 2017-

04-09.

[47] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kauf-

mann Publishers, 1993.

[48] E. Frank, S. Legg, and S. Inglis, “weka.classifiers.functions class SMO.”

http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html. Ac-

cessed: 2017-04-09.

[49] J. Platt, “Fast training of support vector machines using sequential minimal opti-

mization,” in Advances in Kernel Methods - Support Vector Learning (B. Schoelkopf,

C. Burges, and A. Smola, eds.), MIT Press, 1998.

[50] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, “Improvements to platt’s

smo algorithm for svm classifier design,” Neural Computation, vol. 13, no. 3,

pp. 637–649, 2001.

[51] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” in Advances in

Neural Information Processing Systems (M. I. Jordan, M. J. Kearns, and S. A. Solla,

eds.), vol. 10, MIT Press, 1998.

[52] M. Kadous, “Detecting driving with a wearable computing device,” May 19 2015.

US Patent 9,037,125.

[53] M. Prasad, M. I. Russell, and T. A. Hammond, “A user centric model to design tactile

42

codes with shapes and waveforms,” in Haptics Symposium (HAPTICS), 2014 IEEE,

pp. 597–602, Feb 2014.

[54] M. Prasad, P. Taele, A. Olubeko, and T. Hammond, “Haptigo: A navigational tap

on the shoulder,” in Haptics Symposium (HAPTICS), 2014 IEEE, pp. 339–345, Feb

2014.

[55] M. Prasad, M. Russell, and T. A. Hammond, “Designing vibrotactile codes to com-

municate verb phrases,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 11,

pp. 11:1–11:21, Oct. 2014.

[56] M. Prasad, P. Taele, D. Goldberg, and T. A. Hammond, “Haptimoto: Turn-by-turn

haptic route guidance interface for motorcyclists,” in Proceedings of the 32Nd Annual

ACM Conference on Human Factors in Computing Systems, CHI ’14, (New York,

NY, USA), pp. 3597–3606, ACM, 2014.

43

