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ABSTRACT

Comparing Accuracy and Time Complexity of Machine Learning Algorithms for Eye
Gesture Recognition

Jiayao Li
Department of Computer Science and Engineering
Texas A&M University

Research Advisor: Dr. Tracy Hammond
Department of Computer Science and Engineering
Texas A&M University

The eye motion data can be utilized to perform behavior analysis and improve com-
mon applications, such as accessible HCI, interactive interface, marketing, and remote-
controlling. This research project compares accuracy and time complexity of three com-
monly used machine learning algorithms for eye gesture recognition. The importance of
this project is to examine ways to improve efficiency in recognizing eye gestures. It was
found that the template matching algorithm has the best accuracy, followed by the Pearson
correlation algorithm, and lastly the decision tree algorithm. For time performance, it was
found that the decision tree algorithm performs the best, closely followed by the Pearson
correlation algorithm, and lastly the template matching algorithm. The template matching
algorithm is recommended to be used in accuracy-sensitive situations. The decision tree
algorithm and the Pearson correlation algorithm are recommended for time-sensitive situ-
ations. The algorithms perform better when the directions and other relative properties of
input gestures are majorly different. One should consider the properties of the input gesture

and the nature of application when it comes to deciding which algorithm to use.
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CHAPTER 1

INTRODUCTION

Human eyes move in particular motions and the movement corresponds with the atten-
tion of interest. The brain generates stimuli from the vision and processes sensory input
by concentrating on focal points [1]. The ability to utilize gaze data effectively can lead to
highly rich interactions. Gaze input has great potential as it moves faster than a mouse [2]
and can be used to replace the mouse for tasks involving object selection [3, 4, 5]. Eye-
tracking is simply tracing the path of a person’s eye movements. The equipment can be
built into the computer monitor or be placed in front of the computer screen. While the
user is looking at the screen, the eye-tracking software gathers the user’s focal points data
on the screen. The technology has many useful applications. Common applications include
desktop control [6, 7, 8, 9], typing [10, 11, 12, 13, 14], target selection [15, 16, 17], entering
password [18, 19], game control [20, 21], task prediction [22], visual analytics [23], and
giving commands at a distance [24].

Eye-tracking has a wide range of application areas. It can be used as a direct replace-
ment for the mouse [4] and is particularly suitable for applications with limited use of
keyboard input but rely greatly on the mouse input [S]. Eye-tracking also has promising
potential to be used as an interaction method with remote displays [24]. Gaze-gesture
based interaction system has several advantages than the traditional dwell-time based in-
teraction system. Gaze-gesture based interaction system can achieve high accuracy even
with disturbed calibration and does not require the users to constantly repeat the calibration
process [25]. This paper uses gaze-gesture as an input method to evaluate the accuracy

performance and time complexity of three different machine learning algorithms. Stud-



ies have been done on performance comparison among classification algorithms [26] and
routing algorithms [27]. However, there has not been much research done on performance
comparison of the commonly used eye-tracking algorithms for gaze-recognition.

There are several commonly used algorithms when it comes to gaze-recognition. This
research project compares the accuracy and time complexity of three commonly used
machine learning algorithms for eye-gesture recognition: the template matching algo-
rithm [28], the decision tree algorithm [29], and the Pearson correlation algorithm [30].
Six distinctive gestures were implemented as the base gesture types. These gestures were
used as training templates for the machine learning algorithms. A tabletop eye-tracker
from "The Eye Tribe" was used to collect the user’s gaze data. The eye-tracker was placed
directly in front of the computer screen. Upon the activation of the user’s command by
pressing down a key, the computer screen started to plot the user’s eye movement data until
the key is released by the user. The users were instructed to use their eyes to draw each
of the six base gesture types. There were 22 users participated in the study. The user’s
gaze gesture was then classified by each of the three machine learning algorithms. The
classification result and the time measurement of each algorithm were recorded for data
analysis and result comparison.

This paper has the following contributions. The accuracy performance and time com-
plexity of the three machine learning algorithms were determined. For each algorithm, a
confusion matrix was produced and the F-measure was calculated for each of the input
gesture types. The effects of input gestures and base gestures were discussed. Recommen-
dations on algorithm selection were made based on the algorithm performance observed in
the study. Similar analyses can be conducted on related applications to achieve computing

efficiency.



CHAPTER 2

RELATED WORK

Eye-tracking has been used in Human-Computer Interaction (HCI) for both accessible
and rich interactions. There are many useful applications when it comes to eye-tracking.

This section covers some of the major applications of eye-tracking in HCI.
2.1 Accessible HCI

Previous research has used gaze input as an accessible HCI, allowing users with acces-
sibility needs to use their gaze gesture to perform computer actions [31]. Users with motor
impairments can use gaze gestures to enter text on a computer using a virtual keyboard
with the assistance of an eye-tracker [11, 32]. Gaze typing allows individuals with motor
impairments to enter characters by using the duration of the dwell time on a virtual key-
board as the user dwells on a specific key [11]. Gaze-based typing system has also been
advanced by implementing a wearable foot operated device, where the user can select a

character with the assistance of wearable technology [32].
2.2 Authentication

Gaze gesture input is also commonly used for authentication [33, 34, 35, 36]. The
gaze input can be used as a powerful security tool to prevent shoulder-surfing attacks [25].
Shoulder surfing allows an attacker to access the authentication information through ob-
servation and has become a threat to visual privacy [33]. A gaze-based user authentication
system that combines gaze with gesture recognition can effectively prevent shoulder surfing
attacks [25]. The eye gesture allows for real-time user authentication without the need of

physically entering passwords through a keypad, effectively improving the security of the

10



authentication process.
2.3 Engineering

Eye-tracking also has a lot of useful applications in engineering such as controlling
an airplane or conducting an inspection [1, 37, 38]. Eye-tracking allows the users to input
gestures at a distance and carry out field tasks more conveniently [39, 40, 41]. Eye-tracking
can be used in situations where the interface involves sophisticated control panels or when
remote controlling is needed, such as when the control is too hot to touch or when it is hard
to reach. Eye-tracking provides flexibility in engineering design and allows engineering

systems to be more efficient.
2.4 Large Screen Interaction

Eye gesture input is also commonly used for large screen interaction [42, 41]. The gaze
input method allows the users to be more engaging [43]. Public displays such as a museum
interface, poster sign, map board [44, 45, 46] can all utilize input gesture as a trigger to
initiate interaction. Gaze-input allows the interactive system to engage with large audience
efficiently. The users can use their gaze to interact with the interface without having to
have their own input device. Utilizing gaze gesture can effectively save time, cost, and

bring more convenience.
2.5 Marketing

Gaze gesture has also been used as a powerful marketing analysis tool to collect data
about user’s level of interest on a web page or an object [47, 48, 49, 50, 23]. The inputs
are particularly useful because it provides information about whether or not the intended
design features were scanned over by the user. With the data provided by eye-tracking, one
can measure the relationship between marketing actions and sales of product [37]. More

effective marketing strategies and advertising methods can be developed with the utilization

11



of gaze input.
2.6 Surgery

Gaze input can be used to assist in performing surgeries, where the hygiene need is
critical and a surgeon may be busy with other tasks with their hands [S51, 52]. Eye-
tracking technology brings great potential for touches interaction techniques in medical
settings [S51]. Eye-tracking can also be utilized as a tool for assessing surgical skill [53] or
as a potential training tool [54] in clinical surgery. A previous study suggests that the tool-
motion data and the eye-gaze data can be used to effectively evaluate a surgeon’s surgical
skill [53]. In a training environment, eye-tracking can be used as an effective tool to provide

a supervisor’s eye-gaze data as a visual instruction to the trainee [54].
2.7 Video Game Control

Eye-tracking can also be used as an input method for video games. The gaze input data
can not only provide information about the user’s points of focus, but can also be used to
estimate the user’s head orientation [21]. A previous study suggests that using eye-tracking

can increase the immersion of a video game and improve the gaming experience [21].
2.8 Visual Analytics

Eye-tracking can also be used to collect gaze input as a form of feedback for visual
analytics [23]. Artists value the feedback of what parts of their artwork is most appreciated
by the viewers. Traditionally, this information is collected from the viewers in the form of
oral or written feedback. However, the value of this feedback can be limited due to the lack
of participation from the viewers, additionally, our subconscious visual understanding can
sometimes be difficult to express verbally [23]. With the eye-tracking technology, artists
can receive feedback in the form of visualized gaze input data that indicates areas of interest

by the viewers [23].
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CHAPTER 3

METHODS

There are various advantages of using gaze gestures than just using dwell time. Gaze-
gesture based interaction system can achieve high accuracy even with disturbed calibra-
tion [25], which means that the gaze input does not need to be precise and the users do
not have to constantly repeat the calibration process in order to effectively interact with the

system.
3.1 Input Gestures

This research compares the time complexity of three different machine learning al-
gorithms: the template matching algorithm, the decision tree algorithm, and the Pearson
correlation algorithm. Six gestures were implemented as the base gesture types, shown in
Figure 3.1.

These gestures were chosen because they are distinctively different from each other.
Each gesture was trained with five training templates collected from five different individ-
uals. An eye-tracker was used to plot the eye-movement data points against the computer
screen. The algorithms were written in the C# language using Visual Studio. The operating

system used was Microsoft Windows 10.
3.2 Template Matching Algorithm

The first algorithm is the template matching algorithm. This algorithm compares the
user’s gesture against the existing templates and determines the user’s gesture by finding
the best match [28]. The template matching algorithm compares two paths and calculates

the distance of the input path from the template path [33]. When the input path matches

13
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Figure 3.1: Six gesture types used as training templates.

closely to a template path, the gesture type of the template path is recognized as the input
gesture type.

The first step of the algorithm is the sampling stage, where the offset and the total length
between two points on a path are computed [33]. The purpose of the sampling stage is for
all the input strokes to have an equal number of stroke points. Figure 3.2 shows the user’s
scan path being scaled down to N=64 points in the sampling stage [25].

The next step is the scaling stage, where the path is scaled to a square along the x and
the y axes. Then, the centroid of the path is located and the path is moved to the origin
point [33]. Once the input gesture path is processed, it is ready to be compared to all

template gestures. The following equation is used for comparison [55]:

n N N2 N N V2
D:Z\/(Input(z)x Template(i),)? + (Input(i), — Template(i),) a1

- n
=1

where D stands for the distance between the input path and the template path, i is the point

on the path, and # is the total sample size.
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Figure 3.2: Demonstration of the scan path being scaled down to N=64 points.

Figure 3.3 shows a demonstration of the template matching algorithm finding the Eu-

clidean distance between the candidate path and the template path [25].

Candidate Path

Illlllllllllb

.\— Template Path

Figure 3.3: Demonstration of the candidate path being matched to the template path.

--II--II.’
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3.3 Decision Tree Algorithm

The second algorithm is the decision tree algorithm. This algorithm recognizes user’s
gesture by computing a range of features from the user’s data points and comparing them
with the computed features of the templates [29]. The decision tree algorithm used in this
research analyzes a total of five gesture features: the start and the end point of a gesture,
the area of the bounding box, the length of the bounding box diagonal, and the slope of the

bounding box diagonal [55]. Figure 3.4 shows a demonstration of the computed features.

Area of the

bounding box \ End

Slope
P ’7%“}\
©

Start

\7 Input Gesture

Figure 3.4: Demonstration of the accounted features in decision tree.

3.4 Pearson Correlation Algorithm

The third algorithm is the Pearson correlation algorithm. This algorithm measures the

linear correlation between the user’s input and the existing templates, shown in the equation

16



below [30]:

_ Cov(Eye, Obj) Yo (Byei — pipye) (Obji — piowy) 32)

¢ O Eye * O0bj _\/T‘ Eye; — 2S5 (Obgi — jiow; )?
Eye Obj 21:1( Ye; NEye) Zz:l 7i /J/Ob])

where C stands for the correlation coefficient, Eye denotes the data points of the user’s
eye-movements, Obj denotes the data points of the template object, Cov(Eye,Obj) is the
covariance, 0 gy and ooy, are the standard deviations, Eye; and Obj; are the single samples
indexed with 7, ppye and pop; are the means of the sample sums for Eye; and Oby;,
respectively, and n is the sample size.

The same equation is used to calculate the correlation coefficients in both the x and
the y axes. The total coefficient is calculated by adding the coefficient obtained from the x
direction to the coefficient obtained from the y direction. For each template in the set of the
existing training templates, a coefficient is calculated, and the template gesture type with

the highest coefficient is determined to be the input gesture type.
3.5 Time Measurement

The execution time is measured using the Stopwatch property. The unit of measurement
is in “ticks”. According to Microsoft documentation [56], a tick is the smallest unit the
Stopwatch timer can measure. A tick can be converted to seconds by using the Frequency
field, which represents the number of ticks per second [57]. The field frequency is depen-
dent on the installed hardware and the operating system [57]. In this study, a tick is used as

the time measurement unit for the purpose of performance comparison.
3.6 User Study

After the algorithm implementation stage, user studies were conducted to test the ac-
curacy and the time complexity of the three algorithms. A total number of 22 users

participated in this study, aged from 18 to 30 with an average age of 22. There were 7

17



female users and 15 male users. There was 1 user who wore glasses. During the user study,
an eye-tracker was placed in front of the computer monitor at the bottom of the computer
screen. The users were asked to use their eyes to draw the six base gesture types. A key
was pressed by the user to initiate the gaze gesture, and gaze data was plotted against the
computer screen until the key was released by the user. The eye-tracker was calibrated each
time before use. Figure 3.5 shows a demonstration of the front and side view of the user

study set up.

/—— Computer Screen

] \'A

\— Eyetracker —/

Figure 3.5: Demonstration of the front and side view of user study setup.

3.7 User Interface

Figure 3.6 shows a demonstration of the user interface. After a user performs a gesture
on the screen, a message window would pop up upon command showing the classification
and timing results by the three algorithms. As shown in the figure, a message window is

displayed, indicating all three algorithms have successfully recognized the input gesture.

18
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Figure 3.6: Demonstration of user interface.
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CHAPTER 4

RESULTS

4.1 Gesture Type 1: Right-Down

Figure 4.1 shows the accuracy plot by the right-down gesture type. For this gesture
type, both template matching and Pearson correlation achieve the most accuracy at around

91%, followed by decision tree at around 82%.

Accuracy (%)
92.0 90.9 90.9

90.0
88.0
86.0
84.0
82.0
80.0

78.0

76.0
Template Matching Decision Tree Pearson Correlation

Figure 4.1: Accuracy plot by the right-down gesture type.

Figure 4.2 shows the average time plot by the right-down gesture type. For this gesture
type, template matching takes the most time and Decision tree takes the least amount of

time. Both decision tree and Pearson correlation perform significantly faster than template

20



matching.

Average Time (ticks)

6000.0
5237.1

5000.0

4000.0 3527.0

3000.0 2520.7

2000.0

1000.0

0.0
Template Matching Decision Tree Pearson Correlation

Figure 4.2: Average time plot by the right-down gesture type.

Figure 4.3 shows the scattered plot of the time data by the right-down gesture type. As
shown in the plot, the template matching data points scatter mostly on the top of the graph,
the Pearson correlation data points scatter mostly in the middle, and the decision tree data
points scatter mostly at the bottom.

Table 4.1 shows a summary of the result for the right-down gesture type. For this
gesture type, template matching achieves decent accuracy but consumes the most time,
Pearson correlation achieves as much accuracy as template matching but performs much

faster, and decision tree has the lowest accuracy but has the best time efficiency.
4.2 Gesture Type 2: Right-Up

Figure 4.4 shows the accuracy plot by the right-up gesture type. For this gesture type,

template matching achieves the best accuracy at around 91%, followed by decision tree at

21
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Figure 4.3: Scattered plot of time data by the right-down gesture type.

Table 4.1: Result summary of the right-down gesture type.

Template Matching | Decision Tree | Pearson Correlation
Accuracy (%) 90.9 81.8 90.9
Average Time (ticks) 5,237.1 2,520.7 3,527.0

around 86%, and lastly Pearson correlation at around 73%.

Figure 4.5 shows the average time plot by the right-up gesture type. For this gesture
type, template matching takes the most time, and Pearson correlation takes the second

longest while decision tree takes the least amount of time. Both decision tree and Pearson

correlation are found to be significantly faster than template matching.

Figure 4.6 shows the scattered plot of the time data by the right-up gesture type. As
shown in the plot, the template matching data points scatter mostly on the top of the graph,

the Pearson correlation data points scatter mostly in the middle, while the decision tree data

points scatter mostly at the bottom.
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Figure 4.4: Accuracy plot by the right-up gesture type.

Average Time (ticks)

4997.9

Template Matching

2048.1

Decision Tree
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Pearson Correlation

Figure 4.5: Average time plot by the right-up gesture type.
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Figure 4.6: Scattered plot of time data by the right-up gesture type.

Table 4.2 shows a summary of the result for the right-up gesture type. For this gesture
type, template matching achieves the best accuracy but takes the most time. Decision
tree has a lower accuracy, not much lower than template matching, but has a much better
time efficiency. Pearson correlation achieves the lowest accuracy but has a better time

performance than template matching.

Table 4.2: Result summary of the right-up gesture type.

Template Matching | Decision Tree | Pearson Correlation
Accuracy (%) 90.9 86.4 72.7

Average Time (ticks) 4,997.9 2,048.1 3,048.7
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4.3 Gesture Type 3: Left-Down

Figure 4.7 shows the accuracy plot by the left-down gesture type. For this gesture type,

all three algorithms achieve 100% of accuracy.

Accuracy (%)

1200
100.0 100.0 100.0
100.0
80.0
60.0

40.0

20.0

0.0
Template Matching Decision Tree Pearson Correlation

Figure 4.7: Accuracy plot by the left-down gesture type.

Figure 4.8 shows the average time plot by the left-down gesture type. For this gesture
type, template matching takes the most time, decision tree takes the second most time,
and Pearson correlation takes the least amount of time. The time performance of decision
tree and Pearson correlation are close to each other, but both are significantly faster than
template matching.

Figure 4.9 shows the scattered plot of the time data by the left-down gesture type. As
shown in the plot, the template matching data points mostly occupy the upper half of the
graph, while the data points of decision tree and Pearson correlation mostly occupy the

lower half of the graph.
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Figure 4.8: Average time plot by the left-down gesture type.

Time Data Scattered Plot
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Figure 4.9: Scattered plot of time data by the left-down gesture type.
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Table 4.3 shows a summary of the result for the left-down gesture type. For this gesture
type, all three algorithms achieve 100% of accuracy. Both decision tree and Pearson

correlation perform much better on time than template matching.

Table 4.3: Result summary of the left-down gesture type.

Template Matching | Decision Tree | Pearson Correlation
Accuracy (%) 100 100 100

Average Time (ticks) 5,289.3 3,270.1 2,974.3

4.4 Gesture Type 4: Left-Up

Figure 4.10 shows the accuracy plot by the left-up gesture type. For this gesture type,
both decision tree and Pearson correlation achieve 100% of accuracy, closely followed by

template matching at around 96%.
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Figure 4.10: Accuracy plot by the left-up gesture type.
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Figure 4.11 shows the average time plot by the left-up gesture type. For this gesture
type, template matching takes the most time, and decision tree and Pearson correlation are
both significantly faster than template matching. Decision tree takes the least amount of

time, but not much lower than Pearson correlation.
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Figure 4.11: Average time plot by the left-up gesture type.

Figure 4.12 shows the scattered plot of the time data by the left-up gesture type. As
shown in the plot, the template matching data points are found to be at a higher range than
the other two algorithms. Decision tree has a few data points at the top but scatters mostly
at the bottom.

Table 4.4 shows a summary of the result for the left-up gesture type. For this gesture
type, all three algorithms achieve 100% of accuracy. Template matching takes the most
time. Both decision tree and Pearson correlation are found to be faster than template

matching%.

28



8000
7000 @
6000
5000
4000
3000
2000

1000

@ Template Matching

Time Data Scattered Plot

B Decision Tree

Pearson Correlation

Figure 4.12: Scattered plot of time data by the left-up gesture type.

Table 4.4: Result summary of the left-up gesture type.

Template Matching | Decision Tree | Pearson Correlation
Accuracy (%) 100 100 100
Average Time (ticks) 5,289.3 3,270.1 3,171.8

4.5 Gesture Type 5: Diagonal-Upper

Figure 4.13 shows the accuracy plot by the diagonal-upper gesture type. For this gesture

type, Both template matching and Pearson correlation achieve 100% of accuracy. Decision

tree only has an accuracy of about 86%.

Figure 4.14 shows the average time plot by the diagonal-upper gesture type. For this

gesture type, decision tree has the best time performance, followed by Pearson correlation,

and template matching is once again found to take the longest time.

Figure 4.15 shows the scattered plot of the time data by the diagonal-upper gesture type.

As shown in the plot, the template matching data points scatter mostly on the upper half of
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Figure 4.13: Accuracy plot by the diagonal-upper gesture type.
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Figure 4.14: Average time plot by the diagonal-upper gesture type.
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the graph while the decision tree data and the Pearson correlation data scatter mostly at the

lower half of the graph.
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Figure 4.15: Scattered plot of time data by the diagonal-upper gesture type.

Table 4.5 shows a summary of the result for the diagonal-upper gesture type. For this
gesture type, both template matching and Pearson correlation achieve 100% of accuracy.
Decision tree takes the lowest amount of time but also has the lowest accuracy. Pear-

son correlation performs slightly slower than decision tree and much faster than template

matching.
Table 4.5: Result summary of the diagonal-upper gesture type.
Template Matching | Decision Tree | Pearson Correlation
Accuracy (%) 100 86.4 100
Average Time (ticks) 4,307.9 1,573.9 2,846.2
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4.6 Gesture Type 6: Diagonal-Lower

Figure 4.16 shows the accuracy plot by the diagonal-lower gesture type. Once again,
both template matching and Pearson correlation achieve the most accuracy at 100%. Deci-

sion tree has the lowest accuracy at around 86%.
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Figure 4.16: Accuracy plot by the diagonal-lower gesture type.

Figure 4.17 shows the average time plot by the diagonal-lower gesture type. For this
gesture type, template matching takes the most time. Decision tree and Pearson correlation
have almost the same time performance, both are much faster than template matching.

Figure 4.18 shows the scattered plot of the time data by the diagonal-lower gesture type.
As shown in the plot, the template matching data points scatter at a higher range than the
data points of decision tree and Pearson correlation.

Table 4.6 shows a summary of the result for the diagonal-lower gesture type. For this

gesture type, both template matching and Pearson correlation achieve 100% of accuracy,
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Figure 4.17: Average time plot by the diagonal-lower gesture type.
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Figure 4.18: Scattered plot of time data by the diagonal-lower gesture type.
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but template matching takes the most time. Decision tree has a good time performance but

its accuracy is much lower than the other two algorithms.

Table 4.6: Result summary of the diagonal-lower gesture type.

Template Matching | Decision Tree | Pearson Correlation
Accuracy (%) 100 86.4 100
Average Time (ticks) 4,080.2 2,274.0 2,271.5

4.7 All Gestures Combined

Figure 4.19 shows the accuracy plot by the all the gestures combined. As shown in the

figure, when considering all the gestures, template matching achieves the best accuracy at

around 96%, followed by Pearson correlation at around 94%, and lastly decision tree at

around 90%.

Accuracy (%)

979 96.2
96.0
95.0
94.0
93.0
92.0

91.0 Q0.2

90.0
85.0
88.0
87.0

Template Matching Decision Tree

93.9

Pearson Correlation

Figure 4.19: Accuracy plot by all gestures combined.
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Figure 4.20 shows the average time plot by all the gestures combined. As shown in
the graph, template matching takes the most amount of time. Both decision tree and Pear-
son correlation perform significantly better than template matching on time performance.

Decision tree has the best time performance among all three algorithms.
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Figure 4.20: Average time plot by all gestures combined.

Figure 4.21 shows the scattered plot of the time data by all the gesture types combined.
As shown in the plot, the template matching data points fall frequently on the top of the
plot while the Pearson data points scatter mostly at the bottom. Decision tree has some data
points falling on the upper half of the graph, but for the most part, the data points scatter at
the bottom of the graph.

Table 4.7 shows a summary of the result for all the gesture types combined. When
considering all the gesture types, template matching has the best performance but takes the

most time. Decision tree takes the least amount of time but has the lowest accuracy. The
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Figure 4.21: Scattered plot of time data by all gestures combined.

accuracy and time performance of Pearson correlation fall in the middle range.

Table 4.7: Result summary of all gestures combined.

Template Matching | Decision Tree | Pearson Correlation

Accuracy (%) 96.2 90.2 93.9

Average Time (ticks) 4,770.3 2,372.2 2,973.3
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CHAPTER 5

DISCUSSION

5.1 Template Matching Algorithm

Table 5.1 shows the confusion matrix of the template matching algorithm. As shown in
the matrix table, the template matching algorithm performs well on accuracy for the most

part.

Table 5.1: Confusion matrix of the template matching algorithm.

Actual Class
RD | RU | LD | LU | DU | DL | Total Predicted

RD 20 20

RU 20 1 21

) LD 22 22
Predicted class U o 1
DU 2 22 24

DL 2 22 24

Total Actual | 22 | 22 | 22 | 22 | 22 | 22

The precision of a class in a confusion matrix is calculated using the following equation:

TruePositives _ DiagonalValue

— 5.1
TruePositives + FalsePositives Total Predicted SR

Precision =
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Table 5.2: Calculation summary of the template matching algorithm.
Gesture | Precision | Recall | F-Measure
RD 1.00 0.91 0.95
RU 0.95 0.91 0.93
LD 1.00 1.00 1.00
LU 1.00 0.95 0.98
DU 0.92 1.00 0.96
DL 0.92 1.00 0.96

The recall of a class in a confusion matrix is calculated using the following equation:

TruePositives _ DiagonalValue

Recall = —
ced TruePositives + FalseNegatives Total Actual

(5.2)

The F-measure, also known as the harmonic mean of precision and recall, is calculated

using the following equation:

P9y Precision X Recall (5.3)

Precision + Recall

Table 5.2 shows a result summary of the calculated precision, recall, and F-measure
of each gesture type based on the data provided in Table 5.1 for the template matching
algorithm.

The accuracy of the template matching algorithm is calculated as:

TruePositives + T'rueNegatives

ACCry =

Condition Positives + Condition N egatives
20+20+22421+22+22 127
B 22 x 6 - 132

(5.4)

= 96.2%

38



5.2 Decision Tree Algorithm

Table 5.3 shows the confusion matrix of the decision tree algorithm. As shown in
the matrix table, the decision tree algorithm performs fairly well but makes mistakes some-
times. It appears that mistakes most often take place for gesture types with the same general
direction, which makes sense considering the decision tree algorithm is dependent on the
calculated features such as the start and end point, slope and length of the bounding box

diagonal, and the area of the bounding box.

Table 5.3: Confusion matrix of the decision tree algorithm.

Actual Class
RD | RU | LD | LU | DU | DL | Total Predicted

RD 18 3 21

RU 2 19 3 24

) LD 22 22
Predicted class 0 7 5
DU 1 3 19 23

DL 1 19 20

Total Actual | 22 | 22 | 22 | 22 | 22 | 22

Table 5.4 shows a result summary of the calculated precision, recall, and F-measure of
each gesture type based on the data provided in Table 5.3 for the decision tree algorithm.

The accuracy of the decision tree algorithm is calculated as:

TruePositives + TrueNegatives
ConditionPositives + Condition N egatives

18+19+22422419+19 119
22 x6 132 902%

ACCpr =
(5.5)
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Table 5.4: Calculation summary of the decision tree algorithm.

Gesture | Precision | Recall | F-Measure
RD 0.86 0.82 0.84
RU 0.79 0.86 0.83
LD 1.00 1.00 1.00
LU 1.00 1.00 1.00
DU 0.83 0.86 0.84
DL 0.95 0.86 0.90

5.3 Pearson Correlation Algorithm

Table 5.5 shows the confusion matrix of the Pearson Correlation algorithm. As shown
in the matrix table, Pearson correlation performs well for most gestures except for the right-
up gesture type, where it frequently false classifies it as the diagonal-upper gesture type.

It is also worth noting that both the false positives of the right-down gesture type are the

diagonal-down gesture type.

Table 5.5: Confusion matrix of the Pearson correlation algorithm

Table 5.6 shows a result summary of the calculated precision, recall, and F-measure

of each gesture type based on the data provided in Table 5.5 for the Pearson correlation

algorithm.
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Actual Class
RD | RU | LD | LU | DU | DL | Total Predicted

RD 20 20

RU 16 16

) LD 22 22
Predicted class U 7 7
DU 5 22 27

DL 2 1 22 25

Total Actual | 22 | 22 | 22 | 22 | 22 | 22




Table 5.6: Calculation summary of the Pearson correlation algorithm.

Gesture | Precision | Recall | F-Measure
RD 1.00 091 0.95
RU 1.00 0.73 0.84
LD 1.00 1.00 1.00
LU 1.00 1.00 1.00
DU 0.81 1.00 0.90
DL 0.88 1.00 0.94

The accuracy of the Pearson correlation algorithm is calculated as:

TruePositives + TrueNegatives

ACCpe =

Condition Positives + Condition Negatives

20+16+22+224+224+22 124
- 22 % 6 _@_93'9%

(5.6)

5.4 Effect of Input Gestures

Depending on the type of input gesture, certain algorithm may perform better on per-
formance. The input gesture type seems to have an effect on the accuracy performance of
the decision tree algorithm. When two gesture types have similar general moving direction,
the decision tree algorithm is found to make the most mistakes. Both the template matching
algorithm and the Pearson correlation algorithm perform well on classifying gesture types,
except for occasional mistakes on the right-down and the right-up gestures. It is worth
noting that the false positives of the right-down gesture and the right-up gesture are fre-
quently found to be the diagonal-lower gesture and the diagonal-upper gesture. A possible
source of error might be that not enough data points are collected for these gestures, which
would result in fewer input data after the re-sampling stage and ultimately lead to false
classification. As for time measurement, it is largely dependent on the hardware and the

operating system, which could result in inconsistent time readings.
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5.5 Effect of Base Gestures

The results are directly dependent on the number of base gestures in the system. With
more number of gestures being added, the template matching algorithm would still continue
to be accurate in recognizing gestures, but the recognition time will increase correspond-
ingly. For the decision tree algorithm and the Pearson correlation algorithm, there may not
be a significant increase in time performance as the number of base gestures increases, but

the recognition accuracy would reduce.
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CHAPTER 6

FUTURE WORK

6.1 Challenges to be Addressed

In this research, most of the performance results are expected. The classification al-
gorithms faced some difficulties for gesture types with similar directions, which may have
been due to not having enough data points. For future work, a larger screen could be
used in order to collect more data points. The implementation methods of the algorithms
may also have an effect on the classification accuracy. One can study how different ways
of algorithm implementation can affect performance and examine why different gestures
affect performance.

Another challenge faced during this study was inconsistent user behavior. Some users
responded well to eye-tracking and others experienced difficulty. There were also instances
where a user was constantly readjusting and the calibration process was redone multiple
times throughout testing. In order to mitigate these human errors, one can increase the user
study size and collect more samples. Another way to reduce inconsistent user behavior
could be increasing the user study length until satisfying user input is obtained. However,
this could potentially cause the user to experience more fatigue, which would naturally

reduce the quality of user input.
6.2 Potential Next Steps

In this research, three classification machine language algorithms were implemented
and studied. Similar studies can be done on different algorithms. For example, the neural

network algorithm, a machine learning algorithm that simulates the functioning of human
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brain and computes the output from inputs with associated weights [58], is also a popular
choice for eye-tracking [59, 60] and other applications. To continue this research, the next
step would be the implementation of using the neural network algorithm to detect gaze input
and analyze its performance. There are different kinds of neural network algorithms [61] as
well, such as the Levenberg-Marquardt learning algorithm [62, 63], the back propagation
learning algorithm [64], and the perceptron learning algorithm [65], and so on. Different

kinds of neural networks can be studied and compared for gaze recognition performance.
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CHAPTER 7

CONCLUSION

Overall, on accuracy performance, the template matching algorithm has the best per-
formance, followed by the Pearson correlation algorithm, and lastly the decision tree algo-
rithm. On timing performance, the decision tree algorithm takes the least amount of the
time, closely followed by the Pearson correlation algorithm, and lastly the template match-
ing algorithm. The results are directly dependent on the number of base gestures in the
system. As the number of base gestures increases, the template matching algorithm would
still maintain its accuracy in recognizing gestures, but the recognition time will increase.
For the decision tree algorithm and the Pearson correlation algorithm, as the number of base
gestures increases, the recognition accuracy would reduce without a significant increase in
time performance. When it comes to deciding which algorithm to use, one might want to
consider the properties of the input gesture type and the nature of the application. The
template matching algorithm is recommended for accuracy-demanding situations. The
decision tree algorithm and the Pearson correlation algorithm is recommended for time-
demanding situations but one should be cautious about the possibility that similar gesture
types may have similar properties. The algorithms are recommended for when the input

gesture types are vastly different, which would help the algorithms achieve higher accuracy.
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APPENDIX: INPUT GESTURE DATA RESULTS

Table 7.1: Input Gesture Type: Right-Down”

User Template Time Decision Time Pearson Time
Matching (ticks) Tree (ticks) Correlation (ticks)
1 RD 7395 RD 4669 RD 4371
2 RD 6003 RD 1941 RD 4458
3 RD 6479 RD 1433 RD 3534
4 RD 8358 RD 7089 RD 4478
5 RD 5936 DU 1494 RD 1819
6 RD 6790 RD 6319 RD 2143
7 RD 2292 RD 1674 RD 2462
8 RD 5710 RD 1458 RD 3690
9 RD 5101 RD 1512 RD 3302
10 RD 1858 RU 1752 RD 2719
11 DL 6620 RD 1587 RD 4664
12 RD 5868 RD 1789 RD 5885
13 RD 3531 RD 3853 RD 3124
14 RD 8486 RD 5005 RD 2386
15 RD 2972 RD 1317 RD 4445
16 RD 5157 RD 2726 RD 3810
17 RD 3824 RU 1696 RD 3263
18 DL 8020 RD 1755 DL 3671
19 RD 2144 RD 1053 RD 2959
20 RD 2190 RD 1902 RD 4140
21 RD 5410 RD 1634 RD 3205
22 RD 5072 DL 1798 DL 3065

“Gray-bolded cells were classified incorrectly
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Table 7.2: Input Gesture Type: Right-Up”

User Template Time Decision Time Pearson Time
Matching (ticks) Tree (ticks) Correlation (ticks)
1 RU 1811 RU 1716 RU 1523
2 RU 7481 RU 1439 RU 1517
3 RU 5703 RU 1200 RU 4430
4 RU 5497 RU 1490 RU 4043
5 RU 5581 DU 5864 RU 3216
6 RU 1719 RU 3004 DU 2426
7 RU 1942 DU 1491 RU 2846
8 RU 4907 RU 1230 RU 1274
9 RU 6445 RU 1773 RU 3558
10 RU 5782 RU 1535 RU 3491
11 DU 6296 DU 1843 DU 4875
12 RU 5303 RU 2820 RU 1931
13 RU 5276 RU 1797 RU 2921
14 DU 5995 RU 1600 DU 2944
15 RU 5350 RU 1499 RU 1797
16 RU 7397 RU 1549 RU 1698
17 RU 6410 RU 1700 DU 3430
18 RU 7332 RU 2094 DL 4840
19 RU 1536 RU 1450 RU 3859
20 RU 5632 RU 1981 RU 4794
21 RU 3383 RU 1388 RU 2823
22 RU 3176 RU 4595 DU 2835

*Gray-bolded cells were classified incorrectly
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Table 7.3: Input Gesture Type: Left-Down”

User Template Time Decision Time Pearson Time
Matching (ticks) Tree (ticks) Correlation (ticks)
1 LD 5413 LD 5490 LD 3452
2 LD 6067 LD 6490 LD 3747
3 LD 3278 LD 5105 LD 4611
4 LD 5545 LD 1613 LD 1591
5 LD 1786 LD 3777 LD 3046
6 LD 1916 LD 1543 LD 3337
7 LD 4765 LD 5593 LD 2855
8 LD 5162 LD 1180 LD 2429
9 LD 6898 LD 1337 LD 4177
10 LD 4189 LD 4768 LD 3468
11 LD 6066 LD 5065 LD 2708
12 LD 6941 LD 1338 LD 1664
13 LD 5296 LD 1545 LD 1769
14 LD 6238 LD 1642 LD 3449
15 LD 1854 LD 1423 LD 3588
16 LD 5787 LD 1494 LD 3041
17 LD 6079 LD 1570 LD 3020
18 LD 7422 LD 5936 LD 2526
19 LD 5740 LD 2446 LD 2055
20 LD 6601 LD 5842 LD 1988
21 LD 7831 LD 5327 LD 3273
22 LD 5490 LD 1419 LD 3641

“Gray-bolded cells were classified incorrectly
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Table 7.4: Input Gesture Type: Left-Up”

User Template Time Decision Time Pearson Time
Matching (ticks) Tree (ticks) Correlation (ticks)
1 LU 2550 LU 4363 LU 2745
2 LU 7165 LU 6556 LU 3749
3 LU 3266 LU 1240 LU 3377
4 LU 7149 LU 1462 LU 3083
5 LU 4735 LU 2096 LU 3328
6 LU 7126 LU 1379 LU 3136
7 LU 5116 LU 6730 LU 3001
8 LU 5504 LU 1297 LU 3149
9 RU 3399 LU 1331 LU 3881
10 LU 4733 LU 1487 LU 1745
11 LU 2276 LU 1782 LU 3711
12 LU 5032 LU 2034 LU 3329
13 LU 5572 LU 3648 LU 1324
14 LU 6303 LU 1592 LU 4387
15 LU 5793 LU 1646 LU 3551
16 LU 2844 LU 2073 LU 4189
17 LU 6219 LU 1922 LU 3175
18 LU 3635 LU 2519 LU 3978
19 LU 2119 LU 4457 LU 2779
20 LU 3315 LU 1873 LU 1959
21 LU 6570 LU 2294 LU 2970
22 LU 3189 LU 2244 LU 3234

“Gray-bolded cells were classified incorrectly
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Table 7.5: Input Gesture Type: Diagonal-Upper”

User Template Time Decision Time Pearson Time
Matching (ticks) Tree (ticks) Correlation (ticks)
1 DU 2817 RU 1278 DU 3410
2 DU 3679 DU 1602 DU 3412
3 DU 2199 DU 1322 DU 1569
4 DU 5604 RU 1278 DU 2897
5 DU 6305 DU 1647 DU 2105
6 DU 3430 DU 1229 DU 3088
7 DU 4442 DU 1232 DU 2064
8 DU 3113 DU 1447 DU 1700
9 DU 4781 DU 1382 DU 2999
10 DU 4746 DU 1401 DU 2518
11 DU 4227 DU 2523 DU 3317
12 DU 4201 DU 1415 DU 3464
13 DU 2986 DU 1916 DU 1223
14 DU 3919 DU 1685 DU 3750
15 DU 5109 DU 1460 DU 3889
16 DU 4957 DU 1605 DU 3058
17 DU 5221 RU 1230 DU 3307
18 DU 5508 DU 2262 DU 3003
19 DU 5598 DU 1368 DU 3145
20 DU 4257 DU 1710 DU 3181
21 DU 2296 DU 1489 DU 2774
22 DU 5378 DU 2144 DU 2743

*Gray-bolded cells were classified incorrectly
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Table 7.6: Input Gesture Type: Diagonal-Lower”

User Template Time Decision Time Pearson Time
Matching (ticks) Tree (ticks) Correlation (ticks)
1 DL 6626 DL 4674 DL 2685
2 DL 5320 DL 6393 DL 3321
3 DL 8817 DL 1313 DL 1617
4 DL 5352 RD 2182 DL 1976
5 DL 5206 DL 1221 DL 1128
6 DL 2054 DL 1405 DL 2729
7 DL 3081 DL 1254 DL 2968
8 DL 5077 DL 1271 DL 2192
9 DL 2401 DL 1707 DL 2910
10 DL 6059 RD 2732 DL 1400
11 DL 3806 DL 1527 DL 1127
12 DL 1711 DL 2550 DL 2761
13 DL 2230 DL 1620 DL 2028
14 DL 1958 DL 1890 DL 2222
15 DL 2205 DL 1415 DL 1454
16 DL 3202 DL 1459 DL 1677
17 DL 6844 DL 2413 DL 1707
18 DL 3104 DL 3505 DL 1557
19 DL 4411 DL 2544 DL 2651
20 DL 2198 DL 3618 DL 3383
21 DL 3271 RD 1299 DL 2873
22 DL 4832 DL 2035 DL 3608

“Gray-bolded cells were classified incorrectly
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