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ABSTRACT

An Implementation of Fast Graphlet Transform in GraphBLAS

Tanner Hoke
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Timothy Davis
Department of Computer Science and Engineering

Texas A&M University

Classically, many graph algorithms in computer science operate on representations of graphs

other than the adjacency matrix. For example, the breadth-first search and many more complex

shortest-path algorithms most often use an adjacency list representation of a graph. They also of-

ten involve iterating through some data structure which stores the current frontier of the search.

However, many graph algorithms have dual implementations and perspectives involving linear al-

gebraic operations on adjacency matrices. Approaching graph algorithms in this way comes with

many advantages, including performance, ease of implementation, and code readability. Graph-

BLAS is a standard which provides a suite of building blocks for implementing graph algorithms

using a linear algebraic approach via sparse matrices. Fast Graphlet Transform is an algorithm

which detects graphlets, or subgraphs with small numbers of nodes, in a larger graph and describes

the structure of the graph by determining the count of various types of graphlets adjacent to each

vertex. In this paper, we provide some background on a linear algebraic perspective to graph al-

gorithms and demonstrate its power by discussing the process of building the Fast Graphlet Trans-

form algorithm for LAGraph, a library of graph algorithms built on top of GraphBLAS. Further,

we compare both the ease of implementation and the performance of Fast Graphlet Transform in

GraphBLAS with the code published by the original Fast Graphlet Transform paper authors [1].
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1. INTRODUCTION

1.1 Background

1.1.1 Graph Theory

A graph G is a mathematical structure consisting of a set V (G) of objects, called vertices,

and a set E(G) of associations between pairs of vertices, called edges [2]. We typically write

G = (V,E). An edge e ∈ E consists of a pair of vertices, typically called endpoints. In general,

edges may be either directed or undirected, but for simplicity we consider only undirected graphs

for now.

A subgraph of a graph G is a graph H whose vertices and edges are subsets of G’s vertices

and edges, respectively. Formally, we write V (H) ⊆ V (G) and E(H) ⊆ E(G) [2].

We may represent a graph pictorially by drawing its vertices as labelled points and its

edges as lines connecting these points. As an example, let us denote by G the graph represented

pictorially in Figure 1.1:

6

4

5

1

2

3

Figure 1.1: A drawing of the graph G.

As an example, we might also have a subgraph H of G represented pictorially:

3



4 5 1

2

Figure 1.2: A drawing of the subgraph H ⊆ G.

Note that the relative positions of the vertices and edges in our graphical representation

(Figure 1.2) do not matter; a graph is defined only in terms of its vertex set and edge set.

In computer science, we typically think of representing graphs using data structures in code.

Common representations include the adjacency list, the edge list, and the adjacency matrix [3]. An

adjacency list is a data structure that stores a list for each vertex in the graphs of its neighbors. Two

vertices u and v are called neighbors if there is an edge whose endpoints are u and v. An edge list

is a single list of all of the edges in the graph. For the graph G above, the list would be

{(6, 1), (4, 5), (5, 1), (1, 2), (2, 5), (2, 3), (3, 4)}.

Finally, the adjacency matrix is a matrix A of size |V | × |V |, where the entry Aij is nonzero if

and only if an edge exists between vertices i and j.1 It is in this interpretation that we are most

interested.

1.1.2 Linear Algebraic Perspective

At first glance, an adjacency matrix is not a particularly special representation of a graph.

It has some algorithmic benefits; for example, one can decide if two vertices are neighbors in O(1)

(constant) time. It also has some drawbacks; for example, it takes O(|V |) time to list the neighbors

of any particular vertex. Our focus, though, is on the fact that it is a matrix, and by extension is

amenable to linear algebraic methods.

Consider the simple problem of breadth-first search: starting from a vertex, visit all of the

1In a graph with edge weights, one typically stores the weight of the edge between vertices i and j.
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vertices one edge away, then two edges away, and so on in the graph. Classically, this problem

is solved in computer science using a loop and a queue data structure. We start by pushing the

starting vertex onto the back of an empty queue. We subsequently repeat the following process

while the queue is nonempty: visit a vertex at the front of the queue, iterate over its neighbors, and

push those that we have not seen before onto the back of the queue [3].

For example, the following is a valid breadth-first search order starting from vertex 1 of the

graph G (Figure 1.1) drawn above:

1, 6, 2, 5, 3, 4.

It turns out, though, that one can equivalently execute a breadth-first search by operating on

the adjacency matrix with linear algebra. Let A be the adjacency matrix representation of a graph

G, and u the vertex from which we begin the breadth-first search. Let x be a vector of dimension

|V |, with the u-th entry equal to 1 and all others equal to 0. Then, if we compute

y = ATx (Eq. 1.1)

using standard matrix-vector multiplication, y in Eq. 1.1 is a vector which has a 1 precisely at all

vertices one step away from u in G. If we instead let

B = A+ I (Eq. 1.2)

where I in Eq. 1.2 is the |V | × |V | identity matrix, then y′ = (B)Tx will consist of u and all its

neighbors [4].

In general, computing

y = (BT )kx (Eq. 1.3)

results in a vector y consisting of all vertices in G that are at most distance k from u. Therefore,

Eq. 1.3 represents precisely the steps of a breadth-first search.

Many well-known graph algorithms which are not classically implemented using adjacency
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matrices are in fact approachable with linear algebra. Other examples include strongly connected

components, shortest paths (Bellman-Ford, Floyd-Warshall), maximal independent set, graph con-

traction, graph partitioning, centrality metrics, minimum spanning tree, and more [4].

In many such cases, it is useful to extend the standard definition of matrix-vector multipli-

cation to allow for various semirings. A semiring is a set of elements with two binary operations,

typically called “addition” and “multiplication”. They satisfy the following properties [4]:

• Addition and multiplication have identity elements, which we write as 0 and 1 respectively

• Both binary operations are associative

• Addition is commutative

• Multiplication distributes over addition from both sides

• The additive identity satisfies 0 ∗ a = a ∗ 0 = 0

In the standard matrix-vector multiplication, we tend to use R with the classic addition

and multiplication operations as our semiring. However, it is often useful to change the meaning

of + and ∗. For example, when implementing shortest path algorithms using linear algebra, the

min .+ semiring is the right choice [4]. Here, we replace the typical addition operation in matrix

multiplication with the min function, and we replace the typical multiplication operation with the

+ (standard addition) function.

1.1.3 GraphBLAS

GraphBLAS [5] is a standard which defines operations on sparse matrices and which is

meant to be used to implement graph algorithms using linear algebraic methods. Many graphs are

sparse, which informally means that most of the entries in their adjacency matrices are zero. Much

work has been done on optimizing sparse matrix multiplication, as it is an important problem in a

wide variety of fields.

GraphBLAS is intended to provide an interface for anyone to implement graph algorithms

using linear algebra. SuiteSparse:GraphBLAS [6] is the reference C implementation, and is widely

6



used, including in MATLAB’s default sparse matrix multiply. The implementation was created and

is maintained by Dr. Timothy Davis at Texas A&M University.

Using this implementation, we will see that translating linear algebra written in math to

code written in C is rather straightforward; we let GraphBLAS do most of the heavy lifting.

1.2 Motivation

1.2.1 Graphs

We have seen the mathematical definition of graphs, but it is also useful to note their gen-

erality and utility for many real-world problems. The birth of graph theory is often attributed to a

problem posed by Leonhard Euler in 1736 called the Königsberg Bridge Problem [2]. The prob-

lem came from the real-world city of Königsberg, and dealt with the question of whether someone

could leave the city, cross a series of seven bridges (which connected the city to an islands in the

river along with the other city of the river) in some order, never use the same bridge twice, and end

up back in the city.

Today, graphs are useful in solving an extraordinary number of problems. If we want to

know the minimum cost to connect a network of cities with roads, the solution is a graph algorithm.

If we want to know how to assign students to medical schools optimally, the solution is a graph

algorithm. If we want some metric of “importance” for each computer in a network, we would

want to use a graph algorithm, and so on.

Moreover, all of our vast social networks are themselves graphs of extraordinary size. In

fact, many optimization problems that are faced in the real world involve very large graphs. How-

ever, as mentioned previously, it is often the case that we can take advantage of sparsity, and

GraphBLAS is a state-of-the-art solution for handling such cases.

1.2.2 LAGraph

LAGraph [7] is a library of graph algorithms built on top of GraphBLAS to give users

access to graph algorithms implemented via sparse matrices and linear algebra. The library exists

as a reference and a resource for users, but also as a way of advancing the current state of graph
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algorithms implemented using linear algebra.

LAGraph sits on top of GraphBLAS for ease-of-use. As an example, LAGraph defines a

data structure called LAGraph_Graph which encapsulates the adjacency matrix for a graph as

well as some of its other properties, such as whether the graph is directed or undirected. The data

structure also deals with caching such properties as the transpose of the adjacency matrix and the

row/column degrees so that these are not recomputed unnecessarily.

LAGraph is focused on providing users of graph algorithms with convenient implementa-

tions. At the same time, it does not sacrifice performance. When tested using the GAP benchmark

suite [8], LAGraph’s implementations are for most graphs extremely comparable and even in some

cases faster. The difference is that while the GAP code is highly parallelized and difficult to read

or write, LAGraph algorithms are short, readable, and easy to understand.

It is worth nothing that LAGraph is significantly slower than the GAP benchmark suite

on one particular graph called the Road graph. The reason for this is discussed in the LAGraph

introduction paper [7], but essentially it is because the Road graph has a very high diameter. This

means that the largest distance between any two nodes is significantly high, and due to some

internal memory overhead this slows down GraphBLAS’ efficiency since every step of e.g. the

BFS matrix multiply must do some extra work. This should be improved or even eliminated over

time.

The LAGraph experimental branch is where new contributions to the library are created.

Over time, LAGraph continues to amass implementations of important graph algorithms. Indeed,

the contribution of this paper is an implementation of Fast Graphlet Transform [1] for LAGraph,

and to this we now turn.

1.2.3 Fast Graphlet Transform

Fast Graphlet Transform [1] is a problem introduced by Floros, Pitsianis, and Sun which

deals with counting the number of “graphlets” adjacent to every vertex in a graph. A graphlet in

essence is a small subraph. In our running example (Figure 1.1), the triangle consisting of vertices

1,2, and 5 would be considered a graphlet. In the paper by Floros, Pitsianis, and Sun, a graphlet

8



dictionary consisting of sixteen graphlets Σ16 is introduced and discussed throughout. For our

implementation in LAGraph, we use these same sixteen graphlets. Below are a few examples of

graphlets which exist in Σ16 and appear in the graph G from Figure 1.1.

5

1

2

Figure 1.3: An occurrence of the graphlet σ4 in G.

4

5

2

3

Figure 1.4: An occurrence of the graphlet σ12 in G.

The concept of graphlets was introduced by Pržulj, Corneil, and Jurisica in 2004 [9]. They

discuss their use in detecting important properties of many real-world graphs, and in particular

focus on biological applications. In fact, this first use of graphlet frequency analysis dealt with

modeling protein-protein interaction in biology. They find that comparing graphlet frequencies in

various models is valuable in testing which model is more accurate. In fact, they create a metric of

similarity called the “relative graphlet frequency distance” which helps achieve this aim.

In general, counting the frequencies of incidence of a dictionary of graphlets for each vertex

in a graph gives some idea of the structure of the graphs. For example, a common problem is

9



counting the number of triangles in a graph, of which Figure 1.3 is one example in G. Or maybe

we want to know how many occurences of 4-cycles there are, and we would be interested in

those subgraphs that look like Figure 1.4. Since Fast Graphlet Transform does this quickly and

efficiently, one may think of it as a “summary” of a graph.

The Fast Graphlet Transform has been implemented in C++ and parallelized with OpenCilk

by the authors of the original paper [10]. The implementation is efficient, but very difficult to code

and requires familiarity with sparse matrix data structures and algorithms. However, the original

paper gives simple linear algebraic formulations for each computation of graphlet frequency vec-

tors. This implies that GraphBLAS may be suited to the task of easily writing code to implement

Fast Graphlet Transform.

10



2. METHODS

In what follows, suppose we are working on an undirected, unweighted graph G with n

vertices. Further, denote by A the n× n adjacency matrix of G.

In order to give a broad sense for the suitability of GraphBLAS to the problem of com-

puting the Fast Graphlet Transform, we discuss in this section the implementation details for the

computations of each graphlet frequency vector. In most cases, we will see that the translation of

the linear algebraic formula to GraphBLAS code is simple and brief.

Note that the graphlet frequency vectors d̂0...15 count the raw frequencies of each graphlet

type incident to each vertex. Since some graphlets are subgraphs of other graphlets, this in some

sense overcounts the frequencies of such graphlets. For example, consider that each triangle

graphlet σ4 consists of three separate bi-fork graphlets σ3. It may be undesirable to count these

three as occurrences of σ3 since we are also counting them as one occurrence of σ4. Thus, after

computing the raw frequencies for each graphlet, we seek to convert the frequency matrix into one

consisting of the net frequencies.

In order to compute net frequencies, we will use the approach mentioned in the original Fast

Graphlet Transform paper [1]. Specifically, we take the inverse U−1
16 of the matrix U16 described in

the paper. because the matrix is upper triangular with integer entries (the dictionary of graphlets is

constructed in such a way that this holds true) its inverse will also have integer entries, so we do

not need to worry about floating point error in converting raw graphlet frequencies to net graphlet

frequencies. In fact, for the LAGraph implementation of the raw to net conversion, we simply

pre-computed this matrix inverse and store it in code.

2.1 Computing d̂0

The vector d̂0 simply consists of n 1’s. In other words, d̂0 = e. Implementing this in

GraphBLAS is rather simple, as one would expect. The following code accomplishes the task:

GrB_Vector d_0 = NULL ;

11



GrB_TRY (GrB_Vector_new (&d_0, GrB_INT64, n)) ;

GrB_TRY (GrB_assign (d_0, NULL, NULL, 1, GrB_ALL, n, NULL)) ;

Here we introduce the GrB_Vector type, which is a column vector in GraphBLAS. We

declare a vector of size n and fill it with 1 using GrB_assign.

2.2 Computing d̂1

The vector d̂1 consists of the degrees of vertices in G. In other words, the i-th entry of d̂1

gives the number of vertices adjacent to vertex i in G. Conveniently, LAGraph has a utility function

which computes this vector, so we may simply call LAGraph_Property_Row_Degree in

order to compute d̂1 = Ae:

GrB_Vector d_1 = NULL ;

GrB_TRY (LAGraph_Property_RowDegree (G, msg)) ;

d_1 = G->rowdegree ;

2.3 Computing d̂2

The vector d̂2 counts the number of 2-paths incident to each vertex. In particular, d̂2 = p2,

where p2 = Ap1 − c2, p1 = d̂1, and c2 = d̂1 [1]. This first counts all paths of length two from a

vertex, but this includes the cycles of length two (paths stepping from a vertex to its neighbor and

back), so we then subtract the cycles of length two.

For our LAGraph implementation, since we have already computed d̂1, the operation is

rather simple: a matrix multiplication and a vector subtraction. The following code implements

this computation:

GrB_TRY (GrB_Vector_new (&d_2, GrB_INT64, n)) ;

GrB_TRY (GrB_mxv (d_2, NULL, NULL, GxB_PLUS_SECOND_INT64, A, d_1,

NULL)) ;

GrB_TRY (GrB_eWiseMult (d_2, NULL, NULL, GrB_MINUS_INT64, d_2, d_1,

NULL)) ;

Here, we perform the matrix-vector multiply Ad̂1 using the GrB_mxv function. Next,

12



we use GrB_eWiseMult to subtract d̂1. The GrB_eWiseMult function operates on the set

intersection of the patterns of the two vectors. Here, this is what we want, since d̂1 has the same

sparsity pattern as Ad̂1. In this case, we use GrB_eWiseMult and the GrB_MINUS_INT64

monoid in order to perform vector-vector subtraction.

2.4 Computing d̂3

The vector d̂3 counts the frequency of incidence of the bi-fork graphlet for each vertex. We

have d̂3 = p1 ⊙ (p1 − 1)/2. The ⊙ operator is an element-wise multiplication. We could do this

operation by first constructing the vector p1 − 1, multiplying element-wise with p1, then dividing

by two. However, GraphBLAS also provides a mechanism for constructing user-defined unary

operations. In this case, we can construct a unary operation f such that f(x) = x(x − 1), then

apply that operation to the vector p1. We will see that this unary operator will be helpful later too,

so we will choose this approach.

First, we define the function sub_one_mult as follows:

void sub_one_mult (int64_t *z, const int64_t *x) { (*z) = (*x) *

((*x)-1) ; }

Now, we may use the function and GrB_apply to apply it to the vector d̂1 = p1:

#define F_UNARY(f) ((void (*)(void *, const void *)) f)

GrB_UnaryOp Sub_one_mult = NULL ;

GrB_TRY (GrB_UnaryOp_new (&Sub_one_mult, F_UNARY (sub_one_mult),

GrB_INT64, GrB_INT64)) ;

GrB_Vector d_3 = NULL ;

GrB_TRY (GrB_Vector_new (&d_3, GrB_INT64, n)) ;

GrB_TRY (GrB_apply (d_3, NULL, NULL, Sub_one_mult, d_1, NULL)) ;

GrB_TRY (GrB_apply (d_3, NULL, NULL, GrB_DIV_INT64, d_3, (int64_t) 2,

NULL)) ;
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Here, we use F_UNARY to cast the function to the type recognized by GrB_UnaryOp_new.

Once we create the unary operator, we call GrB_apply using our new operator as discussed and

also using the built in GrB_DIV_INT64 operation to divide by two.

2.5 Computing d̂4

The vector d̂4 counts the frequency of incidence of triangles (cycles of length 3) for each

vertex. We have d̂4 = c3 = C3e/2 = A ⊙ A2e/2. Intuitively, we square A to get the cycles of

length 2, and then we take the element-wise product with the matrix A itself to keep only those

positions where we can "close" the path to form a triangle.

Rather than an element-wise product, though, one can interpret the operation as computing

A2, but using the structure of A as a mask for the matrix-matrix multiplication. The GraphBLAS

matrix-matrix multiply function, GrB_mxm, takes an optional parameter to be used as the mask for

the multiply, which speeds up such an operation significantly. So, rather than compute A2 and then

only keep the entries corresponding to the nonzero pattern of A, we only compute those entries of

A2 which match the pattern of A to begin with. The following code uses this approach:

GrB_Matrix C_3 = NULL ;

GrB_Vector d_4 = NULL ;

GrB_TRY (GrB_Matrix_new (&C_3, GrB_INT64, n, n)) ;

GrB_TRY (GrB_Vector_new (&d_4, GrB_INT64, n)) ;

// C_3 = hadamard(A, A^2)

GrB_TRY (GrB_mxm (C_3, A, NULL, GxB_PLUS_FIRST_INT64, A, A,

GrB_DESC_ST1)) ;

// d_4 = c_3 = C_3e/2

GrB_TRY (GrB_reduce (d_4, NULL, NULL, GrB_PLUS_MONOID_INT64, C_3,

NULL)) ;

GrB_TRY (GrB_apply (d_4, NULL, NULL, GrB_DIV_INT64, d_4, (int64_t) 2,
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NULL)) ;

Notice in particular the call to GrB_mxm. In previous calls to this function, we have passed

NULL as the second parameter, which is the mask to apply to the computation. When GrB_mxm

receives a NULL mask, it simply does standard matrix-matrix multiplication. However, since in

this case we pass the matrix A itself as the mask, the function will only keep entries of A2 where

A itself has nonzero entries, as desired.

2.6 Computing d̂5

The vector d̂5 counts the frequency of incidence of vertices at an end of 3-paths. We have

d̂5 = p3 = Ap2 − p1 ⊙ (p1 − 1) − 2c3. Recall that we already have a UnaryOp to help with this

Hadamard product, which we may reuse. For brevity, we now begin to omit code that initializes

the relevant data structures:

// v = hadamard(p_1, p_1 - 1)

GrB_TRY (GrB_apply (v, NULL, NULL, Sub_one_mult, d_1, NULL)) ;

// two_c_3 = 2 * c_3 = 2 * d_4

GrB_TRY (GrB_apply (two_c_3, NULL, NULL, GrB_TIMES_INT64, 2, d_4,

NULL)) ;

// d_5 = A * d_2

GrB_TRY (GrB_mxv (d_5, NULL, NULL, GxB_PLUS_SECOND_INT64, A, d_2,

GrB_DESC_S)) ;

// d_5 -= hadamard(p_1, p_1 - 1)

GrB_TRY (GrB_eWiseAdd (d_5, NULL, NULL, GrB_MINUS_INT64, d_5, v,

NULL)) ;

// d_5 -= two_c_3
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GrB_TRY (GrB_eWiseAdd (d_5, NULL, NULL, GrB_MINUS_INT64, d_5, two_c_3,

NULL)) ;

We will continue to use v as a vector to hold intermediate values in computations. In some

cases, though, it makes sense to store temporary values in separate variables. Often, we will reuse

these in later computations, so it makes sense to keep them around. For example, this is true of the

vector two_c_3.

2.7 Computing d̂6

The vector d̂6 counts the frequency of incidence of vertices in an interior node of 3-paths.

We have d̂6 = p2 ⊙ (p1 − 1) − 2c3. We will keep p1 − 1 as a vector itself, since it will be helpful

for later computations.

// p_1_minus_one = p_1 - 1

GrB_TRY (GrB_apply (p_1_minus_one, NULL, NULL, GrB_MINUS_INT64, d_1,

(int64_t) 1, NULL)) ;

// d_6 = hadamard(d_2, p_1-1)

GrB_TRY (GrB_eWiseMult (d_6, NULL, NULL, GrB_TIMES_INT64, d_2,

p_1_minus_one, NULL)) ;

// d_6 -= 2c_3

GrB_TRY (GrB_eWiseAdd (d_6, NULL, NULL, GrB_MINUS_INT64, d_2, two_c_3,

NULL)) ;

Note the use of GrB_eWiseAdd for the subtraction operation here and in the previous

section. This is due to the fact that we can no longer guarantee that the only relevant subtractions

occur at the intersection of the nonzero patterns of the two vectors. If we could, GrB_eWiseMult

would actually be preferred, since it can take the sparse difference (only subtract two elements if

both are nonzero). Recall that we can pass any monoid to GrB_eWiseMult.
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2.8 Computing d̂7

The vector d̂7 counts the frequency of incidence of vertices at the leaf of a claw. We have

d̂7 = A((p1 − 1)⊙ (p1 − 2))/2.

GrB_TRY (GrB_apply (p_1_minus_two, NULL, NULL, GrB_MINUS_INT64, d_1,

(int64_t) 2, NULL)) ;

GrB_TRY (GrB_eWiseMult (p_1_p_1_had, NULL, NULL, GrB_TIMES_INT64,

p_1_minus_one, p_1_minus_two, NULL)) ;

GrB_TRY (GrB_mxv (d_7, NULL, NULL, GxB_PLUS_SECOND_INT64, A,

p_1_p_1_had, NULL)) ;

GrB_TRY (GrB_apply (d_7, NULL, NULL, GrB_DIV_INT64, d_7, (int64_t) 2,

NULL)) ;

2.9 Computing d̂8

The vector d̂8 counts the frequency of incidence of vertices at the root of a claw. We have

d̂8 = p1 ⊙ (p1 − 1)⊙ (p1 − 2)/6. Note that we already computed (p1 − 1)⊙ (p1 − 2) in order to

compute d̂7, and in GraphBLAS we may simply save this intermediate result in a GrB_Vector

and reuse it to avoid recomputation.

GrB_TRY (GrB_eWiseMult (d_8, NULL, NULL, GrB_TIMES_INT64, d_1,

p_1_p_1_had, NULL)) ;

GrB_TRY (GrB_apply (d_8, NULL, NULL, GrB_DIV_INT64, d_8, (int64_t) 6,

NULL)) ;

2.10 Computing d̂9

The vector d̂9 counts the frequency of incidence of vertices at the handle tip of a paw. We

have d̂9 = Ac3−2c3. Recall that d̂4 = c3, so in our implementation we compute this as Ad̂4−2d̂4.

GrB_TRY (GrB_mxv (d_9, NULL, NULL, GxB_PLUS_SECOND_INT64, A, d_4,

NULL)) ;
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GrB_TRY (GrB_eWiseAdd (d_9, NULL, NULL, GrB_MINUS_INT64, d_9, two_c_3,

NULL)) ;

2.11 Computing d̂10

The vector d̂10 counts the frequency of incidence of vertices at a base node of a paw. We

have d̂10 = C3(p1 − 2).

GrB_TRY (GrB_mxv (d_10, NULL, NULL, GxB_PLUS_TIMES_INT64, C_3,

p_1_minus_two, NULL)) ;

2.12 Computing d̂11

The vector d̂11 counts the frequency of incidence of vertices at the center of a paw. We have

d̂11 = (p1 − 2)⊙ c3.

GrB_TRY (GrB_eWiseMult (d_11, NULL, NULL, GrB_TIMES_INT64,

p_1_minus_two, d_4, NULL)) ;

2.13 Computing d̂12

The vector d̂12 counts the frequency of incidence of 4-cycles at each vertex. We have

d̂12 = c4 = C4,2e = P2 ⊙ (P2 − 1)e, where P2 = A2 − diag(d1). This is the first case in which we

must square the matrix A without any structural mask, making this the most costly computation

discussed so far.

Computing the entire matrix A2 is costly not only in terms of time, but also in terms of

memory. Notice, though, that in fact we do not need the entire matrix at once. Instead, we seek in

essence the sums across its columns (we end the computation by multiplying by the all 1’s vector

e). One way to take advantage of this is to compute only part of the matrix at a time. In fact, this

is the approach taken in the original implementation of the Fast Graphlet Transform [10].

There is not a standard way to approach such a computation in GraphBLAS. One option

is to go ahead and compute A2 using GraphBLAS, and then call GrB_reduce to get it down to

the vector form that we really want. This will work, but it will be rather slow, mostly due to the

memory footprint.
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The way we decide to solve this problem in our LAGraph implementation of Fast Graphlet

Transform is to split the matrix into many smaller chunks by row, and then compute the answer

for these rows in parallel. This is not a natural use of GraphBLAS, but it does work and is not

particularly difficult to implement. For the sake of brevity, and because it is not GraphBLAS

specific, we omit the code here.

2.14 Computing d̂13

The vector d̂13 counts the frequency of incidence of vertices at an off-cord of a diamond.

We have d̂13 = D4,ce/2 = A⊙ (A(C3 − A)).

GRB_TRY (GrB_eWiseMult (D_4c, NULL, NULL, GrB_MINUS_INT64, C_3, A,

NULL)) ;

GRB_TRY (GrB_mxm (D_4c, A, NULL, GxB_PLUS_SECOND_INT64, A, D_4c,

GrB_DESC_S)) ;

// d_13 = D_{4,c}*e/2

GRB_TRY (GrB_reduce (d_13, NULL, NULL, GrB_PLUS_INT64, D_4c, NULL)) ;

GRB_TRY (GrB_apply (d_13, NULL, NULL, GrB_DIV_INT64, d_13, (int64_t)

2, NULL)) ;

2.15 Computing d̂14

We take advantage of the fact that C3, which we computed earlier, is the masked version

of the matrix P2, so that we may avoid doing the same work again. It is okay to use the masked

version of P2, since in the end we take the mask with A to compute d̂14 = D4,3e/2 = A⊙ C4,2 =

A⊙ P2 ⊙ (P2 − 1).

// P_2 = A*A - diag(d_1)

GRB_TRY (GrB_eWiseAdd (P_2, A, NULL, GrB_MINUS_INT64, C_3, D_1, NULL))

;

// C_42 = hadamard(P_2, P_2 - 1)
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GRB_TRY (GrB_apply (C_42, A, NULL, Sub_one_mult, P_2, NULL)) ;

GRB_TRY (GrB_eWiseMult (D_43, NULL, NULL, GrB_TIMES_INT64, A, C_42,

NULL)) ;

// d_14 = D_{4,3}*e/2

GRB_TRY (GrB_reduce (d_14, NULL, NULL, GrB_PLUS_INT64, D_43, NULL)) ;

GRB_TRY (GrB_apply (d_14, NULL, NULL, GrB_DIV_INT64, d_14, (int64_t)

2, NULL)) ;

2.16 Computing d̂15

The vector d̂15 counts the frequency of incidence of vertices at a 4-clique, or in other words

part of a subgraph isomorphic to K4. This graphlet in particular seems to not have a very natural

linear algebraic formulation, and as such is not well-suited to GraphBLAS. The equation given in

the Fast Graphlet Transform paper is much more iterative, and in fact their implementation involves

iterating over edges and common neighbors in the graph. For our LAGraph implementation, we

chose to reproduce this approach using GxB_Iterator, but certainly this is not a GraphBLAS

approach to the problem, and we omit the code here for brevity.
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3. RESULTS

In order to test our implementation of Fast Graphlet Transfrom in GraphBLAS, we will

benchmark our code on a variety of graphs against the implementation of Fast Graphlet Transform

by the original paper authors [10].

For the sake of this paper, we will benchmark against two real-world graphs from the SNAP

matrix collection [11]. The data was obtained from the SuiteSparse matrix collection [12].

Table 3.1: Benchmarks for our implementation of the Fast Graphlet Transform.

com-Youtube com-LiveJournal

LAGraph 19.523 sec 180.347 sec
fglt 7.4204 sec 34.518 sec

LAGraph (no d15) 15.830 sec 66.879 sec
fglt (no d15) 6.903 sec 29.855 sec

LAGraph (no d12, d15) 2.455 sec 17.295 sec

As discussed previously, GraphBLAS is well-suited to all graphlet computations except

those for d12 and d15. We therefore benchmark the computation of all graphlets in Table 3.1, but

also include times for our LAGraph implementation without d15, and also without either d15 or

d12. Unfortunately, due to the fact that fglt computes d12 alongside many of the other frequency

vectors, it would be a nontrivial modification to benchmark against fglt without d12.

All benchmarks were conducted on a machine with an Intel(R) Xeon(R) CPU E5-2695 v2

@ 2.40GHz.

3.1 The com-Youtube Graph

The com-Youtube graph contains 1,134,890 nodes and 2,987,624 edges. It contains friend-

ship relations from Youtube. Looking at the benchmark times for this graph, we see a factor of

around 2.5x speedup from our LAGraph implementation to the original implementation when we

include/exclude d15. However, when excluding both d15 and d12, we see a very significant speedup.
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This demonstrates that the vast majority of computation time is spent on computing these two

graphlet frequency vectors.

3.2 The com-LiveJournal Graph

The com-LiveJournal graph contains 3,997,962 nodes and 34,681,189 edges. It contains

friendship relations from LiveJournal, an online blogging community. This graph has an order of

magnitude more edges than com-Youtube. We see a significant reduction in performance on this

graph. However, except for when we include the computation of d15, we see similar multipliers of

around 2.5x from the original fglt implementation to ours in LAGraph.

3.3 LAGraph

The major result of this research will be the inclusion of the Fast Graphlet Transform into

the LAGraph experimental branch [7]. We have demonstrated the applicability of GraphBLAS to

the problem of computing graphlet frequency vectors using the Fast Graphlet Transform. However,

there are improvements that can be made, both from the perspective of GraphBLAS’ applicability

to problems such as these, and in this experimental LAGraph implementation itself. To this we

turn as we now conclude.
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4. CONCLUSION

In general, the original implementation of Fast Graphlet Transform by the paper authors

is around 2-3x faster than ours in LAGraph using GraphBLAS. The LAGraph implementation,

though, has many advantages, including its readability and ease of implementation. Except for the

two computations discussed which are not very well-suited to GraphBLAS, all graphlet counting

computations described in the Fast Graphlet Transform paper [1] are extraordinarily straightfor-

ward to translate into a GraphBLAS implementation in LAGraph.

To conclude, we discuss briefly future directions of research. As mentioned, computing the

graphlet frequency vectors d12 and d15 is not particularly well-suited to GraphBLAS.

In the case of d12, the reason at a high level is that we want to compute A2, and then reduce

across its rows. In other words, we do not need the full matrix A2. However, GraphBLAS has

no way of knowing that our next computation is a reduction, and therefore must generate the full

matrix. We avoid this now by manually splitting the matrix into blocks and reducing each block in

parallel, but in general it is possible that a method of computing d12 exists that is more natural for

GraphBLAS.

In the case of d15, we seek to solve the problem of computing the K4 frequency vector in a

way that is natural for GraphBLAS. For now, we essentially replicate the method used in fglt [10]

using GxB_Iterator. A trivial speedup can be achieved from our current implementation by

parallelizing this iteration, but it is also possible that another way of viewing the problem would

give us an approach more well-suited to GraphBLAS.
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