
EXPLORING DEEP REINFORCEMENT LEARNING TECHNIQUES   

FOR AUTONOMOUS NAVIGATION 

An Undergraduate Research Scholars Thesis 

by 

VINCENT T. POTTER 

Submitted to the LAUNCH: Undergraduate Research office at 

Texas A&M University 

in partial fulfillment of requirements for the designation as an 

UNDERGRADUATE RESEARCH SCHOLAR 

Approved by 

Faculty Research Advisor: Dr. Dileep Kalathil 

 

May 2022 

Major: Computer Engineering  

 

 

 

 

 

Copyright © 2022. Vincent T. Potter.



RESEARCH COMPLIANCE CERTIFICATION 

Research activities involving the use of human subjects, vertebrate animals, and/or 

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory 

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement 

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M 

facilities or institutions. In both cases, students are responsible for working with the relevant 

Texas A&M research compliance program to ensure and document that all Texas A&M 

compliance obligations are met before the study begins. 

I, Vincent Potter, certify that all research compliance requirements related to this 

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor 

prior to the collection of any data used in this final thesis submission. 

This project did not require approval from the Texas A&M University Research 

Compliance & Biosafety office. 

 

 

 

 



 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ...............................................................................................................................1 

ACKNOWLEDGEMENTS.........................................................................................................3 

NOMENCLATURE ....................................................................................................................4 

CHAPTERS 

1. INTRODUCTION .................................................................................................................5 

1.1 Background ...............................................................................................................5 
1.2 Overview ...................................................................................................................6 

1.3 Operating Concept ................................................................................................... 13 

1.4 Sample Scenarios .................................................................................................... 14 

2. METHODS ......................................................................................................................... 16 

2.1 Training ................................................................................................................... 16 

2.2 Evaluation ............................................................................................................... 18 

2.3 Deployment ............................................................................................................. 19 

3. RESULTS ........................................................................................................................... 21 

3.1 Simulator ................................................................................................................. 21 

3.2 Real World .............................................................................................................. 30 

4. CONCLUSION ................................................................................................................... 35 

REFERENCES ......................................................................................................................... 36 



1 

 

ABSTRACT 

Exploring Deep Reinforcement Learning Techniques for Autonomous Navigation 

Vincent Potter 

Department of Electrical and Computer Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Dileep Kalathil 

Department of Electrical and Computer Engineering 

Texas A&M University 

This paper contains research into efficient autonomous navigation algorithms powered by 

deep reinforcement learning. These algorithms enable a mobile robot to perform waypoint 

tracking in an indoor environment. The robot does not contain a map of the environment nor 

does it know the location of the waypoints. A reward function is used to encourage behaviors in 

the robot that lead it closer to the goal. This is an active area of research encouraged by recent 

advancements in neural networks applied to sequential decision making. The reinforcement 

learning algorithms utilize LiDAR and IMU sensors in order to navigate the unknown 

environment by calculating the robot’s current state and what its next action should be. At each 

step the action that is most likely to yield the maximum reward is sent to the robot in order to 

follow the sequential targets along the path to the final goal location. I use a low-fidelity custom 

simulator based on the Dubins Path along with a high-fidelity 3D simulator, Gazebo, to train 

various policies. The Dubins simulator is constructed from Python and executes very fast, while 

Gazebo requires more resources but is very advanced. After training is complete, ROS is used to 

deploy the RL policy onto the physical robot and convert the action commands into linear and 



2 

 

angular velocities that can be understood by the robot’s hardware/motors. The TurtleBot3 Burger 

is the robot being used for evaluation in the real world. Often times, there is a severe drop in 

performance between the simulator and the real world so this is also monitored and factored into 

performance. Dense and sparse reward functions are explored in order to mimic various real-

world scenarios where the reward is not always known at every step. Finally, Deep Q-Learning, 

Trust Region Policy Optimization, and a new RL algorithm called Learning Online with 

Guidance Offline are implemented and tested throughout the course of the research.  



3 

 

ACKNOWLEDGEMENTS 

Contributors 

I would like to thank my faculty advisor, Dr. Kalathil for his support throughout the 

course of this research. Thanks also go to my friends and colleagues and the department faculty 

and staff for making my time at Texas A&M University a great experience. Finally, thanks to 

graduate students Desik Rengarajan, Jaewon Kim, and Akshay Sarvesh for their encouragement 

and guidance. 

Some materials used for the Exploring Deep RL Techniques for Autonomous Navigation 

Project were provided by Dr. Kalathil and Desik Rengarajan. The analyses depicted in the Deep 

RL for Autonomous Navigation Project were conducted in part by Desik Rengarajan and were 

published in 2022. 

All other work conducted for the thesis was completed by the student independently.  

Funding Sources 

This project received no funding. 

  



4 

 

NOMENCLATURE 

RL  Reinforcement Learning 

ROS  Robot Operating System 

LiDAR Light Detection and Ranging 

SLAM  Simultaneous Localization and Mapping 

DQN  Deep Q-Network 

TRPO  Trust Region Policy Optimization 

LOGO  Learning Online with Guidance Offline 

OpenCR Open Control Board for ROS 



5 

 

1. INTRODUCTION 

1.1 Background 

Many current path planning algorithms for autonomous navigation take advantage of 

GPS and known environments for determining an optimal route from point A to point B. 

Additionally, front and rear cameras incorporate object detection systems for obeying traffic 

laws and avoiding pedestrians. This includes many popular approaches such as A* search and 

SLAM techniques. However, these setups can struggle under highly dynamic situations or 

unknown environments [1].  

Khaksar et al. [2] concluded in a study that hybrid approaches using neural networks and 

learning models provide advantages in these scenarios. Training a reinforcement learning policy 

without a map has applications in exploration, surveillance, search and rescue operations, and 

autonomous vehicular navigation since the environment in these scenarios is often dynamic or 

completely unknown. This project explores opportunities to improve upon recent success 

reinforcement learning has shown in mobile robot autonomous navigation within indoor 

environments.  

The three RL algorithms tested are Deep Q-Learning (DQN), Trust Region Policy 

Optimization (TRPO), and Learning Online with Guidance Offline (LOGO). DQN is an off-

policy method for discrete action spaces using Q-values. TRPO is an on-policy method for 

discrete or continuous action spaces using an Advantage metric. LOGO is an expansion upon 

TRPO that incorporates offline learning which proves to be especially useful for sparse 

environments [3].  



6 

 

The idea for this research comparing RL algorithms and reward structures was inspired 

from AWS’ DeepRacer program. Individuals compete across a variety of virtual ‘race tracks’ to 

demonstrate the speed and intelligence of robots trained with reinforcement learning algorithms. 

However, this project also addresses the inconsistencies that are experienced when a policy is 

transplanted from a virtual simulator to physical hardware. That is why extensive work is done 

physically testing the robot’s accuracy throughout different tasks. 

1.2 Overview 

 

Figure 1.1: Subsystem Diagram. 

The structure for this project consists of three main subsystems. The ROS subsystem seen 

in blue, the reinforcement learning subsystem seen in red, and the simulator and physical robot 

subsystem seen in green above in Figure 1.1. Each of these subsystems are developed to function 

independently for ease with debugging and unit testing. Then, they are combined together for 

integration and end-to-end testing. I explain below the function and implementation of each 

subsystem.  



7 

 

1.2.1 ROS Subsystem 

 

Figure 1.2: ROS Message Structure. 

All communication between components is completed through ROS messages, visualized 

in Figure 1.2. ROS uses messages containing data that is then published to topics that other ROS 

nodes can subscribe to. Multiple ROS nodes can connect to a single ROS master that allows 

these topics to become accessible. I use between 4-6 ROS publishers/subscribers for this project 

depending on whether obstacle avoidance is desired. Linear and angular velocity for the robot to 

execute is published to the ‘command_velocity’ topic using the ‘Twist’ data structure which 

consist of two 3D arrays. These arrays correspond to the x, y, and z components of linear and 

angular velocity. A subscriber located onboard of the robot listens for this data. The current state 

of the robot is published from the robot to a subscriber in the reinforcement learning subsystem 

through the ‘odometry’ topic which contains the pose (x, y, and z coordinate) and orientation. 

Finally, if the LiDAR sensor is used for obstacle avoidance, then there is an additional 

publisher/subscriber pair communicating over the ‘scan’ topic containing the range and angle of 

the LiDAR scan. 

Since these subsystems are built independently, the instrument used to control the robot 

and send velocity commands can vary. For this project, I used the following instruments 



8 

 

increasing in difficulty as I got more familiar. To begin, the teleop package is used to control the 

physical robot or in the simulator with the arrow keys on a keyboard. Twist messages can also be 

manually constructed from the command line and published directly to the ‘command_velocity’ 

topic. Finally, control is given to the RL policy which produces the ROS messages without 

requiring input from the user for autonomous navigation. However, the manual control options 

are very useful for performing tests of the subsystem. 

1.2.2 Reinforcement Learning Subsystem 

 

Figure 1.3: Deep Reinforcement Learning Process. 

An overview of the general flow this subsystem takes is shown in Figure 1.3. All 

components of the reinforcement learning subsystem are constructed with Python. This includes 

the implementation of the agent, environment, actor-critic networks, DQN, TRPO, LOGO, and 

training process. The rospy package is used for the subscriber to the robot’s odometry and 

publisher to its velocity. Using command line arguments, I can swap between combinations of 

continuous or discrete and sparse or dense environments. This alters the reward function used 

and the size of the action space. Through the environment, I can initialize the starting location 

and direction of the robot along with the location of the waypoints. 



9 

 

 

Figure 1.4: Neural Network Visualization. 

 Three reinforcement learning algorithms are used. DQN is used for the obstacle detection 

task while TRPO and LOGO are used for pure waypoint tracking tasks involving the dense and 

sparse reward structures. To draw a clearer comparison between the performance of TRPO and 

LOGO under dense and sparse rewards obstacle avoidance tasks were not tested but it should be 

noted that both of these algorithms can also handle that problem domain. All of these algorithms 

use some variation of the neural network seen above in Figure 1.4. Obstacle detection requires 

additional neurons at the input layer representing the distance between the robot and nearest 

object determined by the LiDAR sensor and uses four more fully connected layers. To simplify 

the obstacle avoidance, the network also uses one less output. The linear velocity was held 

constant to allow plenty of time to react to objects as they appear in LiDAR while only the 

angular velocity was controlled using the action from the output layer of the network.  



10 

 

 

Figure 1.5: Reward Functions. 

Figure 1.5 shows both the dense and sparse structures used to calculate the reward for the 

robot at each step of the training or evaluation process for the pure waypoint tracking tasks. The 

dense reward function penalizes behavior based on three types of path-tracking error (cross-

track, along-track, and heading error) to produce more optimal routes. A penalty is also given for 

exceeding certain boundaries. Once the robot reaches within a desired threshold of the waypoint 

it is given +10. For the sparse reward structure, the robot is only rewarded upon reaching the 

goal with +1. During all other steps, the robot does not receive a reward (0). This significantly 

increases the difficulty of training since it can take a very long time for the robot to learn a 

proper policy to follow. This scenario mimics some real-world environments where it is not 

always clear if you are getting closer to the goal until actually reaching it.  



11 

 

1.2.3 Simulator and Robot Subsystem 

 

Figure 1.6: TurtleBot3 Burger Robot. 

 This subsystem contains all the hardware of the physical robot, the software running 

onboard, and the simulator software.  The TurtleBot3 Burger is a small and open-air robot as seen 

in Figure 1.6. It is 138mm x 178mm x 192mm (L x W x H) with an outer radius of 105mm. It 

contains 2 Dynamixel servo motors driven by an 11.1V battery, a 360-degree LiDAR sensor, a 3-

axis gyroscope, and 3-axis accelerometer. Additionally, there is a Raspberry Pi 4 for 

communicating via the ROS master with a remote PC executing the RL program and an OpenCR 

board equipped with a 32-bit ARM Cortex-M7 for communicating with the wheel motors.  

 

Figure 1.7: Gazebo TurtleBot3 Burger Model. 

 The Gazebo simulator has advanced physics principles that govern the vehicular 

dynamics. It also contains a 3D rendered environment where a constructed model of the robot, 



12 

 

seen in Figure 1.7, can be interacted with through a ROS framework. Therefore, state 

information and actions are communicated via actual ROS nodes like with the physical bot. The 

design of the model can be fully customized to match the real-world version through a spatial 

data file containing max speed, weight, dimensions, coefficient of friction, number of LiDAR 

samples, etc. for the robot. Gazebo is used for training the DQN for obstacle avoidance because 

objects and whole rooms can easily be created and manipulated throughout the rendered world. 

These features allow for closely mimicking the real world to produce a robust model even when 

deployed. However, the GUI takes a considerable amount of computing resources to render. 

Additionally, due to the more advanced vehicular kinematics, the training process is slowed 

considerably. 

 

Figure 1.8: Dubins TurtleBot3 Burger Model. 

 The custom Dubins simulator is much simpler and thus can be executed much faster. It is 

built using a 2D top-down model of the vehicle, seen in Figure 1.8, moving through an 

environment rendered using Matplotlib. The state and action are gathered/sent using functions 

that interact with the Matplotlib figure rather than with ROS. This allows for the training process 

to be accelerated rapidly. While some of the more realistic physics and the ability to spawn 

objects is sacrificed, the model can reach an optimal policy for simpler tasks much quicker than 



13 

 

with Gazebo. Therefore, for waypoint tracking without obstacles this is the more efficient 

manner for training. Models trained in this simulator are also deployed into the real world to 

ensure the robot is still reaching within the desired threshold of all waypoints. 

1.3 Operating Concept 

1.3.1 Scope 

 This project only validates autonomous navigation on ~1/18th scale vehicles. 

Additionally, the target use is for indoor environments only. It is used to explore theoretical 

reinforcement learning techniques and provide proof of concepts that can then be scaled up to 

larger self-driving robots and vehicles. Obstacle detection is tested only for stationary objects. 

The obstacles can be of any size as long as it is viewable by the onboard LiDAR sensor.  

1.3.2 Operational Description and Constraints 

 The project’s main objective is to research various applications of deep reinforcement 

learning in autonomous navigation and sequential waypoint tracking accuracy. Therefore, the 

algorithms produced are for academic use and study. They are evaluated in comparison with 

each other in various task domains. They also prove that deep learning techniques can succeed in 

dynamic situations involving autonomous navigation. Therefore, the following constraints exist 

for this project: 

• The robot must be equipped with an onboard 360⁰ LiDAR sensor for obstacle 

 avoidance model. 

• The robot is operated indoors within a confined space. 

• The robot exhibits symmetrical steering. 



14 

 

1.3.3 Users 

For the model and scale being worked on in this project the users will be myself and 

other graduate students. Since this project is being conducted for research purposes there are 

many trials with the results being recorded and documented for others. The robot navigates 

autonomously and requires extensive training to be done beforehand in complex simulator 

environments. Therefore, it is difficult to provide enough education for other users to operate the 

system in its current state. Initially the main benefactors will be the academic community. 

Discovering the performance of various algorithms for path planning and obstacle avoidance is 

an ongoing area of deep reinforcement learning as the use of neural networks is growing in 

popularity.  

However, once this technology is proven, its applications and users are endless. For 

example, it can be applied to exploration and surveillance scenarios where the environment may 

be hostile to humans or simply unknown. Another popular user would be manned or unmanned 

commercial vehicles. Even outside of autonomous navigation, many problems can be mapped to 

sequential decision making where deep reinforcement learning techniques can be applied. 

1.4 Sample Scenarios 

1.4.1 Competitions 

 This first scenario involves racing conditions similar to the AWS DeepRacer program. 

The goal is speed and efficiency navigating around a defined track. There are two types of 

competitions: head-to-head and obstacle avoidance. While the goal is to win with the fastest time 

in both, head-to-head races involve racing against multiple other cars to post the best lap time. 

Obstacle avoidance races add the additional difficulty of dodging items placed on the track and 

other vehicles.  



15 

 

1.4.2 Environment Exploration 

 Exploring an unknown environment requires the use of a deployed version of the 

reinforcement learning algorithm. The robot could be used to develop a 3D scan of the 

surroundings through the use of the LiDAR sensor as it is navigated between waypoints set 

throughout the environment. Therefore, more information can be gathered in conditions where 

humans cannot reach the environment or as a precaution before humans are sent. 

  



16 

 

2. METHODS 

2.1 Training 

To begin the training process in the simulator, I activate a Conda environment with Gym, 

Pytorch, Numpy, Matplotlib, and Tensorboard installed. Then, in a python file I import the files 

containing the environment, actor-critic network, the chosen RL algorithm, and the agent. Using 

command line arguments, I select the type of environment I’d like to train on and which 

algorithm I’d like to use. I can also edit the hyperparameters and if/when to save the trained 

model. 

Next, the environment is initialized defining the model of the vehicle, its spawn location, 

the waypoint location, the action space, the reward function, the episode timer, and maximum 

boundaries the robot should not exceed. Once the robot and waypoint are spawned, the current 

state of the agent is observed. The current state consists of the robot’s x-coordinate, y-coordinate, 

and heading given by an angle. Then, the actor-critic networks estimate the advantage from the 

trajectories. The networks are updated and an action is output for the robot to take. Next, we 

perform a policy optimization step. The state of the robot is updated to its next state based on the 

action that was output. The new state is checked if it is within the desired threshold of the goal 

and the reward is determined based on its position relative to the goal. Negative rewards are used 

to deter the robot from navigating outside of bounds or farther from the waypoint. Positive 

rewards are given for achieving the goal. Finally, this movement is modeled in the rendered 

environment. This process of updating the policy is repeated until optimal actions that maximize 

the reward function are output based on the current state of the robot at each step. 



17 

 

       

Figure 2.1: Gazebo Waypoint Tracking (left) and Obstacle Avoidance (right). 

 

Figure 2.2: Dubins Random Waypoint Model (left) and Random Spawn Point Model (right). 

Models can be trained for various tasks that do or do not involve avoiding obstacles 

shown in Figure 2.1. One task involves models training to navigate from a fixed starting location 

to a fixed end location. Additionally, models can be trained in environments where the starting 

location is randomized but the goal remains fixed, or vice versa where the spawn point is fixed 

and the goal is randomly placed. Both of these tasks can be seen above in Figure 2.2. 



18 

 

2.2 Evaluation 

The evaluation process is much simpler since no policy updates are performed. While 

each training episode consists of the robot navigating to a single waypoint, evaluation can be 

performed with a series of waypoints. This is because a set of waypoints forming a path can be 

broken down where the robot thinks of each as an individual episode. Therefore, after the 

environment is initialized, Pickle is used to load the trained policy network data structure. Then, 

an array of waypoints are spawned. The robot continually takes actions until reaching all of the 

waypoints.  

To determine its performance, I manually publish actions to the robot that steer it in 

straight lines to each waypoint. The reward received in this scenario is the maximum possible 

since no path will be shorter than this. Then, the reward received from the autonomous 

navigation can be compared to see if it is taking optimal routes. For simple routes, this can also 

be confirmed through visual inspection of the rendered environment. For models trained in the 

sparse environment, the dense reward function is used for evaluation. This is because the sparse 

reward function cannot effectively be used to measure performance. For example, a policy could 

be reaching the goals but in a very inefficient manner. When compared with an optimal policy, 

both would have sparse rewards of +1.  

One thing to note is that for the discrete environment, sometimes there is no available 

action in the discretized action space that lead the robot in a straight line directly to the goal. 

Therefore, in these cases the robot is observed to oscillate between two actions that keep it near 

the straight line connecting the starting point and waypoint. The result is a slightly lower reward 

but still a near optimal route. 



19 

 

2.3 Deployment 

 

Figure 2.3: Deployment Process. 

Once the RL policy has matured sufficiently during training, it is deployed onto the 

physical hardware of the robot and evaluated on similar tasks. The process is similar to 

evaluation in the simulator with a few extra steps. The full process is shown in Figure 2.3. In step 

1, the remote PC and onboard Raspberry Pi is connected to the same WIFI network. In step 2, 

the ROS master URI is set on the remote PC and Raspberry Pi. Then, in step 3 a roscore instance 

is spun up on the remote PC so all ROS nodes can communicate with the master. Step 4 involves 

launching the turtlebot3_bringup package on the Raspberry Pi to initialize all ROS nodes to 

begin publishing and subscribing. Next, in step 5 a python file is run that is similar to the 

evaluation file but uses rospy to publish and subscribe to the ROS master interfacing with the 



20 

 

physical robot. Finally, in step 6 actions are sent to the OpenCR board to control the motors. 

Using physical markings on the floor and observing the output of onboard sensors, the time and 

proximity to the waypoints achieved by the physical robot is compared to the simulated model 

for analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

3. RESULTS 

3.1 Simulator 

3.1.1 Gazebo and Obstacle Avoidance 

 I began by spawning the TurtleBot3 Burger model into a blank Gazebo world to 

test the communication between all of the ROS nodes. A script was written to steer the robot in a 

circle while its current state was output. The robot successfully completed multiple circles while 

returning to its exact starting location. Then, more complex environments were used to test the 

simulated LiDAR sensor. World files provided in ROS and Gazebo tutorials were used that 

mimicked a room with evenly spaced columns and an office setting with walls, desks, and doors. 

Figure 3.1 shows that the simulated LiDAR was measuring up to 3m away which is what the 

physical sensor is rated for.  

 

Figure 3.1: Validation of Simulated LiDAR. 



22 

 

Then, the ability for ROS nodes to send and save the LiDAR scans while navigating was 

tested. The robot was manually controlled throughout an office setting until the environment had 

been fully scanned. Then, the saved results of the scan were compared to the physical 

environment for confirmation that the robot had detected the location of each obstruction. As is 

shown in Figure 3.2, the scan very closely matches the physical environment from the robot’s 

perspective. 

 

Figure 3.2: Physical Environment vs LiDAR Scan. 

Next, a SLAM node was run to test the robot autonomously navigating a known 

environment with a pre-scanned map of the obstacles. Therefore, the LiDAR sensor data is 

overlayed on top of the saved map of the environment for localization of the robot. Then, 

waypoints were set for the robot to navigate to while remaining a certain distance away from all 

obstacles. An inflation radius was tuned to ensure the robot avoided all objects by a large margin. 

Below is a visual representation of what was observed through the simulator in Figure 3.3. 

While, the robot was able to reach most of the waypoints without a collision, this technique 

required traversing the environment prior to acquire a map and didn’t handle dynamic 

conditions. 



23 

 

 

Figure 3.3: SLAM Navigation. 

Therefore, DQN was implemented to learn how to traverse unknown environments that 

may contain obstacles. The number of LiDAR samples was reduced from 360 to 24 and the 

linear velocity was held constant at 0.15 m/s to promote exploration. A simpler reward function 

was used that gave +200 for reaching the goal, -200 for crashing, and penalized based on the L2 

distance from current state to goal for other steps. It eventually converged to an optimal policy in 

around 250-300 iterations after 5 hours of training which can be seen by Figure 3.4. 

 

Figure 3.4: Average Reward of DQN while Training. 



24 

 

3.1.2 Custom Dubins 

3.1.2.1 Trust Region Policy Optimization 

 Since the Gazebo simulator was taking extremely long times to train, I wanted to 

compare the performance of a lower fidelity simulator and a different algorithm. Therefore, I 

began training in the custom built Dubins simulator. TRPO provides guarantees for monotonic 

improvement and doesn’t require tuning hyperparameters. This algorithm was implemented with 

control over both the linear and angular velocities, the neural network architecture from Figure 

1.4, and the dense and sparse reward functions from Figure 1.5.  

 I conducted training with the fixed starting and ending point model. The waypoint was 

spawned at a fixed location 1m from the starting location of the robot. I began by comparing the 

performance of a continuous action space from 0 up to the robot’s maximum linear and angular 

velocities and a discretized action space with 20 combinations to choose from. The maximum 

possible reward found by manually steering the robot in a perfect line for this environment is 

2.53. As seen below in Figure 3.5, there are no major differences in performance or speed of 

convergence between the two action spaces during both training and evaluation. This was 

observed for all tasks, therefore, for the remaining analysis I only focus on the discretized 

version. Both models converge to an average reward of 2.1 which is considered optimal. 

 

Figure 3.5: Average Reward of TRPO Fixed Start/End with Continuous and Discrete Actions. 



25 

 

 Next, testing was done with the same fixed point environment but with the sparse reward 

function. During evaluation, the reward was computed with the dense reward function to gain 

insight into its efficiency in reaching goals. The results are shown below in Figure 3.6. 

 

Figure 3.6: Average Reward of TRPO with Sparse Reward. 

After 100 iterations it began reaching the goal more than half of the time. However, even 

after 300 training iterations the goal was only reached 80% of the time. Furthermore, by looking 

at the evaluation, which converges to -130, it is obvious that the robot did not take optimal paths 

to reach the goals. By viewing the rendered environment from the custom Dubins simulator, the 

robot was aimlessly wandering in circles for a large majority of the time in the first 60 iterations. 

Even beyond that iteration, there was a lot of circling in the direction of the goal exhibited by the 

robot. 

To help TRPO learn more information, I changed the environment to spawn the robot 

directly facing the goal only for this trial. Previously, the robot was being spawned facing 90 

degrees away from the goal. This made a significant impact on the training performance of 

TRPO since it was able to reach more goals and learn information quicker. The new results are 

shown below in Figure 3.7. 



26 

 

 

Figure 3.7: Average Reward of TRPO with Sparse Reward and New Spawn. 

With this help, TRPO is able to reach the goal 100% of the time after just 62 iterations. 

Additionally, the evaluation converges to an average reward of -15. This is still not a perfect path 

but is considerably better than the previous model. However, it is important to note that it is not 

desired for such little changes to make such a drastic impact. 

This is a common problem with TRPO and numerous other reinforcement learning 

algorithms in sparse environments. Since no reward is given at each time step, it is difficult to 

estimate the advantage any action has over the other. Therefore, the policy can spend large 

amounts of time not learning anything meaningful leading to poor behavior. This led to the 

implementation of LOGO. 

3.1.2.2 Learning Online with Guidance Offline 

 LOGO uses two steps. The first is a policy improvement step that is identical to TRPO in 

order to generate candidate policies that lie within the trust region. The second step is a policy 

guidance step. In this step the policy that is closest to the guiding behavior is chosen. The trust 

region can be dynamically adjusted so that the newly trained policy does not exactly imitate the 

guidance policy, but rather, improves upon it. Thus, the guidance policy can be sub-optimal. 

 While the main focus of LOGO is to improve performance in sparse environments it can 

also be used in dense environments. For the first experiment, the optimal policy from the TRPO 



27 

 

dense environment was used as guidance. Then, a sub-optimal policy was acquired by running 

TRPO for only five iterations on the same environment and also used as guidance in a second 

experiment. The results are shown below in Figure 3.8. 

 

 

Figure 3.8: Average Reward of LOGO with Dense Reward with Optimal (top) and Sub-Optimal (bottom) Guidance. 

In both scenarios an optimal policy was generated. While this occurs a few iterations 

sooner than just with TRPO, this was expected behavior since TRPO was able to reach an 

optimal policy in the same environment, the second step of LOGO wasn’t offering too much of 

an advantage. 

For the following experiment, I trained LOGO in a sparse environment but with the 

optimal policy generated from TRPO in the dense environment for guidance. The results are 

shown below in Figure 3.9. 



28 

 

 

Figure 3.9: Average Reward of LOGO with Sparse Reward with Optimal Dense Guidance. 

This generated a policy that reached 100% of the goals in just 10 iterations. During 

evaluation, it performed optimally similar to the dense environments. Even with the modified 

spawn location to help TRPO learn, it took 60 iterations to converge in the sparse structure and 

produced a smaller reward. Therefore, LOGO outperformed TRPO in this scenario in speed and 

quality of actions produced. 

However, in sparse environments, it may not always be possible to attain an optimal 

policy or one generated using a dense reward function. Therefore, a final test was performed 

comparing three scenarios of increasing difficulty. First, LOGO was trained in a sparse 

environment with the sub-optimal policy obtained from training TRPO in a dense environment 

for just five iterations. This mimics scenarios where it might be possible to collect a few samples 

of data using a dense reward structure, or some sort of desired behavior or state-action pairs may 

be known ahead of time that can be used to guide the model. Additionally, LOGO was trained in 

a sparse environment with guidance from the modified TRPO sparse environment. This models 

scenarios where the problem may be simplified or made easier to gain some initial knowledge on 

the direction to head in. Finally, LOGO was trained in a sparse environment with the unmodified 

TRPO sparse environment policy used as guidance. This is for scenarios where the problem or 



29 

 

environment cannot be edited to gain any new information. The results are shown below in 

Figure 3.10. 

 

 

 

Figure 3.10: Average Reward of LOGO with Sparse Reward Increasing in Difficulty from Top to Bottom. 

 As was expected, the performance degraded as the problem became increasingly difficult. 

However, it is important to note that LOGO still outperformed its TRPO counterpart in every 

scenario. Even for the sparse environment where nothing can be altered to gain new information, 



30 

 

LOGO is able to reach to goal more frequently and with a final reward of about -40 compared to 

-130 using TRPO. 

3.2 Real World 

3.2.1 DQN and Obstacle Avoidance 

 

Figure 3.11: Physical LiDAR Scan vs Actual Environment. 

The DQN policy was deployed onto the physical robot and instructed to reach a waypoint 

approximately 1m away located on the opposite side of a stationary box. The physical setup and 

LiDAR view is shown in Figure 3.11. The process was repeated ten times and every time the 

robot reached the correct destination. It took 14.3s on average and reached within .189m of the 

goal. It is important to note that in the simulator, all goals are given a threshold of 0.05m to train 

very accurate models. In the real world, the goal is to reach within a 0.2m threshold of every goal 

so that the performance drop is not too large in the real world. 

3.2.2 Dense Environment 

 Once deploying the TRPO and LOGO models where actions controlled the linear and 

angular velocities the robot began exhibiting erratic and incorrect behavior. It was discovered 

that the TurtleBot3 Burger being used could not reach its maximum linear and angular velocities 

simultaneously. In fact, it was noticed that there were many combinations of linear angular 

velocities that when sent to the robot would cause incorrect behavior. This went unnoticed with 



31 

 

the DQN model since the linear velocity was held constant and all turns were gradual. Therefore, 

the set of discrete actions had to be modified in order for the robot to be able to execute each 

one. The TurtleBot is reported to be able to reach 0.22 m/s linearly and 2.84 rad/s angularly. 

However, what was observed, shown in Figure 3.12, was 0.20 m/s and 2.30 rad/s. It has not been 

determined whether this limitation is present in all TurtleBot3 Burger robots. 

 

Figure 3.12: Modified Safe Discrete Action Space. 

There was an additional change due to operating in the real world. In the simulator, the 

robot is not held to the same linear velocity limitation in order to speed up training. During 

training, the robot was able to reach 1.5 m/s. However, as was discussed, the physical robot has a 

much slower maximum speed. Since the robot reaches a negative reward at every step where it 

has not reached the goal, the slower it moves, the smaller the reward will be. Therefore, the 

maximum possible reward achievable is smaller in the real world and also depends largely on the 

distance between each sequential waypoint. 

First, the dense TRPO policy from Figure 3.5 was deployed. The path it took relative to 

the actual waypoints is shown below in Figure 3.13. The path length is 5.325m and it took an 

average of 54s to complete. It reached to within an average threshold of 0.077m of all goals. 



32 

 

 

Figure 3.13: Dense TRPO Policy Deployment. 

Next, the modified sparse TRPO policy from Figure 3.7 was deployed. Its path is shown 

below in Figure 3.14. It took just 36.5s to complete on average but only reached within 0.166m 

of each goal on average. Additionally, it only reached within 0.215m of one goal which does not 

meet the desired threshold for deployment. 

 

Figure 3.14: Dense TRPO Policy Deployment. 

Then, the sparse LOGO policy with optimal dense guidance from Figure 3.9 was 

deployed. Its path is shown below in Figure 3.15. It took an average time of 57.5s but its 



33 

 

performance closely matched the optimal performance from the dense environment. It had an 

average threshold of 0.091m. 

 

Figure 3.15: Sparse LOGO with Optimal Dense Guidance Deployment. 

Finally, the final two polices were taken from the first and third scenario described in 

Figure 3.10. The sparse LOGO policy with modified sparse guidance is shown in Figure 3.16. It 

had an average time of 35s and threshold of 0.135m. The sparse LOGO policy with unmodified 

sparse guidance is shown in Figure 3.17. It had an average time of 62.5s and threshold of 

0.182m. Therefore, it barely met the desired performance during deployment. A summary of the 

real-world results is shown in Table 3.1. 

 

Figure 3.16: Sparse LOGO with Modified Sparse Guidance Deployment. 



34 

 

 
 

Figure 3.17: Sparse LOGO with Unmodified Sparse Guidance Deployment. 

Table 3.1: Summary of Real-World Results. 

 
TRPO 

Dense 

TRPO 

Modified 

Sparse 

LOGO 

Sparse with 

Optimal 

Dense 

Guidance 

LOGO 

Sparse with 

Modified 

Sparse 

Guidance 

LOGO 

Sparse with 

Unmodified 

Sparse 

Guidance 

Time (s) 54 36.5 57.5 35 62.5 

Average 

Threshold (m) 
0.07709 0.16629 0.09090 0.13535 0.18166 

 

 

 

 

 

 

 

 



35 

 

4. CONCLUSION 

Overall, I can draw many conclusions from the results of this project. First of all, deep 

reinforcement learning can definitely be applied to autonomous navigation. Incorporating 

multiple algorithms allows for all types of problems and environments to be solved. Next, it was 

determined that low fidelity simulators can suffice for certain navigation tasks and even perform 

quite well. The dense model only experienced a sim2real drop in performance from a 0.05m 

threshold to 0.077m. Therefore, a low fidelity simulator can save hours of time even when the 

goal is real-world deployment. Finally, it can be concluded that LOGO is far superior to TRPO 

in sparse environments and performs similarly or better in dense environments as well. This is 

promising since it expands the types of problems these techniques can be applied to.  

In the future I would like to explore unknown environments that also contain moving 

obstacles rather than static. Additionally, I would like to test LOGO with problems where 

censored state information is used for guidance and observe what kind of policy improvements to 

expect. This covers additional real-world scenarios where information can be gathered on some 

of the state variables but not all.   



36 

 

REFERENCES 

[1] Cheng Y. & Wang G.Y. (2018) Mobile Robot Navigation Based on Lidar, The 30th 

Chinese Control and Decision Conference. 

[2] Khaksar, W., Vivekananthen, S., Saharia K.S.M., Yousefi M. & Ismail F.B. (2015) A 

Review on Mobile Robots Motion Path Planning in Unknown Environments, IEEE 

International Symposium on Robotics and Intelligent Sensors. 

[3] Rengarajan, D., Vaidya, G., Sarvesh, A., Kalathil, D. & Shakkottai, S. (2022) 

Reinforcement Learning with Sparse Rewards using Guidance from Offline 

Demonstration, The 10th International Conference on Learning Representations. 


