
MEMORY-EFFICIENT MULTI-THREADED STREAMING

PARTITIONING ALGORITHM

An Undergraduate Research Scholars Thesis

by

ALEXANDER LABBANE

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Dmitri Loguinov

May 2022

Major: Computer Science

Copyright © 2022. Alexander Labbane.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, Alexander Labbane, certify that all research compliance requirements related to this Un-

dergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor prior

to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 2

NOMENCLATURE . 3

CHAPTERS

1. INTRODUCTION. 4

1.1 Radix Sort . 4
1.2 Virtual Memory . 5
1.3 Paging. 6
1.4 Vortex Sort . 7

2. PARTITIONING . 10

2.1 Method 1A. 10
2.2 Memory-Efficient Streams. 11
2.3 Method 1B. 14
2.4 Method 2A. 15
2.5 Method 2B. 17

3. EXPERIMENTS . 19

3.1 Setup . 19
3.2 Temporary Bucket Size . 20
3.3 Partitioning 32-bit Integers . 21

4. CONCLUSION. 24

4.1 Discussion . 24
4.2 Future Work . 24

REFERENCES . 25

APPENDIX A: PARTITIONING SPEED . 26

ABSTRACT

Memory-Efficient Multi-Threading Streaming Partitioning Algorithm

Alexander Labbane
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Dmitri Loguinov
Department of Computer Science and Engineering

Texas A&M University

Due to the growth of the modern Internet, data analytics, and cluster computing, massive

amounts of data are frequently being generated and need to be processed. In many common data

processing applications (e.g., sorting), a set of input keys needs to be partitioned into buckets based

on their values. Since key partitioning is an application where data can be processed sequentially

(i.e., via streaming), one such programming platform we can use to solve this problem is Vortex.

Vortex creates the illusion of an infinite buffer by generating controlled memory access violations

that are handled transparently. The buffer can be accessed with a single C/C++ pointer, making

Vortex both extremely fast and easy to use.

Efficient parallelization of a key partitioning algorithm is required to take advantage of

multi-core processors, which are now found even in low-end consumer hardware. With this in

mind, we propose a high-performance, memory-efficient key partitioning algorithm, which makes

use of multiple Vortex streams to allow for concurrent partitioning of keys by multiple threads in

a single pass over the input data. The resulting algorithm is able to nearly saturate the memory

bandwidth of modern Intel Coffee Lake systems and can be applied to develop high-performance,

multi-threaded streaming sorts that are capable of utilizing the multiple processing cores available

in modern computers.

1

ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisor, Dr. Dmitri Loguinov, for his guidance and support

throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for making

my time at Texas A&M University a great experience.

Finally, thanks to my parents for their encouragement, patience, and love.

Funding Sources

No additional funding was received to support the completion of this work.

2

NOMENCLATURE

CPU Central processing unit

GB Gigabyte

LSD Least-significant-digit

MB Megabyte

MMU Memory-management unit

MSD Most-significant-digit

RAM Random access memory

SEH Structured Exception Handling

TB Terabyte

3

1. INTRODUCTION

Explosive growth of the Internet, cluster computing, and storage technology has led to

generation of enormous volumes of information and the need for scalable data computing. One of

the central frameworks for handling analysis of such data is MapReduce, which is a programming

platform for processing streaming data in external/distributed memory. Despite a significant public

effort, open-source implementations of MapReduce (e.g., Hadoop, Spark) are complicated, bulky,

and inefficient. Although RAM bandwidth of CPUs is approaching speeds of 100 GB/s, these

solutions are only able to achieve data throughput on the order of 100 MB/s. To overcome this

problem, we are working on a C/C++ programming abstraction called Vortex that offers a simple

interface to the user, zero-copy operation, low RAM consumption, and high data throughput.

An implementation of a fast, parallelized sorting algorithm exists in the form of RADULS2,

which is based on an efficient implementation of radix sort [1]. As bucket sizes become small,

RADULS2 switches to comparison-based sorting (i.e., insertion sort) and sorting networks [2].

However, RADULS2 is relatively complex and is comprised of more than twenty-thousand lines

of source code; in contrast, a single-threaded radix sort implementation using Vortex, named Vor-

tex Sort, is relatively simple using virtual memory primitives in Windows. It has been shown to

outperform competing radix sort implementations such as RADULS2 by up to a factor of 3 [3].

However, modern computer processors contain multiple processing cores, even in low-end con-

sumer hardware. This makes efficient parallelization of these algorithms vital. In this research, we

focus on developing an efficient multi-threaded key partitioning algorithm that could be used to

develop a complete, memory-efficient implementation of a multi-threaded radix sort with Vortex.

1.1 Radix Sort

Radix sort is a non-comparison-based sorting algorithm. There are two main flavors of

radix sort: least-significant-digit (LSD) and most-significant-digit (MSD).

In a traditional LSD radix sort, a distribution sort is performed based on the LSD of the

4

keys. This involves placing keys in “buckets” based on their LSD [4]. We will call this step

partitioning. The buckets are concatenated in order (bucket 0, followed by bucket 1, etc.), and

partitioning is repeated on the next least significant digit. This process continues, using the output

of the previous iteration as the input to the next iteration, until a final iteration on the MSD places

the keys in sorted order.

In an MSD radix sort, the keys are sorted in a similar manner, this time starting with the

MSD. Recursively, each bucket is then partitioned using the next most significant digit. This

continues until the LSD is processed, at which point the buckets are concatenated together to

produce a sorted list of keys.

Regardless of the version of radix sort being used, for in-place implementations, two passes

over the data are generally required. The first pass is used to count the size of each bucket, while

the second pass distributes the keys into the buckets. Later, we will describe how we can use Vortex

streams to eliminate the first pass of data while maintaining an in-place sort (i.e., using only O(1)

additional memory).

In general, for short keys (e.g., 32-bit integers), LSD radix sort outperforms MSD due to

needing relatively few passes to sort the data, while MSD radix sort may require many recursive

function calls. However, for longer keys (e.g., 64-bit integers), MSD radix sort is likely to perform

faster because buckets with a small number of elements can be “pruned” and quickly sorted with

other approaches, such as sorting networks, which are much faster for small inputs. This optimiza-

tion cannot be applied to LSD radix sort because buckets are not sorted independent of each other,

meaning that the entire input must be processed in each pass.

1.2 Virtual Memory

Usually, when we discuss memory in a computer, we are referring to the contents of physi-

cal RAM that is installed on the motherboard. However, recall that virtual memory is an abstraction

provided by modern operating systems that allows for the separation of logical and physical mem-

ory [5]. Regardless of the amount of RAM installed in a system, programmers are given access to

an extremely large virtual memory, which we will refer to as the virtual address space. The mem-

5

ory management unit (MMU) dynamically maps virtual memory addresses to physical memory

addresses. Note that each process is given its own virtual address space by the operating system

(OS), so the memory of one process cannot access or conflict with the memory of another process.

This prevents programmers from worrying about the amount of memory available on specific sys-

tems or conflicting with the memory of other running processes. Despite the theoretical limit of

264 bytes of virtual memory, in modern 64-bit versions of Windows, the virtual address space is a

128 TB range [6].

1.3 Paging

Recall that paging is the method used by the OS and MMU to convert virtual memory

addresses to physical addresses. A page is a fixed-size, contiguous block of virtual memory that

the OS can map to a frame, a fixed-size, contiguous block of physical memory via a page ta-

ble [5]. In Windows, pages in a process’s virtual address space can be in one of three states:

free, reserved, or committed [7]. Free pages have not been committed or reserved by the OS

and are inaccessible to the process. Pages that have been reserved or committed can be freed

with VirtualFree(MEM_RELEASE). Reserved pages are also inaccessible to the process, but

virtual addresses in the reserved state cannot be accessed by other memory allocation functions,

which is useful to guarantee access to a large contiguous block of virtual addresses. Free pages

can be reserved with VirtualAlloc(MEM_RESERVE). Committed pages are pages that have

a physical frame associated with them and are accessible by the process. Both free and reserved

pages can be committed using VirtualAlloc(MEM_COMMIT), and committed memory can

be released while preserving the reservation using VirtualFree(MEM_DECOMMIT). Initially,

committed memory is considered committed untouched. Physical memory is not mapped until the

program attempts a write to a page that is committed untouched, at which point the memory is

committed touched and becomes part of the working set of the process.

When a process attempts access to a page that is not valid in the page table, a page fault

is generated by the OS [5]. A page fault can occur when a page that is not resident in page table

is accessed or when the process does not have the permissions to access the page. For instance,

6

on first access to a committed page, there is no physical mapping yet, so a page fault is generated.

The MMU handles this fault by mapping a new frame and continuing execution of the process at

the instruction that generated the fault. By writing a custom exception handler, we can perform

custom logic and handle the page faults manually, even if the address of the fault has not been

committed yet. Vortex takes advantage of this by generating “controlled access violations, which

are intercepted by a custom exception handler that transparently fixes the problem and allows the

program to continue” [3].

1.4 Vortex Sort

We now summarize the operation of an existing, single-threaded MSD radix sort imple-

mentation, which uses a specialized Vortex stream, named Vortex-S [3]. In particular, we will use

multiple Vortex-S streams to accomplish the sort.

First, note that each bucket is represented by a single Vortex-S stream. Thus, if we are

partitioning by b bits in each step of the sort, 2b streams will be required. In addition, we make

the input buffer a Vortex-S stream. Each Vortex-S stream consists of a single virtual buffer that

is shared by the data producer and consumer. When the producer attempts to write data to an

unmapped section of virtual memory in a stream, a write fault triggers the Vortex-S custom write

fault handler, which maps the next block of physical memory to the fault location. When reading

from a Vortex-S stream with the consumer, we use guard pages to trigger read faults on block

boundaries. The Vortex-S custom read fault handler then unmaps processed blocks of memory and

returns them to a shared StreamPool, which is discussed below. Within the buffer of each stream,

we map/unmap groups of pages in blocks of size B, generally ranging between 1-2 MB to avoid

excessive calls to the fault handler, which would harm performance.

7

Algorithm 1 Single-Threaded Key Partitioning with Vortex.
1: CACHE_LINE = (1 ≪ CACHE_LINE_BITS);
2: uint32_t localBuckets[(1 ≪ b) ∗ CACHE_LINE];
3: short localSize[1 ≪ b];
4: uint32_t** ptr = buckets; ▷ Vortex stream pointers
5: function WRITECOMBINE(uint32_t* buf, uint64_t size)
6: for (i = 0; i < size; i++) do
7: uint32_t buck = (buf[i] ≫ shift) & mask; ▷ Compute bucket to write key into
8: short off = localSize[buck];
9: uint32_t* localBuck = localBuckets + (buck ≪ CACHE_LINE_BITS);

10: *(localBuck + off) = buf[i];
11: localSize[buck] = ++off;
12: if off == CACHE_LINE then ▷ Temporary bucket is full
13: Offload(buck, localBuck);
14: end if
15: end for
16: end function

17: function OFFLOAD(uint32_t buck, uint32_t* p)
18: __m256i* src = p, *end = src + CACHE_LINE;
19: __m256i* dest = ptr[buck];
20: while src < end do ▷ Copy local bucket to Vortex stream using SIMD
21: __m256i x = _mm256_loadu_si256(src++);
22: _mm256_stream_si256(dest++, x);
23: __m256i y = _mm256_loadu_si256(src++);
24: _mm256_stream_si256(dest++, y);
25: end while
26: localSize[buck] = 0;
27: ptr[buck] = dest;
28: end function

To maintain an in-place sort, streams need to be able to share and reuse the same physical

blocks, leading to the creation of a StreamPool object that is shared by all streams (including the

input stream) and maintains a queue of unmapped physical blocks. When the sort is initialized,

the StreamPool is allocated enough blocks to store the entire input of size n keys, as well as an

additional 2b blocks. The extra blocks ensure there will be enough memory allocated even if the

last block in each stream is only partially filled. Thus, the additional memory required by the sort

is equal to B · 2b bytes, which is independent of the input size n. Only O(1) additional memory

is required, so the sort is in-place. We will adapt this MSD approach to form a multi-threaded

8

partitioning algorithm for an LSD sort that is capable of efficiently partitioning n 32-bit keys by

their least significant b bits into 2b buckets (the algorithm can be trivially adapted to partition by the

MSD). Assuming all Vortex streams have been created and sufficient memory has been allocated

to the StreamPool, Algorithm 1 shows a single-threaded implementation for partitioning using

Vortex streams. Keys are first collected into static, local buckets that are small enough to fit in

cache before being offloaded to the Vortex streams.

9

2. PARTITIONING

To multi-thread the partitioning algorithm used in Vortex Sort, we must specify an algo-

rithm to distribute work to various threads. In this case, we simply allow working threads to claim

2 MB “jobs” from the Vortex-S input stream, which can be trivially accomplished using interlocked

instructions on the buffer pointer. Unfortunately, with multiple threads accessing the input buffer

at the same time, the stream can no longer safely unmap blocks and return them to the StreamPool

whenever a guard page is triggered. With additional logic, unmapping can be re-enabled on the

input stream (making the algorithm in-place), which we will address in future work.

In addition, two potential synchronization issues must be addressed. First, when writing

keys into a Vortex stream, there must be some mechanism to ensure multiple threads do not attempt

to write into the same location in the buffer. Second, when the fault handler is triggered on a stream,

additional logic needs to prevent multiple threads from trying to map physical memory to the same

virtual address, which can occur if multiple threads enter the stream fault handler at the same time.

2.1 Method 1A

A naïve solution, which we refer to as Method 1A (M-1A), involves creating additional

Vortex-S streams for each thread to avoid the need for synchronization altogether. In other words,

each thread is given its own set of buckets. To write keys into the buckets, threads use Algorithm 1

without modification. If we have m threads, m ·2b streams are required for the buckets. Since each

stream has enough virtual memory reserved to hold the entire input size n, this approach requires

n ·m · 2b bytes of virtual memory. In addition, if the size of each block is 1 MB, then each stream

could waste up to 1 MB of physical memory if the last physical block mapped in the stream is

empty. In the case where n = 64 GB, m = 8, and b = 8, this approach will require approximately

130 TB of virtual memory (which exceeds the 128 TB limit set by Windows) and waste up to 2 GB

of physical memory. In a data center, a workload such as this is plausible, so in the next section, we

explore alternative approaches that prevent the virtual memory usage and physical memory waste

10

from scaling so poorly with the number of threads.

2.2 Memory-Efficient Streams

One way to decrease virtual memory usage is to decrease the virtual memory reserved by

each Vortex stream. We limit each Vortex stream to a virtual memory reservation size less than or

equal to two blocks. This calls for a modified Vortex stream that can operate under this assumption.

We develop a new stream, Vortex-R, that is designed to operate with either one or two

blocks of virtual memory reserved. Creating a stream for the case of only one reserved block is

quite trivial. When we start writing data into the stream, a page fault triggers the fault handler.

The fault handler simply maps a new block. Once the end of this block is reached by the write

pointer, we need some mechanism to reset the write pointer to the beginning of the block and tell

the stream to unmap the currently mapped block, store a reference to it in a queue local to the

stream (so we can remap and read from it later), and map a new empty block. Note that when a

block is unmapped, it is not returned to the global queue managed by the StreamPool to prevent

other streams from accessing it.

Now, let’s consider the case of two contiguous blocks of reserved memory for each stream:

block A and block B. When the stream is initialized, keys will be written into the buffer at the

beginning of block A. At some point, the write pointer will move into block B, triggering a

page fault. In the fault handler, block B will be mapped, and block A will be unmapped, with a

reference to the unmapped block stored in a queue for later. Once the write pointer moves beyond

block B, we require a mechanism to reset it to the beginning of block A. Here, the fault handler

will proceed as before, this time unmapping block B, and mapping block A. Thus, by using two

blocks per stream, no external communication is required to notify the stream to map a new block.

This process continues until all keys are processed and references to all physical blocks have been

collected in the stream’s queue. To read from the stream, these blocks can simply be remapped

later in the same order that they were unmapped.

Regardless of whether we rely on one or two reserved blocks per stream, when the write

pointer goes beyond the stream boundary, some mechanism is required to reset it to the beginning

11

of the virtual buffer. Below, we describe several different ways that the write pointer can be reset

to the beginning of a stream’s buffer, using either one or two blocks per stream.

2.2.1 Conditional Statement

Perhaps the most obvious approach is to reset the write pointer when it is advanced past

the beginning of the stream buffer by exactly one block using a conditional statement. Although

it would be preferred to handle this within the Vortex stream fault handler somehow, this addi-

tional functionality can be implemented with only a small modification to Algorithm 1. While

this method is very simple to implement, as shown in Algorithm 2, the branching statement adds

non-negligible overhead, resulting in a performance reduction.

Algorithm 2 Write Pointer Wraparound with Conditional Statement.
1: CACHE_LINE = (1 ≪ CACHE_LINE_BITS);
2: uint32_t localBuckets[(1 ≪ b) ∗ CACHE_LINE];
3: short localSize[1 ≪ b];
4: uint32_t** ptr = buckets; ▷ Vortex Stream pointers
5: function OFFLOAD(uint32_t buck, uint32_t* p)
6: __m256i* src = p, *end = src + CACHE_LINE;
7: __m256i* dest = ptr[buck];
8: while src < end do ▷ Copy local bucket to Vortex stream using SIMD
9: __m256i x = _mm256_loadu_si256(src++);

10: _mm256_stream_si256(dest++, x);
11: __m256i y = _mm256_loadu_si256(src++);
12: _mm256_stream_si256(dest++, y);
13: end while
14: if dest - buckets[buck] == blockSize then
15: dest = buckets[buck]; ▷ Reset the write pointer
16: streams[buck]->resetBlock(); ▷ Map a new block
17: end if
18: localSize[buck] = 0;
19: ptr[buck] = dest;
20: end function

2.2.2 Structured Exception Handling

One way to gracefully handle hardware faults in Windows is with Structured Exception

Handling, an extension to C++ provided by Microsoft [8]. Using SEH, a custom handler function

12

can be executed whenever an exception occurs. We can use SEH to reset the write pointer whenever

it moves past the end of the Vortex virtual buffer and throws an exception, as shown in Algorithm

3. Again, the approach is relatively easy to implement, although SEH incurs some performance

penalty as well. We still operate under the assumption of only one reserved block of virtual memory

per stream.

Algorithm 3 Write Pointer Wraparound with SEH.
1: CACHE_LINE = (1 ≪ CACHE_LINE_BITS);
2: uint32_t localBuckets[(1 ≪ b) ∗ CACHE_LINE];
3: short localSize[1 ≪ b];
4: uint32_t** ptr = buckets; ▷ Vortex Stream pointers
5: function OFFLOAD(uint32_t buck, uint32_t* p)
6: __m256i* src = p, *end = src + CACHE_LINE;
7: __m256i* dest = ptr[buck];
8: while src < end do ▷ Copy local bucket to Vortex stream using SIMD
9: __try ▷ SEH try-except block

10: __m256i x = _mm256_loadu_si256(src++);
11: _mm256_stream_si256(dest++, x);
12: __m256i y = _mm256_loadu_si256(src++);
13: _mm256_stream_si256(dest++, y);
14: __except(Filter(src, ptr, buck)) ▷ Call handler on exception
15: end while
16: localSize[buck] = 0;
17: ptr[buck] = dest;
18: end function
19:
20: function FILTER(uint32_t src, uint32_t** ptr, uint32_t buck)
21: streams[buck]->resetBlock();
22: ptr[buck] = buckets[buck];
23: src-=1;
24: end function

2.2.3 Modular Arithmetic

Finally, we examine the case of reserving two blocks of virtual memory per stream. Recall

that when using two blocks, every time block A is mapped, block B is unmapped and vice-versa.

Thus, every time the write pointer moves into a new block, a page fault will be generated that is

transparently handled by the Vortex fault handler. To wraparound the write pointer when the end

13

of the virtual buffer is reached, we use the expression

ptr = buckStart + (ptr - buckStart) % (2 * blockSize).

However, since we can select block size to be a power of two, the expensive modulus operation can

be replaced with a bit-wise AND, as shown in Algorithm 4. This remains simple and makes use

of only addition and bit-wise operations to reset the write pointer, leading to minimal performance

reduction. As such, we proceed using this approach in future sections describing key partitioning

with Vortex-R streams.

Algorithm 4 Write Pointer Wraparound with Modular Arithmetic.
1: CACHE_LINE = (1 ≪ CACHE_LINE_BITS);
2: uint32_t localBuckets[(1 ≪ b) ∗ CACHE_LINE];
3: short localSize[1 ≪ b];
4: uint32_t** ptr = buckets; ▷ Vortex Stream pointers
5: uint32_t buckMod = (-1) ≫ (31 - blockSizePower);
6: function OFFLOAD(uint32_t buck, uint32_t* p)
7: __m256i* src = p, *end = src + CACHE_LINE;
8: __m256i* dest = ptr[buck];
9: while src < end do ▷ Copy local bucket to Vortex stream using SIMD

10: __m256i x = _mm256_loadu_si256(src++);
11: _mm256_stream_si256(dest++, x);
12: __m256i y = _mm256_loadu_si256(src++);
13: _mm256_stream_si256(dest++, y);
14: end while
15: dest = buckets[buck] + ((dest - buckets[buck]) & buckMod);
16: localSize[buck] = 0;
17: ptr[buck] = dest;
18: end function

2.3 Method 1B

To create Method 1B (M-1B), we modify the multi-threaded key partitioning approach de-

scribed by M-1A by using Vortex-R streams for the buckets instead of Vortex-S streams; however,

each thread still receives its own copy of the buckets to avoid the need for additional synchro-

nization between threads. As such, partitioning remains fast while drastically reducing the virtual

14

memory requirement from n ·m · 2b to 2 ·m · 2b. Physical memory waste remains the same as M-

1A since the same number of streams are still required. In addition, keys are written into buckets

by each thread using Algorithm 4, which provides the necessary logic required to wrap the write

pointer back to the beginning of the stream.

2.4 Method 2A

Next, we will attempt to reduce physical memory usage by allowing multiple threads to

share the same buckets in Method 2A (M-2A). As such, partitioning will require only 2b buckets,

regardless of the number of threads being executed, which reduces physical memory waste to 2b

MB if each block is 1 MB in size. We will continue using Vortex-R streams to maintain low virtual

memory usage as well. To accomplish this, synchronization is required in two areas: the Vortex-R

fault handler and Offload().

2.4.1 Multi-Threading Vortex-R Fault Handler

First, Vortex-R streams need to support multiple threads in the fault handler at the same

time. With the current scheme, there are two problems. If multiple threads fault on the same block

in a Vortex stream, they will both enter the fault handler and attempt to map a new physical block

to the same virtual address. In addition, because Vortex-R streams unmap the previous block every

time a fault occurs, it is possible for one thread to unmap a physical block of memory that another

thread is still writing keys into.

To combat this, any thread that faults while writing keys into a bucket will pause in the

Vortex-R fault handler until all threads have faulted in a stream. In practice, this incurs a non-

negligible performance penalty since a thread may have to wait a long time for the rest of the

threads to fault. To implement this approach, a counter shared by all Vortex streams via the global

StreamPool object is used to determine when all threads have reached a fault. Once all threads

have faulted, waiting threads are notified to continue by signaling an Event in the StreamPool. In

addition, if multiple threads fault on the same stream, a local barrier ensures that only one thread

in each stream maps a new block. The resulting synchronization is shown in Algorithm 5.

15

Algorithm 5 Multi-Threaded Vortex-R Fault Handler.
1: StreamPool sp;
2: CRITICAL_SECTION cs[2]; ▷ Provide mutual exclusion to a block of code
3: function WRITEFAULT(uint64_t address)
4: uint64_t newBlock = 1 - currentlyMapped;
5: uint64_t faultCount = InterlockedIncrement(sp.faultedThreads);
6: uint32_t index = ((faultCount - 1) / numThreads) & 1; ▷ Compute which event to use
7: if faultCount % numThreads == 0 then
8: ResetEvent(sp.events[1 - index]); ▷ Make threads wait on next fault
9: SetEvent(sp.events[index]); ▷ Signal waiting threads to continue

10: end if
11: EnterCriticalSection(cs[index]);
12: if newBlock == 1 - currentlyMapped then▷ Only allow first thread in stream to map block
13: LeaveCriticalSection(cs[index]);
14: return;
15: end if
16: WaitForSingleObject(sp.events[index], INFINITE);
17: MapBlock(newBlock);
18: UnmapBlock(currentlyMapped);
19: currentlyMapped = 1 - currentlyMapped;
20: LeaveCriticalSection(cs[index]);
21: end function

2.4.2 Multi-Threading Write Combine

Next, Offload() must ensure that two threads do not attempt to write to the same lo-

cation in any of the buckets. This is easily accomplished by using InterlockedAdd() to

atomically increment the write pointer any time keys are dumped into a Vortex stream, shown in

Algorithm 6. Interlocked functions achieve better performance than mutual exclusion objects, so

we opt to use them instead whenever possible, especially in functions that are called frequently,

such as Offload(). In addition, we now perform modulus on dest before the copy loop be-

cause modulus no longer resets ptr[buck] to the beginning of the Vortex stream. This is done

to avoid race conditions or the need for additional interlocked functions to reset ptr[buck].

16

Algorithm 6 Atomic Increment of Write Pointer with Vortex-R.
1: CACHE_LINE = (1 ≪ CACHE_LINE_BITS);
2: uint32_t localBuckets[(1 ≪ b) ∗ CACHE_LINE];
3: short localSize[1 ≪ b];
4: uint32_t** ptr = buckets; ▷ Vortex Stream pointers
5: uint32_t buckMod = (-1) ≫ (31 - blockSizePower);
6: function OFFLOAD(uint32_t buck, uint32_t* p)
7: __m256i* src = p, *end = src + CACHE_LINE;
8: __m256i* dest = InterlockedAdd(ptr[buck], CACHE_LINE); ▷ Increment write pointer
9: dest = buckets[buck] + ((dest - buckets[buck]) & buckMod);

10: while src < end do ▷ Copy local bucket to Vortex stream using SIMD
11: __m256i x = _mm256_loadu_si256(src++);
12: _mm256_stream_si256(dest++, x);
13: __m256i y = _mm256_loadu_si256(src++);
14: _mm256_stream_si256(dest++, y);
15: end while
16: localSize[buck] = 0;
17: end function

2.5 Method 2B

Finally, we introduce Method 2B (M-2B) with the goal of eliminating the long wait times

experienced by threads in M-2A while maintaining shared buckets between threads. To do so,

we revert to using Vortex-S streams to represent buckets. Offload() remains almost unchanged

from Algorithm 6, although write pointer wraparound is removed. Since previously mapped blocks

are not unmapped when writing into Vortex-S streams, threads can immediately map new blocks

when they enter the fault handler. This leads to simpler, faster synchronization in the fault handler,

shown in Algorithm 7.

17

Algorithm 7 Multi-Threaded Vortex-S Fault Handler.
1: StreamPool sp;
2: CRITICAL_SECTION cs; ▷ Provide mutual exclusion to a block of code
3: function WRITEFAULT(uint64_t address)
4: uint64_t index = (address - buf) ≫ sp.blockSizePower; ▷ Block index to map
5: EnterCriticalSection(cs);
6: if furthestMappedIndex ≥ index then ▷ Support multiple threads in handler
7: LeaveCriticalSection(cs);
8: return;
9: end if

10: furthestMappedIndex = index;
11: MapBlock(index);
12: LeaveCriticalSection(cs); ▷ Allow all threads to proceed after block is mapped
13: end function

M-2B maintains the same physical memory waste as M-2A (up to 2b MB with 1 MB blocks)

and the same virtual memory usage as single-threaded M-1A (up to n · 2b) since virtual memory

usage does not increase as the number of threads increases. In addition, the algorithm is faster than

M-2A since threads do not have to wait in the fault handler and can immediately map new physical

blocks.

18

3. EXPERIMENTS

3.1 Setup

Table 3.1: Hardware Configurations

c1 c2
CPU Intel i9-9900k Intel i7-7820x
Platform Coffee Lake Skylake-X
Cores 8 8
Turbo clock 5 GHz 4.5 GHz
RAM 64 GB 32 GB
RAM Type DDR4-3200 MHz DDR4-3200 MHz
RAM Channels Dual Channel Quad Channel
OS Windows Server 2016 Windows Server 2016

Now, we will analyze the performance of the various methods for partitioning keys. Code

was compiled using the Microsoft Visual C++ (MSVC) compiler on Windows, although the

WriteCombine() routine was ported to assembly due to inconsistent performance from the

compiled C++ code. Benchmarks were run on two hardware configurations, c1 and c2, which are

summarized in Table 3.1. It is important to note that on c1, because the RAM is only dual channel,

partitioning becomes bottle-necked by memory bandwidth before all CPU cores are saturated. On

c2, however, quad channel memory allows for partitioning speeds to scale until all CPU cores are

fully utilized. In all benchmarks, physical memory was mapped in B = 1 MB blocks, and n = 8

GB of keys were partitioned by their least significant b = 8 bits. Results are discussed in the

context of these parameters.

In addition, we note that different methods reach peak performance for different values of

CACHE_LINE inside of WriteCombine(), which alters the maximum temporary bucket size

before keys are offloaded to a Vortex stream. Thus, we first investigate the effect changing the

temporary bucket size has on performance as the number of threads is increased.

19

3.2 Temporary Bucket Size

Table 3.2: M-1A Speed Partitioning 8GB on c2 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 1018 1011 943 894
2 1981 1991 1868 1608
3 2919 2936 2764 2603
4 3789 3827 3620 3402
5 4577 4617 4380 4175
6 5339 5297 5117 4856
7 6021 6097 5766 5529
8 6549 6584 6316 5950

We begin by discussing the effect that the value of CACHE_LINE has inside of

WriteCombine(), which controls how many keys accumulate in temporary buckets before they

are copied into Vortex streams. Table 3.2 shows how performance scales for M-1A as the value of

CACHE_LINE is adjusted. The benchmark was run on c2 due to its higher memory bandwidth.

The performance difference between 26 and 27 keys is negligible, but past 27 keys, performance

drops by approximately 5% each time temporary bucket size is doubled. This drop in performance

occurs because, for larger temporary bucket sizes, a smaller fraction of the keys are able to fit into

the CPU cache. As a result, more cache misses occur when keys are offloaded to Vortex streams. In

addition, because no thread synchronization occurs when keys are offloaded in M-1A, there is very

little overhead associated with each offload. This makes smaller, more frequent offloads achieve

higher performance.

Now, we will examine the effect of temporary bucket size on M-2B, which does require

threads to synchronize when keys are offloaded from temporary buckets to Vortex streams. As

shown in Table 3.3, in this case, better performance is achieved with temporary bucket sizes of

28 or 29 keys, depending on the number of threads. Because M-2B synchronizes threads when

keys are offloaded, the cost of more frequent key offloading is more expensive than M-1A, which

20

outweighs the cache benefits of keeping smaller temporary buckets. For the sake of conciseness,

in the following experiments, the highest performing value of CACHE_LINE will be used to

benchmark each method, though data for CACHE_LINE values ranging from 26 to 29 is available

for all other methods on c1 and c2 in Appendix A.

Table 3.3: M-2B Speed Partitioning 8GB on c2 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 650 832 858 841
2 1177 1548 1645 1639
3 1656 2196 2345 2379
4 2109 2715 2995 3147
5 2467 3230 3539 3637
6 2813 3673 4033 4177
7 3152 4132 4551 4680
8 3332 4534 4910 5037

Finally, on M2-B, recall that the optimal temporary bucket size changes depending on the

number of threads that are used. For instance, with a single thread, M-2B perform best with

a temporary bucket size of 28 keys. Once the number of threads is increased to 8, though, the

optimal temporary bucket size increases to 29 keys. This happens because, with a small number

of threads, there is relatively little competition between threads to write into the shared buckets.

As a result, smaller temporary bucket sizes that allow more keys to fit into the CPU cache are

able to achieve faster speeds. When more threads are added, however, there is more competition

between threads to write into buckets, which increases the cost of synchronization. By increasing

the temporary bucket size, this competition is decreased, leading to faster speeds even though a

smaller proportion of keys fits into the CPU cache.

3.3 Partitioning 32-bit Integers

We now compare the performance of the proposed key partitioning methods on c1 and c2.

Results for partitioning 32-bit integer keys on c1 are shown in Table 3.4. First, we note that none

21

Table 3.4: Speed Partitioning 8 GB on c1 (M keys/s)

Threads M-1A M-1B M-2A M-2B
1 925 979 918 891
2 1819 1922 1753 1738
3 2718 2837 2316 2578
4 3540 3686 2887 3341
5 4253 4504 3438 3965
6 4541 4607 3822 4350
7 4507 4628 4098 4339
8 4463 4646 4130 4320

Table 3.5: Speed Partitioning 8 GB on c2 (M keys/s)

Threads M-1A M-1B M-2A M-2B
1 1011 1054 912 841
2 1991 2061 1574 1639
3 2936 3045 2381 2379
4 3827 3940 3031 3147
5 4617 4349 3404 3637
6 5297 5320 4093 4177
7 6097 6166 4435 4680
8 6584 6721 4799 5037

of the methods are able to push much beyond 4.5 billion keys per second in speed, as performance

begins to stop scaling past 6 threads. This is indication that the memory bandwidth of c1 is reaching

saturation. As shown in Table 3.5, on c2, which has much higher bandwidth quad channel memory,

performance continues to increase as more threads are added, with speeds reaching up to 6.7 billion

keys per second. This is evidence that, unlike c1, the results on c2 are purely CPU bound and not

limited by a lack of memory bandwidth.

On both hardware configurations, M-1A and M-1B achieve noticeably faster results than ei-

ther M-2A or M-2B. This is because M2-A and M2-B both share Vortex streams between threads,

which requires additional synchronization overhead between threads. On the other hand, M-1A

and M-1B both create separate Vortex streams for each thread, so no such synchronization is re-

quired. Between M-1A and M-1B, we can clearly see that M-1B achieves better performance,

22

and similarly, between M-2A and M-2B, M-2B is faster. Thus, we will perform further compar-

isons between M1-B and M2-B to describe the benefits and drawbacks of sharing streams between

threads.

When utilizing all 8 threads on c1, M-1B is only ∼ 7% faster than M2-B, while the max-

imum speed delta of ∼ 12% occurs on 5 threads. On c2, the increased memory bandwidth leads

to much faster speeds overall; in this case, M1-B outperforms M2-B by a much larger margin. In

particular, on 8 threads, M1-B is ∼ 25% faster than M2-B. Because performance is bottle-necked

by the CPU rather than memory bandwidth, the extra cost of synchronization between threads

becomes much more apparent.

Now, we consider the physical memory usage of the four methods. Recall that each Vortex

stream has the potential to waste up to one full physical block of memory in the worst case and

will waste one half of a physical block in the average case. Thus, for M-1A and M-1B, since 28

Vortex streams are created per thread, each thread wastes 128 MB of physical memory on average;

however, since Vortex streams are shared between threads in M-2A and M-2B, 128 MB of physical

memory is wasted total, regardless of the number of threads.

Finally, we discuss virtual memory usage. Since M1-B and M2-A use Vortex-R streams,

they reserve only 2 blocks of virtual memory per stream. In M1-B, this leads to 2 ·28 = 512 MB of

virtual memory consumption per thread, while M2-A consumes 512 MB of virtual memory total.

M1-A and M2-B, on the other hand, reserve the entire input size n for each stream. Thus, when

n = 8 GB, as in our benchmarks, M1-A consumes 8·28 GB
1024

= 2 TB of virtual memory for each

thread, and M2-B consumes 2 TB of virtual memory in total. In our benchmarks, on 8 threads, we

calculate M-1A would exceed the 128 TB Windows virtual memory limit partitioning 64 GB of

keys, while M2-B surpasses this limit partitioning 512 GB of keys. In contrast, M-2B and M-1A

will never exceed the limit since their virtual memory usage does not depend on input size. In

practice, virtual memory usage need only be considered when one of the methods requires more

virtual memory than is allowed by Windows, as it has negligible impact on resource consumption.

For example, only 20 MB of physical memory is needed to reserve 10 TB of virtual addresses [3].

23

4. CONCLUSION

4.1 Discussion

Using the Vortex programming model, we have developed several flavors of a multi-threaded

key partitioning algorithm, each of which are optimized for either speed or memory consumption.

Because the memory management logic is encapsulated in Vortex streams, the resulting multi-

threaded partitioning algorithm remains both simple and fast. Futhermore, the algorithms dis-

cussed in this paper can be directly applied to develop a multi-threaded radix sort. Like the single-

threaded Vortex Sort proposed in [3], a multi-threaded radix sort using the partitioning algorithms

discussed here has the potential to outperform competing implementations such as RADULS2 in

multi-threaded workloads.

4.2 Future Work

Of the various methods discussed in this paper, M1-B provides the fastest speeds, while

M2-A and M2-B offer the highest memory efficiency. Further development of these algorithms

may lead to discovery of a new method, M3, which achieves partitioning speeds comparable to

M1-B while retaining the memory efficiency found in M2-A and M2-B. Such an algorithm would

be an optimal choice in all use cases, regardless of the available hardware resources.

In addition, to achieve in-place key partitioning, the Vortex-S read fault handler should be

altered to support the use of multiple threads reading from the stream at the same time. This would

allow the memory used by the input buffer to be unmapped as keys are processed, making the

partitioning in-place with no additional modification to the partitioning algorithm.

Finally, the algorithms described in this paper can be further developed into a multi-threaded

version of Vortex Sort, and performance can be compared to the fastest in-place sorts currently

available, such as RADULS2 and the single-threaded Vortex Sort.

24

REFERENCES

[1] M. Kokot, S. Deorowicz, and A. Debudaj-Grabysz, “Sorting data on ultra-large scale with
raduls,” pp. 235–245, 04 2017.

[2] M. Kokot, S. Deorowicz, and M. Dlugosz, “Even faster sorting of (not only) integers,” in
ICMMI, 2017.

[3] C. Hanel, A. Arman, D. Xiao, J. Keech, and D. Loguinov, Vortex: Extreme-Performance Mem-
ory Abstractions for Data-Intensive Streaming Applications, p. 623–638. New York, NY, USA:
Association for Computing Machinery, 2020.

[4] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed.
Addison-Wesley, 1998.

[5] A. Silberschatz, P. B. Galvin, and G. Greg, Operating System Concepts, 9 ed. Wiley, 2013.

[6] A. Viviano, “Virtual address spaces.” [Online]. Available: https://docs.microsoft.com/en-us
/windows/win32/memory/page-state.

[7] “Page state.” [Online]. Available: https://docs.microsoft.com/en-us/windows-hardware/drivers
/gettingstarted/virtual-address-spaces.

[8] “Structured exception handling (c/c++).” [Online]. Available: https://docs.microsoft.com/en-
us/cpp/cpp/structured-exception-handling-c-cpp?view=msvc-170.

25

APPENDIX A: PARTITIONING SPEED

Table A.1: M-1A Speed Partitioning 8GB on c1 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 1089 1076 977 925
2 2150 2123 1927 1819
3 3172 3112 2872 2718
4 4086 4032 3733 3540
5 4442 4525 4421 4253
6 4405 4474 4529 4541
7 4362 4427 4508 4507
8 4241 4365 4398 4463

Table A.2: M-1B Speed Partitioning 8GB on c1 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 1060 1073 979 914
2 2078 2071 1922 1824
3 2975 3071 2837 2667
4 3925 3903 3686 3547
5 4493 4389 4504 4073
6 4485 4624 4607 4534
7 4491 4612 4628 4579
8 4459 4569 4646 4469

26

Table A.3: M-1B Speed Partitioning 8GB on c2 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 1043 1054 983 936
2 1992 2061 1927 1831
3 2939 3045 2832 2672
4 3860 3940 3712 3481
5 4720 4349 4295 4284
6 5459 5320 5276 4742
7 6027 6166 5933 5351
8 6532 6721 6632 6238

Table A.4: M-2A Speed Partitioning 8GB on c1 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 874 984 945 918
2 1447 1748 1752 1753
3 1950 2411 2249 2316
4 2107 2890 3032 2887
5 2366 3385 3421 3438
6 2296 3577 3707 3822
7 2502 3464 3878 4098
8 2313 3386 3894 4130

Table A.5: M-2A Speed Partitioning 8GB on c2 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 671 875 918 912
2 1196 1598 1707 1574
3 1657 2152 2452 2381
4 1755 2714 3066 3031
5 1956 2970 3610 3404
6 2443 3389 4007 4093
7 2340 3576 4018 4435
8 2485 3801 4303 4799

27

Table A.6: M-2B Speed Partitioning 8GB on c1 (M keys/s)

Threads Temporary Bucket Size
26 keys 27 keys 28 keys 29 keys

1 859 955 919 891
2 1481 1708 1715 1738
3 2083 2441 2510 2578
4 2597 3086 3217 3341
5 3028 3603 3845 3965
6 3485 3978 4302 4350
7 3780 4233 4247 4339
8 4002 4176 4211 4320

28

	ABSTRACT
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	Radix Sort
	Virtual Memory
	Paging
	Vortex Sort

	PARTITIONING
	Method 1A
	Memory-Efficient Streams
	Method 1B
	Method 2A
	Method 2B

	EXPERIMENTS
	Setup
	Temporary Bucket Size
	Partitioning 32-bit Integers

	CONCLUSION
	Discussion
	Future Work

	REFERENCES
	APPENDIX A: PARTITIONING SPEED

