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ABSTRACT

Simulating a Shared Queue on Top of Eventually Synchronous Message-Passing Distributed
Systems

Emma Ziesmer
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Jennifer L. Welch
Department of Computer Science and Engineering

Texas A&M University

Distributed computer systems are comprised of multiple processing nodes that communi-

cate and coordinate actions in order to achieve a common goal. They are often used to handle tasks

that are too large to be handled by a single processor or are inherently distributed. Distributed

systems can be either a message-passing system, where nodes pass messages between each other

to coordinate actions, or a shared-memory system, where nodes have access to a shared data ob-

ject between all of the nodes. These shared objects provide a higher level of abstraction to the

programmer than a message-passing system but may not be available to use. Instead, algorithms

have been developed in the past that allow the nodes to keep a local copy of the shared data object

and send messages between each other to coordinate modifications to the object. This way, con-

current operations on the implemented object are guaranteed to be linearizable, or give the illusion

that the operations are executed sequentially and in a legal order. This thesis will examine one

of these algorithms which was originally developed for a synchronous system, where there is an

upper bound on message delays. We will instead examine the algorithm’s behavior in a system

that starts with arbitrarily long message delays, including messages that are lost and never deliv-

ered, but eventually stabilizes and has bounded message delays at a time unknown to the nodes.
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We will be measuring the length of time needed for the execution to become linearizable after the

system stabilizes, called the grace period. We will focus on the case where the shared object is a

first-in-first-out Queue. We have simulated this algorithm using a discrete event simulator so that

the timing elements can be precisely controlled.
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NOMENCLATURE

AOP Pure acessor operation

MOP Pure mutator operation

XOP Mixed operation

FIFO First-in-first-out
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1. INTRODUCTION

A distributed system is a computer system comprised of multiple processing nodes on a

network that communicate and coordinate actions in order to achieve a common goal. One of

the main purposes of using distributed systems is to handle projects that are too large for a single

machine or are inherently distributed, such as with cloud computing. They can also be more

fault tolerant than single machines because having multiple nodes avoids having a single point of

failure. If one of these nodes experiences a crash failure, there is potential for the rest of the system

to function as normal.

A shared-memory model of a distributed system in particular is a model in which all of the

processes in the system share a single data object between them, as the name implies. This object

can be accessed by multiple processes concurrently. Having a shared data object provides a higher

level of abstraction than a message-passing model, where the nodes send messages to each other

to coordinate their actions. This makes it easier for programmers to use data structures they are

already familiar with.

However, shared memory is not always available to be used. Instead, shared objects can

be implemented in a message-passing distributed system. In algorithms that achieve this, each

process keeps a local copy of the shared object and messages are sent between the processes to

keep the copies up to date [1, 2, 3, 4]. Because messages can take a significant amount of time to

be delivered and each process needs to update their copy, operations on the simulated shared object

are no longer instantaneous. Operations invoked by different processes can overlap in time, which

necessitates a method of deciding the behavior of the implemented object when overlaps occur.

One popular option is to utilize linearizable shared objects. Linearizability is a consistency

condition placed on implemented shared objects, in which an execution of concurrent operations on

the object can be given a legal ordering as if they were sequential and instantaneous [5]. This gives

an illusion to programmers that operations are in fact sequential and instantaneous, and overlapping
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operations do not have to be considered when working with a shared object. The implementation

hides the details of how overlapping operations are handled.

Several algorithms have been developed previously that simulate shared data objects in a

message-passing system. One early algorithm focuses on implementing a shared register in an

asynchronous message-passing system with crash failures [1]. In their model, they implement

single-writer multi-reader registers. Nodes are subject to crash failures and links between nodes

can fail in that messages can no longer be passed between the two nodes at each end of the link.

A node that wants to invoke an operation will send messages to every other node containing the

type of operation, the argument if any, and its timestamp. It will wait to receive acknowledgement

responses from a majority of the other nodes before it executes its operation. Each operation on

the register requires O(n2) messages, where n is the number of nodes in the system.

However, implementing any data structure more powerful than a read/write register has

proven to be difficult, if not impossible. Each type of data structure, such as Stacks and Queues,

can be given a consensus number, or the maximum number of nodes in a system that can solve

the consensus problem using the given object. An object with consensus number n cannot be

implemented with an object with consensus number lower than n while still being fault-tolerant

[6]. It has been shown that solving the consensus problem is impossible for data structures with

a consensus number greater than 1 in an asynchronous message passing system, including Stacks

and Queues. This does not include read/write registers, as they have a consensus number of 1.

On the other hand, we can consider the case of a synchronous system, such as with the

algorithm given in [2]. Their algorithm implements a generic data structure in a synchronous

message-passing system where nodes cannot crash and there is an upper bound on message delays.

When a node wants to invoke an operation, it will send a message containing the type of operation,

the argument if any, and its timestamp to all of the other nodes. The nodes will then set a timer for

that operation and execute it on its local copies once the timer goes off. Although this algorithm is

theoretically simple to implement, it is difficult to apply to any real world system. The system used

by the algorithm is assumed to have good behavior while real world systems tend to experience
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faulty behavior to some degree.

A good middle ground between a fully asynchronous system and a fully synchronous sys-

tem is one that starts poorly behaved but becomes well behaved after a certain point in time [4].

The system used by the algorithm in [4] starts as an asynchronous system with lost messages, un-

bounded message delays, and nodes that experience crash failures. After a point in time unknown

to the nodes, called the system stabilization time, the system becomes synchronous with bounded

message delays and no crash failures. In the algorithm, one node is elected as the leader, which

can be replaced by another node if the current leader crashes. Any node that wants to invoke an

operation on the shared object will send a message to the leader containing the type of operation,

the argument if any, and its timestamp. The leader will take batches of operations and order them,

then send the batches back to the other nodes. Every node will then execute the operations in the

batch in order. Though this algorithm can be complex to implement, it is more readily applicable

to real world systems than the algorithm in [2].

In this thesis, we would like to see how well the algorithm described in [2] is able to hold

up in a system similar to that used in [4], where messages can take an arbitrarily long time to

be sent or event be lost. We will not be considering nodes with crash failures at this time. The

algorithm will be tested experimentally using a discrete event simulator so that timing elements

and parameters can be precisely controlled. We will be focusing on a Queue with first-in-first-out

(FIFO) behavior as the shared data object being implemented. A FIFO Queue can be thought of

as a list of data, where data can only be removed or read from the front of the list and added to the

back of the list.

Executions produced by the simulation will be checked for linearizability using a construc-

tion given in [2], which provides an ordering for the concurrent operations in the execution that is

guaranteed to be linearizable in the synchronous system. For our purposes, this method of check-

ing linearizability may be too conservative as it only provides a single possible ordering. If the

check fails, it does not mean that the execution is definitely not linearizable, only that the specific

ordering produced by the construction is not linearizable.
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2. DEFINITIONS

2.1 Shared Data Object

The generic algorithm in [2] classifies operations on the shared object as pure accessors

(AOP), pure mutators (MOP), and mixed operations (XOP). A pure accessor returns information

about the state of the object without changing it. A pure mutator changes the state of the object in

a way that a later sequence of operations can tell that the mutator occurred. Pure mutators do not

return information to the user. A mixed operation is a combination of the two previous types of

operations, where it both modifies the object and returns information about the state of the object.

The shared data object we will be focusing on in this thesis is a Queue with first-in-first-out

(FIFO) behavior. A Queue can be thought of as a list of items, as implied by the name. When a

Queue has FIFO behavior, the first item to be added to the queue is also the first item to be removed

from the queue. In other words, items must be removed in the same order as they were added.

Basic operations on a FIFO Queue include:

• enqueue(),

• dequeue(), and

• peek().

The enqueue() operation appends an item to the end of the queue. The dequeue()

operation removes and returns the item at the front of the queue. When a user attempts to invoke

dequeue() on an empty queue, the operation returns a special value signifying that the queue

is empty. The peek() operation returns but does not remove the item at the front of the queue.

Again, the operation returns a special value signifying that the queue is empty when a user attempts

to invoke peek() on an empty queue.

To translate the generic algorithm to an algorithm for a FIFO Queue, enqueue() will

be implemented as a pure mutator, dequeue() will be implemented as a mixed operation, and

peek() will be implemented as a pure accessor.
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2.2 System Model

The distributed system consists of n processes that communicate by passing messages be-

tween each other. Each process has a local state and takes steps triggered by one of three things: the

invocation of an operation, the receipt of a message, or a timer going off. The local state includes

a local clock value and a set of timers that have been set for a clock time in the future. The local

clocks of each process are synchronized to within ϵ = (1−1/n)u of each other at all times. A step

of a process causes the node to transition from its current local state to a new local state, which

may cause messages to be sent, timers to be set or cancelled, or operation responses to occur.

An execution is a collection of sequences of steps, one for each node in the system. The

sequence for a node must start with the initial local state of the node where no timers can be set,

and timer steps that occur in the sequence must be consistent with the timers in the local state.

Each step in a sequence is associated with a real time, which is increasing, and local clock times

must be equal to some fixed offset from the real time.

In our modification of the model, there is initially no upper bound on message delays.

Messages can take an arbitrarily long time to be delivered or even be lost. There is a lower bound

of d − u on the delay. Each message sent is received by at most one node, and every message

received was previously sent by exactly one process. After a certain point in time unknown to the

nodes, the system will stabilize and all messages sent must eventually be received. The message

delay after this time is in the range [d−u, d]. Each message sent is received by exactly one process,

and every message received was previously sent by exactly one process.

2.3 Problem Definition

Given an execution of operations on a shared object, a linearization of that execution is an

ordering of the operations that can be thought of as having occurred sequentially [5]. This ordering

can be found by selecting linearization points for each operation and sorting the operations in

increasing order of the linearization points. A linearization point for an operation is a point in time

after the operation has started and before it has completed where the operation can be thought of

as occurring instantaneously at that time. The ordering of the operations in an execution must be
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legal in the sense that the ordering respects the rules of a sequential version of the shared object.

Linearizability as a consistency condition for the shared object provides the illusion that

operations are happening sequentially and instantaneously. This allows the programmer to reason

about the shared object in a familiar way as if it was a sequential object. In reality, the operations

on the shared object can overlap with each other in time—one process can invoke an operation

before an operation invoked by another process has completed.

We know that the generic algorithm in [2] is linearizable in a synchronous distributed sys-

tem in which there is an upper bound on message delays. In this thesis, we will be extending this

algorithm by specializing it for a FIFO Queue and studying its behavior in a system that initially

experiences message loss and arbitrarily long message delays but eventually becomes synchronous

with bounded message delays. We would like to see how long it takes for the shared Queue to be-

come linearizable once the system stabilizes, called the grace period.

Because we will be measuring the grace period using a simulation, the measured time will

not correspond to any real-world units. Instead of focusing on any exact values produced by the

simulation, we will be focusing on the general trend of the values as certain parameters change.
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3. ALGORITHM

This algorithm accomplishes its goal of implementing a shared object in a message-passing

distributed system primarily through the use of timers. As a high-level overview of the algorithm,

whenever an operation is invoked or a message is received by a process, the process will set a timer

for a certain amount of time depending on the operation invoked. Once the timer goes off, the

operation will execute on the process’s local copy of the queue and return a response if necessary.

Each process holds a local clock, a toExecute priority queue of operations sorted by

timestamp, and a local copy of the shared FIFO Queue.

The algorithm includes a parameter X in the range [0, d − ϵ], which controls the trade off

in the operation times of peek() and enqueue() operations. Small values of X result in slow

peek() times and fast enqueue() times, while large values of X result in the opposite. X does

not affect dequeue() times.

Operation invocations are represented as a tuple <OP, arg, ts>. OP represents the type

of operation (enqueue(), dequeue(), or peek()), arg represents the argument passed by the

user to the operation, if any, and ts represents the timestamp of the operation. The timestamp is

itself represented by a tuple <clock, i> where clock is the local clock value of the process at

the time of invocation, and i is a value that uniquely identifies the process.

When a process p invokes a peek() operation, it sets a timer for d−X time and adds the

operation to its local toExecute queue. Because peek() does not affect the state of the queue,

no messages are sent. The timer value ensures that p has received all messages for operations that

may occur before this peek(). When the timer goes off, p will generate and return an appropriate

response to the user. An example of a peek() operation is shown in Figure 3.1.

When p invokes an enqueue() operation, it sets a timer for X + ϵ time, after which p will

return an acknowledgement response to the user. Process p will also send messages to all other

nodes containing the operation tuple, as well as simulate sending a message to itself by setting a

12



Figure 3.1: Sample execution timeline for X = 0 of an instance of peek() invoked by process p
at time t. Process p receives a message containing a mutator operation OP’ with timestamp ts’ < t.
Because OP’ has a smaller timestamp than p’s peek(), p locally executes OP’ before the peek()
and cancels its timer. This figure is a modified version of Figure 11 in [2] specialized for a FIFO
Queue.

timer for d− u time, the minimum message delay.

Similarly, when p invokes a dequeue() operation, p will send messages containing the

operation tuple to all other nodes as well as simulate sending the message to itself. Unlike with

enqueue(), p will not return a response to the user until after the operation is executed on its local

copy of the queue.

When p receives a message or the timer for simulating a message send goes off, p will place

the operation in its toExecute queue and set a timer for u+ ϵ time. This final timer accounts for

the difference in message delay and clock skew at each process. Once this timer goes off, the

operation will be executed locally and a response will be generated and returned if the operation is

a dequeue() Examples of an enqueue() operation and a dequeue() operation are shown in in

Figures 3.2 and 3.3, respectively.

If a timer for an operation op not at the front of the toExecute queue goes off, all opera-

tions in front of op will be locally executed at that time in timestamp order and their timers will be

cancelled.

The pseudocode of the algorithm specialized for a FIFO Queue is shown in Figure 3.4.
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Figure 3.2: Sample execution timeline for X = 0 of an instance of enqueue() invoked by process
pi at time t. Process pi sends a message to process pj containing the operation. The gray area
represents variance in the message delay and trecv represents the time of receipt within the possible
range. This figure is a modified version of Figure 12 in [2] specialized for a FIFO Queue.

Figure 3.3: Sample execution timeline for X = 0 of an instance of dequeue() invoked by process
pi at time t. Process pi sends a message to process pj containing the operation. The gray area
represents variance in the message delay and trecv represents the time of receipt within the possible
range. This figure is a modified version of Figure 13 in [2] specialized for a FIFO Queue.
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Code for p_i:

local variables:
- clock, current time on p_i’s local clock
- toExecute, priority queue of operations waiting to be locally executed;

initially empty
- queue, FIFO queue, initially empty; supports peek, enqueue, dequeue

with the standard semantics

HandleEvent invokePeek(-): // pure accessor
set timer(d, <peek,-,<clock,i>,respond)

HandleEvent ExpireTimer(<peek,-,ts>,respond):
while ts >= timestamp of toExecute.min() do

<OP’,arg’,ts’> := toExecute.extract_min()
ret := executeLocally(OP’,arg’)
cancel_timer(<OP’,arg’,ts’>,execute)

endwhile
// last iteration of while loop locally executed the peek
generate return(ret) // response to invoker of the peek

HandleEvent invokeEnqueue(arg): // pure mutator
set_timer(epsilon,<enqueue,arg,<clock,i>>,respond)
set_timer(d-u,<enqueue,arg,<clock,i>,add)
send(<enqueue,arg,<clock,i>>) to all other processes

HandleEvent ExpireTimer(<enqueue,arg,ts>,respond):
generate ack // response to invoker of enqueue

HandleEvent invokeDequeue(-): // accessor/mutator
set_timer(d-u,<dequeue,arg,<clock,i>,add)
send(<dequeue,arg,<clock,i>>) to all other processes

HandleEvent ExpireTimer(<OP,arg,ts>,add) or Receive(<OP,arg,ts>):
// OP is either enqueue or dequeue
set_timer(u+epsilon,<OP,arg,ts>,execute)
toExecute.add(<OP,arg,ts>)

HandleEvent ExpireTimer(<OP,arg,ts>,execute): // OP is either enq or deq
while ts >= timestamp of toExecute.min() do

<OP’,arg’,ts’> := toExecute.extract_min()
ret := executeLocally(OP’,arg’)
cancel_timer(<OP’,arg’,ts’>,execute)
if (ts’ = <*,i> and OP’ = dequeue) then // this is a deq invoked by p_i
generate return(ret) // response to invoker of dequeue

endif
endwhile

function executeLocally(OP,arg):
if OP = peek then return queue.peek()
if OP = enqueue then return queue.enqueue(arg) // returns "ack"
if OP = dequeue then return queue.dequeue()

Figure 3.4: Specialization of generic algorithm from [2] for FIFO Queue with operations
enqueue(), dequeue(), and peek() and X = 0.
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4. SIMULATION

The simulation of the algorithm was implemented using Java. Rather than implementing

the algorithm using distributed processes or threads, we developed a single-threaded program to

simulate geographically separated nodes using a discrete event simulator. This allows us to pre-

cisely control all timing of aspects such as message delays and clock skews.

The program is split into the Node class, which holds a local copy of the shared object and

other relevant data for each node in the system, and the DistQueue wrapper class for the entire

system, which includes a run() method that acts as the discrete event simulator as well as other

helper methods. There is also the Op helper class, which holds information on the events being

simulated such as what event will occur, the timestamp, and the node that will handle the event.

4.1 The DistQueue Class

The bulk of the computation is done in the DistQueue class that acts as the model for our

system. Its run() method contains the discrete event simulator. The run() method begins with

a list of n Node objects, assigning each a unique integer to identify the node and a random clock

skew in the range [−(1/2)ϵ, (1/2)ϵ]. It will then begin the simulation of the algorithm with a set

of random operation invocations, one for each node in the system.

A discrete event simulator is used to model a system as a sequence of discrete events in

time. The simulator will keep track of the system clock value and an event list [7]. For each event

on the event list, the simulator updates the clock value, modifies the state of the system based

on the event, and adds new events to the event list if any are generated. The clock value of the

simulator is updated independent of real time, so one simulated time point can take more or less

real time than another simulated time point depending on how much change occurs to the system

at each time. A simulated time point can even be skipped entirely if there is no event that occurs at

that time.

In our implementation, the simulator keeps a priority queue events, a list of events that
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will occur, ordered by timestamp. Each event in the list is represented as an Op object. The

simulator will continuously remove events from the top of the event queue and execute actions

according to the data contained in the event object. New events are generated and placed on the

event queue as preexisting events are handled. For example, if the next event is a node sending

a message, an event for another node receiving the message will be generated and placed on the

event queue.

For our algorithm, events can be categorized as an operation being invoked, a message

being sent, a message being received or a timer expiring. The logic of how events are handled

is controlled by a switch statement based on what type of event occurs and which operation was

invoked on the shared queue for that event. For example, if the event is a timer expiring to execute

a peek(), the simulator will execute the operation on the node’s copy of the shared queue.

When a node needs to send a message, the message delay is randomly decided by the

simulator. Before the system stabilizes, the simulator will check if the message should be lost

based on a given probability. If the check fails and the message will eventually be received, the

possible message delay is in the range [d − u, 100]. A delay of 100 was decided to be sufficiently

large to simulate an arbitrarily long delay. The simulator chooses a delay by approximating a linear

probability distribution. It will generate two random values within the given range and choose the

minimum of the two values to be the delay. After the system has stabilized, the simulator will

choose a message delay with uniform probability in the range [d− u, d].

Finally, the invocation of operations is decided randomly by the simulator. Initially, the

simulator will populate its event queue with the invocation of a random operation at a random

time in the first ten time points for each node in the system with uniform probability for each

operation and time. When an operation is completed by any node, the simulator will randomly

select the next operation for the node to invoke between one and ten time units after the completion

of the first operation, unless the current clock value is past a predetermined end time.
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4.2 The Node Class

A Node object represents one of the geographically distributed nodes in the system. It holds

an integer that uniquely identifies itself, a copy of the shared queue as a LinkedList object, and

a toExecute priority queue that contains the operations to be executed on its copy of the queue

ordered by timestamp.

For each of the three operations, the Node class contains a method that executes that oper-

ation and a method that places the operation on the toExecute queue. These can be called by the

event simulator when handling a timer expiration or a receipt of a message.

There is also a method to cancel timers when an operation not at the front of the toExecute

queue is executed. The node will execute all operations in front of the operation with the expired

timer. It will return a list of these operations to the discrete event simulator, which will remove the

timer events associated with those operations from its event queue.

Each Node object also keeps track of data that isn’t necessary for the algorithm but is useful

for logging purposes, such as the last mutator (enqueue() or dequeue()) that was executed on

its local copy of the queue. The log produced by an execution is used to check the execution for

linearizability.

4.3 Check for Linearizability

To find the grace period of an execution, we will be adapting a construction described in [2].

First, all enqueue() and dequeue() operations are placed in increasing order by timestamps.

Each peek() operation executed by node p is inserted into the sequence directly after the last

mutator p executed on its local copy before the peek() was executed. If there is no such mutator,

the peek() is placed at the beginning of the sequence.

The check for linearizability starts after the system stabilization time, as the shared queue

before the system stabilization time is expected to be affected by the poor behavior of the system.

The checker finds the first enqueue() operation after the system stabilization time and discards all

operations before it. It then finds the first accessor (peek() or dequeue()) that returns the same

value enqueued by the first enqueue() operation and discards all other accessors before it. This
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attempts to "clean out" any values enqueued during the poorly-behaved prefix of the execution.

This ordering of operations produced by the construction is then executed by a sequential

FIFO Queue. If the value returned by a dequeue() or peek() operation on the sequential queue

does not match the value returned by the corresponding operation in the construction, the ordering

is considered to be not linearizable. In this case, the checker finds the second enqueue() oper-

ation after the system stabilization time and its first matching accessor and executes the ordering

in a sequential queue. If this also fails, the checker continues to find the next enqueue() and its

matching accessor until the linearizability check passes. The grace period of any execution is mea-

sured as the time between the system stabilization time and the timestamp of the first enqueue()

operation in the linearizable ordering.

The downside to this check is that only one ordering of the operations is considered. It is

possible that a linearizable ordering does exist for an execution that fails this check. Our method

for checking linearizability may perhaps be too conservative in this way. Results may show a

longer grace period for some executions than is necessary, when a different ordering may result in

a shorter grace period.
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5. EXPERIMENTAL RESULTS

5.1 Experimental Design

We changed and tested five parameters in our simulation:

• The proportion d/u in the range [2, 10],

• the number of nodes in the system (n), in the range [5, 100],

• the probability of lost messages in the range [0, 0.95], and

• the time until the system stabilizes, in the range [50, 500].

Specifically, the value of u was fixed at 2 and d was changed to fit the desired proportion.

Only one parameter was changed at a time. All other parameters, including X for all trials,

remained at a fixed value, which were the following:

• 2 for the proportion of d/u,

• 50 for the number of nodes in the system (n),

• 0.1 for the probability of lost messages,

• 250 time units until the system stabilizes, and

• 0 for the value of X .

For each value of any parameter, we ran 500 trials using a driver program.

5.2 Results

Here we will show the results of our experiments and provide an intuition for why these

results occurred. These explanations are only intuitions and more research is necessary to make

any conclusive statements about the observed behavior.

First, as the proportion of d/u increases, the length of the grace period increases as well,

as shown in Figure 5.1. This proportion only applies to messages sent after the system stabilizes,

so any affect it has on the grace period occurs immediately after the system stabilization time. As

message delays have the potential to be longer, more time is needed to "clean out" the values that

were enqueued during the poorly-behaved prefix of the execution from each node’s local queue.
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Figure 5.1: Average grace period for change in the proportion of d/u.

Interestingly, the length of the grace period decreases and flattens out as the number of

nodes increases, as shown in Figure 5.2. This is likely because as there are more nodes to invoke

operations, enqueue() operations occur more often. There are then earlier chances for the lin-

earizability checker to begin its check, as compared to sparser enqueue() operations in executions

with fewer nodes. It should be noted that small grace periods are possible with few nodes. For

example, our set of executions for 5 nodes had an average grace period of 10.336 but a standard

deviation of 11.496. The long grace period is likely primarily caused by there being few nodes to

call enqueue() operations, and the linearizability checker is not able to check orderings that start

earlier in the execution.

The grace period is generally consistent as the probability for lost messages increases,

but does trend downwards slightly, as shown in figure 5.3. Similar to the proportion of d/u,

the probability of lost messages is only applicable when the system is poorly behaved. Because

the grace period is measured as time after the system stabilizes, it makes sense that it is mostly

unaffected by the change in probability of lost messages.
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Figure 5.2: Average grace period for change in the number of nodes in system.

However, the downward trend is surprising. We would expect to see the length of the grace

period increase as more messages are lost and the system take more time to recover. Perhaps as

more messages are lost, there are fewer values that need to be cleaned out of any given node’s local

copy of the queue, and the grace period becomes smaller.

Finally, as the system takes longer to stabilize, the length of the grace period increases, as

shown in Figure 5.4. This is likely because there is more time for operations to be invoked while

the system experiences poor behavior, and more values need to be cleaned out of the local queues

once the system stabilizes.

22



Figure 5.3: Average grace period for change in the probability of lost messages.

Figure 5.4: Average grace period for change in the system stabilization time.
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6. CONCLUSION AND FUTURE WORK

In this thesis, we extended the algorithm given in [2] to implement a shared generic data

structure in a synchronous message-passing system to a FIFO Queue in a system that initially ex-

periences lost messages and arbitrarily long message delays but eventually becomes well-behaved

with bounded message delays. We examined the algorithm’s behavior by experimentally measur-

ing the grace period of executions with different values for several parameters. The grace period

for an execution was defined as the time between the system stabilization time and the timestamp

of the first enqueue() operation in the earliest linearizable subset of operations in the execution.

We found that to minimize the grace period, the proportion of d/u and the time until the

system stabilizes should be low, and the number of nodes in the system and the probability of

lost messages should be high. It would be interesting to see whether a combination of appropriate

values for these parameters will keep the grace period low, or whether the parameters interact in a

way that will unexpectedly increase the grace period.

Further experiments on our simulation of a shared FIFO Queue could investigate the be-

havior for different values of X , as this was omitted from our trials, as well as other values of u

when looking at the proportion of d/u. Experiments can also use systems with different behavior,

such as including crash failures or different probability distributions for message delays before the

system stabilizes.

Additionally, similar experiments can be performed for implementations of other shared

data objects, such as a Stack or a Binary Tree. If these experiments produce different results than

those produced when focusing on a Queue, there may be something to learn about the algorithm

by figuring out why this is the case. Ultimately, we would like to find upper and lower bounds

on the grace period for a generic shared data object through a theoretical proof. Based on this,

improvements could possibly be made to the generic algorithm so that the upper bound on the

grace period could be lowered.
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APPENDIX A: IMPLEMENTATION IN DISTALGO

The original simulation of the algorithm was done using DistAlgo. DistAlgo is a pro-

gramming language built on top of Python that provides an efficient implementation of distributed

algorithms [8]. Nodes are contained in separate threads and are able to pass messages between

each other. Because of this provided framework to pass messages, implementing the algorithm in

DistAlgo seemed like the best approach for our algorithm.

The problem with this approach arises with the timing elements of the algorithm. First,

because all threads would be located on one machine, messages would be sent and delivered in-

stantaneously. Second, DistAlgo does not provide any built-in mechanism for setting timers.

To get around this, we added a discrete event simulator to the program that would control

message delays and timers, similar to our use of the simulator in the final Java program. It would

not control the timing of the actions the nodes take once a timer expires or a message is received,

only when those actions started.

What resulted was a combination of real time and simulated time that kept the algorithm

from running correctly. The simulator would send a message to a node saying that a timer had

expired or a message from another node was delivered. Because the simulator was contained in a

thread separate from the other nodes, it would continue to the next simulated time point before the

nodes had completed their actions at the current time point.

Instead of attempting to find potentially complex ways to solve these problems in DistAlgo,

we switched our implementation to a sequential program in Java with timing that was entirely

controlled by a discrete event simulator.
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APPENDIX B: CODE FOR SIMULATION OF SHARED FIFO QUEUE

import java.util.*;

import java.time.*;

import java.io.*;

enum OpType{

PEEK,

PEEK_EXEC,

ENQUEUE,

ENQUEUE_RESPOND,

ENQUEUE_ADD,

ENQUEUE_SEND,

ENQUEUE_EXEC,

DEQUEUE,

DEQUEUE_ADD,

DEQUEUE_SEND,

DEQUEUE_EXEC

}

class Op implements Comparable<Op>{

public OpType opCall;

public int arg;

public int ts;

public int calledBy;

// For sending message

public int sendTo;

public int delay;

public int timer;

public Op(OpType opCall, int arg, int ts, int calledBy){

this.opCall = opCall;

this.arg = arg;

this.ts = ts;

this.calledBy = calledBy;

sendTo = -1;

delay = -1;

timer = -1;

}
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// Continued from previous page

public Op(OpType opCall, int arg, int ts, int calledBy, int sendTo, int delay){

this.opCall = opCall;

this.arg = arg;

this.ts = ts;

this.calledBy = calledBy;

this.sendTo = sendTo;

this.delay = delay;

timer = -1;

}

public Op(OpType opCall, int arg, int ts, int calledBy, int timer){

this.opCall = opCall;

this.arg = arg;

this.ts = ts;

this.calledBy = calledBy;

this.timer = timer;

sendTo = -1;

delay = -1;

}

public Op(OpType opCall, int arg, int ts, int calledBy, int timer, int sendTo, int delay){

this.opCall = opCall;

this.arg = arg;

this.ts = ts;

this.calledBy = calledBy;

this.timer = timer;

this.sendTo = sendTo;

this.delay = delay;

}

public int compareTo(Op o){

int diff = ts - o.ts;

if(diff == 0){

diff = calledBy - o.calledBy;

}

return diff;

}
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// Continued from previous page

public boolean equals(Object obj){

Op o = (Op) obj;

return opCall == o.opCall &&

arg == o.arg &&

ts == o.ts &&

calledBy == o.calledBy &&

sendTo == o.sendTo;

}

// for debugging

public String toString(){

return "node: " + calledBy +"\n" +

"opType: " + opCall + "\n" +

"arg: " + arg + "\n" +

"ts: " + ts + "\n" +

"sendto: " + sendTo;

}

}

class Node{

private PriorityQueue<Op> toExecute;

private LinkedList<Integer> data;

private int id;

private int skew; // clock skew from global clock

private FileOutputStream file;

private String lastMut;

private LinChecker checker;

public Node(int id, int skew, FileOutputStream file, LinChecker checker){

this.id = id;

this.skew = skew;

this.file = file;

this.checker = checker;

toExecute = new PriorityQueue<>();

data = new LinkedList<>();

lastMut = "";

}
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// Continued from previous page

public int id(){

return id;

}

public int skew(){

return skew;

}

public void peek(int clock) throws IOException{

if(data.size() != 0){

file.write(("Peek " + data.peek() + " by node " + id + " at time " + clock + "\n").getBytes());

checker.addToLog("end 1 " + id + " " + data.peek() + " " + (clock + skew));

// log format: start/end opType nodeID value globalClock

checker.addToLog(lastMut);

file.write(lastMut.getBytes());

file.write(’\n’);

}

else{

checker.addToLog("end 1 " + id + " -1 " + clock);

checker.addToLog(lastMut);

file.write(("Peek empty by node " + id + " at time " + clock + "\n").getBytes());

file.write(lastMut.getBytes());

file.write(’\n’);

}

}

public void peekSend(int ts, int d, int x){

toExecute.add(new Op(OpType.PEEK_EXEC, 0, ts, id, ts + d - x));

}

public void enqueue(int val, int calledBy, int clock) throws IOException{

if(calledBy == id){

file.write(("Enqueue " + val + " by node " + calledBy + " at time " + clock + "\n").getBytes());

checker.addToLog("end 2 " + id + " " + val + " " + (clock + skew));

}

data.add(val);

}
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// Continued from previous page

public void enqueueSend(int val, int ts, int caller, int delay, int timer){

toExecute.add(new Op(OpType.ENQUEUE_EXEC, val, ts, caller, timer, id, delay));

}

public int dequeue(int calledBy, int clock) throws IOException{

if(data.size() != 0){

int ret = data.pollFirst();

if(calledBy == id){

file.write(("Dequeue " + ret + " by node " + calledBy + " at time "

+ clock + "\n").getBytes());

checker.addToLog("end 3 " + id + " " + ret + " " + (clock + skew));

}

return ret;

}

else{

if(calledBy == id){

checker.addToLog("end 3 " + id + " -1 " + clock);

file.write(("Dequeue empty by node " + calledBy + " at time " + clock + "\n").getBytes());

}

return -1;

}

}

public void dequeueSend(int ts, int caller, int delay, int timer){

toExecute.add(new Op(OpType.DEQUEUE_EXEC, 0, ts, caller, timer, id, delay));

}

public ArrayList<Op> cancel(Op event, int ts) throws IOException{

ArrayList<Op> cancelled = new ArrayList<>();

Op called = find(event);

if(called == null){

return cancelled;

}
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// Continued from previous page

while(toExecute.size() != 0 && toExecute.peek().compareTo(called) <= 0){

Op exec = toExecute.poll();

switch(exec.opCall){

case PEEK_EXEC:

peek(ts);

break;

case ENQUEUE_EXEC:

enqueue(exec.arg, exec.calledBy, ts);

lastMut = "2 " + exec.arg + " " + exec.ts + " " + exec.calledBy;

break;

case DEQUEUE_EXEC:

int d = dequeue(exec.calledBy, ts);

lastMut = "3 " + d + " " + exec.ts + " " + exec.calledBy;

break;

}

if(exec.calledBy != id){

exec.sendTo = id;

}

cancelled.add(exec);

}

cancelled.remove(cancelled.size() - 1);

return cancelled;

}

private Op find(Op event){

for(Op op: toExecute){

if(event.opCall == op.opCall && event.arg == op.arg && event.ts >= op.ts

&& event.calledBy == op.calledBy ){

return op;

}

}

return null;

}

}
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// Continued from previous page

public class DistQueue{

private static PriorityQueue<Op> events = new PriorityQueue<Op>();

private int d;

private int badDelay;

private int u;

private int x;

private int eps;

private int nextVal;

private int stable;

private double lossP;

private int stop;

private int n;

private LinChecker checker;

public DistQueue(int d, int u, int x, int stable, int stop, double lossP, int n){

this.d = d;

this.u = u;

this.stable = stable;

this.stop = stop;

this.lossP = lossP;

this.n = n;

badDelay = 100;

eps = (int) ((1 - (1.0 / n)) * u);

nextVal = 0;

checker = new LinChecker(stable);

if(x == 1){

x = d - eps;

}

else{

x = 0;

}

}
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// Continued from previous page

public int run() throws Exception{

Instant now = Clock.systemDefaultZone().instant();

String path = "data/" + now.toString().substring(0, 18).replace(’:’, ’-’) + ".txt";

FileOutputStream file = new FileOutputStream(path);

int clock = 0;

Node[] nodes = new Node[n];

for(int i = 0; i < n; i++){

int skew = (int) (Math.random() * (eps + 1)) - (eps * 1/2);

nodes[i] = new Node(i, skew, file, checker);

file.write(("Node " + i + " has skew " + skew + "\n").getBytes());

scheduleNext(i, -1);

}

file.write(("\n").getBytes());

while(events.size() != 0){

Op event = events.poll();

clock = event.ts;

switch(event.opCall){

case PEEK: // Invoke peek(), set timer to execute

file.write(("Peek started by node " + event.calledBy + " at time "

+ clock + "\n").getBytes());

checker.addToLog("start 1 " + event.calledBy + " 0 " +

(clock + nodes[event.calledBy].skew()));

events.add(new Op(OpType.PEEK_EXEC, 0, clock + d - x, event.calledBy));

nodes[event.calledBy].peekSend(clock, d, x);

break;

case PEEK_EXEC: // Execute peek()

ArrayList<Op> cancelled = nodes[event.calledBy].cancel(event, clock);

updateCancels(cancelled, event.calledBy);

scheduleNext(event.calledBy, clock);

break;
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// Continued from previous page

case ENQUEUE: // Invoke enqueue(), set response timer, send to other nodes

file.write(("Enqueue started by node " + event.calledBy + " at time "

+ clock + "\n").getBytes());

checker.addToLog("start 2 " + event.calledBy + " " + event.arg +

" " + (clock + nodes[event.calledBy].skew()));

events.add(new Op(OpType.ENQUEUE_RESPOND, event.arg, clock + x + eps, event.calledBy));

events.add(new Op(OpType.ENQUEUE_ADD, event.arg, clock + d - u, event.calledBy));

for(Node node: nodes){

if(clock >= stable || Math.random() > lossP){

// chance message is lost, if message is not lost

if(node.id() != event.calledBy){

int delay = getRandomDelay(clock);

events.add(new Op(OpType.ENQUEUE_SEND, event.arg,

clock + delay, event.calledBy, node.id(), delay));

}

}

}

break;

case ENQUEUE_SEND: // Receive enqueue message

Node node = nodes[event.sendTo];

node.enqueueSend(event.arg, clock - event.delay +

nodes[event.calledBy].skew(), event.calledBy, event.delay, clock + u + eps);

events.add(new Op(OpType.ENQUEUE_EXEC, event.arg, clock + u + eps,

event.calledBy, node.id(), event.delay));

break;

case ENQUEUE_RESPOND: // Enqueue response to user

file.write(("Enqueue ack by node " + event.calledBy + " at time " +

clock + "\n").getBytes());

break;

case ENQUEUE_ADD: // Adds enqueue to toExecute queue

events.add(new Op(OpType.ENQUEUE_EXEC, event.arg, clock + u + eps,

event.calledBy, event.calledBy, -1));

nodes[event.calledBy].enqueueSend(event.arg, clock +

nodes[event.calledBy].skew() - d + u, event.calledBy, 0, clock + u + eps);

break;
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// Continued from previous page

case ENQUEUE_EXEC: // executes enqueue()

cancelled = nodes[event.sendTo].cancel(event, clock);

updateCancels(cancelled, event.calledBy);

if(event.sendTo == event.calledBy){

scheduleNext(event.calledBy, clock);

}

break;

case DEQUEUE: // Invoke dequeue(), send to other nodes

file.write(("Dequeue started by node " + event.calledBy + " at time " +

clock + "\n").getBytes());

checker.addToLog("start 3 " + event.calledBy + " 0 " + (clock +

nodes[event.calledBy].skew()));

events.add(new Op(OpType.DEQUEUE_ADD, 0, clock + d - u, event.calledBy));

for(Node nodeLoop: nodes){

if(clock >= stable || Math.random() > lossP){ // If message is not lost

if(nodeLoop.id() != event.calledBy){

int delay = getRandomDelay(clock);

events.add(new Op(OpType.DEQUEUE_SEND, event.arg,

clock + delay, event.calledBy, nodeLoop.id(), delay));

}

}

}

break;

case DEQUEUE_SEND: // Receive dequeue message

node = nodes[event.sendTo];

node.dequeueSend(clock - event.delay + nodes[event.calledBy].skew(), event.calledBy,

event.delay, clock + u + eps);

events.add(new Op(OpType.DEQUEUE_EXEC, event.arg, clock + u + eps, event.calledBy,

node.id(), event.delay));

break;

case DEQUEUE_ADD: // Adds dequeue() to toExecute queue

events.add(new Op(OpType.DEQUEUE_EXEC, 0, clock + u + eps,

event.calledBy, event.calledBy, -1));

nodes[event.calledBy].dequeueSend(clock + nodes[event.calledBy].skew() - d + u,

event.calledBy, 0, clock + u + eps);

break;
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// Continued from previous page

case DEQUEUE_EXEC: // Executes dequeue()

cancelled = nodes[event.sendTo].cancel(event, clock);

updateCancels(cancelled, event.calledBy);

if(event.sendTo == event.calledBy){

scheduleNext(event.calledBy, clock);

}

break;

}

}

file.close();

return checker.check();

}

private void updateCancels(ArrayList<Op> cancelled, int nodeId){

for(Op op: cancelled){

Op cancel = new Op(op.opCall, op.arg, op.timer, op.calledBy, op.sendTo, 0);

events.remove(cancel);

}

}

private int getRandomDelay(int clock){

if(clock < stable){

// Approximately linear distribution

int a = (int) (Math.random() * (badDelay - (d - u) + 1)) + (d - u);

int b = (int) (Math.random() * (badDelay - (d - u) + 1)) + (d - u);

int delay = Math.min(a, b);

if(delay + clock >= stable){

// If the message will be delivered after the stabilization time, the delay is changed

// to be delivered at stabilization time or within the possible delay range

delay = stable - clock;

if(stable - clock < d - u){

delay = (int) (Math.random() * (u + 1)) + (d - u);

}

}

return delay;

}

return (int) (Math.random() * (u + 1)) + (d - u);

}
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// Continued from previous page

private void scheduleNext(int node, int clock){

if(clock > stop){

return;

}

int opType = (int) (Math.random() * 3);

int minWait = 1;

int maxWait = 10;

int wait = (int) (Math.random() * (maxWait - minWait + 1)) + minWait;

if(opType == 0){

events.add(new Op(OpType.PEEK, 0, clock + wait, node));

}

else if(opType == 1){

events.add(new Op(OpType.ENQUEUE, nextVal++, clock + wait, node));

}

else{

events.add(new Op(OpType.DEQUEUE, 0, clock + wait, node));

}

}

}

Figure B.1: Code for simulating shared FIFO Queue.
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APPENDIX C: CODE FOR CHECKING LINEARIZABILITY

import java.util.*;

public class LinChecker {

private ArrayList<String> log;

private ArrayList<int[]> pi;

private int stable;

public LinChecker(int stable) {

this.stable = stable;

log = new ArrayList<>();

pi = new ArrayList<>();

}

public void addToLog(String line) {

log.add(line);

}

public int check() throws Exception {

ArrayList<int[]> peeks = new ArrayList<>();

// Inner array contains {start time, end time, node, operation type, argument/returned}

// Operation type: 1 = peek, 2 = enqueue, 3 = dequeue

Hashtable<Integer, ArrayList<Integer>> unfinished = new Hashtable<>();

// Key = node ID

// ArrayList contains {operation type, start time}

// -------- LOG SCRAPER --------

// Reads log from DistQueue.java

int l = 0;

for (int i = 0; i < log.size(); i++) {

String line = log.get(i);

String[] tokens = line.split(" ");

// Log format: start/end opType nodeID value globalClock
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// Continued from previous page

if (tokens[0].equals("start")) {

ArrayList<Integer> arr = new ArrayList<>();

arr.add(Integer.parseInt(tokens[1])); // operation type

arr.add(Integer.parseInt(tokens[4])); // clock

unfinished.put(Integer.parseInt(tokens[2]), arr);

}

else {

ArrayList<Integer> started = unfinished.get(Integer.parseInt(tokens[2]));

int opType = Integer.parseInt(tokens[1]);

if (started.get(0) != opType) {

throw new Exception("Something didn’t match");

}

int[] arr = new int[5];

arr[0] = started.get(1); // start time

arr[1] = Integer.parseInt(tokens[4]); // end time

arr[2] = Integer.parseInt(tokens[2]); // node

arr[3] = started.get(0); // operation type

arr[4] = Integer.parseInt(tokens[3]); // argument

if (arr[3] == 1) {

int[] peekArr = new int[9];

for (int j = 0; j < 5; j++) {

peekArr[j] = arr[j];

}

line = log.get(++i);

// Get last mutator

// Enqueue/dequeue arg

if (line.equals("")) {

peekArr[5] = -1;

peekArr[6] = -1;

peekArr[7] = -1;

peekArr[8] = -1;

}
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// Continued from previous page

else {

String[] lastMut = line.split(" ");

peekArr[5] = Integer.parseInt(lastMut[0]); // last mutator type

peekArr[6] = Integer.parseInt(lastMut[1]); // last mutator argument

peekArr[7] = Integer.parseInt(lastMut[2]); // last mutator timestamp

peekArr[8] = Integer.parseInt(lastMut[3]); // node that called last mutator

peeks.add(peekArr);

}

}

else {

pi.add(arr);

}

}

}

// -------- CONSTRUCTOR --------

// Orders operations according to construction

// Throws away operations before stable time

// Finds first enqueue value and throws away all accessors until one that returns the first enqueued value

Collections.sort(pi, new Comparator<int[]>() {

public int compare(int[] a, int[] b) {

if (a[0] == b[0]) {

return a[2] - b[2];

}

else {

return a[0] - b[0];

}

}

});

for (int[] peekOp : peeks) {

int lastMut = peekOp[5];

int lastArg = peekOp[6];

int mutTS = peekOp[7];

int mutCaller = peekOp[8];
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// Continued from previous page

if (lastMut == -1) {

pi.add(0, peekOp);

continue;

}

for (int i = 0; i < pi.size(); i++) {

if (pi.get(i)[3] == lastMut && pi.get(i)[4] == lastArg && pi.get(i)[0] == mutTS &&

pi.get(i)[2] == mutCaller) {

// If peek’s last mutator matches current operation seen in pi

pi.add(i + 1, peekOp);

break;

}

}

}

for(int i = 0; i < pi.size(); i++){

int[] op = pi.get(i);

if(op[0] < stable){

pi.remove(i);

i--;

}

}

// -------- CHECKER --------

// Checks ordering from above if it is linearized

boolean found = false;

while(pi.size() > 0 && !found) {

LinkedList<Integer> queue = new LinkedList<>();

nextEnq(); // Finds first enqueue, removes all accessors until one matches the first enqueue

for (int[] op : pi) {

found = true;

switch (op[3]) {

case 1: // peek

int peeked = -1;

if (queue.size() != 0) {

peeked = queue.peek();

}
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// Continued from previous page

if (peeked != op[4]) {

found = false;

break;

}

break;

case 2: // enqueue

queue.add(op[4]);

break;

case 3:

int dq = -1;

if (queue.size() != 0) {

dq = queue.poll();

}

if (dq != op[4]) {

found = false;

break;

}

}

}

if(found) {

return pi.get(0)[0] - stable; // start time of first enqueue when linearizable

}

}

// Execution was never linearizable

throw new Exception("Too short");

}

private void nextEnq(){

if(pi.size() == 0){

return;

}

pi.remove(0);

int firstEnq = -1;
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// Continued from previous page

for(int i = 0; i < pi.size(); i++){

int[] op = pi.get(i);

if(op[3] == 2){

firstEnq = op[4];

break;

}

else{

pi.remove(i);

i--;

}

}

for(int i = 0; i < pi.size(); i++){

int[] op = pi.get(i);

if(op[3] != 2 && op[4] != firstEnq){

pi.remove(i);

i--;

}

else if(op[3] != 2 && op[4] == firstEnq){

break;

}

}

}

// for debugging

private void printPi() {

for (int i = 0; i < pi.size(); i++) {

System.out.println("Start " + pi.get(i)[0] + " End " + pi.get(i)[1] + " Node " +

pi.get(i)[2] + " Op type " + pi.get(i)[3] + " Arg/return " + pi.get(i)[4]);

}

}

}

Figure C.1: Code for checking linearizability of an execution.

44



APPENDIX D: CODE FOR RUNNING EXPERIMENTS

import java.io.*;

import java.util.*;

public class Driver {

// Driver code for experiments

public static void main(String[] args) throws Exception{

FileOutputStream file = new FileOutputStream("data/experiments.csv");

int d = 4;

int u = 2;

int x = 0;

int stable = 250;

int stop = 500;

double lossP = .1;

int n = 50;

file.write(("Grace period needed until linearizable\n").getBytes());

// Proportion d/u

// 2, 3, 4, ..., 10

System.out.println("Proprtion d/u");

file.write(("Proportion d/u\n").getBytes());

for(int i = 2; i <= 10; i++){

d = u * i;

System.out.println(i);

file.write((i + ",").getBytes());

ArrayList<Integer> data = new ArrayList<Integer>();

int total = 0;

for(int j = 0; j < 500; j++){

DistQueue q = new DistQueue(d, u, x, stable, stop, lossP, n);

int time = q.run();

total += time;

data.add(time);

}
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// Continued from previous page

double avg = total / 500.0;

double sd = stdDev(data, avg);

file.write((avg + "," + sd + "\n").getBytes());

}

file.write(’\n’);

d = 4;

// Time until stable

// 50, 100, 150, ... 500

System.out.println("Time until stable");

file.write(("Time until stable\n").getBytes());

for(int i = 50; i <= 500; i += 50){

stable = i;

stop = i + 250;

System.out.println(i);

file.write((i + ",").getBytes());

ArrayList<Integer> data = new ArrayList<Integer>();

int total = 0;

for(int j = 0; j < 500; j++){

DistQueue q = new DistQueue(d, u, x, stable, stop, lossP, n);

int time = q.run();

total += time;

data.add(time);

}

double avg = total / 500.0;

double sd = stdDev(data, avg);

file.write((avg + "," + sd + "\n").getBytes());

}

file.write(’\n’);

stable = 250;

stop = 500;
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// Continued from previous page

// Probability of message loss

// 0, .05, .1, .15, ..., .5

System.out.println("Probability of message loss");

file.write(("Probability of message loss\n").getBytes());

for(double i = 0; i <= .5; i += .05){

lossP = i;

System.out.println(i);

file.write((i + ",").getBytes());

ArrayList<Integer> data = new ArrayList<Integer>();

int total = 0;

for(int j = 0; j < 500; j++){

DistQueue q = new DistQueue(d, u, x, stable, stop, lossP, n);

int time = q.run();

total += time;

data.add(time);

}

double avg = total / 500.0;

double sd = stdDev(data, avg);

file.write((avg + "," + sd + "\n").getBytes());

}

file.write(’\n’);

lossP = .1;

// Number of nodes

// 5, 10, 15, ..., 100

System.out.println("Number of nodes");

file.write(("Number of nodes\n").getBytes());

for(int i = 5; i <= 100; i += 5){

n = i;

System.out.println(i);

file.write((i + ",").getBytes());

ArrayList<Integer> data = new ArrayList<Integer>();

int total = 0;
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// Continued from previous page

for(int j = 0; j < 500; j++){

DistQueue q = new DistQueue(d, u, x, stable, stop, lossP, n);

int time = q.run();

total += time;

data.add(time);

}

double avg = total / 500.0;

double sd = stdDev(data, avg);

file.write((avg + "," + sd + "\n").getBytes());

}

file.write(’\n’);

n = 50;

// X

// 0, d - eps

System.out.println("X");

file.write(("X\n").getBytes());

System.out.println("0");

file.write(("0,").getBytes());

x = 0;

ArrayList<Integer> data = new ArrayList<Integer>();

int total = 0;

for(int j = 0; j < 500; j++){

DistQueue q = new DistQueue(d, u, x, stable, stop, lossP, n);

int time = q.run();

total += time;

data.add(time);

}

double avg = total / 500.0;

double sd = stdDev(data, avg);

file.write((avg + "," + sd + "\n").getBytes());

System.out.println("d - epsilon");

file.write(("d - epsilon,").getBytes());

x = 1;

total = 0;
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// Continued from previous page

data.clear();

for(int j = 0; j < 500; j++){

DistQueue q = new DistQueue(d, u, x, stable, stop, lossP, n);

int time = q.run();

total += time;

data.add(time);

}

avg = total / 500.0;

sd = stdDev(data, avg);

file.write((avg + "," + sd + "\n").getBytes());

file.write(’\n’);

x = 0;

}

private static double stdDev(ArrayList<Integer> data, double avg){

double sd = 0;

for(int n: data){

sd += Math.pow(n - avg, 2);

}

sd /= (data.size() - 1);

return Math.sqrt(sd);

}

}

Figure D.1: Code for performing experiments.
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