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ABSTRACT 

Analysis of Calling Context Encoding and Decoding Algorithms 

Victoria E. Rivera Casanova 

Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Eun J. Kim 

Department of Computer Science and Engineering 

Texas A&M University 

The calling context of a program is recorded via a call stack for event logging, 

debugging, and profiling. There are several calling context encoding and decoding schemes that 

record the calling context of a program. One such scheme we are introducing is DCCE, 

Distinguished Calling Context Encoding; it can encode a program's calling context using a single 

integer ID without the need to decode it later. Without the need to decode, DCCE has less 

overhead costs than other popular encoding schemes. Another advantage of DCCE is that it can 

distinguish between different calling contexts that have the same encoded ID and different 

ending nodes/functions. We want to compare DCCE with other existing algorithms in terms of 

running time and measure the improved efficiency overall. This research paper discusses the 

practical uses of calling context encoding, implementation methods for DCCE, and the efficiency 

improvements of DCCE compared to CCTLib encoding. Through our experiment, DCCE 

outperformed CCTLib by over 2 times of overall execution time.  
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NOMENCLATURE 

DCCE  Distinguished Calling Context Encoding  

PCCE  Precise Calling Context Encoding  
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1. INTRODUCTION 

Computer programs have many different parts to them that need to run and work together 

to execute the program correctly. Typically, programmers write their code line-by-line, in a top 

to bottom manner. However, a computer program typically does not execute in a linear fashion. 

The execution of instructions starts from the main function and from there it can branch off to 

different parts of the code depending on the intended behavior. Functions are specific sections of 

code that perform certain tasks and can be called at any point within the program. Functions can 

be called multiple times and functions themselves can call other functions. When one function is 

called and is done executing, the program will return to where the previous function made that 

call. 

During the execution of a computer program, there are many instances of function entries 

and exits. Whenever a new function is called, it is recorded via a call stack which keeps track of 

all the active function calls that are running. Once a function has finished, it is removed from the 

top of the call stack and the program returns to where the call was made and continues its 

execution from that point. This call stack is also known as the program’s calling context.  A 

calling context refers to the contents within the entire call stack itself. It is a series of active 

function calls that specifies the program’s current location during execution [5]. The information 

within the call stack is used by developers for many different purposes, some of which are event 

logging, profiling, and debugging [3]. However, the call stack can get expensive in terms of 

memory allocation when dealing with large programs, and it becomes inefficient to walk through 

the entire stack when running large programs with many function calls.  For these situations, 

calling context encoding is leveraged to store the call stack information in a more efficient way. 



6 

 

 

     

Figure 1.1 Simple C++ code snippet with multiple function calls 

       

Figure 1.2: Call stack for code snippet 

 

 

Figure 1.1 demonstrates a simple C++ program with multiple levels of function calls. 

From the main function, the function foo() is called. While foo() is executing, there is another 

function call to the function print(). Figure 1.2 represents the program’s call stack once it has 

reached the first instruction in the function print() during execution. Ideally, calling context 

encoding can be used to store the call stack information from Figure 1.2. 
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1.1 Existing Calling Context Encoding and Decoding Algorithms 

Currently, there are many algorithms that will compress and store a program’s calling 

context information in a more efficient manner than walking through the entire stack itself. Some 

of the encoding schemes used today are Call Stack Unwinding and Stack Shadowing [2]. These 

algorithms approach the calling context encoding question using different strategies, data 

structures and instrumentation frameworks. Binary instrumentation refers to injecting additional 

instructions into a program’s binary based on the existence of certain events. There are multiple 

ways to instrument a program’s binary. Dynamic instrumentation varies from static 

instrumentation because bits of additional code are added to the program’s binary during the 

execution of said program. Static instrumentation is adding code on the binary that is generated 

during compile time before the application starts running. A couple of key algorithms that were 

studied for this research topic are Precise Calling Context Encoding, Valence, and CCTLib. 

These algorithms approach context encoding in their unique way. They are well-known 

algorithms that will be tested against our own encoding algorithm. 

Valence, a compiler pass based algorithm, encodes calling contexts as a list of bit values. 

The creators argue that sometimes it is unnecessary to store an entire word to represent a piece of 

the calling context; a few bits are sufficient [6]. The bit values come from a call graph that is 

generated using static analysis. Each node is given a level value that represents the maximum 

number of bits needed to encode any potential call path to said node [6]. The edge weights are 

the bit values that are appended to the list of bits that represent the calling context. Valence is 

efficient in terms of reducing the length of encoding compared to other existing algorithms such 

as Precise Calling Context Encoding [6]. It does, however, still require overhead for decoding. 
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PCCE is an encoding algorithm that encodes the current call stack of a program with an 

integer ID using static binary instrumentation [3]. This encoding algorithm generates a call graph 

with corresponding edge weights that are used to update the calling context ID [3]. The context 

ID is updated using arithmetic operations before and after each function call. This algorithm 

works with recursive function calls and requires a decoding algorithm. With the unique context 

ID and the last known visited function, the context can be decoded by the decoding function 

provided by PCCE [3]. However, the main drawback of PCCE is that it cannot distinguish 

between different calling contexts with the same encoded ID that end on different functions (or 

nodes in the call graph). In other words, the algorithm requires additional information other than 

the encoded ID to tell it apart from a distinct calling context with the same integer ID. As of 

now, there is not an established encoding algorithm that can make this distinction that we know 

of. 

1.2 CCTLib  

The focus of this research takes inspiration from the most recent encoding work CCTLib 

which provides pinpoints software inefficiencies with fine-grained software monitoring.  

CCTLib takes a different approach from Valence and Precise Calling Context Encoding as it is 

an encoding scheme that leverages Intel’s Pin Tool framework for dynamic binary 

instrumentation. CCTLib is a tool that can obtain the calling context at any/every machine 

instruction during execution time [1]. CCTLib uses the Pin Tool API to monitor and instrument 

every Pin trace entry. It assigns a unique identifier to the current trace and every call and return 

machine instruction. At each monitored instruction, the client Pin tool calls a callback function 

that updates the CCT for that particular trace [1]. CCT refers to the data structure that contains 

the call path information at a given point during execution [1]. CCTLib is used in many event 
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monitoring applications such as ZeroSpy, DeadSpy, and LoadSpy to keep track of the CCT for 

the target application. It is the most recent work for calling context encoding and will be used for 

comparison against DCCE. 

The rest of the thesis is structured as follows: The background and motivation behind 

Distinguished Calling Context Encoding in Chapter 2, followed by the methodology of 

implementation in Chapter 3. Chapter 4 goes over the results of our experiments and the final 

chapter concludes the thesis.  
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2. DISTINGUISHED CALLING CONTEXT ENCODING 

2.1 Distinguished Calling Context Encoding  

We propose the Distinguished Calling Context Encoding algorithm, DCCE, to overcome 

long encoding/decoding time at runtime. With this new encoding scheme, calling contexts can be 

differentiated even if they have the same encoded ID and different ending functions/nodes [2]. 

DCCE updates the calling context ID at every function entry and exit. It is updated using an 

encoded edge weights from a statically generated call graph. 

 

 

Figure 2.1: Pseudocode for encoding DCCE edge weights 

 

 Figure 2.1 describes the process for encoding the edge weights for each connection in the 

call graph.  Right before every function call, the edge weight that corresponds with the caller and 

called function is added to the CCID, calling context ID. Once the active function finishes 

(returns to its caller function), we subtract the same edge weight we had previously added before 
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the function entry from the CCID. This is a similar process to PCCE. With this encoding scheme, 

the CCID does not need a decoding component because the nature of DCCE allows it to be able 

to differentiate calling contexts with different ending nodes given the current CCID. DCCE 

updates the CCID dynamically by leveraging Intel’s Pin Tool framework, similar to the work of 

CCTLib. DCCE adds more overhead during encoding but significantly less overhead for 

decoding when compared to PCCE since it does not require it at all.  

There are several other components needed for the overall DCCE scheme. The Pin tool 

version requires several components to perform offline work in addition to the DCCE Pin tool 

itself. There is a separate Pin tool that analyzes and records the target program’s function calls in 

an output file. This file is then passed through to an encoding script that generates and writes the 

encoded edge weights for the program’s call graph. Once these two offline pieces are complete, 

that updated file can be passed to the main DCCE Pin tool as input.  

 DCCE can be used as a substitute in various applications requiring calling context 

monitoring using stack shadowing or other similar encoding algorithms. We look to substitute 

existing encoding/decoding schemes with our novel DCCE Pin tool library with the intention of 

improving the overall efficiency in terms of execution time for the selected analysis programs. 
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3. METHODS 

The Distinguished Calling Context Encoding algorithm was developed to address the 

limitations of existing calling context encoding schemes. The algorithm is an improvement from 

PCCE since it allows for distinction between calling contexts with the same ID that have 

different ending nodes. DCCE is implemented as an analysis tool using Intel’s Pin framework for 

dynamic binary instrumentation. For simplicity, this version of DCCE’s Pin tool implementation 

monitors all machine instructions and performs a callback on every function call and function 

exit. The reason behind utilizing Pin for DCCE’s implementation is motivated by the need to test 

the algorithm’s efficiency when replacing it with other encoding schemes in larger monitoring 

applications. We look to replace CCTLib’s encoding algorithm with DCCE for calling context 

encoding in monitoring applications such as ZeroSpy to demonstrate an improvement in terms of 

efficiency in encoding cycles when the switch is made. 

 

 

Figure 3.1: Flow Diagram of DCCE Pin Tool Implementation  
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Figure 3.1 displays the basic project flow for DCCE. As the figure shows, DCCE will 

take in a target application’s binary file and process that through our initial Pin tool, Callgraph 

Generator. The call graph Pin tool will take in that binary, analyze all the call instructions within 

the binary and filter out all the system call instructions leaving only the call instructions from the 

main executable of the target program. Using our callback function, at every valid call 

instruction its call site, name of caller function, and name of the function being called will be 

written into the output file in a specific format. The output will be specified as a .cg file. The .cg 

will be inputted into the “Calling Context Encoder” Python script offline to generate the edge 

weights for each edge in our call graph. The output of this program is a .cc file which holds the 

calling context information of each call relationship. The .cc will be used as input to our final 

DCCE Pin tool along with the initial target application binary file. These two files will be used 

by the DCCE Pin tool to dynamically encode the context of the target application at every point 

during execution. 

3.1 Overview 

Distinguished Calling Context Encoding allows us to encode calling contexts within a 

single integer ID without needing to decode said ID. Instrumentation is done before and after 

each function call. We add the encoded edge weight to our CCID before the call and subtract that 

same edge weight after the function call. 
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Figure 3.2: Source code of C++ program with multiple function calls. Contains CCID update examples.  

 

Figure 3.2 contains source code for a slightly more complex version of Figure 1.1. Now, 

there are two functions, foo() and fi(), that call the print function. The comments before and after 

the function calls show how, theoretically, DCCE would instrument the binary of this piece of 

source code. DCCE uses graph theory to generate a corresponding call graph representation for 

the source code.  
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     Figure 3.3: Call graph representation of source code in Figure 3.1                                   Figure 3.4: CCs for 2.3 

 

From Figure 3.3, we can see that each function is represented as a node in the graph, and 

every function call is represented by the edges connecting the nodes. The numbers on each edge 

are the encoded edge weights for each function call connection generated by the Calling Context 

Encoder. The details of how the encoded edge weights are generated are beyond the scope of this 

research topic. Figure 3.4 shows the different encoded calling contexts for each scenario that can 

occur for our example.  

3.2 Intel’s Pin Tool 

This version of DCCE is implemented as a dynamic binary instrumentation tool using 

Intel’s Pin tool framework. The Pin framework can be used by IA-32 and x86-64 computer 

architectures. It is generally used for dynamic binary analysis on any target application. The 

target program’s binary files are instrumented during run time, instead of statically after compiler 

time. The library provides an extensive API for fetching information while the target program is 

running. Leveraging the functions provided by the API, DCCE monitors all instructions, 

checking for function call and function exit instructions. Before the actual application starts 
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executing, Pin will monitor the binary of the target application and look for certain events. In our 

case, it is looking for function calls and function exits. When one of these events is registered, 

Pin will make note of it and when the target application is executing, it will trigger a callback 

function that we have written for each specific case. The callback function changes the behavior 

of the program and does not actually change or write to the target application’s binary file. The 

callback functions take in certain parameters as input and update the current CCID accordingly.  

For this research, we downloaded the Linux x86-64 architecture option for Pin. The 

version of Pin we are using is 3.13 as opposed to the latest release. All development was done in 

a Linux environment. We used the C++ programming language to write our DCCE Pin tool and 

Pin’s default compiler needs to be the 3.8 version of the GNU C++ compiler (at least for our 

purposes). 

Important API functions that were vital in the DCCE Pin tool implementation were 

INS_Address(ins), which gave us the memory address of the current instruction. For our 

purposes, we use it to get the memory address of the current function call (caller) instruction. 

INS_DirectControlFlowTargetAddress(ins) is used to give is the memory address of the first 

instruction within the callee function. And finally, INS_InsertPredicatedCall(ins, …) is used to 

make a call to our callback functions when the event of a function call or exit is triggered. We 

use INS_InsertPredicatedCall(ins, …) instead of the normal call to INS_InsertCall(ins, …) in 

order to avoid potential errors in instrumenting instructions that are not actually executed by the 

program itself.  

3.3 Implementation 

Once Pin was installed successfully and we verified the example Pin tools were executed 

correctly, we could begin to implement the necessary parts of the DCCE scheme. 
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As shown in Figure 2.1, the first piece is the Callgraph Generator. This is a separate Pin 

tool that generates the .cg file that is needed as input to the DCCE Pin tool. Its purpose is to 

analyze the target application’s binary file and record all the needed call functions from the main 

executable, excluding automated system function calls. Pin looks for any call instruction and 

does a check on that instruction’s memory address. The memory address is a reference to the 

assigned memory location in the RAM of that machine instruction or variable. It is in bytes and 

usually represented in a hexadecimal format. We filter out automatic program start-up system 

call instructions from being written to the output files but do not worry about the system calls 

associated with function entries and exits since they have minimal to no consequences on the 

analysis and outcome of our tests. Once the Callgraph Generator finishes its analysis routine, the 

output file contains the important call graph information in the format:  

“callerID-callerName:calleeID-calleeName:callSite:”. The caller refers to the function within 

which a new function call is being made. The callee refers to the function that is being called. 

 

 

Figure 3.5: Example of the .cg file for Figure 3.2 code 

 

Figure 3.5 is the corresponding .cg file for the source code found in Figure 3.2. Each 

function has its own function ID and each line within the file represents a caller-callee 

connection. The call site is actual the memory address of the next instruction after the called 

function has finished executing and returned. In this example, we have set it arbitrarily to 0. But, 
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for our implementation, the call site will list the actual memory address value corresponding to 

where the call instruction was made. 

For our implementation, the DCCE Pin tool opens and reads a .cc file alongside the target 

application’s binary. The call graph (.cg) file is run through a separate program, named Calling 

Context Encoder, that generates an edge weight for each connection between nodes on the call 

graph. This is done offline as the second step in our overall scheme flow; separate from the Pin 

tool components. The Python program responsible for generating the encoded edge weights takes 

in the .cg file and appends the encoded integer ID to the end of each line. The format for each 

line in the .cc file is “callerID-callerName:calleeID-calleeName:callSite:weight”.  

 

 

Figure 3.6: Example of the .cc file for Figure 3.2 

 

Figure 3.6 represents the .cc file that is outputted by the Calling Context Encoder Python 

script. It differs from the .cg file because the encoded edge weight is appended to the end of the 

.cg file after the colon. The encoded edge weights are used to update the CCID during runtime. 

Each line within the .cc file contains the caller function name, the callee function name, the 

memory address associated with the caller function, and the generated edge weight. The file is 

then parsed by the DCCE Pin tool, and its information is stored in a nested map data structure. 

This allows for efficient access to the data for when the algorithm needs to look up the edge 

weight for a particular caller and callee relationship. Using a nested map is more efficient for 
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lookup purposes than parsing the entire .cc file at every function call. This is especially true if 

the .cc file contains many call relationships for a complex program.  

Parsing the call graph (.cc) file occurs before our Pin tool program begins its 

instrumentation routine. Once the parsing function has returned, the instruction instrumentation 

routine is called. Within the instruction instrumentation routine, we have the Instruction(INS ins, 

VOID *v) method that does a check on each machine instruction. The DCCE Pin tool does an 

initial pass through the target program’s binary. This initial pass is done before the execution of 

the target application. It looks for call function and function exit events. It checks to see if the 

current instruction is a function call or a function exit. If it is neither, no additional 

instrumentation occurs. However, there is a couple of function within our Pin tool that are called 

in the event of a function call or exit. At these events, the DCCE Pin tool makes a note and will 

trigger one of our prewritten callback functions during execution time. It is at these callback 

functions where the calling context information stored in the CCID, calling context ID, will be 

updated accordingly. 

Two callback functions were written in the event of a function call or function exit. If 

there is a call instruction, the Pin tool will execute INS_InsertPredicatedCall(…) with the 

addCCID() callback function as an argument. If there is a function exit, DCCE needs to subtract 

the correct encoded edge weight from the CCID. Again, the Pin tool will call 

INS_InsertPredicatedCall(…), however this time we need to pass subtractCCID() as an 

argument.  

Our unique callback functions take as input the memory address of the caller function and 

the memory address of the callee function. Inside the callback functions, the memory addresses 

are passed to a previously implemented function found in Pin’s sample program calltrace.cpp, 
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*Target2String(ADDRINT target). This function takes in a memory address and, using a built-in 

Pin API function, returns the name of the function associated with that memory address. With 

the string names of the caller and callee functions, in addition to the call site value, we look up 

the corresponding edge weight from within our populated nested map structure using the 

function getEdgeWeight(…). If there is a match, then we use that value to update the CCID 

depending on if it is a function call or function exit. If the value that is returned from 

getEdgeWeight(…) is -1, there is no match and no changes to the CCID occur. 

 

Figure 3.7: Pseudocode for addCCID() callback function from DCCE 

 

 Figure 3.7 shows the pseudocode version of the callback function when DCCE needs to 

add the edge weight to the CCID in the event of a call instruction. The other function 

subtractCCID() is written in a similar fashion.   
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Figure 3.8: Pseudocode for subtractCCID() callback function from DCCE 

 

Figure 3.8 is the pseudocode version of subtractCCID(). The main difference between the two 

callback functions would come in line 9, where instead of adding to the CCID the edge weight is 

subtracted. 

3.4 Integration with Monitoring Program Clients 

With the completed implementation of Distinguished Calling Context Encoding as a Pin 

tool, it is necessary to integrate our Pin tool with existing monitoring applications, one of which 

is ZeroSpy. ZeroSpy is a pure software monitoring tool that identifies and reports where there are 

redundant zeros stored in memory to reduce inefficiencies and optimize performance for the 

target programs [4]. ZeroSpy itself is implemented as a Pin tool that monitors every memory 

load instruction of the given target application and leverages CCTLib calling context encoding in 

its analysis routines [4]. There are instances where ZeroSpy requires calling context information 

to identify redundant zeros in memory and it calls functions within the CCTLib library. We are 

interested in ZeroSpy due to its utilization of the CCTLib Pin tool library.  



22 

 

 

 

Figure 3.9: Pin tool testing overview 

 

For us to verify DCCE is a more efficient encoding scheme than CCTLib, we need to run 

benchmark tests on ZeroSpy with CCTLib encoding vs. ZeroSpy with our novel DCCE encoding 

scheme. Figure 3.9 presents the overall flow of how we will be testing the different encoding 

schemes. The same target application will be used for both tests to maintain consistency. 

Wherever ZeroSpy requires the calling context for its respective analysis, we will replace the 

CCTLib library with DCCE’s library.  

Our DCCE Pin tool is converted to a Pin tool library. This means that some of DCCE’s 

internal functions, such as returning the value of the encoded CCID, can be called from separate 

applications such as ZeroSpy. It no longer executes and runs its analysis routine concurrently 

with the running target application but allows its internal functions to be utilized when needed by 

other applications. 

Due to the scope of this research, a simplified version of the ZeroSpy Pin tool was 

created. Instead of checking for redundant zeros at each memory access point, our simplified 

version still monitors for memory read and memory write operations within the target 

application, but it also instruments call and return instructions. Each of these 4 events triggers a 
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callback function that in turn calls a function from a calling context library (i.e., DCCE library or 

CCTLib library). Memory reads and memory writes will register the callback function 

getCCID() which will subsequently call a function within either DCCE or CCTLib’s library 

(depending on which scheme is being tested) that returns the current calling context at that point. 

Call and return instructions will trigger the callback functions that update the calling context 

accordingly. These are also functions provided by the calling context libraries. 

The integration of the CCTLib library with the ZeroSpy simple version was done outside 

the scope of this research. Once the integration of both encoding schemes with ZeroSpy simple 

version was completed, tests were run on the novel ZeroSpy implementation with DCCE and the 

baseline model with CCTLib. Each benchmark program was passed through every piece of the 

DCCE workflow that is described in Figure 2.1 to render the correct input files and callgraph 

information. This is considered offline work so its execution time is not taken into consideration 

in the testing of the encoding/decoding runtime. 

The same steps used for the integration of ZeroSpy with both DCCE and CCTLib 

libraries were repeated for the simplified versions of LoadSpy and DeadSpy, two other memory 

access monitoring tools. 

3.5 Experiment Design 

We will mainly look for differences in runtime in terms of cycles for the whole program 

and latency of specific functions. CPU cycles in computer terms refer to the time it takes for a 

processor to execute an operation. Since our tests last only seconds from start to finish, selecting 

cycles as our main time-keeping unit will provide a more accurate description of the time 

difference of each encoding scheme for each client tool. 
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Each client tool monitors for memory access operations throughout the execution of the 

target program. LoadSpy looks for memory read operations, DeadSpy looks for memory write 

operations, and ZeroSpy monitors for both these types of memory access operations. At each of 

their respective memory access instructions, the client tools will call the callback function 

getCCID() which returns the current calling context information at that point in the program’s 

execution. We are interested in the timing of this function because CCTLib and DCCE have 

different implementation methods for returning calling context information. This data is useful in 

showing the speed-up time by DCCE compared to CCTLib. 

In addition to monitoring memory access operations, the clients also observe for call and 

return instructions. These instructions will trigger the action of updating the current calling 

context information for the program through other callback functions. DCCE’s calling context 

updates are simple addition and subtraction operations that can be easily timed. However, since 

CCTLib’s encoding scheme is more complex in nature it is difficult to get an accurate timing 

without also timing extra unnecessary overhead operations. Due to this, we do not time each 

individual callback function for updating the calling contexts but instead record the execution 

time of the entire client after the required Pin tool start-up functions have finished. This allows 

for a fair comparison between the two encoding schemes. Running the clients is done through a 

command line instruction that specifies 1) the target program executable 2) the client tool’s name 

and 3) the encoding scheme to be used. After the tool has finished execution, an output file is 

created to the current working directory with statistics on total program execution time and the 

average latency of the getCCID() function. 
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4. RESULTS 

To test the efficiency of Distinguished Calling Context Encoding with other existing 

calling context encoding schemes, mainly CCTLib, we ran simplified client versions of common 

program monitoring applications for ZeroSpy, LoadSpy, and DeadSpy. These client programs 

were each run to monitor a selected test program and called for either DCCE or CCTLib 

encoding schemes to be utilized in their execution. The times that were recorded were for the 

entire execution time of the program as well as the average latency of the getCCID() function 

that returned the current calling context at any point in the execution. 

4.1 Experiment Results 

CCTLib provides a test program in its GitHub repository titled deadWrites.cpp and we 

used this same test as the basis for our experiments. 

 

 

Figure 4.1: Execution Time of different clients in units of cycles. 

 Figure 4.1 compares the average execution time of the three client tools using either 

DCCE or CCTLib encoding. Each client tool was run 5 times and the averages of the results are 
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depicted in the chart. Based on the results shown, the DCCE encoding scheme provides 

significant speed-up to the overall execution time as opposed to CCTLib in all 3 of the client tool 

tests. This is seen most prominently in the LoadSpy and DeadSpy clients where the difference 

between the two is in the range of about 1,400,000 – 1,800,000 cycles. The average speed-up for 

the DCCE clients against the CCTLib clients is over 2 times the execution time.  

 

 
 

Figure 4.2: Average latency of getCCID() for different clients in units of cycles 

Figure 4.2 offers comparisons in the average execution time for the individual function 

getCCID(). This data was recorded from the same group of tests as for Figure 4.1. Similar to the 

results in Figure 4.1, it can be seen that getCCID() for DCCE runs faster than the CCTLib 

version. This is because while DCCE only has to return the integer value of the global variable 

CCID, CCTLib has to provide a decoding element to return the calling context information. 

Those operations are much more expensive and time consuming than the simplistic approach of 

DCCE.  

The overall results of the experiment matched our initial hypothesis that DCCE is a faster 

encoding scheme than CCTLib due to its implementation and use of simple arithmetic operations 
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when updating the calling context. DCCE also has less overhead cost than CCTLib when looking 

at purely updating current calling context and retrieving calling context information at any given 

point during execution.  

4.2 Things to Consider 

The experiments were run on a shared High-Performance server operated by Texas A&M 

University. While we were allocated space on the server, other users and processes are able to 

run programs at the same time as our experiments. Program execution time can be affected by 

the status of CPU usage of the server at testing time. This is important to keep in mind in regard 

to the execution times that were recorded.  

Regarding the test programs used for these experiments, we ran one C++ test program 

provided by the authors of CCTLib that can be found within the CCTLib GitHub repository. This 

program was used as the main benchmark instead of common benchmark suites like SPEC due 

to the complexity of the available test applications. Generating the call graph (.cg) file (as well as 

running the CC. Encoder for the .cc file) would theoretically take multiple hours and many 

gigabytes of storage to complete. Time and space restrictions did not allow us to properly run a 

program in the SPEC benchmark suite. 

 

  



28 

 

5. CONCLUSION 

5.1 Conclusion 

We introduced a novel calling context encoding scheme named Distinguished Calling 

Context Encoding. It encodes the calling context of any program using an integer ID and 

dynamic binary instrumentation using Intel's Pin Tool. This encoding scheme addresses several 

limitations of popular encoding schemes and aims to also have better performance in terms of 

total running time. DCCE guarantees distinction between calling contexts with the same CCID 

ending in different nodes within the call graph. There is no decoding overhead associated with 

DCCE, as opposed to commonly utilized schemes like Precise Calling Context Encoding, 

CCTLib, and Valence.   

DCCE has a specific pipeline for execution that requires a call graph to be generated that 

contains function call information. This file is then passed through a Python script that assigns 

encoded integer edge weights to each caller and callee function relationship. After using DCCE 

as a substitute for the CCTLib Pin tool in the three simplified client monitoring applications, our 

results demonstrate that the programs leveraging the DCCE scheme had a faster total execution 

time in terms of cycles overall. DCCE also had a faster retrieval time of the current calling 

context information for the same tests. Distinguished Calling Context Encoding provides a faster, 

more efficient calling context encoding alternative to other existing schemes. The advancements 

DCCE provides can benefit many different sectors within computer science and program 

development. Calling context information is a vital tool for developers to leverage in certain 

sophisticated and complex computer programs related to debugging, profiling and stack 

monitoring. Encoding this information in the least expensive manner in terms of storage and in 
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the fastest manner in terms of execution time can vastly improve the overall performances of 

these programs, allowing developers to allocate time and space to other aspects of the 

development process. In the future, DCCE can be a popular encoding scheme due to its 

improved performance and ability to distinguish calling contexts without decoding overhead or 

expensive stack walks. 

5.2 Moving Forward 

With DCCE proven to provide a faster alternative for calling context encoding than 

CCTLib, the next steps moving forward will be to run additional tests with other popular 

encoding schemes such as PCCE and Valence. Additionally, the current DCCE Pin tool will 

need code refactoring to make the code base more efficient and easier to maintain should further 

changes or updates to implementation occur.  
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