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ABSTRACT

Top-K Item Recommendations for Content Curation Platforms Using a Graph Convolutional
Autoencoder

Charles Im
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. James Caverlee
Department of Computer Science and Engineering

Texas A&M University

There are millions of users using applications where content creators (curators) create items

or content for the users to consume. With users spending more and more time on these platforms,

personalized recommendations incentivizes users to consume more content. Much research has

been done to improve the performance of the systems but the process of using a graph-based

relationship to map the users and curators is still a largely new topic that has the potential to

capture the relationships between users, content, and curators. In this thesis, we propose a graph-

based convolutional autoencoder recommender system for top-K item recommendations for each

user. We compare the results of our model to current state of the art recommender systems and offer

insight into the noise that impacts the relationship between users and curators. We demonstrate that

our model performs similarly to current state of the art models and provide future directions that

require more research.

1



DEDICATION

To our families, instructors, and peers who supported us throughout the research process.

2



ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisor, Dr. James Caverlee, and Jianling Wang, for their

guidance and support throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for making

my time at Texas A&M University a great experience.

The data analyzed/used for Top-K Item Recommendations for Content Curation Platforms

Using a Graph Convolutional Autoencoder were provided by the TAMU InfoLab. The analyses

depicted in Top-K Item Recommendations for Content Curation Platforms Using a Graph Convolu-

tional Autoencoder were conducted in part by the TAMU InfoLab and these data are unpublished.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by the Undergraduate Research Scholars thesis pro-

gram at Texas A&M University.

This work received no funding.

3



1. INTRODUCTION

With the increasing amount of consumable content accessible to people, there is a greater

reliance in using recommender systems to connect users to the right content across many different

platforms. Recommender systems allow users to receive more personalized content, so that users

can consume more items that they prefer, which leads to increased activity on those platforms.

Usually, recommender system models are trained by using data of users’ past actions and applying

an algorithm to predict items that different users may be interested in consuming. Improvements

in recommender systems have been shown to positively influence user engagement in different

platforms [1, 2]. Recommender systems, however, are not limited to only recommending items to

users. Recommender systems have a wide spectrum of applications in different fields which extend

the possibilities of recommending various types of items to people [1–3].

One exciting direction in recommender system research is the field of curation platforms.

Research in traditional recommender systems for users and items has been done extensively [4–6],

but research involving interactions between users and content creators has not been conducted

as extensively due it to being a relatively new area. Platforms like Spotify implement features

that allow users to listen to other curators’ playlists, while users of platforms like YouTube and

TikTok directly rely on the consumption of content made by other curators. All of the respec-

tive recommender systems on the aforementioned platforms play an integral role in each of their

functionalities and are needed to maintain or increase user engagement. As a result, further re-

search into the interactions between users, curators, and items should be done to have a greater

understanding in providing curator-based recommendations.

In content curation platforms, users tend to follow curators who create content that are

similar in preference to users’ interests. Creating state of the art recommender systems allows

those platforms to recommend content that users are more likely to consume [2,7,8]. To illustrate,

the popular platform, YouTube, lets users “subscribe” to content curators and uses users’ sub-
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scriptions and watch histories to provide new video recommendations. The existence of content

curators allows users to more easily access specific content that they enjoy and allows the platform

to organize a system that uses user-curator and user-item interactions to provide more accurate rec-

ommendations. Such a system creates a framework for recommender system specialists to utilize

the overarching structure to generate user-specific recommendations.

An important issue in curator-content based recommendation is finding a way to accurately

capture the interactions between users, items, and curators. User preferences are often complex

and driven by a multitude of factors, so they usually cannot be confined to one certain area or

genre. No single user will have the exact same preferences as another and it is not guaranteed

that a user will only consume content in a singular domain. Likewise, the content that curators

produce usually spans different domains and genres. When presented with user-item interactions

along with user-curator interactions, the given data can be very noisy since not all user preferences

align with a single curator. Therefore, it is important to capture the extent of the similarities users

share with a set of curators in order to use user-curator interaction data efficiently.

Another interesting issue we want to address is whether information can be propagated

from user-item to user-curator interactions. Users usually have a set of preferences and may share

similar preferences with other users – preferences that are not defined in existing user-curator

interactions. Since it is possible for a single user to have similar tastes with another user but not be

following or interacting with them, it is worthwhile to investigate whether those similar users can

be made into artificial curators, a term we call pseudo-curators. If successful, discovering those

interactions could result in augmenting data about user preferences and allowing for more precise

recommendations.

In this thesis, we propose to tackle the challenges mentioned above and produce a novel

top-k item recommendations for users using a graph convolutional based autoencoder model on an

implicit feedback dataset.

In order to capture the interactions between users and curators, we propose a graph structure

to connect relevant users. A graph structure explicitly connects users to the curators they follow,
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while also providing a defined structure to organize user, item, and curator interactions. Utilizing

the graph structure, we further adopt a graph convolutional preprocessing step to redefine user

embeddings using information about the curators that they follow. To further reduce the noise in

the user-curator relationship, we propose a similarity computation between the users and curators

with a final autoencoder architecture to generate the actual top-k recommendations.

In addition to the graph convolution step, we explore the results of creating pseudo-curators

by doing random walks of user-item interactions. We investigate making the number of pseudo-

curators that have similar preferences to users proportional to the total number of the curators they

follow. Furthermore, we observe that our graph convolution step alters the user embeddings that

were previously expressed with binary numbers, so we add ceiling and floor thresholds as a method

of normalizing the data into a format that was more representative of an implicit feedback dataset.

We show that utilizing the interactions between users and curators without a denoising

agent results in decreasing performances, while the inclusion of a similarity calculation results in

more accurate results.
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2. BACKGROUND INFORMATION

The following sections introduce background information that is necessary to understand

the context behind our proposed model. We first describe the intuition behind basic recommender

systems and the impact they have on current state of the art models. The second section explains the

popular autoencoder architecture and the reasons for why it is used for our particular model. The

last section describes the difference between explicit and implicit feedback datasets and explains

the format that our dataset is expressed in.

2.1 Intuition of Basic Types of Recommender Systems

Recommender systems are a broad field, spanning over several different domains and also

having a variety of different implementations. Unlike current state of the art models, non-machine

learning algorithms like content based recommender systems [5] and collaborative filtering [4]

serve as the basis of the model we propose and are still being used as a basis for current learning-

based recommender systems. This section will describe the intuition behind content-based rec-

ommender systems and collaborative filtering and explain how they shaped current learning-based

models.

Basic content-based recommender systems utilize a single user’s past interactions with

items to generate other item recommendations [5]. Usually, these recommender systems use a

similarity calculation between a user and the items in the dataset and ranks the items with the

highest similarity value to provide recommendations that the user is mostly likely to consume.

Generally, content-based recommender systems create recommendations specific to a single user

and do not require other users’ data.

Collaborative filtering algorithms take a user’s past interactions with items and also factors

in other users who share similar item preferences to generate recommendations [4]. These algo-

rithms usually try to find patterns among different users, based on the intuition that the behavior of

a single user will resemble the behaviors of other users with similar user-item interactions.
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State of the art recommender systems that are used today are largely based off of the two

main types of recommender systems that were described. Indeed, many current recommender mod-

els utilize hybrid models that use deep learning techniques combined with content-based and/or

collaborative filtering recommender systems [1]. The combination of matrix factorization tech-

niques with machine learning models’ ability to learn complex non-linear interactions have led

to the emergence of hybrid recommender systems that outperform bare-bones content-based and

collaborative filtering recommender systems.

2.2 Introduction of the Autoencoder

In this section, we explore the autoencoder deep learning architecture, which we utilize

in our proposed model. The goal of an autoencoder is to capture hidden interactions of a high

dimension input by projecting it to a latent space and redefining the original vector [6, 9, 10].

Figure 2.1: Autoencoder architecture.
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The autoencoder is a basic neural network with one hidden layer, consisting of an encoder

and decoder. Figure 2.1 displays a basic item-item autoencoder architecture. As seen in the left

side of the figure, the encoder takes in the high dimensional input vector and encodes it to a

lower dimensional space (which is shown in the green), while the decoder then takes the lower

dimensional vector and outputs a vector with the same original dimensions. The intuition behind

the autoencoder’s outstanding performance is that the architecture extracts important features from

the input and results in a representation that is more accurate than the input. Our architecture

consists of an item-item autoencoder with one hidden layer. The output of the autoencoder is

expressed with different values than the input, although it has the same dimensions.

2.3 Implicit vs Explicit Feedback Datasets

This section is about the difference between implicit and explicit datasets and explains their

benefits and downsides.

In the past, many recommender systems had different rating systems that were used to

represent a user’s interest in a single item. Such rating systems required interactions from users,

primarily from surveys or questionnaires that asked to rate a certain item on a scale. A simple

example could consist of asking a user to rate a movie from 1 star to 5 stars after the user had

finished watching it. It was difficult to gather data on past user and item interactions due to the

nature of surveys but recently, there has been more research that has been conducted on using

implicit feedback from the user [7, 11–14], a method that makes gathering data much easier.

Implicit feedback datasets usually do not consist of data that is obtained by explicitly asking

for a user’s thoughts or ratings on a certain item. Instead, implicit data is usually collected from

some action such as a user’s click or purchase of a particular item. Although researchers do not

obtain specific information on the extent of how much a user likes a certain item, they ultimately

receive data that a user indeed did express some sort interest in an item. Implicit feedback datasets

consist only of 0’s and 1’s, where a 0 represents no interest in a certain item, while a 1 represents

some sort of expressed interest. Due to the nature of these binary datasets, collecting data and

creating new datasets becomes much easier and less intrusive to the users’ experiences. Implicit
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feedback provides much less information about the extent of how much a user likes a particular

item compared to explicit feedback, where data can be expressed on a measurable scale, but has

become more popular due to the ease in being able to gather data.

Figure 2.2: Explicit and implicit feedback example vectors.

Figure 2.2 displays the difference between a dataset that utilizes explicit feedback versus a

dataset that utilizes implicit feedback. As we see on the left, each of the users have an expressed

rating of certain items from a scale of 1-5, while on the right, the same users and items are ex-

pressed with 0s and 1s. As mentioned before, explicit feedback datasets provide more details on

the strength of a user’s preference towards a certain item and implicit datasets tend to be inherently

noisy due to the lack of such data.

2.4 Related Works

There has been research conducted on graph-based autoencoders and curator-based recom-

mendation, but research on a graph convolutional based autoencoder model has not been explored

yet.

Autoencoders Meet Collaborative Filtering (AutoRec): Autoencoders have proven to be ef-
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fective in several others domains, with one of them being recommender systems [6]. Past research

has shown that autoencoder frameworks combined with collaborative filtering for user-based au-

toencoding and item-based autoencoding have state of the art performances, especially when com-

pared to other recommender system baselines. While the model we propose uses also autoencoders

to produce item embeddings for a given user, our research also factors in user-curator interactions

as well as a graph convolutional computational step to differentiate it from the AutoRec model.

Graph Convolutional Matrix Completion (GCMC): Graphs are able to represent and model

user-item interactions, so many graph-based models for recommendation exist. Graph learning

algorithms have shown the potential to learn complex relationships between each of the nodes

in the graph. Existing research has been conducted in representing user-item interactions via a

graph and using an autoencoder to reconstruct the user-item graph [15]. The creators of the graph

convolution matrix completion (GCMC) model used a bilinear interaction between the user and

items to feed through the encoder and decoder. Unlike the model we propose, the GCMC research

seeks to reconstruct the user-item graph itself and does not incorporate user-curator interactions

with an implicit feedback dataset.

User Recommendation in Content Curation Platforms (CuRe): Content curation platforms

allow for a variety of different recommendations to be made: users can be recommended both

and items and other curators. The creators of the CuRe model provide an implementation with

the primary purpose of recommending users other curators as well as a supplementary task of

recommending users other items [7]. The CuRe model uses separate denoising autoencoders for

curators and items and combines both of those representations in an attention layer to provide

recommendations for both items and curators. The model we propose focuses primarily on a top-k

recommendation of items to users, while relying on the interactions of user and curators through a

graph structure.
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3. THE PROPOSED MODEL

In this section we propose a novel graph convolutional autoencoder recommender system

with user-item and user-curator interactions to provide top-k item recommendations. Alluding to

our previous YouTube example, items are examples of videos, users are examples of people who

consume the videos, and curators are examples of channels that can create videos and also channels

that users can subscribe to. Section 3.1 will cover the problem formulation and specific notations,

while Section 3.2 will go in-depth about our proposed solution.

3.1 Problem Formulation

Our goal of top-k item recommendations was to output the top-k items from the set of all

items in the dataset for each user.

Let U = {u1, u2, ..., uN} be the set of the users in the dataset, where N is the total number

of users. From this point on, we will call the people a single user follows curators.

For a user u, we use a binary vector cu = [cu1, cu2, ..., cuN ] to represent the users that are

followed by u. In our case, a 0 would represent the user u not following a curator, while a 1 would

represent the user u following a curator.

Let I = {i1, i2, ..., iM} be the set of the items in the dataset, where M is the total number

of items.

For a user u, we use a binary vector yu = [yu1, yu2, ..., yuM ] to represent the items that user

u is interested in. Likewise, a 0 would represent the user u being uninterested in an item, while a

1 would represent the user u being interested in an item.

3.2 Proposed Solution

Our intuition is that we can harness the interactions between users and curators to provide

more accurate recommendations. A graph model is the most logical structure to use because it

can clearly represent all of the users and the curators each user follows in the same space. In our

graph structure, we represent each user as a node and connect each user-curator interaction with
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an edge. Each user, with its own user-item interactions, can be represented by an item embedding

previously defined in Section 3.1 as yu. As a result, we end up encapsulating user-item and user-

curator interactions by building a single graph.

With this graph structure, we propose to harness the curators each user follows to construct

an item embedding that more accurately represents each users’ preferences. A graph convolution

calculation allows us to both utilize the information from connected curators and reconstruct a

given user’s item embedding to potentially provide more information about their preferences.

The first section entails the similarity calculation that is performed between each user and

curator that is followed by that user. It then describes the user-curator graph convolution operation

that occurs as a preprocessing step before detailing the autoencoder architecture in the second

section.

3.2.1 User-Curator Graph Convolution

Figure 3.1: Graph convolution example.
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Figure 3.1 displays a basic example of one graph convolution operation for a user. Given

the one-hop neighbors of the original node, the graph convolution operations occurs by aggregating

the neighbors into the original vector to form a new embedding. Before the convolution operation,

the similarity between the one hop neighbors and the original node must be calculated with

Si,j =
1

P

P∑
p=1

(yip)(yjp) (Eq. 3.1)

Due to the complex nature of user-curator relationships and preferences, the similarity cal-

culation is done to reduce the noise that is received from the data. In this case, P is the total

number of items that the original user and the specific curator are interested in. Essentially, the

similarity calculation finds the proportion of items a user j shares in common with the original

user i. A single similarity computation between a user and a curator results in a constant ranging

from 0 to 1, where a 0 represents a relationship with absolutely no similarities and a 1 represents a

relationship with identical preferences.

Now that we have defined the similarity calculation, we can express one iteration of the

graph convolution operation for a user as the following

yu = yu +
C∑
c=1

Sc,u(yc) (Eq. 3.2)

The convolution calculation redefines the item embedding for a user u. The similarity

between u and each curator that is followed by u is calculated and is then used to scale the curators’

item vectors. We can observe that each similarity value limits the impact that each curator has on

the redefined item embedding for u.

From the extra data obtained from the convolution operation and the filtering of noise from

the similarity calculation, we modified the dataset to include more information about the users’

preferences. After the convolution operation, the embedding for the user u would equal the aggre-

gation of all of the curators’ item vectors, scaled by each similarity value in addition to the original

user-item interactions.

14



3.2.2 Graph Convolution Preprocessing Step Example

Figure 3.2: Graph convolution computation.

To give an example computation, the next few figures show what the graph convolution

preprocessing step would look like if it were simplified to a small number of users and items.

Figure 3.2 displays the user-item interactions with the vector next to the users and displays the

user-curator interactions with arrows going from the user to the curators. We can observe that user

u0 follows three curators, c0, c1, c2, in this example.

Given the data, the first calculation that we walk through is the similarity calculation. In

order to evaluate how similar a user and a curator are, we use Eq. 3.1 to calculate the ratio of the

number of items a given user and a curator share together. The first similarity computation between

user u0 and curator c0 can be done by observing that there are a total of 4 items that u0 and c0

interact with. Of those four items, we see that there are only two items they share in common. As

a result, we take those two numbers as a ratio and come out with a result of Su0,c0 =
2
4
= 0.5. The

remaining similarities for c1 and c2 can be computed by following the same computation method.
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Figure 3.3: Modifying original user vector embedding.

With the similarity calculation finished, the next step is to do the graph convolution com-

putation. Figure 3.3 displays a graphic on how the graph convolution computation is completed

for a single user. Given the similarity values for each user and curator pair, we multiply the simi-

larity constants by the original curator vectors. After doing so, we add up all of the curator vectors

and add it to the original user embedding, essentially redefining the user vector to contain more

information about the curators they follow.

3.2.3 Autoencoder Architecture

After preprocessing graph convolutional steps for all users in the dataset, the data is fed

into a basic autoencoder with one hidden layer.
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We can feed a binary vector yu = [yu1, yu2, ..., yuM ], with the graph convolutional prepro-

cessing step completed for the data, as an input to the autoencoder architecture represented as

hu = δ(V yu + b) (Eq. 3.3)

where V is the weight vector for the encoder, δ(·) is the sigmoid function, and b is the bias

term. The binary vector yu in this case represents the user-item interaction vector for a single user.

The encoder transforms the input into an embedding that is expressed in a lower dimension latent

space, which is a compressed space that consists of specific features taken from the original input.

The decoder takes the output of the hidden layer, hu, and performs a calculation that trans-

forms hu to the same dimension as original input represented by the equation

ŷu = δ(Whu + b′) (Eq. 3.4)

where W is the weight vector for the decoder, hu is the output of the encoder and b′ is the bias

term. yu is the resulting output vector is the re-expressed vector of the original input vector and

will be used to generate item predictions for the user.

3.2.4 Loss

Since our model only consists of an autoencoder architecture, the loss is just the error

calculated from the reconstruction of the original vector

L =
1

N

N∑
n=1

(yn − ŷn)
2 (Eq. 3.5)

The ultimate goal of using the loss function is to reduce the amount of error in our predic-

tions, and so we used the mean squared error for our loss function, where N is the total number of

items, yn is the original item embedding and ŷn is the predicted vector. A lower loss implies that

our model has greater chance of predicting the users’ preferences.
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3.3 Additional Modifications to the Model

We further explore several modifications to the graph convolutional autoencoder model,

such as including creating pseudo-curators and experimenting with floor and ceiling thresholds.

3.3.1 Pseudo-curators

We hypothesize that adding more curators would lead to a greater amount of data that we

could utilize to redefine each user embedding, so we create pseudo-curators. These curators are

ones that we create from the existing data and are not originally included in the dataset.

For a given user u0 and its user-item interaction vector, yu0 we take all of the items that u0

has interacted with and randomly sample β amount of them. From those items, we compile all of

the curators that also interacted with the randomly sampled items and count the total number of

times each curator has interacted with the randomly sampled items. We then take the top 3 curators

that have interacted with the items the most and made the curators “pseudo-curators”. The pseudo-

curators are added to the user-curators interactions so that the graph convolutional preprocessing

step applies to both curators and the pseudo-curators.

3.3.2 Thresholds

With the graph convolutional operation, we hypothesize that there might be too much noise

being added into the new user embeddings, so we propose to add ceiling and floor thresholds.

Because each user in the dataset follows a different number of curators, we set ceiling and

floor thresholds to be relative to the number of curators that they follow. Because the convolution

operation increases the overall values of the user embeddings the more curators a user followed,

we implement a ceiling value of 1. If certain user-item embeddings are over a certain value rela-

tive to the number of curators a user followed, we can set those values to the ceiling value of 1.

Likewise, for the floor thresholds, if certain user-item embeddings are under a certain value, those

embeddings are set to the value value of 0.
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4. EXPERIMENTS

4.1 Metrics

In order to evaluate model performance, we use precision and recall as the metrics. In order

to explain precision and recall metric evaluations for our recommendation system, we can express

certain terminologies with the following examples: if our model predicts that a user will like a

particular item and the user ends up actually liking it, we get a true positive; if our model predicts

that a user will like a particular item and the user does not end up liking it, we have a false positive;

if our model predicts that a user will not like a particular item but the user ends up liking it, we

have a false negative; if our model predicts that a user will not like a particular item and the user

ends up not liking it, we have a true negative.

We can more specifically define precision with Equation 4.1 and recall with Equation

4.2.

Precision =
true positive

true positive + false positive
(Eq. 4.1)

Recall =
true positive

true positive + false negative
(Eq. 4.2)

As we can see both of the metrics use the true positive as a ratio of different elements. Precision

emphasizes the proportion of true positives that we received out of all the items we thought a user

would like. In contrast to that, recall emphasizes the proportion of true positives that we received

in proportion to all of the items that a user actually liked. These precision and recall metrics were

calculated and averaged for all of the users in the dataset.

4.2 Baselines

We use an implicit feedback collaborative filtering model and an item-item autoencoder as

baselines to compare our graph convolutional autoencoder model results:
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• Collaborative Filtering: There are several different types of collaborative filtering models,

but the one we use as a baseline is an implicit feedback collaborative filtering model that

uses an alternating least squares optimizer. Essentially, collaborative filtering models take

past user-item interactions and recommends items to a user, based on other users who like

similar items. The baseline that we use is a separate optimized version, specifically for

implicit feedback datasets, where they used confidence scale to indicate that a user was more

likely to prefer a certain item.

• Item-item Autoencoder: The other baseline that we use is a simple item-item autoencoder

with a one single hidden layer. We make the encoder have an input that is the same dimension

as the total number of items and make the decoder have the same output as the total number

of items.

4.3 Results

Because we want to recommend a specific number of items that users are likely to consume,

we use a top-K method of recommending items to users. The method in which top-K metrics are

generated is by confining the number of predictions we make to be equal to K. For example, if

we generate 10 recommendations for a user and only 5 are true positives, our precision at K=10

would be 0.5. Likewise, we would repeat the calculations, generating our top-1, top-5, ..., top-K

predictions for each precision and recall metric. To evaluate the top-K recommendations, we use

the precision and recall at k=1, 5, 10, 15, and 50 metrics for each user, where the metrics are

evaluated at the number of items that are predicted correctly for each user.

We generate precision and recall metrics for two different versions of our model: One with

a similarity calculation during the convolution calculation and one without a similarity calculation

during the convolution calculation. We want to show the differences between the results with

and without a crucial element for denoising the data. Our model with the similarity convolution

calculation is labeled as GCA+, while the model without the similarity convolution calculation is

labeled as GCA-. As for the model hyperparameters, we trained the model using batch gradient
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descent, using a batch size of 256 over a total of 50 epochs.

The dataset that was used is very sparse, which helps explain the overall lower performance

of the recommender system algorithms that were trained. We use a real life Spotify dataset, with

songs acting as the items and curators as people who created music playlists for users to consume.

In total, there are approximately 9,000 users and 70,000 items in our dataset.

We see in Table 4.1 that the collaborative filtering algorithm performed generally the best,

with our GCA+ model barely performing better for the top K=1 recommendations. We see that our

proposed graph convolutional autoencoder model was generally similar in performance compared

to the AutoRec model.

Table 4.1: Comparing the baselines with the proposed model for the top-K item recommendation
of items where K=1,5,10,15,50, using precision and recall as the evaluation metrics

Spotify Dataset

Model
Precision (%) Recall (%)

K=1 K=5 K=10 K=15 K=50 K=1 K=5 K=10 K=15 K=50
Collaborative Filtering 2.80 3.26 3.08 2.95 2.34 0.065 0.384 0.718 1.96 2.71

AutoRec 3.09 2.26 1.94 1.80 1.41 0.069 0.256 0.439 0.611 1.60
GCA- 2.50 1.95 1.78 1.66 1.25 0.057 0.222 0.406 0.565 1.42
GCA+ 3.13 2.27 1.94 1.82 1.40 0.071 0.257 0.441 0.621 1.59

One thing to also note are the differences in performances between the GCA algorithm with

and without the similarity calculation. We see again in Table 4.1 that without the similarity calcu-

lation, the precision and recall performances are worse for each top-K recommendation compared

to GCA with the similarity calculation.

Also seen in Table 4.1 the differences in performance between the machine learning based

algorithms compared to the collaborative filtering algorithm. We see that in the top K=1 predic-

tions, the collaborative filtering algorithm has a worse precision and recall performance, outper-

forming the other models at the K=5,10,15,50 levels.
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Table 4.2: Precision and recall of pseudo-curators and thresholds for K=1,5,10,15,50

Model
Precision (%) Recall (%)

K=1 K=5 K=10 K=15 K=50 K=1 K=5 K=10 K=15 K=50
GCA+ with Thresholds 3.08 2.27 1.99 1.82 1.41 0.069 0.257 0.450 0.621 1.61

GCA+ with Pseudo-curators 3.10 2.24 1.98 1.82 1.40 0.070 0.255 0.450 0.621 1.60
GCA+ with Pseudo-curators and Thresholds 0.42 0.82 1.15 1.13 0.79 0 0 0.002 0.004 .009

4.4 Pseudo-Curator and Threshold Results

The results of the pseudo-curator and threshold implementations are shown in Table 4.2

The precision and recall values are similar in value compared to the GCA+ model and Autoencoder

baseline shown in Table 4.1 There are marginal increases in some of the metrics, but no noticeable

improvements even with pseudo-curators and threshold implementations. One thing to note is

that the model performance with pseudo-curators and thresholds combined dropped considerably,

especially when compared to other implementations.

4.5 Findings

As we can see in the table, we had marginal improvements with our graph convolutional

autoencoder model for top K=1 recommendations. We also saw a significant difference in pre-

cision and recall metrics with and without the similarity calculations for all top-K values. Since

implicit feedback datasets are known to be inherently noisy, our results reflect the importance of

the similarity calculation. It is difficult to deduce whether the similarity calculation has a direct

impact on the performance on the model, but we can definitely see that the GCA+ model converges

more quickly compared to the GCA- model.

We used the graph preprocessing step to try and capture more patterns of interaction be-

tween users and curators, but it surprisingly did not yield results that were signficantly greater than

the baseline models. Instead, we were met with results that were very similar to the autoencoder

model, which is expected as we in fact did use the autoencoder architecture after the preprocessing

step. From these results, it can be seen that our graph preprocessing step did not have a significant

enough impact to improve the recommendations given to users.
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The same can be said about the implementations of the pseudo-curators and ceiling and

floor thresholds. We expected to see more distinct results with the model modifications of our

pseudo-curators and thresholds but were met with similar results to the basic autoencoder archi-

tecture. We hypothesized that the pseudo-curators would lead to more accurate predictions due to

the augmentation of the users’ original data but failed to find a great deviation from the baseline

autoencoder model. With the ceiling and thresholds, we had also hypothesized that normalizing

the dataset to be more representative of an implicit feedback dataset would provide better results

but were also met with similar results.

One observation that can be made is that while our model had worse performances com-

pared to the authors of [7], who used the same dataset, we used only one-third of the total 27k

user-item interaction data, which can explain the lower model performance. In the dataset that we

used, there were only roughly 9k user-curator interactions, which why we chose to not use the rest

of the dataset. Deep learning usually requires a large dataset to obtain sufficient results so using

more users for training could result in more definite results.
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5. CONCLUSION

In this thesis, we proposed a graph-based model to more accurately provide top-K item

recommendations to users in a content-curator based platform. We were able to produce a model

that had performances similar to that of the state of the art autoencoder and marginally higher

precision and recall performances for the top k=1 recommendations, while the our model fell short

of the collaborative filtering baseline model.

By comparing the model performances with and without the similarity computations, we

showed that just incorporating the user-curator data as the training data resulted in additional noise

that decreased model performance. The relationship between the graph-based connections of users

and curators is still a concept that has great potential for future research in representing the inter-

connectedness of users and curators in a content-curator platform.

In addition to the graph convolution computations, we created pseudo-curators and applied

thresholds to control the distribution of the input data. Although, the results were similar to that of

the baseline autoencoder, the concept of data augmentation via pseudo-curators is still a topic to be

further researched. Furthermore, testing our model with other curator datasets may offer different

insights.
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