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ABSTRACT

Uniform Acceleration Radiation

Timothy Bates
Department of Mathematics

Texas A&M University

Research Faculty Advisor: Dr. Stephen Fulling
Departments of Mathematics and Physics

Texas A&M University

Radiation of a uniformly accelerating source is an enduring problem in the physics litera-

ture that gives rise to multiple apparent paradoxes. Also in the literature there exist several notions

for defining radiation. Here we focus on exploring the Poynting flux radiation, which is defined

with respect to an observer’s proper timelike Killing vector, of a source in a massless scalar field.

We fill in details regarding the vanishing divergence condition of the stress tensor and verify ex-

plicitly that the divergence vanishes on the past horizon. Using a convenient set of coordinates, we

plot vector fields of the Minkowski Poynting vector flux to gain insight into the flow of energy of

the system. We then address implications to the equivalence principle paradox for uniformly accel-

erating sources, and argue that the qualitative equivalence principle provides the correct argument

to ‘save’ the equivalence principle for scalar electrodynamics. We also provide a criterion, which

would quantitatively verify this, if proven.
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1. INTRODUCTION

1.1 Historical Background

The situation of a uniformly accelerating charge (hyperbolic motion)1 has been debated for

decades. Since it was first considered by Max Born in 1909 [1], many volumes have been written

on the subject, in which several “paradoxes” arise. The first paradox is that in hyperbolic motion,

the radiation reaction force disappears, yet the Larmor formula, P = −2q2a2/(3c3), still predicts

radiation. Born had originally concluded that there was no radiation with other notable figures,

such as Pauli in 1921, returning the same result [2]. Bondi & Gold in 1955 [3] and later Fulton &

Rohrlich in 1961 [4] provided more detailed calculations which resulted in the first major works

concluding that a uniformly accelerating charge radiates. While the majority view today is that

such a charge radiates, with many figures including Rohrlich, Ginzburg, and Schwinger [4][5][6]

supporting this view, there are also distinguished names, including Pauli [2] and Feynman [7], who

have called this into question, with Singal [8] still maintaining the view that there is no radiation.

Even if one accepts that there is radiation, there is further debate on which observers may

detect radiation. For example, inertial observers observe radiation while co-accelerating observers

do not [9][10]. Even inertial observers inside the R region may not observe radiation [10][11].

Further, different ways of defining radiation exist in the literature. In traditional classical

field theory one uses the stress energy tensor to define radiation via the Poynting flux integrated

over all angles. There are also methods, motivated by quantum field theory which use number

operators to compute a quantity that can be interpreted as radiation. Number operators are not

uniquely defined; Higuchi and Matsas give a classical particle number definition for radiation [12]

and Kialka et al. provide two classical particle number operators [13] generalized to Klein-Gordon

fields. One might ask whether these definitions yield congruent results.

A characteristic of hyperbolic motion is that there are two surfaces that separates Minkowski

1Uniform acceleration is defined as when the acceleration 4-vector is constant: aµaµ = g2. We consider rectilinear
uniform acceleration; the motion in question takes the shape of a hyperbola on the z–t plane depicted in Figure 1.1
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space into four natural regions2. The first surface, Hp = L ∪ P ∩ R ∪ F , is called the past

horizon, since any signal sent from the charge cannot be sent to L ∪ P . The second surface,

Hf = L ∪ F ∩ R ∪ P , is called the future horizon, since no signal can be sent from F ∪ L

to the charge. Figure 1.1 depicts the horizons and the 4 regions. In quantum field theory, the

horizon of a uniformly accelerating observer is associated with the famous Fulling-Davies-Unruh

effect [14] which predicts a thermal bath of particles from the Rindler horizon of an accelerating

observer. Though derived originally for a quantum system, there is work done to demonstrate

classical analogs to the Unruh effect [12][15] which may be useful in answering some of the ‘para-

doxes’.

The next ‘paradox’ arises from the principle of equivalence because uniform acceleration

is associated to uniform gravitational fields. Thus one can ask whether a charge sitting on a table

in some gravitational field radiates. One can also ask whether a charge in gravitational free fall

radiates. There are some who say that the equivalence principle cannot be extended to electromag-

netic phenomenon. Rohrlich, Ginzburg, Boulware, and Pauri & Vallisneri [9][11][16][17] have

addressed this concluding that the principle of equivalence may be saved and demonstrates consis-

tent experiments; however, there is still not a full consensus entirely over which experiments report

radiation. Of course, Singal argues that no contradiction arises with the principle of equivalence as

he maintains that there is no radiation from uniformly accelerated charges to begin with [18] [8].

Lastly, there is confusion over the interpretation of the ‘Schott Term’. Fulton, Rohrlich and

Ginzburg argue that this is key to understanding how radiation is possible while also satisfying

energy conservation [4][5]. Rowland elaborates and makes the case that Singal is incorrect in his

conclusion that there is no radiation by not accounting for the Schott term [19].

1.2 The Scope of This Paper

The case of a uniformly accelerating source has given rise to much debate and confusion

around what we consider radiation and who can observe it. It asks us to analyze the notions

and definition that we use to analyze these problems and by studying this problem we can hope
2R = {p ∈M : z+t > 0, z−t < 0}, L = {p ∈M : z+t < 0, z−t > 0}, F = {p ∈M : z+t > 0, z−t > 0},

P := {p ∈M : z + t < 0, z − t < 0}, whereM is Minkowski space, and p = (t, x, y, z) ∈M
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to clarify what we mean by these concepts including radiation, energy, principle of equivalence,

Schott term, radiation reaction, etc.

With all of these ‘paradoxes’ to explore, this paper narrows its scope to the issue of defining

radiation and the effects of these definitions on our understanding of the equivalence principle

paradox. We explore these paradoxes in the context of a scalar source in a massless scalar field.

We begin in section 2 by clarifying our notions of energy, and provide definitions of radiation.

Next in section 3, we calculate the field and radiation of a scalar source in a massless scalar field.

In section 4, we apply these results to a thought experiment concerning the equivalence principle.

The paper also explores the question for what occurs for a source with the charge being turned on

(and off) at some finite points.

We adopt the metric signature (−,+,+,+) and use natural units3. Unless otherwise stated,

t denotes Minkowski time, λ denotes Rindler time, and s denotes proper time.

3c = ℏ = 1
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Figure 1.1: Diagram of hyperbolic motion with the 4 labeled quadrants
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2. THE DEFINITIONS OF RADIATION AND THEIR KILLING

VECTORS

Here we introduce Rindler coordinates, followed by a definition of energy. We then intro-

duce several definitions of radiation which can be applied to inertial and accelerating observers.

2.1 Rindler Coordinates

Uniform acceleration is naturally described by a system of coordinates called Rindler co-

ordinates. The line element for a Rindler coordinate frame is given by

ds2 = −Z2dλ2 + dZ2 + dx2 + dy2 (Eq. 2.1)

Ignoring momentarily the transverse dimensions, we can think of these coordinates as ‘hyperbolic

polar coordinates’ as any fixed Z is assigned to some hyperbola of fixed spacetime distance from

the origin similar to how r in polar coordinates is assigned to a circle of fixed distance from the

origin. λ is associated to how far one has travelled along that hyperbola, similar to how θ in polar

coordinates tells one how far to move around the circle.

The transformations from standard Minkowski coordinates to Rindler coordinates are given

by

t =
eaξ

a
sinh(aλ), z =

eaξ

a
cosh(aλ) (Eq. 2.2)

The line element for this version of the coordinates is given by

ds2 = e2aξ(−dλ2 + dξ2) + dx2 + dy2 (Eq. 2.3)

One can see that Eq. 2.1 and Eq. 2.3 are equivalent when one sets Z = eaξ. We can visualize these

coordinates in a spacetime diagram given by Figure 2.1.
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Figure 2.1: Rindler Coordinate Grid

The red hyperbolae are curves of constant ξ, and the blue lines from the origin are curves

of constant λ. Rindler coordinates are defined only in the interior of the two dashed lines which

represent the Rindler horizons.

2.2 The Definition of Energy

Before defining radiation, we need to define what exactly is being radiated. This requires

a notion of energy. We define energy as the conserved quantity that is associated to a timelike

Killing vector field. Killing vectors fields correspond to the vanishing of the Lie derivative of the

metric; in other words, the metric is left unchanged under translation by a Killing vector. As the

metric is invariant under an infinitesimal change generated by a Killing vector, these isometries are

also called infinitesimal generators of symmetries (since the group of isometries may represent the

symmetries of a system). These generators are associated via Noether’s theorem to a conserved
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quantity. For inertial observers, the time translation vector field ∂t
1 is a Killing vector (as the

Minkowski metric is independent of time) that corresponds to the conserved quantity of energy. In

Rindler space (ie for a uniformly accelerating observer) the notion of Energy is different. Rindler

energy is the conserved quantity associated with the Killing field generated by the timelike Killing

vector

∂λ = z∂t + t∂z =
1

2
[v∂v − u∂u] (Eq. 2.4)

where λ is Rindler time2. Notice that this is also the Lorentz boost Killing vector in Minkowski

space. Important to note here is that an arbitrarily accelerating frame as opposed to uniformly ac-

celerating does not have a timelike Killing vector. As such the notion of a conserved energy does

not exist for that frame. If the background spacetime is flat then we can still associate conserved

quantities to the ambient flat Minkowski frame (hence we can see the privileged role that inertial

observers play). Such a Killing vector also exists for the time coordinate of a uniformly acceler-

ating observer in flat space and in the exterior of a static black hole, where in fact it is the only

timelike Killing vector of such a frame.

Differentiating between the Minkowski and Rindler energies should be emphasized to

demonstrate that ‘energy’ is a notion attached to reference frames. Throughout this paper, quanti-

ties corresponding to Minkowski (inertial) observers will be denoted with a subscript M , (ex. QM )

and quantities corresponding to Rindler observers will be denoted with a subscript R (ex. QR).

2.3 The Definitions of Radiation

2.3.1 Poynting Flux

In this section we construct what we call a Poynting flux. Historically, the Poynting vector

was first introduced in the 19th century to quantify the direct energy flux of an electromagnetic

field. Integrating this flux over a spacelike surface yields power; this is naturally interpreted as

electromagnetic radiation. Moving beyond the electromagnetic case, we can use the same ma-

chinery to capture the energy flux of a scalar field. The energy-momentum information is stored

1Here ∂t is a coordinate vector, a notation used often in differential geometry
2Here u and v are null coordinates defined in appendix A
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within the stress-energy tensor, but still requires a tool to identify what parts precisely correspond

to energy flux. Tαβu
αnβ captures the momentum density along the nβ direction for the observer

associated with uα, a timelike unit vector. If in place of uα, we use a timelike Killing vector for

which we have an associated energy, we can capture the energy density flowing through nβ for

this observer. To this end, recall that associated to an observers notion of energy, one identifies a

timelike Killing vector. By contracting this Killing vector with the stress energy tensor we have

captured the energy density components. To quantify the flow we contract with a spacelike vector

that is normal to a constant τ surface. The result is naturally interpreted as energy flux per unit

area in the outward normal direction. Integrating this across all spatial angles yields power which

quantifies the energy flow out of a region. The form of the Poynting flux is given as

S = −Tµνξ
µn̂ν (Eq. 2.5)

where ξµ is the Killing vector, n̂ν is a unit normal vector to the surface of integration, and Tµν is

the stress tensor.

2.3.2 Poynting Flux for an Inertial Observer

The timelike Killing field associated to an inertial observer is the inertial time translation

Killing vector ∂t. We contract ∂t as well as a spacelike normal vector with the stress tensor:

∂tT
µν = T 0ν . To obtain the radiated power from the Poynting vector, we choose a constant t

hypersurface (required by the conservation of energy) and obtain

RM =

∫
n̂νξµT

µν =

∫
n̂νT

0ν =

∫
dsjT

0j (Eq. 2.6)

This gives us a notion of Energy flux out of a region surrounding the charge. Now this is just a

special case for a more broad definition of radiation.

10



2.3.3 Poynting Flux for a Rindler Observer

Recall that the notion of energy can change for different classes of observers. While prior

we had that the killing field ξµ = ∂t, now we consider a stationary observer in a Rindler frame

whose notion of energy is associated to the Rindler time Killing vector ξµ = ∂λ. Now n̂ν is a unit

normal vector to the surface of constant Rindler time Σ(λ). This gives us a notion of energy flux

out of a constant Rindler time hypersurface. The power radiated is then given by

RR =

∫
Σ(λ)

ZS (Eq. 2.7)

where Σ(λ) denotes a spacelike surface where λ is constant. Z makes an appearance since it is the

coefficient of the volume form.

2.3.4 Classical Particle Number (Massless)

We should remark that in quantum theory, the use of number operators to establish a pres-

ence of radiation is standard. Number operators have an interpretation of finite number of quanta

of some particular field. It is important to note that these operators are not unique and different

methods can return different number operators. Higuchi and Matsas [12] define a classical analog

to the quantum number operator for a massless scalar field.

NM =
1

2

∫
d3k

(2π)3k
[j̃(k,k)]2 (Eq. 2.8)

This is obtained by taking the Energy and dividing by frequency k. They also establish a number

operator for Rindler observers; first introducing a Rindler energy quantity,

ER =− 1

2

∫ ∞

−∞
dξ

∫ ∞

−∞
dx

∫ ∞

−∞
dy[ϕ∗∂2

τϕ− ∂∗
τ∂τϕ] (Eq. 2.9)

=π

∫ ∞

0

dω

∫
d2k⊥|j̃R(ω, ω,k⊥)|2

11



and following by dividing by Rindler mode frequency to obtain a Rindler number operator

NR = π

∫ ∞

0

dω

ω

∫
d2k⊥|j̃R(ω, ω,k⊥)|2 (Eq. 2.10)

As mentioned previously, these operators can be defined in multiple ways. Kiałka et al.

[13] define 2 particle number operators. Below is equation (19) from [13],

N̂2(t, V ) = i

∫
V

d3xϕ̂−(t,x)
←→
∂t ϕ̂

+(t,x) (Eq. 2.11)

The advantage of this number operator is that it is presented in a form which may be applied to

Minkowski and Rindler observers.
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3. SCALAR RADIATION

In this section we compute the field of a uniformly accelerating source and calculate its

radiation using the Poynting vector for inertial observers and Rindler observers. We mention the

divergence-free condition of the stress tensor, which is computed in the appendix.

3.1 Background Scalar Field

The following discussion is filling in details of the treatment given by Ren & Weinberg

[10]. Let ϕ be a massless scalar field, where the Lagrangian for a massless scalar field is given by

L =
1

2
∂µϕ∂

µϕ (Eq. 3.1)

It follows from the principle of stationary action that for a free massless scalar field, □ϕ = 0.

When coupled to a scalar source ρ given by

ρ = qδ(ξ)δ(x)δ(y) (Eq. 3.2)

the field can be calculated with the retarded Green’s function,

Gret(x, xs) = θ(x0 − x0
s)δ([x− xs(s)]

2) (Eq. 3.3)

where xs is a point on the trajectory of the source, and x is an observation point. The field is solved

in the following form,

ϕ(x) =
q

2π

∫ ∞

−∞
dsθ(x0 − x0

s(s))δ([x− xs(s)]
2) (Eq. 3.4)

The theta function can be taken out of integral as θ(t+ z), and we change limits of integration to

ϕ(x) =
q

2π
θ(t+ z)

∫ x0
s(s)

−∞
dsδ([x− xs(s)]

2) (Eq. 3.5)

13



The argument of the delta function represents the squared spacetime interval from the

source to observation point. It ensures that the field information travels on a null trajectory from

the retarded point on the source of the charge. We have from distribution theory the identity

∫
δ(f(x)) =

∑
i

δ(x)

|f ′(x0)|
(Eq. 3.6)

Evaluating ∆s2 and (∆s2)′,

|x− xs(s)|2 =−
(
t− 1

a
sinh(as)

)2

+ x2 + y2 +

(
z − 1

a
cosh(as)

)2

(Eq. 3.7a)

=− t2 +
2t

a
sinh(as) + ρ2 + z2 − 2z

a
cosh(as) +

1

a2
(Eq. 3.7b)

(∆s2)′ =2t cosh(as)− 2z sinh(as) (Eq. 3.8)

Setting Eq. 3.7a equal to 0 and simplifying we obtain

t2 − ρ2 − z2 − 1

a2
=
2t

a
sinh(as)− 2z

a
cosh(as) (Eq. 3.9)

a

2

(
−χ2 − 1

a2

)
=− eaξ

a
cosh(a(τ − s)) (Eq. 3.10)

Using the coordinates in [11], Z = eaξ/a, we have some useful identities

χ2 =Z2 + ρ2 (Eq. 3.11)

cosh(a(τ − s)) =[χ2 + a−2]
a2

2eaξ
(Eq. 3.12)

which we can use to solve for R,

R =eaξ sinh(a(τ − s)) =
eaξ

a2

√
cosh2(a(τ − s))− 1 (Eq. 3.13)

R =
a

2

√(
χ2 +

1

a2

)2

− 4e2aξ

a4
=

a

2

√(
Z2 + ρ2 +

1

a2

)2

− 4Z2

a2
(Eq. 3.14)
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Eq. 3.14 is (III.16) in [11] which is equivalent to (2.3) in [10]. It then follows that the field

is given by

ϕ(x) =
q

4πR
θ(t+ z) (Eq. 3.15)

which is precisely (2.2) in [10]. The geometry of R corresponds to the radius of a distorted sphere

centered at the source. The theta function ensures that the field is zero in the P and L regions of

the Minkowski diagram. As a consequence we have a horizon on the t = −z plane.

The use of Rindler coordinates for this calculation might suggest that this equation is no

longer well defined in region F , but using the coordinate chart defined in section II of [11], we can

obtain the same result in region F . In region F we have

ds2 = −(−a2Z2dτ 2 + dZ2) + dx2 + dy2 (Eq. 3.16)

and z = Z sinh(aτ), t = cosh(aτ). Making the appropriate changes and repeating the same

procedure as before, we once again obtain

R =
a

2

√(
Z2 + ρ2 +

1

a2

)2

− 4Z2

a2
(Eq. 3.17)

3.2 Radiation for Inertial Observers

3.2.1 Stress Energy Tensor

The stress energy tensor captures the information of energy-momentum of a field in a vol-

ume. A well defined field satisfies ∇αT
αβ = 0 everywhere except the source; this is equivalent to

local conservation of energy-momentum. We verify that in fact this vanishes, but to avoid disrupt-

ing the flow in the current exposition, we place this calculation in Appendix B using the coordinates

defined in Appendix A.

To compute the ‘Poynting vector’ radiation, we must calculate the stress energy tensor

T µν = ∂µϕ∂νϕ− 1

2
gµν∂αϕ∂

αϕ (Eq. 3.18)
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The form of T µν was computed for inertial observers in [10] in the interior of R and F as

T µν =
q2a2

16π2

[
1

R4

(
xµxν − 1

2
ηµνX2

)
+

1

R6

(
a−2ρµρν +

1

2

(
X2 − a−2

)
(xµρν + ρµxν)− ρ2xµxν

)]
(Eq. 3.19)

where ρµ = (0, x, y, 0). We computed the components of the stress tensor explicitly in null coor-

dinates in the appendix.

3.2.2 Radiation

The radiated power was computed by Ren & Weinberg. They expressed T tj in (2.14) of

[10] as

T tj =
q2

16π2

[
a2 cos2 θ

r2
+

a cos θ

r3

]
rj (Eq. 3.20)

The cos(θ) tells us that the energy flow is greater along the plane that is coplanar to the hyperbolic

motion. The opposite is true in the electromagnetic case, where there is a sin(θ) instead tells us that

the energy flow is greater along the plane perpendicular directions. Integrating this over a sphere

of radius r = t (which corresponds to the intersection of a constant Minkowski time hypersurface

and the future light-cone from a point on the trajectory)

RM =

∫
dSjT

tj =
q2

16π2

∫
dΩ

[
a2 cos2 θ +

a cos θ

r

]
(Eq. 3.21)

The terms in the stress tensor on the order of 1/r2 correspond to the emitted portions of the field

while the terms of order 1/r3 correspond to energy that is bound to the source. Performing the

integration yields

RM =
q2a2

12π
(Eq. 3.22)

We thus have a nonzero radiated power for inertial observers. Perhaps remarkably, this result is

independent of both the considered point on the trajectory, and the time t chosen for the integration.

This is known to be the case for the electromagnetic situation [20][11].
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3.3 Radiation for Rindler Observers

There are several ways to address the radiation question for Rindler observers. [10] trans-

formed the stress tensor Eq. 3.19 into Rindler coordinates and found that the T τj components

vanished, thus there cannot be a Rindler Poynting flux. This concludes that Rindler observers who

are stationary with respect to the uniformly accelerating charge observe no radiation: RR = 0.

It remains to answer the question for what a Rindler observer may detect from an inertial charge:

RR. One possible treatment may be by considering the field generated by an inertial charge, and

transforming coordinates to the frame of a supported observer [16].

Another more general approach is the method of Hirayama in [21][22] where he considered

the question of radiation for an electromagnetic charge undergoing an arbitrary acceleration (not

necessarily uniform) with respect to a class of Rindler observers. The conclusion of Hirayama was

that given a Rindler observer, the radiation of a charge according to Rindler energy is related to

their relative acceleration. The result (Eq. 36 of [22]) (modified to our notation) is given by

R =
2q2

3
αµαµ(−ξ̄αvα)dτ (Eq. 3.23)

where τ is proper time of the charge, αµ = hµ
ν [a

ν − wν ], wµ = (gαgα)
1/2uµ + gµ, where a and

v are the acceleration and velocity of the charge, g and u are the acceleration and velocity of the

observer fixed in the frame at the retarded point, and hµ
ν is a projector orthogonal to vµ. The bar over

ξ indicates the Killing vector field evaluated at the point of emission. We note that R ≡ (a − g)2

is the square of the magnitude of the relative acceleration.

Moving back to the scalar case, we simplify this problem first by assuming uµ = vµ and

that the accelerations are coplanar. The field for an arbitrary accelerating source is given in Eq.

3.24.

ϕ =
−q

4π(Rµvµ)
(Eq. 3.24)
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We then find ∂µϕ given in Eq. 3.25

∂µϕ =
q

4πR2

(
1 + aαRα

R
Rµ − vµ

)
(Eq. 3.25)

where R = Rαvα. Let f = (1 + aαRα)/R, then the stress tensor components Tµν = ∂µϕ∂νϕ −
1
2
gµν∂αϕ∂

αϕ are represented by

Tµν =
q2

16π2R4

[(
f 2RµRν − 2fRµvν + vµvν

)
+

1

2
gµν (2fR + 1)

]
(Eq. 3.26)

Next we would like to find S = −Tµνξ
µnν , where ξ is Rindler time Killing vector. We notice that

the term in the expression of the stress tensor with gµν vanishes in S as ξ and n̂ are orthogonal:

gµνξ
µn̂ν = ξµn

µ = 0. It remains to find

S = − q2

16π2R4
ξµnν

[
f 2RµRν − 2fRµvν + vµvν

]
(Eq. 3.27)

Since our goal is to find RM for an inertial charge, we can simplify this by letting a = 0.

S = − q2

16π2R4
ξµnν

[
RµRν

R2
− 2Rµvν

R
+ vµvν

]
(Eq. 3.28)

Performing the integration of S over a sphere of constant Rindler time remains to be done in future

work. . We should note here that in the electromagnetic case, this is resolved1 and gives a power

radiated RR = 2q2g2

12π
. For the scalar case we would expect RR = q2g2

12π
.

3.4 Flow of Energy

In appendix B, we fill in some details regarding how the divergence of the stress tensor

vanishes on the horizon. To understand the conservation law further, we can look at the flow

of Sµ = −gµαTαβξ
β . The following figures were graphed using matplotlib. Each graph is a

projection of these vector fields onto some plane. We set a = .001, so that the trajectory of the

1Luther D. Rinehart, private communication. See also [21]
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charge is pushed horizontally far to the right on the z–t plane (in the u–v plane this would be to

the upper left) in order to avoid having the trajectory intersect the plots. The vector fields for the

Minkowski case are displayed in the figures: Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4.

Figure 3.1: Minkowski Poynting Vector Field: x = y = 0
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Figure 3.2: Minkowski Poynting Vector Field: u = -5, y = 0

Figure 3.3: Minkowski Poynting Vector Field: u = -4, v = 3
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Figure 3.4: Minkowski Poynting Vector Field: u=-2, v=3

In the past region, when u is negative with absolute value greater than v, the flux moves

inward to the plane of the source from the transverse directions, seen in Figure 3.3. When we move

u closer to the future horizon (u = 0), the flux starts moving outward to the transverse directions,

seen in Figure 3.4. When |u| > |v|, we have a inward flux, and when |v| > |u|, we have outward

flux. This is because at these points the sum of components inside the Sx and Sy expressions

change sign. How does this look on the z–t plane? −u = v in the R region is the line t = 0,

so when t is negative, we have inward flux. When t is positive, we have outward flux. Figure 3.2

captures flow fixed for u = −5. We can again see clearly that when v < |u|, the flow is in to the

x = 0 plane, and when v > |u|, the flow is outward. Notice from the previous conclusion, that on

the future horizon, u = 0, the flow is directed outward. We can also note, that on the past horizon,

v = 0, the flow is directed inward from the transverse directions.

In Figure 3.1, the flow near the future horizon is rightward moving, in the direction of

increasing v. Along the past horizon, the flux is leftward moving, in the direction of increasing u.
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4. PRINCIPLE OF EQUIVALENCE

The equivalence principle is a fundamental postulate in Einstein’s general theory of relativ-

ity. In this section we give several statements for the equivalence principle, and clarify the relevant

statement in the context of acceleration radiation. We explore a thought experiment in which an

observer and a source are placed in a uniform gravitational field. We ask whether in 4 differ-

ent combinations of supporting or dropping the observer and supporting or dropping the source,

whether the observer detects radiation from the source. If the results of the above experiments can

reveal the presence of the gravitational field (if for example a supported source always radiates

with respect to supported and falling observers), then this would be a paradox to the principle of

equivalence. Can we reach a consensus about the observation of classical radiation and the equiva-

lence principle? Up until now it appears that consensus is growing, and several papers [9][16][17]

have been written on this, giving heuristic arguments which are building towards a consensus.

4.1 Definition of Equivalence Principle

The equivalence principle is the principle which glues special relativistic frames to gravity.

Viewing local gravity effects as acceleration, and global effects as the curvature of spacetime leads

one to adopt the manifold framework of general relativity. Different texts give different state-

ments for the equivalence principle, some not necessarily equivalent. Three formulations of the

equivalence principle are presented here.

4.1.1 Weak Equivalence Principle

Sean Carroll’s textbook on gravity states the weak equivalence principle as “ the motion of

freely-falling particles are the same in a gravitational field and a uniformly accelerated frame, in

small enough regions of spacetime.” [23]. Gravitational effects are seen as acceleration affects on

small scales. Locally, it becomes impossible to distinguish between gravitation and acceleration.

Take, for example, the famous Einstein elevator thought experiment, in which a person inside an

elevator that is falling has no way to tell whether they are in free space, or whether they are in a
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gravitational field. Likewise, when the elevator is stopped, they have no way to conclude whether

they are supported in some gravitational field, or whether their elevator is being accelerated by

some external agent (e.g., a rocket engine) outside of the elevator. However, this statement makes

no mention of how we would expect electrodynamics to behave. The following, ‘strong’ equiva-

lence principle is one possible answer to this.

4.1.2 Strong Equivalence Principle

The strong equivalence principle, as the name suggests, is a much stronger statement. It

states that the laws of physics in local frames reduce to special relativistic laws of physics; how-

ever, this prescription is much stronger than we need, so instead we move on to the ‘qualitative

equivalence principle’.

4.1.3 Qualitative (Rohrlich) Equivalence Principle

The latter is too strong and not entirely helpful in understanding the paradox at hand, while

the former does not yet fully give insight into the nature of acceleration radiation. Fulling & Wilson

[24] coined the name qualitative equivalence principle to describe an equivalence principle which

captures the relevant physics for uniform acceleration. It is, in a sense, a corollary of the WEP

where gravitational effects are interpreted as acceleration; the important of the qualitative equiva-

lence principle result here is that observers in static frames in gravitational fields are qualitatively

equivalent to uniformly accelerating frames.

4.2 The Supported Frame

The important feature of the qualitative equivalence principle rests in the fact that it allows

us to treat supported frames in a static gravitational fields as equivalent to uniformly accelerating

frames. We can introduce some more background by asking for a general frame of a stationary ob-

server in a uniform gravitational field. Such a frame will be necessary for the physics of supported

observers. The general line element was produced in [9][16]. By the qualitative equivalence prin-

ciple, the Rindler metric describes such a supported frame in a static homogeneous gravitational
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field. We then obtain the following line element.

ds2 = −g2Z2dλ2 + dZ2 + dx2 + dy2 (Eq. 4.1)

Since the supported frame is expressed using the familiar Rindler coordinates, which can

be transformed to Minkowski coordinates, it follows that the physics of scalar radiation for sup-

ported observers can be calculated using precisely this approach. This treatment was done for

electromagnetic fields in [9].

4.3 The 4 Cases

In this section we describe the thought experiment that has motivated much of this work.

This classical thought experiment has been addressed in [9][17][24]. The following 4 cases are

outlined in [9] and will be outlined here as well. Suppose we are in some homogeneous gravita-

tional field. In this system we have a platform which is stationarily supported. One can think of

this as a table supported on the surface of the earth (locally looks like a homogeneous gravitational

field). We then consider a source and an observer in this system. We consider 4 cases, depicted

in Figure 4.1, for observers and sources and ask the question of whether the observer will observe

radiation.

1) Supported charge and observer

2) Free falling charge and supported observer

3) Supported charge and free falling observer

4) Free falling charge and observer
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Case 1 Case 2

Case 3 Case 4

Figure 4.1: 4 cases of the equivalence principle paradox. The red circle denotes a charge and the
Blue box, the detector

The essence of the argument of [9] is that in order to properly interpret the 4 cases in

accordance with the equivalence principle quantitatively, we apply our special relativistic laws

of electrodynamics to situations where the observer is free falling. Free falling observers are

described in accordance with the equivalence principle to be frames where we can use the usual

Minkowski model; thus we invoke the results for calculations concerning uniform acceleration of a

source as seen by an inertial observer. Case 3 then reports radiation, and case 4 reports no radiation.

How then does one calculate radiation for the supported observer experiments? The answer is

that supported observers should be treated as Rindler observers, since the qualitative principle of

equivalence equates local gravitation effects as acceleration affects. The constructions for Rindler

observers now serve as tools that one uses to make quantitative predictions for these experiments.

Pauri & Vallisneri in the electromagnetic case conclude that case 1 reports no radiation, and case 2

reports radiation in the affirmative. Thus for cases 2 & 3 where there is relative acceleration (in the

sense that the two worldlines do not belong to the same Rindler congruence), radiation is detected,
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and in cases where there is no relative acceleration, no radiation is detected. This is precisely

what one would expect qualitatively from the equivalence principle. We may ask whether these

conclusions for electromagnetic fields can be achieved analogously for a scalar source.

In the fourth case, here a charge and observer are in free fall. The charge appears to be

unaccelerated with respect to the observer. Using the result from section 3, RM = 0. Thus, there

is no radiation observed in this case. In case 3 we once again we have a local inertial frame.

The supported charge will appear to be uniformly accelerated in accordance with the qualitative

principle of equivalence. From the result in section 3, RM = q2g2

12π2 . It then follows that such an

observer detects radiation. In the first 2 cases, we have to do computations with respect to that

observer’s notion of radiation. In this case we have a supported observer which from previous

discussion we know is a Rindler observer; thus, we use the physics for Rindler observers in this

case. We find that indeed for case 1, RR = 0, there is no radiation, and in case 2, we would need

to perform the computation at the end of section 3.3 to verify quantitatively that this indeed will

predict radiation.
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5. CONCLUSION

5.1 Concluding Remarks

In conclusion, we have demonstrated several interesting results regarding radiation for

scalar sources. We began by going through some careful definitions regarding notions of energy,

settling on the Poynting flux as our primary object of study. We then examined a scalar source

in a massless scalar field, derived some of its properties, and computed radiation for 2 classes

of observers. In doing this, we filled in some details, namely computing explicitly the field for

a uniformly accelerating source, the divergence of the stress tensor, and vector fields for Poynt-

ing vector flux. We then applied these results to the equivalence principle paradox and gave an

argument which resolves the paradox by using the qualitative equivalence principle, and gives a

criterion which if proven would also verify this quantitatively.

5.2 Further Areas of Study

The immediate next step would be to finish the computation of section 3.3 in order to com-

pletely understand the nature of Rindler radiation as well as resolving the associated application to

the equivalence principle. One feature of scalar fields is that there is no analog to the continuity

equation from electromagnetic theory. In other words, the source does not need to be conserved,

so this can allow us to consider finite time scalar sources with possible interesting properties; con-

sequences of which we still have yet to explore. We also have many more results that we can study

regarding the flow of energy in this system. At present, we only explored a region of R close to the

horizons, far from the charge. It may be insightful to look at the flow in the transverse directions

on the other side of the charge. There is also room to find a more satisfactory answer to the balance

of energy in this system.
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APPENDIX A: NULL COORDINATES IN 4D

Working with the divergencelessness of the stress tensor, it becomes convenient to consider

a coordinate system which we call ‘null coordinates’. Let u = t−z, v = t+z, x = x, y = y. u and

v are null lines which on a spacetime diagram correspond to the rightward and leftward lightrays

depicted in Figure A.1.

u = 0

v = 0

t = 0

z = 0

Figure A.1: Null Coordinates

Transforming back to usual Minkowski coordinates is t = u+v
2

, z = v−u
2

. We then have

that dt = 1
2
(du + dv), dz = 1

2
(dv − du). We can note that z2 − t2 = −uv, thus the line element
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for null coordinates is given by

ds2 = −dudv + dx2 + dy2 (Eq. A.1)

The metric tensor then takes the following covariant and contravariant forms.

gµν =



0 −1/2 0 0

−1/2 0 0 0

0 0 1 0

0 0 0 1


(Eq. A.2)

gµν =



0 −2 0 0

−2 0 0 0

0 0 1 0

0 0 0 1


(Eq. A.3)

We remark that raising and lowering indices switches the place of u and v.

Assume ϕ is a massless free scalar field in a 4 dimensional flat spacetime. The independent

stress tensor components for a massless scalar field given by Tµν = ∂µϕ∂νϕ− 1
2
gµν∂αϕ∂

αϕ in null
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coordinates are

Tuu =∂uϕ∂uϕ (Eq. A.4a)

Tvv =∂vϕ∂vϕ (Eq. A.4b)

Tuv =
1

4
((∂xϕ)

2 + (∂yϕ)
2) (Eq. A.4c)

Tux =∂uϕ∂xϕ (Eq. A.4d)

Tuy =∂uϕ∂yϕ (Eq. A.4e)

Tvx =∂vϕ∂xϕ (Eq. A.4f)

Tvy =∂vϕ∂yϕ (Eq. A.4g)

Txx =∂xϕ∂xϕ−
1

2
((∂xϕ)

2 + (∂yϕ)
2 − 4∂uϕ∂vϕ) (Eq. A.4h)

Tyy =∂yϕ∂yϕ−
1

2
((∂xϕ)

2 + (∂yϕ)
2 − 4∂ϕu∂vϕ) (Eq. A.4i)

Txy =∂xϕ∂yϕ (Eq. A.4j)

which can be confirmed by simple computation. In 2 dimensions [24] found that Tuv = 0 and

thus the divergencelessness condition boiled down to confirming that ∂uT uu and ∂vT
vv vanished

demonstrating that they were independent, Tuu and Tvv could be interpreted as rightward and left-

ward flux. In 4 dimensions we note that this does not hold since Tuv does not vanish, thus indicating

that the transverse coordinates relate the variation of Tµν between the rightward and leftward rays.

In appendix B, we compute explicitly the divergenceless condition for the uniformly accelerating

source in 4 dimensions.
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APPENDIX B: DIVERGENCE OF Tµν

The conservation law requires the divergence of Tµν to vanish everywhere except at the

worldline of the source. The stress tensor divergence components will be a sum of theta function

and delta function terms. The terms in the divergence involving θ(v) must vanish because the field,

ϕ(x) = q
4aπR

θ(v), is a solution of the wave equation. Algebraically, the reason for this vanishing

is the following identity.

(∂µ∂µR)R− 2∂µR∂µR = 0 (Eq. B.1)

The question remains whether the divergence vanishes on the horizon v = 0 as there are terms of

δ(v). We can consider each component of the divergence.

Calculation: Tuµ Simplified

Tuu =
q2

16π2R4
(∂uR)2θ(v) (Eq. B.2a)

Tuv =
q2((∂xR)2 + (∂yR)2)θ(v)

64π2R4
(Eq. B.2b)

Tux =
q2

16π2R4
(∂uR)(∂xR)θ(v) (Eq. B.2c)

Tuy =
q2

16π2R4
(∂uR)(∂yR)θ(v) (Eq. B.2d)

Indeed ∂µTuµ vanishes as the theta function terms add to zero since ϕ satisfies the wave equa-

tion, and we are left with q2

16π2R4 (∂uR)2δ(v) which is zero since ∂uR = 0 when v = 0.
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Calculation: Tvµ Simplified

Tvv =
q2

16π2

[
(∂vR)2θ(v)

R4
− 2(∂vR)δ(v)θ(v)

R3
+

1

R2
δ(v)δ(v)

]
(Eq. B.3a)

Tvu =
q2((∂xR)2 + (∂yR)2)θ(v)

64π2R4
=

q2

16π2

[
((∂xR)2 + (∂yR)2)

4R4

]
θ(v) (Eq. B.3b)

Tvx =
q2

16π2

[
(∂vR)(∂xR)

R4
θ(v)− (∂xR)

R3
δ(v)θ(v)

]
(Eq. B.3c)

Tvy =
q2

16π2

[
(∂vR)(∂yR)

R4
θ(v)− (∂yR)

R3
δ(v)θ(v)

]
(Eq. B.3d)

Theta function terms will sum to 0 by wave equation. The term that is a product of delta functions

will vanish since there is a factor of ∂uR that vanishes. We are left with terms which are delta

functions or products of theta and delta functions which since δ(v)θ(v) = 1
2
δ(v) means we can

consider a grand sum of delta functions which are

∂u

[
2
(∂vR)

R3

]
δ(v)−

[
(∂xR)2 + (∂yR)2

2R4

]
δ(v) + ∂x

[
−(∂xR)

2R3

]
δ(v) + ∂y

[
−(∂yR)

2R3

]
δ(v)

(Eq. B.4)

differentiating the terms and pulling out the delta function

∑
...δ(v) =

(
− 2

[
−(∂uvR)R + (∂vR)(∂uR)

R4

]
−
[
(∂xR)2 + (∂yR)2

2R4

]
(Eq. B.5a)

− 1

2

[
(∂xxR)R− 3(∂xR)2

R4

]
− 1

2

[
(∂yyR)R− 3(∂yR)2

R4

])
δ(v)

=− 1

2

(
4

[
−(∂uvR)R + (∂vR)(∂uR)

R4

]
+

[
(∂xR)2 + (∂yR)2

R4

]
(Eq. B.5b)

+

[
(∂xxR)R− 3(∂xR)2

R4

]
+

[
(∂yyR)R− 3(∂yR)2

R4

])
δ(v)
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Evaluating this at v = 0, we know that ∂uR is zero, so

∑
...δ(v) =

−1
2R4

(
(−4(∂uvR) + (∂xxR) + (∂yyR))R− 2((∂xR)2 + (∂yR)2

)
δ(v) (Eq. B.6)

Since we are able to add in terms that are equal to zero,

∑
...δ(v) =

−1
2R4

(
(∂µ∂µR)R− 2(−4(∂uR)(∂vR) + (∂xR)2 + (∂yR)2

)
δ(v) (Eq. B.7a)

−1
2R4

((∂µ∂µR)R− 2(∂µR∂µR) δ(v) (Eq. B.7b)

It follows that this vanishes since Eq. B.1 is zero.

Calculation: Txµ Simplified

Txu =
q2

16π2R4
(∂uR)(∂xR)θ(v) (Eq. B.8a)

Txv =
q2

16π2

[
(∂vR)(∂xR)

R4
θ(v)− (∂xR)

R3
δ(v)θ(v)

]
(Eq. B.8b)

Txx =
q2

16π2

([
(∂xR)2 − (∂yR)2 + 4(∂vR)(∂uR)

2R4

]
θ(v)− 2(∂uR)

R3
θ(v)δ(v)

)
(Eq. B.8c)

Txy =
q2

16π2R4
(∂xR)(∂yR)θ(v) (Eq. B.8d)

(−2∂vTxu) yields a delta function term q2

16π2R4 (∂uR)(∂xR)δ(v) which at v = 0 is zero since ∂uR

vanishes. Txy will not give rise to any delta function terms. The only delta function terms will be

∑
...δ(v) =2∂u

(
(∂xR)

R3
δ(v)θ(v)

)
− ∂x

(
2(∂uR)

R3
θ(v)δ(v)

)
(Eq. B.9a)

=2

[
(∂uxR− ∂xuR)

R3
− 3

(∂uR∂xR− ∂xR∂uR)

R4

]
θ(v)δ(v) (Eq. B.9b)

=0
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Indeed vanishes.

Calculation: Tyµ Simplified

Tyu =
q2

16π2R4
(∂uR)(∂yR)θ(v) (Eq. B.10a)

Tyv =
q2

16π2

[
(∂vR)(∂yR)

R4
θ(v)− (∂yR)

R3
δ(v)θ(v)

]
(Eq. B.10b)

Tyx =
q2

16π2R4
(∂xR)(∂yR)θ(v) (Eq. B.10c)

Tyy =
q2

16π2

([
(∂yR)2 − (∂xR)2 + 4(∂vR)(∂uR)

2R4

]
θ(v)− 2(∂uR)

R3
θ(v)δ(v)

)
(Eq. B.10d)

The argument is identical to the vanishing for ∂xTµx, so indeed ∂yTµy vanishes.
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